1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "CodeGenTarget.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/TableGen/Error.h" 32 #include "llvm/TableGen/Record.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <queue> 39 #include <set> 40 #include <string> 41 #include <tuple> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc-emitter" 48 49 //===----------------------------------------------------------------------===// 50 // CodeGenSubRegIndex 51 //===----------------------------------------------------------------------===// 52 53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 54 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 55 Name = R->getName(); 56 if (R->getValue("Namespace")) 57 Namespace = R->getValueAsString("Namespace"); 58 Size = R->getValueAsInt("Size"); 59 Offset = R->getValueAsInt("Offset"); 60 } 61 62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 63 unsigned Enum) 64 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 65 EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 66 } 67 68 std::string CodeGenSubRegIndex::getQualifiedName() const { 69 std::string N = getNamespace(); 70 if (!N.empty()) 71 N += "::"; 72 N += getName(); 73 return N; 74 } 75 76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 77 if (!TheDef) 78 return; 79 80 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 81 if (!Comps.empty()) { 82 if (Comps.size() != 2) 83 PrintFatalError(TheDef->getLoc(), 84 "ComposedOf must have exactly two entries"); 85 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 86 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 87 CodeGenSubRegIndex *X = A->addComposite(B, this); 88 if (X) 89 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 90 } 91 92 std::vector<Record*> Parts = 93 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 94 if (!Parts.empty()) { 95 if (Parts.size() < 2) 96 PrintFatalError(TheDef->getLoc(), 97 "CoveredBySubRegs must have two or more entries"); 98 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 99 for (Record *Part : Parts) 100 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 101 setConcatenationOf(IdxParts); 102 } 103 } 104 105 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 106 // Already computed? 107 if (LaneMask.any()) 108 return LaneMask; 109 110 // Recursion guard, shouldn't be required. 111 LaneMask = LaneBitmask::getAll(); 112 113 // The lane mask is simply the union of all sub-indices. 114 LaneBitmask M; 115 for (const auto &C : Composed) 116 M |= C.second->computeLaneMask(); 117 assert(M.any() && "Missing lane mask, sub-register cycle?"); 118 LaneMask = M; 119 return LaneMask; 120 } 121 122 void CodeGenSubRegIndex::setConcatenationOf( 123 ArrayRef<CodeGenSubRegIndex*> Parts) { 124 if (ConcatenationOf.empty()) 125 ConcatenationOf.assign(Parts.begin(), Parts.end()); 126 else 127 assert(std::equal(Parts.begin(), Parts.end(), 128 ConcatenationOf.begin()) && "parts consistent"); 129 } 130 131 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 132 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 133 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 134 CodeGenSubRegIndex *SubIdx = *I; 135 SubIdx->computeConcatTransitiveClosure(); 136 #ifndef NDEBUG 137 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 138 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 139 #endif 140 141 if (SubIdx->ConcatenationOf.empty()) { 142 ++I; 143 } else { 144 I = ConcatenationOf.erase(I); 145 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 146 SubIdx->ConcatenationOf.end()); 147 I += SubIdx->ConcatenationOf.size(); 148 } 149 } 150 } 151 152 //===----------------------------------------------------------------------===// 153 // CodeGenRegister 154 //===----------------------------------------------------------------------===// 155 156 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 157 : TheDef(R), 158 EnumValue(Enum), 159 CostPerUse(R->getValueAsInt("CostPerUse")), 160 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 161 HasDisjunctSubRegs(false), 162 SubRegsComplete(false), 163 SuperRegsComplete(false), 164 TopoSig(~0u) { 165 Artificial = R->getValueAsBit("isArtificial"); 166 } 167 168 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 169 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 170 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 171 172 if (SRIs.size() != SRs.size()) 173 PrintFatalError(TheDef->getLoc(), 174 "SubRegs and SubRegIndices must have the same size"); 175 176 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 177 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 178 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 179 } 180 181 // Also compute leading super-registers. Each register has a list of 182 // covered-by-subregs super-registers where it appears as the first explicit 183 // sub-register. 184 // 185 // This is used by computeSecondarySubRegs() to find candidates. 186 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 187 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 188 189 // Add ad hoc alias links. This is a symmetric relationship between two 190 // registers, so build a symmetric graph by adding links in both ends. 191 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 192 for (Record *Alias : Aliases) { 193 CodeGenRegister *Reg = RegBank.getReg(Alias); 194 ExplicitAliases.push_back(Reg); 195 Reg->ExplicitAliases.push_back(this); 196 } 197 } 198 199 const StringRef CodeGenRegister::getName() const { 200 assert(TheDef && "no def"); 201 return TheDef->getName(); 202 } 203 204 namespace { 205 206 // Iterate over all register units in a set of registers. 207 class RegUnitIterator { 208 CodeGenRegister::Vec::const_iterator RegI, RegE; 209 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 210 211 public: 212 RegUnitIterator(const CodeGenRegister::Vec &Regs): 213 RegI(Regs.begin()), RegE(Regs.end()) { 214 215 if (RegI != RegE) { 216 UnitI = (*RegI)->getRegUnits().begin(); 217 UnitE = (*RegI)->getRegUnits().end(); 218 advance(); 219 } 220 } 221 222 bool isValid() const { return UnitI != UnitE; } 223 224 unsigned operator* () const { assert(isValid()); return *UnitI; } 225 226 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 227 228 /// Preincrement. Move to the next unit. 229 void operator++() { 230 assert(isValid() && "Cannot advance beyond the last operand"); 231 ++UnitI; 232 advance(); 233 } 234 235 protected: 236 void advance() { 237 while (UnitI == UnitE) { 238 if (++RegI == RegE) 239 break; 240 UnitI = (*RegI)->getRegUnits().begin(); 241 UnitE = (*RegI)->getRegUnits().end(); 242 } 243 } 244 }; 245 246 } // end anonymous namespace 247 248 // Return true of this unit appears in RegUnits. 249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 250 return RegUnits.test(Unit); 251 } 252 253 // Inherit register units from subregisters. 254 // Return true if the RegUnits changed. 255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 256 bool changed = false; 257 for (const auto &SubReg : SubRegs) { 258 CodeGenRegister *SR = SubReg.second; 259 // Merge the subregister's units into this register's RegUnits. 260 changed |= (RegUnits |= SR->RegUnits); 261 } 262 263 return changed; 264 } 265 266 const CodeGenRegister::SubRegMap & 267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 268 // Only compute this map once. 269 if (SubRegsComplete) 270 return SubRegs; 271 SubRegsComplete = true; 272 273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 274 275 // First insert the explicit subregs and make sure they are fully indexed. 276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 277 CodeGenRegister *SR = ExplicitSubRegs[i]; 278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 279 if (!SR->Artificial) 280 Idx->Artificial = false; 281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 283 " appears twice in Register " + getName()); 284 // Map explicit sub-registers first, so the names take precedence. 285 // The inherited sub-registers are mapped below. 286 SubReg2Idx.insert(std::make_pair(SR, Idx)); 287 } 288 289 // Keep track of inherited subregs and how they can be reached. 290 SmallPtrSet<CodeGenRegister*, 8> Orphans; 291 292 // Clone inherited subregs and place duplicate entries in Orphans. 293 // Here the order is important - earlier subregs take precedence. 294 for (CodeGenRegister *ESR : ExplicitSubRegs) { 295 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 297 298 for (const auto &SR : Map) { 299 if (!SubRegs.insert(SR).second) 300 Orphans.insert(SR.second); 301 } 302 } 303 304 // Expand any composed subreg indices. 305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 307 // expanded subreg indices recursively. 308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 309 for (unsigned i = 0; i != Indices.size(); ++i) { 310 CodeGenSubRegIndex *Idx = Indices[i]; 311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 312 CodeGenRegister *SR = SubRegs[Idx]; 313 const SubRegMap &Map = SR->computeSubRegs(RegBank); 314 315 // Look at the possible compositions of Idx. 316 // They may not all be supported by SR. 317 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 318 E = Comps.end(); I != E; ++I) { 319 SubRegMap::const_iterator SRI = Map.find(I->first); 320 if (SRI == Map.end()) 321 continue; // Idx + I->first doesn't exist in SR. 322 // Add I->second as a name for the subreg SRI->second, assuming it is 323 // orphaned, and the name isn't already used for something else. 324 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 325 continue; 326 // We found a new name for the orphaned sub-register. 327 SubRegs.insert(std::make_pair(I->second, SRI->second)); 328 Indices.push_back(I->second); 329 } 330 } 331 332 // Now Orphans contains the inherited subregisters without a direct index. 333 // Create inferred indexes for all missing entries. 334 // Work backwards in the Indices vector in order to compose subregs bottom-up. 335 // Consider this subreg sequence: 336 // 337 // qsub_1 -> dsub_0 -> ssub_0 338 // 339 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 340 // can be reached in two different ways: 341 // 342 // qsub_1 -> ssub_0 343 // dsub_2 -> ssub_0 344 // 345 // We pick the latter composition because another register may have [dsub_0, 346 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 347 // dsub_2 -> ssub_0 composition can be shared. 348 while (!Indices.empty() && !Orphans.empty()) { 349 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 350 CodeGenRegister *SR = SubRegs[Idx]; 351 const SubRegMap &Map = SR->computeSubRegs(RegBank); 352 for (const auto &SubReg : Map) 353 if (Orphans.erase(SubReg.second)) 354 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 355 } 356 357 // Compute the inverse SubReg -> Idx map. 358 for (const auto &SubReg : SubRegs) { 359 if (SubReg.second == this) { 360 ArrayRef<SMLoc> Loc; 361 if (TheDef) 362 Loc = TheDef->getLoc(); 363 PrintFatalError(Loc, "Register " + getName() + 364 " has itself as a sub-register"); 365 } 366 367 // Compute AllSuperRegsCovered. 368 if (!CoveredBySubRegs) 369 SubReg.first->AllSuperRegsCovered = false; 370 371 // Ensure that every sub-register has a unique name. 372 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 373 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 374 if (Ins->second == SubReg.first) 375 continue; 376 // Trouble: Two different names for SubReg.second. 377 ArrayRef<SMLoc> Loc; 378 if (TheDef) 379 Loc = TheDef->getLoc(); 380 PrintFatalError(Loc, "Sub-register can't have two names: " + 381 SubReg.second->getName() + " available as " + 382 SubReg.first->getName() + " and " + Ins->second->getName()); 383 } 384 385 // Derive possible names for sub-register concatenations from any explicit 386 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 387 // that getConcatSubRegIndex() won't invent any concatenated indices that the 388 // user already specified. 389 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 390 CodeGenRegister *SR = ExplicitSubRegs[i]; 391 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 392 SR->Artificial) 393 continue; 394 395 // SR is composed of multiple sub-regs. Find their names in this register. 396 SmallVector<CodeGenSubRegIndex*, 8> Parts; 397 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 398 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 399 if (!I.Artificial) 400 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 401 } 402 403 // Offer this as an existing spelling for the concatenation of Parts. 404 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 405 Idx.setConcatenationOf(Parts); 406 } 407 408 // Initialize RegUnitList. Because getSubRegs is called recursively, this 409 // processes the register hierarchy in postorder. 410 // 411 // Inherit all sub-register units. It is good enough to look at the explicit 412 // sub-registers, the other registers won't contribute any more units. 413 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 414 CodeGenRegister *SR = ExplicitSubRegs[i]; 415 RegUnits |= SR->RegUnits; 416 } 417 418 // Absent any ad hoc aliasing, we create one register unit per leaf register. 419 // These units correspond to the maximal cliques in the register overlap 420 // graph which is optimal. 421 // 422 // When there is ad hoc aliasing, we simply create one unit per edge in the 423 // undirected ad hoc aliasing graph. Technically, we could do better by 424 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 425 // are extremely rare anyway (I've never seen one), so we don't bother with 426 // the added complexity. 427 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 428 CodeGenRegister *AR = ExplicitAliases[i]; 429 // Only visit each edge once. 430 if (AR->SubRegsComplete) 431 continue; 432 // Create a RegUnit representing this alias edge, and add it to both 433 // registers. 434 unsigned Unit = RegBank.newRegUnit(this, AR); 435 RegUnits.set(Unit); 436 AR->RegUnits.set(Unit); 437 } 438 439 // Finally, create units for leaf registers without ad hoc aliases. Note that 440 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 441 // necessary. This means the aliasing leaf registers can share a single unit. 442 if (RegUnits.empty()) 443 RegUnits.set(RegBank.newRegUnit(this)); 444 445 // We have now computed the native register units. More may be adopted later 446 // for balancing purposes. 447 NativeRegUnits = RegUnits; 448 449 return SubRegs; 450 } 451 452 // In a register that is covered by its sub-registers, try to find redundant 453 // sub-registers. For example: 454 // 455 // QQ0 = {Q0, Q1} 456 // Q0 = {D0, D1} 457 // Q1 = {D2, D3} 458 // 459 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 460 // the register definition. 461 // 462 // The explicitly specified registers form a tree. This function discovers 463 // sub-register relationships that would force a DAG. 464 // 465 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 466 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 467 468 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 469 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 470 SubRegQueue.push(P); 471 472 // Look at the leading super-registers of each sub-register. Those are the 473 // candidates for new sub-registers, assuming they are fully contained in 474 // this register. 475 while (!SubRegQueue.empty()) { 476 CodeGenSubRegIndex *SubRegIdx; 477 const CodeGenRegister *SubReg; 478 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 479 SubRegQueue.pop(); 480 481 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 482 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 483 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 484 // Already got this sub-register? 485 if (Cand == this || getSubRegIndex(Cand)) 486 continue; 487 // Check if each component of Cand is already a sub-register. 488 assert(!Cand->ExplicitSubRegs.empty() && 489 "Super-register has no sub-registers"); 490 if (Cand->ExplicitSubRegs.size() == 1) 491 continue; 492 SmallVector<CodeGenSubRegIndex*, 8> Parts; 493 // We know that the first component is (SubRegIdx,SubReg). However we 494 // may still need to split it into smaller subregister parts. 495 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 496 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 497 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 498 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 499 if (SubRegIdx->ConcatenationOf.empty()) { 500 Parts.push_back(SubRegIdx); 501 } else 502 for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf) 503 Parts.push_back(SubIdx); 504 } else { 505 // Sub-register doesn't exist. 506 Parts.clear(); 507 break; 508 } 509 } 510 // There is nothing to do if some Cand sub-register is not part of this 511 // register. 512 if (Parts.empty()) 513 continue; 514 515 // Each part of Cand is a sub-register of this. Make the full Cand also 516 // a sub-register with a concatenated sub-register index. 517 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 518 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 519 std::make_pair(Concat, Cand); 520 521 if (!SubRegs.insert(NewSubReg).second) 522 continue; 523 524 // We inserted a new subregister. 525 NewSubRegs.push_back(NewSubReg); 526 SubRegQueue.push(NewSubReg); 527 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 528 } 529 } 530 531 // Create sub-register index composition maps for the synthesized indices. 532 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 533 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 534 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 535 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 536 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 537 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 538 if (!SubIdx) 539 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 540 SI->second->getName() + " in " + getName()); 541 NewIdx->addComposite(SI->first, SubIdx); 542 } 543 } 544 } 545 546 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 547 // Only visit each register once. 548 if (SuperRegsComplete) 549 return; 550 SuperRegsComplete = true; 551 552 // Make sure all sub-registers have been visited first, so the super-reg 553 // lists will be topologically ordered. 554 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 555 I != E; ++I) 556 I->second->computeSuperRegs(RegBank); 557 558 // Now add this as a super-register on all sub-registers. 559 // Also compute the TopoSigId in post-order. 560 TopoSigId Id; 561 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 562 I != E; ++I) { 563 // Topological signature computed from SubIdx, TopoId(SubReg). 564 // Loops and idempotent indices have TopoSig = ~0u. 565 Id.push_back(I->first->EnumValue); 566 Id.push_back(I->second->TopoSig); 567 568 // Don't add duplicate entries. 569 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 570 continue; 571 I->second->SuperRegs.push_back(this); 572 } 573 TopoSig = RegBank.getTopoSig(Id); 574 } 575 576 void 577 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 578 CodeGenRegBank &RegBank) const { 579 assert(SubRegsComplete && "Must precompute sub-registers"); 580 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 581 CodeGenRegister *SR = ExplicitSubRegs[i]; 582 if (OSet.insert(SR)) 583 SR->addSubRegsPreOrder(OSet, RegBank); 584 } 585 // Add any secondary sub-registers that weren't part of the explicit tree. 586 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 587 I != E; ++I) 588 OSet.insert(I->second); 589 } 590 591 // Get the sum of this register's unit weights. 592 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 593 unsigned Weight = 0; 594 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 595 I != E; ++I) { 596 Weight += RegBank.getRegUnit(*I).Weight; 597 } 598 return Weight; 599 } 600 601 //===----------------------------------------------------------------------===// 602 // RegisterTuples 603 //===----------------------------------------------------------------------===// 604 605 // A RegisterTuples def is used to generate pseudo-registers from lists of 606 // sub-registers. We provide a SetTheory expander class that returns the new 607 // registers. 608 namespace { 609 610 struct TupleExpander : SetTheory::Expander { 611 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 612 // the synthesized definitions for their lifetime. 613 std::vector<std::unique_ptr<Record>> &SynthDefs; 614 615 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 616 : SynthDefs(SynthDefs) {} 617 618 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 619 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 620 unsigned Dim = Indices.size(); 621 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 622 if (Dim != SubRegs->size()) 623 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 624 if (Dim < 2) 625 PrintFatalError(Def->getLoc(), 626 "Tuples must have at least 2 sub-registers"); 627 628 // Evaluate the sub-register lists to be zipped. 629 unsigned Length = ~0u; 630 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 631 for (unsigned i = 0; i != Dim; ++i) { 632 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 633 Length = std::min(Length, unsigned(Lists[i].size())); 634 } 635 636 if (Length == 0) 637 return; 638 639 // Precompute some types. 640 Record *RegisterCl = Def->getRecords().getClass("Register"); 641 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 642 StringInit *BlankName = StringInit::get(""); 643 644 // Zip them up. 645 for (unsigned n = 0; n != Length; ++n) { 646 std::string Name; 647 Record *Proto = Lists[0][n]; 648 std::vector<Init*> Tuple; 649 unsigned CostPerUse = 0; 650 for (unsigned i = 0; i != Dim; ++i) { 651 Record *Reg = Lists[i][n]; 652 if (i) Name += '_'; 653 Name += Reg->getName(); 654 Tuple.push_back(DefInit::get(Reg)); 655 CostPerUse = std::max(CostPerUse, 656 unsigned(Reg->getValueAsInt("CostPerUse"))); 657 } 658 659 // Create a new Record representing the synthesized register. This record 660 // is only for consumption by CodeGenRegister, it is not added to the 661 // RecordKeeper. 662 SynthDefs.emplace_back( 663 llvm::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 664 Record *NewReg = SynthDefs.back().get(); 665 Elts.insert(NewReg); 666 667 // Copy Proto super-classes. 668 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 669 for (const auto &SuperPair : Supers) 670 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 671 672 // Copy Proto fields. 673 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 674 RecordVal RV = Proto->getValues()[i]; 675 676 // Skip existing fields, like NAME. 677 if (NewReg->getValue(RV.getNameInit())) 678 continue; 679 680 StringRef Field = RV.getName(); 681 682 // Replace the sub-register list with Tuple. 683 if (Field == "SubRegs") 684 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 685 686 // Provide a blank AsmName. MC hacks are required anyway. 687 if (Field == "AsmName") 688 RV.setValue(BlankName); 689 690 // CostPerUse is aggregated from all Tuple members. 691 if (Field == "CostPerUse") 692 RV.setValue(IntInit::get(CostPerUse)); 693 694 // Composite registers are always covered by sub-registers. 695 if (Field == "CoveredBySubRegs") 696 RV.setValue(BitInit::get(true)); 697 698 // Copy fields from the RegisterTuples def. 699 if (Field == "SubRegIndices" || 700 Field == "CompositeIndices") { 701 NewReg->addValue(*Def->getValue(Field)); 702 continue; 703 } 704 705 // Some fields get their default uninitialized value. 706 if (Field == "DwarfNumbers" || 707 Field == "DwarfAlias" || 708 Field == "Aliases") { 709 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 710 NewReg->addValue(*DefRV); 711 continue; 712 } 713 714 // Everything else is copied from Proto. 715 NewReg->addValue(RV); 716 } 717 } 718 } 719 }; 720 721 } // end anonymous namespace 722 723 //===----------------------------------------------------------------------===// 724 // CodeGenRegisterClass 725 //===----------------------------------------------------------------------===// 726 727 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 728 llvm::sort(M, deref<llvm::less>()); 729 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 730 } 731 732 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 733 : TheDef(R), 734 Name(R->getName()), 735 TopoSigs(RegBank.getNumTopoSigs()), 736 EnumValue(-1) { 737 738 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 739 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 740 Record *Type = TypeList[i]; 741 if (!Type->isSubClassOf("ValueType")) 742 PrintFatalError("RegTypes list member '" + Type->getName() + 743 "' does not derive from the ValueType class!"); 744 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 745 } 746 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 747 748 // Allocation order 0 is the full set. AltOrders provides others. 749 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 750 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 751 Orders.resize(1 + AltOrders->size()); 752 753 // Default allocation order always contains all registers. 754 Artificial = true; 755 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 756 Orders[0].push_back((*Elements)[i]); 757 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 758 Members.push_back(Reg); 759 Artificial &= Reg->Artificial; 760 TopoSigs.set(Reg->getTopoSig()); 761 } 762 sortAndUniqueRegisters(Members); 763 764 // Alternative allocation orders may be subsets. 765 SetTheory::RecSet Order; 766 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 767 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 768 Orders[1 + i].append(Order.begin(), Order.end()); 769 // Verify that all altorder members are regclass members. 770 while (!Order.empty()) { 771 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 772 Order.pop_back(); 773 if (!contains(Reg)) 774 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 775 " is not a class member"); 776 } 777 } 778 779 Namespace = R->getValueAsString("Namespace"); 780 781 if (const RecordVal *RV = R->getValue("RegInfos")) 782 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 783 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 784 unsigned Size = R->getValueAsInt("Size"); 785 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 786 "Impossible to determine register size"); 787 if (!RSI.hasDefault()) { 788 RegSizeInfo RI; 789 RI.RegSize = RI.SpillSize = Size ? Size 790 : VTs[0].getSimple().getSizeInBits(); 791 RI.SpillAlignment = R->getValueAsInt("Alignment"); 792 RSI.Map.insert({DefaultMode, RI}); 793 } 794 795 CopyCost = R->getValueAsInt("CopyCost"); 796 Allocatable = R->getValueAsBit("isAllocatable"); 797 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 798 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 799 if (AllocationPriority < 0 || AllocationPriority > 63) 800 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 801 this->AllocationPriority = AllocationPriority; 802 } 803 804 // Create an inferred register class that was missing from the .td files. 805 // Most properties will be inherited from the closest super-class after the 806 // class structure has been computed. 807 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 808 StringRef Name, Key Props) 809 : Members(*Props.Members), 810 TheDef(nullptr), 811 Name(Name), 812 TopoSigs(RegBank.getNumTopoSigs()), 813 EnumValue(-1), 814 RSI(Props.RSI), 815 CopyCost(0), 816 Allocatable(true), 817 AllocationPriority(0) { 818 Artificial = true; 819 for (const auto R : Members) { 820 TopoSigs.set(R->getTopoSig()); 821 Artificial &= R->Artificial; 822 } 823 } 824 825 // Compute inherited propertied for a synthesized register class. 826 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 827 assert(!getDef() && "Only synthesized classes can inherit properties"); 828 assert(!SuperClasses.empty() && "Synthesized class without super class"); 829 830 // The last super-class is the smallest one. 831 CodeGenRegisterClass &Super = *SuperClasses.back(); 832 833 // Most properties are copied directly. 834 // Exceptions are members, size, and alignment 835 Namespace = Super.Namespace; 836 VTs = Super.VTs; 837 CopyCost = Super.CopyCost; 838 Allocatable = Super.Allocatable; 839 AltOrderSelect = Super.AltOrderSelect; 840 AllocationPriority = Super.AllocationPriority; 841 842 // Copy all allocation orders, filter out foreign registers from the larger 843 // super-class. 844 Orders.resize(Super.Orders.size()); 845 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 846 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 847 if (contains(RegBank.getReg(Super.Orders[i][j]))) 848 Orders[i].push_back(Super.Orders[i][j]); 849 } 850 851 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 852 return std::binary_search(Members.begin(), Members.end(), Reg, 853 deref<llvm::less>()); 854 } 855 856 namespace llvm { 857 858 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 859 OS << "{ " << K.RSI; 860 for (const auto R : *K.Members) 861 OS << ", " << R->getName(); 862 return OS << " }"; 863 } 864 865 } // end namespace llvm 866 867 // This is a simple lexicographical order that can be used to search for sets. 868 // It is not the same as the topological order provided by TopoOrderRC. 869 bool CodeGenRegisterClass::Key:: 870 operator<(const CodeGenRegisterClass::Key &B) const { 871 assert(Members && B.Members); 872 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 873 } 874 875 // Returns true if RC is a strict subclass. 876 // RC is a sub-class of this class if it is a valid replacement for any 877 // instruction operand where a register of this classis required. It must 878 // satisfy these conditions: 879 // 880 // 1. All RC registers are also in this. 881 // 2. The RC spill size must not be smaller than our spill size. 882 // 3. RC spill alignment must be compatible with ours. 883 // 884 static bool testSubClass(const CodeGenRegisterClass *A, 885 const CodeGenRegisterClass *B) { 886 return A->RSI.isSubClassOf(B->RSI) && 887 std::includes(A->getMembers().begin(), A->getMembers().end(), 888 B->getMembers().begin(), B->getMembers().end(), 889 deref<llvm::less>()); 890 } 891 892 /// Sorting predicate for register classes. This provides a topological 893 /// ordering that arranges all register classes before their sub-classes. 894 /// 895 /// Register classes with the same registers, spill size, and alignment form a 896 /// clique. They will be ordered alphabetically. 897 /// 898 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 899 const CodeGenRegisterClass &PB) { 900 auto *A = &PA; 901 auto *B = &PB; 902 if (A == B) 903 return false; 904 905 if (A->RSI < B->RSI) 906 return true; 907 if (A->RSI != B->RSI) 908 return false; 909 910 // Order by descending set size. Note that the classes' allocation order may 911 // not have been computed yet. The Members set is always vaild. 912 if (A->getMembers().size() > B->getMembers().size()) 913 return true; 914 if (A->getMembers().size() < B->getMembers().size()) 915 return false; 916 917 // Finally order by name as a tie breaker. 918 return StringRef(A->getName()) < B->getName(); 919 } 920 921 std::string CodeGenRegisterClass::getQualifiedName() const { 922 if (Namespace.empty()) 923 return getName(); 924 else 925 return (Namespace + "::" + getName()).str(); 926 } 927 928 // Compute sub-classes of all register classes. 929 // Assume the classes are ordered topologically. 930 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 931 auto &RegClasses = RegBank.getRegClasses(); 932 933 // Visit backwards so sub-classes are seen first. 934 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 935 CodeGenRegisterClass &RC = *I; 936 RC.SubClasses.resize(RegClasses.size()); 937 RC.SubClasses.set(RC.EnumValue); 938 if (RC.Artificial) 939 continue; 940 941 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 942 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 943 CodeGenRegisterClass &SubRC = *I2; 944 if (RC.SubClasses.test(SubRC.EnumValue)) 945 continue; 946 if (!testSubClass(&RC, &SubRC)) 947 continue; 948 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 949 // check them again. 950 RC.SubClasses |= SubRC.SubClasses; 951 } 952 953 // Sweep up missed clique members. They will be immediately preceding RC. 954 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 955 RC.SubClasses.set(I2->EnumValue); 956 } 957 958 // Compute the SuperClasses lists from the SubClasses vectors. 959 for (auto &RC : RegClasses) { 960 const BitVector &SC = RC.getSubClasses(); 961 auto I = RegClasses.begin(); 962 for (int s = 0, next_s = SC.find_first(); next_s != -1; 963 next_s = SC.find_next(s)) { 964 std::advance(I, next_s - s); 965 s = next_s; 966 if (&*I == &RC) 967 continue; 968 I->SuperClasses.push_back(&RC); 969 } 970 } 971 972 // With the class hierarchy in place, let synthesized register classes inherit 973 // properties from their closest super-class. The iteration order here can 974 // propagate properties down multiple levels. 975 for (auto &RC : RegClasses) 976 if (!RC.getDef()) 977 RC.inheritProperties(RegBank); 978 } 979 980 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 981 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 982 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 983 auto SizeOrder = [](const CodeGenRegisterClass *A, 984 const CodeGenRegisterClass *B) { 985 return A->getMembers().size() > B->getMembers().size(); 986 }; 987 988 auto &RegClasses = RegBank.getRegClasses(); 989 990 // Find all the subclasses of this one that fully support the sub-register 991 // index and order them by size. BiggestSuperRC should always be first. 992 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 993 if (!BiggestSuperRegRC) 994 return None; 995 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 996 std::vector<CodeGenRegisterClass *> SuperRegRCs; 997 for (auto &RC : RegClasses) 998 if (SuperRegRCsBV[RC.EnumValue]) 999 SuperRegRCs.emplace_back(&RC); 1000 llvm::sort(SuperRegRCs, SizeOrder); 1001 assert(SuperRegRCs.front() == BiggestSuperRegRC && "Biggest class wasn't first"); 1002 1003 // Find all the subreg classes and order them by size too. 1004 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1005 for (auto &RC: RegClasses) { 1006 BitVector SuperRegClassesBV(RegClasses.size()); 1007 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1008 if (SuperRegClassesBV.any()) 1009 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1010 } 1011 llvm::sort(SuperRegClasses, 1012 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1013 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1014 return SizeOrder(A.first, B.first); 1015 }); 1016 1017 // Find the biggest subclass and subreg class such that R:subidx is in the 1018 // subreg class for all R in subclass. 1019 // 1020 // For example: 1021 // All registers in X86's GR64 have a sub_32bit subregister but no class 1022 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1023 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1024 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1025 // having excluded RIP, we are able to find a SubRegRC (GR32). 1026 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1027 CodeGenRegisterClass *SubRegRC = nullptr; 1028 for (auto *SuperRegRC : SuperRegRCs) { 1029 for (const auto &SuperRegClassPair : SuperRegClasses) { 1030 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1031 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1032 SubRegRC = SuperRegClassPair.first; 1033 ChosenSuperRegClass = SuperRegRC; 1034 1035 // If SubRegRC is bigger than SuperRegRC then there are members of 1036 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1037 // find a better fit and fall back on this one if there isn't one. 1038 // 1039 // This is intended to prevent X86 from making odd choices such as 1040 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1041 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1042 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1043 // mapping. 1044 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1045 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1046 } 1047 } 1048 1049 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1050 // registers, then we're done. 1051 if (ChosenSuperRegClass) 1052 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1053 } 1054 1055 return None; 1056 } 1057 1058 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1059 BitVector &Out) const { 1060 auto FindI = SuperRegClasses.find(SubIdx); 1061 if (FindI == SuperRegClasses.end()) 1062 return; 1063 for (CodeGenRegisterClass *RC : FindI->second) 1064 Out.set(RC->EnumValue); 1065 } 1066 1067 // Populate a unique sorted list of units from a register set. 1068 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1069 std::vector<unsigned> &RegUnits) const { 1070 std::vector<unsigned> TmpUnits; 1071 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1072 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1073 if (!RU.Artificial) 1074 TmpUnits.push_back(*UnitI); 1075 } 1076 llvm::sort(TmpUnits); 1077 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1078 std::back_inserter(RegUnits)); 1079 } 1080 1081 //===----------------------------------------------------------------------===// 1082 // CodeGenRegBank 1083 //===----------------------------------------------------------------------===// 1084 1085 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1086 const CodeGenHwModes &Modes) : CGH(Modes) { 1087 // Configure register Sets to understand register classes and tuples. 1088 Sets.addFieldExpander("RegisterClass", "MemberList"); 1089 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1090 Sets.addExpander("RegisterTuples", 1091 llvm::make_unique<TupleExpander>(SynthDefs)); 1092 1093 // Read in the user-defined (named) sub-register indices. 1094 // More indices will be synthesized later. 1095 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1096 llvm::sort(SRIs, LessRecord()); 1097 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1098 getSubRegIdx(SRIs[i]); 1099 // Build composite maps from ComposedOf fields. 1100 for (auto &Idx : SubRegIndices) 1101 Idx.updateComponents(*this); 1102 1103 // Read in the register definitions. 1104 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1105 llvm::sort(Regs, LessRecordRegister()); 1106 // Assign the enumeration values. 1107 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1108 getReg(Regs[i]); 1109 1110 // Expand tuples and number the new registers. 1111 std::vector<Record*> Tups = 1112 Records.getAllDerivedDefinitions("RegisterTuples"); 1113 1114 for (Record *R : Tups) { 1115 std::vector<Record *> TupRegs = *Sets.expand(R); 1116 llvm::sort(TupRegs, LessRecordRegister()); 1117 for (Record *RC : TupRegs) 1118 getReg(RC); 1119 } 1120 1121 // Now all the registers are known. Build the object graph of explicit 1122 // register-register references. 1123 for (auto &Reg : Registers) 1124 Reg.buildObjectGraph(*this); 1125 1126 // Compute register name map. 1127 for (auto &Reg : Registers) 1128 // FIXME: This could just be RegistersByName[name] = register, except that 1129 // causes some failures in MIPS - perhaps they have duplicate register name 1130 // entries? (or maybe there's a reason for it - I don't know much about this 1131 // code, just drive-by refactoring) 1132 RegistersByName.insert( 1133 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1134 1135 // Precompute all sub-register maps. 1136 // This will create Composite entries for all inferred sub-register indices. 1137 for (auto &Reg : Registers) 1138 Reg.computeSubRegs(*this); 1139 1140 // Compute transitive closure of subregister index ConcatenationOf vectors 1141 // and initialize ConcatIdx map. 1142 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1143 SRI.computeConcatTransitiveClosure(); 1144 if (!SRI.ConcatenationOf.empty()) 1145 ConcatIdx.insert(std::make_pair( 1146 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1147 SRI.ConcatenationOf.end()), &SRI)); 1148 } 1149 1150 // Infer even more sub-registers by combining leading super-registers. 1151 for (auto &Reg : Registers) 1152 if (Reg.CoveredBySubRegs) 1153 Reg.computeSecondarySubRegs(*this); 1154 1155 // After the sub-register graph is complete, compute the topologically 1156 // ordered SuperRegs list. 1157 for (auto &Reg : Registers) 1158 Reg.computeSuperRegs(*this); 1159 1160 // For each pair of Reg:SR, if both are non-artificial, mark the 1161 // corresponding sub-register index as non-artificial. 1162 for (auto &Reg : Registers) { 1163 if (Reg.Artificial) 1164 continue; 1165 for (auto P : Reg.getSubRegs()) { 1166 const CodeGenRegister *SR = P.second; 1167 if (!SR->Artificial) 1168 P.first->Artificial = false; 1169 } 1170 } 1171 1172 // Native register units are associated with a leaf register. They've all been 1173 // discovered now. 1174 NumNativeRegUnits = RegUnits.size(); 1175 1176 // Read in register class definitions. 1177 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1178 if (RCs.empty()) 1179 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1180 1181 // Allocate user-defined register classes. 1182 for (auto *R : RCs) { 1183 RegClasses.emplace_back(*this, R); 1184 CodeGenRegisterClass &RC = RegClasses.back(); 1185 if (!RC.Artificial) 1186 addToMaps(&RC); 1187 } 1188 1189 // Infer missing classes to create a full algebra. 1190 computeInferredRegisterClasses(); 1191 1192 // Order register classes topologically and assign enum values. 1193 RegClasses.sort(TopoOrderRC); 1194 unsigned i = 0; 1195 for (auto &RC : RegClasses) 1196 RC.EnumValue = i++; 1197 CodeGenRegisterClass::computeSubClasses(*this); 1198 } 1199 1200 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1201 CodeGenSubRegIndex* 1202 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1203 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1204 return &SubRegIndices.back(); 1205 } 1206 1207 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1208 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1209 if (Idx) 1210 return Idx; 1211 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1212 Idx = &SubRegIndices.back(); 1213 return Idx; 1214 } 1215 1216 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1217 CodeGenRegister *&Reg = Def2Reg[Def]; 1218 if (Reg) 1219 return Reg; 1220 Registers.emplace_back(Def, Registers.size() + 1); 1221 Reg = &Registers.back(); 1222 return Reg; 1223 } 1224 1225 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1226 if (Record *Def = RC->getDef()) 1227 Def2RC.insert(std::make_pair(Def, RC)); 1228 1229 // Duplicate classes are rejected by insert(). 1230 // That's OK, we only care about the properties handled by CGRC::Key. 1231 CodeGenRegisterClass::Key K(*RC); 1232 Key2RC.insert(std::make_pair(K, RC)); 1233 } 1234 1235 // Create a synthetic sub-class if it is missing. 1236 CodeGenRegisterClass* 1237 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1238 const CodeGenRegister::Vec *Members, 1239 StringRef Name) { 1240 // Synthetic sub-class has the same size and alignment as RC. 1241 CodeGenRegisterClass::Key K(Members, RC->RSI); 1242 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1243 if (FoundI != Key2RC.end()) 1244 return FoundI->second; 1245 1246 // Sub-class doesn't exist, create a new one. 1247 RegClasses.emplace_back(*this, Name, K); 1248 addToMaps(&RegClasses.back()); 1249 return &RegClasses.back(); 1250 } 1251 1252 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1253 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1254 return RC; 1255 1256 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1257 } 1258 1259 CodeGenSubRegIndex* 1260 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1261 CodeGenSubRegIndex *B) { 1262 // Look for an existing entry. 1263 CodeGenSubRegIndex *Comp = A->compose(B); 1264 if (Comp) 1265 return Comp; 1266 1267 // None exists, synthesize one. 1268 std::string Name = A->getName() + "_then_" + B->getName(); 1269 Comp = createSubRegIndex(Name, A->getNamespace()); 1270 A->addComposite(B, Comp); 1271 return Comp; 1272 } 1273 1274 CodeGenSubRegIndex *CodeGenRegBank:: 1275 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1276 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1277 #ifndef NDEBUG 1278 for (CodeGenSubRegIndex *Idx : Parts) { 1279 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1280 } 1281 #endif 1282 1283 // Look for an existing entry. 1284 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1285 if (Idx) 1286 return Idx; 1287 1288 // None exists, synthesize one. 1289 std::string Name = Parts.front()->getName(); 1290 // Determine whether all parts are contiguous. 1291 bool isContinuous = true; 1292 unsigned Size = Parts.front()->Size; 1293 unsigned LastOffset = Parts.front()->Offset; 1294 unsigned LastSize = Parts.front()->Size; 1295 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1296 Name += '_'; 1297 Name += Parts[i]->getName(); 1298 Size += Parts[i]->Size; 1299 if (Parts[i]->Offset != (LastOffset + LastSize)) 1300 isContinuous = false; 1301 LastOffset = Parts[i]->Offset; 1302 LastSize = Parts[i]->Size; 1303 } 1304 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1305 Idx->Size = Size; 1306 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1307 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1308 return Idx; 1309 } 1310 1311 void CodeGenRegBank::computeComposites() { 1312 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1313 1314 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1315 // register to (sub)register associated with the action of the left-hand 1316 // side subregister. 1317 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1318 for (const CodeGenRegister &R : Registers) { 1319 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1320 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1321 SubRegAction[P.first].insert({&R, P.second}); 1322 } 1323 1324 // Calculate the composition of two subregisters as compositions of their 1325 // associated actions. 1326 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1327 const CodeGenSubRegIndex *Sub2) { 1328 RegMap C; 1329 const RegMap &Img1 = SubRegAction.at(Sub1); 1330 const RegMap &Img2 = SubRegAction.at(Sub2); 1331 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1332 auto F = Img2.find(P.second); 1333 if (F != Img2.end()) 1334 C.insert({P.first, F->second}); 1335 } 1336 return C; 1337 }; 1338 1339 // Check if the two maps agree on the intersection of their domains. 1340 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1341 // Technically speaking, an empty map agrees with any other map, but 1342 // this could flag false positives. We're interested in non-vacuous 1343 // agreements. 1344 if (Map1.empty() || Map2.empty()) 1345 return false; 1346 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1347 auto F = Map2.find(P.first); 1348 if (F == Map2.end() || P.second != F->second) 1349 return false; 1350 } 1351 return true; 1352 }; 1353 1354 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1355 const CodeGenSubRegIndex*>; 1356 SmallSet<CompositePair,4> UserDefined; 1357 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1358 for (auto P : Idx.getComposites()) 1359 UserDefined.insert(std::make_pair(&Idx, P.first)); 1360 1361 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1362 // and many registers will share TopoSigs on regular architectures. 1363 BitVector TopoSigs(getNumTopoSigs()); 1364 1365 for (const auto &Reg1 : Registers) { 1366 // Skip identical subreg structures already processed. 1367 if (TopoSigs.test(Reg1.getTopoSig())) 1368 continue; 1369 TopoSigs.set(Reg1.getTopoSig()); 1370 1371 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1372 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1373 e1 = SRM1.end(); i1 != e1; ++i1) { 1374 CodeGenSubRegIndex *Idx1 = i1->first; 1375 CodeGenRegister *Reg2 = i1->second; 1376 // Ignore identity compositions. 1377 if (&Reg1 == Reg2) 1378 continue; 1379 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1380 // Try composing Idx1 with another SubRegIndex. 1381 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1382 e2 = SRM2.end(); i2 != e2; ++i2) { 1383 CodeGenSubRegIndex *Idx2 = i2->first; 1384 CodeGenRegister *Reg3 = i2->second; 1385 // Ignore identity compositions. 1386 if (Reg2 == Reg3) 1387 continue; 1388 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1389 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1390 assert(Idx3 && "Sub-register doesn't have an index"); 1391 1392 // Conflicting composition? Emit a warning but allow it. 1393 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1394 // If the composition was not user-defined, always emit a warning. 1395 if (!UserDefined.count({Idx1, Idx2}) || 1396 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1397 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1398 " and " + Idx2->getQualifiedName() + 1399 " compose ambiguously as " + Prev->getQualifiedName() + 1400 " or " + Idx3->getQualifiedName()); 1401 } 1402 } 1403 } 1404 } 1405 } 1406 1407 // Compute lane masks. This is similar to register units, but at the 1408 // sub-register index level. Each bit in the lane mask is like a register unit 1409 // class, and two lane masks will have a bit in common if two sub-register 1410 // indices overlap in some register. 1411 // 1412 // Conservatively share a lane mask bit if two sub-register indices overlap in 1413 // some registers, but not in others. That shouldn't happen a lot. 1414 void CodeGenRegBank::computeSubRegLaneMasks() { 1415 // First assign individual bits to all the leaf indices. 1416 unsigned Bit = 0; 1417 // Determine mask of lanes that cover their registers. 1418 CoveringLanes = LaneBitmask::getAll(); 1419 for (auto &Idx : SubRegIndices) { 1420 if (Idx.getComposites().empty()) { 1421 if (Bit > LaneBitmask::BitWidth) { 1422 PrintFatalError( 1423 Twine("Ran out of lanemask bits to represent subregister ") 1424 + Idx.getName()); 1425 } 1426 Idx.LaneMask = LaneBitmask::getLane(Bit); 1427 ++Bit; 1428 } else { 1429 Idx.LaneMask = LaneBitmask::getNone(); 1430 } 1431 } 1432 1433 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1434 // here is that for each possible target subregister we look at the leafs 1435 // in the subregister graph that compose for this target and create 1436 // transformation sequences for the lanemasks. Each step in the sequence 1437 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1438 // are usually the same for many subregisters we can easily combine the steps 1439 // by combining the masks. 1440 for (const auto &Idx : SubRegIndices) { 1441 const auto &Composites = Idx.getComposites(); 1442 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1443 1444 if (Composites.empty()) { 1445 // Moving from a class with no subregisters we just had a single lane: 1446 // The subregister must be a leaf subregister and only occupies 1 bit. 1447 // Move the bit from the class without subregisters into that position. 1448 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1449 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1450 "Must be a leaf subregister"); 1451 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1452 LaneTransforms.push_back(MaskRol); 1453 } else { 1454 // Go through all leaf subregisters and find the ones that compose with 1455 // Idx. These make out all possible valid bits in the lane mask we want to 1456 // transform. Looking only at the leafs ensure that only a single bit in 1457 // the mask is set. 1458 unsigned NextBit = 0; 1459 for (auto &Idx2 : SubRegIndices) { 1460 // Skip non-leaf subregisters. 1461 if (!Idx2.getComposites().empty()) 1462 continue; 1463 // Replicate the behaviour from the lane mask generation loop above. 1464 unsigned SrcBit = NextBit; 1465 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1466 if (NextBit < LaneBitmask::BitWidth-1) 1467 ++NextBit; 1468 assert(Idx2.LaneMask == SrcMask); 1469 1470 // Get the composed subregister if there is any. 1471 auto C = Composites.find(&Idx2); 1472 if (C == Composites.end()) 1473 continue; 1474 const CodeGenSubRegIndex *Composite = C->second; 1475 // The Composed subreg should be a leaf subreg too 1476 assert(Composite->getComposites().empty()); 1477 1478 // Create Mask+Rotate operation and merge with existing ops if possible. 1479 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1480 int Shift = DstBit - SrcBit; 1481 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1482 : LaneBitmask::BitWidth + Shift; 1483 for (auto &I : LaneTransforms) { 1484 if (I.RotateLeft == RotateLeft) { 1485 I.Mask |= SrcMask; 1486 SrcMask = LaneBitmask::getNone(); 1487 } 1488 } 1489 if (SrcMask.any()) { 1490 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1491 LaneTransforms.push_back(MaskRol); 1492 } 1493 } 1494 } 1495 1496 // Optimize if the transformation consists of one step only: Set mask to 1497 // 0xffffffff (including some irrelevant invalid bits) so that it should 1498 // merge with more entries later while compressing the table. 1499 if (LaneTransforms.size() == 1) 1500 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1501 1502 // Further compression optimization: For invalid compositions resulting 1503 // in a sequence with 0 entries we can just pick any other. Choose 1504 // Mask 0xffffffff with Rotation 0. 1505 if (LaneTransforms.size() == 0) { 1506 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1507 LaneTransforms.push_back(P); 1508 } 1509 } 1510 1511 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1512 // by the sub-register graph? This doesn't occur in any known targets. 1513 1514 // Inherit lanes from composites. 1515 for (const auto &Idx : SubRegIndices) { 1516 LaneBitmask Mask = Idx.computeLaneMask(); 1517 // If some super-registers without CoveredBySubRegs use this index, we can 1518 // no longer assume that the lanes are covering their registers. 1519 if (!Idx.AllSuperRegsCovered) 1520 CoveringLanes &= ~Mask; 1521 } 1522 1523 // Compute lane mask combinations for register classes. 1524 for (auto &RegClass : RegClasses) { 1525 LaneBitmask LaneMask; 1526 for (const auto &SubRegIndex : SubRegIndices) { 1527 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1528 continue; 1529 LaneMask |= SubRegIndex.LaneMask; 1530 } 1531 1532 // For classes without any subregisters set LaneMask to 1 instead of 0. 1533 // This makes it easier for client code to handle classes uniformly. 1534 if (LaneMask.none()) 1535 LaneMask = LaneBitmask::getLane(0); 1536 1537 RegClass.LaneMask = LaneMask; 1538 } 1539 } 1540 1541 namespace { 1542 1543 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1544 // the transitive closure of the union of overlapping register 1545 // classes. Together, the UberRegSets form a partition of the registers. If we 1546 // consider overlapping register classes to be connected, then each UberRegSet 1547 // is a set of connected components. 1548 // 1549 // An UberRegSet will likely be a horizontal slice of register names of 1550 // the same width. Nontrivial subregisters should then be in a separate 1551 // UberRegSet. But this property isn't required for valid computation of 1552 // register unit weights. 1553 // 1554 // A Weight field caches the max per-register unit weight in each UberRegSet. 1555 // 1556 // A set of SingularDeterminants flags single units of some register in this set 1557 // for which the unit weight equals the set weight. These units should not have 1558 // their weight increased. 1559 struct UberRegSet { 1560 CodeGenRegister::Vec Regs; 1561 unsigned Weight = 0; 1562 CodeGenRegister::RegUnitList SingularDeterminants; 1563 1564 UberRegSet() = default; 1565 }; 1566 1567 } // end anonymous namespace 1568 1569 // Partition registers into UberRegSets, where each set is the transitive 1570 // closure of the union of overlapping register classes. 1571 // 1572 // UberRegSets[0] is a special non-allocatable set. 1573 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1574 std::vector<UberRegSet*> &RegSets, 1575 CodeGenRegBank &RegBank) { 1576 const auto &Registers = RegBank.getRegisters(); 1577 1578 // The Register EnumValue is one greater than its index into Registers. 1579 assert(Registers.size() == Registers.back().EnumValue && 1580 "register enum value mismatch"); 1581 1582 // For simplicitly make the SetID the same as EnumValue. 1583 IntEqClasses UberSetIDs(Registers.size()+1); 1584 std::set<unsigned> AllocatableRegs; 1585 for (auto &RegClass : RegBank.getRegClasses()) { 1586 if (!RegClass.Allocatable) 1587 continue; 1588 1589 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1590 if (Regs.empty()) 1591 continue; 1592 1593 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1594 assert(USetID && "register number 0 is invalid"); 1595 1596 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1597 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1598 AllocatableRegs.insert((*I)->EnumValue); 1599 UberSetIDs.join(USetID, (*I)->EnumValue); 1600 } 1601 } 1602 // Combine non-allocatable regs. 1603 for (const auto &Reg : Registers) { 1604 unsigned RegNum = Reg.EnumValue; 1605 if (AllocatableRegs.count(RegNum)) 1606 continue; 1607 1608 UberSetIDs.join(0, RegNum); 1609 } 1610 UberSetIDs.compress(); 1611 1612 // Make the first UberSet a special unallocatable set. 1613 unsigned ZeroID = UberSetIDs[0]; 1614 1615 // Insert Registers into the UberSets formed by union-find. 1616 // Do not resize after this. 1617 UberSets.resize(UberSetIDs.getNumClasses()); 1618 unsigned i = 0; 1619 for (const CodeGenRegister &Reg : Registers) { 1620 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1621 if (!USetID) 1622 USetID = ZeroID; 1623 else if (USetID == ZeroID) 1624 USetID = 0; 1625 1626 UberRegSet *USet = &UberSets[USetID]; 1627 USet->Regs.push_back(&Reg); 1628 sortAndUniqueRegisters(USet->Regs); 1629 RegSets[i++] = USet; 1630 } 1631 } 1632 1633 // Recompute each UberSet weight after changing unit weights. 1634 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1635 CodeGenRegBank &RegBank) { 1636 // Skip the first unallocatable set. 1637 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1638 E = UberSets.end(); I != E; ++I) { 1639 1640 // Initialize all unit weights in this set, and remember the max units/reg. 1641 const CodeGenRegister *Reg = nullptr; 1642 unsigned MaxWeight = 0, Weight = 0; 1643 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1644 if (Reg != UnitI.getReg()) { 1645 if (Weight > MaxWeight) 1646 MaxWeight = Weight; 1647 Reg = UnitI.getReg(); 1648 Weight = 0; 1649 } 1650 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1651 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1652 if (!UWeight) { 1653 UWeight = 1; 1654 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1655 } 1656 Weight += UWeight; 1657 } 1658 } 1659 if (Weight > MaxWeight) 1660 MaxWeight = Weight; 1661 if (I->Weight != MaxWeight) { 1662 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1663 << MaxWeight; 1664 for (auto &Unit 1665 : I->Regs) dbgs() 1666 << " " << Unit->getName(); 1667 dbgs() << "\n"); 1668 // Update the set weight. 1669 I->Weight = MaxWeight; 1670 } 1671 1672 // Find singular determinants. 1673 for (const auto R : I->Regs) { 1674 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1675 I->SingularDeterminants |= R->getRegUnits(); 1676 } 1677 } 1678 } 1679 } 1680 1681 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1682 // a register and its subregisters so that they have the same weight as their 1683 // UberSet. Self-recursion processes the subregister tree in postorder so 1684 // subregisters are normalized first. 1685 // 1686 // Side effects: 1687 // - creates new adopted register units 1688 // - causes superregisters to inherit adopted units 1689 // - increases the weight of "singular" units 1690 // - induces recomputation of UberWeights. 1691 static bool normalizeWeight(CodeGenRegister *Reg, 1692 std::vector<UberRegSet> &UberSets, 1693 std::vector<UberRegSet*> &RegSets, 1694 BitVector &NormalRegs, 1695 CodeGenRegister::RegUnitList &NormalUnits, 1696 CodeGenRegBank &RegBank) { 1697 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1698 if (NormalRegs.test(Reg->EnumValue)) 1699 return false; 1700 NormalRegs.set(Reg->EnumValue); 1701 1702 bool Changed = false; 1703 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1704 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1705 SRE = SRM.end(); SRI != SRE; ++SRI) { 1706 if (SRI->second == Reg) 1707 continue; // self-cycles happen 1708 1709 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1710 NormalRegs, NormalUnits, RegBank); 1711 } 1712 // Postorder register normalization. 1713 1714 // Inherit register units newly adopted by subregisters. 1715 if (Reg->inheritRegUnits(RegBank)) 1716 computeUberWeights(UberSets, RegBank); 1717 1718 // Check if this register is too skinny for its UberRegSet. 1719 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1720 1721 unsigned RegWeight = Reg->getWeight(RegBank); 1722 if (UberSet->Weight > RegWeight) { 1723 // A register unit's weight can be adjusted only if it is the singular unit 1724 // for this register, has not been used to normalize a subregister's set, 1725 // and has not already been used to singularly determine this UberRegSet. 1726 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1727 if (Reg->getRegUnits().count() != 1 1728 || hasRegUnit(NormalUnits, AdjustUnit) 1729 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1730 // We don't have an adjustable unit, so adopt a new one. 1731 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1732 Reg->adoptRegUnit(AdjustUnit); 1733 // Adopting a unit does not immediately require recomputing set weights. 1734 } 1735 else { 1736 // Adjust the existing single unit. 1737 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1738 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1739 // The unit may be shared among sets and registers within this set. 1740 computeUberWeights(UberSets, RegBank); 1741 } 1742 Changed = true; 1743 } 1744 1745 // Mark these units normalized so superregisters can't change their weights. 1746 NormalUnits |= Reg->getRegUnits(); 1747 1748 return Changed; 1749 } 1750 1751 // Compute a weight for each register unit created during getSubRegs. 1752 // 1753 // The goal is that two registers in the same class will have the same weight, 1754 // where each register's weight is defined as sum of its units' weights. 1755 void CodeGenRegBank::computeRegUnitWeights() { 1756 std::vector<UberRegSet> UberSets; 1757 std::vector<UberRegSet*> RegSets(Registers.size()); 1758 computeUberSets(UberSets, RegSets, *this); 1759 // UberSets and RegSets are now immutable. 1760 1761 computeUberWeights(UberSets, *this); 1762 1763 // Iterate over each Register, normalizing the unit weights until reaching 1764 // a fix point. 1765 unsigned NumIters = 0; 1766 for (bool Changed = true; Changed; ++NumIters) { 1767 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1768 Changed = false; 1769 for (auto &Reg : Registers) { 1770 CodeGenRegister::RegUnitList NormalUnits; 1771 BitVector NormalRegs; 1772 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1773 NormalUnits, *this); 1774 } 1775 } 1776 } 1777 1778 // Find a set in UniqueSets with the same elements as Set. 1779 // Return an iterator into UniqueSets. 1780 static std::vector<RegUnitSet>::const_iterator 1781 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1782 const RegUnitSet &Set) { 1783 std::vector<RegUnitSet>::const_iterator 1784 I = UniqueSets.begin(), E = UniqueSets.end(); 1785 for(;I != E; ++I) { 1786 if (I->Units == Set.Units) 1787 break; 1788 } 1789 return I; 1790 } 1791 1792 // Return true if the RUSubSet is a subset of RUSuperSet. 1793 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1794 const std::vector<unsigned> &RUSuperSet) { 1795 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1796 RUSubSet.begin(), RUSubSet.end()); 1797 } 1798 1799 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1800 /// but with one or two registers removed. We occasionally have registers like 1801 /// APSR and PC thrown in with the general registers. We also see many 1802 /// special-purpose register subsets, such as tail-call and Thumb 1803 /// encodings. Generating all possible overlapping sets is combinatorial and 1804 /// overkill for modeling pressure. Ideally we could fix this statically in 1805 /// tablegen by (1) having the target define register classes that only include 1806 /// the allocatable registers and marking other classes as non-allocatable and 1807 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1808 /// the purpose of pressure. However, we make an attempt to handle targets that 1809 /// are not nicely defined by merging nearly identical register unit sets 1810 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1811 /// set limit by filtering the reserved registers. 1812 /// 1813 /// Merge sets only if the units have the same weight. For example, on ARM, 1814 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1815 /// should not expand the S set to include D regs. 1816 void CodeGenRegBank::pruneUnitSets() { 1817 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1818 1819 // Form an equivalence class of UnitSets with no significant difference. 1820 std::vector<unsigned> SuperSetIDs; 1821 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1822 SubIdx != EndIdx; ++SubIdx) { 1823 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1824 unsigned SuperIdx = 0; 1825 for (; SuperIdx != EndIdx; ++SuperIdx) { 1826 if (SuperIdx == SubIdx) 1827 continue; 1828 1829 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1830 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1831 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1832 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1833 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1834 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1835 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1836 << "\n"); 1837 // We can pick any of the set names for the merged set. Go for the 1838 // shortest one to avoid picking the name of one of the classes that are 1839 // artificially created by tablegen. So "FPR128_lo" instead of 1840 // "QQQQ_with_qsub3_in_FPR128_lo". 1841 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1842 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1843 break; 1844 } 1845 } 1846 if (SuperIdx == EndIdx) 1847 SuperSetIDs.push_back(SubIdx); 1848 } 1849 // Populate PrunedUnitSets with each equivalence class's superset. 1850 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1851 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1852 unsigned SuperIdx = SuperSetIDs[i]; 1853 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1854 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1855 } 1856 RegUnitSets.swap(PrunedUnitSets); 1857 } 1858 1859 // Create a RegUnitSet for each RegClass that contains all units in the class 1860 // including adopted units that are necessary to model register pressure. Then 1861 // iteratively compute RegUnitSets such that the union of any two overlapping 1862 // RegUnitSets is repreresented. 1863 // 1864 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1865 // RegUnitSet that is a superset of that RegUnitClass. 1866 void CodeGenRegBank::computeRegUnitSets() { 1867 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1868 1869 // Compute a unique RegUnitSet for each RegClass. 1870 auto &RegClasses = getRegClasses(); 1871 for (auto &RC : RegClasses) { 1872 if (!RC.Allocatable || RC.Artificial) 1873 continue; 1874 1875 // Speculatively grow the RegUnitSets to hold the new set. 1876 RegUnitSets.resize(RegUnitSets.size() + 1); 1877 RegUnitSets.back().Name = RC.getName(); 1878 1879 // Compute a sorted list of units in this class. 1880 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1881 1882 // Find an existing RegUnitSet. 1883 std::vector<RegUnitSet>::const_iterator SetI = 1884 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1885 if (SetI != std::prev(RegUnitSets.end())) 1886 RegUnitSets.pop_back(); 1887 } 1888 1889 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1890 USEnd = RegUnitSets.size(); 1891 USIdx < USEnd; ++USIdx) { 1892 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1893 for (auto &U : RegUnitSets[USIdx].Units) 1894 printRegUnitName(U); 1895 dbgs() << "\n"; 1896 }); 1897 1898 // Iteratively prune unit sets. 1899 pruneUnitSets(); 1900 1901 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1902 USEnd = RegUnitSets.size(); 1903 USIdx < USEnd; ++USIdx) { 1904 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1905 for (auto &U : RegUnitSets[USIdx].Units) 1906 printRegUnitName(U); 1907 dbgs() << "\n"; 1908 } dbgs() << "\nUnion sets:\n"); 1909 1910 // Iterate over all unit sets, including new ones added by this loop. 1911 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1912 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1913 // In theory, this is combinatorial. In practice, it needs to be bounded 1914 // by a small number of sets for regpressure to be efficient. 1915 // If the assert is hit, we need to implement pruning. 1916 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1917 1918 // Compare new sets with all original classes. 1919 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1920 SearchIdx != EndIdx; ++SearchIdx) { 1921 std::set<unsigned> Intersection; 1922 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1923 RegUnitSets[Idx].Units.end(), 1924 RegUnitSets[SearchIdx].Units.begin(), 1925 RegUnitSets[SearchIdx].Units.end(), 1926 std::inserter(Intersection, Intersection.begin())); 1927 if (Intersection.empty()) 1928 continue; 1929 1930 // Speculatively grow the RegUnitSets to hold the new set. 1931 RegUnitSets.resize(RegUnitSets.size() + 1); 1932 RegUnitSets.back().Name = 1933 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1934 1935 std::set_union(RegUnitSets[Idx].Units.begin(), 1936 RegUnitSets[Idx].Units.end(), 1937 RegUnitSets[SearchIdx].Units.begin(), 1938 RegUnitSets[SearchIdx].Units.end(), 1939 std::inserter(RegUnitSets.back().Units, 1940 RegUnitSets.back().Units.begin())); 1941 1942 // Find an existing RegUnitSet, or add the union to the unique sets. 1943 std::vector<RegUnitSet>::const_iterator SetI = 1944 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1945 if (SetI != std::prev(RegUnitSets.end())) 1946 RegUnitSets.pop_back(); 1947 else { 1948 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 1949 << RegUnitSets.back().Name << ":"; 1950 for (auto &U 1951 : RegUnitSets.back().Units) printRegUnitName(U); 1952 dbgs() << "\n";); 1953 } 1954 } 1955 } 1956 1957 // Iteratively prune unit sets after inferring supersets. 1958 pruneUnitSets(); 1959 1960 LLVM_DEBUG( 1961 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1962 USIdx < USEnd; ++USIdx) { 1963 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1964 for (auto &U : RegUnitSets[USIdx].Units) 1965 printRegUnitName(U); 1966 dbgs() << "\n"; 1967 }); 1968 1969 // For each register class, list the UnitSets that are supersets. 1970 RegClassUnitSets.resize(RegClasses.size()); 1971 int RCIdx = -1; 1972 for (auto &RC : RegClasses) { 1973 ++RCIdx; 1974 if (!RC.Allocatable) 1975 continue; 1976 1977 // Recompute the sorted list of units in this class. 1978 std::vector<unsigned> RCRegUnits; 1979 RC.buildRegUnitSet(*this, RCRegUnits); 1980 1981 // Don't increase pressure for unallocatable regclasses. 1982 if (RCRegUnits.empty()) 1983 continue; 1984 1985 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1986 for (auto U 1987 : RCRegUnits) printRegUnitName(U); 1988 dbgs() << "\n UnitSetIDs:"); 1989 1990 // Find all supersets. 1991 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1992 USIdx != USEnd; ++USIdx) { 1993 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1994 LLVM_DEBUG(dbgs() << " " << USIdx); 1995 RegClassUnitSets[RCIdx].push_back(USIdx); 1996 } 1997 } 1998 LLVM_DEBUG(dbgs() << "\n"); 1999 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 2000 } 2001 2002 // For each register unit, ensure that we have the list of UnitSets that 2003 // contain the unit. Normally, this matches an existing list of UnitSets for a 2004 // register class. If not, we create a new entry in RegClassUnitSets as a 2005 // "fake" register class. 2006 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2007 UnitIdx < UnitEnd; ++UnitIdx) { 2008 std::vector<unsigned> RUSets; 2009 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2010 RegUnitSet &RUSet = RegUnitSets[i]; 2011 if (!is_contained(RUSet.Units, UnitIdx)) 2012 continue; 2013 RUSets.push_back(i); 2014 } 2015 unsigned RCUnitSetsIdx = 0; 2016 for (unsigned e = RegClassUnitSets.size(); 2017 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2018 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2019 break; 2020 } 2021 } 2022 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2023 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2024 // Create a new list of UnitSets as a "fake" register class. 2025 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2026 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2027 } 2028 } 2029 } 2030 2031 void CodeGenRegBank::computeRegUnitLaneMasks() { 2032 for (auto &Register : Registers) { 2033 // Create an initial lane mask for all register units. 2034 const auto &RegUnits = Register.getRegUnits(); 2035 CodeGenRegister::RegUnitLaneMaskList 2036 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2037 // Iterate through SubRegisters. 2038 typedef CodeGenRegister::SubRegMap SubRegMap; 2039 const SubRegMap &SubRegs = Register.getSubRegs(); 2040 for (SubRegMap::const_iterator S = SubRegs.begin(), 2041 SE = SubRegs.end(); S != SE; ++S) { 2042 CodeGenRegister *SubReg = S->second; 2043 // Ignore non-leaf subregisters, their lane masks are fully covered by 2044 // the leaf subregisters anyway. 2045 if (!SubReg->getSubRegs().empty()) 2046 continue; 2047 CodeGenSubRegIndex *SubRegIndex = S->first; 2048 const CodeGenRegister *SubRegister = S->second; 2049 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2050 // Distribute LaneMask to Register Units touched. 2051 for (unsigned SUI : SubRegister->getRegUnits()) { 2052 bool Found = false; 2053 unsigned u = 0; 2054 for (unsigned RU : RegUnits) { 2055 if (SUI == RU) { 2056 RegUnitLaneMasks[u] |= LaneMask; 2057 assert(!Found); 2058 Found = true; 2059 } 2060 ++u; 2061 } 2062 (void)Found; 2063 assert(Found); 2064 } 2065 } 2066 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2067 } 2068 } 2069 2070 void CodeGenRegBank::computeDerivedInfo() { 2071 computeComposites(); 2072 computeSubRegLaneMasks(); 2073 2074 // Compute a weight for each register unit created during getSubRegs. 2075 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2076 computeRegUnitWeights(); 2077 2078 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2079 // supersets for the union of overlapping sets. 2080 computeRegUnitSets(); 2081 2082 computeRegUnitLaneMasks(); 2083 2084 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2085 for (CodeGenRegisterClass &RC : RegClasses) { 2086 RC.HasDisjunctSubRegs = false; 2087 RC.CoveredBySubRegs = true; 2088 for (const CodeGenRegister *Reg : RC.getMembers()) { 2089 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2090 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2091 } 2092 } 2093 2094 // Get the weight of each set. 2095 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2096 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2097 2098 // Find the order of each set. 2099 RegUnitSetOrder.reserve(RegUnitSets.size()); 2100 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2101 RegUnitSetOrder.push_back(Idx); 2102 2103 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 2104 [this](unsigned ID1, unsigned ID2) { 2105 return getRegPressureSet(ID1).Units.size() < 2106 getRegPressureSet(ID2).Units.size(); 2107 }); 2108 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2109 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2110 } 2111 } 2112 2113 // 2114 // Synthesize missing register class intersections. 2115 // 2116 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2117 // returns a maximal register class for all X. 2118 // 2119 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2120 assert(!RegClasses.empty()); 2121 // Stash the iterator to the last element so that this loop doesn't visit 2122 // elements added by the getOrCreateSubClass call within it. 2123 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2124 I != std::next(E); ++I) { 2125 CodeGenRegisterClass *RC1 = RC; 2126 CodeGenRegisterClass *RC2 = &*I; 2127 if (RC1 == RC2) 2128 continue; 2129 2130 // Compute the set intersection of RC1 and RC2. 2131 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2132 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2133 CodeGenRegister::Vec Intersection; 2134 std::set_intersection( 2135 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 2136 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 2137 2138 // Skip disjoint class pairs. 2139 if (Intersection.empty()) 2140 continue; 2141 2142 // If RC1 and RC2 have different spill sizes or alignments, use the 2143 // stricter one for sub-classing. If they are equal, prefer RC1. 2144 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2145 std::swap(RC1, RC2); 2146 2147 getOrCreateSubClass(RC1, &Intersection, 2148 RC1->getName() + "_and_" + RC2->getName()); 2149 } 2150 } 2151 2152 // 2153 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2154 // 2155 // Make sure that the set of registers in RC with a given SubIdx sub-register 2156 // form a register class. Update RC->SubClassWithSubReg. 2157 // 2158 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2159 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2160 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2161 deref<llvm::less>> SubReg2SetMap; 2162 2163 // Compute the set of registers supporting each SubRegIndex. 2164 SubReg2SetMap SRSets; 2165 for (const auto R : RC->getMembers()) { 2166 if (R->Artificial) 2167 continue; 2168 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2169 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2170 E = SRM.end(); I != E; ++I) { 2171 if (!I->first->Artificial) 2172 SRSets[I->first].push_back(R); 2173 } 2174 } 2175 2176 for (auto I : SRSets) 2177 sortAndUniqueRegisters(I.second); 2178 2179 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2180 // numerical order to visit synthetic indices last. 2181 for (const auto &SubIdx : SubRegIndices) { 2182 if (SubIdx.Artificial) 2183 continue; 2184 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2185 // Unsupported SubRegIndex. Skip it. 2186 if (I == SRSets.end()) 2187 continue; 2188 // In most cases, all RC registers support the SubRegIndex. 2189 if (I->second.size() == RC->getMembers().size()) { 2190 RC->setSubClassWithSubReg(&SubIdx, RC); 2191 continue; 2192 } 2193 // This is a real subset. See if we have a matching class. 2194 CodeGenRegisterClass *SubRC = 2195 getOrCreateSubClass(RC, &I->second, 2196 RC->getName() + "_with_" + I->first->getName()); 2197 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2198 } 2199 } 2200 2201 // 2202 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2203 // 2204 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2205 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2206 // 2207 2208 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2209 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2210 SmallVector<std::pair<const CodeGenRegister*, 2211 const CodeGenRegister*>, 16> SSPairs; 2212 BitVector TopoSigs(getNumTopoSigs()); 2213 2214 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2215 for (auto &SubIdx : SubRegIndices) { 2216 // Skip indexes that aren't fully supported by RC's registers. This was 2217 // computed by inferSubClassWithSubReg() above which should have been 2218 // called first. 2219 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2220 continue; 2221 2222 // Build list of (Super, Sub) pairs for this SubIdx. 2223 SSPairs.clear(); 2224 TopoSigs.reset(); 2225 for (const auto Super : RC->getMembers()) { 2226 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2227 assert(Sub && "Missing sub-register"); 2228 SSPairs.push_back(std::make_pair(Super, Sub)); 2229 TopoSigs.set(Sub->getTopoSig()); 2230 } 2231 2232 // Iterate over sub-register class candidates. Ignore classes created by 2233 // this loop. They will never be useful. 2234 // Store an iterator to the last element (not end) so that this loop doesn't 2235 // visit newly inserted elements. 2236 assert(!RegClasses.empty()); 2237 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2238 I != std::next(E); ++I) { 2239 CodeGenRegisterClass &SubRC = *I; 2240 if (SubRC.Artificial) 2241 continue; 2242 // Topological shortcut: SubRC members have the wrong shape. 2243 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2244 continue; 2245 // Compute the subset of RC that maps into SubRC. 2246 CodeGenRegister::Vec SubSetVec; 2247 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2248 if (SubRC.contains(SSPairs[i].second)) 2249 SubSetVec.push_back(SSPairs[i].first); 2250 2251 if (SubSetVec.empty()) 2252 continue; 2253 2254 // RC injects completely into SubRC. 2255 sortAndUniqueRegisters(SubSetVec); 2256 if (SubSetVec.size() == SSPairs.size()) { 2257 SubRC.addSuperRegClass(&SubIdx, RC); 2258 continue; 2259 } 2260 2261 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2262 // class. 2263 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2264 SubIdx.getName() + "_in_" + 2265 SubRC.getName()); 2266 } 2267 } 2268 } 2269 2270 // 2271 // Infer missing register classes. 2272 // 2273 void CodeGenRegBank::computeInferredRegisterClasses() { 2274 assert(!RegClasses.empty()); 2275 // When this function is called, the register classes have not been sorted 2276 // and assigned EnumValues yet. That means getSubClasses(), 2277 // getSuperClasses(), and hasSubClass() functions are defunct. 2278 2279 // Use one-before-the-end so it doesn't move forward when new elements are 2280 // added. 2281 auto FirstNewRC = std::prev(RegClasses.end()); 2282 2283 // Visit all register classes, including the ones being added by the loop. 2284 // Watch out for iterator invalidation here. 2285 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2286 CodeGenRegisterClass *RC = &*I; 2287 if (RC->Artificial) 2288 continue; 2289 2290 // Synthesize answers for getSubClassWithSubReg(). 2291 inferSubClassWithSubReg(RC); 2292 2293 // Synthesize answers for getCommonSubClass(). 2294 inferCommonSubClass(RC); 2295 2296 // Synthesize answers for getMatchingSuperRegClass(). 2297 inferMatchingSuperRegClass(RC); 2298 2299 // New register classes are created while this loop is running, and we need 2300 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2301 // to match old super-register classes with sub-register classes created 2302 // after inferMatchingSuperRegClass was called. At this point, 2303 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2304 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2305 if (I == FirstNewRC) { 2306 auto NextNewRC = std::prev(RegClasses.end()); 2307 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2308 ++I2) 2309 inferMatchingSuperRegClass(&*I2, E2); 2310 FirstNewRC = NextNewRC; 2311 } 2312 } 2313 } 2314 2315 /// getRegisterClassForRegister - Find the register class that contains the 2316 /// specified physical register. If the register is not in a register class, 2317 /// return null. If the register is in multiple classes, and the classes have a 2318 /// superset-subset relationship and the same set of types, return the 2319 /// superclass. Otherwise return null. 2320 const CodeGenRegisterClass* 2321 CodeGenRegBank::getRegClassForRegister(Record *R) { 2322 const CodeGenRegister *Reg = getReg(R); 2323 const CodeGenRegisterClass *FoundRC = nullptr; 2324 for (const auto &RC : getRegClasses()) { 2325 if (!RC.contains(Reg)) 2326 continue; 2327 2328 // If this is the first class that contains the register, 2329 // make a note of it and go on to the next class. 2330 if (!FoundRC) { 2331 FoundRC = &RC; 2332 continue; 2333 } 2334 2335 // If a register's classes have different types, return null. 2336 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2337 return nullptr; 2338 2339 // Check to see if the previously found class that contains 2340 // the register is a subclass of the current class. If so, 2341 // prefer the superclass. 2342 if (RC.hasSubClass(FoundRC)) { 2343 FoundRC = &RC; 2344 continue; 2345 } 2346 2347 // Check to see if the previously found class that contains 2348 // the register is a superclass of the current class. If so, 2349 // prefer the superclass. 2350 if (FoundRC->hasSubClass(&RC)) 2351 continue; 2352 2353 // Multiple classes, and neither is a superclass of the other. 2354 // Return null. 2355 return nullptr; 2356 } 2357 return FoundRC; 2358 } 2359 2360 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2361 SetVector<const CodeGenRegister*> Set; 2362 2363 // First add Regs with all sub-registers. 2364 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2365 CodeGenRegister *Reg = getReg(Regs[i]); 2366 if (Set.insert(Reg)) 2367 // Reg is new, add all sub-registers. 2368 // The pre-ordering is not important here. 2369 Reg->addSubRegsPreOrder(Set, *this); 2370 } 2371 2372 // Second, find all super-registers that are completely covered by the set. 2373 for (unsigned i = 0; i != Set.size(); ++i) { 2374 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2375 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2376 const CodeGenRegister *Super = SR[j]; 2377 if (!Super->CoveredBySubRegs || Set.count(Super)) 2378 continue; 2379 // This new super-register is covered by its sub-registers. 2380 bool AllSubsInSet = true; 2381 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2382 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2383 E = SRM.end(); I != E; ++I) 2384 if (!Set.count(I->second)) { 2385 AllSubsInSet = false; 2386 break; 2387 } 2388 // All sub-registers in Set, add Super as well. 2389 // We will visit Super later to recheck its super-registers. 2390 if (AllSubsInSet) 2391 Set.insert(Super); 2392 } 2393 } 2394 2395 // Convert to BitVector. 2396 BitVector BV(Registers.size() + 1); 2397 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2398 BV.set(Set[i]->EnumValue); 2399 return BV; 2400 } 2401 2402 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2403 if (Unit < NumNativeRegUnits) 2404 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2405 else 2406 dbgs() << " #" << Unit; 2407 } 2408