1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/IntEqClasses.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/TableGen/Error.h" 33 #include "llvm/TableGen/Record.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <iterator> 38 #include <map> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true) { 55 Name = R->getName(); 56 if (R->getValue("Namespace")) 57 Namespace = R->getValueAsString("Namespace"); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 65 EnumValue(Enum), AllSuperRegsCovered(true) { 66 } 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 100 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 101 RegBank.addConcatSubRegIndex(IdxParts, this); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 //===----------------------------------------------------------------------===// 123 // CodeGenRegister 124 //===----------------------------------------------------------------------===// 125 126 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 127 : TheDef(R), 128 EnumValue(Enum), 129 CostPerUse(R->getValueAsInt("CostPerUse")), 130 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 131 HasDisjunctSubRegs(false), 132 SubRegsComplete(false), 133 SuperRegsComplete(false), 134 TopoSig(~0u) 135 {} 136 137 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 138 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 139 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 140 141 if (SRIs.size() != SRs.size()) 142 PrintFatalError(TheDef->getLoc(), 143 "SubRegs and SubRegIndices must have the same size"); 144 145 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 146 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 147 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 148 } 149 150 // Also compute leading super-registers. Each register has a list of 151 // covered-by-subregs super-registers where it appears as the first explicit 152 // sub-register. 153 // 154 // This is used by computeSecondarySubRegs() to find candidates. 155 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 156 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 157 158 // Add ad hoc alias links. This is a symmetric relationship between two 159 // registers, so build a symmetric graph by adding links in both ends. 160 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 161 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 162 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 163 ExplicitAliases.push_back(Reg); 164 Reg->ExplicitAliases.push_back(this); 165 } 166 } 167 168 const StringRef CodeGenRegister::getName() const { 169 assert(TheDef && "no def"); 170 return TheDef->getName(); 171 } 172 173 namespace { 174 175 // Iterate over all register units in a set of registers. 176 class RegUnitIterator { 177 CodeGenRegister::Vec::const_iterator RegI, RegE; 178 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 179 180 public: 181 RegUnitIterator(const CodeGenRegister::Vec &Regs): 182 RegI(Regs.begin()), RegE(Regs.end()) { 183 184 if (RegI != RegE) { 185 UnitI = (*RegI)->getRegUnits().begin(); 186 UnitE = (*RegI)->getRegUnits().end(); 187 advance(); 188 } 189 } 190 191 bool isValid() const { return UnitI != UnitE; } 192 193 unsigned operator* () const { assert(isValid()); return *UnitI; } 194 195 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 196 197 /// Preincrement. Move to the next unit. 198 void operator++() { 199 assert(isValid() && "Cannot advance beyond the last operand"); 200 ++UnitI; 201 advance(); 202 } 203 204 protected: 205 void advance() { 206 while (UnitI == UnitE) { 207 if (++RegI == RegE) 208 break; 209 UnitI = (*RegI)->getRegUnits().begin(); 210 UnitE = (*RegI)->getRegUnits().end(); 211 } 212 } 213 }; 214 215 } // end anonymous namespace 216 217 // Return true of this unit appears in RegUnits. 218 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 219 return RegUnits.test(Unit); 220 } 221 222 // Inherit register units from subregisters. 223 // Return true if the RegUnits changed. 224 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 225 bool changed = false; 226 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 227 I != E; ++I) { 228 CodeGenRegister *SR = I->second; 229 // Merge the subregister's units into this register's RegUnits. 230 changed |= (RegUnits |= SR->RegUnits); 231 } 232 233 return changed; 234 } 235 236 const CodeGenRegister::SubRegMap & 237 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 238 // Only compute this map once. 239 if (SubRegsComplete) 240 return SubRegs; 241 SubRegsComplete = true; 242 243 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 244 245 // First insert the explicit subregs and make sure they are fully indexed. 246 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 247 CodeGenRegister *SR = ExplicitSubRegs[i]; 248 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 249 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 250 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 251 " appears twice in Register " + getName()); 252 // Map explicit sub-registers first, so the names take precedence. 253 // The inherited sub-registers are mapped below. 254 SubReg2Idx.insert(std::make_pair(SR, Idx)); 255 } 256 257 // Keep track of inherited subregs and how they can be reached. 258 SmallPtrSet<CodeGenRegister*, 8> Orphans; 259 260 // Clone inherited subregs and place duplicate entries in Orphans. 261 // Here the order is important - earlier subregs take precedence. 262 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 263 CodeGenRegister *SR = ExplicitSubRegs[i]; 264 const SubRegMap &Map = SR->computeSubRegs(RegBank); 265 HasDisjunctSubRegs |= SR->HasDisjunctSubRegs; 266 267 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 268 ++SI) { 269 if (!SubRegs.insert(*SI).second) 270 Orphans.insert(SI->second); 271 } 272 } 273 274 // Expand any composed subreg indices. 275 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 276 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 277 // expanded subreg indices recursively. 278 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 279 for (unsigned i = 0; i != Indices.size(); ++i) { 280 CodeGenSubRegIndex *Idx = Indices[i]; 281 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 282 CodeGenRegister *SR = SubRegs[Idx]; 283 const SubRegMap &Map = SR->computeSubRegs(RegBank); 284 285 // Look at the possible compositions of Idx. 286 // They may not all be supported by SR. 287 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 288 E = Comps.end(); I != E; ++I) { 289 SubRegMap::const_iterator SRI = Map.find(I->first); 290 if (SRI == Map.end()) 291 continue; // Idx + I->first doesn't exist in SR. 292 // Add I->second as a name for the subreg SRI->second, assuming it is 293 // orphaned, and the name isn't already used for something else. 294 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 295 continue; 296 // We found a new name for the orphaned sub-register. 297 SubRegs.insert(std::make_pair(I->second, SRI->second)); 298 Indices.push_back(I->second); 299 } 300 } 301 302 // Now Orphans contains the inherited subregisters without a direct index. 303 // Create inferred indexes for all missing entries. 304 // Work backwards in the Indices vector in order to compose subregs bottom-up. 305 // Consider this subreg sequence: 306 // 307 // qsub_1 -> dsub_0 -> ssub_0 308 // 309 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 310 // can be reached in two different ways: 311 // 312 // qsub_1 -> ssub_0 313 // dsub_2 -> ssub_0 314 // 315 // We pick the latter composition because another register may have [dsub_0, 316 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 317 // dsub_2 -> ssub_0 composition can be shared. 318 while (!Indices.empty() && !Orphans.empty()) { 319 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 320 CodeGenRegister *SR = SubRegs[Idx]; 321 const SubRegMap &Map = SR->computeSubRegs(RegBank); 322 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 323 ++SI) 324 if (Orphans.erase(SI->second)) 325 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 326 } 327 328 // Compute the inverse SubReg -> Idx map. 329 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 330 SI != SE; ++SI) { 331 if (SI->second == this) { 332 ArrayRef<SMLoc> Loc; 333 if (TheDef) 334 Loc = TheDef->getLoc(); 335 PrintFatalError(Loc, "Register " + getName() + 336 " has itself as a sub-register"); 337 } 338 339 // Compute AllSuperRegsCovered. 340 if (!CoveredBySubRegs) 341 SI->first->AllSuperRegsCovered = false; 342 343 // Ensure that every sub-register has a unique name. 344 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 345 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 346 if (Ins->second == SI->first) 347 continue; 348 // Trouble: Two different names for SI->second. 349 ArrayRef<SMLoc> Loc; 350 if (TheDef) 351 Loc = TheDef->getLoc(); 352 PrintFatalError(Loc, "Sub-register can't have two names: " + 353 SI->second->getName() + " available as " + 354 SI->first->getName() + " and " + Ins->second->getName()); 355 } 356 357 // Derive possible names for sub-register concatenations from any explicit 358 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 359 // that getConcatSubRegIndex() won't invent any concatenated indices that the 360 // user already specified. 361 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 362 CodeGenRegister *SR = ExplicitSubRegs[i]; 363 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 364 continue; 365 366 // SR is composed of multiple sub-regs. Find their names in this register. 367 SmallVector<CodeGenSubRegIndex*, 8> Parts; 368 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 369 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 370 371 // Offer this as an existing spelling for the concatenation of Parts. 372 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 373 } 374 375 // Initialize RegUnitList. Because getSubRegs is called recursively, this 376 // processes the register hierarchy in postorder. 377 // 378 // Inherit all sub-register units. It is good enough to look at the explicit 379 // sub-registers, the other registers won't contribute any more units. 380 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 381 CodeGenRegister *SR = ExplicitSubRegs[i]; 382 RegUnits |= SR->RegUnits; 383 } 384 385 // Absent any ad hoc aliasing, we create one register unit per leaf register. 386 // These units correspond to the maximal cliques in the register overlap 387 // graph which is optimal. 388 // 389 // When there is ad hoc aliasing, we simply create one unit per edge in the 390 // undirected ad hoc aliasing graph. Technically, we could do better by 391 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 392 // are extremely rare anyway (I've never seen one), so we don't bother with 393 // the added complexity. 394 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 395 CodeGenRegister *AR = ExplicitAliases[i]; 396 // Only visit each edge once. 397 if (AR->SubRegsComplete) 398 continue; 399 // Create a RegUnit representing this alias edge, and add it to both 400 // registers. 401 unsigned Unit = RegBank.newRegUnit(this, AR); 402 RegUnits.set(Unit); 403 AR->RegUnits.set(Unit); 404 } 405 406 // Finally, create units for leaf registers without ad hoc aliases. Note that 407 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 408 // necessary. This means the aliasing leaf registers can share a single unit. 409 if (RegUnits.empty()) 410 RegUnits.set(RegBank.newRegUnit(this)); 411 412 // We have now computed the native register units. More may be adopted later 413 // for balancing purposes. 414 NativeRegUnits = RegUnits; 415 416 return SubRegs; 417 } 418 419 // In a register that is covered by its sub-registers, try to find redundant 420 // sub-registers. For example: 421 // 422 // QQ0 = {Q0, Q1} 423 // Q0 = {D0, D1} 424 // Q1 = {D2, D3} 425 // 426 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 427 // the register definition. 428 // 429 // The explicitly specified registers form a tree. This function discovers 430 // sub-register relationships that would force a DAG. 431 // 432 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 433 // Collect new sub-registers first, add them later. 434 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 435 436 // Look at the leading super-registers of each sub-register. Those are the 437 // candidates for new sub-registers, assuming they are fully contained in 438 // this register. 439 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 440 const CodeGenRegister *SubReg = I->second; 441 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 442 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 443 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 444 // Already got this sub-register? 445 if (Cand == this || getSubRegIndex(Cand)) 446 continue; 447 // Check if each component of Cand is already a sub-register. 448 // We know that the first component is I->second, and is present with the 449 // name I->first. 450 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 451 assert(!Cand->ExplicitSubRegs.empty() && 452 "Super-register has no sub-registers"); 453 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 454 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 455 Parts.push_back(Idx); 456 else { 457 // Sub-register doesn't exist. 458 Parts.clear(); 459 break; 460 } 461 } 462 // If some Cand sub-register is not part of this register, or if Cand only 463 // has one sub-register, there is nothing to do. 464 if (Parts.size() <= 1) 465 continue; 466 467 // Each part of Cand is a sub-register of this. Make the full Cand also 468 // a sub-register with a concatenated sub-register index. 469 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 470 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 471 } 472 } 473 474 // Now add all the new sub-registers. 475 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 476 // Don't add Cand if another sub-register is already using the index. 477 if (!SubRegs.insert(NewSubRegs[i]).second) 478 continue; 479 480 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 481 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 482 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 483 } 484 485 // Create sub-register index composition maps for the synthesized indices. 486 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 487 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 488 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 489 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 490 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 491 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 492 if (!SubIdx) 493 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 494 SI->second->getName() + " in " + getName()); 495 NewIdx->addComposite(SI->first, SubIdx); 496 } 497 } 498 } 499 500 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 501 // Only visit each register once. 502 if (SuperRegsComplete) 503 return; 504 SuperRegsComplete = true; 505 506 // Make sure all sub-registers have been visited first, so the super-reg 507 // lists will be topologically ordered. 508 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 509 I != E; ++I) 510 I->second->computeSuperRegs(RegBank); 511 512 // Now add this as a super-register on all sub-registers. 513 // Also compute the TopoSigId in post-order. 514 TopoSigId Id; 515 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 516 I != E; ++I) { 517 // Topological signature computed from SubIdx, TopoId(SubReg). 518 // Loops and idempotent indices have TopoSig = ~0u. 519 Id.push_back(I->first->EnumValue); 520 Id.push_back(I->second->TopoSig); 521 522 // Don't add duplicate entries. 523 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 524 continue; 525 I->second->SuperRegs.push_back(this); 526 } 527 TopoSig = RegBank.getTopoSig(Id); 528 } 529 530 void 531 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 532 CodeGenRegBank &RegBank) const { 533 assert(SubRegsComplete && "Must precompute sub-registers"); 534 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 535 CodeGenRegister *SR = ExplicitSubRegs[i]; 536 if (OSet.insert(SR)) 537 SR->addSubRegsPreOrder(OSet, RegBank); 538 } 539 // Add any secondary sub-registers that weren't part of the explicit tree. 540 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 541 I != E; ++I) 542 OSet.insert(I->second); 543 } 544 545 // Get the sum of this register's unit weights. 546 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 547 unsigned Weight = 0; 548 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 549 I != E; ++I) { 550 Weight += RegBank.getRegUnit(*I).Weight; 551 } 552 return Weight; 553 } 554 555 //===----------------------------------------------------------------------===// 556 // RegisterTuples 557 //===----------------------------------------------------------------------===// 558 559 // A RegisterTuples def is used to generate pseudo-registers from lists of 560 // sub-registers. We provide a SetTheory expander class that returns the new 561 // registers. 562 namespace { 563 564 struct TupleExpander : SetTheory::Expander { 565 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 566 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 567 unsigned Dim = Indices.size(); 568 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 569 if (Dim != SubRegs->size()) 570 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 571 if (Dim < 2) 572 PrintFatalError(Def->getLoc(), 573 "Tuples must have at least 2 sub-registers"); 574 575 // Evaluate the sub-register lists to be zipped. 576 unsigned Length = ~0u; 577 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 578 for (unsigned i = 0; i != Dim; ++i) { 579 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 580 Length = std::min(Length, unsigned(Lists[i].size())); 581 } 582 583 if (Length == 0) 584 return; 585 586 // Precompute some types. 587 Record *RegisterCl = Def->getRecords().getClass("Register"); 588 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 589 StringInit *BlankName = StringInit::get(""); 590 591 // Zip them up. 592 for (unsigned n = 0; n != Length; ++n) { 593 std::string Name; 594 Record *Proto = Lists[0][n]; 595 std::vector<Init*> Tuple; 596 unsigned CostPerUse = 0; 597 for (unsigned i = 0; i != Dim; ++i) { 598 Record *Reg = Lists[i][n]; 599 if (i) Name += '_'; 600 Name += Reg->getName(); 601 Tuple.push_back(DefInit::get(Reg)); 602 CostPerUse = std::max(CostPerUse, 603 unsigned(Reg->getValueAsInt("CostPerUse"))); 604 } 605 606 // Create a new Record representing the synthesized register. This record 607 // is only for consumption by CodeGenRegister, it is not added to the 608 // RecordKeeper. 609 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 610 Elts.insert(NewReg); 611 612 // Copy Proto super-classes. 613 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 614 for (const auto &SuperPair : Supers) 615 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 616 617 // Copy Proto fields. 618 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 619 RecordVal RV = Proto->getValues()[i]; 620 621 // Skip existing fields, like NAME. 622 if (NewReg->getValue(RV.getNameInit())) 623 continue; 624 625 StringRef Field = RV.getName(); 626 627 // Replace the sub-register list with Tuple. 628 if (Field == "SubRegs") 629 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 630 631 // Provide a blank AsmName. MC hacks are required anyway. 632 if (Field == "AsmName") 633 RV.setValue(BlankName); 634 635 // CostPerUse is aggregated from all Tuple members. 636 if (Field == "CostPerUse") 637 RV.setValue(IntInit::get(CostPerUse)); 638 639 // Composite registers are always covered by sub-registers. 640 if (Field == "CoveredBySubRegs") 641 RV.setValue(BitInit::get(true)); 642 643 // Copy fields from the RegisterTuples def. 644 if (Field == "SubRegIndices" || 645 Field == "CompositeIndices") { 646 NewReg->addValue(*Def->getValue(Field)); 647 continue; 648 } 649 650 // Some fields get their default uninitialized value. 651 if (Field == "DwarfNumbers" || 652 Field == "DwarfAlias" || 653 Field == "Aliases") { 654 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 655 NewReg->addValue(*DefRV); 656 continue; 657 } 658 659 // Everything else is copied from Proto. 660 NewReg->addValue(RV); 661 } 662 } 663 } 664 }; 665 666 } // end anonymous namespace 667 668 //===----------------------------------------------------------------------===// 669 // CodeGenRegisterClass 670 //===----------------------------------------------------------------------===// 671 672 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 673 std::sort(M.begin(), M.end(), deref<llvm::less>()); 674 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 675 } 676 677 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 678 : TheDef(R), 679 Name(R->getName()), 680 TopoSigs(RegBank.getNumTopoSigs()), 681 EnumValue(-1) { 682 683 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 684 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 685 Record *Type = TypeList[i]; 686 if (!Type->isSubClassOf("ValueType")) 687 PrintFatalError("RegTypes list member '" + Type->getName() + 688 "' does not derive from the ValueType class!"); 689 VTs.push_back(getValueType(Type)); 690 } 691 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 692 693 // Allocation order 0 is the full set. AltOrders provides others. 694 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 695 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 696 Orders.resize(1 + AltOrders->size()); 697 698 // Default allocation order always contains all registers. 699 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 700 Orders[0].push_back((*Elements)[i]); 701 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 702 Members.push_back(Reg); 703 TopoSigs.set(Reg->getTopoSig()); 704 } 705 sortAndUniqueRegisters(Members); 706 707 // Alternative allocation orders may be subsets. 708 SetTheory::RecSet Order; 709 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 710 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 711 Orders[1 + i].append(Order.begin(), Order.end()); 712 // Verify that all altorder members are regclass members. 713 while (!Order.empty()) { 714 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 715 Order.pop_back(); 716 if (!contains(Reg)) 717 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 718 " is not a class member"); 719 } 720 } 721 722 // Allow targets to override the size in bits of the RegisterClass. 723 unsigned Size = R->getValueAsInt("Size"); 724 725 Namespace = R->getValueAsString("Namespace"); 726 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 727 SpillAlignment = R->getValueAsInt("Alignment"); 728 CopyCost = R->getValueAsInt("CopyCost"); 729 Allocatable = R->getValueAsBit("isAllocatable"); 730 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 731 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 732 if (AllocationPriority < 0 || AllocationPriority > 63) 733 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 734 this->AllocationPriority = AllocationPriority; 735 } 736 737 // Create an inferred register class that was missing from the .td files. 738 // Most properties will be inherited from the closest super-class after the 739 // class structure has been computed. 740 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 741 StringRef Name, Key Props) 742 : Members(*Props.Members), 743 TheDef(nullptr), 744 Name(Name), 745 TopoSigs(RegBank.getNumTopoSigs()), 746 EnumValue(-1), 747 SpillSize(Props.SpillSize), 748 SpillAlignment(Props.SpillAlignment), 749 CopyCost(0), 750 Allocatable(true), 751 AllocationPriority(0) { 752 for (const auto R : Members) 753 TopoSigs.set(R->getTopoSig()); 754 } 755 756 // Compute inherited propertied for a synthesized register class. 757 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 758 assert(!getDef() && "Only synthesized classes can inherit properties"); 759 assert(!SuperClasses.empty() && "Synthesized class without super class"); 760 761 // The last super-class is the smallest one. 762 CodeGenRegisterClass &Super = *SuperClasses.back(); 763 764 // Most properties are copied directly. 765 // Exceptions are members, size, and alignment 766 Namespace = Super.Namespace; 767 VTs = Super.VTs; 768 CopyCost = Super.CopyCost; 769 Allocatable = Super.Allocatable; 770 AltOrderSelect = Super.AltOrderSelect; 771 AllocationPriority = Super.AllocationPriority; 772 773 // Copy all allocation orders, filter out foreign registers from the larger 774 // super-class. 775 Orders.resize(Super.Orders.size()); 776 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 777 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 778 if (contains(RegBank.getReg(Super.Orders[i][j]))) 779 Orders[i].push_back(Super.Orders[i][j]); 780 } 781 782 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 783 return std::binary_search(Members.begin(), Members.end(), Reg, 784 deref<llvm::less>()); 785 } 786 787 namespace llvm { 788 789 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 790 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 791 for (const auto R : *K.Members) 792 OS << ", " << R->getName(); 793 return OS << " }"; 794 } 795 796 } // end namespace llvm 797 798 // This is a simple lexicographical order that can be used to search for sets. 799 // It is not the same as the topological order provided by TopoOrderRC. 800 bool CodeGenRegisterClass::Key:: 801 operator<(const CodeGenRegisterClass::Key &B) const { 802 assert(Members && B.Members); 803 return std::tie(*Members, SpillSize, SpillAlignment) < 804 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 805 } 806 807 // Returns true if RC is a strict subclass. 808 // RC is a sub-class of this class if it is a valid replacement for any 809 // instruction operand where a register of this classis required. It must 810 // satisfy these conditions: 811 // 812 // 1. All RC registers are also in this. 813 // 2. The RC spill size must not be smaller than our spill size. 814 // 3. RC spill alignment must be compatible with ours. 815 // 816 static bool testSubClass(const CodeGenRegisterClass *A, 817 const CodeGenRegisterClass *B) { 818 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 819 A->SpillSize <= B->SpillSize && 820 std::includes(A->getMembers().begin(), A->getMembers().end(), 821 B->getMembers().begin(), B->getMembers().end(), 822 deref<llvm::less>()); 823 } 824 825 /// Sorting predicate for register classes. This provides a topological 826 /// ordering that arranges all register classes before their sub-classes. 827 /// 828 /// Register classes with the same registers, spill size, and alignment form a 829 /// clique. They will be ordered alphabetically. 830 /// 831 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 832 const CodeGenRegisterClass &PB) { 833 auto *A = &PA; 834 auto *B = &PB; 835 if (A == B) 836 return false; 837 838 // Order by ascending spill size. 839 if (A->SpillSize < B->SpillSize) 840 return true; 841 if (A->SpillSize > B->SpillSize) 842 return false; 843 844 // Order by ascending spill alignment. 845 if (A->SpillAlignment < B->SpillAlignment) 846 return true; 847 if (A->SpillAlignment > B->SpillAlignment) 848 return false; 849 850 // Order by descending set size. Note that the classes' allocation order may 851 // not have been computed yet. The Members set is always vaild. 852 if (A->getMembers().size() > B->getMembers().size()) 853 return true; 854 if (A->getMembers().size() < B->getMembers().size()) 855 return false; 856 857 // Finally order by name as a tie breaker. 858 return StringRef(A->getName()) < B->getName(); 859 } 860 861 std::string CodeGenRegisterClass::getQualifiedName() const { 862 if (Namespace.empty()) 863 return getName(); 864 else 865 return (Namespace + "::" + getName()).str(); 866 } 867 868 // Compute sub-classes of all register classes. 869 // Assume the classes are ordered topologically. 870 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 871 auto &RegClasses = RegBank.getRegClasses(); 872 873 // Visit backwards so sub-classes are seen first. 874 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 875 CodeGenRegisterClass &RC = *I; 876 RC.SubClasses.resize(RegClasses.size()); 877 RC.SubClasses.set(RC.EnumValue); 878 879 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 880 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 881 CodeGenRegisterClass &SubRC = *I2; 882 if (RC.SubClasses.test(SubRC.EnumValue)) 883 continue; 884 if (!testSubClass(&RC, &SubRC)) 885 continue; 886 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 887 // check them again. 888 RC.SubClasses |= SubRC.SubClasses; 889 } 890 891 // Sweep up missed clique members. They will be immediately preceding RC. 892 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 893 RC.SubClasses.set(I2->EnumValue); 894 } 895 896 // Compute the SuperClasses lists from the SubClasses vectors. 897 for (auto &RC : RegClasses) { 898 const BitVector &SC = RC.getSubClasses(); 899 auto I = RegClasses.begin(); 900 for (int s = 0, next_s = SC.find_first(); next_s != -1; 901 next_s = SC.find_next(s)) { 902 std::advance(I, next_s - s); 903 s = next_s; 904 if (&*I == &RC) 905 continue; 906 I->SuperClasses.push_back(&RC); 907 } 908 } 909 910 // With the class hierarchy in place, let synthesized register classes inherit 911 // properties from their closest super-class. The iteration order here can 912 // propagate properties down multiple levels. 913 for (auto &RC : RegClasses) 914 if (!RC.getDef()) 915 RC.inheritProperties(RegBank); 916 } 917 918 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 919 BitVector &Out) const { 920 auto FindI = SuperRegClasses.find(SubIdx); 921 if (FindI == SuperRegClasses.end()) 922 return; 923 for (CodeGenRegisterClass *RC : FindI->second) 924 Out.set(RC->EnumValue); 925 } 926 927 // Populate a unique sorted list of units from a register set. 928 void CodeGenRegisterClass::buildRegUnitSet( 929 std::vector<unsigned> &RegUnits) const { 930 std::vector<unsigned> TmpUnits; 931 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 932 TmpUnits.push_back(*UnitI); 933 std::sort(TmpUnits.begin(), TmpUnits.end()); 934 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 935 std::back_inserter(RegUnits)); 936 } 937 938 //===----------------------------------------------------------------------===// 939 // CodeGenRegBank 940 //===----------------------------------------------------------------------===// 941 942 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 943 // Configure register Sets to understand register classes and tuples. 944 Sets.addFieldExpander("RegisterClass", "MemberList"); 945 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 946 Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>()); 947 948 // Read in the user-defined (named) sub-register indices. 949 // More indices will be synthesized later. 950 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 951 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 952 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 953 getSubRegIdx(SRIs[i]); 954 // Build composite maps from ComposedOf fields. 955 for (auto &Idx : SubRegIndices) 956 Idx.updateComponents(*this); 957 958 // Read in the register definitions. 959 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 960 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 961 // Assign the enumeration values. 962 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 963 getReg(Regs[i]); 964 965 // Expand tuples and number the new registers. 966 std::vector<Record*> Tups = 967 Records.getAllDerivedDefinitions("RegisterTuples"); 968 969 for (Record *R : Tups) { 970 std::vector<Record *> TupRegs = *Sets.expand(R); 971 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 972 for (Record *RC : TupRegs) 973 getReg(RC); 974 } 975 976 // Now all the registers are known. Build the object graph of explicit 977 // register-register references. 978 for (auto &Reg : Registers) 979 Reg.buildObjectGraph(*this); 980 981 // Compute register name map. 982 for (auto &Reg : Registers) 983 // FIXME: This could just be RegistersByName[name] = register, except that 984 // causes some failures in MIPS - perhaps they have duplicate register name 985 // entries? (or maybe there's a reason for it - I don't know much about this 986 // code, just drive-by refactoring) 987 RegistersByName.insert( 988 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 989 990 // Precompute all sub-register maps. 991 // This will create Composite entries for all inferred sub-register indices. 992 for (auto &Reg : Registers) 993 Reg.computeSubRegs(*this); 994 995 // Infer even more sub-registers by combining leading super-registers. 996 for (auto &Reg : Registers) 997 if (Reg.CoveredBySubRegs) 998 Reg.computeSecondarySubRegs(*this); 999 1000 // After the sub-register graph is complete, compute the topologically 1001 // ordered SuperRegs list. 1002 for (auto &Reg : Registers) 1003 Reg.computeSuperRegs(*this); 1004 1005 // Native register units are associated with a leaf register. They've all been 1006 // discovered now. 1007 NumNativeRegUnits = RegUnits.size(); 1008 1009 // Read in register class definitions. 1010 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1011 if (RCs.empty()) 1012 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1013 1014 // Allocate user-defined register classes. 1015 for (auto *RC : RCs) { 1016 RegClasses.emplace_back(*this, RC); 1017 addToMaps(&RegClasses.back()); 1018 } 1019 1020 // Infer missing classes to create a full algebra. 1021 computeInferredRegisterClasses(); 1022 1023 // Order register classes topologically and assign enum values. 1024 RegClasses.sort(TopoOrderRC); 1025 unsigned i = 0; 1026 for (auto &RC : RegClasses) 1027 RC.EnumValue = i++; 1028 CodeGenRegisterClass::computeSubClasses(*this); 1029 } 1030 1031 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1032 CodeGenSubRegIndex* 1033 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1034 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1035 return &SubRegIndices.back(); 1036 } 1037 1038 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1039 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1040 if (Idx) 1041 return Idx; 1042 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1043 Idx = &SubRegIndices.back(); 1044 return Idx; 1045 } 1046 1047 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1048 CodeGenRegister *&Reg = Def2Reg[Def]; 1049 if (Reg) 1050 return Reg; 1051 Registers.emplace_back(Def, Registers.size() + 1); 1052 Reg = &Registers.back(); 1053 return Reg; 1054 } 1055 1056 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1057 if (Record *Def = RC->getDef()) 1058 Def2RC.insert(std::make_pair(Def, RC)); 1059 1060 // Duplicate classes are rejected by insert(). 1061 // That's OK, we only care about the properties handled by CGRC::Key. 1062 CodeGenRegisterClass::Key K(*RC); 1063 Key2RC.insert(std::make_pair(K, RC)); 1064 } 1065 1066 // Create a synthetic sub-class if it is missing. 1067 CodeGenRegisterClass* 1068 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1069 const CodeGenRegister::Vec *Members, 1070 StringRef Name) { 1071 // Synthetic sub-class has the same size and alignment as RC. 1072 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1073 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1074 if (FoundI != Key2RC.end()) 1075 return FoundI->second; 1076 1077 // Sub-class doesn't exist, create a new one. 1078 RegClasses.emplace_back(*this, Name, K); 1079 addToMaps(&RegClasses.back()); 1080 return &RegClasses.back(); 1081 } 1082 1083 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1084 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1085 return RC; 1086 1087 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1088 } 1089 1090 CodeGenSubRegIndex* 1091 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1092 CodeGenSubRegIndex *B) { 1093 // Look for an existing entry. 1094 CodeGenSubRegIndex *Comp = A->compose(B); 1095 if (Comp) 1096 return Comp; 1097 1098 // None exists, synthesize one. 1099 std::string Name = A->getName() + "_then_" + B->getName(); 1100 Comp = createSubRegIndex(Name, A->getNamespace()); 1101 A->addComposite(B, Comp); 1102 return Comp; 1103 } 1104 1105 CodeGenSubRegIndex *CodeGenRegBank:: 1106 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1107 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1108 1109 // Look for an existing entry. 1110 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1111 if (Idx) 1112 return Idx; 1113 1114 // None exists, synthesize one. 1115 std::string Name = Parts.front()->getName(); 1116 // Determine whether all parts are contiguous. 1117 bool isContinuous = true; 1118 unsigned Size = Parts.front()->Size; 1119 unsigned LastOffset = Parts.front()->Offset; 1120 unsigned LastSize = Parts.front()->Size; 1121 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1122 Name += '_'; 1123 Name += Parts[i]->getName(); 1124 Size += Parts[i]->Size; 1125 if (Parts[i]->Offset != (LastOffset + LastSize)) 1126 isContinuous = false; 1127 LastOffset = Parts[i]->Offset; 1128 LastSize = Parts[i]->Size; 1129 } 1130 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1131 Idx->Size = Size; 1132 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1133 return Idx; 1134 } 1135 1136 void CodeGenRegBank::computeComposites() { 1137 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1138 // and many registers will share TopoSigs on regular architectures. 1139 BitVector TopoSigs(getNumTopoSigs()); 1140 1141 for (const auto &Reg1 : Registers) { 1142 // Skip identical subreg structures already processed. 1143 if (TopoSigs.test(Reg1.getTopoSig())) 1144 continue; 1145 TopoSigs.set(Reg1.getTopoSig()); 1146 1147 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1148 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1149 e1 = SRM1.end(); i1 != e1; ++i1) { 1150 CodeGenSubRegIndex *Idx1 = i1->first; 1151 CodeGenRegister *Reg2 = i1->second; 1152 // Ignore identity compositions. 1153 if (&Reg1 == Reg2) 1154 continue; 1155 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1156 // Try composing Idx1 with another SubRegIndex. 1157 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1158 e2 = SRM2.end(); i2 != e2; ++i2) { 1159 CodeGenSubRegIndex *Idx2 = i2->first; 1160 CodeGenRegister *Reg3 = i2->second; 1161 // Ignore identity compositions. 1162 if (Reg2 == Reg3) 1163 continue; 1164 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1165 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1166 assert(Idx3 && "Sub-register doesn't have an index"); 1167 1168 // Conflicting composition? Emit a warning but allow it. 1169 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1170 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1171 " and " + Idx2->getQualifiedName() + 1172 " compose ambiguously as " + Prev->getQualifiedName() + 1173 " or " + Idx3->getQualifiedName()); 1174 } 1175 } 1176 } 1177 } 1178 1179 // Compute lane masks. This is similar to register units, but at the 1180 // sub-register index level. Each bit in the lane mask is like a register unit 1181 // class, and two lane masks will have a bit in common if two sub-register 1182 // indices overlap in some register. 1183 // 1184 // Conservatively share a lane mask bit if two sub-register indices overlap in 1185 // some registers, but not in others. That shouldn't happen a lot. 1186 void CodeGenRegBank::computeSubRegLaneMasks() { 1187 // First assign individual bits to all the leaf indices. 1188 unsigned Bit = 0; 1189 // Determine mask of lanes that cover their registers. 1190 CoveringLanes = LaneBitmask::getAll(); 1191 for (auto &Idx : SubRegIndices) { 1192 if (Idx.getComposites().empty()) { 1193 if (Bit > 32) { 1194 PrintFatalError( 1195 Twine("Ran out of lanemask bits to represent subregister ") 1196 + Idx.getName()); 1197 } 1198 Idx.LaneMask = LaneBitmask(1 << Bit); 1199 ++Bit; 1200 } else { 1201 Idx.LaneMask = LaneBitmask::getNone(); 1202 } 1203 } 1204 1205 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1206 // here is that for each possible target subregister we look at the leafs 1207 // in the subregister graph that compose for this target and create 1208 // transformation sequences for the lanemasks. Each step in the sequence 1209 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1210 // are usually the same for many subregisters we can easily combine the steps 1211 // by combining the masks. 1212 for (const auto &Idx : SubRegIndices) { 1213 const auto &Composites = Idx.getComposites(); 1214 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1215 1216 if (Composites.empty()) { 1217 // Moving from a class with no subregisters we just had a single lane: 1218 // The subregister must be a leaf subregister and only occupies 1 bit. 1219 // Move the bit from the class without subregisters into that position. 1220 static_assert(sizeof(Idx.LaneMask.getAsInteger()) == 4, 1221 "Change Log2_32 to a proper one"); 1222 unsigned DstBit = Log2_32(Idx.LaneMask.getAsInteger()); 1223 assert(Idx.LaneMask == LaneBitmask(1 << DstBit) && 1224 "Must be a leaf subregister"); 1225 MaskRolPair MaskRol = { LaneBitmask(1), (uint8_t)DstBit }; 1226 LaneTransforms.push_back(MaskRol); 1227 } else { 1228 // Go through all leaf subregisters and find the ones that compose with 1229 // Idx. These make out all possible valid bits in the lane mask we want to 1230 // transform. Looking only at the leafs ensure that only a single bit in 1231 // the mask is set. 1232 unsigned NextBit = 0; 1233 for (auto &Idx2 : SubRegIndices) { 1234 // Skip non-leaf subregisters. 1235 if (!Idx2.getComposites().empty()) 1236 continue; 1237 // Replicate the behaviour from the lane mask generation loop above. 1238 unsigned SrcBit = NextBit; 1239 LaneBitmask SrcMask = LaneBitmask(1 << SrcBit); 1240 if (NextBit < LaneBitmask::BitWidth-1) 1241 ++NextBit; 1242 assert(Idx2.LaneMask == SrcMask); 1243 1244 // Get the composed subregister if there is any. 1245 auto C = Composites.find(&Idx2); 1246 if (C == Composites.end()) 1247 continue; 1248 const CodeGenSubRegIndex *Composite = C->second; 1249 // The Composed subreg should be a leaf subreg too 1250 assert(Composite->getComposites().empty()); 1251 1252 // Create Mask+Rotate operation and merge with existing ops if possible. 1253 static_assert(sizeof(Composite->LaneMask.getAsInteger()) == 4, 1254 "Change Log2_32 to a proper one"); 1255 unsigned DstBit = Log2_32(Composite->LaneMask.getAsInteger()); 1256 int Shift = DstBit - SrcBit; 1257 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1258 : LaneBitmask::BitWidth + Shift; 1259 for (auto &I : LaneTransforms) { 1260 if (I.RotateLeft == RotateLeft) { 1261 I.Mask |= SrcMask; 1262 SrcMask = LaneBitmask::getNone(); 1263 } 1264 } 1265 if (SrcMask.any()) { 1266 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1267 LaneTransforms.push_back(MaskRol); 1268 } 1269 } 1270 } 1271 1272 // Optimize if the transformation consists of one step only: Set mask to 1273 // 0xffffffff (including some irrelevant invalid bits) so that it should 1274 // merge with more entries later while compressing the table. 1275 if (LaneTransforms.size() == 1) 1276 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1277 1278 // Further compression optimization: For invalid compositions resulting 1279 // in a sequence with 0 entries we can just pick any other. Choose 1280 // Mask 0xffffffff with Rotation 0. 1281 if (LaneTransforms.size() == 0) { 1282 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1283 LaneTransforms.push_back(P); 1284 } 1285 } 1286 1287 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1288 // by the sub-register graph? This doesn't occur in any known targets. 1289 1290 // Inherit lanes from composites. 1291 for (const auto &Idx : SubRegIndices) { 1292 LaneBitmask Mask = Idx.computeLaneMask(); 1293 // If some super-registers without CoveredBySubRegs use this index, we can 1294 // no longer assume that the lanes are covering their registers. 1295 if (!Idx.AllSuperRegsCovered) 1296 CoveringLanes &= ~Mask; 1297 } 1298 1299 // Compute lane mask combinations for register classes. 1300 for (auto &RegClass : RegClasses) { 1301 LaneBitmask LaneMask; 1302 for (const auto &SubRegIndex : SubRegIndices) { 1303 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1304 continue; 1305 LaneMask |= SubRegIndex.LaneMask; 1306 } 1307 1308 // For classes without any subregisters set LaneMask to 1 instead of 0. 1309 // This makes it easier for client code to handle classes uniformly. 1310 if (LaneMask.none()) 1311 LaneMask = LaneBitmask(1); 1312 1313 RegClass.LaneMask = LaneMask; 1314 } 1315 } 1316 1317 namespace { 1318 1319 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1320 // the transitive closure of the union of overlapping register 1321 // classes. Together, the UberRegSets form a partition of the registers. If we 1322 // consider overlapping register classes to be connected, then each UberRegSet 1323 // is a set of connected components. 1324 // 1325 // An UberRegSet will likely be a horizontal slice of register names of 1326 // the same width. Nontrivial subregisters should then be in a separate 1327 // UberRegSet. But this property isn't required for valid computation of 1328 // register unit weights. 1329 // 1330 // A Weight field caches the max per-register unit weight in each UberRegSet. 1331 // 1332 // A set of SingularDeterminants flags single units of some register in this set 1333 // for which the unit weight equals the set weight. These units should not have 1334 // their weight increased. 1335 struct UberRegSet { 1336 CodeGenRegister::Vec Regs; 1337 unsigned Weight = 0; 1338 CodeGenRegister::RegUnitList SingularDeterminants; 1339 1340 UberRegSet() = default; 1341 }; 1342 1343 } // end anonymous namespace 1344 1345 // Partition registers into UberRegSets, where each set is the transitive 1346 // closure of the union of overlapping register classes. 1347 // 1348 // UberRegSets[0] is a special non-allocatable set. 1349 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1350 std::vector<UberRegSet*> &RegSets, 1351 CodeGenRegBank &RegBank) { 1352 const auto &Registers = RegBank.getRegisters(); 1353 1354 // The Register EnumValue is one greater than its index into Registers. 1355 assert(Registers.size() == Registers.back().EnumValue && 1356 "register enum value mismatch"); 1357 1358 // For simplicitly make the SetID the same as EnumValue. 1359 IntEqClasses UberSetIDs(Registers.size()+1); 1360 std::set<unsigned> AllocatableRegs; 1361 for (auto &RegClass : RegBank.getRegClasses()) { 1362 if (!RegClass.Allocatable) 1363 continue; 1364 1365 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1366 if (Regs.empty()) 1367 continue; 1368 1369 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1370 assert(USetID && "register number 0 is invalid"); 1371 1372 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1373 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1374 AllocatableRegs.insert((*I)->EnumValue); 1375 UberSetIDs.join(USetID, (*I)->EnumValue); 1376 } 1377 } 1378 // Combine non-allocatable regs. 1379 for (const auto &Reg : Registers) { 1380 unsigned RegNum = Reg.EnumValue; 1381 if (AllocatableRegs.count(RegNum)) 1382 continue; 1383 1384 UberSetIDs.join(0, RegNum); 1385 } 1386 UberSetIDs.compress(); 1387 1388 // Make the first UberSet a special unallocatable set. 1389 unsigned ZeroID = UberSetIDs[0]; 1390 1391 // Insert Registers into the UberSets formed by union-find. 1392 // Do not resize after this. 1393 UberSets.resize(UberSetIDs.getNumClasses()); 1394 unsigned i = 0; 1395 for (const CodeGenRegister &Reg : Registers) { 1396 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1397 if (!USetID) 1398 USetID = ZeroID; 1399 else if (USetID == ZeroID) 1400 USetID = 0; 1401 1402 UberRegSet *USet = &UberSets[USetID]; 1403 USet->Regs.push_back(&Reg); 1404 sortAndUniqueRegisters(USet->Regs); 1405 RegSets[i++] = USet; 1406 } 1407 } 1408 1409 // Recompute each UberSet weight after changing unit weights. 1410 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1411 CodeGenRegBank &RegBank) { 1412 // Skip the first unallocatable set. 1413 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1414 E = UberSets.end(); I != E; ++I) { 1415 1416 // Initialize all unit weights in this set, and remember the max units/reg. 1417 const CodeGenRegister *Reg = nullptr; 1418 unsigned MaxWeight = 0, Weight = 0; 1419 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1420 if (Reg != UnitI.getReg()) { 1421 if (Weight > MaxWeight) 1422 MaxWeight = Weight; 1423 Reg = UnitI.getReg(); 1424 Weight = 0; 1425 } 1426 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1427 if (!UWeight) { 1428 UWeight = 1; 1429 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1430 } 1431 Weight += UWeight; 1432 } 1433 if (Weight > MaxWeight) 1434 MaxWeight = Weight; 1435 if (I->Weight != MaxWeight) { 1436 DEBUG( 1437 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1438 for (auto &Unit : I->Regs) 1439 dbgs() << " " << Unit->getName(); 1440 dbgs() << "\n"); 1441 // Update the set weight. 1442 I->Weight = MaxWeight; 1443 } 1444 1445 // Find singular determinants. 1446 for (const auto R : I->Regs) { 1447 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1448 I->SingularDeterminants |= R->getRegUnits(); 1449 } 1450 } 1451 } 1452 } 1453 1454 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1455 // a register and its subregisters so that they have the same weight as their 1456 // UberSet. Self-recursion processes the subregister tree in postorder so 1457 // subregisters are normalized first. 1458 // 1459 // Side effects: 1460 // - creates new adopted register units 1461 // - causes superregisters to inherit adopted units 1462 // - increases the weight of "singular" units 1463 // - induces recomputation of UberWeights. 1464 static bool normalizeWeight(CodeGenRegister *Reg, 1465 std::vector<UberRegSet> &UberSets, 1466 std::vector<UberRegSet*> &RegSets, 1467 SparseBitVector<> &NormalRegs, 1468 CodeGenRegister::RegUnitList &NormalUnits, 1469 CodeGenRegBank &RegBank) { 1470 if (NormalRegs.test(Reg->EnumValue)) 1471 return false; 1472 NormalRegs.set(Reg->EnumValue); 1473 1474 bool Changed = false; 1475 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1476 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1477 SRE = SRM.end(); SRI != SRE; ++SRI) { 1478 if (SRI->second == Reg) 1479 continue; // self-cycles happen 1480 1481 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1482 NormalRegs, NormalUnits, RegBank); 1483 } 1484 // Postorder register normalization. 1485 1486 // Inherit register units newly adopted by subregisters. 1487 if (Reg->inheritRegUnits(RegBank)) 1488 computeUberWeights(UberSets, RegBank); 1489 1490 // Check if this register is too skinny for its UberRegSet. 1491 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1492 1493 unsigned RegWeight = Reg->getWeight(RegBank); 1494 if (UberSet->Weight > RegWeight) { 1495 // A register unit's weight can be adjusted only if it is the singular unit 1496 // for this register, has not been used to normalize a subregister's set, 1497 // and has not already been used to singularly determine this UberRegSet. 1498 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1499 if (Reg->getRegUnits().count() != 1 1500 || hasRegUnit(NormalUnits, AdjustUnit) 1501 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1502 // We don't have an adjustable unit, so adopt a new one. 1503 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1504 Reg->adoptRegUnit(AdjustUnit); 1505 // Adopting a unit does not immediately require recomputing set weights. 1506 } 1507 else { 1508 // Adjust the existing single unit. 1509 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1510 // The unit may be shared among sets and registers within this set. 1511 computeUberWeights(UberSets, RegBank); 1512 } 1513 Changed = true; 1514 } 1515 1516 // Mark these units normalized so superregisters can't change their weights. 1517 NormalUnits |= Reg->getRegUnits(); 1518 1519 return Changed; 1520 } 1521 1522 // Compute a weight for each register unit created during getSubRegs. 1523 // 1524 // The goal is that two registers in the same class will have the same weight, 1525 // where each register's weight is defined as sum of its units' weights. 1526 void CodeGenRegBank::computeRegUnitWeights() { 1527 std::vector<UberRegSet> UberSets; 1528 std::vector<UberRegSet*> RegSets(Registers.size()); 1529 computeUberSets(UberSets, RegSets, *this); 1530 // UberSets and RegSets are now immutable. 1531 1532 computeUberWeights(UberSets, *this); 1533 1534 // Iterate over each Register, normalizing the unit weights until reaching 1535 // a fix point. 1536 unsigned NumIters = 0; 1537 for (bool Changed = true; Changed; ++NumIters) { 1538 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1539 Changed = false; 1540 for (auto &Reg : Registers) { 1541 CodeGenRegister::RegUnitList NormalUnits; 1542 SparseBitVector<> NormalRegs; 1543 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1544 NormalUnits, *this); 1545 } 1546 } 1547 } 1548 1549 // Find a set in UniqueSets with the same elements as Set. 1550 // Return an iterator into UniqueSets. 1551 static std::vector<RegUnitSet>::const_iterator 1552 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1553 const RegUnitSet &Set) { 1554 std::vector<RegUnitSet>::const_iterator 1555 I = UniqueSets.begin(), E = UniqueSets.end(); 1556 for(;I != E; ++I) { 1557 if (I->Units == Set.Units) 1558 break; 1559 } 1560 return I; 1561 } 1562 1563 // Return true if the RUSubSet is a subset of RUSuperSet. 1564 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1565 const std::vector<unsigned> &RUSuperSet) { 1566 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1567 RUSubSet.begin(), RUSubSet.end()); 1568 } 1569 1570 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1571 /// but with one or two registers removed. We occasionally have registers like 1572 /// APSR and PC thrown in with the general registers. We also see many 1573 /// special-purpose register subsets, such as tail-call and Thumb 1574 /// encodings. Generating all possible overlapping sets is combinatorial and 1575 /// overkill for modeling pressure. Ideally we could fix this statically in 1576 /// tablegen by (1) having the target define register classes that only include 1577 /// the allocatable registers and marking other classes as non-allocatable and 1578 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1579 /// the purpose of pressure. However, we make an attempt to handle targets that 1580 /// are not nicely defined by merging nearly identical register unit sets 1581 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1582 /// set limit by filtering the reserved registers. 1583 /// 1584 /// Merge sets only if the units have the same weight. For example, on ARM, 1585 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1586 /// should not expand the S set to include D regs. 1587 void CodeGenRegBank::pruneUnitSets() { 1588 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1589 1590 // Form an equivalence class of UnitSets with no significant difference. 1591 std::vector<unsigned> SuperSetIDs; 1592 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1593 SubIdx != EndIdx; ++SubIdx) { 1594 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1595 unsigned SuperIdx = 0; 1596 for (; SuperIdx != EndIdx; ++SuperIdx) { 1597 if (SuperIdx == SubIdx) 1598 continue; 1599 1600 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1601 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1602 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1603 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1604 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1605 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1606 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1607 << "\n"); 1608 // We can pick any of the set names for the merged set. Go for the 1609 // shortest one to avoid picking the name of one of the classes that are 1610 // artificially created by tablegen. So "FPR128_lo" instead of 1611 // "QQQQ_with_qsub3_in_FPR128_lo". 1612 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1613 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1614 break; 1615 } 1616 } 1617 if (SuperIdx == EndIdx) 1618 SuperSetIDs.push_back(SubIdx); 1619 } 1620 // Populate PrunedUnitSets with each equivalence class's superset. 1621 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1622 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1623 unsigned SuperIdx = SuperSetIDs[i]; 1624 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1625 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1626 } 1627 RegUnitSets.swap(PrunedUnitSets); 1628 } 1629 1630 // Create a RegUnitSet for each RegClass that contains all units in the class 1631 // including adopted units that are necessary to model register pressure. Then 1632 // iteratively compute RegUnitSets such that the union of any two overlapping 1633 // RegUnitSets is repreresented. 1634 // 1635 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1636 // RegUnitSet that is a superset of that RegUnitClass. 1637 void CodeGenRegBank::computeRegUnitSets() { 1638 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1639 1640 // Compute a unique RegUnitSet for each RegClass. 1641 auto &RegClasses = getRegClasses(); 1642 for (auto &RC : RegClasses) { 1643 if (!RC.Allocatable) 1644 continue; 1645 1646 // Speculatively grow the RegUnitSets to hold the new set. 1647 RegUnitSets.resize(RegUnitSets.size() + 1); 1648 RegUnitSets.back().Name = RC.getName(); 1649 1650 // Compute a sorted list of units in this class. 1651 RC.buildRegUnitSet(RegUnitSets.back().Units); 1652 1653 // Find an existing RegUnitSet. 1654 std::vector<RegUnitSet>::const_iterator SetI = 1655 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1656 if (SetI != std::prev(RegUnitSets.end())) 1657 RegUnitSets.pop_back(); 1658 } 1659 1660 DEBUG(dbgs() << "\nBefore pruning:\n"; 1661 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1662 USIdx < USEnd; ++USIdx) { 1663 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1664 << ":"; 1665 for (auto &U : RegUnitSets[USIdx].Units) 1666 printRegUnitName(U); 1667 dbgs() << "\n"; 1668 }); 1669 1670 // Iteratively prune unit sets. 1671 pruneUnitSets(); 1672 1673 DEBUG(dbgs() << "\nBefore union:\n"; 1674 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1675 USIdx < USEnd; ++USIdx) { 1676 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1677 << ":"; 1678 for (auto &U : RegUnitSets[USIdx].Units) 1679 printRegUnitName(U); 1680 dbgs() << "\n"; 1681 } 1682 dbgs() << "\nUnion sets:\n"); 1683 1684 // Iterate over all unit sets, including new ones added by this loop. 1685 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1686 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1687 // In theory, this is combinatorial. In practice, it needs to be bounded 1688 // by a small number of sets for regpressure to be efficient. 1689 // If the assert is hit, we need to implement pruning. 1690 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1691 1692 // Compare new sets with all original classes. 1693 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1694 SearchIdx != EndIdx; ++SearchIdx) { 1695 std::set<unsigned> Intersection; 1696 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1697 RegUnitSets[Idx].Units.end(), 1698 RegUnitSets[SearchIdx].Units.begin(), 1699 RegUnitSets[SearchIdx].Units.end(), 1700 std::inserter(Intersection, Intersection.begin())); 1701 if (Intersection.empty()) 1702 continue; 1703 1704 // Speculatively grow the RegUnitSets to hold the new set. 1705 RegUnitSets.resize(RegUnitSets.size() + 1); 1706 RegUnitSets.back().Name = 1707 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1708 1709 std::set_union(RegUnitSets[Idx].Units.begin(), 1710 RegUnitSets[Idx].Units.end(), 1711 RegUnitSets[SearchIdx].Units.begin(), 1712 RegUnitSets[SearchIdx].Units.end(), 1713 std::inserter(RegUnitSets.back().Units, 1714 RegUnitSets.back().Units.begin())); 1715 1716 // Find an existing RegUnitSet, or add the union to the unique sets. 1717 std::vector<RegUnitSet>::const_iterator SetI = 1718 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1719 if (SetI != std::prev(RegUnitSets.end())) 1720 RegUnitSets.pop_back(); 1721 else { 1722 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1723 << " " << RegUnitSets.back().Name << ":"; 1724 for (auto &U : RegUnitSets.back().Units) 1725 printRegUnitName(U); 1726 dbgs() << "\n";); 1727 } 1728 } 1729 } 1730 1731 // Iteratively prune unit sets after inferring supersets. 1732 pruneUnitSets(); 1733 1734 DEBUG(dbgs() << "\n"; 1735 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1736 USIdx < USEnd; ++USIdx) { 1737 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1738 << ":"; 1739 for (auto &U : RegUnitSets[USIdx].Units) 1740 printRegUnitName(U); 1741 dbgs() << "\n"; 1742 }); 1743 1744 // For each register class, list the UnitSets that are supersets. 1745 RegClassUnitSets.resize(RegClasses.size()); 1746 int RCIdx = -1; 1747 for (auto &RC : RegClasses) { 1748 ++RCIdx; 1749 if (!RC.Allocatable) 1750 continue; 1751 1752 // Recompute the sorted list of units in this class. 1753 std::vector<unsigned> RCRegUnits; 1754 RC.buildRegUnitSet(RCRegUnits); 1755 1756 // Don't increase pressure for unallocatable regclasses. 1757 if (RCRegUnits.empty()) 1758 continue; 1759 1760 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1761 for (auto U : RCRegUnits) 1762 printRegUnitName(U); 1763 dbgs() << "\n UnitSetIDs:"); 1764 1765 // Find all supersets. 1766 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1767 USIdx != USEnd; ++USIdx) { 1768 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1769 DEBUG(dbgs() << " " << USIdx); 1770 RegClassUnitSets[RCIdx].push_back(USIdx); 1771 } 1772 } 1773 DEBUG(dbgs() << "\n"); 1774 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1775 } 1776 1777 // For each register unit, ensure that we have the list of UnitSets that 1778 // contain the unit. Normally, this matches an existing list of UnitSets for a 1779 // register class. If not, we create a new entry in RegClassUnitSets as a 1780 // "fake" register class. 1781 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1782 UnitIdx < UnitEnd; ++UnitIdx) { 1783 std::vector<unsigned> RUSets; 1784 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1785 RegUnitSet &RUSet = RegUnitSets[i]; 1786 if (!is_contained(RUSet.Units, UnitIdx)) 1787 continue; 1788 RUSets.push_back(i); 1789 } 1790 unsigned RCUnitSetsIdx = 0; 1791 for (unsigned e = RegClassUnitSets.size(); 1792 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1793 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1794 break; 1795 } 1796 } 1797 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1798 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1799 // Create a new list of UnitSets as a "fake" register class. 1800 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1801 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1802 } 1803 } 1804 } 1805 1806 void CodeGenRegBank::computeRegUnitLaneMasks() { 1807 for (auto &Register : Registers) { 1808 // Create an initial lane mask for all register units. 1809 const auto &RegUnits = Register.getRegUnits(); 1810 CodeGenRegister::RegUnitLaneMaskList 1811 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 1812 // Iterate through SubRegisters. 1813 typedef CodeGenRegister::SubRegMap SubRegMap; 1814 const SubRegMap &SubRegs = Register.getSubRegs(); 1815 for (SubRegMap::const_iterator S = SubRegs.begin(), 1816 SE = SubRegs.end(); S != SE; ++S) { 1817 CodeGenRegister *SubReg = S->second; 1818 // Ignore non-leaf subregisters, their lane masks are fully covered by 1819 // the leaf subregisters anyway. 1820 if (!SubReg->getSubRegs().empty()) 1821 continue; 1822 CodeGenSubRegIndex *SubRegIndex = S->first; 1823 const CodeGenRegister *SubRegister = S->second; 1824 LaneBitmask LaneMask = SubRegIndex->LaneMask; 1825 // Distribute LaneMask to Register Units touched. 1826 for (unsigned SUI : SubRegister->getRegUnits()) { 1827 bool Found = false; 1828 unsigned u = 0; 1829 for (unsigned RU : RegUnits) { 1830 if (SUI == RU) { 1831 RegUnitLaneMasks[u] |= LaneMask; 1832 assert(!Found); 1833 Found = true; 1834 } 1835 ++u; 1836 } 1837 (void)Found; 1838 assert(Found); 1839 } 1840 } 1841 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1842 } 1843 } 1844 1845 void CodeGenRegBank::computeDerivedInfo() { 1846 computeComposites(); 1847 computeSubRegLaneMasks(); 1848 1849 // Compute a weight for each register unit created during getSubRegs. 1850 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1851 computeRegUnitWeights(); 1852 1853 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1854 // supersets for the union of overlapping sets. 1855 computeRegUnitSets(); 1856 1857 computeRegUnitLaneMasks(); 1858 1859 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 1860 for (CodeGenRegisterClass &RC : RegClasses) { 1861 RC.HasDisjunctSubRegs = false; 1862 RC.CoveredBySubRegs = true; 1863 for (const CodeGenRegister *Reg : RC.getMembers()) { 1864 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 1865 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 1866 } 1867 } 1868 1869 // Get the weight of each set. 1870 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1871 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1872 1873 // Find the order of each set. 1874 RegUnitSetOrder.reserve(RegUnitSets.size()); 1875 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1876 RegUnitSetOrder.push_back(Idx); 1877 1878 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1879 [this](unsigned ID1, unsigned ID2) { 1880 return getRegPressureSet(ID1).Units.size() < 1881 getRegPressureSet(ID2).Units.size(); 1882 }); 1883 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1884 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1885 } 1886 } 1887 1888 // 1889 // Synthesize missing register class intersections. 1890 // 1891 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1892 // returns a maximal register class for all X. 1893 // 1894 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1895 assert(!RegClasses.empty()); 1896 // Stash the iterator to the last element so that this loop doesn't visit 1897 // elements added by the getOrCreateSubClass call within it. 1898 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1899 I != std::next(E); ++I) { 1900 CodeGenRegisterClass *RC1 = RC; 1901 CodeGenRegisterClass *RC2 = &*I; 1902 if (RC1 == RC2) 1903 continue; 1904 1905 // Compute the set intersection of RC1 and RC2. 1906 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 1907 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 1908 CodeGenRegister::Vec Intersection; 1909 std::set_intersection( 1910 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 1911 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 1912 1913 // Skip disjoint class pairs. 1914 if (Intersection.empty()) 1915 continue; 1916 1917 // If RC1 and RC2 have different spill sizes or alignments, use the 1918 // larger size for sub-classing. If they are equal, prefer RC1. 1919 if (RC2->SpillSize > RC1->SpillSize || 1920 (RC2->SpillSize == RC1->SpillSize && 1921 RC2->SpillAlignment > RC1->SpillAlignment)) 1922 std::swap(RC1, RC2); 1923 1924 getOrCreateSubClass(RC1, &Intersection, 1925 RC1->getName() + "_and_" + RC2->getName()); 1926 } 1927 } 1928 1929 // 1930 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1931 // 1932 // Make sure that the set of registers in RC with a given SubIdx sub-register 1933 // form a register class. Update RC->SubClassWithSubReg. 1934 // 1935 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1936 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1937 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 1938 deref<llvm::less>> SubReg2SetMap; 1939 1940 // Compute the set of registers supporting each SubRegIndex. 1941 SubReg2SetMap SRSets; 1942 for (const auto R : RC->getMembers()) { 1943 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 1944 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1945 E = SRM.end(); I != E; ++I) 1946 SRSets[I->first].push_back(R); 1947 } 1948 1949 for (auto I : SRSets) 1950 sortAndUniqueRegisters(I.second); 1951 1952 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1953 // numerical order to visit synthetic indices last. 1954 for (const auto &SubIdx : SubRegIndices) { 1955 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1956 // Unsupported SubRegIndex. Skip it. 1957 if (I == SRSets.end()) 1958 continue; 1959 // In most cases, all RC registers support the SubRegIndex. 1960 if (I->second.size() == RC->getMembers().size()) { 1961 RC->setSubClassWithSubReg(&SubIdx, RC); 1962 continue; 1963 } 1964 // This is a real subset. See if we have a matching class. 1965 CodeGenRegisterClass *SubRC = 1966 getOrCreateSubClass(RC, &I->second, 1967 RC->getName() + "_with_" + I->first->getName()); 1968 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1969 } 1970 } 1971 1972 // 1973 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1974 // 1975 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1976 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1977 // 1978 1979 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1980 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1981 SmallVector<std::pair<const CodeGenRegister*, 1982 const CodeGenRegister*>, 16> SSPairs; 1983 BitVector TopoSigs(getNumTopoSigs()); 1984 1985 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1986 for (auto &SubIdx : SubRegIndices) { 1987 // Skip indexes that aren't fully supported by RC's registers. This was 1988 // computed by inferSubClassWithSubReg() above which should have been 1989 // called first. 1990 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1991 continue; 1992 1993 // Build list of (Super, Sub) pairs for this SubIdx. 1994 SSPairs.clear(); 1995 TopoSigs.reset(); 1996 for (const auto Super : RC->getMembers()) { 1997 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1998 assert(Sub && "Missing sub-register"); 1999 SSPairs.push_back(std::make_pair(Super, Sub)); 2000 TopoSigs.set(Sub->getTopoSig()); 2001 } 2002 2003 // Iterate over sub-register class candidates. Ignore classes created by 2004 // this loop. They will never be useful. 2005 // Store an iterator to the last element (not end) so that this loop doesn't 2006 // visit newly inserted elements. 2007 assert(!RegClasses.empty()); 2008 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2009 I != std::next(E); ++I) { 2010 CodeGenRegisterClass &SubRC = *I; 2011 // Topological shortcut: SubRC members have the wrong shape. 2012 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2013 continue; 2014 // Compute the subset of RC that maps into SubRC. 2015 CodeGenRegister::Vec SubSetVec; 2016 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2017 if (SubRC.contains(SSPairs[i].second)) 2018 SubSetVec.push_back(SSPairs[i].first); 2019 2020 if (SubSetVec.empty()) 2021 continue; 2022 2023 // RC injects completely into SubRC. 2024 sortAndUniqueRegisters(SubSetVec); 2025 if (SubSetVec.size() == SSPairs.size()) { 2026 SubRC.addSuperRegClass(&SubIdx, RC); 2027 continue; 2028 } 2029 2030 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2031 // class. 2032 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2033 SubIdx.getName() + "_in_" + 2034 SubRC.getName()); 2035 } 2036 } 2037 } 2038 2039 // 2040 // Infer missing register classes. 2041 // 2042 void CodeGenRegBank::computeInferredRegisterClasses() { 2043 assert(!RegClasses.empty()); 2044 // When this function is called, the register classes have not been sorted 2045 // and assigned EnumValues yet. That means getSubClasses(), 2046 // getSuperClasses(), and hasSubClass() functions are defunct. 2047 2048 // Use one-before-the-end so it doesn't move forward when new elements are 2049 // added. 2050 auto FirstNewRC = std::prev(RegClasses.end()); 2051 2052 // Visit all register classes, including the ones being added by the loop. 2053 // Watch out for iterator invalidation here. 2054 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2055 CodeGenRegisterClass *RC = &*I; 2056 2057 // Synthesize answers for getSubClassWithSubReg(). 2058 inferSubClassWithSubReg(RC); 2059 2060 // Synthesize answers for getCommonSubClass(). 2061 inferCommonSubClass(RC); 2062 2063 // Synthesize answers for getMatchingSuperRegClass(). 2064 inferMatchingSuperRegClass(RC); 2065 2066 // New register classes are created while this loop is running, and we need 2067 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2068 // to match old super-register classes with sub-register classes created 2069 // after inferMatchingSuperRegClass was called. At this point, 2070 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2071 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2072 if (I == FirstNewRC) { 2073 auto NextNewRC = std::prev(RegClasses.end()); 2074 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2075 ++I2) 2076 inferMatchingSuperRegClass(&*I2, E2); 2077 FirstNewRC = NextNewRC; 2078 } 2079 } 2080 } 2081 2082 /// getRegisterClassForRegister - Find the register class that contains the 2083 /// specified physical register. If the register is not in a register class, 2084 /// return null. If the register is in multiple classes, and the classes have a 2085 /// superset-subset relationship and the same set of types, return the 2086 /// superclass. Otherwise return null. 2087 const CodeGenRegisterClass* 2088 CodeGenRegBank::getRegClassForRegister(Record *R) { 2089 const CodeGenRegister *Reg = getReg(R); 2090 const CodeGenRegisterClass *FoundRC = nullptr; 2091 for (const auto &RC : getRegClasses()) { 2092 if (!RC.contains(Reg)) 2093 continue; 2094 2095 // If this is the first class that contains the register, 2096 // make a note of it and go on to the next class. 2097 if (!FoundRC) { 2098 FoundRC = &RC; 2099 continue; 2100 } 2101 2102 // If a register's classes have different types, return null. 2103 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2104 return nullptr; 2105 2106 // Check to see if the previously found class that contains 2107 // the register is a subclass of the current class. If so, 2108 // prefer the superclass. 2109 if (RC.hasSubClass(FoundRC)) { 2110 FoundRC = &RC; 2111 continue; 2112 } 2113 2114 // Check to see if the previously found class that contains 2115 // the register is a superclass of the current class. If so, 2116 // prefer the superclass. 2117 if (FoundRC->hasSubClass(&RC)) 2118 continue; 2119 2120 // Multiple classes, and neither is a superclass of the other. 2121 // Return null. 2122 return nullptr; 2123 } 2124 return FoundRC; 2125 } 2126 2127 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2128 SetVector<const CodeGenRegister*> Set; 2129 2130 // First add Regs with all sub-registers. 2131 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2132 CodeGenRegister *Reg = getReg(Regs[i]); 2133 if (Set.insert(Reg)) 2134 // Reg is new, add all sub-registers. 2135 // The pre-ordering is not important here. 2136 Reg->addSubRegsPreOrder(Set, *this); 2137 } 2138 2139 // Second, find all super-registers that are completely covered by the set. 2140 for (unsigned i = 0; i != Set.size(); ++i) { 2141 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2142 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2143 const CodeGenRegister *Super = SR[j]; 2144 if (!Super->CoveredBySubRegs || Set.count(Super)) 2145 continue; 2146 // This new super-register is covered by its sub-registers. 2147 bool AllSubsInSet = true; 2148 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2149 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2150 E = SRM.end(); I != E; ++I) 2151 if (!Set.count(I->second)) { 2152 AllSubsInSet = false; 2153 break; 2154 } 2155 // All sub-registers in Set, add Super as well. 2156 // We will visit Super later to recheck its super-registers. 2157 if (AllSubsInSet) 2158 Set.insert(Super); 2159 } 2160 } 2161 2162 // Convert to BitVector. 2163 BitVector BV(Registers.size() + 1); 2164 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2165 BV.set(Set[i]->EnumValue); 2166 return BV; 2167 } 2168 2169 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2170 if (Unit < NumNativeRegUnits) 2171 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2172 else 2173 dbgs() << " #" << Unit; 2174 } 2175