1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/IntEqClasses.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/TableGen/Error.h"
33 #include "llvm/TableGen/Record.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <iterator>
38 #include <map>
39 #include <set>
40 #include <string>
41 #include <tuple>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "regalloc-emitter"
48 
49 //===----------------------------------------------------------------------===//
50 //                             CodeGenSubRegIndex
51 //===----------------------------------------------------------------------===//
52 
53 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
55   Name = R->getName();
56   if (R->getValue("Namespace"))
57     Namespace = R->getValueAsString("Namespace");
58   Size = R->getValueAsInt("Size");
59   Offset = R->getValueAsInt("Offset");
60 }
61 
62 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                        unsigned Enum)
64   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
65     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
66 }
67 
68 std::string CodeGenSubRegIndex::getQualifiedName() const {
69   std::string N = getNamespace();
70   if (!N.empty())
71     N += "::";
72   N += getName();
73   return N;
74 }
75 
76 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77   if (!TheDef)
78     return;
79 
80   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81   if (!Comps.empty()) {
82     if (Comps.size() != 2)
83       PrintFatalError(TheDef->getLoc(),
84                       "ComposedOf must have exactly two entries");
85     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87     CodeGenSubRegIndex *X = A->addComposite(B, this);
88     if (X)
89       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90   }
91 
92   std::vector<Record*> Parts =
93     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94   if (!Parts.empty()) {
95     if (Parts.size() < 2)
96       PrintFatalError(TheDef->getLoc(),
97                       "CoveredBySubRegs must have two or more entries");
98     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
100       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
101     RegBank.addConcatSubRegIndex(IdxParts, this);
102   }
103 }
104 
105 unsigned CodeGenSubRegIndex::computeLaneMask() const {
106   // Already computed?
107   if (LaneMask)
108     return LaneMask;
109 
110   // Recursion guard, shouldn't be required.
111   LaneMask = ~0u;
112 
113   // The lane mask is simply the union of all sub-indices.
114   unsigned M = 0;
115   for (const auto &C : Composed)
116     M |= C.second->computeLaneMask();
117   assert(M && "Missing lane mask, sub-register cycle?");
118   LaneMask = M;
119   return LaneMask;
120 }
121 
122 //===----------------------------------------------------------------------===//
123 //                              CodeGenRegister
124 //===----------------------------------------------------------------------===//
125 
126 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
127   : TheDef(R),
128     EnumValue(Enum),
129     CostPerUse(R->getValueAsInt("CostPerUse")),
130     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
131     HasDisjunctSubRegs(false),
132     SubRegsComplete(false),
133     SuperRegsComplete(false),
134     TopoSig(~0u)
135 {}
136 
137 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
138   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
139   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
140 
141   if (SRIs.size() != SRs.size())
142     PrintFatalError(TheDef->getLoc(),
143                     "SubRegs and SubRegIndices must have the same size");
144 
145   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
146     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
147     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
148   }
149 
150   // Also compute leading super-registers. Each register has a list of
151   // covered-by-subregs super-registers where it appears as the first explicit
152   // sub-register.
153   //
154   // This is used by computeSecondarySubRegs() to find candidates.
155   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
156     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
157 
158   // Add ad hoc alias links. This is a symmetric relationship between two
159   // registers, so build a symmetric graph by adding links in both ends.
160   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
161   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
162     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
163     ExplicitAliases.push_back(Reg);
164     Reg->ExplicitAliases.push_back(this);
165   }
166 }
167 
168 const StringRef CodeGenRegister::getName() const {
169   assert(TheDef && "no def");
170   return TheDef->getName();
171 }
172 
173 namespace {
174 
175 // Iterate over all register units in a set of registers.
176 class RegUnitIterator {
177   CodeGenRegister::Vec::const_iterator RegI, RegE;
178   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
179 
180 public:
181   RegUnitIterator(const CodeGenRegister::Vec &Regs):
182     RegI(Regs.begin()), RegE(Regs.end()) {
183 
184     if (RegI != RegE) {
185       UnitI = (*RegI)->getRegUnits().begin();
186       UnitE = (*RegI)->getRegUnits().end();
187       advance();
188     }
189   }
190 
191   bool isValid() const { return UnitI != UnitE; }
192 
193   unsigned operator* () const { assert(isValid()); return *UnitI; }
194 
195   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
196 
197   /// Preincrement.  Move to the next unit.
198   void operator++() {
199     assert(isValid() && "Cannot advance beyond the last operand");
200     ++UnitI;
201     advance();
202   }
203 
204 protected:
205   void advance() {
206     while (UnitI == UnitE) {
207       if (++RegI == RegE)
208         break;
209       UnitI = (*RegI)->getRegUnits().begin();
210       UnitE = (*RegI)->getRegUnits().end();
211     }
212   }
213 };
214 
215 } // end anonymous namespace
216 
217 // Return true of this unit appears in RegUnits.
218 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
219   return RegUnits.test(Unit);
220 }
221 
222 // Inherit register units from subregisters.
223 // Return true if the RegUnits changed.
224 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
225   bool changed = false;
226   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
227        I != E; ++I) {
228     CodeGenRegister *SR = I->second;
229     // Merge the subregister's units into this register's RegUnits.
230     changed |= (RegUnits |= SR->RegUnits);
231   }
232 
233   return changed;
234 }
235 
236 const CodeGenRegister::SubRegMap &
237 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
238   // Only compute this map once.
239   if (SubRegsComplete)
240     return SubRegs;
241   SubRegsComplete = true;
242 
243   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
244 
245   // First insert the explicit subregs and make sure they are fully indexed.
246   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
247     CodeGenRegister *SR = ExplicitSubRegs[i];
248     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
249     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
250       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
251                       " appears twice in Register " + getName());
252     // Map explicit sub-registers first, so the names take precedence.
253     // The inherited sub-registers are mapped below.
254     SubReg2Idx.insert(std::make_pair(SR, Idx));
255   }
256 
257   // Keep track of inherited subregs and how they can be reached.
258   SmallPtrSet<CodeGenRegister*, 8> Orphans;
259 
260   // Clone inherited subregs and place duplicate entries in Orphans.
261   // Here the order is important - earlier subregs take precedence.
262   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
263     CodeGenRegister *SR = ExplicitSubRegs[i];
264     const SubRegMap &Map = SR->computeSubRegs(RegBank);
265     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
266 
267     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
268          ++SI) {
269       if (!SubRegs.insert(*SI).second)
270         Orphans.insert(SI->second);
271     }
272   }
273 
274   // Expand any composed subreg indices.
275   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
276   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
277   // expanded subreg indices recursively.
278   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
279   for (unsigned i = 0; i != Indices.size(); ++i) {
280     CodeGenSubRegIndex *Idx = Indices[i];
281     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
282     CodeGenRegister *SR = SubRegs[Idx];
283     const SubRegMap &Map = SR->computeSubRegs(RegBank);
284 
285     // Look at the possible compositions of Idx.
286     // They may not all be supported by SR.
287     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
288            E = Comps.end(); I != E; ++I) {
289       SubRegMap::const_iterator SRI = Map.find(I->first);
290       if (SRI == Map.end())
291         continue; // Idx + I->first doesn't exist in SR.
292       // Add I->second as a name for the subreg SRI->second, assuming it is
293       // orphaned, and the name isn't already used for something else.
294       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
295         continue;
296       // We found a new name for the orphaned sub-register.
297       SubRegs.insert(std::make_pair(I->second, SRI->second));
298       Indices.push_back(I->second);
299     }
300   }
301 
302   // Now Orphans contains the inherited subregisters without a direct index.
303   // Create inferred indexes for all missing entries.
304   // Work backwards in the Indices vector in order to compose subregs bottom-up.
305   // Consider this subreg sequence:
306   //
307   //   qsub_1 -> dsub_0 -> ssub_0
308   //
309   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
310   // can be reached in two different ways:
311   //
312   //   qsub_1 -> ssub_0
313   //   dsub_2 -> ssub_0
314   //
315   // We pick the latter composition because another register may have [dsub_0,
316   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
317   // dsub_2 -> ssub_0 composition can be shared.
318   while (!Indices.empty() && !Orphans.empty()) {
319     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
320     CodeGenRegister *SR = SubRegs[Idx];
321     const SubRegMap &Map = SR->computeSubRegs(RegBank);
322     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
323          ++SI)
324       if (Orphans.erase(SI->second))
325         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
326   }
327 
328   // Compute the inverse SubReg -> Idx map.
329   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
330        SI != SE; ++SI) {
331     if (SI->second == this) {
332       ArrayRef<SMLoc> Loc;
333       if (TheDef)
334         Loc = TheDef->getLoc();
335       PrintFatalError(Loc, "Register " + getName() +
336                       " has itself as a sub-register");
337     }
338 
339     // Compute AllSuperRegsCovered.
340     if (!CoveredBySubRegs)
341       SI->first->AllSuperRegsCovered = false;
342 
343     // Ensure that every sub-register has a unique name.
344     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
345       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
346     if (Ins->second == SI->first)
347       continue;
348     // Trouble: Two different names for SI->second.
349     ArrayRef<SMLoc> Loc;
350     if (TheDef)
351       Loc = TheDef->getLoc();
352     PrintFatalError(Loc, "Sub-register can't have two names: " +
353                   SI->second->getName() + " available as " +
354                   SI->first->getName() + " and " + Ins->second->getName());
355   }
356 
357   // Derive possible names for sub-register concatenations from any explicit
358   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
359   // that getConcatSubRegIndex() won't invent any concatenated indices that the
360   // user already specified.
361   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
362     CodeGenRegister *SR = ExplicitSubRegs[i];
363     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
364       continue;
365 
366     // SR is composed of multiple sub-regs. Find their names in this register.
367     SmallVector<CodeGenSubRegIndex*, 8> Parts;
368     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
369       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
370 
371     // Offer this as an existing spelling for the concatenation of Parts.
372     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
373   }
374 
375   // Initialize RegUnitList. Because getSubRegs is called recursively, this
376   // processes the register hierarchy in postorder.
377   //
378   // Inherit all sub-register units. It is good enough to look at the explicit
379   // sub-registers, the other registers won't contribute any more units.
380   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
381     CodeGenRegister *SR = ExplicitSubRegs[i];
382     RegUnits |= SR->RegUnits;
383   }
384 
385   // Absent any ad hoc aliasing, we create one register unit per leaf register.
386   // These units correspond to the maximal cliques in the register overlap
387   // graph which is optimal.
388   //
389   // When there is ad hoc aliasing, we simply create one unit per edge in the
390   // undirected ad hoc aliasing graph. Technically, we could do better by
391   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
392   // are extremely rare anyway (I've never seen one), so we don't bother with
393   // the added complexity.
394   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
395     CodeGenRegister *AR = ExplicitAliases[i];
396     // Only visit each edge once.
397     if (AR->SubRegsComplete)
398       continue;
399     // Create a RegUnit representing this alias edge, and add it to both
400     // registers.
401     unsigned Unit = RegBank.newRegUnit(this, AR);
402     RegUnits.set(Unit);
403     AR->RegUnits.set(Unit);
404   }
405 
406   // Finally, create units for leaf registers without ad hoc aliases. Note that
407   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
408   // necessary. This means the aliasing leaf registers can share a single unit.
409   if (RegUnits.empty())
410     RegUnits.set(RegBank.newRegUnit(this));
411 
412   // We have now computed the native register units. More may be adopted later
413   // for balancing purposes.
414   NativeRegUnits = RegUnits;
415 
416   return SubRegs;
417 }
418 
419 // In a register that is covered by its sub-registers, try to find redundant
420 // sub-registers. For example:
421 //
422 //   QQ0 = {Q0, Q1}
423 //   Q0 = {D0, D1}
424 //   Q1 = {D2, D3}
425 //
426 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
427 // the register definition.
428 //
429 // The explicitly specified registers form a tree. This function discovers
430 // sub-register relationships that would force a DAG.
431 //
432 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
433   // Collect new sub-registers first, add them later.
434   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
435 
436   // Look at the leading super-registers of each sub-register. Those are the
437   // candidates for new sub-registers, assuming they are fully contained in
438   // this register.
439   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
440     const CodeGenRegister *SubReg = I->second;
441     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
442     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
443       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
444       // Already got this sub-register?
445       if (Cand == this || getSubRegIndex(Cand))
446         continue;
447       // Check if each component of Cand is already a sub-register.
448       // We know that the first component is I->second, and is present with the
449       // name I->first.
450       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
451       assert(!Cand->ExplicitSubRegs.empty() &&
452              "Super-register has no sub-registers");
453       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
454         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
455           Parts.push_back(Idx);
456         else {
457           // Sub-register doesn't exist.
458           Parts.clear();
459           break;
460         }
461       }
462       // If some Cand sub-register is not part of this register, or if Cand only
463       // has one sub-register, there is nothing to do.
464       if (Parts.size() <= 1)
465         continue;
466 
467       // Each part of Cand is a sub-register of this. Make the full Cand also
468       // a sub-register with a concatenated sub-register index.
469       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
470       NewSubRegs.push_back(std::make_pair(Concat, Cand));
471     }
472   }
473 
474   // Now add all the new sub-registers.
475   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
476     // Don't add Cand if another sub-register is already using the index.
477     if (!SubRegs.insert(NewSubRegs[i]).second)
478       continue;
479 
480     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
481     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
482     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
483   }
484 
485   // Create sub-register index composition maps for the synthesized indices.
486   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
487     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
488     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
489     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
490            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
491       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
492       if (!SubIdx)
493         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
494                         SI->second->getName() + " in " + getName());
495       NewIdx->addComposite(SI->first, SubIdx);
496     }
497   }
498 }
499 
500 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
501   // Only visit each register once.
502   if (SuperRegsComplete)
503     return;
504   SuperRegsComplete = true;
505 
506   // Make sure all sub-registers have been visited first, so the super-reg
507   // lists will be topologically ordered.
508   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
509        I != E; ++I)
510     I->second->computeSuperRegs(RegBank);
511 
512   // Now add this as a super-register on all sub-registers.
513   // Also compute the TopoSigId in post-order.
514   TopoSigId Id;
515   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
516        I != E; ++I) {
517     // Topological signature computed from SubIdx, TopoId(SubReg).
518     // Loops and idempotent indices have TopoSig = ~0u.
519     Id.push_back(I->first->EnumValue);
520     Id.push_back(I->second->TopoSig);
521 
522     // Don't add duplicate entries.
523     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
524       continue;
525     I->second->SuperRegs.push_back(this);
526   }
527   TopoSig = RegBank.getTopoSig(Id);
528 }
529 
530 void
531 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
532                                     CodeGenRegBank &RegBank) const {
533   assert(SubRegsComplete && "Must precompute sub-registers");
534   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
535     CodeGenRegister *SR = ExplicitSubRegs[i];
536     if (OSet.insert(SR))
537       SR->addSubRegsPreOrder(OSet, RegBank);
538   }
539   // Add any secondary sub-registers that weren't part of the explicit tree.
540   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
541        I != E; ++I)
542     OSet.insert(I->second);
543 }
544 
545 // Get the sum of this register's unit weights.
546 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
547   unsigned Weight = 0;
548   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
549        I != E; ++I) {
550     Weight += RegBank.getRegUnit(*I).Weight;
551   }
552   return Weight;
553 }
554 
555 //===----------------------------------------------------------------------===//
556 //                               RegisterTuples
557 //===----------------------------------------------------------------------===//
558 
559 // A RegisterTuples def is used to generate pseudo-registers from lists of
560 // sub-registers. We provide a SetTheory expander class that returns the new
561 // registers.
562 namespace {
563 
564 struct TupleExpander : SetTheory::Expander {
565   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
566     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
567     unsigned Dim = Indices.size();
568     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
569     if (Dim != SubRegs->size())
570       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
571     if (Dim < 2)
572       PrintFatalError(Def->getLoc(),
573                       "Tuples must have at least 2 sub-registers");
574 
575     // Evaluate the sub-register lists to be zipped.
576     unsigned Length = ~0u;
577     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
578     for (unsigned i = 0; i != Dim; ++i) {
579       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
580       Length = std::min(Length, unsigned(Lists[i].size()));
581     }
582 
583     if (Length == 0)
584       return;
585 
586     // Precompute some types.
587     Record *RegisterCl = Def->getRecords().getClass("Register");
588     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
589     StringInit *BlankName = StringInit::get("");
590 
591     // Zip them up.
592     for (unsigned n = 0; n != Length; ++n) {
593       std::string Name;
594       Record *Proto = Lists[0][n];
595       std::vector<Init*> Tuple;
596       unsigned CostPerUse = 0;
597       for (unsigned i = 0; i != Dim; ++i) {
598         Record *Reg = Lists[i][n];
599         if (i) Name += '_';
600         Name += Reg->getName();
601         Tuple.push_back(DefInit::get(Reg));
602         CostPerUse = std::max(CostPerUse,
603                               unsigned(Reg->getValueAsInt("CostPerUse")));
604       }
605 
606       // Create a new Record representing the synthesized register. This record
607       // is only for consumption by CodeGenRegister, it is not added to the
608       // RecordKeeper.
609       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
610       Elts.insert(NewReg);
611 
612       // Copy Proto super-classes.
613       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
614       for (const auto &SuperPair : Supers)
615         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
616 
617       // Copy Proto fields.
618       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
619         RecordVal RV = Proto->getValues()[i];
620 
621         // Skip existing fields, like NAME.
622         if (NewReg->getValue(RV.getNameInit()))
623           continue;
624 
625         StringRef Field = RV.getName();
626 
627         // Replace the sub-register list with Tuple.
628         if (Field == "SubRegs")
629           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
630 
631         // Provide a blank AsmName. MC hacks are required anyway.
632         if (Field == "AsmName")
633           RV.setValue(BlankName);
634 
635         // CostPerUse is aggregated from all Tuple members.
636         if (Field == "CostPerUse")
637           RV.setValue(IntInit::get(CostPerUse));
638 
639         // Composite registers are always covered by sub-registers.
640         if (Field == "CoveredBySubRegs")
641           RV.setValue(BitInit::get(true));
642 
643         // Copy fields from the RegisterTuples def.
644         if (Field == "SubRegIndices" ||
645             Field == "CompositeIndices") {
646           NewReg->addValue(*Def->getValue(Field));
647           continue;
648         }
649 
650         // Some fields get their default uninitialized value.
651         if (Field == "DwarfNumbers" ||
652             Field == "DwarfAlias" ||
653             Field == "Aliases") {
654           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
655             NewReg->addValue(*DefRV);
656           continue;
657         }
658 
659         // Everything else is copied from Proto.
660         NewReg->addValue(RV);
661       }
662     }
663   }
664 };
665 
666 } // end anonymous namespace
667 
668 //===----------------------------------------------------------------------===//
669 //                            CodeGenRegisterClass
670 //===----------------------------------------------------------------------===//
671 
672 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
673   std::sort(M.begin(), M.end(), deref<llvm::less>());
674   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
675 }
676 
677 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
678   : TheDef(R),
679     Name(R->getName()),
680     TopoSigs(RegBank.getNumTopoSigs()),
681     EnumValue(-1),
682     LaneMask(0) {
683   // Rename anonymous register classes.
684   if (R->getName().size() > 9 && R->getName()[9] == '.') {
685     static unsigned AnonCounter = 0;
686     R->setName("AnonRegClass_" + utostr(AnonCounter++));
687   }
688 
689   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
690   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
691     Record *Type = TypeList[i];
692     if (!Type->isSubClassOf("ValueType"))
693       PrintFatalError("RegTypes list member '" + Type->getName() +
694         "' does not derive from the ValueType class!");
695     VTs.push_back(getValueType(Type));
696   }
697   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
698 
699   // Allocation order 0 is the full set. AltOrders provides others.
700   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
701   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
702   Orders.resize(1 + AltOrders->size());
703 
704   // Default allocation order always contains all registers.
705   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
706     Orders[0].push_back((*Elements)[i]);
707     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
708     Members.push_back(Reg);
709     TopoSigs.set(Reg->getTopoSig());
710   }
711   sortAndUniqueRegisters(Members);
712 
713   // Alternative allocation orders may be subsets.
714   SetTheory::RecSet Order;
715   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
716     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
717     Orders[1 + i].append(Order.begin(), Order.end());
718     // Verify that all altorder members are regclass members.
719     while (!Order.empty()) {
720       CodeGenRegister *Reg = RegBank.getReg(Order.back());
721       Order.pop_back();
722       if (!contains(Reg))
723         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
724                       " is not a class member");
725     }
726   }
727 
728   // Allow targets to override the size in bits of the RegisterClass.
729   unsigned Size = R->getValueAsInt("Size");
730 
731   Namespace = R->getValueAsString("Namespace");
732   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
733   SpillAlignment = R->getValueAsInt("Alignment");
734   CopyCost = R->getValueAsInt("CopyCost");
735   Allocatable = R->getValueAsBit("isAllocatable");
736   AltOrderSelect = R->getValueAsString("AltOrderSelect");
737   int AllocationPriority = R->getValueAsInt("AllocationPriority");
738   if (AllocationPriority < 0 || AllocationPriority > 63)
739     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
740   this->AllocationPriority = AllocationPriority;
741 }
742 
743 // Create an inferred register class that was missing from the .td files.
744 // Most properties will be inherited from the closest super-class after the
745 // class structure has been computed.
746 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
747                                            StringRef Name, Key Props)
748   : Members(*Props.Members),
749     TheDef(nullptr),
750     Name(Name),
751     TopoSigs(RegBank.getNumTopoSigs()),
752     EnumValue(-1),
753     SpillSize(Props.SpillSize),
754     SpillAlignment(Props.SpillAlignment),
755     CopyCost(0),
756     Allocatable(true),
757     AllocationPriority(0) {
758   for (const auto R : Members)
759     TopoSigs.set(R->getTopoSig());
760 }
761 
762 // Compute inherited propertied for a synthesized register class.
763 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
764   assert(!getDef() && "Only synthesized classes can inherit properties");
765   assert(!SuperClasses.empty() && "Synthesized class without super class");
766 
767   // The last super-class is the smallest one.
768   CodeGenRegisterClass &Super = *SuperClasses.back();
769 
770   // Most properties are copied directly.
771   // Exceptions are members, size, and alignment
772   Namespace = Super.Namespace;
773   VTs = Super.VTs;
774   CopyCost = Super.CopyCost;
775   Allocatable = Super.Allocatable;
776   AltOrderSelect = Super.AltOrderSelect;
777   AllocationPriority = Super.AllocationPriority;
778 
779   // Copy all allocation orders, filter out foreign registers from the larger
780   // super-class.
781   Orders.resize(Super.Orders.size());
782   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
783     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
784       if (contains(RegBank.getReg(Super.Orders[i][j])))
785         Orders[i].push_back(Super.Orders[i][j]);
786 }
787 
788 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
789   return std::binary_search(Members.begin(), Members.end(), Reg,
790                             deref<llvm::less>());
791 }
792 
793 namespace llvm {
794 
795   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
796     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
797     for (const auto R : *K.Members)
798       OS << ", " << R->getName();
799     return OS << " }";
800   }
801 
802 } // end namespace llvm
803 
804 // This is a simple lexicographical order that can be used to search for sets.
805 // It is not the same as the topological order provided by TopoOrderRC.
806 bool CodeGenRegisterClass::Key::
807 operator<(const CodeGenRegisterClass::Key &B) const {
808   assert(Members && B.Members);
809   return std::tie(*Members, SpillSize, SpillAlignment) <
810          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
811 }
812 
813 // Returns true if RC is a strict subclass.
814 // RC is a sub-class of this class if it is a valid replacement for any
815 // instruction operand where a register of this classis required. It must
816 // satisfy these conditions:
817 //
818 // 1. All RC registers are also in this.
819 // 2. The RC spill size must not be smaller than our spill size.
820 // 3. RC spill alignment must be compatible with ours.
821 //
822 static bool testSubClass(const CodeGenRegisterClass *A,
823                          const CodeGenRegisterClass *B) {
824   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
825          A->SpillSize <= B->SpillSize &&
826          std::includes(A->getMembers().begin(), A->getMembers().end(),
827                        B->getMembers().begin(), B->getMembers().end(),
828                        deref<llvm::less>());
829 }
830 
831 /// Sorting predicate for register classes.  This provides a topological
832 /// ordering that arranges all register classes before their sub-classes.
833 ///
834 /// Register classes with the same registers, spill size, and alignment form a
835 /// clique.  They will be ordered alphabetically.
836 ///
837 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
838                         const CodeGenRegisterClass &PB) {
839   auto *A = &PA;
840   auto *B = &PB;
841   if (A == B)
842     return false;
843 
844   // Order by ascending spill size.
845   if (A->SpillSize < B->SpillSize)
846     return true;
847   if (A->SpillSize > B->SpillSize)
848     return false;
849 
850   // Order by ascending spill alignment.
851   if (A->SpillAlignment < B->SpillAlignment)
852     return true;
853   if (A->SpillAlignment > B->SpillAlignment)
854     return false;
855 
856   // Order by descending set size.  Note that the classes' allocation order may
857   // not have been computed yet.  The Members set is always vaild.
858   if (A->getMembers().size() > B->getMembers().size())
859     return true;
860   if (A->getMembers().size() < B->getMembers().size())
861     return false;
862 
863   // Finally order by name as a tie breaker.
864   return StringRef(A->getName()) < B->getName();
865 }
866 
867 std::string CodeGenRegisterClass::getQualifiedName() const {
868   if (Namespace.empty())
869     return getName();
870   else
871     return Namespace + "::" + getName();
872 }
873 
874 // Compute sub-classes of all register classes.
875 // Assume the classes are ordered topologically.
876 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
877   auto &RegClasses = RegBank.getRegClasses();
878 
879   // Visit backwards so sub-classes are seen first.
880   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
881     CodeGenRegisterClass &RC = *I;
882     RC.SubClasses.resize(RegClasses.size());
883     RC.SubClasses.set(RC.EnumValue);
884 
885     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
886     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
887       CodeGenRegisterClass &SubRC = *I2;
888       if (RC.SubClasses.test(SubRC.EnumValue))
889         continue;
890       if (!testSubClass(&RC, &SubRC))
891         continue;
892       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
893       // check them again.
894       RC.SubClasses |= SubRC.SubClasses;
895     }
896 
897     // Sweep up missed clique members.  They will be immediately preceding RC.
898     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
899       RC.SubClasses.set(I2->EnumValue);
900   }
901 
902   // Compute the SuperClasses lists from the SubClasses vectors.
903   for (auto &RC : RegClasses) {
904     const BitVector &SC = RC.getSubClasses();
905     auto I = RegClasses.begin();
906     for (int s = 0, next_s = SC.find_first(); next_s != -1;
907          next_s = SC.find_next(s)) {
908       std::advance(I, next_s - s);
909       s = next_s;
910       if (&*I == &RC)
911         continue;
912       I->SuperClasses.push_back(&RC);
913     }
914   }
915 
916   // With the class hierarchy in place, let synthesized register classes inherit
917   // properties from their closest super-class. The iteration order here can
918   // propagate properties down multiple levels.
919   for (auto &RC : RegClasses)
920     if (!RC.getDef())
921       RC.inheritProperties(RegBank);
922 }
923 
924 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
925                                               BitVector &Out) const {
926   auto FindI = SuperRegClasses.find(SubIdx);
927   if (FindI == SuperRegClasses.end())
928     return;
929   for (CodeGenRegisterClass *RC : FindI->second)
930     Out.set(RC->EnumValue);
931 }
932 
933 // Populate a unique sorted list of units from a register set.
934 void CodeGenRegisterClass::buildRegUnitSet(
935   std::vector<unsigned> &RegUnits) const {
936   std::vector<unsigned> TmpUnits;
937   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
938     TmpUnits.push_back(*UnitI);
939   std::sort(TmpUnits.begin(), TmpUnits.end());
940   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
941                    std::back_inserter(RegUnits));
942 }
943 
944 //===----------------------------------------------------------------------===//
945 //                               CodeGenRegBank
946 //===----------------------------------------------------------------------===//
947 
948 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
949   // Configure register Sets to understand register classes and tuples.
950   Sets.addFieldExpander("RegisterClass", "MemberList");
951   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
952   Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
953 
954   // Read in the user-defined (named) sub-register indices.
955   // More indices will be synthesized later.
956   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
957   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
958   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
959     getSubRegIdx(SRIs[i]);
960   // Build composite maps from ComposedOf fields.
961   for (auto &Idx : SubRegIndices)
962     Idx.updateComponents(*this);
963 
964   // Read in the register definitions.
965   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
966   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
967   // Assign the enumeration values.
968   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
969     getReg(Regs[i]);
970 
971   // Expand tuples and number the new registers.
972   std::vector<Record*> Tups =
973     Records.getAllDerivedDefinitions("RegisterTuples");
974 
975   for (Record *R : Tups) {
976     std::vector<Record *> TupRegs = *Sets.expand(R);
977     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
978     for (Record *RC : TupRegs)
979       getReg(RC);
980   }
981 
982   // Now all the registers are known. Build the object graph of explicit
983   // register-register references.
984   for (auto &Reg : Registers)
985     Reg.buildObjectGraph(*this);
986 
987   // Compute register name map.
988   for (auto &Reg : Registers)
989     // FIXME: This could just be RegistersByName[name] = register, except that
990     // causes some failures in MIPS - perhaps they have duplicate register name
991     // entries? (or maybe there's a reason for it - I don't know much about this
992     // code, just drive-by refactoring)
993     RegistersByName.insert(
994         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
995 
996   // Precompute all sub-register maps.
997   // This will create Composite entries for all inferred sub-register indices.
998   for (auto &Reg : Registers)
999     Reg.computeSubRegs(*this);
1000 
1001   // Infer even more sub-registers by combining leading super-registers.
1002   for (auto &Reg : Registers)
1003     if (Reg.CoveredBySubRegs)
1004       Reg.computeSecondarySubRegs(*this);
1005 
1006   // After the sub-register graph is complete, compute the topologically
1007   // ordered SuperRegs list.
1008   for (auto &Reg : Registers)
1009     Reg.computeSuperRegs(*this);
1010 
1011   // Native register units are associated with a leaf register. They've all been
1012   // discovered now.
1013   NumNativeRegUnits = RegUnits.size();
1014 
1015   // Read in register class definitions.
1016   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1017   if (RCs.empty())
1018     PrintFatalError("No 'RegisterClass' subclasses defined!");
1019 
1020   // Allocate user-defined register classes.
1021   for (auto *RC : RCs) {
1022     RegClasses.emplace_back(*this, RC);
1023     addToMaps(&RegClasses.back());
1024   }
1025 
1026   // Infer missing classes to create a full algebra.
1027   computeInferredRegisterClasses();
1028 
1029   // Order register classes topologically and assign enum values.
1030   RegClasses.sort(TopoOrderRC);
1031   unsigned i = 0;
1032   for (auto &RC : RegClasses)
1033     RC.EnumValue = i++;
1034   CodeGenRegisterClass::computeSubClasses(*this);
1035 }
1036 
1037 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1038 CodeGenSubRegIndex*
1039 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1040   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1041   return &SubRegIndices.back();
1042 }
1043 
1044 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1045   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1046   if (Idx)
1047     return Idx;
1048   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1049   Idx = &SubRegIndices.back();
1050   return Idx;
1051 }
1052 
1053 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1054   CodeGenRegister *&Reg = Def2Reg[Def];
1055   if (Reg)
1056     return Reg;
1057   Registers.emplace_back(Def, Registers.size() + 1);
1058   Reg = &Registers.back();
1059   return Reg;
1060 }
1061 
1062 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1063   if (Record *Def = RC->getDef())
1064     Def2RC.insert(std::make_pair(Def, RC));
1065 
1066   // Duplicate classes are rejected by insert().
1067   // That's OK, we only care about the properties handled by CGRC::Key.
1068   CodeGenRegisterClass::Key K(*RC);
1069   Key2RC.insert(std::make_pair(K, RC));
1070 }
1071 
1072 // Create a synthetic sub-class if it is missing.
1073 CodeGenRegisterClass*
1074 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1075                                     const CodeGenRegister::Vec *Members,
1076                                     StringRef Name) {
1077   // Synthetic sub-class has the same size and alignment as RC.
1078   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1079   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1080   if (FoundI != Key2RC.end())
1081     return FoundI->second;
1082 
1083   // Sub-class doesn't exist, create a new one.
1084   RegClasses.emplace_back(*this, Name, K);
1085   addToMaps(&RegClasses.back());
1086   return &RegClasses.back();
1087 }
1088 
1089 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1090   if (CodeGenRegisterClass *RC = Def2RC[Def])
1091     return RC;
1092 
1093   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1094 }
1095 
1096 CodeGenSubRegIndex*
1097 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1098                                         CodeGenSubRegIndex *B) {
1099   // Look for an existing entry.
1100   CodeGenSubRegIndex *Comp = A->compose(B);
1101   if (Comp)
1102     return Comp;
1103 
1104   // None exists, synthesize one.
1105   std::string Name = A->getName() + "_then_" + B->getName();
1106   Comp = createSubRegIndex(Name, A->getNamespace());
1107   A->addComposite(B, Comp);
1108   return Comp;
1109 }
1110 
1111 CodeGenSubRegIndex *CodeGenRegBank::
1112 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1113   assert(Parts.size() > 1 && "Need two parts to concatenate");
1114 
1115   // Look for an existing entry.
1116   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1117   if (Idx)
1118     return Idx;
1119 
1120   // None exists, synthesize one.
1121   std::string Name = Parts.front()->getName();
1122   // Determine whether all parts are contiguous.
1123   bool isContinuous = true;
1124   unsigned Size = Parts.front()->Size;
1125   unsigned LastOffset = Parts.front()->Offset;
1126   unsigned LastSize = Parts.front()->Size;
1127   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1128     Name += '_';
1129     Name += Parts[i]->getName();
1130     Size += Parts[i]->Size;
1131     if (Parts[i]->Offset != (LastOffset + LastSize))
1132       isContinuous = false;
1133     LastOffset = Parts[i]->Offset;
1134     LastSize = Parts[i]->Size;
1135   }
1136   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1137   Idx->Size = Size;
1138   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1139   return Idx;
1140 }
1141 
1142 void CodeGenRegBank::computeComposites() {
1143   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1144   // and many registers will share TopoSigs on regular architectures.
1145   BitVector TopoSigs(getNumTopoSigs());
1146 
1147   for (const auto &Reg1 : Registers) {
1148     // Skip identical subreg structures already processed.
1149     if (TopoSigs.test(Reg1.getTopoSig()))
1150       continue;
1151     TopoSigs.set(Reg1.getTopoSig());
1152 
1153     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1154     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1155          e1 = SRM1.end(); i1 != e1; ++i1) {
1156       CodeGenSubRegIndex *Idx1 = i1->first;
1157       CodeGenRegister *Reg2 = i1->second;
1158       // Ignore identity compositions.
1159       if (&Reg1 == Reg2)
1160         continue;
1161       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1162       // Try composing Idx1 with another SubRegIndex.
1163       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1164            e2 = SRM2.end(); i2 != e2; ++i2) {
1165         CodeGenSubRegIndex *Idx2 = i2->first;
1166         CodeGenRegister *Reg3 = i2->second;
1167         // Ignore identity compositions.
1168         if (Reg2 == Reg3)
1169           continue;
1170         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1171         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1172         assert(Idx3 && "Sub-register doesn't have an index");
1173 
1174         // Conflicting composition? Emit a warning but allow it.
1175         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1176           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1177                        " and " + Idx2->getQualifiedName() +
1178                        " compose ambiguously as " + Prev->getQualifiedName() +
1179                        " or " + Idx3->getQualifiedName());
1180       }
1181     }
1182   }
1183 }
1184 
1185 // Compute lane masks. This is similar to register units, but at the
1186 // sub-register index level. Each bit in the lane mask is like a register unit
1187 // class, and two lane masks will have a bit in common if two sub-register
1188 // indices overlap in some register.
1189 //
1190 // Conservatively share a lane mask bit if two sub-register indices overlap in
1191 // some registers, but not in others. That shouldn't happen a lot.
1192 void CodeGenRegBank::computeSubRegLaneMasks() {
1193   // First assign individual bits to all the leaf indices.
1194   unsigned Bit = 0;
1195   // Determine mask of lanes that cover their registers.
1196   CoveringLanes = ~0u;
1197   for (auto &Idx : SubRegIndices) {
1198     if (Idx.getComposites().empty()) {
1199       if (Bit > 32) {
1200         PrintFatalError(
1201           Twine("Ran out of lanemask bits to represent subregister ")
1202           + Idx.getName());
1203       }
1204       Idx.LaneMask = 1u << Bit;
1205       ++Bit;
1206     } else {
1207       Idx.LaneMask = 0;
1208     }
1209   }
1210 
1211   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1212   // here is that for each possible target subregister we look at the leafs
1213   // in the subregister graph that compose for this target and create
1214   // transformation sequences for the lanemasks. Each step in the sequence
1215   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1216   // are usually the same for many subregisters we can easily combine the steps
1217   // by combining the masks.
1218   for (const auto &Idx : SubRegIndices) {
1219     const auto &Composites = Idx.getComposites();
1220     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1221 
1222     if (Composites.empty()) {
1223       // Moving from a class with no subregisters we just had a single lane:
1224       // The subregister must be a leaf subregister and only occupies 1 bit.
1225       // Move the bit from the class without subregisters into that position.
1226       unsigned DstBit = Log2_32(Idx.LaneMask);
1227       assert(Idx.LaneMask == 1u << DstBit && "Must be a leaf subregister");
1228       MaskRolPair MaskRol = { 1, (uint8_t)DstBit };
1229       LaneTransforms.push_back(MaskRol);
1230     } else {
1231       // Go through all leaf subregisters and find the ones that compose with
1232       // Idx. These make out all possible valid bits in the lane mask we want to
1233       // transform. Looking only at the leafs ensure that only a single bit in
1234       // the mask is set.
1235       unsigned NextBit = 0;
1236       for (auto &Idx2 : SubRegIndices) {
1237         // Skip non-leaf subregisters.
1238         if (!Idx2.getComposites().empty())
1239           continue;
1240         // Replicate the behaviour from the lane mask generation loop above.
1241         unsigned SrcBit = NextBit;
1242         unsigned SrcMask = 1u << SrcBit;
1243         if (NextBit < 31)
1244           ++NextBit;
1245         assert(Idx2.LaneMask == SrcMask);
1246 
1247         // Get the composed subregister if there is any.
1248         auto C = Composites.find(&Idx2);
1249         if (C == Composites.end())
1250           continue;
1251         const CodeGenSubRegIndex *Composite = C->second;
1252         // The Composed subreg should be a leaf subreg too
1253         assert(Composite->getComposites().empty());
1254 
1255         // Create Mask+Rotate operation and merge with existing ops if possible.
1256         unsigned DstBit = Log2_32(Composite->LaneMask);
1257         int Shift = DstBit - SrcBit;
1258         uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1259         for (auto &I : LaneTransforms) {
1260           if (I.RotateLeft == RotateLeft) {
1261             I.Mask |= SrcMask;
1262             SrcMask = 0;
1263           }
1264         }
1265         if (SrcMask != 0) {
1266           MaskRolPair MaskRol = { SrcMask, RotateLeft };
1267           LaneTransforms.push_back(MaskRol);
1268         }
1269       }
1270     }
1271 
1272     // Optimize if the transformation consists of one step only: Set mask to
1273     // 0xffffffff (including some irrelevant invalid bits) so that it should
1274     // merge with more entries later while compressing the table.
1275     if (LaneTransforms.size() == 1)
1276       LaneTransforms[0].Mask = ~0u;
1277 
1278     // Further compression optimization: For invalid compositions resulting
1279     // in a sequence with 0 entries we can just pick any other. Choose
1280     // Mask 0xffffffff with Rotation 0.
1281     if (LaneTransforms.size() == 0) {
1282       MaskRolPair P = { ~0u, 0 };
1283       LaneTransforms.push_back(P);
1284     }
1285   }
1286 
1287   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1288   // by the sub-register graph? This doesn't occur in any known targets.
1289 
1290   // Inherit lanes from composites.
1291   for (const auto &Idx : SubRegIndices) {
1292     unsigned Mask = Idx.computeLaneMask();
1293     // If some super-registers without CoveredBySubRegs use this index, we can
1294     // no longer assume that the lanes are covering their registers.
1295     if (!Idx.AllSuperRegsCovered)
1296       CoveringLanes &= ~Mask;
1297   }
1298 
1299   // Compute lane mask combinations for register classes.
1300   for (auto &RegClass : RegClasses) {
1301     unsigned LaneMask = 0;
1302     for (const auto &SubRegIndex : SubRegIndices) {
1303       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1304         continue;
1305       LaneMask |= SubRegIndex.LaneMask;
1306     }
1307 
1308     // For classes without any subregisters set LaneMask to 1 instead of 0.
1309     // This makes it easier for client code to handle classes uniformly.
1310     if (LaneMask == 0)
1311       LaneMask = 1;
1312 
1313     RegClass.LaneMask = LaneMask;
1314   }
1315 }
1316 
1317 namespace {
1318 
1319 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1320 // the transitive closure of the union of overlapping register
1321 // classes. Together, the UberRegSets form a partition of the registers. If we
1322 // consider overlapping register classes to be connected, then each UberRegSet
1323 // is a set of connected components.
1324 //
1325 // An UberRegSet will likely be a horizontal slice of register names of
1326 // the same width. Nontrivial subregisters should then be in a separate
1327 // UberRegSet. But this property isn't required for valid computation of
1328 // register unit weights.
1329 //
1330 // A Weight field caches the max per-register unit weight in each UberRegSet.
1331 //
1332 // A set of SingularDeterminants flags single units of some register in this set
1333 // for which the unit weight equals the set weight. These units should not have
1334 // their weight increased.
1335 struct UberRegSet {
1336   CodeGenRegister::Vec Regs;
1337   unsigned Weight = 0;
1338   CodeGenRegister::RegUnitList SingularDeterminants;
1339 
1340   UberRegSet() = default;
1341 };
1342 
1343 } // end anonymous namespace
1344 
1345 // Partition registers into UberRegSets, where each set is the transitive
1346 // closure of the union of overlapping register classes.
1347 //
1348 // UberRegSets[0] is a special non-allocatable set.
1349 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1350                             std::vector<UberRegSet*> &RegSets,
1351                             CodeGenRegBank &RegBank) {
1352   const auto &Registers = RegBank.getRegisters();
1353 
1354   // The Register EnumValue is one greater than its index into Registers.
1355   assert(Registers.size() == Registers.back().EnumValue &&
1356          "register enum value mismatch");
1357 
1358   // For simplicitly make the SetID the same as EnumValue.
1359   IntEqClasses UberSetIDs(Registers.size()+1);
1360   std::set<unsigned> AllocatableRegs;
1361   for (auto &RegClass : RegBank.getRegClasses()) {
1362     if (!RegClass.Allocatable)
1363       continue;
1364 
1365     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1366     if (Regs.empty())
1367       continue;
1368 
1369     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1370     assert(USetID && "register number 0 is invalid");
1371 
1372     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1373     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1374       AllocatableRegs.insert((*I)->EnumValue);
1375       UberSetIDs.join(USetID, (*I)->EnumValue);
1376     }
1377   }
1378   // Combine non-allocatable regs.
1379   for (const auto &Reg : Registers) {
1380     unsigned RegNum = Reg.EnumValue;
1381     if (AllocatableRegs.count(RegNum))
1382       continue;
1383 
1384     UberSetIDs.join(0, RegNum);
1385   }
1386   UberSetIDs.compress();
1387 
1388   // Make the first UberSet a special unallocatable set.
1389   unsigned ZeroID = UberSetIDs[0];
1390 
1391   // Insert Registers into the UberSets formed by union-find.
1392   // Do not resize after this.
1393   UberSets.resize(UberSetIDs.getNumClasses());
1394   unsigned i = 0;
1395   for (const CodeGenRegister &Reg : Registers) {
1396     unsigned USetID = UberSetIDs[Reg.EnumValue];
1397     if (!USetID)
1398       USetID = ZeroID;
1399     else if (USetID == ZeroID)
1400       USetID = 0;
1401 
1402     UberRegSet *USet = &UberSets[USetID];
1403     USet->Regs.push_back(&Reg);
1404     sortAndUniqueRegisters(USet->Regs);
1405     RegSets[i++] = USet;
1406   }
1407 }
1408 
1409 // Recompute each UberSet weight after changing unit weights.
1410 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1411                                CodeGenRegBank &RegBank) {
1412   // Skip the first unallocatable set.
1413   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1414          E = UberSets.end(); I != E; ++I) {
1415 
1416     // Initialize all unit weights in this set, and remember the max units/reg.
1417     const CodeGenRegister *Reg = nullptr;
1418     unsigned MaxWeight = 0, Weight = 0;
1419     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1420       if (Reg != UnitI.getReg()) {
1421         if (Weight > MaxWeight)
1422           MaxWeight = Weight;
1423         Reg = UnitI.getReg();
1424         Weight = 0;
1425       }
1426       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1427       if (!UWeight) {
1428         UWeight = 1;
1429         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1430       }
1431       Weight += UWeight;
1432     }
1433     if (Weight > MaxWeight)
1434       MaxWeight = Weight;
1435     if (I->Weight != MaxWeight) {
1436       DEBUG(
1437         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1438         for (auto &Unit : I->Regs)
1439           dbgs() << " " << Unit->getName();
1440         dbgs() << "\n");
1441       // Update the set weight.
1442       I->Weight = MaxWeight;
1443     }
1444 
1445     // Find singular determinants.
1446     for (const auto R : I->Regs) {
1447       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1448         I->SingularDeterminants |= R->getRegUnits();
1449       }
1450     }
1451   }
1452 }
1453 
1454 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1455 // a register and its subregisters so that they have the same weight as their
1456 // UberSet. Self-recursion processes the subregister tree in postorder so
1457 // subregisters are normalized first.
1458 //
1459 // Side effects:
1460 // - creates new adopted register units
1461 // - causes superregisters to inherit adopted units
1462 // - increases the weight of "singular" units
1463 // - induces recomputation of UberWeights.
1464 static bool normalizeWeight(CodeGenRegister *Reg,
1465                             std::vector<UberRegSet> &UberSets,
1466                             std::vector<UberRegSet*> &RegSets,
1467                             SparseBitVector<> &NormalRegs,
1468                             CodeGenRegister::RegUnitList &NormalUnits,
1469                             CodeGenRegBank &RegBank) {
1470   if (NormalRegs.test(Reg->EnumValue))
1471     return false;
1472   NormalRegs.set(Reg->EnumValue);
1473 
1474   bool Changed = false;
1475   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1476   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1477          SRE = SRM.end(); SRI != SRE; ++SRI) {
1478     if (SRI->second == Reg)
1479       continue; // self-cycles happen
1480 
1481     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1482                                NormalRegs, NormalUnits, RegBank);
1483   }
1484   // Postorder register normalization.
1485 
1486   // Inherit register units newly adopted by subregisters.
1487   if (Reg->inheritRegUnits(RegBank))
1488     computeUberWeights(UberSets, RegBank);
1489 
1490   // Check if this register is too skinny for its UberRegSet.
1491   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1492 
1493   unsigned RegWeight = Reg->getWeight(RegBank);
1494   if (UberSet->Weight > RegWeight) {
1495     // A register unit's weight can be adjusted only if it is the singular unit
1496     // for this register, has not been used to normalize a subregister's set,
1497     // and has not already been used to singularly determine this UberRegSet.
1498     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1499     if (Reg->getRegUnits().count() != 1
1500         || hasRegUnit(NormalUnits, AdjustUnit)
1501         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1502       // We don't have an adjustable unit, so adopt a new one.
1503       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1504       Reg->adoptRegUnit(AdjustUnit);
1505       // Adopting a unit does not immediately require recomputing set weights.
1506     }
1507     else {
1508       // Adjust the existing single unit.
1509       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1510       // The unit may be shared among sets and registers within this set.
1511       computeUberWeights(UberSets, RegBank);
1512     }
1513     Changed = true;
1514   }
1515 
1516   // Mark these units normalized so superregisters can't change their weights.
1517   NormalUnits |= Reg->getRegUnits();
1518 
1519   return Changed;
1520 }
1521 
1522 // Compute a weight for each register unit created during getSubRegs.
1523 //
1524 // The goal is that two registers in the same class will have the same weight,
1525 // where each register's weight is defined as sum of its units' weights.
1526 void CodeGenRegBank::computeRegUnitWeights() {
1527   std::vector<UberRegSet> UberSets;
1528   std::vector<UberRegSet*> RegSets(Registers.size());
1529   computeUberSets(UberSets, RegSets, *this);
1530   // UberSets and RegSets are now immutable.
1531 
1532   computeUberWeights(UberSets, *this);
1533 
1534   // Iterate over each Register, normalizing the unit weights until reaching
1535   // a fix point.
1536   unsigned NumIters = 0;
1537   for (bool Changed = true; Changed; ++NumIters) {
1538     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1539     Changed = false;
1540     for (auto &Reg : Registers) {
1541       CodeGenRegister::RegUnitList NormalUnits;
1542       SparseBitVector<> NormalRegs;
1543       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1544                                  NormalUnits, *this);
1545     }
1546   }
1547 }
1548 
1549 // Find a set in UniqueSets with the same elements as Set.
1550 // Return an iterator into UniqueSets.
1551 static std::vector<RegUnitSet>::const_iterator
1552 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1553                const RegUnitSet &Set) {
1554   std::vector<RegUnitSet>::const_iterator
1555     I = UniqueSets.begin(), E = UniqueSets.end();
1556   for(;I != E; ++I) {
1557     if (I->Units == Set.Units)
1558       break;
1559   }
1560   return I;
1561 }
1562 
1563 // Return true if the RUSubSet is a subset of RUSuperSet.
1564 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1565                             const std::vector<unsigned> &RUSuperSet) {
1566   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1567                        RUSubSet.begin(), RUSubSet.end());
1568 }
1569 
1570 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1571 /// but with one or two registers removed. We occasionally have registers like
1572 /// APSR and PC thrown in with the general registers. We also see many
1573 /// special-purpose register subsets, such as tail-call and Thumb
1574 /// encodings. Generating all possible overlapping sets is combinatorial and
1575 /// overkill for modeling pressure. Ideally we could fix this statically in
1576 /// tablegen by (1) having the target define register classes that only include
1577 /// the allocatable registers and marking other classes as non-allocatable and
1578 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1579 /// the purpose of pressure.  However, we make an attempt to handle targets that
1580 /// are not nicely defined by merging nearly identical register unit sets
1581 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1582 /// set limit by filtering the reserved registers.
1583 ///
1584 /// Merge sets only if the units have the same weight. For example, on ARM,
1585 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1586 /// should not expand the S set to include D regs.
1587 void CodeGenRegBank::pruneUnitSets() {
1588   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1589 
1590   // Form an equivalence class of UnitSets with no significant difference.
1591   std::vector<unsigned> SuperSetIDs;
1592   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1593        SubIdx != EndIdx; ++SubIdx) {
1594     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1595     unsigned SuperIdx = 0;
1596     for (; SuperIdx != EndIdx; ++SuperIdx) {
1597       if (SuperIdx == SubIdx)
1598         continue;
1599 
1600       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1601       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1602       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1603           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1604           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1605           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1606         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1607               << "\n");
1608         // We can pick any of the set names for the merged set. Go for the
1609         // shortest one to avoid picking the name of one of the classes that are
1610         // artificially created by tablegen. So "FPR128_lo" instead of
1611         // "QQQQ_with_qsub3_in_FPR128_lo".
1612         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1613           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1614         break;
1615       }
1616     }
1617     if (SuperIdx == EndIdx)
1618       SuperSetIDs.push_back(SubIdx);
1619   }
1620   // Populate PrunedUnitSets with each equivalence class's superset.
1621   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1622   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1623     unsigned SuperIdx = SuperSetIDs[i];
1624     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1625     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1626   }
1627   RegUnitSets.swap(PrunedUnitSets);
1628 }
1629 
1630 // Create a RegUnitSet for each RegClass that contains all units in the class
1631 // including adopted units that are necessary to model register pressure. Then
1632 // iteratively compute RegUnitSets such that the union of any two overlapping
1633 // RegUnitSets is repreresented.
1634 //
1635 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1636 // RegUnitSet that is a superset of that RegUnitClass.
1637 void CodeGenRegBank::computeRegUnitSets() {
1638   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1639 
1640   // Compute a unique RegUnitSet for each RegClass.
1641   auto &RegClasses = getRegClasses();
1642   for (auto &RC : RegClasses) {
1643     if (!RC.Allocatable)
1644       continue;
1645 
1646     // Speculatively grow the RegUnitSets to hold the new set.
1647     RegUnitSets.resize(RegUnitSets.size() + 1);
1648     RegUnitSets.back().Name = RC.getName();
1649 
1650     // Compute a sorted list of units in this class.
1651     RC.buildRegUnitSet(RegUnitSets.back().Units);
1652 
1653     // Find an existing RegUnitSet.
1654     std::vector<RegUnitSet>::const_iterator SetI =
1655       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1656     if (SetI != std::prev(RegUnitSets.end()))
1657       RegUnitSets.pop_back();
1658   }
1659 
1660   DEBUG(dbgs() << "\nBefore pruning:\n";
1661         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1662              USIdx < USEnd; ++USIdx) {
1663           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1664                  << ":";
1665           for (auto &U : RegUnitSets[USIdx].Units)
1666             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1667           dbgs() << "\n";
1668         });
1669 
1670   // Iteratively prune unit sets.
1671   pruneUnitSets();
1672 
1673   DEBUG(dbgs() << "\nBefore union:\n";
1674         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1675              USIdx < USEnd; ++USIdx) {
1676           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1677                  << ":";
1678           for (auto &U : RegUnitSets[USIdx].Units)
1679             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1680           dbgs() << "\n";
1681         }
1682         dbgs() << "\nUnion sets:\n");
1683 
1684   // Iterate over all unit sets, including new ones added by this loop.
1685   unsigned NumRegUnitSubSets = RegUnitSets.size();
1686   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1687     // In theory, this is combinatorial. In practice, it needs to be bounded
1688     // by a small number of sets for regpressure to be efficient.
1689     // If the assert is hit, we need to implement pruning.
1690     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1691 
1692     // Compare new sets with all original classes.
1693     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1694          SearchIdx != EndIdx; ++SearchIdx) {
1695       std::set<unsigned> Intersection;
1696       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1697                             RegUnitSets[Idx].Units.end(),
1698                             RegUnitSets[SearchIdx].Units.begin(),
1699                             RegUnitSets[SearchIdx].Units.end(),
1700                             std::inserter(Intersection, Intersection.begin()));
1701       if (Intersection.empty())
1702         continue;
1703 
1704       // Speculatively grow the RegUnitSets to hold the new set.
1705       RegUnitSets.resize(RegUnitSets.size() + 1);
1706       RegUnitSets.back().Name =
1707         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1708 
1709       std::set_union(RegUnitSets[Idx].Units.begin(),
1710                      RegUnitSets[Idx].Units.end(),
1711                      RegUnitSets[SearchIdx].Units.begin(),
1712                      RegUnitSets[SearchIdx].Units.end(),
1713                      std::inserter(RegUnitSets.back().Units,
1714                                    RegUnitSets.back().Units.begin()));
1715 
1716       // Find an existing RegUnitSet, or add the union to the unique sets.
1717       std::vector<RegUnitSet>::const_iterator SetI =
1718         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1719       if (SetI != std::prev(RegUnitSets.end()))
1720         RegUnitSets.pop_back();
1721       else {
1722         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1723               << " " << RegUnitSets.back().Name << ":";
1724               for (auto &U : RegUnitSets.back().Units)
1725                 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1726               dbgs() << "\n";);
1727       }
1728     }
1729   }
1730 
1731   // Iteratively prune unit sets after inferring supersets.
1732   pruneUnitSets();
1733 
1734   DEBUG(dbgs() << "\n";
1735         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1736              USIdx < USEnd; ++USIdx) {
1737           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1738                  << ":";
1739           for (auto &U : RegUnitSets[USIdx].Units)
1740             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1741           dbgs() << "\n";
1742         });
1743 
1744   // For each register class, list the UnitSets that are supersets.
1745   RegClassUnitSets.resize(RegClasses.size());
1746   int RCIdx = -1;
1747   for (auto &RC : RegClasses) {
1748     ++RCIdx;
1749     if (!RC.Allocatable)
1750       continue;
1751 
1752     // Recompute the sorted list of units in this class.
1753     std::vector<unsigned> RCRegUnits;
1754     RC.buildRegUnitSet(RCRegUnits);
1755 
1756     // Don't increase pressure for unallocatable regclasses.
1757     if (RCRegUnits.empty())
1758       continue;
1759 
1760     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1761           for (auto &U : RCRegUnits)
1762             dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1763           dbgs() << "\n  UnitSetIDs:");
1764 
1765     // Find all supersets.
1766     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1767          USIdx != USEnd; ++USIdx) {
1768       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1769         DEBUG(dbgs() << " " << USIdx);
1770         RegClassUnitSets[RCIdx].push_back(USIdx);
1771       }
1772     }
1773     DEBUG(dbgs() << "\n");
1774     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1775   }
1776 
1777   // For each register unit, ensure that we have the list of UnitSets that
1778   // contain the unit. Normally, this matches an existing list of UnitSets for a
1779   // register class. If not, we create a new entry in RegClassUnitSets as a
1780   // "fake" register class.
1781   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1782        UnitIdx < UnitEnd; ++UnitIdx) {
1783     std::vector<unsigned> RUSets;
1784     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1785       RegUnitSet &RUSet = RegUnitSets[i];
1786       if (!is_contained(RUSet.Units, UnitIdx))
1787         continue;
1788       RUSets.push_back(i);
1789     }
1790     unsigned RCUnitSetsIdx = 0;
1791     for (unsigned e = RegClassUnitSets.size();
1792          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1793       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1794         break;
1795       }
1796     }
1797     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1798     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1799       // Create a new list of UnitSets as a "fake" register class.
1800       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1801       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1802     }
1803   }
1804 }
1805 
1806 void CodeGenRegBank::computeRegUnitLaneMasks() {
1807   for (auto &Register : Registers) {
1808     // Create an initial lane mask for all register units.
1809     const auto &RegUnits = Register.getRegUnits();
1810     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
1811     // Iterate through SubRegisters.
1812     typedef CodeGenRegister::SubRegMap SubRegMap;
1813     const SubRegMap &SubRegs = Register.getSubRegs();
1814     for (SubRegMap::const_iterator S = SubRegs.begin(),
1815          SE = SubRegs.end(); S != SE; ++S) {
1816       CodeGenRegister *SubReg = S->second;
1817       // Ignore non-leaf subregisters, their lane masks are fully covered by
1818       // the leaf subregisters anyway.
1819       if (!SubReg->getSubRegs().empty())
1820         continue;
1821       CodeGenSubRegIndex *SubRegIndex = S->first;
1822       const CodeGenRegister *SubRegister = S->second;
1823       unsigned LaneMask = SubRegIndex->LaneMask;
1824       // Distribute LaneMask to Register Units touched.
1825       for (unsigned SUI : SubRegister->getRegUnits()) {
1826         bool Found = false;
1827         unsigned u = 0;
1828         for (unsigned RU : RegUnits) {
1829           if (SUI == RU) {
1830             RegUnitLaneMasks[u] |= LaneMask;
1831             assert(!Found);
1832             Found = true;
1833           }
1834           ++u;
1835         }
1836         (void)Found;
1837         assert(Found);
1838       }
1839     }
1840     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1841   }
1842 }
1843 
1844 void CodeGenRegBank::computeDerivedInfo() {
1845   computeComposites();
1846   computeSubRegLaneMasks();
1847 
1848   // Compute a weight for each register unit created during getSubRegs.
1849   // This may create adopted register units (with unit # >= NumNativeRegUnits).
1850   computeRegUnitWeights();
1851 
1852   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1853   // supersets for the union of overlapping sets.
1854   computeRegUnitSets();
1855 
1856   computeRegUnitLaneMasks();
1857 
1858   // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
1859   for (CodeGenRegisterClass &RC : RegClasses) {
1860     RC.HasDisjunctSubRegs = false;
1861     RC.CoveredBySubRegs = true;
1862     for (const CodeGenRegister *Reg : RC.getMembers()) {
1863       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1864       RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
1865     }
1866   }
1867 
1868   // Get the weight of each set.
1869   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1870     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1871 
1872   // Find the order of each set.
1873   RegUnitSetOrder.reserve(RegUnitSets.size());
1874   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1875     RegUnitSetOrder.push_back(Idx);
1876 
1877   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1878                    [this](unsigned ID1, unsigned ID2) {
1879     return getRegPressureSet(ID1).Units.size() <
1880            getRegPressureSet(ID2).Units.size();
1881   });
1882   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1883     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1884   }
1885 }
1886 
1887 //
1888 // Synthesize missing register class intersections.
1889 //
1890 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1891 // returns a maximal register class for all X.
1892 //
1893 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1894   assert(!RegClasses.empty());
1895   // Stash the iterator to the last element so that this loop doesn't visit
1896   // elements added by the getOrCreateSubClass call within it.
1897   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1898        I != std::next(E); ++I) {
1899     CodeGenRegisterClass *RC1 = RC;
1900     CodeGenRegisterClass *RC2 = &*I;
1901     if (RC1 == RC2)
1902       continue;
1903 
1904     // Compute the set intersection of RC1 and RC2.
1905     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1906     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1907     CodeGenRegister::Vec Intersection;
1908     std::set_intersection(
1909         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1910         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1911 
1912     // Skip disjoint class pairs.
1913     if (Intersection.empty())
1914       continue;
1915 
1916     // If RC1 and RC2 have different spill sizes or alignments, use the
1917     // larger size for sub-classing.  If they are equal, prefer RC1.
1918     if (RC2->SpillSize > RC1->SpillSize ||
1919         (RC2->SpillSize == RC1->SpillSize &&
1920          RC2->SpillAlignment > RC1->SpillAlignment))
1921       std::swap(RC1, RC2);
1922 
1923     getOrCreateSubClass(RC1, &Intersection,
1924                         RC1->getName() + "_and_" + RC2->getName());
1925   }
1926 }
1927 
1928 //
1929 // Synthesize missing sub-classes for getSubClassWithSubReg().
1930 //
1931 // Make sure that the set of registers in RC with a given SubIdx sub-register
1932 // form a register class.  Update RC->SubClassWithSubReg.
1933 //
1934 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1935   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1936   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
1937                    deref<llvm::less>> SubReg2SetMap;
1938 
1939   // Compute the set of registers supporting each SubRegIndex.
1940   SubReg2SetMap SRSets;
1941   for (const auto R : RC->getMembers()) {
1942     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
1943     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1944          E = SRM.end(); I != E; ++I)
1945       SRSets[I->first].push_back(R);
1946   }
1947 
1948   for (auto I : SRSets)
1949     sortAndUniqueRegisters(I.second);
1950 
1951   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1952   // numerical order to visit synthetic indices last.
1953   for (const auto &SubIdx : SubRegIndices) {
1954     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1955     // Unsupported SubRegIndex. Skip it.
1956     if (I == SRSets.end())
1957       continue;
1958     // In most cases, all RC registers support the SubRegIndex.
1959     if (I->second.size() == RC->getMembers().size()) {
1960       RC->setSubClassWithSubReg(&SubIdx, RC);
1961       continue;
1962     }
1963     // This is a real subset.  See if we have a matching class.
1964     CodeGenRegisterClass *SubRC =
1965       getOrCreateSubClass(RC, &I->second,
1966                           RC->getName() + "_with_" + I->first->getName());
1967     RC->setSubClassWithSubReg(&SubIdx, SubRC);
1968   }
1969 }
1970 
1971 //
1972 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1973 //
1974 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1975 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1976 //
1977 
1978 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1979                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1980   SmallVector<std::pair<const CodeGenRegister*,
1981                         const CodeGenRegister*>, 16> SSPairs;
1982   BitVector TopoSigs(getNumTopoSigs());
1983 
1984   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1985   for (auto &SubIdx : SubRegIndices) {
1986     // Skip indexes that aren't fully supported by RC's registers. This was
1987     // computed by inferSubClassWithSubReg() above which should have been
1988     // called first.
1989     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1990       continue;
1991 
1992     // Build list of (Super, Sub) pairs for this SubIdx.
1993     SSPairs.clear();
1994     TopoSigs.reset();
1995     for (const auto Super : RC->getMembers()) {
1996       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1997       assert(Sub && "Missing sub-register");
1998       SSPairs.push_back(std::make_pair(Super, Sub));
1999       TopoSigs.set(Sub->getTopoSig());
2000     }
2001 
2002     // Iterate over sub-register class candidates.  Ignore classes created by
2003     // this loop. They will never be useful.
2004     // Store an iterator to the last element (not end) so that this loop doesn't
2005     // visit newly inserted elements.
2006     assert(!RegClasses.empty());
2007     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2008          I != std::next(E); ++I) {
2009       CodeGenRegisterClass &SubRC = *I;
2010       // Topological shortcut: SubRC members have the wrong shape.
2011       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2012         continue;
2013       // Compute the subset of RC that maps into SubRC.
2014       CodeGenRegister::Vec SubSetVec;
2015       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2016         if (SubRC.contains(SSPairs[i].second))
2017           SubSetVec.push_back(SSPairs[i].first);
2018 
2019       if (SubSetVec.empty())
2020         continue;
2021 
2022       // RC injects completely into SubRC.
2023       sortAndUniqueRegisters(SubSetVec);
2024       if (SubSetVec.size() == SSPairs.size()) {
2025         SubRC.addSuperRegClass(&SubIdx, RC);
2026         continue;
2027       }
2028 
2029       // Only a subset of RC maps into SubRC. Make sure it is represented by a
2030       // class.
2031       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2032                                           SubIdx.getName() + "_in_" +
2033                                           SubRC.getName());
2034     }
2035   }
2036 }
2037 
2038 //
2039 // Infer missing register classes.
2040 //
2041 void CodeGenRegBank::computeInferredRegisterClasses() {
2042   assert(!RegClasses.empty());
2043   // When this function is called, the register classes have not been sorted
2044   // and assigned EnumValues yet.  That means getSubClasses(),
2045   // getSuperClasses(), and hasSubClass() functions are defunct.
2046 
2047   // Use one-before-the-end so it doesn't move forward when new elements are
2048   // added.
2049   auto FirstNewRC = std::prev(RegClasses.end());
2050 
2051   // Visit all register classes, including the ones being added by the loop.
2052   // Watch out for iterator invalidation here.
2053   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2054     CodeGenRegisterClass *RC = &*I;
2055 
2056     // Synthesize answers for getSubClassWithSubReg().
2057     inferSubClassWithSubReg(RC);
2058 
2059     // Synthesize answers for getCommonSubClass().
2060     inferCommonSubClass(RC);
2061 
2062     // Synthesize answers for getMatchingSuperRegClass().
2063     inferMatchingSuperRegClass(RC);
2064 
2065     // New register classes are created while this loop is running, and we need
2066     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2067     // to match old super-register classes with sub-register classes created
2068     // after inferMatchingSuperRegClass was called.  At this point,
2069     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2070     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2071     if (I == FirstNewRC) {
2072       auto NextNewRC = std::prev(RegClasses.end());
2073       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2074            ++I2)
2075         inferMatchingSuperRegClass(&*I2, E2);
2076       FirstNewRC = NextNewRC;
2077     }
2078   }
2079 }
2080 
2081 /// getRegisterClassForRegister - Find the register class that contains the
2082 /// specified physical register.  If the register is not in a register class,
2083 /// return null. If the register is in multiple classes, and the classes have a
2084 /// superset-subset relationship and the same set of types, return the
2085 /// superclass.  Otherwise return null.
2086 const CodeGenRegisterClass*
2087 CodeGenRegBank::getRegClassForRegister(Record *R) {
2088   const CodeGenRegister *Reg = getReg(R);
2089   const CodeGenRegisterClass *FoundRC = nullptr;
2090   for (const auto &RC : getRegClasses()) {
2091     if (!RC.contains(Reg))
2092       continue;
2093 
2094     // If this is the first class that contains the register,
2095     // make a note of it and go on to the next class.
2096     if (!FoundRC) {
2097       FoundRC = &RC;
2098       continue;
2099     }
2100 
2101     // If a register's classes have different types, return null.
2102     if (RC.getValueTypes() != FoundRC->getValueTypes())
2103       return nullptr;
2104 
2105     // Check to see if the previously found class that contains
2106     // the register is a subclass of the current class. If so,
2107     // prefer the superclass.
2108     if (RC.hasSubClass(FoundRC)) {
2109       FoundRC = &RC;
2110       continue;
2111     }
2112 
2113     // Check to see if the previously found class that contains
2114     // the register is a superclass of the current class. If so,
2115     // prefer the superclass.
2116     if (FoundRC->hasSubClass(&RC))
2117       continue;
2118 
2119     // Multiple classes, and neither is a superclass of the other.
2120     // Return null.
2121     return nullptr;
2122   }
2123   return FoundRC;
2124 }
2125 
2126 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2127   SetVector<const CodeGenRegister*> Set;
2128 
2129   // First add Regs with all sub-registers.
2130   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2131     CodeGenRegister *Reg = getReg(Regs[i]);
2132     if (Set.insert(Reg))
2133       // Reg is new, add all sub-registers.
2134       // The pre-ordering is not important here.
2135       Reg->addSubRegsPreOrder(Set, *this);
2136   }
2137 
2138   // Second, find all super-registers that are completely covered by the set.
2139   for (unsigned i = 0; i != Set.size(); ++i) {
2140     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2141     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2142       const CodeGenRegister *Super = SR[j];
2143       if (!Super->CoveredBySubRegs || Set.count(Super))
2144         continue;
2145       // This new super-register is covered by its sub-registers.
2146       bool AllSubsInSet = true;
2147       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2148       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2149              E = SRM.end(); I != E; ++I)
2150         if (!Set.count(I->second)) {
2151           AllSubsInSet = false;
2152           break;
2153         }
2154       // All sub-registers in Set, add Super as well.
2155       // We will visit Super later to recheck its super-registers.
2156       if (AllSubsInSet)
2157         Set.insert(Super);
2158     }
2159   }
2160 
2161   // Convert to BitVector.
2162   BitVector BV(Registers.size() + 1);
2163   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2164     BV.set(Set[i]->EnumValue);
2165   return BV;
2166 }
2167