1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenRegisters.h"
15 #include "CodeGenTarget.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/IntEqClasses.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Record.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <iterator>
37 #include <map>
38 #include <queue>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc-emitter"
48 
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52 
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55   Name = R->getName();
56   if (R->getValue("Namespace"))
57     Namespace = R->getValueAsString("Namespace");
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61 
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
65     EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
66 }
67 
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75 
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79 
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91 
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (Record *Part : Parts)
100       IdxParts.push_back(RegBank.getSubRegIdx(Part));
101     setConcatenationOf(IdxParts);
102   }
103 }
104 
105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask.any())
108     return LaneMask;
109 
110   // Recursion guard, shouldn't be required.
111   LaneMask = LaneBitmask::getAll();
112 
113   // The lane mask is simply the union of all sub-indices.
114   LaneBitmask M;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M.any() && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121 
122 void CodeGenSubRegIndex::setConcatenationOf(
123     ArrayRef<CodeGenSubRegIndex*> Parts) {
124   if (ConcatenationOf.empty())
125     ConcatenationOf.assign(Parts.begin(), Parts.end());
126   else
127     assert(std::equal(Parts.begin(), Parts.end(),
128                       ConcatenationOf.begin()) && "parts consistent");
129 }
130 
131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132   for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133        I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134     CodeGenSubRegIndex *SubIdx = *I;
135     SubIdx->computeConcatTransitiveClosure();
136 #ifndef NDEBUG
137     for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138       assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139 #endif
140 
141     if (SubIdx->ConcatenationOf.empty()) {
142       ++I;
143     } else {
144       I = ConcatenationOf.erase(I);
145       I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                  SubIdx->ConcatenationOf.end());
147       I += SubIdx->ConcatenationOf.size();
148     }
149   }
150 }
151 
152 //===----------------------------------------------------------------------===//
153 //                              CodeGenRegister
154 //===----------------------------------------------------------------------===//
155 
156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157   : TheDef(R),
158     EnumValue(Enum),
159     CostPerUse(R->getValueAsInt("CostPerUse")),
160     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
161     HasDisjunctSubRegs(false),
162     SubRegsComplete(false),
163     SuperRegsComplete(false),
164     TopoSig(~0u) {
165   Artificial = R->getValueAsBit("isArtificial");
166 }
167 
168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
169   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
170   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
171 
172   if (SRIs.size() != SRs.size())
173     PrintFatalError(TheDef->getLoc(),
174                     "SubRegs and SubRegIndices must have the same size");
175 
176   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
177     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
178     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
179   }
180 
181   // Also compute leading super-registers. Each register has a list of
182   // covered-by-subregs super-registers where it appears as the first explicit
183   // sub-register.
184   //
185   // This is used by computeSecondarySubRegs() to find candidates.
186   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
187     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
188 
189   // Add ad hoc alias links. This is a symmetric relationship between two
190   // registers, so build a symmetric graph by adding links in both ends.
191   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
192   for (Record *Alias : Aliases) {
193     CodeGenRegister *Reg = RegBank.getReg(Alias);
194     ExplicitAliases.push_back(Reg);
195     Reg->ExplicitAliases.push_back(this);
196   }
197 }
198 
199 const StringRef CodeGenRegister::getName() const {
200   assert(TheDef && "no def");
201   return TheDef->getName();
202 }
203 
204 namespace {
205 
206 // Iterate over all register units in a set of registers.
207 class RegUnitIterator {
208   CodeGenRegister::Vec::const_iterator RegI, RegE;
209   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
210 
211 public:
212   RegUnitIterator(const CodeGenRegister::Vec &Regs):
213     RegI(Regs.begin()), RegE(Regs.end()) {
214 
215     if (RegI != RegE) {
216       UnitI = (*RegI)->getRegUnits().begin();
217       UnitE = (*RegI)->getRegUnits().end();
218       advance();
219     }
220   }
221 
222   bool isValid() const { return UnitI != UnitE; }
223 
224   unsigned operator* () const { assert(isValid()); return *UnitI; }
225 
226   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
227 
228   /// Preincrement.  Move to the next unit.
229   void operator++() {
230     assert(isValid() && "Cannot advance beyond the last operand");
231     ++UnitI;
232     advance();
233   }
234 
235 protected:
236   void advance() {
237     while (UnitI == UnitE) {
238       if (++RegI == RegE)
239         break;
240       UnitI = (*RegI)->getRegUnits().begin();
241       UnitE = (*RegI)->getRegUnits().end();
242     }
243   }
244 };
245 
246 } // end anonymous namespace
247 
248 // Return true of this unit appears in RegUnits.
249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250   return RegUnits.test(Unit);
251 }
252 
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256   bool changed = false;
257   for (const auto &SubReg : SubRegs) {
258     CodeGenRegister *SR = SubReg.second;
259     // Merge the subregister's units into this register's RegUnits.
260     changed |= (RegUnits |= SR->RegUnits);
261   }
262 
263   return changed;
264 }
265 
266 const CodeGenRegister::SubRegMap &
267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268   // Only compute this map once.
269   if (SubRegsComplete)
270     return SubRegs;
271   SubRegsComplete = true;
272 
273   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274 
275   // First insert the explicit subregs and make sure they are fully indexed.
276   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277     CodeGenRegister *SR = ExplicitSubRegs[i];
278     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279     if (!SR->Artificial)
280       Idx->Artificial = false;
281     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                       " appears twice in Register " + getName());
284     // Map explicit sub-registers first, so the names take precedence.
285     // The inherited sub-registers are mapped below.
286     SubReg2Idx.insert(std::make_pair(SR, Idx));
287   }
288 
289   // Keep track of inherited subregs and how they can be reached.
290   SmallPtrSet<CodeGenRegister*, 8> Orphans;
291 
292   // Clone inherited subregs and place duplicate entries in Orphans.
293   // Here the order is important - earlier subregs take precedence.
294   for (CodeGenRegister *ESR : ExplicitSubRegs) {
295     const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296     HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297 
298     for (const auto &SR : Map) {
299       if (!SubRegs.insert(SR).second)
300         Orphans.insert(SR.second);
301     }
302   }
303 
304   // Expand any composed subreg indices.
305   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307   // expanded subreg indices recursively.
308   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309   for (unsigned i = 0; i != Indices.size(); ++i) {
310     CodeGenSubRegIndex *Idx = Indices[i];
311     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312     CodeGenRegister *SR = SubRegs[Idx];
313     const SubRegMap &Map = SR->computeSubRegs(RegBank);
314 
315     // Look at the possible compositions of Idx.
316     // They may not all be supported by SR.
317     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
318            E = Comps.end(); I != E; ++I) {
319       SubRegMap::const_iterator SRI = Map.find(I->first);
320       if (SRI == Map.end())
321         continue; // Idx + I->first doesn't exist in SR.
322       // Add I->second as a name for the subreg SRI->second, assuming it is
323       // orphaned, and the name isn't already used for something else.
324       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
325         continue;
326       // We found a new name for the orphaned sub-register.
327       SubRegs.insert(std::make_pair(I->second, SRI->second));
328       Indices.push_back(I->second);
329     }
330   }
331 
332   // Now Orphans contains the inherited subregisters without a direct index.
333   // Create inferred indexes for all missing entries.
334   // Work backwards in the Indices vector in order to compose subregs bottom-up.
335   // Consider this subreg sequence:
336   //
337   //   qsub_1 -> dsub_0 -> ssub_0
338   //
339   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340   // can be reached in two different ways:
341   //
342   //   qsub_1 -> ssub_0
343   //   dsub_2 -> ssub_0
344   //
345   // We pick the latter composition because another register may have [dsub_0,
346   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
347   // dsub_2 -> ssub_0 composition can be shared.
348   while (!Indices.empty() && !Orphans.empty()) {
349     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
350     CodeGenRegister *SR = SubRegs[Idx];
351     const SubRegMap &Map = SR->computeSubRegs(RegBank);
352     for (const auto &SubReg : Map)
353       if (Orphans.erase(SubReg.second))
354         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
355   }
356 
357   // Compute the inverse SubReg -> Idx map.
358   for (const auto &SubReg : SubRegs) {
359     if (SubReg.second == this) {
360       ArrayRef<SMLoc> Loc;
361       if (TheDef)
362         Loc = TheDef->getLoc();
363       PrintFatalError(Loc, "Register " + getName() +
364                       " has itself as a sub-register");
365     }
366 
367     // Compute AllSuperRegsCovered.
368     if (!CoveredBySubRegs)
369       SubReg.first->AllSuperRegsCovered = false;
370 
371     // Ensure that every sub-register has a unique name.
372     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
373       SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
374     if (Ins->second == SubReg.first)
375       continue;
376     // Trouble: Two different names for SubReg.second.
377     ArrayRef<SMLoc> Loc;
378     if (TheDef)
379       Loc = TheDef->getLoc();
380     PrintFatalError(Loc, "Sub-register can't have two names: " +
381                   SubReg.second->getName() + " available as " +
382                   SubReg.first->getName() + " and " + Ins->second->getName());
383   }
384 
385   // Derive possible names for sub-register concatenations from any explicit
386   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387   // that getConcatSubRegIndex() won't invent any concatenated indices that the
388   // user already specified.
389   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
390     CodeGenRegister *SR = ExplicitSubRegs[i];
391     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
392         SR->Artificial)
393       continue;
394 
395     // SR is composed of multiple sub-regs. Find their names in this register.
396     SmallVector<CodeGenSubRegIndex*, 8> Parts;
397     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
398       CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
399       if (!I.Artificial)
400         Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
401     }
402 
403     // Offer this as an existing spelling for the concatenation of Parts.
404     CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
405     Idx.setConcatenationOf(Parts);
406   }
407 
408   // Initialize RegUnitList. Because getSubRegs is called recursively, this
409   // processes the register hierarchy in postorder.
410   //
411   // Inherit all sub-register units. It is good enough to look at the explicit
412   // sub-registers, the other registers won't contribute any more units.
413   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
414     CodeGenRegister *SR = ExplicitSubRegs[i];
415     RegUnits |= SR->RegUnits;
416   }
417 
418   // Absent any ad hoc aliasing, we create one register unit per leaf register.
419   // These units correspond to the maximal cliques in the register overlap
420   // graph which is optimal.
421   //
422   // When there is ad hoc aliasing, we simply create one unit per edge in the
423   // undirected ad hoc aliasing graph. Technically, we could do better by
424   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
425   // are extremely rare anyway (I've never seen one), so we don't bother with
426   // the added complexity.
427   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
428     CodeGenRegister *AR = ExplicitAliases[i];
429     // Only visit each edge once.
430     if (AR->SubRegsComplete)
431       continue;
432     // Create a RegUnit representing this alias edge, and add it to both
433     // registers.
434     unsigned Unit = RegBank.newRegUnit(this, AR);
435     RegUnits.set(Unit);
436     AR->RegUnits.set(Unit);
437   }
438 
439   // Finally, create units for leaf registers without ad hoc aliases. Note that
440   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
441   // necessary. This means the aliasing leaf registers can share a single unit.
442   if (RegUnits.empty())
443     RegUnits.set(RegBank.newRegUnit(this));
444 
445   // We have now computed the native register units. More may be adopted later
446   // for balancing purposes.
447   NativeRegUnits = RegUnits;
448 
449   return SubRegs;
450 }
451 
452 // In a register that is covered by its sub-registers, try to find redundant
453 // sub-registers. For example:
454 //
455 //   QQ0 = {Q0, Q1}
456 //   Q0 = {D0, D1}
457 //   Q1 = {D2, D3}
458 //
459 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
460 // the register definition.
461 //
462 // The explicitly specified registers form a tree. This function discovers
463 // sub-register relationships that would force a DAG.
464 //
465 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
466   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
467 
468   std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
469   for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
470     SubRegQueue.push(P);
471 
472   // Look at the leading super-registers of each sub-register. Those are the
473   // candidates for new sub-registers, assuming they are fully contained in
474   // this register.
475   while (!SubRegQueue.empty()) {
476     CodeGenSubRegIndex *SubRegIdx;
477     const CodeGenRegister *SubReg;
478     std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
479     SubRegQueue.pop();
480 
481     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
482     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
483       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
484       // Already got this sub-register?
485       if (Cand == this || getSubRegIndex(Cand))
486         continue;
487       // Check if each component of Cand is already a sub-register.
488       assert(!Cand->ExplicitSubRegs.empty() &&
489              "Super-register has no sub-registers");
490       if (Cand->ExplicitSubRegs.size() == 1)
491         continue;
492       SmallVector<CodeGenSubRegIndex*, 8> Parts;
493       // We know that the first component is (SubRegIdx,SubReg). However we
494       // may still need to split it into smaller subregister parts.
495       assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
496       assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
497       for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
498         if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
499           if (SubRegIdx->ConcatenationOf.empty()) {
500             Parts.push_back(SubRegIdx);
501           } else
502             for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
503               Parts.push_back(SubIdx);
504         } else {
505           // Sub-register doesn't exist.
506           Parts.clear();
507           break;
508         }
509       }
510       // There is nothing to do if some Cand sub-register is not part of this
511       // register.
512       if (Parts.empty())
513         continue;
514 
515       // Each part of Cand is a sub-register of this. Make the full Cand also
516       // a sub-register with a concatenated sub-register index.
517       CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
518       std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
519           std::make_pair(Concat, Cand);
520 
521       if (!SubRegs.insert(NewSubReg).second)
522         continue;
523 
524       // We inserted a new subregister.
525       NewSubRegs.push_back(NewSubReg);
526       SubRegQueue.push(NewSubReg);
527       SubReg2Idx.insert(std::make_pair(Cand, Concat));
528     }
529   }
530 
531   // Create sub-register index composition maps for the synthesized indices.
532   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
533     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
534     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
535     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
536            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
537       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
538       if (!SubIdx)
539         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
540                         SI->second->getName() + " in " + getName());
541       NewIdx->addComposite(SI->first, SubIdx);
542     }
543   }
544 }
545 
546 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
547   // Only visit each register once.
548   if (SuperRegsComplete)
549     return;
550   SuperRegsComplete = true;
551 
552   // Make sure all sub-registers have been visited first, so the super-reg
553   // lists will be topologically ordered.
554   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
555        I != E; ++I)
556     I->second->computeSuperRegs(RegBank);
557 
558   // Now add this as a super-register on all sub-registers.
559   // Also compute the TopoSigId in post-order.
560   TopoSigId Id;
561   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
562        I != E; ++I) {
563     // Topological signature computed from SubIdx, TopoId(SubReg).
564     // Loops and idempotent indices have TopoSig = ~0u.
565     Id.push_back(I->first->EnumValue);
566     Id.push_back(I->second->TopoSig);
567 
568     // Don't add duplicate entries.
569     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
570       continue;
571     I->second->SuperRegs.push_back(this);
572   }
573   TopoSig = RegBank.getTopoSig(Id);
574 }
575 
576 void
577 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
578                                     CodeGenRegBank &RegBank) const {
579   assert(SubRegsComplete && "Must precompute sub-registers");
580   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
581     CodeGenRegister *SR = ExplicitSubRegs[i];
582     if (OSet.insert(SR))
583       SR->addSubRegsPreOrder(OSet, RegBank);
584   }
585   // Add any secondary sub-registers that weren't part of the explicit tree.
586   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
587        I != E; ++I)
588     OSet.insert(I->second);
589 }
590 
591 // Get the sum of this register's unit weights.
592 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
593   unsigned Weight = 0;
594   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
595        I != E; ++I) {
596     Weight += RegBank.getRegUnit(*I).Weight;
597   }
598   return Weight;
599 }
600 
601 //===----------------------------------------------------------------------===//
602 //                               RegisterTuples
603 //===----------------------------------------------------------------------===//
604 
605 // A RegisterTuples def is used to generate pseudo-registers from lists of
606 // sub-registers. We provide a SetTheory expander class that returns the new
607 // registers.
608 namespace {
609 
610 struct TupleExpander : SetTheory::Expander {
611   // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
612   // the synthesized definitions for their lifetime.
613   std::vector<std::unique_ptr<Record>> &SynthDefs;
614 
615   TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
616       : SynthDefs(SynthDefs) {}
617 
618   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
619     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
620     unsigned Dim = Indices.size();
621     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
622     if (Dim != SubRegs->size())
623       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
624     if (Dim < 2)
625       PrintFatalError(Def->getLoc(),
626                       "Tuples must have at least 2 sub-registers");
627 
628     // Evaluate the sub-register lists to be zipped.
629     unsigned Length = ~0u;
630     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
631     for (unsigned i = 0; i != Dim; ++i) {
632       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
633       Length = std::min(Length, unsigned(Lists[i].size()));
634     }
635 
636     if (Length == 0)
637       return;
638 
639     // Precompute some types.
640     Record *RegisterCl = Def->getRecords().getClass("Register");
641     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
642     StringInit *BlankName = StringInit::get("");
643 
644     // Zip them up.
645     for (unsigned n = 0; n != Length; ++n) {
646       std::string Name;
647       Record *Proto = Lists[0][n];
648       std::vector<Init*> Tuple;
649       unsigned CostPerUse = 0;
650       for (unsigned i = 0; i != Dim; ++i) {
651         Record *Reg = Lists[i][n];
652         if (i) Name += '_';
653         Name += Reg->getName();
654         Tuple.push_back(DefInit::get(Reg));
655         CostPerUse = std::max(CostPerUse,
656                               unsigned(Reg->getValueAsInt("CostPerUse")));
657       }
658 
659       // Create a new Record representing the synthesized register. This record
660       // is only for consumption by CodeGenRegister, it is not added to the
661       // RecordKeeper.
662       SynthDefs.emplace_back(
663           llvm::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
664       Record *NewReg = SynthDefs.back().get();
665       Elts.insert(NewReg);
666 
667       // Copy Proto super-classes.
668       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
669       for (const auto &SuperPair : Supers)
670         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
671 
672       // Copy Proto fields.
673       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
674         RecordVal RV = Proto->getValues()[i];
675 
676         // Skip existing fields, like NAME.
677         if (NewReg->getValue(RV.getNameInit()))
678           continue;
679 
680         StringRef Field = RV.getName();
681 
682         // Replace the sub-register list with Tuple.
683         if (Field == "SubRegs")
684           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
685 
686         // Provide a blank AsmName. MC hacks are required anyway.
687         if (Field == "AsmName")
688           RV.setValue(BlankName);
689 
690         // CostPerUse is aggregated from all Tuple members.
691         if (Field == "CostPerUse")
692           RV.setValue(IntInit::get(CostPerUse));
693 
694         // Composite registers are always covered by sub-registers.
695         if (Field == "CoveredBySubRegs")
696           RV.setValue(BitInit::get(true));
697 
698         // Copy fields from the RegisterTuples def.
699         if (Field == "SubRegIndices" ||
700             Field == "CompositeIndices") {
701           NewReg->addValue(*Def->getValue(Field));
702           continue;
703         }
704 
705         // Some fields get their default uninitialized value.
706         if (Field == "DwarfNumbers" ||
707             Field == "DwarfAlias" ||
708             Field == "Aliases") {
709           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
710             NewReg->addValue(*DefRV);
711           continue;
712         }
713 
714         // Everything else is copied from Proto.
715         NewReg->addValue(RV);
716       }
717     }
718   }
719 };
720 
721 } // end anonymous namespace
722 
723 //===----------------------------------------------------------------------===//
724 //                            CodeGenRegisterClass
725 //===----------------------------------------------------------------------===//
726 
727 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
728   llvm::sort(M, deref<llvm::less>());
729   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
730 }
731 
732 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
733   : TheDef(R),
734     Name(R->getName()),
735     TopoSigs(RegBank.getNumTopoSigs()),
736     EnumValue(-1) {
737 
738   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
739   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
740     Record *Type = TypeList[i];
741     if (!Type->isSubClassOf("ValueType"))
742       PrintFatalError("RegTypes list member '" + Type->getName() +
743         "' does not derive from the ValueType class!");
744     VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
745   }
746   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
747 
748   // Allocation order 0 is the full set. AltOrders provides others.
749   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
750   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
751   Orders.resize(1 + AltOrders->size());
752 
753   // Default allocation order always contains all registers.
754   Artificial = true;
755   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
756     Orders[0].push_back((*Elements)[i]);
757     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
758     Members.push_back(Reg);
759     Artificial &= Reg->Artificial;
760     TopoSigs.set(Reg->getTopoSig());
761   }
762   sortAndUniqueRegisters(Members);
763 
764   // Alternative allocation orders may be subsets.
765   SetTheory::RecSet Order;
766   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
767     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
768     Orders[1 + i].append(Order.begin(), Order.end());
769     // Verify that all altorder members are regclass members.
770     while (!Order.empty()) {
771       CodeGenRegister *Reg = RegBank.getReg(Order.back());
772       Order.pop_back();
773       if (!contains(Reg))
774         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
775                       " is not a class member");
776     }
777   }
778 
779   Namespace = R->getValueAsString("Namespace");
780 
781   if (const RecordVal *RV = R->getValue("RegInfos"))
782     if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
783       RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
784   unsigned Size = R->getValueAsInt("Size");
785   assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
786          "Impossible to determine register size");
787   if (!RSI.hasDefault()) {
788     RegSizeInfo RI;
789     RI.RegSize = RI.SpillSize = Size ? Size
790                                      : VTs[0].getSimple().getSizeInBits();
791     RI.SpillAlignment = R->getValueAsInt("Alignment");
792     RSI.Map.insert({DefaultMode, RI});
793   }
794 
795   CopyCost = R->getValueAsInt("CopyCost");
796   Allocatable = R->getValueAsBit("isAllocatable");
797   AltOrderSelect = R->getValueAsString("AltOrderSelect");
798   int AllocationPriority = R->getValueAsInt("AllocationPriority");
799   if (AllocationPriority < 0 || AllocationPriority > 63)
800     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
801   this->AllocationPriority = AllocationPriority;
802 }
803 
804 // Create an inferred register class that was missing from the .td files.
805 // Most properties will be inherited from the closest super-class after the
806 // class structure has been computed.
807 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
808                                            StringRef Name, Key Props)
809   : Members(*Props.Members),
810     TheDef(nullptr),
811     Name(Name),
812     TopoSigs(RegBank.getNumTopoSigs()),
813     EnumValue(-1),
814     RSI(Props.RSI),
815     CopyCost(0),
816     Allocatable(true),
817     AllocationPriority(0) {
818   Artificial = true;
819   for (const auto R : Members) {
820     TopoSigs.set(R->getTopoSig());
821     Artificial &= R->Artificial;
822   }
823 }
824 
825 // Compute inherited propertied for a synthesized register class.
826 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
827   assert(!getDef() && "Only synthesized classes can inherit properties");
828   assert(!SuperClasses.empty() && "Synthesized class without super class");
829 
830   // The last super-class is the smallest one.
831   CodeGenRegisterClass &Super = *SuperClasses.back();
832 
833   // Most properties are copied directly.
834   // Exceptions are members, size, and alignment
835   Namespace = Super.Namespace;
836   VTs = Super.VTs;
837   CopyCost = Super.CopyCost;
838   Allocatable = Super.Allocatable;
839   AltOrderSelect = Super.AltOrderSelect;
840   AllocationPriority = Super.AllocationPriority;
841 
842   // Copy all allocation orders, filter out foreign registers from the larger
843   // super-class.
844   Orders.resize(Super.Orders.size());
845   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
846     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
847       if (contains(RegBank.getReg(Super.Orders[i][j])))
848         Orders[i].push_back(Super.Orders[i][j]);
849 }
850 
851 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
852   return std::binary_search(Members.begin(), Members.end(), Reg,
853                             deref<llvm::less>());
854 }
855 
856 namespace llvm {
857 
858   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
859     OS << "{ " << K.RSI;
860     for (const auto R : *K.Members)
861       OS << ", " << R->getName();
862     return OS << " }";
863   }
864 
865 } // end namespace llvm
866 
867 // This is a simple lexicographical order that can be used to search for sets.
868 // It is not the same as the topological order provided by TopoOrderRC.
869 bool CodeGenRegisterClass::Key::
870 operator<(const CodeGenRegisterClass::Key &B) const {
871   assert(Members && B.Members);
872   return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
873 }
874 
875 // Returns true if RC is a strict subclass.
876 // RC is a sub-class of this class if it is a valid replacement for any
877 // instruction operand where a register of this classis required. It must
878 // satisfy these conditions:
879 //
880 // 1. All RC registers are also in this.
881 // 2. The RC spill size must not be smaller than our spill size.
882 // 3. RC spill alignment must be compatible with ours.
883 //
884 static bool testSubClass(const CodeGenRegisterClass *A,
885                          const CodeGenRegisterClass *B) {
886   return A->RSI.isSubClassOf(B->RSI) &&
887          std::includes(A->getMembers().begin(), A->getMembers().end(),
888                        B->getMembers().begin(), B->getMembers().end(),
889                        deref<llvm::less>());
890 }
891 
892 /// Sorting predicate for register classes.  This provides a topological
893 /// ordering that arranges all register classes before their sub-classes.
894 ///
895 /// Register classes with the same registers, spill size, and alignment form a
896 /// clique.  They will be ordered alphabetically.
897 ///
898 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
899                         const CodeGenRegisterClass &PB) {
900   auto *A = &PA;
901   auto *B = &PB;
902   if (A == B)
903     return false;
904 
905   if (A->RSI < B->RSI)
906     return true;
907   if (A->RSI != B->RSI)
908     return false;
909 
910   // Order by descending set size.  Note that the classes' allocation order may
911   // not have been computed yet.  The Members set is always vaild.
912   if (A->getMembers().size() > B->getMembers().size())
913     return true;
914   if (A->getMembers().size() < B->getMembers().size())
915     return false;
916 
917   // Finally order by name as a tie breaker.
918   return StringRef(A->getName()) < B->getName();
919 }
920 
921 std::string CodeGenRegisterClass::getQualifiedName() const {
922   if (Namespace.empty())
923     return getName();
924   else
925     return (Namespace + "::" + getName()).str();
926 }
927 
928 // Compute sub-classes of all register classes.
929 // Assume the classes are ordered topologically.
930 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
931   auto &RegClasses = RegBank.getRegClasses();
932 
933   // Visit backwards so sub-classes are seen first.
934   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
935     CodeGenRegisterClass &RC = *I;
936     RC.SubClasses.resize(RegClasses.size());
937     RC.SubClasses.set(RC.EnumValue);
938     if (RC.Artificial)
939       continue;
940 
941     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
942     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
943       CodeGenRegisterClass &SubRC = *I2;
944       if (RC.SubClasses.test(SubRC.EnumValue))
945         continue;
946       if (!testSubClass(&RC, &SubRC))
947         continue;
948       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
949       // check them again.
950       RC.SubClasses |= SubRC.SubClasses;
951     }
952 
953     // Sweep up missed clique members.  They will be immediately preceding RC.
954     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
955       RC.SubClasses.set(I2->EnumValue);
956   }
957 
958   // Compute the SuperClasses lists from the SubClasses vectors.
959   for (auto &RC : RegClasses) {
960     const BitVector &SC = RC.getSubClasses();
961     auto I = RegClasses.begin();
962     for (int s = 0, next_s = SC.find_first(); next_s != -1;
963          next_s = SC.find_next(s)) {
964       std::advance(I, next_s - s);
965       s = next_s;
966       if (&*I == &RC)
967         continue;
968       I->SuperClasses.push_back(&RC);
969     }
970   }
971 
972   // With the class hierarchy in place, let synthesized register classes inherit
973   // properties from their closest super-class. The iteration order here can
974   // propagate properties down multiple levels.
975   for (auto &RC : RegClasses)
976     if (!RC.getDef())
977       RC.inheritProperties(RegBank);
978 }
979 
980 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
981 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
982     CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
983   auto SizeOrder = [](const CodeGenRegisterClass *A,
984                       const CodeGenRegisterClass *B) {
985     return A->getMembers().size() > B->getMembers().size();
986   };
987 
988   auto &RegClasses = RegBank.getRegClasses();
989 
990   // Find all the subclasses of this one that fully support the sub-register
991   // index and order them by size. BiggestSuperRC should always be first.
992   CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
993   if (!BiggestSuperRegRC)
994     return None;
995   BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
996   std::vector<CodeGenRegisterClass *> SuperRegRCs;
997   for (auto &RC : RegClasses)
998     if (SuperRegRCsBV[RC.EnumValue])
999       SuperRegRCs.emplace_back(&RC);
1000   llvm::sort(SuperRegRCs, SizeOrder);
1001   assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first");
1002 
1003   // Find all the subreg classes and order them by size too.
1004   std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1005   for (auto &RC: RegClasses) {
1006     BitVector SuperRegClassesBV(RegClasses.size());
1007     RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1008     if (SuperRegClassesBV.any())
1009       SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1010   }
1011   llvm::sort(SuperRegClasses,
1012              [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1013                  const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1014                return SizeOrder(A.first, B.first);
1015              });
1016 
1017   // Find the biggest subclass and subreg class such that R:subidx is in the
1018   // subreg class for all R in subclass.
1019   //
1020   // For example:
1021   // All registers in X86's GR64 have a sub_32bit subregister but no class
1022   // exists that contains all the 32-bit subregisters because GR64 contains RIP
1023   // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1024   // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1025   // having excluded RIP, we are able to find a SubRegRC (GR32).
1026   CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1027   CodeGenRegisterClass *SubRegRC = nullptr;
1028   for (auto *SuperRegRC : SuperRegRCs) {
1029     for (const auto &SuperRegClassPair : SuperRegClasses) {
1030       const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1031       if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1032         SubRegRC = SuperRegClassPair.first;
1033         ChosenSuperRegClass = SuperRegRC;
1034 
1035         // If SubRegRC is bigger than SuperRegRC then there are members of
1036         // SubRegRC that don't have super registers via SubIdx. Keep looking to
1037         // find a better fit and fall back on this one if there isn't one.
1038         //
1039         // This is intended to prevent X86 from making odd choices such as
1040         // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1041         // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1042         // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1043         // mapping.
1044         if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1045           return std::make_pair(ChosenSuperRegClass, SubRegRC);
1046       }
1047     }
1048 
1049     // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1050     // registers, then we're done.
1051     if (ChosenSuperRegClass)
1052       return std::make_pair(ChosenSuperRegClass, SubRegRC);
1053   }
1054 
1055   return None;
1056 }
1057 
1058 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1059                                               BitVector &Out) const {
1060   auto FindI = SuperRegClasses.find(SubIdx);
1061   if (FindI == SuperRegClasses.end())
1062     return;
1063   for (CodeGenRegisterClass *RC : FindI->second)
1064     Out.set(RC->EnumValue);
1065 }
1066 
1067 // Populate a unique sorted list of units from a register set.
1068 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1069   std::vector<unsigned> &RegUnits) const {
1070   std::vector<unsigned> TmpUnits;
1071   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1072     const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1073     if (!RU.Artificial)
1074       TmpUnits.push_back(*UnitI);
1075   }
1076   llvm::sort(TmpUnits);
1077   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1078                    std::back_inserter(RegUnits));
1079 }
1080 
1081 //===----------------------------------------------------------------------===//
1082 //                               CodeGenRegBank
1083 //===----------------------------------------------------------------------===//
1084 
1085 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1086                                const CodeGenHwModes &Modes) : CGH(Modes) {
1087   // Configure register Sets to understand register classes and tuples.
1088   Sets.addFieldExpander("RegisterClass", "MemberList");
1089   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1090   Sets.addExpander("RegisterTuples",
1091                    llvm::make_unique<TupleExpander>(SynthDefs));
1092 
1093   // Read in the user-defined (named) sub-register indices.
1094   // More indices will be synthesized later.
1095   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1096   llvm::sort(SRIs, LessRecord());
1097   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1098     getSubRegIdx(SRIs[i]);
1099   // Build composite maps from ComposedOf fields.
1100   for (auto &Idx : SubRegIndices)
1101     Idx.updateComponents(*this);
1102 
1103   // Read in the register definitions.
1104   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1105   llvm::sort(Regs, LessRecordRegister());
1106   // Assign the enumeration values.
1107   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1108     getReg(Regs[i]);
1109 
1110   // Expand tuples and number the new registers.
1111   std::vector<Record*> Tups =
1112     Records.getAllDerivedDefinitions("RegisterTuples");
1113 
1114   for (Record *R : Tups) {
1115     std::vector<Record *> TupRegs = *Sets.expand(R);
1116     llvm::sort(TupRegs, LessRecordRegister());
1117     for (Record *RC : TupRegs)
1118       getReg(RC);
1119   }
1120 
1121   // Now all the registers are known. Build the object graph of explicit
1122   // register-register references.
1123   for (auto &Reg : Registers)
1124     Reg.buildObjectGraph(*this);
1125 
1126   // Compute register name map.
1127   for (auto &Reg : Registers)
1128     // FIXME: This could just be RegistersByName[name] = register, except that
1129     // causes some failures in MIPS - perhaps they have duplicate register name
1130     // entries? (or maybe there's a reason for it - I don't know much about this
1131     // code, just drive-by refactoring)
1132     RegistersByName.insert(
1133         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1134 
1135   // Precompute all sub-register maps.
1136   // This will create Composite entries for all inferred sub-register indices.
1137   for (auto &Reg : Registers)
1138     Reg.computeSubRegs(*this);
1139 
1140   // Compute transitive closure of subregister index ConcatenationOf vectors
1141   // and initialize ConcatIdx map.
1142   for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1143     SRI.computeConcatTransitiveClosure();
1144     if (!SRI.ConcatenationOf.empty())
1145       ConcatIdx.insert(std::make_pair(
1146           SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1147                                              SRI.ConcatenationOf.end()), &SRI));
1148   }
1149 
1150   // Infer even more sub-registers by combining leading super-registers.
1151   for (auto &Reg : Registers)
1152     if (Reg.CoveredBySubRegs)
1153       Reg.computeSecondarySubRegs(*this);
1154 
1155   // After the sub-register graph is complete, compute the topologically
1156   // ordered SuperRegs list.
1157   for (auto &Reg : Registers)
1158     Reg.computeSuperRegs(*this);
1159 
1160   // For each pair of Reg:SR, if both are non-artificial, mark the
1161   // corresponding sub-register index as non-artificial.
1162   for (auto &Reg : Registers) {
1163     if (Reg.Artificial)
1164       continue;
1165     for (auto P : Reg.getSubRegs()) {
1166       const CodeGenRegister *SR = P.second;
1167       if (!SR->Artificial)
1168         P.first->Artificial = false;
1169     }
1170   }
1171 
1172   // Native register units are associated with a leaf register. They've all been
1173   // discovered now.
1174   NumNativeRegUnits = RegUnits.size();
1175 
1176   // Read in register class definitions.
1177   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1178   if (RCs.empty())
1179     PrintFatalError("No 'RegisterClass' subclasses defined!");
1180 
1181   // Allocate user-defined register classes.
1182   for (auto *R : RCs) {
1183     RegClasses.emplace_back(*this, R);
1184     CodeGenRegisterClass &RC = RegClasses.back();
1185     if (!RC.Artificial)
1186       addToMaps(&RC);
1187   }
1188 
1189   // Infer missing classes to create a full algebra.
1190   computeInferredRegisterClasses();
1191 
1192   // Order register classes topologically and assign enum values.
1193   RegClasses.sort(TopoOrderRC);
1194   unsigned i = 0;
1195   for (auto &RC : RegClasses)
1196     RC.EnumValue = i++;
1197   CodeGenRegisterClass::computeSubClasses(*this);
1198 }
1199 
1200 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1201 CodeGenSubRegIndex*
1202 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1203   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1204   return &SubRegIndices.back();
1205 }
1206 
1207 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1208   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1209   if (Idx)
1210     return Idx;
1211   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1212   Idx = &SubRegIndices.back();
1213   return Idx;
1214 }
1215 
1216 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1217   CodeGenRegister *&Reg = Def2Reg[Def];
1218   if (Reg)
1219     return Reg;
1220   Registers.emplace_back(Def, Registers.size() + 1);
1221   Reg = &Registers.back();
1222   return Reg;
1223 }
1224 
1225 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1226   if (Record *Def = RC->getDef())
1227     Def2RC.insert(std::make_pair(Def, RC));
1228 
1229   // Duplicate classes are rejected by insert().
1230   // That's OK, we only care about the properties handled by CGRC::Key.
1231   CodeGenRegisterClass::Key K(*RC);
1232   Key2RC.insert(std::make_pair(K, RC));
1233 }
1234 
1235 // Create a synthetic sub-class if it is missing.
1236 CodeGenRegisterClass*
1237 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1238                                     const CodeGenRegister::Vec *Members,
1239                                     StringRef Name) {
1240   // Synthetic sub-class has the same size and alignment as RC.
1241   CodeGenRegisterClass::Key K(Members, RC->RSI);
1242   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1243   if (FoundI != Key2RC.end())
1244     return FoundI->second;
1245 
1246   // Sub-class doesn't exist, create a new one.
1247   RegClasses.emplace_back(*this, Name, K);
1248   addToMaps(&RegClasses.back());
1249   return &RegClasses.back();
1250 }
1251 
1252 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1253   if (CodeGenRegisterClass *RC = Def2RC[Def])
1254     return RC;
1255 
1256   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1257 }
1258 
1259 CodeGenSubRegIndex*
1260 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1261                                         CodeGenSubRegIndex *B) {
1262   // Look for an existing entry.
1263   CodeGenSubRegIndex *Comp = A->compose(B);
1264   if (Comp)
1265     return Comp;
1266 
1267   // None exists, synthesize one.
1268   std::string Name = A->getName() + "_then_" + B->getName();
1269   Comp = createSubRegIndex(Name, A->getNamespace());
1270   A->addComposite(B, Comp);
1271   return Comp;
1272 }
1273 
1274 CodeGenSubRegIndex *CodeGenRegBank::
1275 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1276   assert(Parts.size() > 1 && "Need two parts to concatenate");
1277 #ifndef NDEBUG
1278   for (CodeGenSubRegIndex *Idx : Parts) {
1279     assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1280   }
1281 #endif
1282 
1283   // Look for an existing entry.
1284   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1285   if (Idx)
1286     return Idx;
1287 
1288   // None exists, synthesize one.
1289   std::string Name = Parts.front()->getName();
1290   // Determine whether all parts are contiguous.
1291   bool isContinuous = true;
1292   unsigned Size = Parts.front()->Size;
1293   unsigned LastOffset = Parts.front()->Offset;
1294   unsigned LastSize = Parts.front()->Size;
1295   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1296     Name += '_';
1297     Name += Parts[i]->getName();
1298     Size += Parts[i]->Size;
1299     if (Parts[i]->Offset != (LastOffset + LastSize))
1300       isContinuous = false;
1301     LastOffset = Parts[i]->Offset;
1302     LastSize = Parts[i]->Size;
1303   }
1304   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1305   Idx->Size = Size;
1306   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1307   Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1308   return Idx;
1309 }
1310 
1311 void CodeGenRegBank::computeComposites() {
1312   using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1313 
1314   // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1315   // register to (sub)register associated with the action of the left-hand
1316   // side subregister.
1317   std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1318   for (const CodeGenRegister &R : Registers) {
1319     const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1320     for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1321       SubRegAction[P.first].insert({&R, P.second});
1322   }
1323 
1324   // Calculate the composition of two subregisters as compositions of their
1325   // associated actions.
1326   auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1327                                   const CodeGenSubRegIndex *Sub2) {
1328     RegMap C;
1329     const RegMap &Img1 = SubRegAction.at(Sub1);
1330     const RegMap &Img2 = SubRegAction.at(Sub2);
1331     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1332       auto F = Img2.find(P.second);
1333       if (F != Img2.end())
1334         C.insert({P.first, F->second});
1335     }
1336     return C;
1337   };
1338 
1339   // Check if the two maps agree on the intersection of their domains.
1340   auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1341     // Technically speaking, an empty map agrees with any other map, but
1342     // this could flag false positives. We're interested in non-vacuous
1343     // agreements.
1344     if (Map1.empty() || Map2.empty())
1345       return false;
1346     for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1347       auto F = Map2.find(P.first);
1348       if (F == Map2.end() || P.second != F->second)
1349         return false;
1350     }
1351     return true;
1352   };
1353 
1354   using CompositePair = std::pair<const CodeGenSubRegIndex*,
1355                                   const CodeGenSubRegIndex*>;
1356   SmallSet<CompositePair,4> UserDefined;
1357   for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1358     for (auto P : Idx.getComposites())
1359       UserDefined.insert(std::make_pair(&Idx, P.first));
1360 
1361   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1362   // and many registers will share TopoSigs on regular architectures.
1363   BitVector TopoSigs(getNumTopoSigs());
1364 
1365   for (const auto &Reg1 : Registers) {
1366     // Skip identical subreg structures already processed.
1367     if (TopoSigs.test(Reg1.getTopoSig()))
1368       continue;
1369     TopoSigs.set(Reg1.getTopoSig());
1370 
1371     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1372     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1373          e1 = SRM1.end(); i1 != e1; ++i1) {
1374       CodeGenSubRegIndex *Idx1 = i1->first;
1375       CodeGenRegister *Reg2 = i1->second;
1376       // Ignore identity compositions.
1377       if (&Reg1 == Reg2)
1378         continue;
1379       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1380       // Try composing Idx1 with another SubRegIndex.
1381       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1382            e2 = SRM2.end(); i2 != e2; ++i2) {
1383         CodeGenSubRegIndex *Idx2 = i2->first;
1384         CodeGenRegister *Reg3 = i2->second;
1385         // Ignore identity compositions.
1386         if (Reg2 == Reg3)
1387           continue;
1388         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1389         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1390         assert(Idx3 && "Sub-register doesn't have an index");
1391 
1392         // Conflicting composition? Emit a warning but allow it.
1393         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1394           // If the composition was not user-defined, always emit a warning.
1395           if (!UserDefined.count({Idx1, Idx2}) ||
1396               agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1397             PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1398                          " and " + Idx2->getQualifiedName() +
1399                          " compose ambiguously as " + Prev->getQualifiedName() +
1400                          " or " + Idx3->getQualifiedName());
1401         }
1402       }
1403     }
1404   }
1405 }
1406 
1407 // Compute lane masks. This is similar to register units, but at the
1408 // sub-register index level. Each bit in the lane mask is like a register unit
1409 // class, and two lane masks will have a bit in common if two sub-register
1410 // indices overlap in some register.
1411 //
1412 // Conservatively share a lane mask bit if two sub-register indices overlap in
1413 // some registers, but not in others. That shouldn't happen a lot.
1414 void CodeGenRegBank::computeSubRegLaneMasks() {
1415   // First assign individual bits to all the leaf indices.
1416   unsigned Bit = 0;
1417   // Determine mask of lanes that cover their registers.
1418   CoveringLanes = LaneBitmask::getAll();
1419   for (auto &Idx : SubRegIndices) {
1420     if (Idx.getComposites().empty()) {
1421       if (Bit > LaneBitmask::BitWidth) {
1422         PrintFatalError(
1423           Twine("Ran out of lanemask bits to represent subregister ")
1424           + Idx.getName());
1425       }
1426       Idx.LaneMask = LaneBitmask::getLane(Bit);
1427       ++Bit;
1428     } else {
1429       Idx.LaneMask = LaneBitmask::getNone();
1430     }
1431   }
1432 
1433   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1434   // here is that for each possible target subregister we look at the leafs
1435   // in the subregister graph that compose for this target and create
1436   // transformation sequences for the lanemasks. Each step in the sequence
1437   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1438   // are usually the same for many subregisters we can easily combine the steps
1439   // by combining the masks.
1440   for (const auto &Idx : SubRegIndices) {
1441     const auto &Composites = Idx.getComposites();
1442     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1443 
1444     if (Composites.empty()) {
1445       // Moving from a class with no subregisters we just had a single lane:
1446       // The subregister must be a leaf subregister and only occupies 1 bit.
1447       // Move the bit from the class without subregisters into that position.
1448       unsigned DstBit = Idx.LaneMask.getHighestLane();
1449       assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1450              "Must be a leaf subregister");
1451       MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1452       LaneTransforms.push_back(MaskRol);
1453     } else {
1454       // Go through all leaf subregisters and find the ones that compose with
1455       // Idx. These make out all possible valid bits in the lane mask we want to
1456       // transform. Looking only at the leafs ensure that only a single bit in
1457       // the mask is set.
1458       unsigned NextBit = 0;
1459       for (auto &Idx2 : SubRegIndices) {
1460         // Skip non-leaf subregisters.
1461         if (!Idx2.getComposites().empty())
1462           continue;
1463         // Replicate the behaviour from the lane mask generation loop above.
1464         unsigned SrcBit = NextBit;
1465         LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1466         if (NextBit < LaneBitmask::BitWidth-1)
1467           ++NextBit;
1468         assert(Idx2.LaneMask == SrcMask);
1469 
1470         // Get the composed subregister if there is any.
1471         auto C = Composites.find(&Idx2);
1472         if (C == Composites.end())
1473           continue;
1474         const CodeGenSubRegIndex *Composite = C->second;
1475         // The Composed subreg should be a leaf subreg too
1476         assert(Composite->getComposites().empty());
1477 
1478         // Create Mask+Rotate operation and merge with existing ops if possible.
1479         unsigned DstBit = Composite->LaneMask.getHighestLane();
1480         int Shift = DstBit - SrcBit;
1481         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1482                                         : LaneBitmask::BitWidth + Shift;
1483         for (auto &I : LaneTransforms) {
1484           if (I.RotateLeft == RotateLeft) {
1485             I.Mask |= SrcMask;
1486             SrcMask = LaneBitmask::getNone();
1487           }
1488         }
1489         if (SrcMask.any()) {
1490           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1491           LaneTransforms.push_back(MaskRol);
1492         }
1493       }
1494     }
1495 
1496     // Optimize if the transformation consists of one step only: Set mask to
1497     // 0xffffffff (including some irrelevant invalid bits) so that it should
1498     // merge with more entries later while compressing the table.
1499     if (LaneTransforms.size() == 1)
1500       LaneTransforms[0].Mask = LaneBitmask::getAll();
1501 
1502     // Further compression optimization: For invalid compositions resulting
1503     // in a sequence with 0 entries we can just pick any other. Choose
1504     // Mask 0xffffffff with Rotation 0.
1505     if (LaneTransforms.size() == 0) {
1506       MaskRolPair P = { LaneBitmask::getAll(), 0 };
1507       LaneTransforms.push_back(P);
1508     }
1509   }
1510 
1511   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1512   // by the sub-register graph? This doesn't occur in any known targets.
1513 
1514   // Inherit lanes from composites.
1515   for (const auto &Idx : SubRegIndices) {
1516     LaneBitmask Mask = Idx.computeLaneMask();
1517     // If some super-registers without CoveredBySubRegs use this index, we can
1518     // no longer assume that the lanes are covering their registers.
1519     if (!Idx.AllSuperRegsCovered)
1520       CoveringLanes &= ~Mask;
1521   }
1522 
1523   // Compute lane mask combinations for register classes.
1524   for (auto &RegClass : RegClasses) {
1525     LaneBitmask LaneMask;
1526     for (const auto &SubRegIndex : SubRegIndices) {
1527       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1528         continue;
1529       LaneMask |= SubRegIndex.LaneMask;
1530     }
1531 
1532     // For classes without any subregisters set LaneMask to 1 instead of 0.
1533     // This makes it easier for client code to handle classes uniformly.
1534     if (LaneMask.none())
1535       LaneMask = LaneBitmask::getLane(0);
1536 
1537     RegClass.LaneMask = LaneMask;
1538   }
1539 }
1540 
1541 namespace {
1542 
1543 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1544 // the transitive closure of the union of overlapping register
1545 // classes. Together, the UberRegSets form a partition of the registers. If we
1546 // consider overlapping register classes to be connected, then each UberRegSet
1547 // is a set of connected components.
1548 //
1549 // An UberRegSet will likely be a horizontal slice of register names of
1550 // the same width. Nontrivial subregisters should then be in a separate
1551 // UberRegSet. But this property isn't required for valid computation of
1552 // register unit weights.
1553 //
1554 // A Weight field caches the max per-register unit weight in each UberRegSet.
1555 //
1556 // A set of SingularDeterminants flags single units of some register in this set
1557 // for which the unit weight equals the set weight. These units should not have
1558 // their weight increased.
1559 struct UberRegSet {
1560   CodeGenRegister::Vec Regs;
1561   unsigned Weight = 0;
1562   CodeGenRegister::RegUnitList SingularDeterminants;
1563 
1564   UberRegSet() = default;
1565 };
1566 
1567 } // end anonymous namespace
1568 
1569 // Partition registers into UberRegSets, where each set is the transitive
1570 // closure of the union of overlapping register classes.
1571 //
1572 // UberRegSets[0] is a special non-allocatable set.
1573 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1574                             std::vector<UberRegSet*> &RegSets,
1575                             CodeGenRegBank &RegBank) {
1576   const auto &Registers = RegBank.getRegisters();
1577 
1578   // The Register EnumValue is one greater than its index into Registers.
1579   assert(Registers.size() == Registers.back().EnumValue &&
1580          "register enum value mismatch");
1581 
1582   // For simplicitly make the SetID the same as EnumValue.
1583   IntEqClasses UberSetIDs(Registers.size()+1);
1584   std::set<unsigned> AllocatableRegs;
1585   for (auto &RegClass : RegBank.getRegClasses()) {
1586     if (!RegClass.Allocatable)
1587       continue;
1588 
1589     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1590     if (Regs.empty())
1591       continue;
1592 
1593     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1594     assert(USetID && "register number 0 is invalid");
1595 
1596     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1597     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1598       AllocatableRegs.insert((*I)->EnumValue);
1599       UberSetIDs.join(USetID, (*I)->EnumValue);
1600     }
1601   }
1602   // Combine non-allocatable regs.
1603   for (const auto &Reg : Registers) {
1604     unsigned RegNum = Reg.EnumValue;
1605     if (AllocatableRegs.count(RegNum))
1606       continue;
1607 
1608     UberSetIDs.join(0, RegNum);
1609   }
1610   UberSetIDs.compress();
1611 
1612   // Make the first UberSet a special unallocatable set.
1613   unsigned ZeroID = UberSetIDs[0];
1614 
1615   // Insert Registers into the UberSets formed by union-find.
1616   // Do not resize after this.
1617   UberSets.resize(UberSetIDs.getNumClasses());
1618   unsigned i = 0;
1619   for (const CodeGenRegister &Reg : Registers) {
1620     unsigned USetID = UberSetIDs[Reg.EnumValue];
1621     if (!USetID)
1622       USetID = ZeroID;
1623     else if (USetID == ZeroID)
1624       USetID = 0;
1625 
1626     UberRegSet *USet = &UberSets[USetID];
1627     USet->Regs.push_back(&Reg);
1628     sortAndUniqueRegisters(USet->Regs);
1629     RegSets[i++] = USet;
1630   }
1631 }
1632 
1633 // Recompute each UberSet weight after changing unit weights.
1634 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1635                                CodeGenRegBank &RegBank) {
1636   // Skip the first unallocatable set.
1637   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1638          E = UberSets.end(); I != E; ++I) {
1639 
1640     // Initialize all unit weights in this set, and remember the max units/reg.
1641     const CodeGenRegister *Reg = nullptr;
1642     unsigned MaxWeight = 0, Weight = 0;
1643     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1644       if (Reg != UnitI.getReg()) {
1645         if (Weight > MaxWeight)
1646           MaxWeight = Weight;
1647         Reg = UnitI.getReg();
1648         Weight = 0;
1649       }
1650       if (!RegBank.getRegUnit(*UnitI).Artificial) {
1651         unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1652         if (!UWeight) {
1653           UWeight = 1;
1654           RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1655         }
1656         Weight += UWeight;
1657       }
1658     }
1659     if (Weight > MaxWeight)
1660       MaxWeight = Weight;
1661     if (I->Weight != MaxWeight) {
1662       LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1663                         << MaxWeight;
1664                  for (auto &Unit
1665                       : I->Regs) dbgs()
1666                  << " " << Unit->getName();
1667                  dbgs() << "\n");
1668       // Update the set weight.
1669       I->Weight = MaxWeight;
1670     }
1671 
1672     // Find singular determinants.
1673     for (const auto R : I->Regs) {
1674       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1675         I->SingularDeterminants |= R->getRegUnits();
1676       }
1677     }
1678   }
1679 }
1680 
1681 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1682 // a register and its subregisters so that they have the same weight as their
1683 // UberSet. Self-recursion processes the subregister tree in postorder so
1684 // subregisters are normalized first.
1685 //
1686 // Side effects:
1687 // - creates new adopted register units
1688 // - causes superregisters to inherit adopted units
1689 // - increases the weight of "singular" units
1690 // - induces recomputation of UberWeights.
1691 static bool normalizeWeight(CodeGenRegister *Reg,
1692                             std::vector<UberRegSet> &UberSets,
1693                             std::vector<UberRegSet*> &RegSets,
1694                             BitVector &NormalRegs,
1695                             CodeGenRegister::RegUnitList &NormalUnits,
1696                             CodeGenRegBank &RegBank) {
1697   NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1698   if (NormalRegs.test(Reg->EnumValue))
1699     return false;
1700   NormalRegs.set(Reg->EnumValue);
1701 
1702   bool Changed = false;
1703   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1704   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1705          SRE = SRM.end(); SRI != SRE; ++SRI) {
1706     if (SRI->second == Reg)
1707       continue; // self-cycles happen
1708 
1709     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1710                                NormalRegs, NormalUnits, RegBank);
1711   }
1712   // Postorder register normalization.
1713 
1714   // Inherit register units newly adopted by subregisters.
1715   if (Reg->inheritRegUnits(RegBank))
1716     computeUberWeights(UberSets, RegBank);
1717 
1718   // Check if this register is too skinny for its UberRegSet.
1719   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1720 
1721   unsigned RegWeight = Reg->getWeight(RegBank);
1722   if (UberSet->Weight > RegWeight) {
1723     // A register unit's weight can be adjusted only if it is the singular unit
1724     // for this register, has not been used to normalize a subregister's set,
1725     // and has not already been used to singularly determine this UberRegSet.
1726     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1727     if (Reg->getRegUnits().count() != 1
1728         || hasRegUnit(NormalUnits, AdjustUnit)
1729         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1730       // We don't have an adjustable unit, so adopt a new one.
1731       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1732       Reg->adoptRegUnit(AdjustUnit);
1733       // Adopting a unit does not immediately require recomputing set weights.
1734     }
1735     else {
1736       // Adjust the existing single unit.
1737       if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1738         RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1739       // The unit may be shared among sets and registers within this set.
1740       computeUberWeights(UberSets, RegBank);
1741     }
1742     Changed = true;
1743   }
1744 
1745   // Mark these units normalized so superregisters can't change their weights.
1746   NormalUnits |= Reg->getRegUnits();
1747 
1748   return Changed;
1749 }
1750 
1751 // Compute a weight for each register unit created during getSubRegs.
1752 //
1753 // The goal is that two registers in the same class will have the same weight,
1754 // where each register's weight is defined as sum of its units' weights.
1755 void CodeGenRegBank::computeRegUnitWeights() {
1756   std::vector<UberRegSet> UberSets;
1757   std::vector<UberRegSet*> RegSets(Registers.size());
1758   computeUberSets(UberSets, RegSets, *this);
1759   // UberSets and RegSets are now immutable.
1760 
1761   computeUberWeights(UberSets, *this);
1762 
1763   // Iterate over each Register, normalizing the unit weights until reaching
1764   // a fix point.
1765   unsigned NumIters = 0;
1766   for (bool Changed = true; Changed; ++NumIters) {
1767     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1768     Changed = false;
1769     for (auto &Reg : Registers) {
1770       CodeGenRegister::RegUnitList NormalUnits;
1771       BitVector NormalRegs;
1772       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1773                                  NormalUnits, *this);
1774     }
1775   }
1776 }
1777 
1778 // Find a set in UniqueSets with the same elements as Set.
1779 // Return an iterator into UniqueSets.
1780 static std::vector<RegUnitSet>::const_iterator
1781 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1782                const RegUnitSet &Set) {
1783   std::vector<RegUnitSet>::const_iterator
1784     I = UniqueSets.begin(), E = UniqueSets.end();
1785   for(;I != E; ++I) {
1786     if (I->Units == Set.Units)
1787       break;
1788   }
1789   return I;
1790 }
1791 
1792 // Return true if the RUSubSet is a subset of RUSuperSet.
1793 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1794                             const std::vector<unsigned> &RUSuperSet) {
1795   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1796                        RUSubSet.begin(), RUSubSet.end());
1797 }
1798 
1799 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1800 /// but with one or two registers removed. We occasionally have registers like
1801 /// APSR and PC thrown in with the general registers. We also see many
1802 /// special-purpose register subsets, such as tail-call and Thumb
1803 /// encodings. Generating all possible overlapping sets is combinatorial and
1804 /// overkill for modeling pressure. Ideally we could fix this statically in
1805 /// tablegen by (1) having the target define register classes that only include
1806 /// the allocatable registers and marking other classes as non-allocatable and
1807 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1808 /// the purpose of pressure.  However, we make an attempt to handle targets that
1809 /// are not nicely defined by merging nearly identical register unit sets
1810 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1811 /// set limit by filtering the reserved registers.
1812 ///
1813 /// Merge sets only if the units have the same weight. For example, on ARM,
1814 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1815 /// should not expand the S set to include D regs.
1816 void CodeGenRegBank::pruneUnitSets() {
1817   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1818 
1819   // Form an equivalence class of UnitSets with no significant difference.
1820   std::vector<unsigned> SuperSetIDs;
1821   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1822        SubIdx != EndIdx; ++SubIdx) {
1823     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1824     unsigned SuperIdx = 0;
1825     for (; SuperIdx != EndIdx; ++SuperIdx) {
1826       if (SuperIdx == SubIdx)
1827         continue;
1828 
1829       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1830       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1831       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1832           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1833           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1834           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1835         LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1836                           << "\n");
1837         // We can pick any of the set names for the merged set. Go for the
1838         // shortest one to avoid picking the name of one of the classes that are
1839         // artificially created by tablegen. So "FPR128_lo" instead of
1840         // "QQQQ_with_qsub3_in_FPR128_lo".
1841         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1842           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1843         break;
1844       }
1845     }
1846     if (SuperIdx == EndIdx)
1847       SuperSetIDs.push_back(SubIdx);
1848   }
1849   // Populate PrunedUnitSets with each equivalence class's superset.
1850   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1851   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1852     unsigned SuperIdx = SuperSetIDs[i];
1853     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1854     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1855   }
1856   RegUnitSets.swap(PrunedUnitSets);
1857 }
1858 
1859 // Create a RegUnitSet for each RegClass that contains all units in the class
1860 // including adopted units that are necessary to model register pressure. Then
1861 // iteratively compute RegUnitSets such that the union of any two overlapping
1862 // RegUnitSets is repreresented.
1863 //
1864 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1865 // RegUnitSet that is a superset of that RegUnitClass.
1866 void CodeGenRegBank::computeRegUnitSets() {
1867   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1868 
1869   // Compute a unique RegUnitSet for each RegClass.
1870   auto &RegClasses = getRegClasses();
1871   for (auto &RC : RegClasses) {
1872     if (!RC.Allocatable || RC.Artificial)
1873       continue;
1874 
1875     // Speculatively grow the RegUnitSets to hold the new set.
1876     RegUnitSets.resize(RegUnitSets.size() + 1);
1877     RegUnitSets.back().Name = RC.getName();
1878 
1879     // Compute a sorted list of units in this class.
1880     RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1881 
1882     // Find an existing RegUnitSet.
1883     std::vector<RegUnitSet>::const_iterator SetI =
1884       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1885     if (SetI != std::prev(RegUnitSets.end()))
1886       RegUnitSets.pop_back();
1887   }
1888 
1889   LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1890                                                    USEnd = RegUnitSets.size();
1891                                                    USIdx < USEnd; ++USIdx) {
1892     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1893     for (auto &U : RegUnitSets[USIdx].Units)
1894       printRegUnitName(U);
1895     dbgs() << "\n";
1896   });
1897 
1898   // Iteratively prune unit sets.
1899   pruneUnitSets();
1900 
1901   LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1902                                                  USEnd = RegUnitSets.size();
1903                                                  USIdx < USEnd; ++USIdx) {
1904     dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1905     for (auto &U : RegUnitSets[USIdx].Units)
1906       printRegUnitName(U);
1907     dbgs() << "\n";
1908   } dbgs() << "\nUnion sets:\n");
1909 
1910   // Iterate over all unit sets, including new ones added by this loop.
1911   unsigned NumRegUnitSubSets = RegUnitSets.size();
1912   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1913     // In theory, this is combinatorial. In practice, it needs to be bounded
1914     // by a small number of sets for regpressure to be efficient.
1915     // If the assert is hit, we need to implement pruning.
1916     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1917 
1918     // Compare new sets with all original classes.
1919     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1920          SearchIdx != EndIdx; ++SearchIdx) {
1921       std::set<unsigned> Intersection;
1922       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1923                             RegUnitSets[Idx].Units.end(),
1924                             RegUnitSets[SearchIdx].Units.begin(),
1925                             RegUnitSets[SearchIdx].Units.end(),
1926                             std::inserter(Intersection, Intersection.begin()));
1927       if (Intersection.empty())
1928         continue;
1929 
1930       // Speculatively grow the RegUnitSets to hold the new set.
1931       RegUnitSets.resize(RegUnitSets.size() + 1);
1932       RegUnitSets.back().Name =
1933         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1934 
1935       std::set_union(RegUnitSets[Idx].Units.begin(),
1936                      RegUnitSets[Idx].Units.end(),
1937                      RegUnitSets[SearchIdx].Units.begin(),
1938                      RegUnitSets[SearchIdx].Units.end(),
1939                      std::inserter(RegUnitSets.back().Units,
1940                                    RegUnitSets.back().Units.begin()));
1941 
1942       // Find an existing RegUnitSet, or add the union to the unique sets.
1943       std::vector<RegUnitSet>::const_iterator SetI =
1944         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1945       if (SetI != std::prev(RegUnitSets.end()))
1946         RegUnitSets.pop_back();
1947       else {
1948         LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1949                           << RegUnitSets.back().Name << ":";
1950                    for (auto &U
1951                         : RegUnitSets.back().Units) printRegUnitName(U);
1952                    dbgs() << "\n";);
1953       }
1954     }
1955   }
1956 
1957   // Iteratively prune unit sets after inferring supersets.
1958   pruneUnitSets();
1959 
1960   LLVM_DEBUG(
1961       dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1962                            USIdx < USEnd; ++USIdx) {
1963         dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1964         for (auto &U : RegUnitSets[USIdx].Units)
1965           printRegUnitName(U);
1966         dbgs() << "\n";
1967       });
1968 
1969   // For each register class, list the UnitSets that are supersets.
1970   RegClassUnitSets.resize(RegClasses.size());
1971   int RCIdx = -1;
1972   for (auto &RC : RegClasses) {
1973     ++RCIdx;
1974     if (!RC.Allocatable)
1975       continue;
1976 
1977     // Recompute the sorted list of units in this class.
1978     std::vector<unsigned> RCRegUnits;
1979     RC.buildRegUnitSet(*this, RCRegUnits);
1980 
1981     // Don't increase pressure for unallocatable regclasses.
1982     if (RCRegUnits.empty())
1983       continue;
1984 
1985     LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1986                for (auto U
1987                     : RCRegUnits) printRegUnitName(U);
1988                dbgs() << "\n  UnitSetIDs:");
1989 
1990     // Find all supersets.
1991     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1992          USIdx != USEnd; ++USIdx) {
1993       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1994         LLVM_DEBUG(dbgs() << " " << USIdx);
1995         RegClassUnitSets[RCIdx].push_back(USIdx);
1996       }
1997     }
1998     LLVM_DEBUG(dbgs() << "\n");
1999     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2000   }
2001 
2002   // For each register unit, ensure that we have the list of UnitSets that
2003   // contain the unit. Normally, this matches an existing list of UnitSets for a
2004   // register class. If not, we create a new entry in RegClassUnitSets as a
2005   // "fake" register class.
2006   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2007        UnitIdx < UnitEnd; ++UnitIdx) {
2008     std::vector<unsigned> RUSets;
2009     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2010       RegUnitSet &RUSet = RegUnitSets[i];
2011       if (!is_contained(RUSet.Units, UnitIdx))
2012         continue;
2013       RUSets.push_back(i);
2014     }
2015     unsigned RCUnitSetsIdx = 0;
2016     for (unsigned e = RegClassUnitSets.size();
2017          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2018       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2019         break;
2020       }
2021     }
2022     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2023     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2024       // Create a new list of UnitSets as a "fake" register class.
2025       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2026       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2027     }
2028   }
2029 }
2030 
2031 void CodeGenRegBank::computeRegUnitLaneMasks() {
2032   for (auto &Register : Registers) {
2033     // Create an initial lane mask for all register units.
2034     const auto &RegUnits = Register.getRegUnits();
2035     CodeGenRegister::RegUnitLaneMaskList
2036         RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2037     // Iterate through SubRegisters.
2038     typedef CodeGenRegister::SubRegMap SubRegMap;
2039     const SubRegMap &SubRegs = Register.getSubRegs();
2040     for (SubRegMap::const_iterator S = SubRegs.begin(),
2041          SE = SubRegs.end(); S != SE; ++S) {
2042       CodeGenRegister *SubReg = S->second;
2043       // Ignore non-leaf subregisters, their lane masks are fully covered by
2044       // the leaf subregisters anyway.
2045       if (!SubReg->getSubRegs().empty())
2046         continue;
2047       CodeGenSubRegIndex *SubRegIndex = S->first;
2048       const CodeGenRegister *SubRegister = S->second;
2049       LaneBitmask LaneMask = SubRegIndex->LaneMask;
2050       // Distribute LaneMask to Register Units touched.
2051       for (unsigned SUI : SubRegister->getRegUnits()) {
2052         bool Found = false;
2053         unsigned u = 0;
2054         for (unsigned RU : RegUnits) {
2055           if (SUI == RU) {
2056             RegUnitLaneMasks[u] |= LaneMask;
2057             assert(!Found);
2058             Found = true;
2059           }
2060           ++u;
2061         }
2062         (void)Found;
2063         assert(Found);
2064       }
2065     }
2066     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2067   }
2068 }
2069 
2070 void CodeGenRegBank::computeDerivedInfo() {
2071   computeComposites();
2072   computeSubRegLaneMasks();
2073 
2074   // Compute a weight for each register unit created during getSubRegs.
2075   // This may create adopted register units (with unit # >= NumNativeRegUnits).
2076   computeRegUnitWeights();
2077 
2078   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2079   // supersets for the union of overlapping sets.
2080   computeRegUnitSets();
2081 
2082   computeRegUnitLaneMasks();
2083 
2084   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2085   for (CodeGenRegisterClass &RC : RegClasses) {
2086     RC.HasDisjunctSubRegs = false;
2087     RC.CoveredBySubRegs = true;
2088     for (const CodeGenRegister *Reg : RC.getMembers()) {
2089       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2090       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2091     }
2092   }
2093 
2094   // Get the weight of each set.
2095   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2096     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2097 
2098   // Find the order of each set.
2099   RegUnitSetOrder.reserve(RegUnitSets.size());
2100   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2101     RegUnitSetOrder.push_back(Idx);
2102 
2103   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
2104                    [this](unsigned ID1, unsigned ID2) {
2105     return getRegPressureSet(ID1).Units.size() <
2106            getRegPressureSet(ID2).Units.size();
2107   });
2108   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2109     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2110   }
2111 }
2112 
2113 //
2114 // Synthesize missing register class intersections.
2115 //
2116 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2117 // returns a maximal register class for all X.
2118 //
2119 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2120   assert(!RegClasses.empty());
2121   // Stash the iterator to the last element so that this loop doesn't visit
2122   // elements added by the getOrCreateSubClass call within it.
2123   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2124        I != std::next(E); ++I) {
2125     CodeGenRegisterClass *RC1 = RC;
2126     CodeGenRegisterClass *RC2 = &*I;
2127     if (RC1 == RC2)
2128       continue;
2129 
2130     // Compute the set intersection of RC1 and RC2.
2131     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2132     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2133     CodeGenRegister::Vec Intersection;
2134     std::set_intersection(
2135         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
2136         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
2137 
2138     // Skip disjoint class pairs.
2139     if (Intersection.empty())
2140       continue;
2141 
2142     // If RC1 and RC2 have different spill sizes or alignments, use the
2143     // stricter one for sub-classing.  If they are equal, prefer RC1.
2144     if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2145       std::swap(RC1, RC2);
2146 
2147     getOrCreateSubClass(RC1, &Intersection,
2148                         RC1->getName() + "_and_" + RC2->getName());
2149   }
2150 }
2151 
2152 //
2153 // Synthesize missing sub-classes for getSubClassWithSubReg().
2154 //
2155 // Make sure that the set of registers in RC with a given SubIdx sub-register
2156 // form a register class.  Update RC->SubClassWithSubReg.
2157 //
2158 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2159   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2160   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2161                    deref<llvm::less>> SubReg2SetMap;
2162 
2163   // Compute the set of registers supporting each SubRegIndex.
2164   SubReg2SetMap SRSets;
2165   for (const auto R : RC->getMembers()) {
2166     if (R->Artificial)
2167       continue;
2168     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2169     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2170          E = SRM.end(); I != E; ++I) {
2171       if (!I->first->Artificial)
2172         SRSets[I->first].push_back(R);
2173     }
2174   }
2175 
2176   for (auto I : SRSets)
2177     sortAndUniqueRegisters(I.second);
2178 
2179   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2180   // numerical order to visit synthetic indices last.
2181   for (const auto &SubIdx : SubRegIndices) {
2182     if (SubIdx.Artificial)
2183       continue;
2184     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2185     // Unsupported SubRegIndex. Skip it.
2186     if (I == SRSets.end())
2187       continue;
2188     // In most cases, all RC registers support the SubRegIndex.
2189     if (I->second.size() == RC->getMembers().size()) {
2190       RC->setSubClassWithSubReg(&SubIdx, RC);
2191       continue;
2192     }
2193     // This is a real subset.  See if we have a matching class.
2194     CodeGenRegisterClass *SubRC =
2195       getOrCreateSubClass(RC, &I->second,
2196                           RC->getName() + "_with_" + I->first->getName());
2197     RC->setSubClassWithSubReg(&SubIdx, SubRC);
2198   }
2199 }
2200 
2201 //
2202 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2203 //
2204 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2205 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2206 //
2207 
2208 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2209                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2210   SmallVector<std::pair<const CodeGenRegister*,
2211                         const CodeGenRegister*>, 16> SSPairs;
2212   BitVector TopoSigs(getNumTopoSigs());
2213 
2214   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2215   for (auto &SubIdx : SubRegIndices) {
2216     // Skip indexes that aren't fully supported by RC's registers. This was
2217     // computed by inferSubClassWithSubReg() above which should have been
2218     // called first.
2219     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2220       continue;
2221 
2222     // Build list of (Super, Sub) pairs for this SubIdx.
2223     SSPairs.clear();
2224     TopoSigs.reset();
2225     for (const auto Super : RC->getMembers()) {
2226       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2227       assert(Sub && "Missing sub-register");
2228       SSPairs.push_back(std::make_pair(Super, Sub));
2229       TopoSigs.set(Sub->getTopoSig());
2230     }
2231 
2232     // Iterate over sub-register class candidates.  Ignore classes created by
2233     // this loop. They will never be useful.
2234     // Store an iterator to the last element (not end) so that this loop doesn't
2235     // visit newly inserted elements.
2236     assert(!RegClasses.empty());
2237     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2238          I != std::next(E); ++I) {
2239       CodeGenRegisterClass &SubRC = *I;
2240       if (SubRC.Artificial)
2241         continue;
2242       // Topological shortcut: SubRC members have the wrong shape.
2243       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2244         continue;
2245       // Compute the subset of RC that maps into SubRC.
2246       CodeGenRegister::Vec SubSetVec;
2247       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2248         if (SubRC.contains(SSPairs[i].second))
2249           SubSetVec.push_back(SSPairs[i].first);
2250 
2251       if (SubSetVec.empty())
2252         continue;
2253 
2254       // RC injects completely into SubRC.
2255       sortAndUniqueRegisters(SubSetVec);
2256       if (SubSetVec.size() == SSPairs.size()) {
2257         SubRC.addSuperRegClass(&SubIdx, RC);
2258         continue;
2259       }
2260 
2261       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2262       // class.
2263       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2264                                           SubIdx.getName() + "_in_" +
2265                                           SubRC.getName());
2266     }
2267   }
2268 }
2269 
2270 //
2271 // Infer missing register classes.
2272 //
2273 void CodeGenRegBank::computeInferredRegisterClasses() {
2274   assert(!RegClasses.empty());
2275   // When this function is called, the register classes have not been sorted
2276   // and assigned EnumValues yet.  That means getSubClasses(),
2277   // getSuperClasses(), and hasSubClass() functions are defunct.
2278 
2279   // Use one-before-the-end so it doesn't move forward when new elements are
2280   // added.
2281   auto FirstNewRC = std::prev(RegClasses.end());
2282 
2283   // Visit all register classes, including the ones being added by the loop.
2284   // Watch out for iterator invalidation here.
2285   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2286     CodeGenRegisterClass *RC = &*I;
2287     if (RC->Artificial)
2288       continue;
2289 
2290     // Synthesize answers for getSubClassWithSubReg().
2291     inferSubClassWithSubReg(RC);
2292 
2293     // Synthesize answers for getCommonSubClass().
2294     inferCommonSubClass(RC);
2295 
2296     // Synthesize answers for getMatchingSuperRegClass().
2297     inferMatchingSuperRegClass(RC);
2298 
2299     // New register classes are created while this loop is running, and we need
2300     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2301     // to match old super-register classes with sub-register classes created
2302     // after inferMatchingSuperRegClass was called.  At this point,
2303     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2304     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2305     if (I == FirstNewRC) {
2306       auto NextNewRC = std::prev(RegClasses.end());
2307       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2308            ++I2)
2309         inferMatchingSuperRegClass(&*I2, E2);
2310       FirstNewRC = NextNewRC;
2311     }
2312   }
2313 }
2314 
2315 /// getRegisterClassForRegister - Find the register class that contains the
2316 /// specified physical register.  If the register is not in a register class,
2317 /// return null. If the register is in multiple classes, and the classes have a
2318 /// superset-subset relationship and the same set of types, return the
2319 /// superclass.  Otherwise return null.
2320 const CodeGenRegisterClass*
2321 CodeGenRegBank::getRegClassForRegister(Record *R) {
2322   const CodeGenRegister *Reg = getReg(R);
2323   const CodeGenRegisterClass *FoundRC = nullptr;
2324   for (const auto &RC : getRegClasses()) {
2325     if (!RC.contains(Reg))
2326       continue;
2327 
2328     // If this is the first class that contains the register,
2329     // make a note of it and go on to the next class.
2330     if (!FoundRC) {
2331       FoundRC = &RC;
2332       continue;
2333     }
2334 
2335     // If a register's classes have different types, return null.
2336     if (RC.getValueTypes() != FoundRC->getValueTypes())
2337       return nullptr;
2338 
2339     // Check to see if the previously found class that contains
2340     // the register is a subclass of the current class. If so,
2341     // prefer the superclass.
2342     if (RC.hasSubClass(FoundRC)) {
2343       FoundRC = &RC;
2344       continue;
2345     }
2346 
2347     // Check to see if the previously found class that contains
2348     // the register is a superclass of the current class. If so,
2349     // prefer the superclass.
2350     if (FoundRC->hasSubClass(&RC))
2351       continue;
2352 
2353     // Multiple classes, and neither is a superclass of the other.
2354     // Return null.
2355     return nullptr;
2356   }
2357   return FoundRC;
2358 }
2359 
2360 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2361   SetVector<const CodeGenRegister*> Set;
2362 
2363   // First add Regs with all sub-registers.
2364   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2365     CodeGenRegister *Reg = getReg(Regs[i]);
2366     if (Set.insert(Reg))
2367       // Reg is new, add all sub-registers.
2368       // The pre-ordering is not important here.
2369       Reg->addSubRegsPreOrder(Set, *this);
2370   }
2371 
2372   // Second, find all super-registers that are completely covered by the set.
2373   for (unsigned i = 0; i != Set.size(); ++i) {
2374     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2375     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2376       const CodeGenRegister *Super = SR[j];
2377       if (!Super->CoveredBySubRegs || Set.count(Super))
2378         continue;
2379       // This new super-register is covered by its sub-registers.
2380       bool AllSubsInSet = true;
2381       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2382       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2383              E = SRM.end(); I != E; ++I)
2384         if (!Set.count(I->second)) {
2385           AllSubsInSet = false;
2386           break;
2387         }
2388       // All sub-registers in Set, add Super as well.
2389       // We will visit Super later to recheck its super-registers.
2390       if (AllSubsInSet)
2391         Set.insert(Super);
2392     }
2393   }
2394 
2395   // Convert to BitVector.
2396   BitVector BV(Registers.size() + 1);
2397   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2398     BV.set(Set[i]->EnumValue);
2399   return BV;
2400 }
2401 
2402 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2403   if (Unit < NumNativeRegUnits)
2404     dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2405   else
2406     dbgs() << " #" << Unit;
2407 }
2408