1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/IntEqClasses.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/TableGen/Error.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "regalloc-emitter" 28 29 //===----------------------------------------------------------------------===// 30 // CodeGenSubRegIndex 31 //===----------------------------------------------------------------------===// 32 33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40 } 41 42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46 } 47 48 std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54 } 55 56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83 } 84 85 unsigned CodeGenSubRegIndex::computeLaneMask() const { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (const auto &C : Composed) 96 M |= C.second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // CodeGenRegister 104 //===----------------------------------------------------------------------===// 105 106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 NumNativeRegUnits(0), 112 SubRegsComplete(false), 113 SuperRegsComplete(false), 114 TopoSig(~0u) 115 {} 116 117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 120 121 if (SRIs.size() != SRs.size()) 122 PrintFatalError(TheDef->getLoc(), 123 "SubRegs and SubRegIndices must have the same size"); 124 125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 128 } 129 130 // Also compute leading super-registers. Each register has a list of 131 // covered-by-subregs super-registers where it appears as the first explicit 132 // sub-register. 133 // 134 // This is used by computeSecondarySubRegs() to find candidates. 135 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 137 138 // Add ad hoc alias links. This is a symmetric relationship between two 139 // registers, so build a symmetric graph by adding links in both ends. 140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 143 ExplicitAliases.push_back(Reg); 144 Reg->ExplicitAliases.push_back(this); 145 } 146 } 147 148 const std::string &CodeGenRegister::getName() const { 149 assert(TheDef && "no def"); 150 return TheDef->getName(); 151 } 152 153 namespace { 154 // Iterate over all register units in a set of registers. 155 class RegUnitIterator { 156 CodeGenRegister::Set::const_iterator RegI, RegE; 157 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE; 158 159 public: 160 RegUnitIterator(const CodeGenRegister::Set &Regs): 161 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 162 163 if (RegI != RegE) { 164 UnitI = (*RegI)->getRegUnits().begin(); 165 UnitE = (*RegI)->getRegUnits().end(); 166 advance(); 167 } 168 } 169 170 bool isValid() const { return UnitI != UnitE; } 171 172 unsigned operator* () const { assert(isValid()); return *UnitI; } 173 174 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 175 176 /// Preincrement. Move to the next unit. 177 void operator++() { 178 assert(isValid() && "Cannot advance beyond the last operand"); 179 ++UnitI; 180 advance(); 181 } 182 183 protected: 184 void advance() { 185 while (UnitI == UnitE) { 186 if (++RegI == RegE) 187 break; 188 UnitI = (*RegI)->getRegUnits().begin(); 189 UnitE = (*RegI)->getRegUnits().end(); 190 } 191 } 192 }; 193 } // namespace 194 195 // Merge two RegUnitLists maintaining the order and removing duplicates. 196 // Overwrites MergedRU in the process. 197 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU, 198 const CodeGenRegister::RegUnitList &RRU) { 199 CodeGenRegister::RegUnitList LRU = MergedRU; 200 MergedRU.clear(); 201 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(), 202 std::back_inserter(MergedRU)); 203 } 204 205 // Return true of this unit appears in RegUnits. 206 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 207 return std::count(RegUnits.begin(), RegUnits.end(), Unit); 208 } 209 210 // Inherit register units from subregisters. 211 // Return true if the RegUnits changed. 212 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 213 unsigned OldNumUnits = RegUnits.size(); 214 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 215 I != E; ++I) { 216 CodeGenRegister *SR = I->second; 217 // Merge the subregister's units into this register's RegUnits. 218 mergeRegUnits(RegUnits, SR->RegUnits); 219 } 220 return OldNumUnits != RegUnits.size(); 221 } 222 223 const CodeGenRegister::SubRegMap & 224 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 225 // Only compute this map once. 226 if (SubRegsComplete) 227 return SubRegs; 228 SubRegsComplete = true; 229 230 // First insert the explicit subregs and make sure they are fully indexed. 231 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 232 CodeGenRegister *SR = ExplicitSubRegs[i]; 233 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 234 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 235 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 236 " appears twice in Register " + getName()); 237 // Map explicit sub-registers first, so the names take precedence. 238 // The inherited sub-registers are mapped below. 239 SubReg2Idx.insert(std::make_pair(SR, Idx)); 240 } 241 242 // Keep track of inherited subregs and how they can be reached. 243 SmallPtrSet<CodeGenRegister*, 8> Orphans; 244 245 // Clone inherited subregs and place duplicate entries in Orphans. 246 // Here the order is important - earlier subregs take precedence. 247 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 248 CodeGenRegister *SR = ExplicitSubRegs[i]; 249 const SubRegMap &Map = SR->computeSubRegs(RegBank); 250 251 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 252 ++SI) { 253 if (!SubRegs.insert(*SI).second) 254 Orphans.insert(SI->second); 255 } 256 } 257 258 // Expand any composed subreg indices. 259 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 260 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 261 // expanded subreg indices recursively. 262 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 263 for (unsigned i = 0; i != Indices.size(); ++i) { 264 CodeGenSubRegIndex *Idx = Indices[i]; 265 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 266 CodeGenRegister *SR = SubRegs[Idx]; 267 const SubRegMap &Map = SR->computeSubRegs(RegBank); 268 269 // Look at the possible compositions of Idx. 270 // They may not all be supported by SR. 271 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 272 E = Comps.end(); I != E; ++I) { 273 SubRegMap::const_iterator SRI = Map.find(I->first); 274 if (SRI == Map.end()) 275 continue; // Idx + I->first doesn't exist in SR. 276 // Add I->second as a name for the subreg SRI->second, assuming it is 277 // orphaned, and the name isn't already used for something else. 278 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 279 continue; 280 // We found a new name for the orphaned sub-register. 281 SubRegs.insert(std::make_pair(I->second, SRI->second)); 282 Indices.push_back(I->second); 283 } 284 } 285 286 // Now Orphans contains the inherited subregisters without a direct index. 287 // Create inferred indexes for all missing entries. 288 // Work backwards in the Indices vector in order to compose subregs bottom-up. 289 // Consider this subreg sequence: 290 // 291 // qsub_1 -> dsub_0 -> ssub_0 292 // 293 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 294 // can be reached in two different ways: 295 // 296 // qsub_1 -> ssub_0 297 // dsub_2 -> ssub_0 298 // 299 // We pick the latter composition because another register may have [dsub_0, 300 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 301 // dsub_2 -> ssub_0 composition can be shared. 302 while (!Indices.empty() && !Orphans.empty()) { 303 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 304 CodeGenRegister *SR = SubRegs[Idx]; 305 const SubRegMap &Map = SR->computeSubRegs(RegBank); 306 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 307 ++SI) 308 if (Orphans.erase(SI->second)) 309 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 310 } 311 312 // Compute the inverse SubReg -> Idx map. 313 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 314 SI != SE; ++SI) { 315 if (SI->second == this) { 316 ArrayRef<SMLoc> Loc; 317 if (TheDef) 318 Loc = TheDef->getLoc(); 319 PrintFatalError(Loc, "Register " + getName() + 320 " has itself as a sub-register"); 321 } 322 323 // Compute AllSuperRegsCovered. 324 if (!CoveredBySubRegs) 325 SI->first->AllSuperRegsCovered = false; 326 327 // Ensure that every sub-register has a unique name. 328 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 329 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 330 if (Ins->second == SI->first) 331 continue; 332 // Trouble: Two different names for SI->second. 333 ArrayRef<SMLoc> Loc; 334 if (TheDef) 335 Loc = TheDef->getLoc(); 336 PrintFatalError(Loc, "Sub-register can't have two names: " + 337 SI->second->getName() + " available as " + 338 SI->first->getName() + " and " + Ins->second->getName()); 339 } 340 341 // Derive possible names for sub-register concatenations from any explicit 342 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 343 // that getConcatSubRegIndex() won't invent any concatenated indices that the 344 // user already specified. 345 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 346 CodeGenRegister *SR = ExplicitSubRegs[i]; 347 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 348 continue; 349 350 // SR is composed of multiple sub-regs. Find their names in this register. 351 SmallVector<CodeGenSubRegIndex*, 8> Parts; 352 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 353 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 354 355 // Offer this as an existing spelling for the concatenation of Parts. 356 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 357 } 358 359 // Initialize RegUnitList. Because getSubRegs is called recursively, this 360 // processes the register hierarchy in postorder. 361 // 362 // Inherit all sub-register units. It is good enough to look at the explicit 363 // sub-registers, the other registers won't contribute any more units. 364 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 365 CodeGenRegister *SR = ExplicitSubRegs[i]; 366 // Explicit sub-registers are usually disjoint, so this is a good way of 367 // computing the union. We may pick up a few duplicates that will be 368 // eliminated below. 369 unsigned N = RegUnits.size(); 370 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end()); 371 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end()); 372 } 373 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end()); 374 375 // Absent any ad hoc aliasing, we create one register unit per leaf register. 376 // These units correspond to the maximal cliques in the register overlap 377 // graph which is optimal. 378 // 379 // When there is ad hoc aliasing, we simply create one unit per edge in the 380 // undirected ad hoc aliasing graph. Technically, we could do better by 381 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 382 // are extremely rare anyway (I've never seen one), so we don't bother with 383 // the added complexity. 384 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 385 CodeGenRegister *AR = ExplicitAliases[i]; 386 // Only visit each edge once. 387 if (AR->SubRegsComplete) 388 continue; 389 // Create a RegUnit representing this alias edge, and add it to both 390 // registers. 391 unsigned Unit = RegBank.newRegUnit(this, AR); 392 RegUnits.push_back(Unit); 393 AR->RegUnits.push_back(Unit); 394 } 395 396 // Finally, create units for leaf registers without ad hoc aliases. Note that 397 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 398 // necessary. This means the aliasing leaf registers can share a single unit. 399 if (RegUnits.empty()) 400 RegUnits.push_back(RegBank.newRegUnit(this)); 401 402 // We have now computed the native register units. More may be adopted later 403 // for balancing purposes. 404 NumNativeRegUnits = RegUnits.size(); 405 406 return SubRegs; 407 } 408 409 // In a register that is covered by its sub-registers, try to find redundant 410 // sub-registers. For example: 411 // 412 // QQ0 = {Q0, Q1} 413 // Q0 = {D0, D1} 414 // Q1 = {D2, D3} 415 // 416 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 417 // the register definition. 418 // 419 // The explicitly specified registers form a tree. This function discovers 420 // sub-register relationships that would force a DAG. 421 // 422 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 423 // Collect new sub-registers first, add them later. 424 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 425 426 // Look at the leading super-registers of each sub-register. Those are the 427 // candidates for new sub-registers, assuming they are fully contained in 428 // this register. 429 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 430 const CodeGenRegister *SubReg = I->second; 431 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 432 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 433 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 434 // Already got this sub-register? 435 if (Cand == this || getSubRegIndex(Cand)) 436 continue; 437 // Check if each component of Cand is already a sub-register. 438 // We know that the first component is I->second, and is present with the 439 // name I->first. 440 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 441 assert(!Cand->ExplicitSubRegs.empty() && 442 "Super-register has no sub-registers"); 443 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 444 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 445 Parts.push_back(Idx); 446 else { 447 // Sub-register doesn't exist. 448 Parts.clear(); 449 break; 450 } 451 } 452 // If some Cand sub-register is not part of this register, or if Cand only 453 // has one sub-register, there is nothing to do. 454 if (Parts.size() <= 1) 455 continue; 456 457 // Each part of Cand is a sub-register of this. Make the full Cand also 458 // a sub-register with a concatenated sub-register index. 459 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 460 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 461 } 462 } 463 464 // Now add all the new sub-registers. 465 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 466 // Don't add Cand if another sub-register is already using the index. 467 if (!SubRegs.insert(NewSubRegs[i]).second) 468 continue; 469 470 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 471 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 472 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 473 } 474 475 // Create sub-register index composition maps for the synthesized indices. 476 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 477 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 478 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 479 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 480 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 481 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 482 if (!SubIdx) 483 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 484 SI->second->getName() + " in " + getName()); 485 NewIdx->addComposite(SI->first, SubIdx); 486 } 487 } 488 } 489 490 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 491 // Only visit each register once. 492 if (SuperRegsComplete) 493 return; 494 SuperRegsComplete = true; 495 496 // Make sure all sub-registers have been visited first, so the super-reg 497 // lists will be topologically ordered. 498 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 499 I != E; ++I) 500 I->second->computeSuperRegs(RegBank); 501 502 // Now add this as a super-register on all sub-registers. 503 // Also compute the TopoSigId in post-order. 504 TopoSigId Id; 505 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 506 I != E; ++I) { 507 // Topological signature computed from SubIdx, TopoId(SubReg). 508 // Loops and idempotent indices have TopoSig = ~0u. 509 Id.push_back(I->first->EnumValue); 510 Id.push_back(I->second->TopoSig); 511 512 // Don't add duplicate entries. 513 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 514 continue; 515 I->second->SuperRegs.push_back(this); 516 } 517 TopoSig = RegBank.getTopoSig(Id); 518 } 519 520 void 521 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 522 CodeGenRegBank &RegBank) const { 523 assert(SubRegsComplete && "Must precompute sub-registers"); 524 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 525 CodeGenRegister *SR = ExplicitSubRegs[i]; 526 if (OSet.insert(SR)) 527 SR->addSubRegsPreOrder(OSet, RegBank); 528 } 529 // Add any secondary sub-registers that weren't part of the explicit tree. 530 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 531 I != E; ++I) 532 OSet.insert(I->second); 533 } 534 535 // Get the sum of this register's unit weights. 536 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 537 unsigned Weight = 0; 538 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end(); 539 I != E; ++I) { 540 Weight += RegBank.getRegUnit(*I).Weight; 541 } 542 return Weight; 543 } 544 545 //===----------------------------------------------------------------------===// 546 // RegisterTuples 547 //===----------------------------------------------------------------------===// 548 549 // A RegisterTuples def is used to generate pseudo-registers from lists of 550 // sub-registers. We provide a SetTheory expander class that returns the new 551 // registers. 552 namespace { 553 struct TupleExpander : SetTheory::Expander { 554 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 555 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 556 unsigned Dim = Indices.size(); 557 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 558 if (Dim != SubRegs->getSize()) 559 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 560 if (Dim < 2) 561 PrintFatalError(Def->getLoc(), 562 "Tuples must have at least 2 sub-registers"); 563 564 // Evaluate the sub-register lists to be zipped. 565 unsigned Length = ~0u; 566 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 567 for (unsigned i = 0; i != Dim; ++i) { 568 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 569 Length = std::min(Length, unsigned(Lists[i].size())); 570 } 571 572 if (Length == 0) 573 return; 574 575 // Precompute some types. 576 Record *RegisterCl = Def->getRecords().getClass("Register"); 577 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 578 StringInit *BlankName = StringInit::get(""); 579 580 // Zip them up. 581 for (unsigned n = 0; n != Length; ++n) { 582 std::string Name; 583 Record *Proto = Lists[0][n]; 584 std::vector<Init*> Tuple; 585 unsigned CostPerUse = 0; 586 for (unsigned i = 0; i != Dim; ++i) { 587 Record *Reg = Lists[i][n]; 588 if (i) Name += '_'; 589 Name += Reg->getName(); 590 Tuple.push_back(DefInit::get(Reg)); 591 CostPerUse = std::max(CostPerUse, 592 unsigned(Reg->getValueAsInt("CostPerUse"))); 593 } 594 595 // Create a new Record representing the synthesized register. This record 596 // is only for consumption by CodeGenRegister, it is not added to the 597 // RecordKeeper. 598 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 599 Elts.insert(NewReg); 600 601 // Copy Proto super-classes. 602 ArrayRef<Record *> Supers = Proto->getSuperClasses(); 603 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); 604 for (unsigned i = 0, e = Supers.size(); i != e; ++i) 605 NewReg->addSuperClass(Supers[i], Ranges[i]); 606 607 // Copy Proto fields. 608 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 609 RecordVal RV = Proto->getValues()[i]; 610 611 // Skip existing fields, like NAME. 612 if (NewReg->getValue(RV.getNameInit())) 613 continue; 614 615 StringRef Field = RV.getName(); 616 617 // Replace the sub-register list with Tuple. 618 if (Field == "SubRegs") 619 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 620 621 // Provide a blank AsmName. MC hacks are required anyway. 622 if (Field == "AsmName") 623 RV.setValue(BlankName); 624 625 // CostPerUse is aggregated from all Tuple members. 626 if (Field == "CostPerUse") 627 RV.setValue(IntInit::get(CostPerUse)); 628 629 // Composite registers are always covered by sub-registers. 630 if (Field == "CoveredBySubRegs") 631 RV.setValue(BitInit::get(true)); 632 633 // Copy fields from the RegisterTuples def. 634 if (Field == "SubRegIndices" || 635 Field == "CompositeIndices") { 636 NewReg->addValue(*Def->getValue(Field)); 637 continue; 638 } 639 640 // Some fields get their default uninitialized value. 641 if (Field == "DwarfNumbers" || 642 Field == "DwarfAlias" || 643 Field == "Aliases") { 644 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 645 NewReg->addValue(*DefRV); 646 continue; 647 } 648 649 // Everything else is copied from Proto. 650 NewReg->addValue(RV); 651 } 652 } 653 } 654 }; 655 } 656 657 //===----------------------------------------------------------------------===// 658 // CodeGenRegisterClass 659 //===----------------------------------------------------------------------===// 660 661 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 662 : TheDef(R), 663 Name(R->getName()), 664 TopoSigs(RegBank.getNumTopoSigs()), 665 EnumValue(-1), 666 LaneMask(0) { 667 // Rename anonymous register classes. 668 if (R->getName().size() > 9 && R->getName()[9] == '.') { 669 static unsigned AnonCounter = 0; 670 R->setName("AnonRegClass_" + utostr(AnonCounter)); 671 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr. 672 ++AnonCounter; 673 } 674 675 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 676 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 677 Record *Type = TypeList[i]; 678 if (!Type->isSubClassOf("ValueType")) 679 PrintFatalError("RegTypes list member '" + Type->getName() + 680 "' does not derive from the ValueType class!"); 681 VTs.push_back(getValueType(Type)); 682 } 683 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 684 685 // Allocation order 0 is the full set. AltOrders provides others. 686 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 687 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 688 Orders.resize(1 + AltOrders->size()); 689 690 // Default allocation order always contains all registers. 691 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 692 Orders[0].push_back((*Elements)[i]); 693 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 694 Members.insert(Reg); 695 TopoSigs.set(Reg->getTopoSig()); 696 } 697 698 // Alternative allocation orders may be subsets. 699 SetTheory::RecSet Order; 700 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 701 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 702 Orders[1 + i].append(Order.begin(), Order.end()); 703 // Verify that all altorder members are regclass members. 704 while (!Order.empty()) { 705 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 706 Order.pop_back(); 707 if (!contains(Reg)) 708 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 709 " is not a class member"); 710 } 711 } 712 713 // Allow targets to override the size in bits of the RegisterClass. 714 unsigned Size = R->getValueAsInt("Size"); 715 716 Namespace = R->getValueAsString("Namespace"); 717 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 718 SpillAlignment = R->getValueAsInt("Alignment"); 719 CopyCost = R->getValueAsInt("CopyCost"); 720 Allocatable = R->getValueAsBit("isAllocatable"); 721 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 722 } 723 724 // Create an inferred register class that was missing from the .td files. 725 // Most properties will be inherited from the closest super-class after the 726 // class structure has been computed. 727 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 728 StringRef Name, Key Props) 729 : Members(*Props.Members), 730 TheDef(nullptr), 731 Name(Name), 732 TopoSigs(RegBank.getNumTopoSigs()), 733 EnumValue(-1), 734 SpillSize(Props.SpillSize), 735 SpillAlignment(Props.SpillAlignment), 736 CopyCost(0), 737 Allocatable(true) { 738 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end(); 739 I != E; ++I) 740 TopoSigs.set((*I)->getTopoSig()); 741 } 742 743 // Compute inherited propertied for a synthesized register class. 744 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 745 assert(!getDef() && "Only synthesized classes can inherit properties"); 746 assert(!SuperClasses.empty() && "Synthesized class without super class"); 747 748 // The last super-class is the smallest one. 749 CodeGenRegisterClass &Super = *SuperClasses.back(); 750 751 // Most properties are copied directly. 752 // Exceptions are members, size, and alignment 753 Namespace = Super.Namespace; 754 VTs = Super.VTs; 755 CopyCost = Super.CopyCost; 756 Allocatable = Super.Allocatable; 757 AltOrderSelect = Super.AltOrderSelect; 758 759 // Copy all allocation orders, filter out foreign registers from the larger 760 // super-class. 761 Orders.resize(Super.Orders.size()); 762 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 763 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 764 if (contains(RegBank.getReg(Super.Orders[i][j]))) 765 Orders[i].push_back(Super.Orders[i][j]); 766 } 767 768 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 769 return Members.count(Reg); 770 } 771 772 namespace llvm { 773 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 774 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 775 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), 776 E = K.Members->end(); I != E; ++I) 777 OS << ", " << (*I)->getName(); 778 return OS << " }"; 779 } 780 } 781 782 // This is a simple lexicographical order that can be used to search for sets. 783 // It is not the same as the topological order provided by TopoOrderRC. 784 bool CodeGenRegisterClass::Key:: 785 operator<(const CodeGenRegisterClass::Key &B) const { 786 assert(Members && B.Members); 787 return std::tie(*Members, SpillSize, SpillAlignment) < 788 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 789 } 790 791 // Returns true if RC is a strict subclass. 792 // RC is a sub-class of this class if it is a valid replacement for any 793 // instruction operand where a register of this classis required. It must 794 // satisfy these conditions: 795 // 796 // 1. All RC registers are also in this. 797 // 2. The RC spill size must not be smaller than our spill size. 798 // 3. RC spill alignment must be compatible with ours. 799 // 800 static bool testSubClass(const CodeGenRegisterClass *A, 801 const CodeGenRegisterClass *B) { 802 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 803 A->SpillSize <= B->SpillSize && 804 std::includes(A->getMembers().begin(), A->getMembers().end(), 805 B->getMembers().begin(), B->getMembers().end(), 806 CodeGenRegister::Less()); 807 } 808 809 /// Sorting predicate for register classes. This provides a topological 810 /// ordering that arranges all register classes before their sub-classes. 811 /// 812 /// Register classes with the same registers, spill size, and alignment form a 813 /// clique. They will be ordered alphabetically. 814 /// 815 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 816 const CodeGenRegisterClass &PB) { 817 auto *A = &PA; 818 auto *B = &PB; 819 if (A == B) 820 return 0; 821 822 // Order by ascending spill size. 823 if (A->SpillSize < B->SpillSize) 824 return true; 825 if (A->SpillSize > B->SpillSize) 826 return false; 827 828 // Order by ascending spill alignment. 829 if (A->SpillAlignment < B->SpillAlignment) 830 return true; 831 if (A->SpillAlignment > B->SpillAlignment) 832 return false; 833 834 // Order by descending set size. Note that the classes' allocation order may 835 // not have been computed yet. The Members set is always vaild. 836 if (A->getMembers().size() > B->getMembers().size()) 837 return true; 838 if (A->getMembers().size() < B->getMembers().size()) 839 return false; 840 841 // Finally order by name as a tie breaker. 842 return StringRef(A->getName()) < B->getName(); 843 } 844 845 std::string CodeGenRegisterClass::getQualifiedName() const { 846 if (Namespace.empty()) 847 return getName(); 848 else 849 return Namespace + "::" + getName(); 850 } 851 852 // Compute sub-classes of all register classes. 853 // Assume the classes are ordered topologically. 854 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 855 auto &RegClasses = RegBank.getRegClasses(); 856 857 // Visit backwards so sub-classes are seen first. 858 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 859 CodeGenRegisterClass &RC = *I; 860 RC.SubClasses.resize(RegClasses.size()); 861 RC.SubClasses.set(RC.EnumValue); 862 863 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 864 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 865 CodeGenRegisterClass &SubRC = *I2; 866 if (RC.SubClasses.test(SubRC.EnumValue)) 867 continue; 868 if (!testSubClass(&RC, &SubRC)) 869 continue; 870 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 871 // check them again. 872 RC.SubClasses |= SubRC.SubClasses; 873 } 874 875 // Sweep up missed clique members. They will be immediately preceding RC. 876 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 877 RC.SubClasses.set(I2->EnumValue); 878 } 879 880 // Compute the SuperClasses lists from the SubClasses vectors. 881 for (auto &RC : RegClasses) { 882 const BitVector &SC = RC.getSubClasses(); 883 auto I = RegClasses.begin(); 884 for (int s = 0, next_s = SC.find_first(); next_s != -1; 885 next_s = SC.find_next(s)) { 886 std::advance(I, next_s - s); 887 s = next_s; 888 if (&*I == &RC) 889 continue; 890 I->SuperClasses.push_back(&RC); 891 } 892 } 893 894 // With the class hierarchy in place, let synthesized register classes inherit 895 // properties from their closest super-class. The iteration order here can 896 // propagate properties down multiple levels. 897 for (auto &RC : RegClasses) 898 if (!RC.getDef()) 899 RC.inheritProperties(RegBank); 900 } 901 902 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 903 BitVector &Out) const { 904 auto FindI = SuperRegClasses.find(SubIdx); 905 if (FindI == SuperRegClasses.end()) 906 return; 907 for (CodeGenRegisterClass *RC : FindI->second) 908 Out.set(RC->EnumValue); 909 } 910 911 // Populate a unique sorted list of units from a register set. 912 void CodeGenRegisterClass::buildRegUnitSet( 913 std::vector<unsigned> &RegUnits) const { 914 std::vector<unsigned> TmpUnits; 915 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 916 TmpUnits.push_back(*UnitI); 917 std::sort(TmpUnits.begin(), TmpUnits.end()); 918 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 919 std::back_inserter(RegUnits)); 920 } 921 922 //===----------------------------------------------------------------------===// 923 // CodeGenRegBank 924 //===----------------------------------------------------------------------===// 925 926 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 927 // Configure register Sets to understand register classes and tuples. 928 Sets.addFieldExpander("RegisterClass", "MemberList"); 929 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 930 Sets.addExpander("RegisterTuples", new TupleExpander()); 931 932 // Read in the user-defined (named) sub-register indices. 933 // More indices will be synthesized later. 934 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 935 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 936 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 937 getSubRegIdx(SRIs[i]); 938 // Build composite maps from ComposedOf fields. 939 for (auto &Idx : SubRegIndices) 940 Idx.updateComponents(*this); 941 942 // Read in the register definitions. 943 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 944 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 945 // Assign the enumeration values. 946 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 947 getReg(Regs[i]); 948 949 // Expand tuples and number the new registers. 950 std::vector<Record*> Tups = 951 Records.getAllDerivedDefinitions("RegisterTuples"); 952 953 for (Record *R : Tups) { 954 std::vector<Record *> TupRegs = *Sets.expand(R); 955 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 956 for (Record *RC : TupRegs) 957 getReg(RC); 958 } 959 960 // Now all the registers are known. Build the object graph of explicit 961 // register-register references. 962 for (auto &Reg : Registers) 963 Reg.buildObjectGraph(*this); 964 965 // Compute register name map. 966 for (auto &Reg : Registers) 967 // FIXME: This could just be RegistersByName[name] = register, except that 968 // causes some failures in MIPS - perhaps they have duplicate register name 969 // entries? (or maybe there's a reason for it - I don't know much about this 970 // code, just drive-by refactoring) 971 RegistersByName.insert( 972 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 973 974 // Precompute all sub-register maps. 975 // This will create Composite entries for all inferred sub-register indices. 976 for (auto &Reg : Registers) 977 Reg.computeSubRegs(*this); 978 979 // Infer even more sub-registers by combining leading super-registers. 980 for (auto &Reg : Registers) 981 if (Reg.CoveredBySubRegs) 982 Reg.computeSecondarySubRegs(*this); 983 984 // After the sub-register graph is complete, compute the topologically 985 // ordered SuperRegs list. 986 for (auto &Reg : Registers) 987 Reg.computeSuperRegs(*this); 988 989 // Native register units are associated with a leaf register. They've all been 990 // discovered now. 991 NumNativeRegUnits = RegUnits.size(); 992 993 // Read in register class definitions. 994 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 995 if (RCs.empty()) 996 PrintFatalError("No 'RegisterClass' subclasses defined!"); 997 998 // Allocate user-defined register classes. 999 for (auto *RC : RCs) { 1000 RegClasses.push_back(CodeGenRegisterClass(*this, RC)); 1001 addToMaps(&RegClasses.back()); 1002 } 1003 1004 // Infer missing classes to create a full algebra. 1005 computeInferredRegisterClasses(); 1006 1007 // Order register classes topologically and assign enum values. 1008 RegClasses.sort(TopoOrderRC); 1009 unsigned i = 0; 1010 for (auto &RC : RegClasses) 1011 RC.EnumValue = i++; 1012 CodeGenRegisterClass::computeSubClasses(*this); 1013 } 1014 1015 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1016 CodeGenSubRegIndex* 1017 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1018 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1019 return &SubRegIndices.back(); 1020 } 1021 1022 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1023 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1024 if (Idx) 1025 return Idx; 1026 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1027 Idx = &SubRegIndices.back(); 1028 return Idx; 1029 } 1030 1031 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1032 CodeGenRegister *&Reg = Def2Reg[Def]; 1033 if (Reg) 1034 return Reg; 1035 Registers.emplace_back(Def, Registers.size() + 1); 1036 Reg = &Registers.back(); 1037 return Reg; 1038 } 1039 1040 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1041 if (Record *Def = RC->getDef()) 1042 Def2RC.insert(std::make_pair(Def, RC)); 1043 1044 // Duplicate classes are rejected by insert(). 1045 // That's OK, we only care about the properties handled by CGRC::Key. 1046 CodeGenRegisterClass::Key K(*RC); 1047 Key2RC.insert(std::make_pair(K, RC)); 1048 } 1049 1050 // Create a synthetic sub-class if it is missing. 1051 CodeGenRegisterClass* 1052 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1053 const CodeGenRegister::Set *Members, 1054 StringRef Name) { 1055 // Synthetic sub-class has the same size and alignment as RC. 1056 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1057 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1058 if (FoundI != Key2RC.end()) 1059 return FoundI->second; 1060 1061 // Sub-class doesn't exist, create a new one. 1062 RegClasses.push_back(CodeGenRegisterClass(*this, Name, K)); 1063 addToMaps(&RegClasses.back()); 1064 return &RegClasses.back(); 1065 } 1066 1067 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1068 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1069 return RC; 1070 1071 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1072 } 1073 1074 CodeGenSubRegIndex* 1075 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1076 CodeGenSubRegIndex *B) { 1077 // Look for an existing entry. 1078 CodeGenSubRegIndex *Comp = A->compose(B); 1079 if (Comp) 1080 return Comp; 1081 1082 // None exists, synthesize one. 1083 std::string Name = A->getName() + "_then_" + B->getName(); 1084 Comp = createSubRegIndex(Name, A->getNamespace()); 1085 A->addComposite(B, Comp); 1086 return Comp; 1087 } 1088 1089 CodeGenSubRegIndex *CodeGenRegBank:: 1090 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1091 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1092 1093 // Look for an existing entry. 1094 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1095 if (Idx) 1096 return Idx; 1097 1098 // None exists, synthesize one. 1099 std::string Name = Parts.front()->getName(); 1100 // Determine whether all parts are contiguous. 1101 bool isContinuous = true; 1102 unsigned Size = Parts.front()->Size; 1103 unsigned LastOffset = Parts.front()->Offset; 1104 unsigned LastSize = Parts.front()->Size; 1105 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1106 Name += '_'; 1107 Name += Parts[i]->getName(); 1108 Size += Parts[i]->Size; 1109 if (Parts[i]->Offset != (LastOffset + LastSize)) 1110 isContinuous = false; 1111 LastOffset = Parts[i]->Offset; 1112 LastSize = Parts[i]->Size; 1113 } 1114 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1115 Idx->Size = Size; 1116 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1117 return Idx; 1118 } 1119 1120 void CodeGenRegBank::computeComposites() { 1121 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1122 // and many registers will share TopoSigs on regular architectures. 1123 BitVector TopoSigs(getNumTopoSigs()); 1124 1125 for (const auto &Reg1 : Registers) { 1126 // Skip identical subreg structures already processed. 1127 if (TopoSigs.test(Reg1.getTopoSig())) 1128 continue; 1129 TopoSigs.set(Reg1.getTopoSig()); 1130 1131 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1132 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1133 e1 = SRM1.end(); i1 != e1; ++i1) { 1134 CodeGenSubRegIndex *Idx1 = i1->first; 1135 CodeGenRegister *Reg2 = i1->second; 1136 // Ignore identity compositions. 1137 if (&Reg1 == Reg2) 1138 continue; 1139 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1140 // Try composing Idx1 with another SubRegIndex. 1141 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1142 e2 = SRM2.end(); i2 != e2; ++i2) { 1143 CodeGenSubRegIndex *Idx2 = i2->first; 1144 CodeGenRegister *Reg3 = i2->second; 1145 // Ignore identity compositions. 1146 if (Reg2 == Reg3) 1147 continue; 1148 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1149 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1150 assert(Idx3 && "Sub-register doesn't have an index"); 1151 1152 // Conflicting composition? Emit a warning but allow it. 1153 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1154 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1155 " and " + Idx2->getQualifiedName() + 1156 " compose ambiguously as " + Prev->getQualifiedName() + 1157 " or " + Idx3->getQualifiedName()); 1158 } 1159 } 1160 } 1161 } 1162 1163 // Compute lane masks. This is similar to register units, but at the 1164 // sub-register index level. Each bit in the lane mask is like a register unit 1165 // class, and two lane masks will have a bit in common if two sub-register 1166 // indices overlap in some register. 1167 // 1168 // Conservatively share a lane mask bit if two sub-register indices overlap in 1169 // some registers, but not in others. That shouldn't happen a lot. 1170 void CodeGenRegBank::computeSubRegLaneMasks() { 1171 // First assign individual bits to all the leaf indices. 1172 unsigned Bit = 0; 1173 // Determine mask of lanes that cover their registers. 1174 CoveringLanes = ~0u; 1175 for (auto &Idx : SubRegIndices) { 1176 if (Idx.getComposites().empty()) { 1177 Idx.LaneMask = 1u << Bit; 1178 // Share bit 31 in the unlikely case there are more than 32 leafs. 1179 // 1180 // Sharing bits is harmless; it allows graceful degradation in targets 1181 // with more than 32 vector lanes. They simply get a limited resolution 1182 // view of lanes beyond the 32nd. 1183 // 1184 // See also the comment for getSubRegIndexLaneMask(). 1185 if (Bit < 31) 1186 ++Bit; 1187 else 1188 // Once bit 31 is shared among multiple leafs, the 'lane' it represents 1189 // is no longer covering its registers. 1190 CoveringLanes &= ~(1u << Bit); 1191 } else { 1192 Idx.LaneMask = 0; 1193 } 1194 } 1195 1196 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1197 // here is that for each possible target subregister we look at the leafs 1198 // in the subregister graph that compose for this target and create 1199 // transformation sequences for the lanemasks. Each step in the sequence 1200 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1201 // are usually the same for many subregisters we can easily combine the steps 1202 // by combining the masks. 1203 for (const auto &Idx : SubRegIndices) { 1204 const auto &Composites = Idx.getComposites(); 1205 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1206 // Go through all leaf subregisters and find the ones that compose with Idx. 1207 // These make out all possible valid bits in the lane mask we want to 1208 // transform. Looking only at the leafs ensure that only a single bit in 1209 // the mask is set. 1210 unsigned NextBit = 0; 1211 for (auto &Idx2 : SubRegIndices) { 1212 // Skip non-leaf subregisters. 1213 if (!Idx2.getComposites().empty()) 1214 continue; 1215 // Replicate the behaviour from the lane mask generation loop above. 1216 unsigned SrcBit = NextBit; 1217 unsigned SrcMask = 1u << SrcBit; 1218 if (NextBit < 31) 1219 ++NextBit; 1220 assert(Idx2.LaneMask == SrcMask); 1221 1222 // Get the composed subregister if there is any. 1223 auto C = Composites.find(&Idx2); 1224 if (C == Composites.end()) 1225 continue; 1226 const CodeGenSubRegIndex *Composite = C->second; 1227 // The Composed subreg should be a leaf subreg too 1228 assert(Composite->getComposites().empty()); 1229 1230 // Create Mask+Rotate operation and merge with existing ops if possible. 1231 unsigned DstBit = Log2_32(Composite->LaneMask); 1232 int Shift = DstBit - SrcBit; 1233 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; 1234 for (auto &I : LaneTransforms) { 1235 if (I.RotateLeft == RotateLeft) { 1236 I.Mask |= SrcMask; 1237 SrcMask = 0; 1238 } 1239 } 1240 if (SrcMask != 0) { 1241 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1242 LaneTransforms.push_back(MaskRol); 1243 } 1244 } 1245 // Optimize if the transformation consists of one step only: Set mask to 1246 // 0xffffffff (including some irrelevant invalid bits) so that it should 1247 // merge with more entries later while compressing the table. 1248 if (LaneTransforms.size() == 1) 1249 LaneTransforms[0].Mask = ~0u; 1250 1251 // Further compression optimization: For invalid compositions resulting 1252 // in a sequence with 0 entries we can just pick any other. Choose 1253 // Mask 0xffffffff with Rotation 0. 1254 if (LaneTransforms.size() == 0) { 1255 MaskRolPair P = { ~0u, 0 }; 1256 LaneTransforms.push_back(P); 1257 } 1258 } 1259 1260 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1261 // by the sub-register graph? This doesn't occur in any known targets. 1262 1263 // Inherit lanes from composites. 1264 for (const auto &Idx : SubRegIndices) { 1265 unsigned Mask = Idx.computeLaneMask(); 1266 // If some super-registers without CoveredBySubRegs use this index, we can 1267 // no longer assume that the lanes are covering their registers. 1268 if (!Idx.AllSuperRegsCovered) 1269 CoveringLanes &= ~Mask; 1270 } 1271 1272 // Compute lane mask combinations for register classes. 1273 for (auto &RegClass : RegClasses) { 1274 unsigned LaneMask = 0; 1275 for (const auto &SubRegIndex : SubRegIndices) { 1276 if (RegClass.getSubClassWithSubReg(&SubRegIndex) != &RegClass) 1277 continue; 1278 LaneMask |= SubRegIndex.LaneMask; 1279 } 1280 RegClass.LaneMask = LaneMask; 1281 } 1282 } 1283 1284 namespace { 1285 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1286 // the transitive closure of the union of overlapping register 1287 // classes. Together, the UberRegSets form a partition of the registers. If we 1288 // consider overlapping register classes to be connected, then each UberRegSet 1289 // is a set of connected components. 1290 // 1291 // An UberRegSet will likely be a horizontal slice of register names of 1292 // the same width. Nontrivial subregisters should then be in a separate 1293 // UberRegSet. But this property isn't required for valid computation of 1294 // register unit weights. 1295 // 1296 // A Weight field caches the max per-register unit weight in each UberRegSet. 1297 // 1298 // A set of SingularDeterminants flags single units of some register in this set 1299 // for which the unit weight equals the set weight. These units should not have 1300 // their weight increased. 1301 struct UberRegSet { 1302 CodeGenRegister::Set Regs; 1303 unsigned Weight; 1304 CodeGenRegister::RegUnitList SingularDeterminants; 1305 1306 UberRegSet(): Weight(0) {} 1307 }; 1308 } // namespace 1309 1310 // Partition registers into UberRegSets, where each set is the transitive 1311 // closure of the union of overlapping register classes. 1312 // 1313 // UberRegSets[0] is a special non-allocatable set. 1314 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1315 std::vector<UberRegSet*> &RegSets, 1316 CodeGenRegBank &RegBank) { 1317 1318 const auto &Registers = RegBank.getRegisters(); 1319 1320 // The Register EnumValue is one greater than its index into Registers. 1321 assert(Registers.size() == Registers.back().EnumValue && 1322 "register enum value mismatch"); 1323 1324 // For simplicitly make the SetID the same as EnumValue. 1325 IntEqClasses UberSetIDs(Registers.size()+1); 1326 std::set<unsigned> AllocatableRegs; 1327 for (auto &RegClass : RegBank.getRegClasses()) { 1328 if (!RegClass.Allocatable) 1329 continue; 1330 1331 const CodeGenRegister::Set &Regs = RegClass.getMembers(); 1332 if (Regs.empty()) 1333 continue; 1334 1335 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1336 assert(USetID && "register number 0 is invalid"); 1337 1338 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1339 for (CodeGenRegister::Set::const_iterator I = std::next(Regs.begin()), 1340 E = Regs.end(); I != E; ++I) { 1341 AllocatableRegs.insert((*I)->EnumValue); 1342 UberSetIDs.join(USetID, (*I)->EnumValue); 1343 } 1344 } 1345 // Combine non-allocatable regs. 1346 for (const auto &Reg : Registers) { 1347 unsigned RegNum = Reg.EnumValue; 1348 if (AllocatableRegs.count(RegNum)) 1349 continue; 1350 1351 UberSetIDs.join(0, RegNum); 1352 } 1353 UberSetIDs.compress(); 1354 1355 // Make the first UberSet a special unallocatable set. 1356 unsigned ZeroID = UberSetIDs[0]; 1357 1358 // Insert Registers into the UberSets formed by union-find. 1359 // Do not resize after this. 1360 UberSets.resize(UberSetIDs.getNumClasses()); 1361 unsigned i = 0; 1362 for (const CodeGenRegister &Reg : Registers) { 1363 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1364 if (!USetID) 1365 USetID = ZeroID; 1366 else if (USetID == ZeroID) 1367 USetID = 0; 1368 1369 UberRegSet *USet = &UberSets[USetID]; 1370 USet->Regs.insert(&Reg); 1371 RegSets[i++] = USet; 1372 } 1373 } 1374 1375 // Recompute each UberSet weight after changing unit weights. 1376 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1377 CodeGenRegBank &RegBank) { 1378 // Skip the first unallocatable set. 1379 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1380 E = UberSets.end(); I != E; ++I) { 1381 1382 // Initialize all unit weights in this set, and remember the max units/reg. 1383 const CodeGenRegister *Reg = nullptr; 1384 unsigned MaxWeight = 0, Weight = 0; 1385 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1386 if (Reg != UnitI.getReg()) { 1387 if (Weight > MaxWeight) 1388 MaxWeight = Weight; 1389 Reg = UnitI.getReg(); 1390 Weight = 0; 1391 } 1392 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1393 if (!UWeight) { 1394 UWeight = 1; 1395 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1396 } 1397 Weight += UWeight; 1398 } 1399 if (Weight > MaxWeight) 1400 MaxWeight = Weight; 1401 if (I->Weight != MaxWeight) { 1402 DEBUG( 1403 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1404 for (auto &Unit : I->Regs) 1405 dbgs() << " " << Unit->getName(); 1406 dbgs() << "\n"); 1407 // Update the set weight. 1408 I->Weight = MaxWeight; 1409 } 1410 1411 // Find singular determinants. 1412 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(), 1413 RegE = I->Regs.end(); RegI != RegE; ++RegI) { 1414 if ((*RegI)->getRegUnits().size() == 1 1415 && (*RegI)->getWeight(RegBank) == I->Weight) 1416 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits()); 1417 } 1418 } 1419 } 1420 1421 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1422 // a register and its subregisters so that they have the same weight as their 1423 // UberSet. Self-recursion processes the subregister tree in postorder so 1424 // subregisters are normalized first. 1425 // 1426 // Side effects: 1427 // - creates new adopted register units 1428 // - causes superregisters to inherit adopted units 1429 // - increases the weight of "singular" units 1430 // - induces recomputation of UberWeights. 1431 static bool normalizeWeight(CodeGenRegister *Reg, 1432 std::vector<UberRegSet> &UberSets, 1433 std::vector<UberRegSet*> &RegSets, 1434 std::set<unsigned> &NormalRegs, 1435 CodeGenRegister::RegUnitList &NormalUnits, 1436 CodeGenRegBank &RegBank) { 1437 bool Changed = false; 1438 if (!NormalRegs.insert(Reg->EnumValue).second) 1439 return Changed; 1440 1441 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1442 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1443 SRE = SRM.end(); SRI != SRE; ++SRI) { 1444 if (SRI->second == Reg) 1445 continue; // self-cycles happen 1446 1447 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1448 NormalRegs, NormalUnits, RegBank); 1449 } 1450 // Postorder register normalization. 1451 1452 // Inherit register units newly adopted by subregisters. 1453 if (Reg->inheritRegUnits(RegBank)) 1454 computeUberWeights(UberSets, RegBank); 1455 1456 // Check if this register is too skinny for its UberRegSet. 1457 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1458 1459 unsigned RegWeight = Reg->getWeight(RegBank); 1460 if (UberSet->Weight > RegWeight) { 1461 // A register unit's weight can be adjusted only if it is the singular unit 1462 // for this register, has not been used to normalize a subregister's set, 1463 // and has not already been used to singularly determine this UberRegSet. 1464 unsigned AdjustUnit = Reg->getRegUnits().front(); 1465 if (Reg->getRegUnits().size() != 1 1466 || hasRegUnit(NormalUnits, AdjustUnit) 1467 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1468 // We don't have an adjustable unit, so adopt a new one. 1469 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1470 Reg->adoptRegUnit(AdjustUnit); 1471 // Adopting a unit does not immediately require recomputing set weights. 1472 } 1473 else { 1474 // Adjust the existing single unit. 1475 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1476 // The unit may be shared among sets and registers within this set. 1477 computeUberWeights(UberSets, RegBank); 1478 } 1479 Changed = true; 1480 } 1481 1482 // Mark these units normalized so superregisters can't change their weights. 1483 mergeRegUnits(NormalUnits, Reg->getRegUnits()); 1484 1485 return Changed; 1486 } 1487 1488 // Compute a weight for each register unit created during getSubRegs. 1489 // 1490 // The goal is that two registers in the same class will have the same weight, 1491 // where each register's weight is defined as sum of its units' weights. 1492 void CodeGenRegBank::computeRegUnitWeights() { 1493 std::vector<UberRegSet> UberSets; 1494 std::vector<UberRegSet*> RegSets(Registers.size()); 1495 computeUberSets(UberSets, RegSets, *this); 1496 // UberSets and RegSets are now immutable. 1497 1498 computeUberWeights(UberSets, *this); 1499 1500 // Iterate over each Register, normalizing the unit weights until reaching 1501 // a fix point. 1502 unsigned NumIters = 0; 1503 for (bool Changed = true; Changed; ++NumIters) { 1504 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1505 Changed = false; 1506 for (auto &Reg : Registers) { 1507 CodeGenRegister::RegUnitList NormalUnits; 1508 std::set<unsigned> NormalRegs; 1509 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1510 NormalUnits, *this); 1511 } 1512 } 1513 } 1514 1515 // Find a set in UniqueSets with the same elements as Set. 1516 // Return an iterator into UniqueSets. 1517 static std::vector<RegUnitSet>::const_iterator 1518 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1519 const RegUnitSet &Set) { 1520 std::vector<RegUnitSet>::const_iterator 1521 I = UniqueSets.begin(), E = UniqueSets.end(); 1522 for(;I != E; ++I) { 1523 if (I->Units == Set.Units) 1524 break; 1525 } 1526 return I; 1527 } 1528 1529 // Return true if the RUSubSet is a subset of RUSuperSet. 1530 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1531 const std::vector<unsigned> &RUSuperSet) { 1532 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1533 RUSubSet.begin(), RUSubSet.end()); 1534 } 1535 1536 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1537 /// but with one or two registers removed. We occasionally have registers like 1538 /// APSR and PC thrown in with the general registers. We also see many 1539 /// special-purpose register subsets, such as tail-call and Thumb 1540 /// encodings. Generating all possible overlapping sets is combinatorial and 1541 /// overkill for modeling pressure. Ideally we could fix this statically in 1542 /// tablegen by (1) having the target define register classes that only include 1543 /// the allocatable registers and marking other classes as non-allocatable and 1544 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1545 /// the purpose of pressure. However, we make an attempt to handle targets that 1546 /// are not nicely defined by merging nearly identical register unit sets 1547 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1548 /// set limit by filtering the reserved registers. 1549 /// 1550 /// Merge sets only if the units have the same weight. For example, on ARM, 1551 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1552 /// should not expand the S set to include D regs. 1553 void CodeGenRegBank::pruneUnitSets() { 1554 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1555 1556 // Form an equivalence class of UnitSets with no significant difference. 1557 std::vector<unsigned> SuperSetIDs; 1558 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1559 SubIdx != EndIdx; ++SubIdx) { 1560 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1561 unsigned SuperIdx = 0; 1562 for (; SuperIdx != EndIdx; ++SuperIdx) { 1563 if (SuperIdx == SubIdx) 1564 continue; 1565 1566 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1567 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1568 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1569 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1570 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1571 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1572 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1573 << "\n"); 1574 break; 1575 } 1576 } 1577 if (SuperIdx == EndIdx) 1578 SuperSetIDs.push_back(SubIdx); 1579 } 1580 // Populate PrunedUnitSets with each equivalence class's superset. 1581 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1582 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1583 unsigned SuperIdx = SuperSetIDs[i]; 1584 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1585 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1586 } 1587 RegUnitSets.swap(PrunedUnitSets); 1588 } 1589 1590 // Create a RegUnitSet for each RegClass that contains all units in the class 1591 // including adopted units that are necessary to model register pressure. Then 1592 // iteratively compute RegUnitSets such that the union of any two overlapping 1593 // RegUnitSets is repreresented. 1594 // 1595 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1596 // RegUnitSet that is a superset of that RegUnitClass. 1597 void CodeGenRegBank::computeRegUnitSets() { 1598 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1599 1600 // Compute a unique RegUnitSet for each RegClass. 1601 auto &RegClasses = getRegClasses(); 1602 for (auto &RC : RegClasses) { 1603 if (!RC.Allocatable) 1604 continue; 1605 1606 // Speculatively grow the RegUnitSets to hold the new set. 1607 RegUnitSets.resize(RegUnitSets.size() + 1); 1608 RegUnitSets.back().Name = RC.getName(); 1609 1610 // Compute a sorted list of units in this class. 1611 RC.buildRegUnitSet(RegUnitSets.back().Units); 1612 1613 // Find an existing RegUnitSet. 1614 std::vector<RegUnitSet>::const_iterator SetI = 1615 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1616 if (SetI != std::prev(RegUnitSets.end())) 1617 RegUnitSets.pop_back(); 1618 } 1619 1620 DEBUG(dbgs() << "\nBefore pruning:\n"; 1621 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1622 USIdx < USEnd; ++USIdx) { 1623 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1624 << ":"; 1625 for (auto &U : RegUnitSets[USIdx].Units) 1626 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1627 dbgs() << "\n"; 1628 }); 1629 1630 // Iteratively prune unit sets. 1631 pruneUnitSets(); 1632 1633 DEBUG(dbgs() << "\nBefore union:\n"; 1634 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1635 USIdx < USEnd; ++USIdx) { 1636 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1637 << ":"; 1638 for (auto &U : RegUnitSets[USIdx].Units) 1639 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1640 dbgs() << "\n"; 1641 } 1642 dbgs() << "\nUnion sets:\n"); 1643 1644 // Iterate over all unit sets, including new ones added by this loop. 1645 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1646 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1647 // In theory, this is combinatorial. In practice, it needs to be bounded 1648 // by a small number of sets for regpressure to be efficient. 1649 // If the assert is hit, we need to implement pruning. 1650 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1651 1652 // Compare new sets with all original classes. 1653 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1654 SearchIdx != EndIdx; ++SearchIdx) { 1655 std::set<unsigned> Intersection; 1656 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1657 RegUnitSets[Idx].Units.end(), 1658 RegUnitSets[SearchIdx].Units.begin(), 1659 RegUnitSets[SearchIdx].Units.end(), 1660 std::inserter(Intersection, Intersection.begin())); 1661 if (Intersection.empty()) 1662 continue; 1663 1664 // Speculatively grow the RegUnitSets to hold the new set. 1665 RegUnitSets.resize(RegUnitSets.size() + 1); 1666 RegUnitSets.back().Name = 1667 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1668 1669 std::set_union(RegUnitSets[Idx].Units.begin(), 1670 RegUnitSets[Idx].Units.end(), 1671 RegUnitSets[SearchIdx].Units.begin(), 1672 RegUnitSets[SearchIdx].Units.end(), 1673 std::inserter(RegUnitSets.back().Units, 1674 RegUnitSets.back().Units.begin())); 1675 1676 // Find an existing RegUnitSet, or add the union to the unique sets. 1677 std::vector<RegUnitSet>::const_iterator SetI = 1678 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1679 if (SetI != std::prev(RegUnitSets.end())) 1680 RegUnitSets.pop_back(); 1681 else { 1682 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1683 << " " << RegUnitSets.back().Name << ":"; 1684 for (auto &U : RegUnitSets.back().Units) 1685 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1686 dbgs() << "\n";); 1687 } 1688 } 1689 } 1690 1691 // Iteratively prune unit sets after inferring supersets. 1692 pruneUnitSets(); 1693 1694 DEBUG(dbgs() << "\n"; 1695 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1696 USIdx < USEnd; ++USIdx) { 1697 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1698 << ":"; 1699 for (auto &U : RegUnitSets[USIdx].Units) 1700 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1701 dbgs() << "\n"; 1702 }); 1703 1704 // For each register class, list the UnitSets that are supersets. 1705 RegClassUnitSets.resize(RegClasses.size()); 1706 int RCIdx = -1; 1707 for (auto &RC : RegClasses) { 1708 ++RCIdx; 1709 if (!RC.Allocatable) 1710 continue; 1711 1712 // Recompute the sorted list of units in this class. 1713 std::vector<unsigned> RCRegUnits; 1714 RC.buildRegUnitSet(RCRegUnits); 1715 1716 // Don't increase pressure for unallocatable regclasses. 1717 if (RCRegUnits.empty()) 1718 continue; 1719 1720 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1721 for (auto &U : RCRegUnits) 1722 dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; 1723 dbgs() << "\n UnitSetIDs:"); 1724 1725 // Find all supersets. 1726 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1727 USIdx != USEnd; ++USIdx) { 1728 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1729 DEBUG(dbgs() << " " << USIdx); 1730 RegClassUnitSets[RCIdx].push_back(USIdx); 1731 } 1732 } 1733 DEBUG(dbgs() << "\n"); 1734 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1735 } 1736 1737 // For each register unit, ensure that we have the list of UnitSets that 1738 // contain the unit. Normally, this matches an existing list of UnitSets for a 1739 // register class. If not, we create a new entry in RegClassUnitSets as a 1740 // "fake" register class. 1741 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1742 UnitIdx < UnitEnd; ++UnitIdx) { 1743 std::vector<unsigned> RUSets; 1744 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1745 RegUnitSet &RUSet = RegUnitSets[i]; 1746 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1747 == RUSet.Units.end()) 1748 continue; 1749 RUSets.push_back(i); 1750 } 1751 unsigned RCUnitSetsIdx = 0; 1752 for (unsigned e = RegClassUnitSets.size(); 1753 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1754 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1755 break; 1756 } 1757 } 1758 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1759 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1760 // Create a new list of UnitSets as a "fake" register class. 1761 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1762 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1763 } 1764 } 1765 } 1766 1767 void CodeGenRegBank::computeRegUnitLaneMasks() { 1768 for (auto &Register : Registers) { 1769 // Create an initial lane mask for all register units. 1770 const auto &RegUnits = Register.getRegUnits(); 1771 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.size(), 0); 1772 // Iterate through SubRegisters. 1773 typedef CodeGenRegister::SubRegMap SubRegMap; 1774 const SubRegMap &SubRegs = Register.getSubRegs(); 1775 for (SubRegMap::const_iterator S = SubRegs.begin(), 1776 SE = SubRegs.end(); S != SE; ++S) { 1777 CodeGenRegister *SubReg = S->second; 1778 // Ignore non-leaf subregisters, their lane masks are fully covered by 1779 // the leaf subregisters anyway. 1780 if (SubReg->getSubRegs().size() != 0) 1781 continue; 1782 CodeGenSubRegIndex *SubRegIndex = S->first; 1783 const CodeGenRegister *SubRegister = S->second; 1784 unsigned LaneMask = SubRegIndex->LaneMask; 1785 // Distribute LaneMask to Register Units touched. 1786 for (const auto &SUI : SubRegister->getRegUnits()) { 1787 bool Found = false; 1788 for (size_t u = 0, ue = RegUnits.size(); u < ue; ++u) { 1789 if (SUI == RegUnits[u]) { 1790 RegUnitLaneMasks[u] |= LaneMask; 1791 assert(!Found); 1792 Found = true; 1793 } 1794 } 1795 assert(Found); 1796 } 1797 } 1798 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1799 } 1800 } 1801 1802 void CodeGenRegBank::computeDerivedInfo() { 1803 computeComposites(); 1804 computeSubRegLaneMasks(); 1805 1806 // Compute a weight for each register unit created during getSubRegs. 1807 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1808 computeRegUnitWeights(); 1809 1810 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1811 // supersets for the union of overlapping sets. 1812 computeRegUnitSets(); 1813 1814 computeRegUnitLaneMasks(); 1815 1816 // Get the weight of each set. 1817 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1818 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1819 1820 // Find the order of each set. 1821 RegUnitSetOrder.reserve(RegUnitSets.size()); 1822 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1823 RegUnitSetOrder.push_back(Idx); 1824 1825 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1826 [this](unsigned ID1, unsigned ID2) { 1827 return getRegPressureSet(ID1).Units.size() < 1828 getRegPressureSet(ID2).Units.size(); 1829 }); 1830 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1831 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1832 } 1833 } 1834 1835 // 1836 // Synthesize missing register class intersections. 1837 // 1838 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1839 // returns a maximal register class for all X. 1840 // 1841 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1842 assert(!RegClasses.empty()); 1843 // Stash the iterator to the last element so that this loop doesn't visit 1844 // elements added by the getOrCreateSubClass call within it. 1845 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1846 I != std::next(E); ++I) { 1847 CodeGenRegisterClass *RC1 = RC; 1848 CodeGenRegisterClass *RC2 = &*I; 1849 if (RC1 == RC2) 1850 continue; 1851 1852 // Compute the set intersection of RC1 and RC2. 1853 const CodeGenRegister::Set &Memb1 = RC1->getMembers(); 1854 const CodeGenRegister::Set &Memb2 = RC2->getMembers(); 1855 CodeGenRegister::Set Intersection; 1856 std::set_intersection(Memb1.begin(), Memb1.end(), 1857 Memb2.begin(), Memb2.end(), 1858 std::inserter(Intersection, Intersection.begin()), 1859 CodeGenRegister::Less()); 1860 1861 // Skip disjoint class pairs. 1862 if (Intersection.empty()) 1863 continue; 1864 1865 // If RC1 and RC2 have different spill sizes or alignments, use the 1866 // larger size for sub-classing. If they are equal, prefer RC1. 1867 if (RC2->SpillSize > RC1->SpillSize || 1868 (RC2->SpillSize == RC1->SpillSize && 1869 RC2->SpillAlignment > RC1->SpillAlignment)) 1870 std::swap(RC1, RC2); 1871 1872 getOrCreateSubClass(RC1, &Intersection, 1873 RC1->getName() + "_and_" + RC2->getName()); 1874 } 1875 } 1876 1877 // 1878 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1879 // 1880 // Make sure that the set of registers in RC with a given SubIdx sub-register 1881 // form a register class. Update RC->SubClassWithSubReg. 1882 // 1883 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1884 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1885 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Set, 1886 CodeGenSubRegIndex::Less> SubReg2SetMap; 1887 1888 // Compute the set of registers supporting each SubRegIndex. 1889 SubReg2SetMap SRSets; 1890 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), 1891 RE = RC->getMembers().end(); RI != RE; ++RI) { 1892 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); 1893 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1894 E = SRM.end(); I != E; ++I) 1895 SRSets[I->first].insert(*RI); 1896 } 1897 1898 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1899 // numerical order to visit synthetic indices last. 1900 for (const auto &SubIdx : SubRegIndices) { 1901 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1902 // Unsupported SubRegIndex. Skip it. 1903 if (I == SRSets.end()) 1904 continue; 1905 // In most cases, all RC registers support the SubRegIndex. 1906 if (I->second.size() == RC->getMembers().size()) { 1907 RC->setSubClassWithSubReg(&SubIdx, RC); 1908 continue; 1909 } 1910 // This is a real subset. See if we have a matching class. 1911 CodeGenRegisterClass *SubRC = 1912 getOrCreateSubClass(RC, &I->second, 1913 RC->getName() + "_with_" + I->first->getName()); 1914 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1915 } 1916 } 1917 1918 // 1919 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1920 // 1921 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1922 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1923 // 1924 1925 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1926 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1927 SmallVector<std::pair<const CodeGenRegister*, 1928 const CodeGenRegister*>, 16> SSPairs; 1929 BitVector TopoSigs(getNumTopoSigs()); 1930 1931 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1932 for (auto &SubIdx : SubRegIndices) { 1933 // Skip indexes that aren't fully supported by RC's registers. This was 1934 // computed by inferSubClassWithSubReg() above which should have been 1935 // called first. 1936 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1937 continue; 1938 1939 // Build list of (Super, Sub) pairs for this SubIdx. 1940 SSPairs.clear(); 1941 TopoSigs.reset(); 1942 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), 1943 RE = RC->getMembers().end(); RI != RE; ++RI) { 1944 const CodeGenRegister *Super = *RI; 1945 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1946 assert(Sub && "Missing sub-register"); 1947 SSPairs.push_back(std::make_pair(Super, Sub)); 1948 TopoSigs.set(Sub->getTopoSig()); 1949 } 1950 1951 // Iterate over sub-register class candidates. Ignore classes created by 1952 // this loop. They will never be useful. 1953 // Store an iterator to the last element (not end) so that this loop doesn't 1954 // visit newly inserted elements. 1955 assert(!RegClasses.empty()); 1956 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 1957 I != std::next(E); ++I) { 1958 CodeGenRegisterClass &SubRC = *I; 1959 // Topological shortcut: SubRC members have the wrong shape. 1960 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 1961 continue; 1962 // Compute the subset of RC that maps into SubRC. 1963 CodeGenRegister::Set SubSet; 1964 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1965 if (SubRC.contains(SSPairs[i].second)) 1966 SubSet.insert(SSPairs[i].first); 1967 if (SubSet.empty()) 1968 continue; 1969 // RC injects completely into SubRC. 1970 if (SubSet.size() == SSPairs.size()) { 1971 SubRC.addSuperRegClass(&SubIdx, RC); 1972 continue; 1973 } 1974 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1975 // class. 1976 getOrCreateSubClass(RC, &SubSet, RC->getName() + "_with_" + 1977 SubIdx.getName() + "_in_" + 1978 SubRC.getName()); 1979 } 1980 } 1981 } 1982 1983 1984 // 1985 // Infer missing register classes. 1986 // 1987 void CodeGenRegBank::computeInferredRegisterClasses() { 1988 assert(!RegClasses.empty()); 1989 // When this function is called, the register classes have not been sorted 1990 // and assigned EnumValues yet. That means getSubClasses(), 1991 // getSuperClasses(), and hasSubClass() functions are defunct. 1992 1993 // Use one-before-the-end so it doesn't move forward when new elements are 1994 // added. 1995 auto FirstNewRC = std::prev(RegClasses.end()); 1996 1997 // Visit all register classes, including the ones being added by the loop. 1998 // Watch out for iterator invalidation here. 1999 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2000 CodeGenRegisterClass *RC = &*I; 2001 2002 // Synthesize answers for getSubClassWithSubReg(). 2003 inferSubClassWithSubReg(RC); 2004 2005 // Synthesize answers for getCommonSubClass(). 2006 inferCommonSubClass(RC); 2007 2008 // Synthesize answers for getMatchingSuperRegClass(). 2009 inferMatchingSuperRegClass(RC); 2010 2011 // New register classes are created while this loop is running, and we need 2012 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2013 // to match old super-register classes with sub-register classes created 2014 // after inferMatchingSuperRegClass was called. At this point, 2015 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2016 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2017 if (I == FirstNewRC) { 2018 auto NextNewRC = std::prev(RegClasses.end()); 2019 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2020 ++I2) 2021 inferMatchingSuperRegClass(&*I2, E2); 2022 FirstNewRC = NextNewRC; 2023 } 2024 } 2025 } 2026 2027 /// getRegisterClassForRegister - Find the register class that contains the 2028 /// specified physical register. If the register is not in a register class, 2029 /// return null. If the register is in multiple classes, and the classes have a 2030 /// superset-subset relationship and the same set of types, return the 2031 /// superclass. Otherwise return null. 2032 const CodeGenRegisterClass* 2033 CodeGenRegBank::getRegClassForRegister(Record *R) { 2034 const CodeGenRegister *Reg = getReg(R); 2035 const CodeGenRegisterClass *FoundRC = nullptr; 2036 for (const auto &RC : getRegClasses()) { 2037 if (!RC.contains(Reg)) 2038 continue; 2039 2040 // If this is the first class that contains the register, 2041 // make a note of it and go on to the next class. 2042 if (!FoundRC) { 2043 FoundRC = &RC; 2044 continue; 2045 } 2046 2047 // If a register's classes have different types, return null. 2048 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2049 return nullptr; 2050 2051 // Check to see if the previously found class that contains 2052 // the register is a subclass of the current class. If so, 2053 // prefer the superclass. 2054 if (RC.hasSubClass(FoundRC)) { 2055 FoundRC = &RC; 2056 continue; 2057 } 2058 2059 // Check to see if the previously found class that contains 2060 // the register is a superclass of the current class. If so, 2061 // prefer the superclass. 2062 if (FoundRC->hasSubClass(&RC)) 2063 continue; 2064 2065 // Multiple classes, and neither is a superclass of the other. 2066 // Return null. 2067 return nullptr; 2068 } 2069 return FoundRC; 2070 } 2071 2072 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2073 SetVector<const CodeGenRegister*> Set; 2074 2075 // First add Regs with all sub-registers. 2076 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2077 CodeGenRegister *Reg = getReg(Regs[i]); 2078 if (Set.insert(Reg)) 2079 // Reg is new, add all sub-registers. 2080 // The pre-ordering is not important here. 2081 Reg->addSubRegsPreOrder(Set, *this); 2082 } 2083 2084 // Second, find all super-registers that are completely covered by the set. 2085 for (unsigned i = 0; i != Set.size(); ++i) { 2086 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2087 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2088 const CodeGenRegister *Super = SR[j]; 2089 if (!Super->CoveredBySubRegs || Set.count(Super)) 2090 continue; 2091 // This new super-register is covered by its sub-registers. 2092 bool AllSubsInSet = true; 2093 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2094 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2095 E = SRM.end(); I != E; ++I) 2096 if (!Set.count(I->second)) { 2097 AllSubsInSet = false; 2098 break; 2099 } 2100 // All sub-registers in Set, add Super as well. 2101 // We will visit Super later to recheck its super-registers. 2102 if (AllSubsInSet) 2103 Set.insert(Super); 2104 } 2105 } 2106 2107 // Convert to BitVector. 2108 BitVector BV(Registers.size() + 1); 2109 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2110 BV.set(Set[i]->EnumValue); 2111 return BV; 2112 } 2113