1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/IntEqClasses.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/TableGen/Error.h" 33 #include "llvm/TableGen/Record.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <iterator> 38 #include <map> 39 #include <queue> 40 #include <set> 41 #include <string> 42 #include <tuple> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "regalloc-emitter" 49 50 //===----------------------------------------------------------------------===// 51 // CodeGenSubRegIndex 52 //===----------------------------------------------------------------------===// 53 54 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 55 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 56 Name = R->getName(); 57 if (R->getValue("Namespace")) 58 Namespace = R->getValueAsString("Namespace"); 59 Size = R->getValueAsInt("Size"); 60 Offset = R->getValueAsInt("Offset"); 61 } 62 63 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 64 unsigned Enum) 65 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 66 EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 67 } 68 69 std::string CodeGenSubRegIndex::getQualifiedName() const { 70 std::string N = getNamespace(); 71 if (!N.empty()) 72 N += "::"; 73 N += getName(); 74 return N; 75 } 76 77 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 78 if (!TheDef) 79 return; 80 81 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 82 if (!Comps.empty()) { 83 if (Comps.size() != 2) 84 PrintFatalError(TheDef->getLoc(), 85 "ComposedOf must have exactly two entries"); 86 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 87 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 88 CodeGenSubRegIndex *X = A->addComposite(B, this); 89 if (X) 90 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 91 } 92 93 std::vector<Record*> Parts = 94 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 95 if (!Parts.empty()) { 96 if (Parts.size() < 2) 97 PrintFatalError(TheDef->getLoc(), 98 "CoveredBySubRegs must have two or more entries"); 99 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 100 for (Record *Part : Parts) 101 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 102 setConcatenationOf(IdxParts); 103 } 104 } 105 106 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 107 // Already computed? 108 if (LaneMask.any()) 109 return LaneMask; 110 111 // Recursion guard, shouldn't be required. 112 LaneMask = LaneBitmask::getAll(); 113 114 // The lane mask is simply the union of all sub-indices. 115 LaneBitmask M; 116 for (const auto &C : Composed) 117 M |= C.second->computeLaneMask(); 118 assert(M.any() && "Missing lane mask, sub-register cycle?"); 119 LaneMask = M; 120 return LaneMask; 121 } 122 123 void CodeGenSubRegIndex::setConcatenationOf( 124 ArrayRef<CodeGenSubRegIndex*> Parts) { 125 if (ConcatenationOf.empty()) 126 ConcatenationOf.assign(Parts.begin(), Parts.end()); 127 else 128 assert(std::equal(Parts.begin(), Parts.end(), 129 ConcatenationOf.begin()) && "parts consistent"); 130 } 131 132 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 133 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 134 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 135 CodeGenSubRegIndex *SubIdx = *I; 136 SubIdx->computeConcatTransitiveClosure(); 137 #ifndef NDEBUG 138 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 139 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 140 #endif 141 142 if (SubIdx->ConcatenationOf.empty()) { 143 ++I; 144 } else { 145 I = ConcatenationOf.erase(I); 146 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 147 SubIdx->ConcatenationOf.end()); 148 I += SubIdx->ConcatenationOf.size(); 149 } 150 } 151 } 152 153 //===----------------------------------------------------------------------===// 154 // CodeGenRegister 155 //===----------------------------------------------------------------------===// 156 157 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 158 : TheDef(R), 159 EnumValue(Enum), 160 CostPerUse(R->getValueAsInt("CostPerUse")), 161 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 162 HasDisjunctSubRegs(false), 163 SubRegsComplete(false), 164 SuperRegsComplete(false), 165 TopoSig(~0u) { 166 Artificial = R->getValueAsBit("isArtificial"); 167 } 168 169 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 170 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 171 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 172 173 if (SRIs.size() != SRs.size()) 174 PrintFatalError(TheDef->getLoc(), 175 "SubRegs and SubRegIndices must have the same size"); 176 177 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 178 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 179 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 180 } 181 182 // Also compute leading super-registers. Each register has a list of 183 // covered-by-subregs super-registers where it appears as the first explicit 184 // sub-register. 185 // 186 // This is used by computeSecondarySubRegs() to find candidates. 187 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 188 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 189 190 // Add ad hoc alias links. This is a symmetric relationship between two 191 // registers, so build a symmetric graph by adding links in both ends. 192 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 193 for (Record *Alias : Aliases) { 194 CodeGenRegister *Reg = RegBank.getReg(Alias); 195 ExplicitAliases.push_back(Reg); 196 Reg->ExplicitAliases.push_back(this); 197 } 198 } 199 200 const StringRef CodeGenRegister::getName() const { 201 assert(TheDef && "no def"); 202 return TheDef->getName(); 203 } 204 205 namespace { 206 207 // Iterate over all register units in a set of registers. 208 class RegUnitIterator { 209 CodeGenRegister::Vec::const_iterator RegI, RegE; 210 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 211 212 public: 213 RegUnitIterator(const CodeGenRegister::Vec &Regs): 214 RegI(Regs.begin()), RegE(Regs.end()) { 215 216 if (RegI != RegE) { 217 UnitI = (*RegI)->getRegUnits().begin(); 218 UnitE = (*RegI)->getRegUnits().end(); 219 advance(); 220 } 221 } 222 223 bool isValid() const { return UnitI != UnitE; } 224 225 unsigned operator* () const { assert(isValid()); return *UnitI; } 226 227 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 228 229 /// Preincrement. Move to the next unit. 230 void operator++() { 231 assert(isValid() && "Cannot advance beyond the last operand"); 232 ++UnitI; 233 advance(); 234 } 235 236 protected: 237 void advance() { 238 while (UnitI == UnitE) { 239 if (++RegI == RegE) 240 break; 241 UnitI = (*RegI)->getRegUnits().begin(); 242 UnitE = (*RegI)->getRegUnits().end(); 243 } 244 } 245 }; 246 247 } // end anonymous namespace 248 249 // Return true of this unit appears in RegUnits. 250 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 251 return RegUnits.test(Unit); 252 } 253 254 // Inherit register units from subregisters. 255 // Return true if the RegUnits changed. 256 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 257 bool changed = false; 258 for (const auto &SubReg : SubRegs) { 259 CodeGenRegister *SR = SubReg.second; 260 // Merge the subregister's units into this register's RegUnits. 261 changed |= (RegUnits |= SR->RegUnits); 262 } 263 264 return changed; 265 } 266 267 const CodeGenRegister::SubRegMap & 268 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 269 // Only compute this map once. 270 if (SubRegsComplete) 271 return SubRegs; 272 SubRegsComplete = true; 273 274 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 275 276 // First insert the explicit subregs and make sure they are fully indexed. 277 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 278 CodeGenRegister *SR = ExplicitSubRegs[i]; 279 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 280 if (!SR->Artificial) 281 Idx->Artificial = false; 282 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 283 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 284 " appears twice in Register " + getName()); 285 // Map explicit sub-registers first, so the names take precedence. 286 // The inherited sub-registers are mapped below. 287 SubReg2Idx.insert(std::make_pair(SR, Idx)); 288 } 289 290 // Keep track of inherited subregs and how they can be reached. 291 SmallPtrSet<CodeGenRegister*, 8> Orphans; 292 293 // Clone inherited subregs and place duplicate entries in Orphans. 294 // Here the order is important - earlier subregs take precedence. 295 for (CodeGenRegister *ESR : ExplicitSubRegs) { 296 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 297 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 298 299 for (const auto &SR : Map) { 300 if (!SubRegs.insert(SR).second) 301 Orphans.insert(SR.second); 302 } 303 } 304 305 // Expand any composed subreg indices. 306 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 307 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 308 // expanded subreg indices recursively. 309 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 310 for (unsigned i = 0; i != Indices.size(); ++i) { 311 CodeGenSubRegIndex *Idx = Indices[i]; 312 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 313 CodeGenRegister *SR = SubRegs[Idx]; 314 const SubRegMap &Map = SR->computeSubRegs(RegBank); 315 316 // Look at the possible compositions of Idx. 317 // They may not all be supported by SR. 318 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 319 E = Comps.end(); I != E; ++I) { 320 SubRegMap::const_iterator SRI = Map.find(I->first); 321 if (SRI == Map.end()) 322 continue; // Idx + I->first doesn't exist in SR. 323 // Add I->second as a name for the subreg SRI->second, assuming it is 324 // orphaned, and the name isn't already used for something else. 325 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 326 continue; 327 // We found a new name for the orphaned sub-register. 328 SubRegs.insert(std::make_pair(I->second, SRI->second)); 329 Indices.push_back(I->second); 330 } 331 } 332 333 // Now Orphans contains the inherited subregisters without a direct index. 334 // Create inferred indexes for all missing entries. 335 // Work backwards in the Indices vector in order to compose subregs bottom-up. 336 // Consider this subreg sequence: 337 // 338 // qsub_1 -> dsub_0 -> ssub_0 339 // 340 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 341 // can be reached in two different ways: 342 // 343 // qsub_1 -> ssub_0 344 // dsub_2 -> ssub_0 345 // 346 // We pick the latter composition because another register may have [dsub_0, 347 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 348 // dsub_2 -> ssub_0 composition can be shared. 349 while (!Indices.empty() && !Orphans.empty()) { 350 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 351 CodeGenRegister *SR = SubRegs[Idx]; 352 const SubRegMap &Map = SR->computeSubRegs(RegBank); 353 for (const auto &SubReg : Map) 354 if (Orphans.erase(SubReg.second)) 355 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 356 } 357 358 // Compute the inverse SubReg -> Idx map. 359 for (const auto &SubReg : SubRegs) { 360 if (SubReg.second == this) { 361 ArrayRef<SMLoc> Loc; 362 if (TheDef) 363 Loc = TheDef->getLoc(); 364 PrintFatalError(Loc, "Register " + getName() + 365 " has itself as a sub-register"); 366 } 367 368 // Compute AllSuperRegsCovered. 369 if (!CoveredBySubRegs) 370 SubReg.first->AllSuperRegsCovered = false; 371 372 // Ensure that every sub-register has a unique name. 373 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 374 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 375 if (Ins->second == SubReg.first) 376 continue; 377 // Trouble: Two different names for SubReg.second. 378 ArrayRef<SMLoc> Loc; 379 if (TheDef) 380 Loc = TheDef->getLoc(); 381 PrintFatalError(Loc, "Sub-register can't have two names: " + 382 SubReg.second->getName() + " available as " + 383 SubReg.first->getName() + " and " + Ins->second->getName()); 384 } 385 386 // Derive possible names for sub-register concatenations from any explicit 387 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 388 // that getConcatSubRegIndex() won't invent any concatenated indices that the 389 // user already specified. 390 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 391 CodeGenRegister *SR = ExplicitSubRegs[i]; 392 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 393 continue; 394 395 // SR is composed of multiple sub-regs. Find their names in this register. 396 SmallVector<CodeGenSubRegIndex*, 8> Parts; 397 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 398 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 399 400 // Offer this as an existing spelling for the concatenation of Parts. 401 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 402 Idx.setConcatenationOf(Parts); 403 } 404 405 // Initialize RegUnitList. Because getSubRegs is called recursively, this 406 // processes the register hierarchy in postorder. 407 // 408 // Inherit all sub-register units. It is good enough to look at the explicit 409 // sub-registers, the other registers won't contribute any more units. 410 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 411 CodeGenRegister *SR = ExplicitSubRegs[i]; 412 RegUnits |= SR->RegUnits; 413 } 414 415 // Absent any ad hoc aliasing, we create one register unit per leaf register. 416 // These units correspond to the maximal cliques in the register overlap 417 // graph which is optimal. 418 // 419 // When there is ad hoc aliasing, we simply create one unit per edge in the 420 // undirected ad hoc aliasing graph. Technically, we could do better by 421 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 422 // are extremely rare anyway (I've never seen one), so we don't bother with 423 // the added complexity. 424 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 425 CodeGenRegister *AR = ExplicitAliases[i]; 426 // Only visit each edge once. 427 if (AR->SubRegsComplete) 428 continue; 429 // Create a RegUnit representing this alias edge, and add it to both 430 // registers. 431 unsigned Unit = RegBank.newRegUnit(this, AR); 432 RegUnits.set(Unit); 433 AR->RegUnits.set(Unit); 434 } 435 436 // Finally, create units for leaf registers without ad hoc aliases. Note that 437 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 438 // necessary. This means the aliasing leaf registers can share a single unit. 439 if (RegUnits.empty()) 440 RegUnits.set(RegBank.newRegUnit(this)); 441 442 // We have now computed the native register units. More may be adopted later 443 // for balancing purposes. 444 NativeRegUnits = RegUnits; 445 446 return SubRegs; 447 } 448 449 // In a register that is covered by its sub-registers, try to find redundant 450 // sub-registers. For example: 451 // 452 // QQ0 = {Q0, Q1} 453 // Q0 = {D0, D1} 454 // Q1 = {D2, D3} 455 // 456 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 457 // the register definition. 458 // 459 // The explicitly specified registers form a tree. This function discovers 460 // sub-register relationships that would force a DAG. 461 // 462 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 463 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 464 465 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 466 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 467 SubRegQueue.push(P); 468 469 // Look at the leading super-registers of each sub-register. Those are the 470 // candidates for new sub-registers, assuming they are fully contained in 471 // this register. 472 while (!SubRegQueue.empty()) { 473 CodeGenSubRegIndex *SubRegIdx; 474 const CodeGenRegister *SubReg; 475 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 476 SubRegQueue.pop(); 477 478 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 479 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 480 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 481 // Already got this sub-register? 482 if (Cand == this || getSubRegIndex(Cand)) 483 continue; 484 // Check if each component of Cand is already a sub-register. 485 assert(!Cand->ExplicitSubRegs.empty() && 486 "Super-register has no sub-registers"); 487 if (Cand->ExplicitSubRegs.size() == 1) 488 continue; 489 SmallVector<CodeGenSubRegIndex*, 8> Parts; 490 // We know that the first component is (SubRegIdx,SubReg). However we 491 // may still need to split it into smaller subregister parts. 492 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 493 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 494 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 495 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 496 if (SubRegIdx->ConcatenationOf.empty()) { 497 Parts.push_back(SubRegIdx); 498 } else 499 for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf) 500 Parts.push_back(SubIdx); 501 } else { 502 // Sub-register doesn't exist. 503 Parts.clear(); 504 break; 505 } 506 } 507 // There is nothing to do if some Cand sub-register is not part of this 508 // register. 509 if (Parts.empty()) 510 continue; 511 512 // Each part of Cand is a sub-register of this. Make the full Cand also 513 // a sub-register with a concatenated sub-register index. 514 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 515 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 516 std::make_pair(Concat, Cand); 517 518 if (!SubRegs.insert(NewSubReg).second) 519 continue; 520 521 // We inserted a new subregister. 522 NewSubRegs.push_back(NewSubReg); 523 SubRegQueue.push(NewSubReg); 524 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 525 } 526 } 527 528 // Create sub-register index composition maps for the synthesized indices. 529 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 530 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 531 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 532 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 533 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 535 if (!SubIdx) 536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 537 SI->second->getName() + " in " + getName()); 538 NewIdx->addComposite(SI->first, SubIdx); 539 } 540 } 541 } 542 543 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 544 // Only visit each register once. 545 if (SuperRegsComplete) 546 return; 547 SuperRegsComplete = true; 548 549 // Make sure all sub-registers have been visited first, so the super-reg 550 // lists will be topologically ordered. 551 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 552 I != E; ++I) 553 I->second->computeSuperRegs(RegBank); 554 555 // Now add this as a super-register on all sub-registers. 556 // Also compute the TopoSigId in post-order. 557 TopoSigId Id; 558 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 559 I != E; ++I) { 560 // Topological signature computed from SubIdx, TopoId(SubReg). 561 // Loops and idempotent indices have TopoSig = ~0u. 562 Id.push_back(I->first->EnumValue); 563 Id.push_back(I->second->TopoSig); 564 565 // Don't add duplicate entries. 566 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 567 continue; 568 I->second->SuperRegs.push_back(this); 569 } 570 TopoSig = RegBank.getTopoSig(Id); 571 } 572 573 void 574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 575 CodeGenRegBank &RegBank) const { 576 assert(SubRegsComplete && "Must precompute sub-registers"); 577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 578 CodeGenRegister *SR = ExplicitSubRegs[i]; 579 if (OSet.insert(SR)) 580 SR->addSubRegsPreOrder(OSet, RegBank); 581 } 582 // Add any secondary sub-registers that weren't part of the explicit tree. 583 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 584 I != E; ++I) 585 OSet.insert(I->second); 586 } 587 588 // Get the sum of this register's unit weights. 589 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 590 unsigned Weight = 0; 591 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 592 I != E; ++I) { 593 Weight += RegBank.getRegUnit(*I).Weight; 594 } 595 return Weight; 596 } 597 598 //===----------------------------------------------------------------------===// 599 // RegisterTuples 600 //===----------------------------------------------------------------------===// 601 602 // A RegisterTuples def is used to generate pseudo-registers from lists of 603 // sub-registers. We provide a SetTheory expander class that returns the new 604 // registers. 605 namespace { 606 607 struct TupleExpander : SetTheory::Expander { 608 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 609 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 610 unsigned Dim = Indices.size(); 611 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 612 if (Dim != SubRegs->size()) 613 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 614 if (Dim < 2) 615 PrintFatalError(Def->getLoc(), 616 "Tuples must have at least 2 sub-registers"); 617 618 // Evaluate the sub-register lists to be zipped. 619 unsigned Length = ~0u; 620 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 621 for (unsigned i = 0; i != Dim; ++i) { 622 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 623 Length = std::min(Length, unsigned(Lists[i].size())); 624 } 625 626 if (Length == 0) 627 return; 628 629 // Precompute some types. 630 Record *RegisterCl = Def->getRecords().getClass("Register"); 631 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 632 StringInit *BlankName = StringInit::get(""); 633 634 // Zip them up. 635 for (unsigned n = 0; n != Length; ++n) { 636 std::string Name; 637 Record *Proto = Lists[0][n]; 638 std::vector<Init*> Tuple; 639 unsigned CostPerUse = 0; 640 for (unsigned i = 0; i != Dim; ++i) { 641 Record *Reg = Lists[i][n]; 642 if (i) Name += '_'; 643 Name += Reg->getName(); 644 Tuple.push_back(DefInit::get(Reg)); 645 CostPerUse = std::max(CostPerUse, 646 unsigned(Reg->getValueAsInt("CostPerUse"))); 647 } 648 649 // Create a new Record representing the synthesized register. This record 650 // is only for consumption by CodeGenRegister, it is not added to the 651 // RecordKeeper. 652 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 653 Elts.insert(NewReg); 654 655 // Copy Proto super-classes. 656 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 657 for (const auto &SuperPair : Supers) 658 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 659 660 // Copy Proto fields. 661 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 662 RecordVal RV = Proto->getValues()[i]; 663 664 // Skip existing fields, like NAME. 665 if (NewReg->getValue(RV.getNameInit())) 666 continue; 667 668 StringRef Field = RV.getName(); 669 670 // Replace the sub-register list with Tuple. 671 if (Field == "SubRegs") 672 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 673 674 // Provide a blank AsmName. MC hacks are required anyway. 675 if (Field == "AsmName") 676 RV.setValue(BlankName); 677 678 // CostPerUse is aggregated from all Tuple members. 679 if (Field == "CostPerUse") 680 RV.setValue(IntInit::get(CostPerUse)); 681 682 // Composite registers are always covered by sub-registers. 683 if (Field == "CoveredBySubRegs") 684 RV.setValue(BitInit::get(true)); 685 686 // Copy fields from the RegisterTuples def. 687 if (Field == "SubRegIndices" || 688 Field == "CompositeIndices") { 689 NewReg->addValue(*Def->getValue(Field)); 690 continue; 691 } 692 693 // Some fields get their default uninitialized value. 694 if (Field == "DwarfNumbers" || 695 Field == "DwarfAlias" || 696 Field == "Aliases") { 697 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 698 NewReg->addValue(*DefRV); 699 continue; 700 } 701 702 // Everything else is copied from Proto. 703 NewReg->addValue(RV); 704 } 705 } 706 } 707 }; 708 709 } // end anonymous namespace 710 711 //===----------------------------------------------------------------------===// 712 // CodeGenRegisterClass 713 //===----------------------------------------------------------------------===// 714 715 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 716 llvm::sort(M.begin(), M.end(), deref<llvm::less>()); 717 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 718 } 719 720 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 721 : TheDef(R), 722 Name(R->getName()), 723 TopoSigs(RegBank.getNumTopoSigs()), 724 EnumValue(-1) { 725 726 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 727 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 728 Record *Type = TypeList[i]; 729 if (!Type->isSubClassOf("ValueType")) 730 PrintFatalError("RegTypes list member '" + Type->getName() + 731 "' does not derive from the ValueType class!"); 732 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 733 } 734 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 735 736 // Allocation order 0 is the full set. AltOrders provides others. 737 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 738 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 739 Orders.resize(1 + AltOrders->size()); 740 741 // Default allocation order always contains all registers. 742 Artificial = true; 743 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 744 Orders[0].push_back((*Elements)[i]); 745 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 746 Members.push_back(Reg); 747 Artificial &= Reg->Artificial; 748 TopoSigs.set(Reg->getTopoSig()); 749 } 750 sortAndUniqueRegisters(Members); 751 752 // Alternative allocation orders may be subsets. 753 SetTheory::RecSet Order; 754 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 755 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 756 Orders[1 + i].append(Order.begin(), Order.end()); 757 // Verify that all altorder members are regclass members. 758 while (!Order.empty()) { 759 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 760 Order.pop_back(); 761 if (!contains(Reg)) 762 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 763 " is not a class member"); 764 } 765 } 766 767 Namespace = R->getValueAsString("Namespace"); 768 769 if (const RecordVal *RV = R->getValue("RegInfos")) 770 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 771 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 772 unsigned Size = R->getValueAsInt("Size"); 773 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 774 "Impossible to determine register size"); 775 if (!RSI.hasDefault()) { 776 RegSizeInfo RI; 777 RI.RegSize = RI.SpillSize = Size ? Size 778 : VTs[0].getSimple().getSizeInBits(); 779 RI.SpillAlignment = R->getValueAsInt("Alignment"); 780 RSI.Map.insert({DefaultMode, RI}); 781 } 782 783 CopyCost = R->getValueAsInt("CopyCost"); 784 Allocatable = R->getValueAsBit("isAllocatable"); 785 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 786 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 787 if (AllocationPriority < 0 || AllocationPriority > 63) 788 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 789 this->AllocationPriority = AllocationPriority; 790 } 791 792 // Create an inferred register class that was missing from the .td files. 793 // Most properties will be inherited from the closest super-class after the 794 // class structure has been computed. 795 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 796 StringRef Name, Key Props) 797 : Members(*Props.Members), 798 TheDef(nullptr), 799 Name(Name), 800 TopoSigs(RegBank.getNumTopoSigs()), 801 EnumValue(-1), 802 RSI(Props.RSI), 803 CopyCost(0), 804 Allocatable(true), 805 AllocationPriority(0) { 806 Artificial = true; 807 for (const auto R : Members) { 808 TopoSigs.set(R->getTopoSig()); 809 Artificial &= R->Artificial; 810 } 811 } 812 813 // Compute inherited propertied for a synthesized register class. 814 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 815 assert(!getDef() && "Only synthesized classes can inherit properties"); 816 assert(!SuperClasses.empty() && "Synthesized class without super class"); 817 818 // The last super-class is the smallest one. 819 CodeGenRegisterClass &Super = *SuperClasses.back(); 820 821 // Most properties are copied directly. 822 // Exceptions are members, size, and alignment 823 Namespace = Super.Namespace; 824 VTs = Super.VTs; 825 CopyCost = Super.CopyCost; 826 Allocatable = Super.Allocatable; 827 AltOrderSelect = Super.AltOrderSelect; 828 AllocationPriority = Super.AllocationPriority; 829 830 // Copy all allocation orders, filter out foreign registers from the larger 831 // super-class. 832 Orders.resize(Super.Orders.size()); 833 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 834 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 835 if (contains(RegBank.getReg(Super.Orders[i][j]))) 836 Orders[i].push_back(Super.Orders[i][j]); 837 } 838 839 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 840 return std::binary_search(Members.begin(), Members.end(), Reg, 841 deref<llvm::less>()); 842 } 843 844 namespace llvm { 845 846 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 847 OS << "{ " << K.RSI; 848 for (const auto R : *K.Members) 849 OS << ", " << R->getName(); 850 return OS << " }"; 851 } 852 853 } // end namespace llvm 854 855 // This is a simple lexicographical order that can be used to search for sets. 856 // It is not the same as the topological order provided by TopoOrderRC. 857 bool CodeGenRegisterClass::Key:: 858 operator<(const CodeGenRegisterClass::Key &B) const { 859 assert(Members && B.Members); 860 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 861 } 862 863 // Returns true if RC is a strict subclass. 864 // RC is a sub-class of this class if it is a valid replacement for any 865 // instruction operand where a register of this classis required. It must 866 // satisfy these conditions: 867 // 868 // 1. All RC registers are also in this. 869 // 2. The RC spill size must not be smaller than our spill size. 870 // 3. RC spill alignment must be compatible with ours. 871 // 872 static bool testSubClass(const CodeGenRegisterClass *A, 873 const CodeGenRegisterClass *B) { 874 return A->RSI.isSubClassOf(B->RSI) && 875 std::includes(A->getMembers().begin(), A->getMembers().end(), 876 B->getMembers().begin(), B->getMembers().end(), 877 deref<llvm::less>()); 878 } 879 880 /// Sorting predicate for register classes. This provides a topological 881 /// ordering that arranges all register classes before their sub-classes. 882 /// 883 /// Register classes with the same registers, spill size, and alignment form a 884 /// clique. They will be ordered alphabetically. 885 /// 886 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 887 const CodeGenRegisterClass &PB) { 888 auto *A = &PA; 889 auto *B = &PB; 890 if (A == B) 891 return false; 892 893 if (A->RSI < B->RSI) 894 return true; 895 if (A->RSI != B->RSI) 896 return false; 897 898 // Order by descending set size. Note that the classes' allocation order may 899 // not have been computed yet. The Members set is always vaild. 900 if (A->getMembers().size() > B->getMembers().size()) 901 return true; 902 if (A->getMembers().size() < B->getMembers().size()) 903 return false; 904 905 // Finally order by name as a tie breaker. 906 return StringRef(A->getName()) < B->getName(); 907 } 908 909 std::string CodeGenRegisterClass::getQualifiedName() const { 910 if (Namespace.empty()) 911 return getName(); 912 else 913 return (Namespace + "::" + getName()).str(); 914 } 915 916 // Compute sub-classes of all register classes. 917 // Assume the classes are ordered topologically. 918 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 919 auto &RegClasses = RegBank.getRegClasses(); 920 921 // Visit backwards so sub-classes are seen first. 922 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 923 CodeGenRegisterClass &RC = *I; 924 RC.SubClasses.resize(RegClasses.size()); 925 RC.SubClasses.set(RC.EnumValue); 926 if (RC.Artificial) 927 continue; 928 929 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 930 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 931 CodeGenRegisterClass &SubRC = *I2; 932 if (RC.SubClasses.test(SubRC.EnumValue)) 933 continue; 934 if (!testSubClass(&RC, &SubRC)) 935 continue; 936 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 937 // check them again. 938 RC.SubClasses |= SubRC.SubClasses; 939 } 940 941 // Sweep up missed clique members. They will be immediately preceding RC. 942 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 943 RC.SubClasses.set(I2->EnumValue); 944 } 945 946 // Compute the SuperClasses lists from the SubClasses vectors. 947 for (auto &RC : RegClasses) { 948 const BitVector &SC = RC.getSubClasses(); 949 auto I = RegClasses.begin(); 950 for (int s = 0, next_s = SC.find_first(); next_s != -1; 951 next_s = SC.find_next(s)) { 952 std::advance(I, next_s - s); 953 s = next_s; 954 if (&*I == &RC) 955 continue; 956 I->SuperClasses.push_back(&RC); 957 } 958 } 959 960 // With the class hierarchy in place, let synthesized register classes inherit 961 // properties from their closest super-class. The iteration order here can 962 // propagate properties down multiple levels. 963 for (auto &RC : RegClasses) 964 if (!RC.getDef()) 965 RC.inheritProperties(RegBank); 966 } 967 968 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 969 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 970 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 971 auto SizeOrder = [](const CodeGenRegisterClass *A, 972 const CodeGenRegisterClass *B) { 973 return A->getMembers().size() > B->getMembers().size(); 974 }; 975 976 auto &RegClasses = RegBank.getRegClasses(); 977 978 // Find all the subclasses of this one that fully support the sub-register 979 // index and order them by size. BiggestSuperRC should always be first. 980 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 981 if (!BiggestSuperRegRC) 982 return None; 983 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 984 std::vector<CodeGenRegisterClass *> SuperRegRCs; 985 for (auto &RC : RegClasses) 986 if (SuperRegRCsBV[RC.EnumValue]) 987 SuperRegRCs.emplace_back(&RC); 988 llvm::sort(SuperRegRCs.begin(), SuperRegRCs.end(), SizeOrder); 989 assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first"); 990 991 // Find all the subreg classes and order them by size too. 992 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 993 for (auto &RC: RegClasses) { 994 BitVector SuperRegClassesBV(RegClasses.size()); 995 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 996 if (SuperRegClassesBV.any()) 997 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 998 } 999 llvm::sort(SuperRegClasses.begin(), SuperRegClasses.end(), 1000 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1001 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1002 return SizeOrder(A.first, B.first); 1003 }); 1004 1005 // Find the biggest subclass and subreg class such that R:subidx is in the 1006 // subreg class for all R in subclass. 1007 // 1008 // For example: 1009 // All registers in X86's GR64 have a sub_32bit subregister but no class 1010 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1011 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1012 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1013 // having excluded RIP, we are able to find a SubRegRC (GR32). 1014 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1015 CodeGenRegisterClass *SubRegRC = nullptr; 1016 for (auto *SuperRegRC : SuperRegRCs) { 1017 for (const auto &SuperRegClassPair : SuperRegClasses) { 1018 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1019 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1020 SubRegRC = SuperRegClassPair.first; 1021 ChosenSuperRegClass = SuperRegRC; 1022 1023 // If SubRegRC is bigger than SuperRegRC then there are members of 1024 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1025 // find a better fit and fall back on this one if there isn't one. 1026 // 1027 // This is intended to prevent X86 from making odd choices such as 1028 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1029 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1030 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1031 // mapping. 1032 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1033 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1034 } 1035 } 1036 1037 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1038 // registers, then we're done. 1039 if (ChosenSuperRegClass) 1040 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1041 } 1042 1043 return None; 1044 } 1045 1046 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1047 BitVector &Out) const { 1048 auto FindI = SuperRegClasses.find(SubIdx); 1049 if (FindI == SuperRegClasses.end()) 1050 return; 1051 for (CodeGenRegisterClass *RC : FindI->second) 1052 Out.set(RC->EnumValue); 1053 } 1054 1055 // Populate a unique sorted list of units from a register set. 1056 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1057 std::vector<unsigned> &RegUnits) const { 1058 std::vector<unsigned> TmpUnits; 1059 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1060 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1061 if (!RU.Artificial) 1062 TmpUnits.push_back(*UnitI); 1063 } 1064 llvm::sort(TmpUnits.begin(), TmpUnits.end()); 1065 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1066 std::back_inserter(RegUnits)); 1067 } 1068 1069 //===----------------------------------------------------------------------===// 1070 // CodeGenRegBank 1071 //===----------------------------------------------------------------------===// 1072 1073 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1074 const CodeGenHwModes &Modes) : CGH(Modes) { 1075 // Configure register Sets to understand register classes and tuples. 1076 Sets.addFieldExpander("RegisterClass", "MemberList"); 1077 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1078 Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>()); 1079 1080 // Read in the user-defined (named) sub-register indices. 1081 // More indices will be synthesized later. 1082 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1083 llvm::sort(SRIs.begin(), SRIs.end(), LessRecord()); 1084 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1085 getSubRegIdx(SRIs[i]); 1086 // Build composite maps from ComposedOf fields. 1087 for (auto &Idx : SubRegIndices) 1088 Idx.updateComponents(*this); 1089 1090 // Read in the register definitions. 1091 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1092 llvm::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 1093 // Assign the enumeration values. 1094 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1095 getReg(Regs[i]); 1096 1097 // Expand tuples and number the new registers. 1098 std::vector<Record*> Tups = 1099 Records.getAllDerivedDefinitions("RegisterTuples"); 1100 1101 for (Record *R : Tups) { 1102 std::vector<Record *> TupRegs = *Sets.expand(R); 1103 llvm::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 1104 for (Record *RC : TupRegs) 1105 getReg(RC); 1106 } 1107 1108 // Now all the registers are known. Build the object graph of explicit 1109 // register-register references. 1110 for (auto &Reg : Registers) 1111 Reg.buildObjectGraph(*this); 1112 1113 // Compute register name map. 1114 for (auto &Reg : Registers) 1115 // FIXME: This could just be RegistersByName[name] = register, except that 1116 // causes some failures in MIPS - perhaps they have duplicate register name 1117 // entries? (or maybe there's a reason for it - I don't know much about this 1118 // code, just drive-by refactoring) 1119 RegistersByName.insert( 1120 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1121 1122 // Precompute all sub-register maps. 1123 // This will create Composite entries for all inferred sub-register indices. 1124 for (auto &Reg : Registers) 1125 Reg.computeSubRegs(*this); 1126 1127 // Compute transitive closure of subregister index ConcatenationOf vectors 1128 // and initialize ConcatIdx map. 1129 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1130 SRI.computeConcatTransitiveClosure(); 1131 if (!SRI.ConcatenationOf.empty()) 1132 ConcatIdx.insert(std::make_pair( 1133 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1134 SRI.ConcatenationOf.end()), &SRI)); 1135 } 1136 1137 // Infer even more sub-registers by combining leading super-registers. 1138 for (auto &Reg : Registers) 1139 if (Reg.CoveredBySubRegs) 1140 Reg.computeSecondarySubRegs(*this); 1141 1142 // After the sub-register graph is complete, compute the topologically 1143 // ordered SuperRegs list. 1144 for (auto &Reg : Registers) 1145 Reg.computeSuperRegs(*this); 1146 1147 // For each pair of Reg:SR, if both are non-artificial, mark the 1148 // corresponding sub-register index as non-artificial. 1149 for (auto &Reg : Registers) { 1150 if (Reg.Artificial) 1151 continue; 1152 for (auto P : Reg.getSubRegs()) { 1153 const CodeGenRegister *SR = P.second; 1154 if (!SR->Artificial) 1155 P.first->Artificial = false; 1156 } 1157 } 1158 1159 // Native register units are associated with a leaf register. They've all been 1160 // discovered now. 1161 NumNativeRegUnits = RegUnits.size(); 1162 1163 // Read in register class definitions. 1164 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1165 if (RCs.empty()) 1166 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1167 1168 // Allocate user-defined register classes. 1169 for (auto *R : RCs) { 1170 RegClasses.emplace_back(*this, R); 1171 CodeGenRegisterClass &RC = RegClasses.back(); 1172 if (!RC.Artificial) 1173 addToMaps(&RC); 1174 } 1175 1176 // Infer missing classes to create a full algebra. 1177 computeInferredRegisterClasses(); 1178 1179 // Order register classes topologically and assign enum values. 1180 RegClasses.sort(TopoOrderRC); 1181 unsigned i = 0; 1182 for (auto &RC : RegClasses) 1183 RC.EnumValue = i++; 1184 CodeGenRegisterClass::computeSubClasses(*this); 1185 } 1186 1187 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1188 CodeGenSubRegIndex* 1189 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1190 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1191 return &SubRegIndices.back(); 1192 } 1193 1194 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1195 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1196 if (Idx) 1197 return Idx; 1198 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1199 Idx = &SubRegIndices.back(); 1200 return Idx; 1201 } 1202 1203 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1204 CodeGenRegister *&Reg = Def2Reg[Def]; 1205 if (Reg) 1206 return Reg; 1207 Registers.emplace_back(Def, Registers.size() + 1); 1208 Reg = &Registers.back(); 1209 return Reg; 1210 } 1211 1212 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1213 if (Record *Def = RC->getDef()) 1214 Def2RC.insert(std::make_pair(Def, RC)); 1215 1216 // Duplicate classes are rejected by insert(). 1217 // That's OK, we only care about the properties handled by CGRC::Key. 1218 CodeGenRegisterClass::Key K(*RC); 1219 Key2RC.insert(std::make_pair(K, RC)); 1220 } 1221 1222 // Create a synthetic sub-class if it is missing. 1223 CodeGenRegisterClass* 1224 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1225 const CodeGenRegister::Vec *Members, 1226 StringRef Name) { 1227 // Synthetic sub-class has the same size and alignment as RC. 1228 CodeGenRegisterClass::Key K(Members, RC->RSI); 1229 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1230 if (FoundI != Key2RC.end()) 1231 return FoundI->second; 1232 1233 // Sub-class doesn't exist, create a new one. 1234 RegClasses.emplace_back(*this, Name, K); 1235 addToMaps(&RegClasses.back()); 1236 return &RegClasses.back(); 1237 } 1238 1239 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1240 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1241 return RC; 1242 1243 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1244 } 1245 1246 CodeGenSubRegIndex* 1247 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1248 CodeGenSubRegIndex *B) { 1249 // Look for an existing entry. 1250 CodeGenSubRegIndex *Comp = A->compose(B); 1251 if (Comp) 1252 return Comp; 1253 1254 // None exists, synthesize one. 1255 std::string Name = A->getName() + "_then_" + B->getName(); 1256 Comp = createSubRegIndex(Name, A->getNamespace()); 1257 A->addComposite(B, Comp); 1258 return Comp; 1259 } 1260 1261 CodeGenSubRegIndex *CodeGenRegBank:: 1262 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1263 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1264 #ifndef NDEBUG 1265 for (CodeGenSubRegIndex *Idx : Parts) { 1266 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1267 } 1268 #endif 1269 1270 // Look for an existing entry. 1271 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1272 if (Idx) 1273 return Idx; 1274 1275 // None exists, synthesize one. 1276 std::string Name = Parts.front()->getName(); 1277 // Determine whether all parts are contiguous. 1278 bool isContinuous = true; 1279 unsigned Size = Parts.front()->Size; 1280 unsigned LastOffset = Parts.front()->Offset; 1281 unsigned LastSize = Parts.front()->Size; 1282 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1283 Name += '_'; 1284 Name += Parts[i]->getName(); 1285 Size += Parts[i]->Size; 1286 if (Parts[i]->Offset != (LastOffset + LastSize)) 1287 isContinuous = false; 1288 LastOffset = Parts[i]->Offset; 1289 LastSize = Parts[i]->Size; 1290 } 1291 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1292 Idx->Size = Size; 1293 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1294 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1295 return Idx; 1296 } 1297 1298 void CodeGenRegBank::computeComposites() { 1299 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1300 // and many registers will share TopoSigs on regular architectures. 1301 BitVector TopoSigs(getNumTopoSigs()); 1302 1303 for (const auto &Reg1 : Registers) { 1304 // Skip identical subreg structures already processed. 1305 if (TopoSigs.test(Reg1.getTopoSig())) 1306 continue; 1307 TopoSigs.set(Reg1.getTopoSig()); 1308 1309 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1310 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1311 e1 = SRM1.end(); i1 != e1; ++i1) { 1312 CodeGenSubRegIndex *Idx1 = i1->first; 1313 CodeGenRegister *Reg2 = i1->second; 1314 // Ignore identity compositions. 1315 if (&Reg1 == Reg2) 1316 continue; 1317 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1318 // Try composing Idx1 with another SubRegIndex. 1319 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1320 e2 = SRM2.end(); i2 != e2; ++i2) { 1321 CodeGenSubRegIndex *Idx2 = i2->first; 1322 CodeGenRegister *Reg3 = i2->second; 1323 // Ignore identity compositions. 1324 if (Reg2 == Reg3) 1325 continue; 1326 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1327 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1328 assert(Idx3 && "Sub-register doesn't have an index"); 1329 1330 // Conflicting composition? Emit a warning but allow it. 1331 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1332 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1333 " and " + Idx2->getQualifiedName() + 1334 " compose ambiguously as " + Prev->getQualifiedName() + 1335 " or " + Idx3->getQualifiedName()); 1336 } 1337 } 1338 } 1339 } 1340 1341 // Compute lane masks. This is similar to register units, but at the 1342 // sub-register index level. Each bit in the lane mask is like a register unit 1343 // class, and two lane masks will have a bit in common if two sub-register 1344 // indices overlap in some register. 1345 // 1346 // Conservatively share a lane mask bit if two sub-register indices overlap in 1347 // some registers, but not in others. That shouldn't happen a lot. 1348 void CodeGenRegBank::computeSubRegLaneMasks() { 1349 // First assign individual bits to all the leaf indices. 1350 unsigned Bit = 0; 1351 // Determine mask of lanes that cover their registers. 1352 CoveringLanes = LaneBitmask::getAll(); 1353 for (auto &Idx : SubRegIndices) { 1354 if (Idx.getComposites().empty()) { 1355 if (Bit > LaneBitmask::BitWidth) { 1356 PrintFatalError( 1357 Twine("Ran out of lanemask bits to represent subregister ") 1358 + Idx.getName()); 1359 } 1360 Idx.LaneMask = LaneBitmask::getLane(Bit); 1361 ++Bit; 1362 } else { 1363 Idx.LaneMask = LaneBitmask::getNone(); 1364 } 1365 } 1366 1367 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1368 // here is that for each possible target subregister we look at the leafs 1369 // in the subregister graph that compose for this target and create 1370 // transformation sequences for the lanemasks. Each step in the sequence 1371 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1372 // are usually the same for many subregisters we can easily combine the steps 1373 // by combining the masks. 1374 for (const auto &Idx : SubRegIndices) { 1375 const auto &Composites = Idx.getComposites(); 1376 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1377 1378 if (Composites.empty()) { 1379 // Moving from a class with no subregisters we just had a single lane: 1380 // The subregister must be a leaf subregister and only occupies 1 bit. 1381 // Move the bit from the class without subregisters into that position. 1382 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1383 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1384 "Must be a leaf subregister"); 1385 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1386 LaneTransforms.push_back(MaskRol); 1387 } else { 1388 // Go through all leaf subregisters and find the ones that compose with 1389 // Idx. These make out all possible valid bits in the lane mask we want to 1390 // transform. Looking only at the leafs ensure that only a single bit in 1391 // the mask is set. 1392 unsigned NextBit = 0; 1393 for (auto &Idx2 : SubRegIndices) { 1394 // Skip non-leaf subregisters. 1395 if (!Idx2.getComposites().empty()) 1396 continue; 1397 // Replicate the behaviour from the lane mask generation loop above. 1398 unsigned SrcBit = NextBit; 1399 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1400 if (NextBit < LaneBitmask::BitWidth-1) 1401 ++NextBit; 1402 assert(Idx2.LaneMask == SrcMask); 1403 1404 // Get the composed subregister if there is any. 1405 auto C = Composites.find(&Idx2); 1406 if (C == Composites.end()) 1407 continue; 1408 const CodeGenSubRegIndex *Composite = C->second; 1409 // The Composed subreg should be a leaf subreg too 1410 assert(Composite->getComposites().empty()); 1411 1412 // Create Mask+Rotate operation and merge with existing ops if possible. 1413 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1414 int Shift = DstBit - SrcBit; 1415 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1416 : LaneBitmask::BitWidth + Shift; 1417 for (auto &I : LaneTransforms) { 1418 if (I.RotateLeft == RotateLeft) { 1419 I.Mask |= SrcMask; 1420 SrcMask = LaneBitmask::getNone(); 1421 } 1422 } 1423 if (SrcMask.any()) { 1424 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1425 LaneTransforms.push_back(MaskRol); 1426 } 1427 } 1428 } 1429 1430 // Optimize if the transformation consists of one step only: Set mask to 1431 // 0xffffffff (including some irrelevant invalid bits) so that it should 1432 // merge with more entries later while compressing the table. 1433 if (LaneTransforms.size() == 1) 1434 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1435 1436 // Further compression optimization: For invalid compositions resulting 1437 // in a sequence with 0 entries we can just pick any other. Choose 1438 // Mask 0xffffffff with Rotation 0. 1439 if (LaneTransforms.size() == 0) { 1440 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1441 LaneTransforms.push_back(P); 1442 } 1443 } 1444 1445 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1446 // by the sub-register graph? This doesn't occur in any known targets. 1447 1448 // Inherit lanes from composites. 1449 for (const auto &Idx : SubRegIndices) { 1450 LaneBitmask Mask = Idx.computeLaneMask(); 1451 // If some super-registers without CoveredBySubRegs use this index, we can 1452 // no longer assume that the lanes are covering their registers. 1453 if (!Idx.AllSuperRegsCovered) 1454 CoveringLanes &= ~Mask; 1455 } 1456 1457 // Compute lane mask combinations for register classes. 1458 for (auto &RegClass : RegClasses) { 1459 LaneBitmask LaneMask; 1460 for (const auto &SubRegIndex : SubRegIndices) { 1461 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1462 continue; 1463 LaneMask |= SubRegIndex.LaneMask; 1464 } 1465 1466 // For classes without any subregisters set LaneMask to 1 instead of 0. 1467 // This makes it easier for client code to handle classes uniformly. 1468 if (LaneMask.none()) 1469 LaneMask = LaneBitmask::getLane(0); 1470 1471 RegClass.LaneMask = LaneMask; 1472 } 1473 } 1474 1475 namespace { 1476 1477 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1478 // the transitive closure of the union of overlapping register 1479 // classes. Together, the UberRegSets form a partition of the registers. If we 1480 // consider overlapping register classes to be connected, then each UberRegSet 1481 // is a set of connected components. 1482 // 1483 // An UberRegSet will likely be a horizontal slice of register names of 1484 // the same width. Nontrivial subregisters should then be in a separate 1485 // UberRegSet. But this property isn't required for valid computation of 1486 // register unit weights. 1487 // 1488 // A Weight field caches the max per-register unit weight in each UberRegSet. 1489 // 1490 // A set of SingularDeterminants flags single units of some register in this set 1491 // for which the unit weight equals the set weight. These units should not have 1492 // their weight increased. 1493 struct UberRegSet { 1494 CodeGenRegister::Vec Regs; 1495 unsigned Weight = 0; 1496 CodeGenRegister::RegUnitList SingularDeterminants; 1497 1498 UberRegSet() = default; 1499 }; 1500 1501 } // end anonymous namespace 1502 1503 // Partition registers into UberRegSets, where each set is the transitive 1504 // closure of the union of overlapping register classes. 1505 // 1506 // UberRegSets[0] is a special non-allocatable set. 1507 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1508 std::vector<UberRegSet*> &RegSets, 1509 CodeGenRegBank &RegBank) { 1510 const auto &Registers = RegBank.getRegisters(); 1511 1512 // The Register EnumValue is one greater than its index into Registers. 1513 assert(Registers.size() == Registers.back().EnumValue && 1514 "register enum value mismatch"); 1515 1516 // For simplicitly make the SetID the same as EnumValue. 1517 IntEqClasses UberSetIDs(Registers.size()+1); 1518 std::set<unsigned> AllocatableRegs; 1519 for (auto &RegClass : RegBank.getRegClasses()) { 1520 if (!RegClass.Allocatable) 1521 continue; 1522 1523 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1524 if (Regs.empty()) 1525 continue; 1526 1527 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1528 assert(USetID && "register number 0 is invalid"); 1529 1530 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1531 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1532 AllocatableRegs.insert((*I)->EnumValue); 1533 UberSetIDs.join(USetID, (*I)->EnumValue); 1534 } 1535 } 1536 // Combine non-allocatable regs. 1537 for (const auto &Reg : Registers) { 1538 unsigned RegNum = Reg.EnumValue; 1539 if (AllocatableRegs.count(RegNum)) 1540 continue; 1541 1542 UberSetIDs.join(0, RegNum); 1543 } 1544 UberSetIDs.compress(); 1545 1546 // Make the first UberSet a special unallocatable set. 1547 unsigned ZeroID = UberSetIDs[0]; 1548 1549 // Insert Registers into the UberSets formed by union-find. 1550 // Do not resize after this. 1551 UberSets.resize(UberSetIDs.getNumClasses()); 1552 unsigned i = 0; 1553 for (const CodeGenRegister &Reg : Registers) { 1554 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1555 if (!USetID) 1556 USetID = ZeroID; 1557 else if (USetID == ZeroID) 1558 USetID = 0; 1559 1560 UberRegSet *USet = &UberSets[USetID]; 1561 USet->Regs.push_back(&Reg); 1562 sortAndUniqueRegisters(USet->Regs); 1563 RegSets[i++] = USet; 1564 } 1565 } 1566 1567 // Recompute each UberSet weight after changing unit weights. 1568 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1569 CodeGenRegBank &RegBank) { 1570 // Skip the first unallocatable set. 1571 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1572 E = UberSets.end(); I != E; ++I) { 1573 1574 // Initialize all unit weights in this set, and remember the max units/reg. 1575 const CodeGenRegister *Reg = nullptr; 1576 unsigned MaxWeight = 0, Weight = 0; 1577 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1578 if (Reg != UnitI.getReg()) { 1579 if (Weight > MaxWeight) 1580 MaxWeight = Weight; 1581 Reg = UnitI.getReg(); 1582 Weight = 0; 1583 } 1584 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1585 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1586 if (!UWeight) { 1587 UWeight = 1; 1588 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1589 } 1590 Weight += UWeight; 1591 } 1592 } 1593 if (Weight > MaxWeight) 1594 MaxWeight = Weight; 1595 if (I->Weight != MaxWeight) { 1596 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1597 << MaxWeight; 1598 for (auto &Unit 1599 : I->Regs) dbgs() 1600 << " " << Unit->getName(); 1601 dbgs() << "\n"); 1602 // Update the set weight. 1603 I->Weight = MaxWeight; 1604 } 1605 1606 // Find singular determinants. 1607 for (const auto R : I->Regs) { 1608 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1609 I->SingularDeterminants |= R->getRegUnits(); 1610 } 1611 } 1612 } 1613 } 1614 1615 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1616 // a register and its subregisters so that they have the same weight as their 1617 // UberSet. Self-recursion processes the subregister tree in postorder so 1618 // subregisters are normalized first. 1619 // 1620 // Side effects: 1621 // - creates new adopted register units 1622 // - causes superregisters to inherit adopted units 1623 // - increases the weight of "singular" units 1624 // - induces recomputation of UberWeights. 1625 static bool normalizeWeight(CodeGenRegister *Reg, 1626 std::vector<UberRegSet> &UberSets, 1627 std::vector<UberRegSet*> &RegSets, 1628 SparseBitVector<> &NormalRegs, 1629 CodeGenRegister::RegUnitList &NormalUnits, 1630 CodeGenRegBank &RegBank) { 1631 if (NormalRegs.test(Reg->EnumValue)) 1632 return false; 1633 NormalRegs.set(Reg->EnumValue); 1634 1635 bool Changed = false; 1636 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1637 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1638 SRE = SRM.end(); SRI != SRE; ++SRI) { 1639 if (SRI->second == Reg) 1640 continue; // self-cycles happen 1641 1642 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1643 NormalRegs, NormalUnits, RegBank); 1644 } 1645 // Postorder register normalization. 1646 1647 // Inherit register units newly adopted by subregisters. 1648 if (Reg->inheritRegUnits(RegBank)) 1649 computeUberWeights(UberSets, RegBank); 1650 1651 // Check if this register is too skinny for its UberRegSet. 1652 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1653 1654 unsigned RegWeight = Reg->getWeight(RegBank); 1655 if (UberSet->Weight > RegWeight) { 1656 // A register unit's weight can be adjusted only if it is the singular unit 1657 // for this register, has not been used to normalize a subregister's set, 1658 // and has not already been used to singularly determine this UberRegSet. 1659 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1660 if (Reg->getRegUnits().count() != 1 1661 || hasRegUnit(NormalUnits, AdjustUnit) 1662 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1663 // We don't have an adjustable unit, so adopt a new one. 1664 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1665 Reg->adoptRegUnit(AdjustUnit); 1666 // Adopting a unit does not immediately require recomputing set weights. 1667 } 1668 else { 1669 // Adjust the existing single unit. 1670 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1671 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1672 // The unit may be shared among sets and registers within this set. 1673 computeUberWeights(UberSets, RegBank); 1674 } 1675 Changed = true; 1676 } 1677 1678 // Mark these units normalized so superregisters can't change their weights. 1679 NormalUnits |= Reg->getRegUnits(); 1680 1681 return Changed; 1682 } 1683 1684 // Compute a weight for each register unit created during getSubRegs. 1685 // 1686 // The goal is that two registers in the same class will have the same weight, 1687 // where each register's weight is defined as sum of its units' weights. 1688 void CodeGenRegBank::computeRegUnitWeights() { 1689 std::vector<UberRegSet> UberSets; 1690 std::vector<UberRegSet*> RegSets(Registers.size()); 1691 computeUberSets(UberSets, RegSets, *this); 1692 // UberSets and RegSets are now immutable. 1693 1694 computeUberWeights(UberSets, *this); 1695 1696 // Iterate over each Register, normalizing the unit weights until reaching 1697 // a fix point. 1698 unsigned NumIters = 0; 1699 for (bool Changed = true; Changed; ++NumIters) { 1700 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1701 Changed = false; 1702 for (auto &Reg : Registers) { 1703 CodeGenRegister::RegUnitList NormalUnits; 1704 SparseBitVector<> NormalRegs; 1705 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1706 NormalUnits, *this); 1707 } 1708 } 1709 } 1710 1711 // Find a set in UniqueSets with the same elements as Set. 1712 // Return an iterator into UniqueSets. 1713 static std::vector<RegUnitSet>::const_iterator 1714 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1715 const RegUnitSet &Set) { 1716 std::vector<RegUnitSet>::const_iterator 1717 I = UniqueSets.begin(), E = UniqueSets.end(); 1718 for(;I != E; ++I) { 1719 if (I->Units == Set.Units) 1720 break; 1721 } 1722 return I; 1723 } 1724 1725 // Return true if the RUSubSet is a subset of RUSuperSet. 1726 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1727 const std::vector<unsigned> &RUSuperSet) { 1728 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1729 RUSubSet.begin(), RUSubSet.end()); 1730 } 1731 1732 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1733 /// but with one or two registers removed. We occasionally have registers like 1734 /// APSR and PC thrown in with the general registers. We also see many 1735 /// special-purpose register subsets, such as tail-call and Thumb 1736 /// encodings. Generating all possible overlapping sets is combinatorial and 1737 /// overkill for modeling pressure. Ideally we could fix this statically in 1738 /// tablegen by (1) having the target define register classes that only include 1739 /// the allocatable registers and marking other classes as non-allocatable and 1740 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1741 /// the purpose of pressure. However, we make an attempt to handle targets that 1742 /// are not nicely defined by merging nearly identical register unit sets 1743 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1744 /// set limit by filtering the reserved registers. 1745 /// 1746 /// Merge sets only if the units have the same weight. For example, on ARM, 1747 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1748 /// should not expand the S set to include D regs. 1749 void CodeGenRegBank::pruneUnitSets() { 1750 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1751 1752 // Form an equivalence class of UnitSets with no significant difference. 1753 std::vector<unsigned> SuperSetIDs; 1754 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1755 SubIdx != EndIdx; ++SubIdx) { 1756 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1757 unsigned SuperIdx = 0; 1758 for (; SuperIdx != EndIdx; ++SuperIdx) { 1759 if (SuperIdx == SubIdx) 1760 continue; 1761 1762 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1763 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1764 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1765 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1766 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1767 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1768 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1769 << "\n"); 1770 // We can pick any of the set names for the merged set. Go for the 1771 // shortest one to avoid picking the name of one of the classes that are 1772 // artificially created by tablegen. So "FPR128_lo" instead of 1773 // "QQQQ_with_qsub3_in_FPR128_lo". 1774 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1775 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1776 break; 1777 } 1778 } 1779 if (SuperIdx == EndIdx) 1780 SuperSetIDs.push_back(SubIdx); 1781 } 1782 // Populate PrunedUnitSets with each equivalence class's superset. 1783 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1784 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1785 unsigned SuperIdx = SuperSetIDs[i]; 1786 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1787 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1788 } 1789 RegUnitSets.swap(PrunedUnitSets); 1790 } 1791 1792 // Create a RegUnitSet for each RegClass that contains all units in the class 1793 // including adopted units that are necessary to model register pressure. Then 1794 // iteratively compute RegUnitSets such that the union of any two overlapping 1795 // RegUnitSets is repreresented. 1796 // 1797 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1798 // RegUnitSet that is a superset of that RegUnitClass. 1799 void CodeGenRegBank::computeRegUnitSets() { 1800 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1801 1802 // Compute a unique RegUnitSet for each RegClass. 1803 auto &RegClasses = getRegClasses(); 1804 for (auto &RC : RegClasses) { 1805 if (!RC.Allocatable || RC.Artificial) 1806 continue; 1807 1808 // Speculatively grow the RegUnitSets to hold the new set. 1809 RegUnitSets.resize(RegUnitSets.size() + 1); 1810 RegUnitSets.back().Name = RC.getName(); 1811 1812 // Compute a sorted list of units in this class. 1813 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1814 1815 // Find an existing RegUnitSet. 1816 std::vector<RegUnitSet>::const_iterator SetI = 1817 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1818 if (SetI != std::prev(RegUnitSets.end())) 1819 RegUnitSets.pop_back(); 1820 } 1821 1822 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1823 USEnd = RegUnitSets.size(); 1824 USIdx < USEnd; ++USIdx) { 1825 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1826 for (auto &U : RegUnitSets[USIdx].Units) 1827 printRegUnitName(U); 1828 dbgs() << "\n"; 1829 }); 1830 1831 // Iteratively prune unit sets. 1832 pruneUnitSets(); 1833 1834 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1835 USEnd = RegUnitSets.size(); 1836 USIdx < USEnd; ++USIdx) { 1837 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1838 for (auto &U : RegUnitSets[USIdx].Units) 1839 printRegUnitName(U); 1840 dbgs() << "\n"; 1841 } dbgs() << "\nUnion sets:\n"); 1842 1843 // Iterate over all unit sets, including new ones added by this loop. 1844 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1845 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1846 // In theory, this is combinatorial. In practice, it needs to be bounded 1847 // by a small number of sets for regpressure to be efficient. 1848 // If the assert is hit, we need to implement pruning. 1849 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1850 1851 // Compare new sets with all original classes. 1852 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1853 SearchIdx != EndIdx; ++SearchIdx) { 1854 std::set<unsigned> Intersection; 1855 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1856 RegUnitSets[Idx].Units.end(), 1857 RegUnitSets[SearchIdx].Units.begin(), 1858 RegUnitSets[SearchIdx].Units.end(), 1859 std::inserter(Intersection, Intersection.begin())); 1860 if (Intersection.empty()) 1861 continue; 1862 1863 // Speculatively grow the RegUnitSets to hold the new set. 1864 RegUnitSets.resize(RegUnitSets.size() + 1); 1865 RegUnitSets.back().Name = 1866 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1867 1868 std::set_union(RegUnitSets[Idx].Units.begin(), 1869 RegUnitSets[Idx].Units.end(), 1870 RegUnitSets[SearchIdx].Units.begin(), 1871 RegUnitSets[SearchIdx].Units.end(), 1872 std::inserter(RegUnitSets.back().Units, 1873 RegUnitSets.back().Units.begin())); 1874 1875 // Find an existing RegUnitSet, or add the union to the unique sets. 1876 std::vector<RegUnitSet>::const_iterator SetI = 1877 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1878 if (SetI != std::prev(RegUnitSets.end())) 1879 RegUnitSets.pop_back(); 1880 else { 1881 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1882 << RegUnitSets.back().Name << ":"; 1883 for (auto &U 1884 : RegUnitSets.back().Units) printRegUnitName(U); 1885 dbgs() << "\n";); 1886 } 1887 } 1888 } 1889 1890 // Iteratively prune unit sets after inferring supersets. 1891 pruneUnitSets(); 1892 1893 LLVM_DEBUG( 1894 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1895 USIdx < USEnd; ++USIdx) { 1896 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1897 for (auto &U : RegUnitSets[USIdx].Units) 1898 printRegUnitName(U); 1899 dbgs() << "\n"; 1900 }); 1901 1902 // For each register class, list the UnitSets that are supersets. 1903 RegClassUnitSets.resize(RegClasses.size()); 1904 int RCIdx = -1; 1905 for (auto &RC : RegClasses) { 1906 ++RCIdx; 1907 if (!RC.Allocatable) 1908 continue; 1909 1910 // Recompute the sorted list of units in this class. 1911 std::vector<unsigned> RCRegUnits; 1912 RC.buildRegUnitSet(*this, RCRegUnits); 1913 1914 // Don't increase pressure for unallocatable regclasses. 1915 if (RCRegUnits.empty()) 1916 continue; 1917 1918 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1919 for (auto U 1920 : RCRegUnits) printRegUnitName(U); 1921 dbgs() << "\n UnitSetIDs:"); 1922 1923 // Find all supersets. 1924 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1925 USIdx != USEnd; ++USIdx) { 1926 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1927 LLVM_DEBUG(dbgs() << " " << USIdx); 1928 RegClassUnitSets[RCIdx].push_back(USIdx); 1929 } 1930 } 1931 LLVM_DEBUG(dbgs() << "\n"); 1932 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1933 } 1934 1935 // For each register unit, ensure that we have the list of UnitSets that 1936 // contain the unit. Normally, this matches an existing list of UnitSets for a 1937 // register class. If not, we create a new entry in RegClassUnitSets as a 1938 // "fake" register class. 1939 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1940 UnitIdx < UnitEnd; ++UnitIdx) { 1941 std::vector<unsigned> RUSets; 1942 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1943 RegUnitSet &RUSet = RegUnitSets[i]; 1944 if (!is_contained(RUSet.Units, UnitIdx)) 1945 continue; 1946 RUSets.push_back(i); 1947 } 1948 unsigned RCUnitSetsIdx = 0; 1949 for (unsigned e = RegClassUnitSets.size(); 1950 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1951 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1952 break; 1953 } 1954 } 1955 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1956 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1957 // Create a new list of UnitSets as a "fake" register class. 1958 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1959 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1960 } 1961 } 1962 } 1963 1964 void CodeGenRegBank::computeRegUnitLaneMasks() { 1965 for (auto &Register : Registers) { 1966 // Create an initial lane mask for all register units. 1967 const auto &RegUnits = Register.getRegUnits(); 1968 CodeGenRegister::RegUnitLaneMaskList 1969 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 1970 // Iterate through SubRegisters. 1971 typedef CodeGenRegister::SubRegMap SubRegMap; 1972 const SubRegMap &SubRegs = Register.getSubRegs(); 1973 for (SubRegMap::const_iterator S = SubRegs.begin(), 1974 SE = SubRegs.end(); S != SE; ++S) { 1975 CodeGenRegister *SubReg = S->second; 1976 // Ignore non-leaf subregisters, their lane masks are fully covered by 1977 // the leaf subregisters anyway. 1978 if (!SubReg->getSubRegs().empty()) 1979 continue; 1980 CodeGenSubRegIndex *SubRegIndex = S->first; 1981 const CodeGenRegister *SubRegister = S->second; 1982 LaneBitmask LaneMask = SubRegIndex->LaneMask; 1983 // Distribute LaneMask to Register Units touched. 1984 for (unsigned SUI : SubRegister->getRegUnits()) { 1985 bool Found = false; 1986 unsigned u = 0; 1987 for (unsigned RU : RegUnits) { 1988 if (SUI == RU) { 1989 RegUnitLaneMasks[u] |= LaneMask; 1990 assert(!Found); 1991 Found = true; 1992 } 1993 ++u; 1994 } 1995 (void)Found; 1996 assert(Found); 1997 } 1998 } 1999 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2000 } 2001 } 2002 2003 void CodeGenRegBank::computeDerivedInfo() { 2004 computeComposites(); 2005 computeSubRegLaneMasks(); 2006 2007 // Compute a weight for each register unit created during getSubRegs. 2008 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2009 computeRegUnitWeights(); 2010 2011 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2012 // supersets for the union of overlapping sets. 2013 computeRegUnitSets(); 2014 2015 computeRegUnitLaneMasks(); 2016 2017 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2018 for (CodeGenRegisterClass &RC : RegClasses) { 2019 RC.HasDisjunctSubRegs = false; 2020 RC.CoveredBySubRegs = true; 2021 for (const CodeGenRegister *Reg : RC.getMembers()) { 2022 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2023 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2024 } 2025 } 2026 2027 // Get the weight of each set. 2028 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2029 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2030 2031 // Find the order of each set. 2032 RegUnitSetOrder.reserve(RegUnitSets.size()); 2033 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2034 RegUnitSetOrder.push_back(Idx); 2035 2036 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 2037 [this](unsigned ID1, unsigned ID2) { 2038 return getRegPressureSet(ID1).Units.size() < 2039 getRegPressureSet(ID2).Units.size(); 2040 }); 2041 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2042 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2043 } 2044 } 2045 2046 // 2047 // Synthesize missing register class intersections. 2048 // 2049 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2050 // returns a maximal register class for all X. 2051 // 2052 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2053 assert(!RegClasses.empty()); 2054 // Stash the iterator to the last element so that this loop doesn't visit 2055 // elements added by the getOrCreateSubClass call within it. 2056 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2057 I != std::next(E); ++I) { 2058 CodeGenRegisterClass *RC1 = RC; 2059 CodeGenRegisterClass *RC2 = &*I; 2060 if (RC1 == RC2) 2061 continue; 2062 2063 // Compute the set intersection of RC1 and RC2. 2064 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2065 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2066 CodeGenRegister::Vec Intersection; 2067 std::set_intersection( 2068 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 2069 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 2070 2071 // Skip disjoint class pairs. 2072 if (Intersection.empty()) 2073 continue; 2074 2075 // If RC1 and RC2 have different spill sizes or alignments, use the 2076 // stricter one for sub-classing. If they are equal, prefer RC1. 2077 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2078 std::swap(RC1, RC2); 2079 2080 getOrCreateSubClass(RC1, &Intersection, 2081 RC1->getName() + "_and_" + RC2->getName()); 2082 } 2083 } 2084 2085 // 2086 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2087 // 2088 // Make sure that the set of registers in RC with a given SubIdx sub-register 2089 // form a register class. Update RC->SubClassWithSubReg. 2090 // 2091 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2092 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2093 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2094 deref<llvm::less>> SubReg2SetMap; 2095 2096 // Compute the set of registers supporting each SubRegIndex. 2097 SubReg2SetMap SRSets; 2098 for (const auto R : RC->getMembers()) { 2099 if (R->Artificial) 2100 continue; 2101 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2102 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2103 E = SRM.end(); I != E; ++I) { 2104 if (!I->first->Artificial) 2105 SRSets[I->first].push_back(R); 2106 } 2107 } 2108 2109 for (auto I : SRSets) 2110 sortAndUniqueRegisters(I.second); 2111 2112 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2113 // numerical order to visit synthetic indices last. 2114 for (const auto &SubIdx : SubRegIndices) { 2115 if (SubIdx.Artificial) 2116 continue; 2117 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2118 // Unsupported SubRegIndex. Skip it. 2119 if (I == SRSets.end()) 2120 continue; 2121 // In most cases, all RC registers support the SubRegIndex. 2122 if (I->second.size() == RC->getMembers().size()) { 2123 RC->setSubClassWithSubReg(&SubIdx, RC); 2124 continue; 2125 } 2126 // This is a real subset. See if we have a matching class. 2127 CodeGenRegisterClass *SubRC = 2128 getOrCreateSubClass(RC, &I->second, 2129 RC->getName() + "_with_" + I->first->getName()); 2130 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2131 } 2132 } 2133 2134 // 2135 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2136 // 2137 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2138 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2139 // 2140 2141 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2142 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2143 SmallVector<std::pair<const CodeGenRegister*, 2144 const CodeGenRegister*>, 16> SSPairs; 2145 BitVector TopoSigs(getNumTopoSigs()); 2146 2147 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2148 for (auto &SubIdx : SubRegIndices) { 2149 // Skip indexes that aren't fully supported by RC's registers. This was 2150 // computed by inferSubClassWithSubReg() above which should have been 2151 // called first. 2152 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2153 continue; 2154 2155 // Build list of (Super, Sub) pairs for this SubIdx. 2156 SSPairs.clear(); 2157 TopoSigs.reset(); 2158 for (const auto Super : RC->getMembers()) { 2159 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2160 assert(Sub && "Missing sub-register"); 2161 SSPairs.push_back(std::make_pair(Super, Sub)); 2162 TopoSigs.set(Sub->getTopoSig()); 2163 } 2164 2165 // Iterate over sub-register class candidates. Ignore classes created by 2166 // this loop. They will never be useful. 2167 // Store an iterator to the last element (not end) so that this loop doesn't 2168 // visit newly inserted elements. 2169 assert(!RegClasses.empty()); 2170 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2171 I != std::next(E); ++I) { 2172 CodeGenRegisterClass &SubRC = *I; 2173 // Topological shortcut: SubRC members have the wrong shape. 2174 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2175 continue; 2176 // Compute the subset of RC that maps into SubRC. 2177 CodeGenRegister::Vec SubSetVec; 2178 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2179 if (SubRC.contains(SSPairs[i].second)) 2180 SubSetVec.push_back(SSPairs[i].first); 2181 2182 if (SubSetVec.empty()) 2183 continue; 2184 2185 // RC injects completely into SubRC. 2186 sortAndUniqueRegisters(SubSetVec); 2187 if (SubSetVec.size() == SSPairs.size()) { 2188 SubRC.addSuperRegClass(&SubIdx, RC); 2189 continue; 2190 } 2191 2192 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2193 // class. 2194 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2195 SubIdx.getName() + "_in_" + 2196 SubRC.getName()); 2197 } 2198 } 2199 } 2200 2201 // 2202 // Infer missing register classes. 2203 // 2204 void CodeGenRegBank::computeInferredRegisterClasses() { 2205 assert(!RegClasses.empty()); 2206 // When this function is called, the register classes have not been sorted 2207 // and assigned EnumValues yet. That means getSubClasses(), 2208 // getSuperClasses(), and hasSubClass() functions are defunct. 2209 2210 // Use one-before-the-end so it doesn't move forward when new elements are 2211 // added. 2212 auto FirstNewRC = std::prev(RegClasses.end()); 2213 2214 // Visit all register classes, including the ones being added by the loop. 2215 // Watch out for iterator invalidation here. 2216 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2217 CodeGenRegisterClass *RC = &*I; 2218 if (RC->Artificial) 2219 continue; 2220 2221 // Synthesize answers for getSubClassWithSubReg(). 2222 inferSubClassWithSubReg(RC); 2223 2224 // Synthesize answers for getCommonSubClass(). 2225 inferCommonSubClass(RC); 2226 2227 // Synthesize answers for getMatchingSuperRegClass(). 2228 inferMatchingSuperRegClass(RC); 2229 2230 // New register classes are created while this loop is running, and we need 2231 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2232 // to match old super-register classes with sub-register classes created 2233 // after inferMatchingSuperRegClass was called. At this point, 2234 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2235 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2236 if (I == FirstNewRC) { 2237 auto NextNewRC = std::prev(RegClasses.end()); 2238 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2239 ++I2) 2240 inferMatchingSuperRegClass(&*I2, E2); 2241 FirstNewRC = NextNewRC; 2242 } 2243 } 2244 } 2245 2246 /// getRegisterClassForRegister - Find the register class that contains the 2247 /// specified physical register. If the register is not in a register class, 2248 /// return null. If the register is in multiple classes, and the classes have a 2249 /// superset-subset relationship and the same set of types, return the 2250 /// superclass. Otherwise return null. 2251 const CodeGenRegisterClass* 2252 CodeGenRegBank::getRegClassForRegister(Record *R) { 2253 const CodeGenRegister *Reg = getReg(R); 2254 const CodeGenRegisterClass *FoundRC = nullptr; 2255 for (const auto &RC : getRegClasses()) { 2256 if (!RC.contains(Reg)) 2257 continue; 2258 2259 // If this is the first class that contains the register, 2260 // make a note of it and go on to the next class. 2261 if (!FoundRC) { 2262 FoundRC = &RC; 2263 continue; 2264 } 2265 2266 // If a register's classes have different types, return null. 2267 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2268 return nullptr; 2269 2270 // Check to see if the previously found class that contains 2271 // the register is a subclass of the current class. If so, 2272 // prefer the superclass. 2273 if (RC.hasSubClass(FoundRC)) { 2274 FoundRC = &RC; 2275 continue; 2276 } 2277 2278 // Check to see if the previously found class that contains 2279 // the register is a superclass of the current class. If so, 2280 // prefer the superclass. 2281 if (FoundRC->hasSubClass(&RC)) 2282 continue; 2283 2284 // Multiple classes, and neither is a superclass of the other. 2285 // Return null. 2286 return nullptr; 2287 } 2288 return FoundRC; 2289 } 2290 2291 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2292 SetVector<const CodeGenRegister*> Set; 2293 2294 // First add Regs with all sub-registers. 2295 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2296 CodeGenRegister *Reg = getReg(Regs[i]); 2297 if (Set.insert(Reg)) 2298 // Reg is new, add all sub-registers. 2299 // The pre-ordering is not important here. 2300 Reg->addSubRegsPreOrder(Set, *this); 2301 } 2302 2303 // Second, find all super-registers that are completely covered by the set. 2304 for (unsigned i = 0; i != Set.size(); ++i) { 2305 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2306 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2307 const CodeGenRegister *Super = SR[j]; 2308 if (!Super->CoveredBySubRegs || Set.count(Super)) 2309 continue; 2310 // This new super-register is covered by its sub-registers. 2311 bool AllSubsInSet = true; 2312 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2313 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2314 E = SRM.end(); I != E; ++I) 2315 if (!Set.count(I->second)) { 2316 AllSubsInSet = false; 2317 break; 2318 } 2319 // All sub-registers in Set, add Super as well. 2320 // We will visit Super later to recheck its super-registers. 2321 if (AllSubsInSet) 2322 Set.insert(Super); 2323 } 2324 } 2325 2326 // Convert to BitVector. 2327 BitVector BV(Registers.size() + 1); 2328 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2329 BV.set(Set[i]->EnumValue); 2330 return BV; 2331 } 2332 2333 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2334 if (Unit < NumNativeRegUnits) 2335 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2336 else 2337 dbgs() << " #" << Unit; 2338 } 2339