1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/IntEqClasses.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc-emitter"
48 
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52 
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55   Name = R->getName();
56   if (R->getValue("Namespace"))
57     Namespace = R->getValueAsString("Namespace");
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61 
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
65     EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
66 }
67 
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75 
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79 
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91 
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (Record *Part : Parts)
100       IdxParts.push_back(RegBank.getSubRegIdx(Part));
101     setConcatenationOf(IdxParts);
102   }
103 }
104 
105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask.any())
108     return LaneMask;
109 
110   // Recursion guard, shouldn't be required.
111   LaneMask = LaneBitmask::getAll();
112 
113   // The lane mask is simply the union of all sub-indices.
114   LaneBitmask M;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M.any() && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121 
122 void CodeGenSubRegIndex::setConcatenationOf(
123     ArrayRef<CodeGenSubRegIndex*> Parts) {
124   if (ConcatenationOf.empty())
125     ConcatenationOf.assign(Parts.begin(), Parts.end());
126   else
127     assert(std::equal(Parts.begin(), Parts.end(),
128                       ConcatenationOf.begin()) && "parts consistent");
129 }
130 
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134     CodeGenSubRegIndex *SubIdx = *I;
135     SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
140 
141     if (SubIdx->ConcatenationOf.empty()) {
142       ++I;
143     } else {
144       I = ConcatenationOf.erase(I);
145       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                  SubIdx->ConcatenationOf.end());
147       I += SubIdx->ConcatenationOf.size();
148     }
149   }
150 }
151 
152 //===----------------------------------------------------------------------===//
153 //                              CodeGenRegister
154 //===----------------------------------------------------------------------===//
155 
156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157   : TheDef(R),
158     EnumValue(Enum),
159     CostPerUse(R->getValueAsInt("CostPerUse")),
160     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
161     HasDisjunctSubRegs(false),
162     SubRegsComplete(false),
163     SuperRegsComplete(false),
164     TopoSig(~0u) {
165   Artificial = R->getValueAsBit("isArtificial");
166 }
167 
168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
169   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
170   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
171 
172   if (SRIs.size() != SRs.size())
173     PrintFatalError(TheDef->getLoc(),
174                     "SubRegs and SubRegIndices must have the same size");
175 
176   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
177     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
178     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
179   }
180 
181   // Also compute leading super-registers. Each register has a list of
182   // covered-by-subregs super-registers where it appears as the first explicit
183   // sub-register.
184   //
185   // This is used by computeSecondarySubRegs() to find candidates.
186   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
187     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
188 
189   // Add ad hoc alias links. This is a symmetric relationship between two
190   // registers, so build a symmetric graph by adding links in both ends.
191   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
192   for (Record *Alias : Aliases) {
193     CodeGenRegister *Reg = RegBank.getReg(Alias);
194     ExplicitAliases.push_back(Reg);
195     Reg->ExplicitAliases.push_back(this);
196   }
197 }
198 
199 const StringRef CodeGenRegister::getName() const {
200   assert(TheDef && "no def");
201   return TheDef->getName();
202 }
203 
204 namespace {
205 
206 // Iterate over all register units in a set of registers.
207 class RegUnitIterator {
208   CodeGenRegister::Vec::const_iterator RegI, RegE;
209   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
210 
211 public:
212   RegUnitIterator(const CodeGenRegister::Vec &Regs):
213     RegI(Regs.begin()), RegE(Regs.end()) {
214 
215     if (RegI != RegE) {
216       UnitI = (*RegI)->getRegUnits().begin();
217       UnitE = (*RegI)->getRegUnits().end();
218       advance();
219     }
220   }
221 
222   bool isValid() const { return UnitI != UnitE; }
223 
224   unsigned operator* () const { assert(isValid()); return *UnitI; }
225 
226   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
227 
228   /// Preincrement.  Move to the next unit.
229   void operator++() {
230     assert(isValid() && "Cannot advance beyond the last operand");
231     ++UnitI;
232     advance();
233   }
234 
235 protected:
236   void advance() {
237     while (UnitI == UnitE) {
238       if (++RegI == RegE)
239         break;
240       UnitI = (*RegI)->getRegUnits().begin();
241       UnitE = (*RegI)->getRegUnits().end();
242     }
243   }
244 };
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
318            E = Comps.end(); I != E; ++I) {
319       SubRegMap::const_iterator SRI = Map.find(I->first);
320       if (SRI == Map.end())
321         continue; // Idx + I->first doesn't exist in SR.
322       // Add I->second as a name for the subreg SRI->second, assuming it is
323       // orphaned, and the name isn't already used for something else.
324       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
325         continue;
326       // We found a new name for the orphaned sub-register.
327       SubRegs.insert(std::make_pair(I->second, SRI->second));
328       Indices.push_back(I->second);
329     }
330   }
331 
332   // Now Orphans contains the inherited subregisters without a direct index.
333   // Create inferred indexes for all missing entries.
334   // Work backwards in the Indices vector in order to compose subregs bottom-up.
335   // Consider this subreg sequence:
336   //
337   //   qsub_1 -> dsub_0 -> ssub_0
338   //
339   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340   // can be reached in two different ways:
341   //
342   //   qsub_1 -> ssub_0
343   //   dsub_2 -> ssub_0
344   //
345   // We pick the latter composition because another register may have [dsub_0,
346   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
347   // dsub_2 -> ssub_0 composition can be shared.
348   while (!Indices.empty() && !Orphans.empty()) {
349     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
350     CodeGenRegister *SR = SubRegs[Idx];
351     const SubRegMap &Map = SR->computeSubRegs(RegBank);
352     for (const auto &SubReg : Map)
353       if (Orphans.erase(SubReg.second))
354         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
355   }
356 
357   // Compute the inverse SubReg -> Idx map.
358   for (const auto &SubReg : SubRegs) {
359     if (SubReg.second == this) {
360       ArrayRef<SMLoc> Loc;
361       if (TheDef)
362         Loc = TheDef->getLoc();
363       PrintFatalError(Loc, "Register " + getName() +
364                       " has itself as a sub-register");
365     }
366 
367     // Compute AllSuperRegsCovered.
368     if (!CoveredBySubRegs)
369       SubReg.first->AllSuperRegsCovered = false;
370 
371     // Ensure that every sub-register has a unique name.
372     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
373       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
374     if (Ins->second == SubReg.first)
375       continue;
376     // Trouble: Two different names for SubReg.second.
377     ArrayRef<SMLoc> Loc;
378     if (TheDef)
379       Loc = TheDef->getLoc();
380     PrintFatalError(Loc, "Sub-register can't have two names: " +
381                   SubReg.second->getName() + " available as " +
382                   SubReg.first->getName() + " and " + Ins->second->getName());
383   }
384 
385   // Derive possible names for sub-register concatenations from any explicit
386   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387   // that getConcatSubRegIndex() won't invent any concatenated indices that the
388   // user already specified.
389   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
390     CodeGenRegister *SR = ExplicitSubRegs[i];
391     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
392       continue;
393 
394     // SR is composed of multiple sub-regs. Find their names in this register.
395     SmallVector<CodeGenSubRegIndex*, 8> Parts;
396     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
397       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
398 
399     // Offer this as an existing spelling for the concatenation of Parts.
400     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
401     Idx.setConcatenationOf(Parts);
402   }
403 
404   // Initialize RegUnitList. Because getSubRegs is called recursively, this
405   // processes the register hierarchy in postorder.
406   //
407   // Inherit all sub-register units. It is good enough to look at the explicit
408   // sub-registers, the other registers won't contribute any more units.
409   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
410     CodeGenRegister *SR = ExplicitSubRegs[i];
411     RegUnits |= SR->RegUnits;
412   }
413 
414   // Absent any ad hoc aliasing, we create one register unit per leaf register.
415   // These units correspond to the maximal cliques in the register overlap
416   // graph which is optimal.
417   //
418   // When there is ad hoc aliasing, we simply create one unit per edge in the
419   // undirected ad hoc aliasing graph. Technically, we could do better by
420   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
421   // are extremely rare anyway (I've never seen one), so we don't bother with
422   // the added complexity.
423   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
424     CodeGenRegister *AR = ExplicitAliases[i];
425     // Only visit each edge once.
426     if (AR->SubRegsComplete)
427       continue;
428     // Create a RegUnit representing this alias edge, and add it to both
429     // registers.
430     unsigned Unit = RegBank.newRegUnit(this, AR);
431     RegUnits.set(Unit);
432     AR->RegUnits.set(Unit);
433   }
434 
435   // Finally, create units for leaf registers without ad hoc aliases. Note that
436   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
437   // necessary. This means the aliasing leaf registers can share a single unit.
438   if (RegUnits.empty())
439     RegUnits.set(RegBank.newRegUnit(this));
440 
441   // We have now computed the native register units. More may be adopted later
442   // for balancing purposes.
443   NativeRegUnits = RegUnits;
444 
445   return SubRegs;
446 }
447 
448 // In a register that is covered by its sub-registers, try to find redundant
449 // sub-registers. For example:
450 //
451 //   QQ0 = {Q0, Q1}
452 //   Q0 = {D0, D1}
453 //   Q1 = {D2, D3}
454 //
455 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
456 // the register definition.
457 //
458 // The explicitly specified registers form a tree. This function discovers
459 // sub-register relationships that would force a DAG.
460 //
461 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
462   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
463 
464   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
465   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
466     SubRegQueue.push(P);
467 
468   // Look at the leading super-registers of each sub-register. Those are the
469   // candidates for new sub-registers, assuming they are fully contained in
470   // this register.
471   while (!SubRegQueue.empty()) {
472     CodeGenSubRegIndex *SubRegIdx;
473     const CodeGenRegister *SubReg;
474     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
475     SubRegQueue.pop();
476 
477     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
478     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
479       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
480       // Already got this sub-register?
481       if (Cand == this || getSubRegIndex(Cand))
482         continue;
483       // Check if each component of Cand is already a sub-register.
484       assert(!Cand->ExplicitSubRegs.empty() &&
485              "Super-register has no sub-registers");
486       if (Cand->ExplicitSubRegs.size() == 1)
487         continue;
488       SmallVector<CodeGenSubRegIndex*, 8> Parts;
489       // We know that the first component is (SubRegIdx,SubReg). However we
490       // may still need to split it into smaller subregister parts.
491       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
492       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
493       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
494         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
495           if (SubRegIdx->ConcatenationOf.empty()) {
496             Parts.push_back(SubRegIdx);
497           } else
498             for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
499               Parts.push_back(SubIdx);
500         } else {
501           // Sub-register doesn't exist.
502           Parts.clear();
503           break;
504         }
505       }
506       // There is nothing to do if some Cand sub-register is not part of this
507       // register.
508       if (Parts.empty())
509         continue;
510 
511       // Each part of Cand is a sub-register of this. Make the full Cand also
512       // a sub-register with a concatenated sub-register index.
513       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
514       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
515           std::make_pair(Concat, Cand);
516 
517       if (!SubRegs.insert(NewSubReg).second)
518         continue;
519 
520       // We inserted a new subregister.
521       NewSubRegs.push_back(NewSubReg);
522       SubRegQueue.push(NewSubReg);
523       SubReg2Idx.insert(std::make_pair(Cand, Concat));
524     }
525   }
526 
527   // Create sub-register index composition maps for the synthesized indices.
528   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
529     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
530     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
531     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
532            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
533       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
534       if (!SubIdx)
535         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
536                         SI->second->getName() + " in " + getName());
537       NewIdx->addComposite(SI->first, SubIdx);
538     }
539   }
540 }
541 
542 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
543   // Only visit each register once.
544   if (SuperRegsComplete)
545     return;
546   SuperRegsComplete = true;
547 
548   // Make sure all sub-registers have been visited first, so the super-reg
549   // lists will be topologically ordered.
550   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
551        I != E; ++I)
552     I->second->computeSuperRegs(RegBank);
553 
554   // Now add this as a super-register on all sub-registers.
555   // Also compute the TopoSigId in post-order.
556   TopoSigId Id;
557   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
558        I != E; ++I) {
559     // Topological signature computed from SubIdx, TopoId(SubReg).
560     // Loops and idempotent indices have TopoSig = ~0u.
561     Id.push_back(I->first->EnumValue);
562     Id.push_back(I->second->TopoSig);
563 
564     // Don't add duplicate entries.
565     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
566       continue;
567     I->second->SuperRegs.push_back(this);
568   }
569   TopoSig = RegBank.getTopoSig(Id);
570 }
571 
572 void
573 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
574                                     CodeGenRegBank &RegBank) const {
575   assert(SubRegsComplete && "Must precompute sub-registers");
576   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
577     CodeGenRegister *SR = ExplicitSubRegs[i];
578     if (OSet.insert(SR))
579       SR->addSubRegsPreOrder(OSet, RegBank);
580   }
581   // Add any secondary sub-registers that weren't part of the explicit tree.
582   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
583        I != E; ++I)
584     OSet.insert(I->second);
585 }
586 
587 // Get the sum of this register's unit weights.
588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589   unsigned Weight = 0;
590   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
591        I != E; ++I) {
592     Weight += RegBank.getRegUnit(*I).Weight;
593   }
594   return Weight;
595 }
596 
597 //===----------------------------------------------------------------------===//
598 //                               RegisterTuples
599 //===----------------------------------------------------------------------===//
600 
601 // A RegisterTuples def is used to generate pseudo-registers from lists of
602 // sub-registers. We provide a SetTheory expander class that returns the new
603 // registers.
604 namespace {
605 
606 struct TupleExpander : SetTheory::Expander {
607   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
608   // the synthesized definitions for their lifetime.
609   std::vector<std::unique_ptr<Record>> &SynthDefs;
610 
611   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
612       : SynthDefs(SynthDefs) {}
613 
614   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
615     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
616     unsigned Dim = Indices.size();
617     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
618     if (Dim != SubRegs->size())
619       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
620     if (Dim < 2)
621       PrintFatalError(Def->getLoc(),
622                       "Tuples must have at least 2 sub-registers");
623 
624     // Evaluate the sub-register lists to be zipped.
625     unsigned Length = ~0u;
626     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
627     for (unsigned i = 0; i != Dim; ++i) {
628       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
629       Length = std::min(Length, unsigned(Lists[i].size()));
630     }
631 
632     if (Length == 0)
633       return;
634 
635     // Precompute some types.
636     Record *RegisterCl = Def->getRecords().getClass("Register");
637     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
638     StringInit *BlankName = StringInit::get("");
639 
640     // Zip them up.
641     for (unsigned n = 0; n != Length; ++n) {
642       std::string Name;
643       Record *Proto = Lists[0][n];
644       std::vector<Init*> Tuple;
645       unsigned CostPerUse = 0;
646       for (unsigned i = 0; i != Dim; ++i) {
647         Record *Reg = Lists[i][n];
648         if (i) Name += '_';
649         Name += Reg->getName();
650         Tuple.push_back(DefInit::get(Reg));
651         CostPerUse = std::max(CostPerUse,
652                               unsigned(Reg->getValueAsInt("CostPerUse")));
653       }
654 
655       // Create a new Record representing the synthesized register. This record
656       // is only for consumption by CodeGenRegister, it is not added to the
657       // RecordKeeper.
658       SynthDefs.emplace_back(
659           llvm::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
660       Record *NewReg = SynthDefs.back().get();
661       Elts.insert(NewReg);
662 
663       // Copy Proto super-classes.
664       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
665       for (const auto &SuperPair : Supers)
666         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
667 
668       // Copy Proto fields.
669       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
670         RecordVal RV = Proto->getValues()[i];
671 
672         // Skip existing fields, like NAME.
673         if (NewReg->getValue(RV.getNameInit()))
674           continue;
675 
676         StringRef Field = RV.getName();
677 
678         // Replace the sub-register list with Tuple.
679         if (Field == "SubRegs")
680           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
681 
682         // Provide a blank AsmName. MC hacks are required anyway.
683         if (Field == "AsmName")
684           RV.setValue(BlankName);
685 
686         // CostPerUse is aggregated from all Tuple members.
687         if (Field == "CostPerUse")
688           RV.setValue(IntInit::get(CostPerUse));
689 
690         // Composite registers are always covered by sub-registers.
691         if (Field == "CoveredBySubRegs")
692           RV.setValue(BitInit::get(true));
693 
694         // Copy fields from the RegisterTuples def.
695         if (Field == "SubRegIndices" ||
696             Field == "CompositeIndices") {
697           NewReg->addValue(*Def->getValue(Field));
698           continue;
699         }
700 
701         // Some fields get their default uninitialized value.
702         if (Field == "DwarfNumbers" ||
703             Field == "DwarfAlias" ||
704             Field == "Aliases") {
705           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
706             NewReg->addValue(*DefRV);
707           continue;
708         }
709 
710         // Everything else is copied from Proto.
711         NewReg->addValue(RV);
712       }
713     }
714   }
715 };
716 
717 } // end anonymous namespace
718 
719 //===----------------------------------------------------------------------===//
720 //                            CodeGenRegisterClass
721 //===----------------------------------------------------------------------===//
722 
723 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
724   llvm::sort(M.begin(), M.end(), deref<llvm::less>());
725   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
726 }
727 
728 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
729   : TheDef(R),
730     Name(R->getName()),
731     TopoSigs(RegBank.getNumTopoSigs()),
732     EnumValue(-1) {
733 
734   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
735   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
736     Record *Type = TypeList[i];
737     if (!Type->isSubClassOf("ValueType"))
738       PrintFatalError("RegTypes list member '" + Type->getName() +
739         "' does not derive from the ValueType class!");
740     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
741   }
742   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
743 
744   // Allocation order 0 is the full set. AltOrders provides others.
745   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
746   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
747   Orders.resize(1 + AltOrders->size());
748 
749   // Default allocation order always contains all registers.
750   Artificial = true;
751   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
752     Orders[0].push_back((*Elements)[i]);
753     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
754     Members.push_back(Reg);
755     Artificial &= Reg->Artificial;
756     TopoSigs.set(Reg->getTopoSig());
757   }
758   sortAndUniqueRegisters(Members);
759 
760   // Alternative allocation orders may be subsets.
761   SetTheory::RecSet Order;
762   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
763     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
764     Orders[1 + i].append(Order.begin(), Order.end());
765     // Verify that all altorder members are regclass members.
766     while (!Order.empty()) {
767       CodeGenRegister *Reg = RegBank.getReg(Order.back());
768       Order.pop_back();
769       if (!contains(Reg))
770         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
771                       " is not a class member");
772     }
773   }
774 
775   Namespace = R->getValueAsString("Namespace");
776 
777   if (const RecordVal *RV = R->getValue("RegInfos"))
778     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
779       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
780   unsigned Size = R->getValueAsInt("Size");
781   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
782          "Impossible to determine register size");
783   if (!RSI.hasDefault()) {
784     RegSizeInfo RI;
785     RI.RegSize = RI.SpillSize = Size ? Size
786                                      : VTs[0].getSimple().getSizeInBits();
787     RI.SpillAlignment = R->getValueAsInt("Alignment");
788     RSI.Map.insert({DefaultMode, RI});
789   }
790 
791   CopyCost = R->getValueAsInt("CopyCost");
792   Allocatable = R->getValueAsBit("isAllocatable");
793   AltOrderSelect = R->getValueAsString("AltOrderSelect");
794   int AllocationPriority = R->getValueAsInt("AllocationPriority");
795   if (AllocationPriority < 0 || AllocationPriority > 63)
796     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
797   this->AllocationPriority = AllocationPriority;
798 }
799 
800 // Create an inferred register class that was missing from the .td files.
801 // Most properties will be inherited from the closest super-class after the
802 // class structure has been computed.
803 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
804                                            StringRef Name, Key Props)
805   : Members(*Props.Members),
806     TheDef(nullptr),
807     Name(Name),
808     TopoSigs(RegBank.getNumTopoSigs()),
809     EnumValue(-1),
810     RSI(Props.RSI),
811     CopyCost(0),
812     Allocatable(true),
813     AllocationPriority(0) {
814   Artificial = true;
815   for (const auto R : Members) {
816     TopoSigs.set(R->getTopoSig());
817     Artificial &= R->Artificial;
818   }
819 }
820 
821 // Compute inherited propertied for a synthesized register class.
822 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
823   assert(!getDef() && "Only synthesized classes can inherit properties");
824   assert(!SuperClasses.empty() && "Synthesized class without super class");
825 
826   // The last super-class is the smallest one.
827   CodeGenRegisterClass &Super = *SuperClasses.back();
828 
829   // Most properties are copied directly.
830   // Exceptions are members, size, and alignment
831   Namespace = Super.Namespace;
832   VTs = Super.VTs;
833   CopyCost = Super.CopyCost;
834   Allocatable = Super.Allocatable;
835   AltOrderSelect = Super.AltOrderSelect;
836   AllocationPriority = Super.AllocationPriority;
837 
838   // Copy all allocation orders, filter out foreign registers from the larger
839   // super-class.
840   Orders.resize(Super.Orders.size());
841   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
842     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
843       if (contains(RegBank.getReg(Super.Orders[i][j])))
844         Orders[i].push_back(Super.Orders[i][j]);
845 }
846 
847 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
848   return std::binary_search(Members.begin(), Members.end(), Reg,
849                             deref<llvm::less>());
850 }
851 
852 namespace llvm {
853 
854   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
855     OS << "{ " << K.RSI;
856     for (const auto R : *K.Members)
857       OS << ", " << R->getName();
858     return OS << " }";
859   }
860 
861 } // end namespace llvm
862 
863 // This is a simple lexicographical order that can be used to search for sets.
864 // It is not the same as the topological order provided by TopoOrderRC.
865 bool CodeGenRegisterClass::Key::
866 operator<(const CodeGenRegisterClass::Key &B) const {
867   assert(Members && B.Members);
868   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
869 }
870 
871 // Returns true if RC is a strict subclass.
872 // RC is a sub-class of this class if it is a valid replacement for any
873 // instruction operand where a register of this classis required. It must
874 // satisfy these conditions:
875 //
876 // 1. All RC registers are also in this.
877 // 2. The RC spill size must not be smaller than our spill size.
878 // 3. RC spill alignment must be compatible with ours.
879 //
880 static bool testSubClass(const CodeGenRegisterClass *A,
881                          const CodeGenRegisterClass *B) {
882   return A->RSI.isSubClassOf(B->RSI) &&
883          std::includes(A->getMembers().begin(), A->getMembers().end(),
884                        B->getMembers().begin(), B->getMembers().end(),
885                        deref<llvm::less>());
886 }
887 
888 /// Sorting predicate for register classes.  This provides a topological
889 /// ordering that arranges all register classes before their sub-classes.
890 ///
891 /// Register classes with the same registers, spill size, and alignment form a
892 /// clique.  They will be ordered alphabetically.
893 ///
894 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
895                         const CodeGenRegisterClass &PB) {
896   auto *A = &PA;
897   auto *B = &PB;
898   if (A == B)
899     return false;
900 
901   if (A->RSI < B->RSI)
902     return true;
903   if (A->RSI != B->RSI)
904     return false;
905 
906   // Order by descending set size.  Note that the classes' allocation order may
907   // not have been computed yet.  The Members set is always vaild.
908   if (A->getMembers().size() > B->getMembers().size())
909     return true;
910   if (A->getMembers().size() < B->getMembers().size())
911     return false;
912 
913   // Finally order by name as a tie breaker.
914   return StringRef(A->getName()) < B->getName();
915 }
916 
917 std::string CodeGenRegisterClass::getQualifiedName() const {
918   if (Namespace.empty())
919     return getName();
920   else
921     return (Namespace + "::" + getName()).str();
922 }
923 
924 // Compute sub-classes of all register classes.
925 // Assume the classes are ordered topologically.
926 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
927   auto &RegClasses = RegBank.getRegClasses();
928 
929   // Visit backwards so sub-classes are seen first.
930   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
931     CodeGenRegisterClass &RC = *I;
932     RC.SubClasses.resize(RegClasses.size());
933     RC.SubClasses.set(RC.EnumValue);
934     if (RC.Artificial)
935       continue;
936 
937     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
938     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
939       CodeGenRegisterClass &SubRC = *I2;
940       if (RC.SubClasses.test(SubRC.EnumValue))
941         continue;
942       if (!testSubClass(&RC, &SubRC))
943         continue;
944       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
945       // check them again.
946       RC.SubClasses |= SubRC.SubClasses;
947     }
948 
949     // Sweep up missed clique members.  They will be immediately preceding RC.
950     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
951       RC.SubClasses.set(I2->EnumValue);
952   }
953 
954   // Compute the SuperClasses lists from the SubClasses vectors.
955   for (auto &RC : RegClasses) {
956     const BitVector &SC = RC.getSubClasses();
957     auto I = RegClasses.begin();
958     for (int s = 0, next_s = SC.find_first(); next_s != -1;
959          next_s = SC.find_next(s)) {
960       std::advance(I, next_s - s);
961       s = next_s;
962       if (&*I == &RC)
963         continue;
964       I->SuperClasses.push_back(&RC);
965     }
966   }
967 
968   // With the class hierarchy in place, let synthesized register classes inherit
969   // properties from their closest super-class. The iteration order here can
970   // propagate properties down multiple levels.
971   for (auto &RC : RegClasses)
972     if (!RC.getDef())
973       RC.inheritProperties(RegBank);
974 }
975 
976 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
977 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
978     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
979   auto SizeOrder = [](const CodeGenRegisterClass *A,
980                       const CodeGenRegisterClass *B) {
981     return A->getMembers().size() > B->getMembers().size();
982   };
983 
984   auto &RegClasses = RegBank.getRegClasses();
985 
986   // Find all the subclasses of this one that fully support the sub-register
987   // index and order them by size. BiggestSuperRC should always be first.
988   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
989   if (!BiggestSuperRegRC)
990     return None;
991   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
992   std::vector<CodeGenRegisterClass *> SuperRegRCs;
993   for (auto &RC : RegClasses)
994     if (SuperRegRCsBV[RC.EnumValue])
995       SuperRegRCs.emplace_back(&RC);
996   llvm::sort(SuperRegRCs.begin(), SuperRegRCs.end(), SizeOrder);
997   assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first");
998 
999   // Find all the subreg classes and order them by size too.
1000   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1001   for (auto &RC: RegClasses) {
1002     BitVector SuperRegClassesBV(RegClasses.size());
1003     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1004     if (SuperRegClassesBV.any())
1005       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1006   }
1007   llvm::sort(SuperRegClasses.begin(), SuperRegClasses.end(),
1008              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1009                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1010                return SizeOrder(A.first, B.first);
1011              });
1012 
1013   // Find the biggest subclass and subreg class such that R:subidx is in the
1014   // subreg class for all R in subclass.
1015   //
1016   // For example:
1017   // All registers in X86's GR64 have a sub_32bit subregister but no class
1018   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1019   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1020   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1021   // having excluded RIP, we are able to find a SubRegRC (GR32).
1022   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1023   CodeGenRegisterClass *SubRegRC = nullptr;
1024   for (auto *SuperRegRC : SuperRegRCs) {
1025     for (const auto &SuperRegClassPair : SuperRegClasses) {
1026       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1027       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1028         SubRegRC = SuperRegClassPair.first;
1029         ChosenSuperRegClass = SuperRegRC;
1030 
1031         // If SubRegRC is bigger than SuperRegRC then there are members of
1032         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1033         // find a better fit and fall back on this one if there isn't one.
1034         //
1035         // This is intended to prevent X86 from making odd choices such as
1036         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1037         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1038         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1039         // mapping.
1040         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1041           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1042       }
1043     }
1044 
1045     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1046     // registers, then we're done.
1047     if (ChosenSuperRegClass)
1048       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1049   }
1050 
1051   return None;
1052 }
1053 
1054 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1055                                               BitVector &Out) const {
1056   auto FindI = SuperRegClasses.find(SubIdx);
1057   if (FindI == SuperRegClasses.end())
1058     return;
1059   for (CodeGenRegisterClass *RC : FindI->second)
1060     Out.set(RC->EnumValue);
1061 }
1062 
1063 // Populate a unique sorted list of units from a register set.
1064 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1065   std::vector<unsigned> &RegUnits) const {
1066   std::vector<unsigned> TmpUnits;
1067   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1068     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1069     if (!RU.Artificial)
1070       TmpUnits.push_back(*UnitI);
1071   }
1072   llvm::sort(TmpUnits.begin(), TmpUnits.end());
1073   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1074                    std::back_inserter(RegUnits));
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 //                               CodeGenRegBank
1079 //===----------------------------------------------------------------------===//
1080 
1081 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1082                                const CodeGenHwModes &Modes) : CGH(Modes) {
1083   // Configure register Sets to understand register classes and tuples.
1084   Sets.addFieldExpander("RegisterClass", "MemberList");
1085   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1086   Sets.addExpander("RegisterTuples",
1087                    llvm::make_unique<TupleExpander>(SynthDefs));
1088 
1089   // Read in the user-defined (named) sub-register indices.
1090   // More indices will be synthesized later.
1091   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1092   llvm::sort(SRIs.begin(), SRIs.end(), LessRecord());
1093   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1094     getSubRegIdx(SRIs[i]);
1095   // Build composite maps from ComposedOf fields.
1096   for (auto &Idx : SubRegIndices)
1097     Idx.updateComponents(*this);
1098 
1099   // Read in the register definitions.
1100   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1101   llvm::sort(Regs.begin(), Regs.end(), LessRecordRegister());
1102   // Assign the enumeration values.
1103   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1104     getReg(Regs[i]);
1105 
1106   // Expand tuples and number the new registers.
1107   std::vector<Record*> Tups =
1108     Records.getAllDerivedDefinitions("RegisterTuples");
1109 
1110   for (Record *R : Tups) {
1111     std::vector<Record *> TupRegs = *Sets.expand(R);
1112     llvm::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
1113     for (Record *RC : TupRegs)
1114       getReg(RC);
1115   }
1116 
1117   // Now all the registers are known. Build the object graph of explicit
1118   // register-register references.
1119   for (auto &Reg : Registers)
1120     Reg.buildObjectGraph(*this);
1121 
1122   // Compute register name map.
1123   for (auto &Reg : Registers)
1124     // FIXME: This could just be RegistersByName[name] = register, except that
1125     // causes some failures in MIPS - perhaps they have duplicate register name
1126     // entries? (or maybe there's a reason for it - I don't know much about this
1127     // code, just drive-by refactoring)
1128     RegistersByName.insert(
1129         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1130 
1131   // Precompute all sub-register maps.
1132   // This will create Composite entries for all inferred sub-register indices.
1133   for (auto &Reg : Registers)
1134     Reg.computeSubRegs(*this);
1135 
1136   // Compute transitive closure of subregister index ConcatenationOf vectors
1137   // and initialize ConcatIdx map.
1138   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1139     SRI.computeConcatTransitiveClosure();
1140     if (!SRI.ConcatenationOf.empty())
1141       ConcatIdx.insert(std::make_pair(
1142           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1143                                              SRI.ConcatenationOf.end()), &SRI));
1144   }
1145 
1146   // Infer even more sub-registers by combining leading super-registers.
1147   for (auto &Reg : Registers)
1148     if (Reg.CoveredBySubRegs)
1149       Reg.computeSecondarySubRegs(*this);
1150 
1151   // After the sub-register graph is complete, compute the topologically
1152   // ordered SuperRegs list.
1153   for (auto &Reg : Registers)
1154     Reg.computeSuperRegs(*this);
1155 
1156   // For each pair of Reg:SR, if both are non-artificial, mark the
1157   // corresponding sub-register index as non-artificial.
1158   for (auto &Reg : Registers) {
1159     if (Reg.Artificial)
1160       continue;
1161     for (auto P : Reg.getSubRegs()) {
1162       const CodeGenRegister *SR = P.second;
1163       if (!SR->Artificial)
1164         P.first->Artificial = false;
1165     }
1166   }
1167 
1168   // Native register units are associated with a leaf register. They've all been
1169   // discovered now.
1170   NumNativeRegUnits = RegUnits.size();
1171 
1172   // Read in register class definitions.
1173   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1174   if (RCs.empty())
1175     PrintFatalError("No 'RegisterClass' subclasses defined!");
1176 
1177   // Allocate user-defined register classes.
1178   for (auto *R : RCs) {
1179     RegClasses.emplace_back(*this, R);
1180     CodeGenRegisterClass &RC = RegClasses.back();
1181     if (!RC.Artificial)
1182       addToMaps(&RC);
1183   }
1184 
1185   // Infer missing classes to create a full algebra.
1186   computeInferredRegisterClasses();
1187 
1188   // Order register classes topologically and assign enum values.
1189   RegClasses.sort(TopoOrderRC);
1190   unsigned i = 0;
1191   for (auto &RC : RegClasses)
1192     RC.EnumValue = i++;
1193   CodeGenRegisterClass::computeSubClasses(*this);
1194 }
1195 
1196 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1197 CodeGenSubRegIndex*
1198 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1199   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1200   return &SubRegIndices.back();
1201 }
1202 
1203 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1204   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1205   if (Idx)
1206     return Idx;
1207   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1208   Idx = &SubRegIndices.back();
1209   return Idx;
1210 }
1211 
1212 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1213   CodeGenRegister *&Reg = Def2Reg[Def];
1214   if (Reg)
1215     return Reg;
1216   Registers.emplace_back(Def, Registers.size() + 1);
1217   Reg = &Registers.back();
1218   return Reg;
1219 }
1220 
1221 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1222   if (Record *Def = RC->getDef())
1223     Def2RC.insert(std::make_pair(Def, RC));
1224 
1225   // Duplicate classes are rejected by insert().
1226   // That's OK, we only care about the properties handled by CGRC::Key.
1227   CodeGenRegisterClass::Key K(*RC);
1228   Key2RC.insert(std::make_pair(K, RC));
1229 }
1230 
1231 // Create a synthetic sub-class if it is missing.
1232 CodeGenRegisterClass*
1233 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1234                                     const CodeGenRegister::Vec *Members,
1235                                     StringRef Name) {
1236   // Synthetic sub-class has the same size and alignment as RC.
1237   CodeGenRegisterClass::Key K(Members, RC->RSI);
1238   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1239   if (FoundI != Key2RC.end())
1240     return FoundI->second;
1241 
1242   // Sub-class doesn't exist, create a new one.
1243   RegClasses.emplace_back(*this, Name, K);
1244   addToMaps(&RegClasses.back());
1245   return &RegClasses.back();
1246 }
1247 
1248 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1249   if (CodeGenRegisterClass *RC = Def2RC[Def])
1250     return RC;
1251 
1252   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1253 }
1254 
1255 CodeGenSubRegIndex*
1256 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1257                                         CodeGenSubRegIndex *B) {
1258   // Look for an existing entry.
1259   CodeGenSubRegIndex *Comp = A->compose(B);
1260   if (Comp)
1261     return Comp;
1262 
1263   // None exists, synthesize one.
1264   std::string Name = A->getName() + "_then_" + B->getName();
1265   Comp = createSubRegIndex(Name, A->getNamespace());
1266   A->addComposite(B, Comp);
1267   return Comp;
1268 }
1269 
1270 CodeGenSubRegIndex *CodeGenRegBank::
1271 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1272   assert(Parts.size() > 1 && "Need two parts to concatenate");
1273 #ifndef NDEBUG
1274   for (CodeGenSubRegIndex *Idx : Parts) {
1275     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1276   }
1277 #endif
1278 
1279   // Look for an existing entry.
1280   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1281   if (Idx)
1282     return Idx;
1283 
1284   // None exists, synthesize one.
1285   std::string Name = Parts.front()->getName();
1286   // Determine whether all parts are contiguous.
1287   bool isContinuous = true;
1288   unsigned Size = Parts.front()->Size;
1289   unsigned LastOffset = Parts.front()->Offset;
1290   unsigned LastSize = Parts.front()->Size;
1291   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1292     Name += '_';
1293     Name += Parts[i]->getName();
1294     Size += Parts[i]->Size;
1295     if (Parts[i]->Offset != (LastOffset + LastSize))
1296       isContinuous = false;
1297     LastOffset = Parts[i]->Offset;
1298     LastSize = Parts[i]->Size;
1299   }
1300   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1301   Idx->Size = Size;
1302   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1303   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1304   return Idx;
1305 }
1306 
1307 void CodeGenRegBank::computeComposites() {
1308   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1309   // and many registers will share TopoSigs on regular architectures.
1310   BitVector TopoSigs(getNumTopoSigs());
1311 
1312   for (const auto &Reg1 : Registers) {
1313     // Skip identical subreg structures already processed.
1314     if (TopoSigs.test(Reg1.getTopoSig()))
1315       continue;
1316     TopoSigs.set(Reg1.getTopoSig());
1317 
1318     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1319     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1320          e1 = SRM1.end(); i1 != e1; ++i1) {
1321       CodeGenSubRegIndex *Idx1 = i1->first;
1322       CodeGenRegister *Reg2 = i1->second;
1323       // Ignore identity compositions.
1324       if (&Reg1 == Reg2)
1325         continue;
1326       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1327       // Try composing Idx1 with another SubRegIndex.
1328       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1329            e2 = SRM2.end(); i2 != e2; ++i2) {
1330         CodeGenSubRegIndex *Idx2 = i2->first;
1331         CodeGenRegister *Reg3 = i2->second;
1332         // Ignore identity compositions.
1333         if (Reg2 == Reg3)
1334           continue;
1335         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1336         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1337         assert(Idx3 && "Sub-register doesn't have an index");
1338 
1339         // Conflicting composition? Emit a warning but allow it.
1340         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1341           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1342                        " and " + Idx2->getQualifiedName() +
1343                        " compose ambiguously as " + Prev->getQualifiedName() +
1344                        " or " + Idx3->getQualifiedName());
1345       }
1346     }
1347   }
1348 }
1349 
1350 // Compute lane masks. This is similar to register units, but at the
1351 // sub-register index level. Each bit in the lane mask is like a register unit
1352 // class, and two lane masks will have a bit in common if two sub-register
1353 // indices overlap in some register.
1354 //
1355 // Conservatively share a lane mask bit if two sub-register indices overlap in
1356 // some registers, but not in others. That shouldn't happen a lot.
1357 void CodeGenRegBank::computeSubRegLaneMasks() {
1358   // First assign individual bits to all the leaf indices.
1359   unsigned Bit = 0;
1360   // Determine mask of lanes that cover their registers.
1361   CoveringLanes = LaneBitmask::getAll();
1362   for (auto &Idx : SubRegIndices) {
1363     if (Idx.getComposites().empty()) {
1364       if (Bit > LaneBitmask::BitWidth) {
1365         PrintFatalError(
1366           Twine("Ran out of lanemask bits to represent subregister ")
1367           + Idx.getName());
1368       }
1369       Idx.LaneMask = LaneBitmask::getLane(Bit);
1370       ++Bit;
1371     } else {
1372       Idx.LaneMask = LaneBitmask::getNone();
1373     }
1374   }
1375 
1376   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1377   // here is that for each possible target subregister we look at the leafs
1378   // in the subregister graph that compose for this target and create
1379   // transformation sequences for the lanemasks. Each step in the sequence
1380   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1381   // are usually the same for many subregisters we can easily combine the steps
1382   // by combining the masks.
1383   for (const auto &Idx : SubRegIndices) {
1384     const auto &Composites = Idx.getComposites();
1385     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1386 
1387     if (Composites.empty()) {
1388       // Moving from a class with no subregisters we just had a single lane:
1389       // The subregister must be a leaf subregister and only occupies 1 bit.
1390       // Move the bit from the class without subregisters into that position.
1391       unsigned DstBit = Idx.LaneMask.getHighestLane();
1392       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1393              "Must be a leaf subregister");
1394       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1395       LaneTransforms.push_back(MaskRol);
1396     } else {
1397       // Go through all leaf subregisters and find the ones that compose with
1398       // Idx. These make out all possible valid bits in the lane mask we want to
1399       // transform. Looking only at the leafs ensure that only a single bit in
1400       // the mask is set.
1401       unsigned NextBit = 0;
1402       for (auto &Idx2 : SubRegIndices) {
1403         // Skip non-leaf subregisters.
1404         if (!Idx2.getComposites().empty())
1405           continue;
1406         // Replicate the behaviour from the lane mask generation loop above.
1407         unsigned SrcBit = NextBit;
1408         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1409         if (NextBit < LaneBitmask::BitWidth-1)
1410           ++NextBit;
1411         assert(Idx2.LaneMask == SrcMask);
1412 
1413         // Get the composed subregister if there is any.
1414         auto C = Composites.find(&Idx2);
1415         if (C == Composites.end())
1416           continue;
1417         const CodeGenSubRegIndex *Composite = C->second;
1418         // The Composed subreg should be a leaf subreg too
1419         assert(Composite->getComposites().empty());
1420 
1421         // Create Mask+Rotate operation and merge with existing ops if possible.
1422         unsigned DstBit = Composite->LaneMask.getHighestLane();
1423         int Shift = DstBit - SrcBit;
1424         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1425                                         : LaneBitmask::BitWidth + Shift;
1426         for (auto &I : LaneTransforms) {
1427           if (I.RotateLeft == RotateLeft) {
1428             I.Mask |= SrcMask;
1429             SrcMask = LaneBitmask::getNone();
1430           }
1431         }
1432         if (SrcMask.any()) {
1433           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1434           LaneTransforms.push_back(MaskRol);
1435         }
1436       }
1437     }
1438 
1439     // Optimize if the transformation consists of one step only: Set mask to
1440     // 0xffffffff (including some irrelevant invalid bits) so that it should
1441     // merge with more entries later while compressing the table.
1442     if (LaneTransforms.size() == 1)
1443       LaneTransforms[0].Mask = LaneBitmask::getAll();
1444 
1445     // Further compression optimization: For invalid compositions resulting
1446     // in a sequence with 0 entries we can just pick any other. Choose
1447     // Mask 0xffffffff with Rotation 0.
1448     if (LaneTransforms.size() == 0) {
1449       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1450       LaneTransforms.push_back(P);
1451     }
1452   }
1453 
1454   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1455   // by the sub-register graph? This doesn't occur in any known targets.
1456 
1457   // Inherit lanes from composites.
1458   for (const auto &Idx : SubRegIndices) {
1459     LaneBitmask Mask = Idx.computeLaneMask();
1460     // If some super-registers without CoveredBySubRegs use this index, we can
1461     // no longer assume that the lanes are covering their registers.
1462     if (!Idx.AllSuperRegsCovered)
1463       CoveringLanes &= ~Mask;
1464   }
1465 
1466   // Compute lane mask combinations for register classes.
1467   for (auto &RegClass : RegClasses) {
1468     LaneBitmask LaneMask;
1469     for (const auto &SubRegIndex : SubRegIndices) {
1470       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1471         continue;
1472       LaneMask |= SubRegIndex.LaneMask;
1473     }
1474 
1475     // For classes without any subregisters set LaneMask to 1 instead of 0.
1476     // This makes it easier for client code to handle classes uniformly.
1477     if (LaneMask.none())
1478       LaneMask = LaneBitmask::getLane(0);
1479 
1480     RegClass.LaneMask = LaneMask;
1481   }
1482 }
1483 
1484 namespace {
1485 
1486 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1487 // the transitive closure of the union of overlapping register
1488 // classes. Together, the UberRegSets form a partition of the registers. If we
1489 // consider overlapping register classes to be connected, then each UberRegSet
1490 // is a set of connected components.
1491 //
1492 // An UberRegSet will likely be a horizontal slice of register names of
1493 // the same width. Nontrivial subregisters should then be in a separate
1494 // UberRegSet. But this property isn't required for valid computation of
1495 // register unit weights.
1496 //
1497 // A Weight field caches the max per-register unit weight in each UberRegSet.
1498 //
1499 // A set of SingularDeterminants flags single units of some register in this set
1500 // for which the unit weight equals the set weight. These units should not have
1501 // their weight increased.
1502 struct UberRegSet {
1503   CodeGenRegister::Vec Regs;
1504   unsigned Weight = 0;
1505   CodeGenRegister::RegUnitList SingularDeterminants;
1506 
1507   UberRegSet() = default;
1508 };
1509 
1510 } // end anonymous namespace
1511 
1512 // Partition registers into UberRegSets, where each set is the transitive
1513 // closure of the union of overlapping register classes.
1514 //
1515 // UberRegSets[0] is a special non-allocatable set.
1516 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1517                             std::vector<UberRegSet*> &RegSets,
1518                             CodeGenRegBank &RegBank) {
1519   const auto &Registers = RegBank.getRegisters();
1520 
1521   // The Register EnumValue is one greater than its index into Registers.
1522   assert(Registers.size() == Registers.back().EnumValue &&
1523          "register enum value mismatch");
1524 
1525   // For simplicitly make the SetID the same as EnumValue.
1526   IntEqClasses UberSetIDs(Registers.size()+1);
1527   std::set<unsigned> AllocatableRegs;
1528   for (auto &RegClass : RegBank.getRegClasses()) {
1529     if (!RegClass.Allocatable)
1530       continue;
1531 
1532     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1533     if (Regs.empty())
1534       continue;
1535 
1536     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1537     assert(USetID && "register number 0 is invalid");
1538 
1539     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1540     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1541       AllocatableRegs.insert((*I)->EnumValue);
1542       UberSetIDs.join(USetID, (*I)->EnumValue);
1543     }
1544   }
1545   // Combine non-allocatable regs.
1546   for (const auto &Reg : Registers) {
1547     unsigned RegNum = Reg.EnumValue;
1548     if (AllocatableRegs.count(RegNum))
1549       continue;
1550 
1551     UberSetIDs.join(0, RegNum);
1552   }
1553   UberSetIDs.compress();
1554 
1555   // Make the first UberSet a special unallocatable set.
1556   unsigned ZeroID = UberSetIDs[0];
1557 
1558   // Insert Registers into the UberSets formed by union-find.
1559   // Do not resize after this.
1560   UberSets.resize(UberSetIDs.getNumClasses());
1561   unsigned i = 0;
1562   for (const CodeGenRegister &Reg : Registers) {
1563     unsigned USetID = UberSetIDs[Reg.EnumValue];
1564     if (!USetID)
1565       USetID = ZeroID;
1566     else if (USetID == ZeroID)
1567       USetID = 0;
1568 
1569     UberRegSet *USet = &UberSets[USetID];
1570     USet->Regs.push_back(&Reg);
1571     sortAndUniqueRegisters(USet->Regs);
1572     RegSets[i++] = USet;
1573   }
1574 }
1575 
1576 // Recompute each UberSet weight after changing unit weights.
1577 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1578                                CodeGenRegBank &RegBank) {
1579   // Skip the first unallocatable set.
1580   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1581          E = UberSets.end(); I != E; ++I) {
1582 
1583     // Initialize all unit weights in this set, and remember the max units/reg.
1584     const CodeGenRegister *Reg = nullptr;
1585     unsigned MaxWeight = 0, Weight = 0;
1586     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1587       if (Reg != UnitI.getReg()) {
1588         if (Weight > MaxWeight)
1589           MaxWeight = Weight;
1590         Reg = UnitI.getReg();
1591         Weight = 0;
1592       }
1593       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1594         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1595         if (!UWeight) {
1596           UWeight = 1;
1597           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1598         }
1599         Weight += UWeight;
1600       }
1601     }
1602     if (Weight > MaxWeight)
1603       MaxWeight = Weight;
1604     if (I->Weight != MaxWeight) {
1605       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1606                         << MaxWeight;
1607                  for (auto &Unit
1608                       : I->Regs) dbgs()
1609                  << " " << Unit->getName();
1610                  dbgs() << "\n");
1611       // Update the set weight.
1612       I->Weight = MaxWeight;
1613     }
1614 
1615     // Find singular determinants.
1616     for (const auto R : I->Regs) {
1617       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1618         I->SingularDeterminants |= R->getRegUnits();
1619       }
1620     }
1621   }
1622 }
1623 
1624 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1625 // a register and its subregisters so that they have the same weight as their
1626 // UberSet. Self-recursion processes the subregister tree in postorder so
1627 // subregisters are normalized first.
1628 //
1629 // Side effects:
1630 // - creates new adopted register units
1631 // - causes superregisters to inherit adopted units
1632 // - increases the weight of "singular" units
1633 // - induces recomputation of UberWeights.
1634 static bool normalizeWeight(CodeGenRegister *Reg,
1635                             std::vector<UberRegSet> &UberSets,
1636                             std::vector<UberRegSet*> &RegSets,
1637                             BitVector &NormalRegs,
1638                             CodeGenRegister::RegUnitList &NormalUnits,
1639                             CodeGenRegBank &RegBank) {
1640   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1641   if (NormalRegs.test(Reg->EnumValue))
1642     return false;
1643   NormalRegs.set(Reg->EnumValue);
1644 
1645   bool Changed = false;
1646   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1647   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1648          SRE = SRM.end(); SRI != SRE; ++SRI) {
1649     if (SRI->second == Reg)
1650       continue; // self-cycles happen
1651 
1652     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1653                                NormalRegs, NormalUnits, RegBank);
1654   }
1655   // Postorder register normalization.
1656 
1657   // Inherit register units newly adopted by subregisters.
1658   if (Reg->inheritRegUnits(RegBank))
1659     computeUberWeights(UberSets, RegBank);
1660 
1661   // Check if this register is too skinny for its UberRegSet.
1662   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1663 
1664   unsigned RegWeight = Reg->getWeight(RegBank);
1665   if (UberSet->Weight > RegWeight) {
1666     // A register unit's weight can be adjusted only if it is the singular unit
1667     // for this register, has not been used to normalize a subregister's set,
1668     // and has not already been used to singularly determine this UberRegSet.
1669     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1670     if (Reg->getRegUnits().count() != 1
1671         || hasRegUnit(NormalUnits, AdjustUnit)
1672         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1673       // We don't have an adjustable unit, so adopt a new one.
1674       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1675       Reg->adoptRegUnit(AdjustUnit);
1676       // Adopting a unit does not immediately require recomputing set weights.
1677     }
1678     else {
1679       // Adjust the existing single unit.
1680       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1681         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1682       // The unit may be shared among sets and registers within this set.
1683       computeUberWeights(UberSets, RegBank);
1684     }
1685     Changed = true;
1686   }
1687 
1688   // Mark these units normalized so superregisters can't change their weights.
1689   NormalUnits |= Reg->getRegUnits();
1690 
1691   return Changed;
1692 }
1693 
1694 // Compute a weight for each register unit created during getSubRegs.
1695 //
1696 // The goal is that two registers in the same class will have the same weight,
1697 // where each register's weight is defined as sum of its units' weights.
1698 void CodeGenRegBank::computeRegUnitWeights() {
1699   std::vector<UberRegSet> UberSets;
1700   std::vector<UberRegSet*> RegSets(Registers.size());
1701   computeUberSets(UberSets, RegSets, *this);
1702   // UberSets and RegSets are now immutable.
1703 
1704   computeUberWeights(UberSets, *this);
1705 
1706   // Iterate over each Register, normalizing the unit weights until reaching
1707   // a fix point.
1708   unsigned NumIters = 0;
1709   for (bool Changed = true; Changed; ++NumIters) {
1710     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1711     Changed = false;
1712     for (auto &Reg : Registers) {
1713       CodeGenRegister::RegUnitList NormalUnits;
1714       BitVector NormalRegs;
1715       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1716                                  NormalUnits, *this);
1717     }
1718   }
1719 }
1720 
1721 // Find a set in UniqueSets with the same elements as Set.
1722 // Return an iterator into UniqueSets.
1723 static std::vector<RegUnitSet>::const_iterator
1724 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1725                const RegUnitSet &Set) {
1726   std::vector<RegUnitSet>::const_iterator
1727     I = UniqueSets.begin(), E = UniqueSets.end();
1728   for(;I != E; ++I) {
1729     if (I->Units == Set.Units)
1730       break;
1731   }
1732   return I;
1733 }
1734 
1735 // Return true if the RUSubSet is a subset of RUSuperSet.
1736 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1737                             const std::vector<unsigned> &RUSuperSet) {
1738   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1739                        RUSubSet.begin(), RUSubSet.end());
1740 }
1741 
1742 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1743 /// but with one or two registers removed. We occasionally have registers like
1744 /// APSR and PC thrown in with the general registers. We also see many
1745 /// special-purpose register subsets, such as tail-call and Thumb
1746 /// encodings. Generating all possible overlapping sets is combinatorial and
1747 /// overkill for modeling pressure. Ideally we could fix this statically in
1748 /// tablegen by (1) having the target define register classes that only include
1749 /// the allocatable registers and marking other classes as non-allocatable and
1750 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1751 /// the purpose of pressure.  However, we make an attempt to handle targets that
1752 /// are not nicely defined by merging nearly identical register unit sets
1753 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1754 /// set limit by filtering the reserved registers.
1755 ///
1756 /// Merge sets only if the units have the same weight. For example, on ARM,
1757 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1758 /// should not expand the S set to include D regs.
1759 void CodeGenRegBank::pruneUnitSets() {
1760   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1761 
1762   // Form an equivalence class of UnitSets with no significant difference.
1763   std::vector<unsigned> SuperSetIDs;
1764   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1765        SubIdx != EndIdx; ++SubIdx) {
1766     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1767     unsigned SuperIdx = 0;
1768     for (; SuperIdx != EndIdx; ++SuperIdx) {
1769       if (SuperIdx == SubIdx)
1770         continue;
1771 
1772       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1773       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1774       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1775           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1776           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1777           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1778         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1779                           << "\n");
1780         // We can pick any of the set names for the merged set. Go for the
1781         // shortest one to avoid picking the name of one of the classes that are
1782         // artificially created by tablegen. So "FPR128_lo" instead of
1783         // "QQQQ_with_qsub3_in_FPR128_lo".
1784         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1785           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1786         break;
1787       }
1788     }
1789     if (SuperIdx == EndIdx)
1790       SuperSetIDs.push_back(SubIdx);
1791   }
1792   // Populate PrunedUnitSets with each equivalence class's superset.
1793   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1794   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1795     unsigned SuperIdx = SuperSetIDs[i];
1796     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1797     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1798   }
1799   RegUnitSets.swap(PrunedUnitSets);
1800 }
1801 
1802 // Create a RegUnitSet for each RegClass that contains all units in the class
1803 // including adopted units that are necessary to model register pressure. Then
1804 // iteratively compute RegUnitSets such that the union of any two overlapping
1805 // RegUnitSets is repreresented.
1806 //
1807 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1808 // RegUnitSet that is a superset of that RegUnitClass.
1809 void CodeGenRegBank::computeRegUnitSets() {
1810   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1811 
1812   // Compute a unique RegUnitSet for each RegClass.
1813   auto &RegClasses = getRegClasses();
1814   for (auto &RC : RegClasses) {
1815     if (!RC.Allocatable || RC.Artificial)
1816       continue;
1817 
1818     // Speculatively grow the RegUnitSets to hold the new set.
1819     RegUnitSets.resize(RegUnitSets.size() + 1);
1820     RegUnitSets.back().Name = RC.getName();
1821 
1822     // Compute a sorted list of units in this class.
1823     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1824 
1825     // Find an existing RegUnitSet.
1826     std::vector<RegUnitSet>::const_iterator SetI =
1827       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1828     if (SetI != std::prev(RegUnitSets.end()))
1829       RegUnitSets.pop_back();
1830   }
1831 
1832   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1833                                                    USEnd = RegUnitSets.size();
1834                                                    USIdx < USEnd; ++USIdx) {
1835     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1836     for (auto &U : RegUnitSets[USIdx].Units)
1837       printRegUnitName(U);
1838     dbgs() << "\n";
1839   });
1840 
1841   // Iteratively prune unit sets.
1842   pruneUnitSets();
1843 
1844   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1845                                                  USEnd = RegUnitSets.size();
1846                                                  USIdx < USEnd; ++USIdx) {
1847     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1848     for (auto &U : RegUnitSets[USIdx].Units)
1849       printRegUnitName(U);
1850     dbgs() << "\n";
1851   } dbgs() << "\nUnion sets:\n");
1852 
1853   // Iterate over all unit sets, including new ones added by this loop.
1854   unsigned NumRegUnitSubSets = RegUnitSets.size();
1855   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1856     // In theory, this is combinatorial. In practice, it needs to be bounded
1857     // by a small number of sets for regpressure to be efficient.
1858     // If the assert is hit, we need to implement pruning.
1859     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1860 
1861     // Compare new sets with all original classes.
1862     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1863          SearchIdx != EndIdx; ++SearchIdx) {
1864       std::set<unsigned> Intersection;
1865       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1866                             RegUnitSets[Idx].Units.end(),
1867                             RegUnitSets[SearchIdx].Units.begin(),
1868                             RegUnitSets[SearchIdx].Units.end(),
1869                             std::inserter(Intersection, Intersection.begin()));
1870       if (Intersection.empty())
1871         continue;
1872 
1873       // Speculatively grow the RegUnitSets to hold the new set.
1874       RegUnitSets.resize(RegUnitSets.size() + 1);
1875       RegUnitSets.back().Name =
1876         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1877 
1878       std::set_union(RegUnitSets[Idx].Units.begin(),
1879                      RegUnitSets[Idx].Units.end(),
1880                      RegUnitSets[SearchIdx].Units.begin(),
1881                      RegUnitSets[SearchIdx].Units.end(),
1882                      std::inserter(RegUnitSets.back().Units,
1883                                    RegUnitSets.back().Units.begin()));
1884 
1885       // Find an existing RegUnitSet, or add the union to the unique sets.
1886       std::vector<RegUnitSet>::const_iterator SetI =
1887         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1888       if (SetI != std::prev(RegUnitSets.end()))
1889         RegUnitSets.pop_back();
1890       else {
1891         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1892                           << RegUnitSets.back().Name << ":";
1893                    for (auto &U
1894                         : RegUnitSets.back().Units) printRegUnitName(U);
1895                    dbgs() << "\n";);
1896       }
1897     }
1898   }
1899 
1900   // Iteratively prune unit sets after inferring supersets.
1901   pruneUnitSets();
1902 
1903   LLVM_DEBUG(
1904       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1905                            USIdx < USEnd; ++USIdx) {
1906         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1907         for (auto &U : RegUnitSets[USIdx].Units)
1908           printRegUnitName(U);
1909         dbgs() << "\n";
1910       });
1911 
1912   // For each register class, list the UnitSets that are supersets.
1913   RegClassUnitSets.resize(RegClasses.size());
1914   int RCIdx = -1;
1915   for (auto &RC : RegClasses) {
1916     ++RCIdx;
1917     if (!RC.Allocatable)
1918       continue;
1919 
1920     // Recompute the sorted list of units in this class.
1921     std::vector<unsigned> RCRegUnits;
1922     RC.buildRegUnitSet(*this, RCRegUnits);
1923 
1924     // Don't increase pressure for unallocatable regclasses.
1925     if (RCRegUnits.empty())
1926       continue;
1927 
1928     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1929                for (auto U
1930                     : RCRegUnits) printRegUnitName(U);
1931                dbgs() << "\n  UnitSetIDs:");
1932 
1933     // Find all supersets.
1934     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1935          USIdx != USEnd; ++USIdx) {
1936       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1937         LLVM_DEBUG(dbgs() << " " << USIdx);
1938         RegClassUnitSets[RCIdx].push_back(USIdx);
1939       }
1940     }
1941     LLVM_DEBUG(dbgs() << "\n");
1942     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1943   }
1944 
1945   // For each register unit, ensure that we have the list of UnitSets that
1946   // contain the unit. Normally, this matches an existing list of UnitSets for a
1947   // register class. If not, we create a new entry in RegClassUnitSets as a
1948   // "fake" register class.
1949   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1950        UnitIdx < UnitEnd; ++UnitIdx) {
1951     std::vector<unsigned> RUSets;
1952     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1953       RegUnitSet &RUSet = RegUnitSets[i];
1954       if (!is_contained(RUSet.Units, UnitIdx))
1955         continue;
1956       RUSets.push_back(i);
1957     }
1958     unsigned RCUnitSetsIdx = 0;
1959     for (unsigned e = RegClassUnitSets.size();
1960          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1961       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1962         break;
1963       }
1964     }
1965     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1966     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1967       // Create a new list of UnitSets as a "fake" register class.
1968       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1969       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1970     }
1971   }
1972 }
1973 
1974 void CodeGenRegBank::computeRegUnitLaneMasks() {
1975   for (auto &Register : Registers) {
1976     // Create an initial lane mask for all register units.
1977     const auto &RegUnits = Register.getRegUnits();
1978     CodeGenRegister::RegUnitLaneMaskList
1979         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
1980     // Iterate through SubRegisters.
1981     typedef CodeGenRegister::SubRegMap SubRegMap;
1982     const SubRegMap &SubRegs = Register.getSubRegs();
1983     for (SubRegMap::const_iterator S = SubRegs.begin(),
1984          SE = SubRegs.end(); S != SE; ++S) {
1985       CodeGenRegister *SubReg = S->second;
1986       // Ignore non-leaf subregisters, their lane masks are fully covered by
1987       // the leaf subregisters anyway.
1988       if (!SubReg->getSubRegs().empty())
1989         continue;
1990       CodeGenSubRegIndex *SubRegIndex = S->first;
1991       const CodeGenRegister *SubRegister = S->second;
1992       LaneBitmask LaneMask = SubRegIndex->LaneMask;
1993       // Distribute LaneMask to Register Units touched.
1994       for (unsigned SUI : SubRegister->getRegUnits()) {
1995         bool Found = false;
1996         unsigned u = 0;
1997         for (unsigned RU : RegUnits) {
1998           if (SUI == RU) {
1999             RegUnitLaneMasks[u] |= LaneMask;
2000             assert(!Found);
2001             Found = true;
2002           }
2003           ++u;
2004         }
2005         (void)Found;
2006         assert(Found);
2007       }
2008     }
2009     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2010   }
2011 }
2012 
2013 void CodeGenRegBank::computeDerivedInfo() {
2014   computeComposites();
2015   computeSubRegLaneMasks();
2016 
2017   // Compute a weight for each register unit created during getSubRegs.
2018   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2019   computeRegUnitWeights();
2020 
2021   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2022   // supersets for the union of overlapping sets.
2023   computeRegUnitSets();
2024 
2025   computeRegUnitLaneMasks();
2026 
2027   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2028   for (CodeGenRegisterClass &RC : RegClasses) {
2029     RC.HasDisjunctSubRegs = false;
2030     RC.CoveredBySubRegs = true;
2031     for (const CodeGenRegister *Reg : RC.getMembers()) {
2032       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2033       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2034     }
2035   }
2036 
2037   // Get the weight of each set.
2038   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2039     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2040 
2041   // Find the order of each set.
2042   RegUnitSetOrder.reserve(RegUnitSets.size());
2043   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2044     RegUnitSetOrder.push_back(Idx);
2045 
2046   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
2047                    [this](unsigned ID1, unsigned ID2) {
2048     return getRegPressureSet(ID1).Units.size() <
2049            getRegPressureSet(ID2).Units.size();
2050   });
2051   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2052     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2053   }
2054 }
2055 
2056 //
2057 // Synthesize missing register class intersections.
2058 //
2059 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2060 // returns a maximal register class for all X.
2061 //
2062 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2063   assert(!RegClasses.empty());
2064   // Stash the iterator to the last element so that this loop doesn't visit
2065   // elements added by the getOrCreateSubClass call within it.
2066   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2067        I != std::next(E); ++I) {
2068     CodeGenRegisterClass *RC1 = RC;
2069     CodeGenRegisterClass *RC2 = &*I;
2070     if (RC1 == RC2)
2071       continue;
2072 
2073     // Compute the set intersection of RC1 and RC2.
2074     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2075     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2076     CodeGenRegister::Vec Intersection;
2077     std::set_intersection(
2078         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
2079         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
2080 
2081     // Skip disjoint class pairs.
2082     if (Intersection.empty())
2083       continue;
2084 
2085     // If RC1 and RC2 have different spill sizes or alignments, use the
2086     // stricter one for sub-classing.  If they are equal, prefer RC1.
2087     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2088       std::swap(RC1, RC2);
2089 
2090     getOrCreateSubClass(RC1, &Intersection,
2091                         RC1->getName() + "_and_" + RC2->getName());
2092   }
2093 }
2094 
2095 //
2096 // Synthesize missing sub-classes for getSubClassWithSubReg().
2097 //
2098 // Make sure that the set of registers in RC with a given SubIdx sub-register
2099 // form a register class.  Update RC->SubClassWithSubReg.
2100 //
2101 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2102   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2103   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2104                    deref<llvm::less>> SubReg2SetMap;
2105 
2106   // Compute the set of registers supporting each SubRegIndex.
2107   SubReg2SetMap SRSets;
2108   for (const auto R : RC->getMembers()) {
2109     if (R->Artificial)
2110       continue;
2111     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2112     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2113          E = SRM.end(); I != E; ++I) {
2114       if (!I->first->Artificial)
2115         SRSets[I->first].push_back(R);
2116     }
2117   }
2118 
2119   for (auto I : SRSets)
2120     sortAndUniqueRegisters(I.second);
2121 
2122   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2123   // numerical order to visit synthetic indices last.
2124   for (const auto &SubIdx : SubRegIndices) {
2125     if (SubIdx.Artificial)
2126       continue;
2127     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2128     // Unsupported SubRegIndex. Skip it.
2129     if (I == SRSets.end())
2130       continue;
2131     // In most cases, all RC registers support the SubRegIndex.
2132     if (I->second.size() == RC->getMembers().size()) {
2133       RC->setSubClassWithSubReg(&SubIdx, RC);
2134       continue;
2135     }
2136     // This is a real subset.  See if we have a matching class.
2137     CodeGenRegisterClass *SubRC =
2138       getOrCreateSubClass(RC, &I->second,
2139                           RC->getName() + "_with_" + I->first->getName());
2140     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2141   }
2142 }
2143 
2144 //
2145 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2146 //
2147 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2148 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2149 //
2150 
2151 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2152                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2153   SmallVector<std::pair<const CodeGenRegister*,
2154                         const CodeGenRegister*>, 16> SSPairs;
2155   BitVector TopoSigs(getNumTopoSigs());
2156 
2157   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2158   for (auto &SubIdx : SubRegIndices) {
2159     // Skip indexes that aren't fully supported by RC's registers. This was
2160     // computed by inferSubClassWithSubReg() above which should have been
2161     // called first.
2162     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2163       continue;
2164 
2165     // Build list of (Super, Sub) pairs for this SubIdx.
2166     SSPairs.clear();
2167     TopoSigs.reset();
2168     for (const auto Super : RC->getMembers()) {
2169       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2170       assert(Sub && "Missing sub-register");
2171       SSPairs.push_back(std::make_pair(Super, Sub));
2172       TopoSigs.set(Sub->getTopoSig());
2173     }
2174 
2175     // Iterate over sub-register class candidates.  Ignore classes created by
2176     // this loop. They will never be useful.
2177     // Store an iterator to the last element (not end) so that this loop doesn't
2178     // visit newly inserted elements.
2179     assert(!RegClasses.empty());
2180     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2181          I != std::next(E); ++I) {
2182       CodeGenRegisterClass &SubRC = *I;
2183       // Topological shortcut: SubRC members have the wrong shape.
2184       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2185         continue;
2186       // Compute the subset of RC that maps into SubRC.
2187       CodeGenRegister::Vec SubSetVec;
2188       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2189         if (SubRC.contains(SSPairs[i].second))
2190           SubSetVec.push_back(SSPairs[i].first);
2191 
2192       if (SubSetVec.empty())
2193         continue;
2194 
2195       // RC injects completely into SubRC.
2196       sortAndUniqueRegisters(SubSetVec);
2197       if (SubSetVec.size() == SSPairs.size()) {
2198         SubRC.addSuperRegClass(&SubIdx, RC);
2199         continue;
2200       }
2201 
2202       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2203       // class.
2204       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2205                                           SubIdx.getName() + "_in_" +
2206                                           SubRC.getName());
2207     }
2208   }
2209 }
2210 
2211 //
2212 // Infer missing register classes.
2213 //
2214 void CodeGenRegBank::computeInferredRegisterClasses() {
2215   assert(!RegClasses.empty());
2216   // When this function is called, the register classes have not been sorted
2217   // and assigned EnumValues yet.  That means getSubClasses(),
2218   // getSuperClasses(), and hasSubClass() functions are defunct.
2219 
2220   // Use one-before-the-end so it doesn't move forward when new elements are
2221   // added.
2222   auto FirstNewRC = std::prev(RegClasses.end());
2223 
2224   // Visit all register classes, including the ones being added by the loop.
2225   // Watch out for iterator invalidation here.
2226   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2227     CodeGenRegisterClass *RC = &*I;
2228     if (RC->Artificial)
2229       continue;
2230 
2231     // Synthesize answers for getSubClassWithSubReg().
2232     inferSubClassWithSubReg(RC);
2233 
2234     // Synthesize answers for getCommonSubClass().
2235     inferCommonSubClass(RC);
2236 
2237     // Synthesize answers for getMatchingSuperRegClass().
2238     inferMatchingSuperRegClass(RC);
2239 
2240     // New register classes are created while this loop is running, and we need
2241     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2242     // to match old super-register classes with sub-register classes created
2243     // after inferMatchingSuperRegClass was called.  At this point,
2244     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2245     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2246     if (I == FirstNewRC) {
2247       auto NextNewRC = std::prev(RegClasses.end());
2248       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2249            ++I2)
2250         inferMatchingSuperRegClass(&*I2, E2);
2251       FirstNewRC = NextNewRC;
2252     }
2253   }
2254 }
2255 
2256 /// getRegisterClassForRegister - Find the register class that contains the
2257 /// specified physical register.  If the register is not in a register class,
2258 /// return null. If the register is in multiple classes, and the classes have a
2259 /// superset-subset relationship and the same set of types, return the
2260 /// superclass.  Otherwise return null.
2261 const CodeGenRegisterClass*
2262 CodeGenRegBank::getRegClassForRegister(Record *R) {
2263   const CodeGenRegister *Reg = getReg(R);
2264   const CodeGenRegisterClass *FoundRC = nullptr;
2265   for (const auto &RC : getRegClasses()) {
2266     if (!RC.contains(Reg))
2267       continue;
2268 
2269     // If this is the first class that contains the register,
2270     // make a note of it and go on to the next class.
2271     if (!FoundRC) {
2272       FoundRC = &RC;
2273       continue;
2274     }
2275 
2276     // If a register's classes have different types, return null.
2277     if (RC.getValueTypes() != FoundRC->getValueTypes())
2278       return nullptr;
2279 
2280     // Check to see if the previously found class that contains
2281     // the register is a subclass of the current class. If so,
2282     // prefer the superclass.
2283     if (RC.hasSubClass(FoundRC)) {
2284       FoundRC = &RC;
2285       continue;
2286     }
2287 
2288     // Check to see if the previously found class that contains
2289     // the register is a superclass of the current class. If so,
2290     // prefer the superclass.
2291     if (FoundRC->hasSubClass(&RC))
2292       continue;
2293 
2294     // Multiple classes, and neither is a superclass of the other.
2295     // Return null.
2296     return nullptr;
2297   }
2298   return FoundRC;
2299 }
2300 
2301 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2302   SetVector<const CodeGenRegister*> Set;
2303 
2304   // First add Regs with all sub-registers.
2305   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2306     CodeGenRegister *Reg = getReg(Regs[i]);
2307     if (Set.insert(Reg))
2308       // Reg is new, add all sub-registers.
2309       // The pre-ordering is not important here.
2310       Reg->addSubRegsPreOrder(Set, *this);
2311   }
2312 
2313   // Second, find all super-registers that are completely covered by the set.
2314   for (unsigned i = 0; i != Set.size(); ++i) {
2315     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2316     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2317       const CodeGenRegister *Super = SR[j];
2318       if (!Super->CoveredBySubRegs || Set.count(Super))
2319         continue;
2320       // This new super-register is covered by its sub-registers.
2321       bool AllSubsInSet = true;
2322       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2323       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2324              E = SRM.end(); I != E; ++I)
2325         if (!Set.count(I->second)) {
2326           AllSubsInSet = false;
2327           break;
2328         }
2329       // All sub-registers in Set, add Super as well.
2330       // We will visit Super later to recheck its super-registers.
2331       if (AllSubsInSet)
2332         Set.insert(Super);
2333     }
2334   }
2335 
2336   // Convert to BitVector.
2337   BitVector BV(Registers.size() + 1);
2338   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2339     BV.set(Set[i]->EnumValue);
2340   return BV;
2341 }
2342 
2343 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2344   if (Unit < NumNativeRegUnits)
2345     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2346   else
2347     dbgs() << " #" << Unit;
2348 }
2349