1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/IntEqClasses.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/TableGen/Error.h" 33 #include "llvm/TableGen/Record.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <iterator> 38 #include <map> 39 #include <queue> 40 #include <set> 41 #include <string> 42 #include <tuple> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "regalloc-emitter" 49 50 //===----------------------------------------------------------------------===// 51 // CodeGenSubRegIndex 52 //===----------------------------------------------------------------------===// 53 54 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 55 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 56 Name = R->getName(); 57 if (R->getValue("Namespace")) 58 Namespace = R->getValueAsString("Namespace"); 59 Size = R->getValueAsInt("Size"); 60 Offset = R->getValueAsInt("Offset"); 61 } 62 63 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 64 unsigned Enum) 65 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 66 EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 67 } 68 69 std::string CodeGenSubRegIndex::getQualifiedName() const { 70 std::string N = getNamespace(); 71 if (!N.empty()) 72 N += "::"; 73 N += getName(); 74 return N; 75 } 76 77 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 78 if (!TheDef) 79 return; 80 81 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 82 if (!Comps.empty()) { 83 if (Comps.size() != 2) 84 PrintFatalError(TheDef->getLoc(), 85 "ComposedOf must have exactly two entries"); 86 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 87 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 88 CodeGenSubRegIndex *X = A->addComposite(B, this); 89 if (X) 90 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 91 } 92 93 std::vector<Record*> Parts = 94 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 95 if (!Parts.empty()) { 96 if (Parts.size() < 2) 97 PrintFatalError(TheDef->getLoc(), 98 "CoveredBySubRegs must have two or more entries"); 99 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 100 for (Record *Part : Parts) 101 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 102 setConcatenationOf(IdxParts); 103 } 104 } 105 106 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 107 // Already computed? 108 if (LaneMask.any()) 109 return LaneMask; 110 111 // Recursion guard, shouldn't be required. 112 LaneMask = LaneBitmask::getAll(); 113 114 // The lane mask is simply the union of all sub-indices. 115 LaneBitmask M; 116 for (const auto &C : Composed) 117 M |= C.second->computeLaneMask(); 118 assert(M.any() && "Missing lane mask, sub-register cycle?"); 119 LaneMask = M; 120 return LaneMask; 121 } 122 123 void CodeGenSubRegIndex::setConcatenationOf( 124 ArrayRef<CodeGenSubRegIndex*> Parts) { 125 if (ConcatenationOf.empty()) 126 ConcatenationOf.assign(Parts.begin(), Parts.end()); 127 else 128 assert(std::equal(Parts.begin(), Parts.end(), 129 ConcatenationOf.begin()) && "parts consistent"); 130 } 131 132 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 133 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 134 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 135 CodeGenSubRegIndex *SubIdx = *I; 136 SubIdx->computeConcatTransitiveClosure(); 137 #ifndef NDEBUG 138 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 139 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 140 #endif 141 142 if (SubIdx->ConcatenationOf.empty()) { 143 ++I; 144 } else { 145 I = ConcatenationOf.erase(I); 146 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 147 SubIdx->ConcatenationOf.end()); 148 I += SubIdx->ConcatenationOf.size(); 149 } 150 } 151 } 152 153 //===----------------------------------------------------------------------===// 154 // CodeGenRegister 155 //===----------------------------------------------------------------------===// 156 157 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 158 : TheDef(R), 159 EnumValue(Enum), 160 CostPerUse(R->getValueAsInt("CostPerUse")), 161 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 162 HasDisjunctSubRegs(false), 163 SubRegsComplete(false), 164 SuperRegsComplete(false), 165 TopoSig(~0u) { 166 Artificial = R->getValueAsBit("isArtificial"); 167 } 168 169 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 170 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 171 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 172 173 if (SRIs.size() != SRs.size()) 174 PrintFatalError(TheDef->getLoc(), 175 "SubRegs and SubRegIndices must have the same size"); 176 177 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 178 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 179 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 180 } 181 182 // Also compute leading super-registers. Each register has a list of 183 // covered-by-subregs super-registers where it appears as the first explicit 184 // sub-register. 185 // 186 // This is used by computeSecondarySubRegs() to find candidates. 187 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 188 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 189 190 // Add ad hoc alias links. This is a symmetric relationship between two 191 // registers, so build a symmetric graph by adding links in both ends. 192 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 193 for (Record *Alias : Aliases) { 194 CodeGenRegister *Reg = RegBank.getReg(Alias); 195 ExplicitAliases.push_back(Reg); 196 Reg->ExplicitAliases.push_back(this); 197 } 198 } 199 200 const StringRef CodeGenRegister::getName() const { 201 assert(TheDef && "no def"); 202 return TheDef->getName(); 203 } 204 205 namespace { 206 207 // Iterate over all register units in a set of registers. 208 class RegUnitIterator { 209 CodeGenRegister::Vec::const_iterator RegI, RegE; 210 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 211 212 public: 213 RegUnitIterator(const CodeGenRegister::Vec &Regs): 214 RegI(Regs.begin()), RegE(Regs.end()) { 215 216 if (RegI != RegE) { 217 UnitI = (*RegI)->getRegUnits().begin(); 218 UnitE = (*RegI)->getRegUnits().end(); 219 advance(); 220 } 221 } 222 223 bool isValid() const { return UnitI != UnitE; } 224 225 unsigned operator* () const { assert(isValid()); return *UnitI; } 226 227 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 228 229 /// Preincrement. Move to the next unit. 230 void operator++() { 231 assert(isValid() && "Cannot advance beyond the last operand"); 232 ++UnitI; 233 advance(); 234 } 235 236 protected: 237 void advance() { 238 while (UnitI == UnitE) { 239 if (++RegI == RegE) 240 break; 241 UnitI = (*RegI)->getRegUnits().begin(); 242 UnitE = (*RegI)->getRegUnits().end(); 243 } 244 } 245 }; 246 247 } // end anonymous namespace 248 249 // Return true of this unit appears in RegUnits. 250 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 251 return RegUnits.test(Unit); 252 } 253 254 // Inherit register units from subregisters. 255 // Return true if the RegUnits changed. 256 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 257 bool changed = false; 258 for (const auto &SubReg : SubRegs) { 259 CodeGenRegister *SR = SubReg.second; 260 // Merge the subregister's units into this register's RegUnits. 261 changed |= (RegUnits |= SR->RegUnits); 262 } 263 264 return changed; 265 } 266 267 const CodeGenRegister::SubRegMap & 268 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 269 // Only compute this map once. 270 if (SubRegsComplete) 271 return SubRegs; 272 SubRegsComplete = true; 273 274 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 275 276 // First insert the explicit subregs and make sure they are fully indexed. 277 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 278 CodeGenRegister *SR = ExplicitSubRegs[i]; 279 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 280 if (!SR->Artificial) 281 Idx->Artificial = false; 282 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 283 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 284 " appears twice in Register " + getName()); 285 // Map explicit sub-registers first, so the names take precedence. 286 // The inherited sub-registers are mapped below. 287 SubReg2Idx.insert(std::make_pair(SR, Idx)); 288 } 289 290 // Keep track of inherited subregs and how they can be reached. 291 SmallPtrSet<CodeGenRegister*, 8> Orphans; 292 293 // Clone inherited subregs and place duplicate entries in Orphans. 294 // Here the order is important - earlier subregs take precedence. 295 for (CodeGenRegister *ESR : ExplicitSubRegs) { 296 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 297 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 298 299 for (const auto &SR : Map) { 300 if (!SubRegs.insert(SR).second) 301 Orphans.insert(SR.second); 302 } 303 } 304 305 // Expand any composed subreg indices. 306 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 307 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 308 // expanded subreg indices recursively. 309 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 310 for (unsigned i = 0; i != Indices.size(); ++i) { 311 CodeGenSubRegIndex *Idx = Indices[i]; 312 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 313 CodeGenRegister *SR = SubRegs[Idx]; 314 const SubRegMap &Map = SR->computeSubRegs(RegBank); 315 316 // Look at the possible compositions of Idx. 317 // They may not all be supported by SR. 318 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 319 E = Comps.end(); I != E; ++I) { 320 SubRegMap::const_iterator SRI = Map.find(I->first); 321 if (SRI == Map.end()) 322 continue; // Idx + I->first doesn't exist in SR. 323 // Add I->second as a name for the subreg SRI->second, assuming it is 324 // orphaned, and the name isn't already used for something else. 325 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 326 continue; 327 // We found a new name for the orphaned sub-register. 328 SubRegs.insert(std::make_pair(I->second, SRI->second)); 329 Indices.push_back(I->second); 330 } 331 } 332 333 // Now Orphans contains the inherited subregisters without a direct index. 334 // Create inferred indexes for all missing entries. 335 // Work backwards in the Indices vector in order to compose subregs bottom-up. 336 // Consider this subreg sequence: 337 // 338 // qsub_1 -> dsub_0 -> ssub_0 339 // 340 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 341 // can be reached in two different ways: 342 // 343 // qsub_1 -> ssub_0 344 // dsub_2 -> ssub_0 345 // 346 // We pick the latter composition because another register may have [dsub_0, 347 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 348 // dsub_2 -> ssub_0 composition can be shared. 349 while (!Indices.empty() && !Orphans.empty()) { 350 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 351 CodeGenRegister *SR = SubRegs[Idx]; 352 const SubRegMap &Map = SR->computeSubRegs(RegBank); 353 for (const auto &SubReg : Map) 354 if (Orphans.erase(SubReg.second)) 355 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 356 } 357 358 // Compute the inverse SubReg -> Idx map. 359 for (const auto &SubReg : SubRegs) { 360 if (SubReg.second == this) { 361 ArrayRef<SMLoc> Loc; 362 if (TheDef) 363 Loc = TheDef->getLoc(); 364 PrintFatalError(Loc, "Register " + getName() + 365 " has itself as a sub-register"); 366 } 367 368 // Compute AllSuperRegsCovered. 369 if (!CoveredBySubRegs) 370 SubReg.first->AllSuperRegsCovered = false; 371 372 // Ensure that every sub-register has a unique name. 373 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 374 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 375 if (Ins->second == SubReg.first) 376 continue; 377 // Trouble: Two different names for SubReg.second. 378 ArrayRef<SMLoc> Loc; 379 if (TheDef) 380 Loc = TheDef->getLoc(); 381 PrintFatalError(Loc, "Sub-register can't have two names: " + 382 SubReg.second->getName() + " available as " + 383 SubReg.first->getName() + " and " + Ins->second->getName()); 384 } 385 386 // Derive possible names for sub-register concatenations from any explicit 387 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 388 // that getConcatSubRegIndex() won't invent any concatenated indices that the 389 // user already specified. 390 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 391 CodeGenRegister *SR = ExplicitSubRegs[i]; 392 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 393 continue; 394 395 // SR is composed of multiple sub-regs. Find their names in this register. 396 SmallVector<CodeGenSubRegIndex*, 8> Parts; 397 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 398 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 399 400 // Offer this as an existing spelling for the concatenation of Parts. 401 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 402 Idx.setConcatenationOf(Parts); 403 } 404 405 // Initialize RegUnitList. Because getSubRegs is called recursively, this 406 // processes the register hierarchy in postorder. 407 // 408 // Inherit all sub-register units. It is good enough to look at the explicit 409 // sub-registers, the other registers won't contribute any more units. 410 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 411 CodeGenRegister *SR = ExplicitSubRegs[i]; 412 RegUnits |= SR->RegUnits; 413 } 414 415 // Absent any ad hoc aliasing, we create one register unit per leaf register. 416 // These units correspond to the maximal cliques in the register overlap 417 // graph which is optimal. 418 // 419 // When there is ad hoc aliasing, we simply create one unit per edge in the 420 // undirected ad hoc aliasing graph. Technically, we could do better by 421 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 422 // are extremely rare anyway (I've never seen one), so we don't bother with 423 // the added complexity. 424 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 425 CodeGenRegister *AR = ExplicitAliases[i]; 426 // Only visit each edge once. 427 if (AR->SubRegsComplete) 428 continue; 429 // Create a RegUnit representing this alias edge, and add it to both 430 // registers. 431 unsigned Unit = RegBank.newRegUnit(this, AR); 432 RegUnits.set(Unit); 433 AR->RegUnits.set(Unit); 434 } 435 436 // Finally, create units for leaf registers without ad hoc aliases. Note that 437 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 438 // necessary. This means the aliasing leaf registers can share a single unit. 439 if (RegUnits.empty()) 440 RegUnits.set(RegBank.newRegUnit(this)); 441 442 // We have now computed the native register units. More may be adopted later 443 // for balancing purposes. 444 NativeRegUnits = RegUnits; 445 446 return SubRegs; 447 } 448 449 // In a register that is covered by its sub-registers, try to find redundant 450 // sub-registers. For example: 451 // 452 // QQ0 = {Q0, Q1} 453 // Q0 = {D0, D1} 454 // Q1 = {D2, D3} 455 // 456 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 457 // the register definition. 458 // 459 // The explicitly specified registers form a tree. This function discovers 460 // sub-register relationships that would force a DAG. 461 // 462 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 463 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 464 465 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 466 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 467 SubRegQueue.push(P); 468 469 // Look at the leading super-registers of each sub-register. Those are the 470 // candidates for new sub-registers, assuming they are fully contained in 471 // this register. 472 while (!SubRegQueue.empty()) { 473 CodeGenSubRegIndex *SubRegIdx; 474 const CodeGenRegister *SubReg; 475 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 476 SubRegQueue.pop(); 477 478 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 479 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 480 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 481 // Already got this sub-register? 482 if (Cand == this || getSubRegIndex(Cand)) 483 continue; 484 // Check if each component of Cand is already a sub-register. 485 assert(!Cand->ExplicitSubRegs.empty() && 486 "Super-register has no sub-registers"); 487 if (Cand->ExplicitSubRegs.size() == 1) 488 continue; 489 SmallVector<CodeGenSubRegIndex*, 8> Parts; 490 // We know that the first component is (SubRegIdx,SubReg). However we 491 // may still need to split it into smaller subregister parts. 492 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 493 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 494 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 495 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 496 if (SubRegIdx->ConcatenationOf.empty()) { 497 Parts.push_back(SubRegIdx); 498 } else 499 for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf) 500 Parts.push_back(SubIdx); 501 } else { 502 // Sub-register doesn't exist. 503 Parts.clear(); 504 break; 505 } 506 } 507 // There is nothing to do if some Cand sub-register is not part of this 508 // register. 509 if (Parts.empty()) 510 continue; 511 512 // Each part of Cand is a sub-register of this. Make the full Cand also 513 // a sub-register with a concatenated sub-register index. 514 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 515 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 516 std::make_pair(Concat, Cand); 517 518 if (!SubRegs.insert(NewSubReg).second) 519 continue; 520 521 // We inserted a new subregister. 522 NewSubRegs.push_back(NewSubReg); 523 SubRegQueue.push(NewSubReg); 524 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 525 } 526 } 527 528 // Create sub-register index composition maps for the synthesized indices. 529 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 530 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 531 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 532 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 533 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 535 if (!SubIdx) 536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 537 SI->second->getName() + " in " + getName()); 538 NewIdx->addComposite(SI->first, SubIdx); 539 } 540 } 541 } 542 543 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 544 // Only visit each register once. 545 if (SuperRegsComplete) 546 return; 547 SuperRegsComplete = true; 548 549 // Make sure all sub-registers have been visited first, so the super-reg 550 // lists will be topologically ordered. 551 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 552 I != E; ++I) 553 I->second->computeSuperRegs(RegBank); 554 555 // Now add this as a super-register on all sub-registers. 556 // Also compute the TopoSigId in post-order. 557 TopoSigId Id; 558 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 559 I != E; ++I) { 560 // Topological signature computed from SubIdx, TopoId(SubReg). 561 // Loops and idempotent indices have TopoSig = ~0u. 562 Id.push_back(I->first->EnumValue); 563 Id.push_back(I->second->TopoSig); 564 565 // Don't add duplicate entries. 566 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 567 continue; 568 I->second->SuperRegs.push_back(this); 569 } 570 TopoSig = RegBank.getTopoSig(Id); 571 } 572 573 void 574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 575 CodeGenRegBank &RegBank) const { 576 assert(SubRegsComplete && "Must precompute sub-registers"); 577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 578 CodeGenRegister *SR = ExplicitSubRegs[i]; 579 if (OSet.insert(SR)) 580 SR->addSubRegsPreOrder(OSet, RegBank); 581 } 582 // Add any secondary sub-registers that weren't part of the explicit tree. 583 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 584 I != E; ++I) 585 OSet.insert(I->second); 586 } 587 588 // Get the sum of this register's unit weights. 589 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 590 unsigned Weight = 0; 591 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 592 I != E; ++I) { 593 Weight += RegBank.getRegUnit(*I).Weight; 594 } 595 return Weight; 596 } 597 598 //===----------------------------------------------------------------------===// 599 // RegisterTuples 600 //===----------------------------------------------------------------------===// 601 602 // A RegisterTuples def is used to generate pseudo-registers from lists of 603 // sub-registers. We provide a SetTheory expander class that returns the new 604 // registers. 605 namespace { 606 607 struct TupleExpander : SetTheory::Expander { 608 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 609 // the synthesized definitions for their lifetime. 610 std::vector<std::unique_ptr<Record>> &SynthDefs; 611 612 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 613 : SynthDefs(SynthDefs) {} 614 615 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 616 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 617 unsigned Dim = Indices.size(); 618 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 619 if (Dim != SubRegs->size()) 620 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 621 if (Dim < 2) 622 PrintFatalError(Def->getLoc(), 623 "Tuples must have at least 2 sub-registers"); 624 625 // Evaluate the sub-register lists to be zipped. 626 unsigned Length = ~0u; 627 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 628 for (unsigned i = 0; i != Dim; ++i) { 629 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 630 Length = std::min(Length, unsigned(Lists[i].size())); 631 } 632 633 if (Length == 0) 634 return; 635 636 // Precompute some types. 637 Record *RegisterCl = Def->getRecords().getClass("Register"); 638 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 639 StringInit *BlankName = StringInit::get(""); 640 641 // Zip them up. 642 for (unsigned n = 0; n != Length; ++n) { 643 std::string Name; 644 Record *Proto = Lists[0][n]; 645 std::vector<Init*> Tuple; 646 unsigned CostPerUse = 0; 647 for (unsigned i = 0; i != Dim; ++i) { 648 Record *Reg = Lists[i][n]; 649 if (i) Name += '_'; 650 Name += Reg->getName(); 651 Tuple.push_back(DefInit::get(Reg)); 652 CostPerUse = std::max(CostPerUse, 653 unsigned(Reg->getValueAsInt("CostPerUse"))); 654 } 655 656 // Create a new Record representing the synthesized register. This record 657 // is only for consumption by CodeGenRegister, it is not added to the 658 // RecordKeeper. 659 SynthDefs.emplace_back( 660 llvm::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 661 Record *NewReg = SynthDefs.back().get(); 662 Elts.insert(NewReg); 663 664 // Copy Proto super-classes. 665 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 666 for (const auto &SuperPair : Supers) 667 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 668 669 // Copy Proto fields. 670 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 671 RecordVal RV = Proto->getValues()[i]; 672 673 // Skip existing fields, like NAME. 674 if (NewReg->getValue(RV.getNameInit())) 675 continue; 676 677 StringRef Field = RV.getName(); 678 679 // Replace the sub-register list with Tuple. 680 if (Field == "SubRegs") 681 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 682 683 // Provide a blank AsmName. MC hacks are required anyway. 684 if (Field == "AsmName") 685 RV.setValue(BlankName); 686 687 // CostPerUse is aggregated from all Tuple members. 688 if (Field == "CostPerUse") 689 RV.setValue(IntInit::get(CostPerUse)); 690 691 // Composite registers are always covered by sub-registers. 692 if (Field == "CoveredBySubRegs") 693 RV.setValue(BitInit::get(true)); 694 695 // Copy fields from the RegisterTuples def. 696 if (Field == "SubRegIndices" || 697 Field == "CompositeIndices") { 698 NewReg->addValue(*Def->getValue(Field)); 699 continue; 700 } 701 702 // Some fields get their default uninitialized value. 703 if (Field == "DwarfNumbers" || 704 Field == "DwarfAlias" || 705 Field == "Aliases") { 706 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 707 NewReg->addValue(*DefRV); 708 continue; 709 } 710 711 // Everything else is copied from Proto. 712 NewReg->addValue(RV); 713 } 714 } 715 } 716 }; 717 718 } // end anonymous namespace 719 720 //===----------------------------------------------------------------------===// 721 // CodeGenRegisterClass 722 //===----------------------------------------------------------------------===// 723 724 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 725 llvm::sort(M.begin(), M.end(), deref<llvm::less>()); 726 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 727 } 728 729 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 730 : TheDef(R), 731 Name(R->getName()), 732 TopoSigs(RegBank.getNumTopoSigs()), 733 EnumValue(-1) { 734 735 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 736 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 737 Record *Type = TypeList[i]; 738 if (!Type->isSubClassOf("ValueType")) 739 PrintFatalError("RegTypes list member '" + Type->getName() + 740 "' does not derive from the ValueType class!"); 741 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 742 } 743 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 744 745 // Allocation order 0 is the full set. AltOrders provides others. 746 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 747 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 748 Orders.resize(1 + AltOrders->size()); 749 750 // Default allocation order always contains all registers. 751 Artificial = true; 752 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 753 Orders[0].push_back((*Elements)[i]); 754 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 755 Members.push_back(Reg); 756 Artificial &= Reg->Artificial; 757 TopoSigs.set(Reg->getTopoSig()); 758 } 759 sortAndUniqueRegisters(Members); 760 761 // Alternative allocation orders may be subsets. 762 SetTheory::RecSet Order; 763 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 764 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 765 Orders[1 + i].append(Order.begin(), Order.end()); 766 // Verify that all altorder members are regclass members. 767 while (!Order.empty()) { 768 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 769 Order.pop_back(); 770 if (!contains(Reg)) 771 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 772 " is not a class member"); 773 } 774 } 775 776 Namespace = R->getValueAsString("Namespace"); 777 778 if (const RecordVal *RV = R->getValue("RegInfos")) 779 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 780 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 781 unsigned Size = R->getValueAsInt("Size"); 782 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 783 "Impossible to determine register size"); 784 if (!RSI.hasDefault()) { 785 RegSizeInfo RI; 786 RI.RegSize = RI.SpillSize = Size ? Size 787 : VTs[0].getSimple().getSizeInBits(); 788 RI.SpillAlignment = R->getValueAsInt("Alignment"); 789 RSI.Map.insert({DefaultMode, RI}); 790 } 791 792 CopyCost = R->getValueAsInt("CopyCost"); 793 Allocatable = R->getValueAsBit("isAllocatable"); 794 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 795 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 796 if (AllocationPriority < 0 || AllocationPriority > 63) 797 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 798 this->AllocationPriority = AllocationPriority; 799 } 800 801 // Create an inferred register class that was missing from the .td files. 802 // Most properties will be inherited from the closest super-class after the 803 // class structure has been computed. 804 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 805 StringRef Name, Key Props) 806 : Members(*Props.Members), 807 TheDef(nullptr), 808 Name(Name), 809 TopoSigs(RegBank.getNumTopoSigs()), 810 EnumValue(-1), 811 RSI(Props.RSI), 812 CopyCost(0), 813 Allocatable(true), 814 AllocationPriority(0) { 815 Artificial = true; 816 for (const auto R : Members) { 817 TopoSigs.set(R->getTopoSig()); 818 Artificial &= R->Artificial; 819 } 820 } 821 822 // Compute inherited propertied for a synthesized register class. 823 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 824 assert(!getDef() && "Only synthesized classes can inherit properties"); 825 assert(!SuperClasses.empty() && "Synthesized class without super class"); 826 827 // The last super-class is the smallest one. 828 CodeGenRegisterClass &Super = *SuperClasses.back(); 829 830 // Most properties are copied directly. 831 // Exceptions are members, size, and alignment 832 Namespace = Super.Namespace; 833 VTs = Super.VTs; 834 CopyCost = Super.CopyCost; 835 Allocatable = Super.Allocatable; 836 AltOrderSelect = Super.AltOrderSelect; 837 AllocationPriority = Super.AllocationPriority; 838 839 // Copy all allocation orders, filter out foreign registers from the larger 840 // super-class. 841 Orders.resize(Super.Orders.size()); 842 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 843 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 844 if (contains(RegBank.getReg(Super.Orders[i][j]))) 845 Orders[i].push_back(Super.Orders[i][j]); 846 } 847 848 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 849 return std::binary_search(Members.begin(), Members.end(), Reg, 850 deref<llvm::less>()); 851 } 852 853 namespace llvm { 854 855 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 856 OS << "{ " << K.RSI; 857 for (const auto R : *K.Members) 858 OS << ", " << R->getName(); 859 return OS << " }"; 860 } 861 862 } // end namespace llvm 863 864 // This is a simple lexicographical order that can be used to search for sets. 865 // It is not the same as the topological order provided by TopoOrderRC. 866 bool CodeGenRegisterClass::Key:: 867 operator<(const CodeGenRegisterClass::Key &B) const { 868 assert(Members && B.Members); 869 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 870 } 871 872 // Returns true if RC is a strict subclass. 873 // RC is a sub-class of this class if it is a valid replacement for any 874 // instruction operand where a register of this classis required. It must 875 // satisfy these conditions: 876 // 877 // 1. All RC registers are also in this. 878 // 2. The RC spill size must not be smaller than our spill size. 879 // 3. RC spill alignment must be compatible with ours. 880 // 881 static bool testSubClass(const CodeGenRegisterClass *A, 882 const CodeGenRegisterClass *B) { 883 return A->RSI.isSubClassOf(B->RSI) && 884 std::includes(A->getMembers().begin(), A->getMembers().end(), 885 B->getMembers().begin(), B->getMembers().end(), 886 deref<llvm::less>()); 887 } 888 889 /// Sorting predicate for register classes. This provides a topological 890 /// ordering that arranges all register classes before their sub-classes. 891 /// 892 /// Register classes with the same registers, spill size, and alignment form a 893 /// clique. They will be ordered alphabetically. 894 /// 895 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 896 const CodeGenRegisterClass &PB) { 897 auto *A = &PA; 898 auto *B = &PB; 899 if (A == B) 900 return false; 901 902 if (A->RSI < B->RSI) 903 return true; 904 if (A->RSI != B->RSI) 905 return false; 906 907 // Order by descending set size. Note that the classes' allocation order may 908 // not have been computed yet. The Members set is always vaild. 909 if (A->getMembers().size() > B->getMembers().size()) 910 return true; 911 if (A->getMembers().size() < B->getMembers().size()) 912 return false; 913 914 // Finally order by name as a tie breaker. 915 return StringRef(A->getName()) < B->getName(); 916 } 917 918 std::string CodeGenRegisterClass::getQualifiedName() const { 919 if (Namespace.empty()) 920 return getName(); 921 else 922 return (Namespace + "::" + getName()).str(); 923 } 924 925 // Compute sub-classes of all register classes. 926 // Assume the classes are ordered topologically. 927 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 928 auto &RegClasses = RegBank.getRegClasses(); 929 930 // Visit backwards so sub-classes are seen first. 931 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 932 CodeGenRegisterClass &RC = *I; 933 RC.SubClasses.resize(RegClasses.size()); 934 RC.SubClasses.set(RC.EnumValue); 935 if (RC.Artificial) 936 continue; 937 938 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 939 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 940 CodeGenRegisterClass &SubRC = *I2; 941 if (RC.SubClasses.test(SubRC.EnumValue)) 942 continue; 943 if (!testSubClass(&RC, &SubRC)) 944 continue; 945 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 946 // check them again. 947 RC.SubClasses |= SubRC.SubClasses; 948 } 949 950 // Sweep up missed clique members. They will be immediately preceding RC. 951 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 952 RC.SubClasses.set(I2->EnumValue); 953 } 954 955 // Compute the SuperClasses lists from the SubClasses vectors. 956 for (auto &RC : RegClasses) { 957 const BitVector &SC = RC.getSubClasses(); 958 auto I = RegClasses.begin(); 959 for (int s = 0, next_s = SC.find_first(); next_s != -1; 960 next_s = SC.find_next(s)) { 961 std::advance(I, next_s - s); 962 s = next_s; 963 if (&*I == &RC) 964 continue; 965 I->SuperClasses.push_back(&RC); 966 } 967 } 968 969 // With the class hierarchy in place, let synthesized register classes inherit 970 // properties from their closest super-class. The iteration order here can 971 // propagate properties down multiple levels. 972 for (auto &RC : RegClasses) 973 if (!RC.getDef()) 974 RC.inheritProperties(RegBank); 975 } 976 977 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 978 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 979 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 980 auto SizeOrder = [](const CodeGenRegisterClass *A, 981 const CodeGenRegisterClass *B) { 982 return A->getMembers().size() > B->getMembers().size(); 983 }; 984 985 auto &RegClasses = RegBank.getRegClasses(); 986 987 // Find all the subclasses of this one that fully support the sub-register 988 // index and order them by size. BiggestSuperRC should always be first. 989 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 990 if (!BiggestSuperRegRC) 991 return None; 992 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 993 std::vector<CodeGenRegisterClass *> SuperRegRCs; 994 for (auto &RC : RegClasses) 995 if (SuperRegRCsBV[RC.EnumValue]) 996 SuperRegRCs.emplace_back(&RC); 997 llvm::sort(SuperRegRCs.begin(), SuperRegRCs.end(), SizeOrder); 998 assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first"); 999 1000 // Find all the subreg classes and order them by size too. 1001 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1002 for (auto &RC: RegClasses) { 1003 BitVector SuperRegClassesBV(RegClasses.size()); 1004 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1005 if (SuperRegClassesBV.any()) 1006 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1007 } 1008 llvm::sort(SuperRegClasses.begin(), SuperRegClasses.end(), 1009 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1010 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1011 return SizeOrder(A.first, B.first); 1012 }); 1013 1014 // Find the biggest subclass and subreg class such that R:subidx is in the 1015 // subreg class for all R in subclass. 1016 // 1017 // For example: 1018 // All registers in X86's GR64 have a sub_32bit subregister but no class 1019 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1020 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1021 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1022 // having excluded RIP, we are able to find a SubRegRC (GR32). 1023 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1024 CodeGenRegisterClass *SubRegRC = nullptr; 1025 for (auto *SuperRegRC : SuperRegRCs) { 1026 for (const auto &SuperRegClassPair : SuperRegClasses) { 1027 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1028 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1029 SubRegRC = SuperRegClassPair.first; 1030 ChosenSuperRegClass = SuperRegRC; 1031 1032 // If SubRegRC is bigger than SuperRegRC then there are members of 1033 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1034 // find a better fit and fall back on this one if there isn't one. 1035 // 1036 // This is intended to prevent X86 from making odd choices such as 1037 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1038 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1039 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1040 // mapping. 1041 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1042 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1043 } 1044 } 1045 1046 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1047 // registers, then we're done. 1048 if (ChosenSuperRegClass) 1049 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1050 } 1051 1052 return None; 1053 } 1054 1055 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1056 BitVector &Out) const { 1057 auto FindI = SuperRegClasses.find(SubIdx); 1058 if (FindI == SuperRegClasses.end()) 1059 return; 1060 for (CodeGenRegisterClass *RC : FindI->second) 1061 Out.set(RC->EnumValue); 1062 } 1063 1064 // Populate a unique sorted list of units from a register set. 1065 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1066 std::vector<unsigned> &RegUnits) const { 1067 std::vector<unsigned> TmpUnits; 1068 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1069 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1070 if (!RU.Artificial) 1071 TmpUnits.push_back(*UnitI); 1072 } 1073 llvm::sort(TmpUnits.begin(), TmpUnits.end()); 1074 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1075 std::back_inserter(RegUnits)); 1076 } 1077 1078 //===----------------------------------------------------------------------===// 1079 // CodeGenRegBank 1080 //===----------------------------------------------------------------------===// 1081 1082 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1083 const CodeGenHwModes &Modes) : CGH(Modes) { 1084 // Configure register Sets to understand register classes and tuples. 1085 Sets.addFieldExpander("RegisterClass", "MemberList"); 1086 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1087 Sets.addExpander("RegisterTuples", 1088 llvm::make_unique<TupleExpander>(SynthDefs)); 1089 1090 // Read in the user-defined (named) sub-register indices. 1091 // More indices will be synthesized later. 1092 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1093 llvm::sort(SRIs.begin(), SRIs.end(), LessRecord()); 1094 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1095 getSubRegIdx(SRIs[i]); 1096 // Build composite maps from ComposedOf fields. 1097 for (auto &Idx : SubRegIndices) 1098 Idx.updateComponents(*this); 1099 1100 // Read in the register definitions. 1101 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1102 llvm::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 1103 // Assign the enumeration values. 1104 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1105 getReg(Regs[i]); 1106 1107 // Expand tuples and number the new registers. 1108 std::vector<Record*> Tups = 1109 Records.getAllDerivedDefinitions("RegisterTuples"); 1110 1111 for (Record *R : Tups) { 1112 std::vector<Record *> TupRegs = *Sets.expand(R); 1113 llvm::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 1114 for (Record *RC : TupRegs) 1115 getReg(RC); 1116 } 1117 1118 // Now all the registers are known. Build the object graph of explicit 1119 // register-register references. 1120 for (auto &Reg : Registers) 1121 Reg.buildObjectGraph(*this); 1122 1123 // Compute register name map. 1124 for (auto &Reg : Registers) 1125 // FIXME: This could just be RegistersByName[name] = register, except that 1126 // causes some failures in MIPS - perhaps they have duplicate register name 1127 // entries? (or maybe there's a reason for it - I don't know much about this 1128 // code, just drive-by refactoring) 1129 RegistersByName.insert( 1130 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1131 1132 // Precompute all sub-register maps. 1133 // This will create Composite entries for all inferred sub-register indices. 1134 for (auto &Reg : Registers) 1135 Reg.computeSubRegs(*this); 1136 1137 // Compute transitive closure of subregister index ConcatenationOf vectors 1138 // and initialize ConcatIdx map. 1139 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1140 SRI.computeConcatTransitiveClosure(); 1141 if (!SRI.ConcatenationOf.empty()) 1142 ConcatIdx.insert(std::make_pair( 1143 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1144 SRI.ConcatenationOf.end()), &SRI)); 1145 } 1146 1147 // Infer even more sub-registers by combining leading super-registers. 1148 for (auto &Reg : Registers) 1149 if (Reg.CoveredBySubRegs) 1150 Reg.computeSecondarySubRegs(*this); 1151 1152 // After the sub-register graph is complete, compute the topologically 1153 // ordered SuperRegs list. 1154 for (auto &Reg : Registers) 1155 Reg.computeSuperRegs(*this); 1156 1157 // For each pair of Reg:SR, if both are non-artificial, mark the 1158 // corresponding sub-register index as non-artificial. 1159 for (auto &Reg : Registers) { 1160 if (Reg.Artificial) 1161 continue; 1162 for (auto P : Reg.getSubRegs()) { 1163 const CodeGenRegister *SR = P.second; 1164 if (!SR->Artificial) 1165 P.first->Artificial = false; 1166 } 1167 } 1168 1169 // Native register units are associated with a leaf register. They've all been 1170 // discovered now. 1171 NumNativeRegUnits = RegUnits.size(); 1172 1173 // Read in register class definitions. 1174 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1175 if (RCs.empty()) 1176 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1177 1178 // Allocate user-defined register classes. 1179 for (auto *R : RCs) { 1180 RegClasses.emplace_back(*this, R); 1181 CodeGenRegisterClass &RC = RegClasses.back(); 1182 if (!RC.Artificial) 1183 addToMaps(&RC); 1184 } 1185 1186 // Infer missing classes to create a full algebra. 1187 computeInferredRegisterClasses(); 1188 1189 // Order register classes topologically and assign enum values. 1190 RegClasses.sort(TopoOrderRC); 1191 unsigned i = 0; 1192 for (auto &RC : RegClasses) 1193 RC.EnumValue = i++; 1194 CodeGenRegisterClass::computeSubClasses(*this); 1195 } 1196 1197 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1198 CodeGenSubRegIndex* 1199 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1200 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1201 return &SubRegIndices.back(); 1202 } 1203 1204 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1205 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1206 if (Idx) 1207 return Idx; 1208 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1209 Idx = &SubRegIndices.back(); 1210 return Idx; 1211 } 1212 1213 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1214 CodeGenRegister *&Reg = Def2Reg[Def]; 1215 if (Reg) 1216 return Reg; 1217 Registers.emplace_back(Def, Registers.size() + 1); 1218 Reg = &Registers.back(); 1219 return Reg; 1220 } 1221 1222 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1223 if (Record *Def = RC->getDef()) 1224 Def2RC.insert(std::make_pair(Def, RC)); 1225 1226 // Duplicate classes are rejected by insert(). 1227 // That's OK, we only care about the properties handled by CGRC::Key. 1228 CodeGenRegisterClass::Key K(*RC); 1229 Key2RC.insert(std::make_pair(K, RC)); 1230 } 1231 1232 // Create a synthetic sub-class if it is missing. 1233 CodeGenRegisterClass* 1234 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1235 const CodeGenRegister::Vec *Members, 1236 StringRef Name) { 1237 // Synthetic sub-class has the same size and alignment as RC. 1238 CodeGenRegisterClass::Key K(Members, RC->RSI); 1239 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1240 if (FoundI != Key2RC.end()) 1241 return FoundI->second; 1242 1243 // Sub-class doesn't exist, create a new one. 1244 RegClasses.emplace_back(*this, Name, K); 1245 addToMaps(&RegClasses.back()); 1246 return &RegClasses.back(); 1247 } 1248 1249 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1250 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1251 return RC; 1252 1253 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1254 } 1255 1256 CodeGenSubRegIndex* 1257 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1258 CodeGenSubRegIndex *B) { 1259 // Look for an existing entry. 1260 CodeGenSubRegIndex *Comp = A->compose(B); 1261 if (Comp) 1262 return Comp; 1263 1264 // None exists, synthesize one. 1265 std::string Name = A->getName() + "_then_" + B->getName(); 1266 Comp = createSubRegIndex(Name, A->getNamespace()); 1267 A->addComposite(B, Comp); 1268 return Comp; 1269 } 1270 1271 CodeGenSubRegIndex *CodeGenRegBank:: 1272 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1273 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1274 #ifndef NDEBUG 1275 for (CodeGenSubRegIndex *Idx : Parts) { 1276 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1277 } 1278 #endif 1279 1280 // Look for an existing entry. 1281 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1282 if (Idx) 1283 return Idx; 1284 1285 // None exists, synthesize one. 1286 std::string Name = Parts.front()->getName(); 1287 // Determine whether all parts are contiguous. 1288 bool isContinuous = true; 1289 unsigned Size = Parts.front()->Size; 1290 unsigned LastOffset = Parts.front()->Offset; 1291 unsigned LastSize = Parts.front()->Size; 1292 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1293 Name += '_'; 1294 Name += Parts[i]->getName(); 1295 Size += Parts[i]->Size; 1296 if (Parts[i]->Offset != (LastOffset + LastSize)) 1297 isContinuous = false; 1298 LastOffset = Parts[i]->Offset; 1299 LastSize = Parts[i]->Size; 1300 } 1301 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1302 Idx->Size = Size; 1303 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1304 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1305 return Idx; 1306 } 1307 1308 void CodeGenRegBank::computeComposites() { 1309 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1310 // and many registers will share TopoSigs on regular architectures. 1311 BitVector TopoSigs(getNumTopoSigs()); 1312 1313 for (const auto &Reg1 : Registers) { 1314 // Skip identical subreg structures already processed. 1315 if (TopoSigs.test(Reg1.getTopoSig())) 1316 continue; 1317 TopoSigs.set(Reg1.getTopoSig()); 1318 1319 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1320 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1321 e1 = SRM1.end(); i1 != e1; ++i1) { 1322 CodeGenSubRegIndex *Idx1 = i1->first; 1323 CodeGenRegister *Reg2 = i1->second; 1324 // Ignore identity compositions. 1325 if (&Reg1 == Reg2) 1326 continue; 1327 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1328 // Try composing Idx1 with another SubRegIndex. 1329 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1330 e2 = SRM2.end(); i2 != e2; ++i2) { 1331 CodeGenSubRegIndex *Idx2 = i2->first; 1332 CodeGenRegister *Reg3 = i2->second; 1333 // Ignore identity compositions. 1334 if (Reg2 == Reg3) 1335 continue; 1336 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1337 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1338 assert(Idx3 && "Sub-register doesn't have an index"); 1339 1340 // Conflicting composition? Emit a warning but allow it. 1341 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1342 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1343 " and " + Idx2->getQualifiedName() + 1344 " compose ambiguously as " + Prev->getQualifiedName() + 1345 " or " + Idx3->getQualifiedName()); 1346 } 1347 } 1348 } 1349 } 1350 1351 // Compute lane masks. This is similar to register units, but at the 1352 // sub-register index level. Each bit in the lane mask is like a register unit 1353 // class, and two lane masks will have a bit in common if two sub-register 1354 // indices overlap in some register. 1355 // 1356 // Conservatively share a lane mask bit if two sub-register indices overlap in 1357 // some registers, but not in others. That shouldn't happen a lot. 1358 void CodeGenRegBank::computeSubRegLaneMasks() { 1359 // First assign individual bits to all the leaf indices. 1360 unsigned Bit = 0; 1361 // Determine mask of lanes that cover their registers. 1362 CoveringLanes = LaneBitmask::getAll(); 1363 for (auto &Idx : SubRegIndices) { 1364 if (Idx.getComposites().empty()) { 1365 if (Bit > LaneBitmask::BitWidth) { 1366 PrintFatalError( 1367 Twine("Ran out of lanemask bits to represent subregister ") 1368 + Idx.getName()); 1369 } 1370 Idx.LaneMask = LaneBitmask::getLane(Bit); 1371 ++Bit; 1372 } else { 1373 Idx.LaneMask = LaneBitmask::getNone(); 1374 } 1375 } 1376 1377 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1378 // here is that for each possible target subregister we look at the leafs 1379 // in the subregister graph that compose for this target and create 1380 // transformation sequences for the lanemasks. Each step in the sequence 1381 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1382 // are usually the same for many subregisters we can easily combine the steps 1383 // by combining the masks. 1384 for (const auto &Idx : SubRegIndices) { 1385 const auto &Composites = Idx.getComposites(); 1386 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1387 1388 if (Composites.empty()) { 1389 // Moving from a class with no subregisters we just had a single lane: 1390 // The subregister must be a leaf subregister and only occupies 1 bit. 1391 // Move the bit from the class without subregisters into that position. 1392 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1393 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1394 "Must be a leaf subregister"); 1395 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1396 LaneTransforms.push_back(MaskRol); 1397 } else { 1398 // Go through all leaf subregisters and find the ones that compose with 1399 // Idx. These make out all possible valid bits in the lane mask we want to 1400 // transform. Looking only at the leafs ensure that only a single bit in 1401 // the mask is set. 1402 unsigned NextBit = 0; 1403 for (auto &Idx2 : SubRegIndices) { 1404 // Skip non-leaf subregisters. 1405 if (!Idx2.getComposites().empty()) 1406 continue; 1407 // Replicate the behaviour from the lane mask generation loop above. 1408 unsigned SrcBit = NextBit; 1409 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1410 if (NextBit < LaneBitmask::BitWidth-1) 1411 ++NextBit; 1412 assert(Idx2.LaneMask == SrcMask); 1413 1414 // Get the composed subregister if there is any. 1415 auto C = Composites.find(&Idx2); 1416 if (C == Composites.end()) 1417 continue; 1418 const CodeGenSubRegIndex *Composite = C->second; 1419 // The Composed subreg should be a leaf subreg too 1420 assert(Composite->getComposites().empty()); 1421 1422 // Create Mask+Rotate operation and merge with existing ops if possible. 1423 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1424 int Shift = DstBit - SrcBit; 1425 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1426 : LaneBitmask::BitWidth + Shift; 1427 for (auto &I : LaneTransforms) { 1428 if (I.RotateLeft == RotateLeft) { 1429 I.Mask |= SrcMask; 1430 SrcMask = LaneBitmask::getNone(); 1431 } 1432 } 1433 if (SrcMask.any()) { 1434 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1435 LaneTransforms.push_back(MaskRol); 1436 } 1437 } 1438 } 1439 1440 // Optimize if the transformation consists of one step only: Set mask to 1441 // 0xffffffff (including some irrelevant invalid bits) so that it should 1442 // merge with more entries later while compressing the table. 1443 if (LaneTransforms.size() == 1) 1444 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1445 1446 // Further compression optimization: For invalid compositions resulting 1447 // in a sequence with 0 entries we can just pick any other. Choose 1448 // Mask 0xffffffff with Rotation 0. 1449 if (LaneTransforms.size() == 0) { 1450 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1451 LaneTransforms.push_back(P); 1452 } 1453 } 1454 1455 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1456 // by the sub-register graph? This doesn't occur in any known targets. 1457 1458 // Inherit lanes from composites. 1459 for (const auto &Idx : SubRegIndices) { 1460 LaneBitmask Mask = Idx.computeLaneMask(); 1461 // If some super-registers without CoveredBySubRegs use this index, we can 1462 // no longer assume that the lanes are covering their registers. 1463 if (!Idx.AllSuperRegsCovered) 1464 CoveringLanes &= ~Mask; 1465 } 1466 1467 // Compute lane mask combinations for register classes. 1468 for (auto &RegClass : RegClasses) { 1469 LaneBitmask LaneMask; 1470 for (const auto &SubRegIndex : SubRegIndices) { 1471 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1472 continue; 1473 LaneMask |= SubRegIndex.LaneMask; 1474 } 1475 1476 // For classes without any subregisters set LaneMask to 1 instead of 0. 1477 // This makes it easier for client code to handle classes uniformly. 1478 if (LaneMask.none()) 1479 LaneMask = LaneBitmask::getLane(0); 1480 1481 RegClass.LaneMask = LaneMask; 1482 } 1483 } 1484 1485 namespace { 1486 1487 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1488 // the transitive closure of the union of overlapping register 1489 // classes. Together, the UberRegSets form a partition of the registers. If we 1490 // consider overlapping register classes to be connected, then each UberRegSet 1491 // is a set of connected components. 1492 // 1493 // An UberRegSet will likely be a horizontal slice of register names of 1494 // the same width. Nontrivial subregisters should then be in a separate 1495 // UberRegSet. But this property isn't required for valid computation of 1496 // register unit weights. 1497 // 1498 // A Weight field caches the max per-register unit weight in each UberRegSet. 1499 // 1500 // A set of SingularDeterminants flags single units of some register in this set 1501 // for which the unit weight equals the set weight. These units should not have 1502 // their weight increased. 1503 struct UberRegSet { 1504 CodeGenRegister::Vec Regs; 1505 unsigned Weight = 0; 1506 CodeGenRegister::RegUnitList SingularDeterminants; 1507 1508 UberRegSet() = default; 1509 }; 1510 1511 } // end anonymous namespace 1512 1513 // Partition registers into UberRegSets, where each set is the transitive 1514 // closure of the union of overlapping register classes. 1515 // 1516 // UberRegSets[0] is a special non-allocatable set. 1517 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1518 std::vector<UberRegSet*> &RegSets, 1519 CodeGenRegBank &RegBank) { 1520 const auto &Registers = RegBank.getRegisters(); 1521 1522 // The Register EnumValue is one greater than its index into Registers. 1523 assert(Registers.size() == Registers.back().EnumValue && 1524 "register enum value mismatch"); 1525 1526 // For simplicitly make the SetID the same as EnumValue. 1527 IntEqClasses UberSetIDs(Registers.size()+1); 1528 std::set<unsigned> AllocatableRegs; 1529 for (auto &RegClass : RegBank.getRegClasses()) { 1530 if (!RegClass.Allocatable) 1531 continue; 1532 1533 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1534 if (Regs.empty()) 1535 continue; 1536 1537 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1538 assert(USetID && "register number 0 is invalid"); 1539 1540 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1541 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1542 AllocatableRegs.insert((*I)->EnumValue); 1543 UberSetIDs.join(USetID, (*I)->EnumValue); 1544 } 1545 } 1546 // Combine non-allocatable regs. 1547 for (const auto &Reg : Registers) { 1548 unsigned RegNum = Reg.EnumValue; 1549 if (AllocatableRegs.count(RegNum)) 1550 continue; 1551 1552 UberSetIDs.join(0, RegNum); 1553 } 1554 UberSetIDs.compress(); 1555 1556 // Make the first UberSet a special unallocatable set. 1557 unsigned ZeroID = UberSetIDs[0]; 1558 1559 // Insert Registers into the UberSets formed by union-find. 1560 // Do not resize after this. 1561 UberSets.resize(UberSetIDs.getNumClasses()); 1562 unsigned i = 0; 1563 for (const CodeGenRegister &Reg : Registers) { 1564 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1565 if (!USetID) 1566 USetID = ZeroID; 1567 else if (USetID == ZeroID) 1568 USetID = 0; 1569 1570 UberRegSet *USet = &UberSets[USetID]; 1571 USet->Regs.push_back(&Reg); 1572 sortAndUniqueRegisters(USet->Regs); 1573 RegSets[i++] = USet; 1574 } 1575 } 1576 1577 // Recompute each UberSet weight after changing unit weights. 1578 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1579 CodeGenRegBank &RegBank) { 1580 // Skip the first unallocatable set. 1581 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1582 E = UberSets.end(); I != E; ++I) { 1583 1584 // Initialize all unit weights in this set, and remember the max units/reg. 1585 const CodeGenRegister *Reg = nullptr; 1586 unsigned MaxWeight = 0, Weight = 0; 1587 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1588 if (Reg != UnitI.getReg()) { 1589 if (Weight > MaxWeight) 1590 MaxWeight = Weight; 1591 Reg = UnitI.getReg(); 1592 Weight = 0; 1593 } 1594 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1595 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1596 if (!UWeight) { 1597 UWeight = 1; 1598 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1599 } 1600 Weight += UWeight; 1601 } 1602 } 1603 if (Weight > MaxWeight) 1604 MaxWeight = Weight; 1605 if (I->Weight != MaxWeight) { 1606 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1607 << MaxWeight; 1608 for (auto &Unit 1609 : I->Regs) dbgs() 1610 << " " << Unit->getName(); 1611 dbgs() << "\n"); 1612 // Update the set weight. 1613 I->Weight = MaxWeight; 1614 } 1615 1616 // Find singular determinants. 1617 for (const auto R : I->Regs) { 1618 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1619 I->SingularDeterminants |= R->getRegUnits(); 1620 } 1621 } 1622 } 1623 } 1624 1625 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1626 // a register and its subregisters so that they have the same weight as their 1627 // UberSet. Self-recursion processes the subregister tree in postorder so 1628 // subregisters are normalized first. 1629 // 1630 // Side effects: 1631 // - creates new adopted register units 1632 // - causes superregisters to inherit adopted units 1633 // - increases the weight of "singular" units 1634 // - induces recomputation of UberWeights. 1635 static bool normalizeWeight(CodeGenRegister *Reg, 1636 std::vector<UberRegSet> &UberSets, 1637 std::vector<UberRegSet*> &RegSets, 1638 SparseBitVector<> &NormalRegs, 1639 CodeGenRegister::RegUnitList &NormalUnits, 1640 CodeGenRegBank &RegBank) { 1641 if (NormalRegs.test(Reg->EnumValue)) 1642 return false; 1643 NormalRegs.set(Reg->EnumValue); 1644 1645 bool Changed = false; 1646 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1647 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1648 SRE = SRM.end(); SRI != SRE; ++SRI) { 1649 if (SRI->second == Reg) 1650 continue; // self-cycles happen 1651 1652 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1653 NormalRegs, NormalUnits, RegBank); 1654 } 1655 // Postorder register normalization. 1656 1657 // Inherit register units newly adopted by subregisters. 1658 if (Reg->inheritRegUnits(RegBank)) 1659 computeUberWeights(UberSets, RegBank); 1660 1661 // Check if this register is too skinny for its UberRegSet. 1662 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1663 1664 unsigned RegWeight = Reg->getWeight(RegBank); 1665 if (UberSet->Weight > RegWeight) { 1666 // A register unit's weight can be adjusted only if it is the singular unit 1667 // for this register, has not been used to normalize a subregister's set, 1668 // and has not already been used to singularly determine this UberRegSet. 1669 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1670 if (Reg->getRegUnits().count() != 1 1671 || hasRegUnit(NormalUnits, AdjustUnit) 1672 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1673 // We don't have an adjustable unit, so adopt a new one. 1674 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1675 Reg->adoptRegUnit(AdjustUnit); 1676 // Adopting a unit does not immediately require recomputing set weights. 1677 } 1678 else { 1679 // Adjust the existing single unit. 1680 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1681 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1682 // The unit may be shared among sets and registers within this set. 1683 computeUberWeights(UberSets, RegBank); 1684 } 1685 Changed = true; 1686 } 1687 1688 // Mark these units normalized so superregisters can't change their weights. 1689 NormalUnits |= Reg->getRegUnits(); 1690 1691 return Changed; 1692 } 1693 1694 // Compute a weight for each register unit created during getSubRegs. 1695 // 1696 // The goal is that two registers in the same class will have the same weight, 1697 // where each register's weight is defined as sum of its units' weights. 1698 void CodeGenRegBank::computeRegUnitWeights() { 1699 std::vector<UberRegSet> UberSets; 1700 std::vector<UberRegSet*> RegSets(Registers.size()); 1701 computeUberSets(UberSets, RegSets, *this); 1702 // UberSets and RegSets are now immutable. 1703 1704 computeUberWeights(UberSets, *this); 1705 1706 // Iterate over each Register, normalizing the unit weights until reaching 1707 // a fix point. 1708 unsigned NumIters = 0; 1709 for (bool Changed = true; Changed; ++NumIters) { 1710 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1711 Changed = false; 1712 for (auto &Reg : Registers) { 1713 CodeGenRegister::RegUnitList NormalUnits; 1714 SparseBitVector<> NormalRegs; 1715 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1716 NormalUnits, *this); 1717 } 1718 } 1719 } 1720 1721 // Find a set in UniqueSets with the same elements as Set. 1722 // Return an iterator into UniqueSets. 1723 static std::vector<RegUnitSet>::const_iterator 1724 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1725 const RegUnitSet &Set) { 1726 std::vector<RegUnitSet>::const_iterator 1727 I = UniqueSets.begin(), E = UniqueSets.end(); 1728 for(;I != E; ++I) { 1729 if (I->Units == Set.Units) 1730 break; 1731 } 1732 return I; 1733 } 1734 1735 // Return true if the RUSubSet is a subset of RUSuperSet. 1736 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1737 const std::vector<unsigned> &RUSuperSet) { 1738 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1739 RUSubSet.begin(), RUSubSet.end()); 1740 } 1741 1742 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1743 /// but with one or two registers removed. We occasionally have registers like 1744 /// APSR and PC thrown in with the general registers. We also see many 1745 /// special-purpose register subsets, such as tail-call and Thumb 1746 /// encodings. Generating all possible overlapping sets is combinatorial and 1747 /// overkill for modeling pressure. Ideally we could fix this statically in 1748 /// tablegen by (1) having the target define register classes that only include 1749 /// the allocatable registers and marking other classes as non-allocatable and 1750 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1751 /// the purpose of pressure. However, we make an attempt to handle targets that 1752 /// are not nicely defined by merging nearly identical register unit sets 1753 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1754 /// set limit by filtering the reserved registers. 1755 /// 1756 /// Merge sets only if the units have the same weight. For example, on ARM, 1757 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1758 /// should not expand the S set to include D regs. 1759 void CodeGenRegBank::pruneUnitSets() { 1760 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1761 1762 // Form an equivalence class of UnitSets with no significant difference. 1763 std::vector<unsigned> SuperSetIDs; 1764 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1765 SubIdx != EndIdx; ++SubIdx) { 1766 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1767 unsigned SuperIdx = 0; 1768 for (; SuperIdx != EndIdx; ++SuperIdx) { 1769 if (SuperIdx == SubIdx) 1770 continue; 1771 1772 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1773 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1774 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1775 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1776 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1777 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1778 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1779 << "\n"); 1780 // We can pick any of the set names for the merged set. Go for the 1781 // shortest one to avoid picking the name of one of the classes that are 1782 // artificially created by tablegen. So "FPR128_lo" instead of 1783 // "QQQQ_with_qsub3_in_FPR128_lo". 1784 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1785 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1786 break; 1787 } 1788 } 1789 if (SuperIdx == EndIdx) 1790 SuperSetIDs.push_back(SubIdx); 1791 } 1792 // Populate PrunedUnitSets with each equivalence class's superset. 1793 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1794 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1795 unsigned SuperIdx = SuperSetIDs[i]; 1796 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1797 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1798 } 1799 RegUnitSets.swap(PrunedUnitSets); 1800 } 1801 1802 // Create a RegUnitSet for each RegClass that contains all units in the class 1803 // including adopted units that are necessary to model register pressure. Then 1804 // iteratively compute RegUnitSets such that the union of any two overlapping 1805 // RegUnitSets is repreresented. 1806 // 1807 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1808 // RegUnitSet that is a superset of that RegUnitClass. 1809 void CodeGenRegBank::computeRegUnitSets() { 1810 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1811 1812 // Compute a unique RegUnitSet for each RegClass. 1813 auto &RegClasses = getRegClasses(); 1814 for (auto &RC : RegClasses) { 1815 if (!RC.Allocatable || RC.Artificial) 1816 continue; 1817 1818 // Speculatively grow the RegUnitSets to hold the new set. 1819 RegUnitSets.resize(RegUnitSets.size() + 1); 1820 RegUnitSets.back().Name = RC.getName(); 1821 1822 // Compute a sorted list of units in this class. 1823 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1824 1825 // Find an existing RegUnitSet. 1826 std::vector<RegUnitSet>::const_iterator SetI = 1827 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1828 if (SetI != std::prev(RegUnitSets.end())) 1829 RegUnitSets.pop_back(); 1830 } 1831 1832 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1833 USEnd = RegUnitSets.size(); 1834 USIdx < USEnd; ++USIdx) { 1835 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1836 for (auto &U : RegUnitSets[USIdx].Units) 1837 printRegUnitName(U); 1838 dbgs() << "\n"; 1839 }); 1840 1841 // Iteratively prune unit sets. 1842 pruneUnitSets(); 1843 1844 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1845 USEnd = RegUnitSets.size(); 1846 USIdx < USEnd; ++USIdx) { 1847 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1848 for (auto &U : RegUnitSets[USIdx].Units) 1849 printRegUnitName(U); 1850 dbgs() << "\n"; 1851 } dbgs() << "\nUnion sets:\n"); 1852 1853 // Iterate over all unit sets, including new ones added by this loop. 1854 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1855 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1856 // In theory, this is combinatorial. In practice, it needs to be bounded 1857 // by a small number of sets for regpressure to be efficient. 1858 // If the assert is hit, we need to implement pruning. 1859 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1860 1861 // Compare new sets with all original classes. 1862 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1863 SearchIdx != EndIdx; ++SearchIdx) { 1864 std::set<unsigned> Intersection; 1865 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1866 RegUnitSets[Idx].Units.end(), 1867 RegUnitSets[SearchIdx].Units.begin(), 1868 RegUnitSets[SearchIdx].Units.end(), 1869 std::inserter(Intersection, Intersection.begin())); 1870 if (Intersection.empty()) 1871 continue; 1872 1873 // Speculatively grow the RegUnitSets to hold the new set. 1874 RegUnitSets.resize(RegUnitSets.size() + 1); 1875 RegUnitSets.back().Name = 1876 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1877 1878 std::set_union(RegUnitSets[Idx].Units.begin(), 1879 RegUnitSets[Idx].Units.end(), 1880 RegUnitSets[SearchIdx].Units.begin(), 1881 RegUnitSets[SearchIdx].Units.end(), 1882 std::inserter(RegUnitSets.back().Units, 1883 RegUnitSets.back().Units.begin())); 1884 1885 // Find an existing RegUnitSet, or add the union to the unique sets. 1886 std::vector<RegUnitSet>::const_iterator SetI = 1887 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1888 if (SetI != std::prev(RegUnitSets.end())) 1889 RegUnitSets.pop_back(); 1890 else { 1891 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1892 << RegUnitSets.back().Name << ":"; 1893 for (auto &U 1894 : RegUnitSets.back().Units) printRegUnitName(U); 1895 dbgs() << "\n";); 1896 } 1897 } 1898 } 1899 1900 // Iteratively prune unit sets after inferring supersets. 1901 pruneUnitSets(); 1902 1903 LLVM_DEBUG( 1904 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1905 USIdx < USEnd; ++USIdx) { 1906 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1907 for (auto &U : RegUnitSets[USIdx].Units) 1908 printRegUnitName(U); 1909 dbgs() << "\n"; 1910 }); 1911 1912 // For each register class, list the UnitSets that are supersets. 1913 RegClassUnitSets.resize(RegClasses.size()); 1914 int RCIdx = -1; 1915 for (auto &RC : RegClasses) { 1916 ++RCIdx; 1917 if (!RC.Allocatable) 1918 continue; 1919 1920 // Recompute the sorted list of units in this class. 1921 std::vector<unsigned> RCRegUnits; 1922 RC.buildRegUnitSet(*this, RCRegUnits); 1923 1924 // Don't increase pressure for unallocatable regclasses. 1925 if (RCRegUnits.empty()) 1926 continue; 1927 1928 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1929 for (auto U 1930 : RCRegUnits) printRegUnitName(U); 1931 dbgs() << "\n UnitSetIDs:"); 1932 1933 // Find all supersets. 1934 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1935 USIdx != USEnd; ++USIdx) { 1936 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1937 LLVM_DEBUG(dbgs() << " " << USIdx); 1938 RegClassUnitSets[RCIdx].push_back(USIdx); 1939 } 1940 } 1941 LLVM_DEBUG(dbgs() << "\n"); 1942 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1943 } 1944 1945 // For each register unit, ensure that we have the list of UnitSets that 1946 // contain the unit. Normally, this matches an existing list of UnitSets for a 1947 // register class. If not, we create a new entry in RegClassUnitSets as a 1948 // "fake" register class. 1949 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1950 UnitIdx < UnitEnd; ++UnitIdx) { 1951 std::vector<unsigned> RUSets; 1952 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1953 RegUnitSet &RUSet = RegUnitSets[i]; 1954 if (!is_contained(RUSet.Units, UnitIdx)) 1955 continue; 1956 RUSets.push_back(i); 1957 } 1958 unsigned RCUnitSetsIdx = 0; 1959 for (unsigned e = RegClassUnitSets.size(); 1960 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1961 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1962 break; 1963 } 1964 } 1965 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1966 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1967 // Create a new list of UnitSets as a "fake" register class. 1968 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1969 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1970 } 1971 } 1972 } 1973 1974 void CodeGenRegBank::computeRegUnitLaneMasks() { 1975 for (auto &Register : Registers) { 1976 // Create an initial lane mask for all register units. 1977 const auto &RegUnits = Register.getRegUnits(); 1978 CodeGenRegister::RegUnitLaneMaskList 1979 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 1980 // Iterate through SubRegisters. 1981 typedef CodeGenRegister::SubRegMap SubRegMap; 1982 const SubRegMap &SubRegs = Register.getSubRegs(); 1983 for (SubRegMap::const_iterator S = SubRegs.begin(), 1984 SE = SubRegs.end(); S != SE; ++S) { 1985 CodeGenRegister *SubReg = S->second; 1986 // Ignore non-leaf subregisters, their lane masks are fully covered by 1987 // the leaf subregisters anyway. 1988 if (!SubReg->getSubRegs().empty()) 1989 continue; 1990 CodeGenSubRegIndex *SubRegIndex = S->first; 1991 const CodeGenRegister *SubRegister = S->second; 1992 LaneBitmask LaneMask = SubRegIndex->LaneMask; 1993 // Distribute LaneMask to Register Units touched. 1994 for (unsigned SUI : SubRegister->getRegUnits()) { 1995 bool Found = false; 1996 unsigned u = 0; 1997 for (unsigned RU : RegUnits) { 1998 if (SUI == RU) { 1999 RegUnitLaneMasks[u] |= LaneMask; 2000 assert(!Found); 2001 Found = true; 2002 } 2003 ++u; 2004 } 2005 (void)Found; 2006 assert(Found); 2007 } 2008 } 2009 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2010 } 2011 } 2012 2013 void CodeGenRegBank::computeDerivedInfo() { 2014 computeComposites(); 2015 computeSubRegLaneMasks(); 2016 2017 // Compute a weight for each register unit created during getSubRegs. 2018 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2019 computeRegUnitWeights(); 2020 2021 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2022 // supersets for the union of overlapping sets. 2023 computeRegUnitSets(); 2024 2025 computeRegUnitLaneMasks(); 2026 2027 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2028 for (CodeGenRegisterClass &RC : RegClasses) { 2029 RC.HasDisjunctSubRegs = false; 2030 RC.CoveredBySubRegs = true; 2031 for (const CodeGenRegister *Reg : RC.getMembers()) { 2032 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2033 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2034 } 2035 } 2036 2037 // Get the weight of each set. 2038 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2039 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2040 2041 // Find the order of each set. 2042 RegUnitSetOrder.reserve(RegUnitSets.size()); 2043 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2044 RegUnitSetOrder.push_back(Idx); 2045 2046 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 2047 [this](unsigned ID1, unsigned ID2) { 2048 return getRegPressureSet(ID1).Units.size() < 2049 getRegPressureSet(ID2).Units.size(); 2050 }); 2051 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2052 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2053 } 2054 } 2055 2056 // 2057 // Synthesize missing register class intersections. 2058 // 2059 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2060 // returns a maximal register class for all X. 2061 // 2062 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2063 assert(!RegClasses.empty()); 2064 // Stash the iterator to the last element so that this loop doesn't visit 2065 // elements added by the getOrCreateSubClass call within it. 2066 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2067 I != std::next(E); ++I) { 2068 CodeGenRegisterClass *RC1 = RC; 2069 CodeGenRegisterClass *RC2 = &*I; 2070 if (RC1 == RC2) 2071 continue; 2072 2073 // Compute the set intersection of RC1 and RC2. 2074 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2075 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2076 CodeGenRegister::Vec Intersection; 2077 std::set_intersection( 2078 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 2079 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 2080 2081 // Skip disjoint class pairs. 2082 if (Intersection.empty()) 2083 continue; 2084 2085 // If RC1 and RC2 have different spill sizes or alignments, use the 2086 // stricter one for sub-classing. If they are equal, prefer RC1. 2087 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2088 std::swap(RC1, RC2); 2089 2090 getOrCreateSubClass(RC1, &Intersection, 2091 RC1->getName() + "_and_" + RC2->getName()); 2092 } 2093 } 2094 2095 // 2096 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2097 // 2098 // Make sure that the set of registers in RC with a given SubIdx sub-register 2099 // form a register class. Update RC->SubClassWithSubReg. 2100 // 2101 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2102 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2103 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2104 deref<llvm::less>> SubReg2SetMap; 2105 2106 // Compute the set of registers supporting each SubRegIndex. 2107 SubReg2SetMap SRSets; 2108 for (const auto R : RC->getMembers()) { 2109 if (R->Artificial) 2110 continue; 2111 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2112 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2113 E = SRM.end(); I != E; ++I) { 2114 if (!I->first->Artificial) 2115 SRSets[I->first].push_back(R); 2116 } 2117 } 2118 2119 for (auto I : SRSets) 2120 sortAndUniqueRegisters(I.second); 2121 2122 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2123 // numerical order to visit synthetic indices last. 2124 for (const auto &SubIdx : SubRegIndices) { 2125 if (SubIdx.Artificial) 2126 continue; 2127 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2128 // Unsupported SubRegIndex. Skip it. 2129 if (I == SRSets.end()) 2130 continue; 2131 // In most cases, all RC registers support the SubRegIndex. 2132 if (I->second.size() == RC->getMembers().size()) { 2133 RC->setSubClassWithSubReg(&SubIdx, RC); 2134 continue; 2135 } 2136 // This is a real subset. See if we have a matching class. 2137 CodeGenRegisterClass *SubRC = 2138 getOrCreateSubClass(RC, &I->second, 2139 RC->getName() + "_with_" + I->first->getName()); 2140 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2141 } 2142 } 2143 2144 // 2145 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2146 // 2147 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2148 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2149 // 2150 2151 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2152 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2153 SmallVector<std::pair<const CodeGenRegister*, 2154 const CodeGenRegister*>, 16> SSPairs; 2155 BitVector TopoSigs(getNumTopoSigs()); 2156 2157 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2158 for (auto &SubIdx : SubRegIndices) { 2159 // Skip indexes that aren't fully supported by RC's registers. This was 2160 // computed by inferSubClassWithSubReg() above which should have been 2161 // called first. 2162 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2163 continue; 2164 2165 // Build list of (Super, Sub) pairs for this SubIdx. 2166 SSPairs.clear(); 2167 TopoSigs.reset(); 2168 for (const auto Super : RC->getMembers()) { 2169 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2170 assert(Sub && "Missing sub-register"); 2171 SSPairs.push_back(std::make_pair(Super, Sub)); 2172 TopoSigs.set(Sub->getTopoSig()); 2173 } 2174 2175 // Iterate over sub-register class candidates. Ignore classes created by 2176 // this loop. They will never be useful. 2177 // Store an iterator to the last element (not end) so that this loop doesn't 2178 // visit newly inserted elements. 2179 assert(!RegClasses.empty()); 2180 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2181 I != std::next(E); ++I) { 2182 CodeGenRegisterClass &SubRC = *I; 2183 // Topological shortcut: SubRC members have the wrong shape. 2184 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2185 continue; 2186 // Compute the subset of RC that maps into SubRC. 2187 CodeGenRegister::Vec SubSetVec; 2188 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2189 if (SubRC.contains(SSPairs[i].second)) 2190 SubSetVec.push_back(SSPairs[i].first); 2191 2192 if (SubSetVec.empty()) 2193 continue; 2194 2195 // RC injects completely into SubRC. 2196 sortAndUniqueRegisters(SubSetVec); 2197 if (SubSetVec.size() == SSPairs.size()) { 2198 SubRC.addSuperRegClass(&SubIdx, RC); 2199 continue; 2200 } 2201 2202 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2203 // class. 2204 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2205 SubIdx.getName() + "_in_" + 2206 SubRC.getName()); 2207 } 2208 } 2209 } 2210 2211 // 2212 // Infer missing register classes. 2213 // 2214 void CodeGenRegBank::computeInferredRegisterClasses() { 2215 assert(!RegClasses.empty()); 2216 // When this function is called, the register classes have not been sorted 2217 // and assigned EnumValues yet. That means getSubClasses(), 2218 // getSuperClasses(), and hasSubClass() functions are defunct. 2219 2220 // Use one-before-the-end so it doesn't move forward when new elements are 2221 // added. 2222 auto FirstNewRC = std::prev(RegClasses.end()); 2223 2224 // Visit all register classes, including the ones being added by the loop. 2225 // Watch out for iterator invalidation here. 2226 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2227 CodeGenRegisterClass *RC = &*I; 2228 if (RC->Artificial) 2229 continue; 2230 2231 // Synthesize answers for getSubClassWithSubReg(). 2232 inferSubClassWithSubReg(RC); 2233 2234 // Synthesize answers for getCommonSubClass(). 2235 inferCommonSubClass(RC); 2236 2237 // Synthesize answers for getMatchingSuperRegClass(). 2238 inferMatchingSuperRegClass(RC); 2239 2240 // New register classes are created while this loop is running, and we need 2241 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2242 // to match old super-register classes with sub-register classes created 2243 // after inferMatchingSuperRegClass was called. At this point, 2244 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2245 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2246 if (I == FirstNewRC) { 2247 auto NextNewRC = std::prev(RegClasses.end()); 2248 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2249 ++I2) 2250 inferMatchingSuperRegClass(&*I2, E2); 2251 FirstNewRC = NextNewRC; 2252 } 2253 } 2254 } 2255 2256 /// getRegisterClassForRegister - Find the register class that contains the 2257 /// specified physical register. If the register is not in a register class, 2258 /// return null. If the register is in multiple classes, and the classes have a 2259 /// superset-subset relationship and the same set of types, return the 2260 /// superclass. Otherwise return null. 2261 const CodeGenRegisterClass* 2262 CodeGenRegBank::getRegClassForRegister(Record *R) { 2263 const CodeGenRegister *Reg = getReg(R); 2264 const CodeGenRegisterClass *FoundRC = nullptr; 2265 for (const auto &RC : getRegClasses()) { 2266 if (!RC.contains(Reg)) 2267 continue; 2268 2269 // If this is the first class that contains the register, 2270 // make a note of it and go on to the next class. 2271 if (!FoundRC) { 2272 FoundRC = &RC; 2273 continue; 2274 } 2275 2276 // If a register's classes have different types, return null. 2277 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2278 return nullptr; 2279 2280 // Check to see if the previously found class that contains 2281 // the register is a subclass of the current class. If so, 2282 // prefer the superclass. 2283 if (RC.hasSubClass(FoundRC)) { 2284 FoundRC = &RC; 2285 continue; 2286 } 2287 2288 // Check to see if the previously found class that contains 2289 // the register is a superclass of the current class. If so, 2290 // prefer the superclass. 2291 if (FoundRC->hasSubClass(&RC)) 2292 continue; 2293 2294 // Multiple classes, and neither is a superclass of the other. 2295 // Return null. 2296 return nullptr; 2297 } 2298 return FoundRC; 2299 } 2300 2301 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2302 SetVector<const CodeGenRegister*> Set; 2303 2304 // First add Regs with all sub-registers. 2305 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2306 CodeGenRegister *Reg = getReg(Regs[i]); 2307 if (Set.insert(Reg)) 2308 // Reg is new, add all sub-registers. 2309 // The pre-ordering is not important here. 2310 Reg->addSubRegsPreOrder(Set, *this); 2311 } 2312 2313 // Second, find all super-registers that are completely covered by the set. 2314 for (unsigned i = 0; i != Set.size(); ++i) { 2315 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2316 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2317 const CodeGenRegister *Super = SR[j]; 2318 if (!Super->CoveredBySubRegs || Set.count(Super)) 2319 continue; 2320 // This new super-register is covered by its sub-registers. 2321 bool AllSubsInSet = true; 2322 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2323 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2324 E = SRM.end(); I != E; ++I) 2325 if (!Set.count(I->second)) { 2326 AllSubsInSet = false; 2327 break; 2328 } 2329 // All sub-registers in Set, add Super as well. 2330 // We will visit Super later to recheck its super-registers. 2331 if (AllSubsInSet) 2332 Set.insert(Super); 2333 } 2334 } 2335 2336 // Convert to BitVector. 2337 BitVector BV(Registers.size() + 1); 2338 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2339 BV.set(Set[i]->EnumValue); 2340 return BV; 2341 } 2342 2343 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2344 if (Unit < NumNativeRegUnits) 2345 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2346 else 2347 dbgs() << " #" << Unit; 2348 } 2349