1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/IntEqClasses.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/TableGen/Error.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "regalloc-emitter" 28 29 //===----------------------------------------------------------------------===// 30 // CodeGenSubRegIndex 31 //===----------------------------------------------------------------------===// 32 33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40 } 41 42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46 } 47 48 std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54 } 55 56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83 } 84 85 unsigned CodeGenSubRegIndex::computeLaneMask() const { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (const auto &C : Composed) 96 M |= C.second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // CodeGenRegister 104 //===----------------------------------------------------------------------===// 105 106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 HasDisjunctSubRegs(false), 112 SubRegsComplete(false), 113 SuperRegsComplete(false), 114 TopoSig(~0u) 115 {} 116 117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 120 121 if (SRIs.size() != SRs.size()) 122 PrintFatalError(TheDef->getLoc(), 123 "SubRegs and SubRegIndices must have the same size"); 124 125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 128 } 129 130 // Also compute leading super-registers. Each register has a list of 131 // covered-by-subregs super-registers where it appears as the first explicit 132 // sub-register. 133 // 134 // This is used by computeSecondarySubRegs() to find candidates. 135 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 137 138 // Add ad hoc alias links. This is a symmetric relationship between two 139 // registers, so build a symmetric graph by adding links in both ends. 140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 143 ExplicitAliases.push_back(Reg); 144 Reg->ExplicitAliases.push_back(this); 145 } 146 } 147 148 const std::string &CodeGenRegister::getName() const { 149 assert(TheDef && "no def"); 150 return TheDef->getName(); 151 } 152 153 namespace { 154 // Iterate over all register units in a set of registers. 155 class RegUnitIterator { 156 CodeGenRegister::Vec::const_iterator RegI, RegE; 157 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 158 159 public: 160 RegUnitIterator(const CodeGenRegister::Vec &Regs): 161 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 162 163 if (RegI != RegE) { 164 UnitI = (*RegI)->getRegUnits().begin(); 165 UnitE = (*RegI)->getRegUnits().end(); 166 advance(); 167 } 168 } 169 170 bool isValid() const { return UnitI != UnitE; } 171 172 unsigned operator* () const { assert(isValid()); return *UnitI; } 173 174 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 175 176 /// Preincrement. Move to the next unit. 177 void operator++() { 178 assert(isValid() && "Cannot advance beyond the last operand"); 179 ++UnitI; 180 advance(); 181 } 182 183 protected: 184 void advance() { 185 while (UnitI == UnitE) { 186 if (++RegI == RegE) 187 break; 188 UnitI = (*RegI)->getRegUnits().begin(); 189 UnitE = (*RegI)->getRegUnits().end(); 190 } 191 } 192 }; 193 } // namespace 194 195 // Return true of this unit appears in RegUnits. 196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 197 return RegUnits.test(Unit); 198 } 199 200 // Inherit register units from subregisters. 201 // Return true if the RegUnits changed. 202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 203 bool changed = false; 204 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 205 I != E; ++I) { 206 CodeGenRegister *SR = I->second; 207 // Merge the subregister's units into this register's RegUnits. 208 changed |= (RegUnits |= SR->RegUnits); 209 } 210 211 return changed; 212 } 213 214 const CodeGenRegister::SubRegMap & 215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 216 // Only compute this map once. 217 if (SubRegsComplete) 218 return SubRegs; 219 SubRegsComplete = true; 220 221 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 222 223 // First insert the explicit subregs and make sure they are fully indexed. 224 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 225 CodeGenRegister *SR = ExplicitSubRegs[i]; 226 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 227 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 228 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 229 " appears twice in Register " + getName()); 230 // Map explicit sub-registers first, so the names take precedence. 231 // The inherited sub-registers are mapped below. 232 SubReg2Idx.insert(std::make_pair(SR, Idx)); 233 } 234 235 // Keep track of inherited subregs and how they can be reached. 236 SmallPtrSet<CodeGenRegister*, 8> Orphans; 237 238 // Clone inherited subregs and place duplicate entries in Orphans. 239 // Here the order is important - earlier subregs take precedence. 240 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 241 CodeGenRegister *SR = ExplicitSubRegs[i]; 242 const SubRegMap &Map = SR->computeSubRegs(RegBank); 243 HasDisjunctSubRegs |= SR->HasDisjunctSubRegs; 244 245 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 246 ++SI) { 247 if (!SubRegs.insert(*SI).second) 248 Orphans.insert(SI->second); 249 } 250 } 251 252 // Expand any composed subreg indices. 253 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 254 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 255 // expanded subreg indices recursively. 256 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 257 for (unsigned i = 0; i != Indices.size(); ++i) { 258 CodeGenSubRegIndex *Idx = Indices[i]; 259 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 260 CodeGenRegister *SR = SubRegs[Idx]; 261 const SubRegMap &Map = SR->computeSubRegs(RegBank); 262 263 // Look at the possible compositions of Idx. 264 // They may not all be supported by SR. 265 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 266 E = Comps.end(); I != E; ++I) { 267 SubRegMap::const_iterator SRI = Map.find(I->first); 268 if (SRI == Map.end()) 269 continue; // Idx + I->first doesn't exist in SR. 270 // Add I->second as a name for the subreg SRI->second, assuming it is 271 // orphaned, and the name isn't already used for something else. 272 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 273 continue; 274 // We found a new name for the orphaned sub-register. 275 SubRegs.insert(std::make_pair(I->second, SRI->second)); 276 Indices.push_back(I->second); 277 } 278 } 279 280 // Now Orphans contains the inherited subregisters without a direct index. 281 // Create inferred indexes for all missing entries. 282 // Work backwards in the Indices vector in order to compose subregs bottom-up. 283 // Consider this subreg sequence: 284 // 285 // qsub_1 -> dsub_0 -> ssub_0 286 // 287 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 288 // can be reached in two different ways: 289 // 290 // qsub_1 -> ssub_0 291 // dsub_2 -> ssub_0 292 // 293 // We pick the latter composition because another register may have [dsub_0, 294 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 295 // dsub_2 -> ssub_0 composition can be shared. 296 while (!Indices.empty() && !Orphans.empty()) { 297 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 298 CodeGenRegister *SR = SubRegs[Idx]; 299 const SubRegMap &Map = SR->computeSubRegs(RegBank); 300 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 301 ++SI) 302 if (Orphans.erase(SI->second)) 303 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 304 } 305 306 // Compute the inverse SubReg -> Idx map. 307 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 308 SI != SE; ++SI) { 309 if (SI->second == this) { 310 ArrayRef<SMLoc> Loc; 311 if (TheDef) 312 Loc = TheDef->getLoc(); 313 PrintFatalError(Loc, "Register " + getName() + 314 " has itself as a sub-register"); 315 } 316 317 // Compute AllSuperRegsCovered. 318 if (!CoveredBySubRegs) 319 SI->first->AllSuperRegsCovered = false; 320 321 // Ensure that every sub-register has a unique name. 322 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 323 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 324 if (Ins->second == SI->first) 325 continue; 326 // Trouble: Two different names for SI->second. 327 ArrayRef<SMLoc> Loc; 328 if (TheDef) 329 Loc = TheDef->getLoc(); 330 PrintFatalError(Loc, "Sub-register can't have two names: " + 331 SI->second->getName() + " available as " + 332 SI->first->getName() + " and " + Ins->second->getName()); 333 } 334 335 // Derive possible names for sub-register concatenations from any explicit 336 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 337 // that getConcatSubRegIndex() won't invent any concatenated indices that the 338 // user already specified. 339 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 340 CodeGenRegister *SR = ExplicitSubRegs[i]; 341 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 342 continue; 343 344 // SR is composed of multiple sub-regs. Find their names in this register. 345 SmallVector<CodeGenSubRegIndex*, 8> Parts; 346 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 347 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 348 349 // Offer this as an existing spelling for the concatenation of Parts. 350 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 351 } 352 353 // Initialize RegUnitList. Because getSubRegs is called recursively, this 354 // processes the register hierarchy in postorder. 355 // 356 // Inherit all sub-register units. It is good enough to look at the explicit 357 // sub-registers, the other registers won't contribute any more units. 358 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 359 CodeGenRegister *SR = ExplicitSubRegs[i]; 360 RegUnits |= SR->RegUnits; 361 } 362 363 // Absent any ad hoc aliasing, we create one register unit per leaf register. 364 // These units correspond to the maximal cliques in the register overlap 365 // graph which is optimal. 366 // 367 // When there is ad hoc aliasing, we simply create one unit per edge in the 368 // undirected ad hoc aliasing graph. Technically, we could do better by 369 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 370 // are extremely rare anyway (I've never seen one), so we don't bother with 371 // the added complexity. 372 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 373 CodeGenRegister *AR = ExplicitAliases[i]; 374 // Only visit each edge once. 375 if (AR->SubRegsComplete) 376 continue; 377 // Create a RegUnit representing this alias edge, and add it to both 378 // registers. 379 unsigned Unit = RegBank.newRegUnit(this, AR); 380 RegUnits.set(Unit); 381 AR->RegUnits.set(Unit); 382 } 383 384 // Finally, create units for leaf registers without ad hoc aliases. Note that 385 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 386 // necessary. This means the aliasing leaf registers can share a single unit. 387 if (RegUnits.empty()) 388 RegUnits.set(RegBank.newRegUnit(this)); 389 390 // We have now computed the native register units. More may be adopted later 391 // for balancing purposes. 392 NativeRegUnits = RegUnits; 393 394 return SubRegs; 395 } 396 397 // In a register that is covered by its sub-registers, try to find redundant 398 // sub-registers. For example: 399 // 400 // QQ0 = {Q0, Q1} 401 // Q0 = {D0, D1} 402 // Q1 = {D2, D3} 403 // 404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 405 // the register definition. 406 // 407 // The explicitly specified registers form a tree. This function discovers 408 // sub-register relationships that would force a DAG. 409 // 410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 411 // Collect new sub-registers first, add them later. 412 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 413 414 // Look at the leading super-registers of each sub-register. Those are the 415 // candidates for new sub-registers, assuming they are fully contained in 416 // this register. 417 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 418 const CodeGenRegister *SubReg = I->second; 419 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 420 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 421 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 422 // Already got this sub-register? 423 if (Cand == this || getSubRegIndex(Cand)) 424 continue; 425 // Check if each component of Cand is already a sub-register. 426 // We know that the first component is I->second, and is present with the 427 // name I->first. 428 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 429 assert(!Cand->ExplicitSubRegs.empty() && 430 "Super-register has no sub-registers"); 431 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 432 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 433 Parts.push_back(Idx); 434 else { 435 // Sub-register doesn't exist. 436 Parts.clear(); 437 break; 438 } 439 } 440 // If some Cand sub-register is not part of this register, or if Cand only 441 // has one sub-register, there is nothing to do. 442 if (Parts.size() <= 1) 443 continue; 444 445 // Each part of Cand is a sub-register of this. Make the full Cand also 446 // a sub-register with a concatenated sub-register index. 447 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 448 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 449 } 450 } 451 452 // Now add all the new sub-registers. 453 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 454 // Don't add Cand if another sub-register is already using the index. 455 if (!SubRegs.insert(NewSubRegs[i]).second) 456 continue; 457 458 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 459 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 460 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 461 } 462 463 // Create sub-register index composition maps for the synthesized indices. 464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 465 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 466 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 467 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 468 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 469 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 470 if (!SubIdx) 471 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 472 SI->second->getName() + " in " + getName()); 473 NewIdx->addComposite(SI->first, SubIdx); 474 } 475 } 476 } 477 478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 479 // Only visit each register once. 480 if (SuperRegsComplete) 481 return; 482 SuperRegsComplete = true; 483 484 // Make sure all sub-registers have been visited first, so the super-reg 485 // lists will be topologically ordered. 486 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 487 I != E; ++I) 488 I->second->computeSuperRegs(RegBank); 489 490 // Now add this as a super-register on all sub-registers. 491 // Also compute the TopoSigId in post-order. 492 TopoSigId Id; 493 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 494 I != E; ++I) { 495 // Topological signature computed from SubIdx, TopoId(SubReg). 496 // Loops and idempotent indices have TopoSig = ~0u. 497 Id.push_back(I->first->EnumValue); 498 Id.push_back(I->second->TopoSig); 499 500 // Don't add duplicate entries. 501 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 502 continue; 503 I->second->SuperRegs.push_back(this); 504 } 505 TopoSig = RegBank.getTopoSig(Id); 506 } 507 508 void 509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 510 CodeGenRegBank &RegBank) const { 511 assert(SubRegsComplete && "Must precompute sub-registers"); 512 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 513 CodeGenRegister *SR = ExplicitSubRegs[i]; 514 if (OSet.insert(SR)) 515 SR->addSubRegsPreOrder(OSet, RegBank); 516 } 517 // Add any secondary sub-registers that weren't part of the explicit tree. 518 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 519 I != E; ++I) 520 OSet.insert(I->second); 521 } 522 523 // Get the sum of this register's unit weights. 524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 525 unsigned Weight = 0; 526 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 527 I != E; ++I) { 528 Weight += RegBank.getRegUnit(*I).Weight; 529 } 530 return Weight; 531 } 532 533 //===----------------------------------------------------------------------===// 534 // RegisterTuples 535 //===----------------------------------------------------------------------===// 536 537 // A RegisterTuples def is used to generate pseudo-registers from lists of 538 // sub-registers. We provide a SetTheory expander class that returns the new 539 // registers. 540 namespace { 541 struct TupleExpander : SetTheory::Expander { 542 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 543 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 544 unsigned Dim = Indices.size(); 545 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 546 if (Dim != SubRegs->size()) 547 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 548 if (Dim < 2) 549 PrintFatalError(Def->getLoc(), 550 "Tuples must have at least 2 sub-registers"); 551 552 // Evaluate the sub-register lists to be zipped. 553 unsigned Length = ~0u; 554 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 555 for (unsigned i = 0; i != Dim; ++i) { 556 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 557 Length = std::min(Length, unsigned(Lists[i].size())); 558 } 559 560 if (Length == 0) 561 return; 562 563 // Precompute some types. 564 Record *RegisterCl = Def->getRecords().getClass("Register"); 565 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 566 StringInit *BlankName = StringInit::get(""); 567 568 // Zip them up. 569 for (unsigned n = 0; n != Length; ++n) { 570 std::string Name; 571 Record *Proto = Lists[0][n]; 572 std::vector<Init*> Tuple; 573 unsigned CostPerUse = 0; 574 for (unsigned i = 0; i != Dim; ++i) { 575 Record *Reg = Lists[i][n]; 576 if (i) Name += '_'; 577 Name += Reg->getName(); 578 Tuple.push_back(DefInit::get(Reg)); 579 CostPerUse = std::max(CostPerUse, 580 unsigned(Reg->getValueAsInt("CostPerUse"))); 581 } 582 583 // Create a new Record representing the synthesized register. This record 584 // is only for consumption by CodeGenRegister, it is not added to the 585 // RecordKeeper. 586 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 587 Elts.insert(NewReg); 588 589 // Copy Proto super-classes. 590 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 591 for (const auto &SuperPair : Supers) 592 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 593 594 // Copy Proto fields. 595 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 596 RecordVal RV = Proto->getValues()[i]; 597 598 // Skip existing fields, like NAME. 599 if (NewReg->getValue(RV.getNameInit())) 600 continue; 601 602 StringRef Field = RV.getName(); 603 604 // Replace the sub-register list with Tuple. 605 if (Field == "SubRegs") 606 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 607 608 // Provide a blank AsmName. MC hacks are required anyway. 609 if (Field == "AsmName") 610 RV.setValue(BlankName); 611 612 // CostPerUse is aggregated from all Tuple members. 613 if (Field == "CostPerUse") 614 RV.setValue(IntInit::get(CostPerUse)); 615 616 // Composite registers are always covered by sub-registers. 617 if (Field == "CoveredBySubRegs") 618 RV.setValue(BitInit::get(true)); 619 620 // Copy fields from the RegisterTuples def. 621 if (Field == "SubRegIndices" || 622 Field == "CompositeIndices") { 623 NewReg->addValue(*Def->getValue(Field)); 624 continue; 625 } 626 627 // Some fields get their default uninitialized value. 628 if (Field == "DwarfNumbers" || 629 Field == "DwarfAlias" || 630 Field == "Aliases") { 631 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 632 NewReg->addValue(*DefRV); 633 continue; 634 } 635 636 // Everything else is copied from Proto. 637 NewReg->addValue(RV); 638 } 639 } 640 } 641 }; 642 } 643 644 //===----------------------------------------------------------------------===// 645 // CodeGenRegisterClass 646 //===----------------------------------------------------------------------===// 647 648 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 649 std::sort(M.begin(), M.end(), deref<llvm::less>()); 650 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 651 } 652 653 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 654 : TheDef(R), 655 Name(R->getName()), 656 TopoSigs(RegBank.getNumTopoSigs()), 657 EnumValue(-1), 658 LaneMask(0) { 659 // Rename anonymous register classes. 660 if (R->getName().size() > 9 && R->getName()[9] == '.') { 661 static unsigned AnonCounter = 0; 662 R->setName("AnonRegClass_" + utostr(AnonCounter++)); 663 } 664 665 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 666 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 667 Record *Type = TypeList[i]; 668 if (!Type->isSubClassOf("ValueType")) 669 PrintFatalError("RegTypes list member '" + Type->getName() + 670 "' does not derive from the ValueType class!"); 671 VTs.push_back(getValueType(Type)); 672 } 673 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 674 675 // Allocation order 0 is the full set. AltOrders provides others. 676 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 677 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 678 Orders.resize(1 + AltOrders->size()); 679 680 // Default allocation order always contains all registers. 681 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 682 Orders[0].push_back((*Elements)[i]); 683 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 684 Members.push_back(Reg); 685 TopoSigs.set(Reg->getTopoSig()); 686 } 687 sortAndUniqueRegisters(Members); 688 689 // Alternative allocation orders may be subsets. 690 SetTheory::RecSet Order; 691 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 692 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 693 Orders[1 + i].append(Order.begin(), Order.end()); 694 // Verify that all altorder members are regclass members. 695 while (!Order.empty()) { 696 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 697 Order.pop_back(); 698 if (!contains(Reg)) 699 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 700 " is not a class member"); 701 } 702 } 703 704 // Allow targets to override the size in bits of the RegisterClass. 705 unsigned Size = R->getValueAsInt("Size"); 706 707 Namespace = R->getValueAsString("Namespace"); 708 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 709 SpillAlignment = R->getValueAsInt("Alignment"); 710 CopyCost = R->getValueAsInt("CopyCost"); 711 Allocatable = R->getValueAsBit("isAllocatable"); 712 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 713 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 714 if (AllocationPriority < 0 || AllocationPriority > 63) 715 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 716 this->AllocationPriority = AllocationPriority; 717 } 718 719 // Create an inferred register class that was missing from the .td files. 720 // Most properties will be inherited from the closest super-class after the 721 // class structure has been computed. 722 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 723 StringRef Name, Key Props) 724 : Members(*Props.Members), 725 TheDef(nullptr), 726 Name(Name), 727 TopoSigs(RegBank.getNumTopoSigs()), 728 EnumValue(-1), 729 SpillSize(Props.SpillSize), 730 SpillAlignment(Props.SpillAlignment), 731 CopyCost(0), 732 Allocatable(true), 733 AllocationPriority(0) { 734 for (const auto R : Members) 735 TopoSigs.set(R->getTopoSig()); 736 } 737 738 // Compute inherited propertied for a synthesized register class. 739 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 740 assert(!getDef() && "Only synthesized classes can inherit properties"); 741 assert(!SuperClasses.empty() && "Synthesized class without super class"); 742 743 // The last super-class is the smallest one. 744 CodeGenRegisterClass &Super = *SuperClasses.back(); 745 746 // Most properties are copied directly. 747 // Exceptions are members, size, and alignment 748 Namespace = Super.Namespace; 749 VTs = Super.VTs; 750 CopyCost = Super.CopyCost; 751 Allocatable = Super.Allocatable; 752 AltOrderSelect = Super.AltOrderSelect; 753 AllocationPriority = Super.AllocationPriority; 754 755 // Copy all allocation orders, filter out foreign registers from the larger 756 // super-class. 757 Orders.resize(Super.Orders.size()); 758 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 759 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 760 if (contains(RegBank.getReg(Super.Orders[i][j]))) 761 Orders[i].push_back(Super.Orders[i][j]); 762 } 763 764 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 765 return std::binary_search(Members.begin(), Members.end(), Reg, 766 deref<llvm::less>()); 767 } 768 769 namespace llvm { 770 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 771 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 772 for (const auto R : *K.Members) 773 OS << ", " << R->getName(); 774 return OS << " }"; 775 } 776 } 777 778 // This is a simple lexicographical order that can be used to search for sets. 779 // It is not the same as the topological order provided by TopoOrderRC. 780 bool CodeGenRegisterClass::Key:: 781 operator<(const CodeGenRegisterClass::Key &B) const { 782 assert(Members && B.Members); 783 return std::tie(*Members, SpillSize, SpillAlignment) < 784 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 785 } 786 787 // Returns true if RC is a strict subclass. 788 // RC is a sub-class of this class if it is a valid replacement for any 789 // instruction operand where a register of this classis required. It must 790 // satisfy these conditions: 791 // 792 // 1. All RC registers are also in this. 793 // 2. The RC spill size must not be smaller than our spill size. 794 // 3. RC spill alignment must be compatible with ours. 795 // 796 static bool testSubClass(const CodeGenRegisterClass *A, 797 const CodeGenRegisterClass *B) { 798 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 799 A->SpillSize <= B->SpillSize && 800 std::includes(A->getMembers().begin(), A->getMembers().end(), 801 B->getMembers().begin(), B->getMembers().end(), 802 deref<llvm::less>()); 803 } 804 805 /// Sorting predicate for register classes. This provides a topological 806 /// ordering that arranges all register classes before their sub-classes. 807 /// 808 /// Register classes with the same registers, spill size, and alignment form a 809 /// clique. They will be ordered alphabetically. 810 /// 811 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 812 const CodeGenRegisterClass &PB) { 813 auto *A = &PA; 814 auto *B = &PB; 815 if (A == B) 816 return 0; 817 818 // Order by ascending spill size. 819 if (A->SpillSize < B->SpillSize) 820 return true; 821 if (A->SpillSize > B->SpillSize) 822 return false; 823 824 // Order by ascending spill alignment. 825 if (A->SpillAlignment < B->SpillAlignment) 826 return true; 827 if (A->SpillAlignment > B->SpillAlignment) 828 return false; 829 830 // Order by descending set size. Note that the classes' allocation order may 831 // not have been computed yet. The Members set is always vaild. 832 if (A->getMembers().size() > B->getMembers().size()) 833 return true; 834 if (A->getMembers().size() < B->getMembers().size()) 835 return false; 836 837 // Finally order by name as a tie breaker. 838 return StringRef(A->getName()) < B->getName(); 839 } 840 841 std::string CodeGenRegisterClass::getQualifiedName() const { 842 if (Namespace.empty()) 843 return getName(); 844 else 845 return Namespace + "::" + getName(); 846 } 847 848 // Compute sub-classes of all register classes. 849 // Assume the classes are ordered topologically. 850 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 851 auto &RegClasses = RegBank.getRegClasses(); 852 853 // Visit backwards so sub-classes are seen first. 854 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 855 CodeGenRegisterClass &RC = *I; 856 RC.SubClasses.resize(RegClasses.size()); 857 RC.SubClasses.set(RC.EnumValue); 858 859 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 860 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 861 CodeGenRegisterClass &SubRC = *I2; 862 if (RC.SubClasses.test(SubRC.EnumValue)) 863 continue; 864 if (!testSubClass(&RC, &SubRC)) 865 continue; 866 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 867 // check them again. 868 RC.SubClasses |= SubRC.SubClasses; 869 } 870 871 // Sweep up missed clique members. They will be immediately preceding RC. 872 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 873 RC.SubClasses.set(I2->EnumValue); 874 } 875 876 // Compute the SuperClasses lists from the SubClasses vectors. 877 for (auto &RC : RegClasses) { 878 const BitVector &SC = RC.getSubClasses(); 879 auto I = RegClasses.begin(); 880 for (int s = 0, next_s = SC.find_first(); next_s != -1; 881 next_s = SC.find_next(s)) { 882 std::advance(I, next_s - s); 883 s = next_s; 884 if (&*I == &RC) 885 continue; 886 I->SuperClasses.push_back(&RC); 887 } 888 } 889 890 // With the class hierarchy in place, let synthesized register classes inherit 891 // properties from their closest super-class. The iteration order here can 892 // propagate properties down multiple levels. 893 for (auto &RC : RegClasses) 894 if (!RC.getDef()) 895 RC.inheritProperties(RegBank); 896 } 897 898 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 899 BitVector &Out) const { 900 auto FindI = SuperRegClasses.find(SubIdx); 901 if (FindI == SuperRegClasses.end()) 902 return; 903 for (CodeGenRegisterClass *RC : FindI->second) 904 Out.set(RC->EnumValue); 905 } 906 907 // Populate a unique sorted list of units from a register set. 908 void CodeGenRegisterClass::buildRegUnitSet( 909 std::vector<unsigned> &RegUnits) const { 910 std::vector<unsigned> TmpUnits; 911 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 912 TmpUnits.push_back(*UnitI); 913 std::sort(TmpUnits.begin(), TmpUnits.end()); 914 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 915 std::back_inserter(RegUnits)); 916 } 917 918 //===----------------------------------------------------------------------===// 919 // CodeGenRegBank 920 //===----------------------------------------------------------------------===// 921 922 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 923 // Configure register Sets to understand register classes and tuples. 924 Sets.addFieldExpander("RegisterClass", "MemberList"); 925 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 926 Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>()); 927 928 // Read in the user-defined (named) sub-register indices. 929 // More indices will be synthesized later. 930 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 931 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 932 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 933 getSubRegIdx(SRIs[i]); 934 // Build composite maps from ComposedOf fields. 935 for (auto &Idx : SubRegIndices) 936 Idx.updateComponents(*this); 937 938 // Read in the register definitions. 939 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 940 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 941 // Assign the enumeration values. 942 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 943 getReg(Regs[i]); 944 945 // Expand tuples and number the new registers. 946 std::vector<Record*> Tups = 947 Records.getAllDerivedDefinitions("RegisterTuples"); 948 949 for (Record *R : Tups) { 950 std::vector<Record *> TupRegs = *Sets.expand(R); 951 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 952 for (Record *RC : TupRegs) 953 getReg(RC); 954 } 955 956 // Now all the registers are known. Build the object graph of explicit 957 // register-register references. 958 for (auto &Reg : Registers) 959 Reg.buildObjectGraph(*this); 960 961 // Compute register name map. 962 for (auto &Reg : Registers) 963 // FIXME: This could just be RegistersByName[name] = register, except that 964 // causes some failures in MIPS - perhaps they have duplicate register name 965 // entries? (or maybe there's a reason for it - I don't know much about this 966 // code, just drive-by refactoring) 967 RegistersByName.insert( 968 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 969 970 // Precompute all sub-register maps. 971 // This will create Composite entries for all inferred sub-register indices. 972 for (auto &Reg : Registers) 973 Reg.computeSubRegs(*this); 974 975 // Infer even more sub-registers by combining leading super-registers. 976 for (auto &Reg : Registers) 977 if (Reg.CoveredBySubRegs) 978 Reg.computeSecondarySubRegs(*this); 979 980 // After the sub-register graph is complete, compute the topologically 981 // ordered SuperRegs list. 982 for (auto &Reg : Registers) 983 Reg.computeSuperRegs(*this); 984 985 // Native register units are associated with a leaf register. They've all been 986 // discovered now. 987 NumNativeRegUnits = RegUnits.size(); 988 989 // Read in register class definitions. 990 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 991 if (RCs.empty()) 992 PrintFatalError("No 'RegisterClass' subclasses defined!"); 993 994 // Allocate user-defined register classes. 995 for (auto *RC : RCs) { 996 RegClasses.emplace_back(*this, RC); 997 addToMaps(&RegClasses.back()); 998 } 999 1000 // Infer missing classes to create a full algebra. 1001 computeInferredRegisterClasses(); 1002 1003 // Order register classes topologically and assign enum values. 1004 RegClasses.sort(TopoOrderRC); 1005 unsigned i = 0; 1006 for (auto &RC : RegClasses) 1007 RC.EnumValue = i++; 1008 CodeGenRegisterClass::computeSubClasses(*this); 1009 } 1010 1011 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1012 CodeGenSubRegIndex* 1013 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1014 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1015 return &SubRegIndices.back(); 1016 } 1017 1018 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1019 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1020 if (Idx) 1021 return Idx; 1022 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1023 Idx = &SubRegIndices.back(); 1024 return Idx; 1025 } 1026 1027 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1028 CodeGenRegister *&Reg = Def2Reg[Def]; 1029 if (Reg) 1030 return Reg; 1031 Registers.emplace_back(Def, Registers.size() + 1); 1032 Reg = &Registers.back(); 1033 return Reg; 1034 } 1035 1036 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1037 if (Record *Def = RC->getDef()) 1038 Def2RC.insert(std::make_pair(Def, RC)); 1039 1040 // Duplicate classes are rejected by insert(). 1041 // That's OK, we only care about the properties handled by CGRC::Key. 1042 CodeGenRegisterClass::Key K(*RC); 1043 Key2RC.insert(std::make_pair(K, RC)); 1044 } 1045 1046 // Create a synthetic sub-class if it is missing. 1047 CodeGenRegisterClass* 1048 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1049 const CodeGenRegister::Vec *Members, 1050 StringRef Name) { 1051 // Synthetic sub-class has the same size and alignment as RC. 1052 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1053 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1054 if (FoundI != Key2RC.end()) 1055 return FoundI->second; 1056 1057 // Sub-class doesn't exist, create a new one. 1058 RegClasses.emplace_back(*this, Name, K); 1059 addToMaps(&RegClasses.back()); 1060 return &RegClasses.back(); 1061 } 1062 1063 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1064 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1065 return RC; 1066 1067 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1068 } 1069 1070 CodeGenSubRegIndex* 1071 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1072 CodeGenSubRegIndex *B) { 1073 // Look for an existing entry. 1074 CodeGenSubRegIndex *Comp = A->compose(B); 1075 if (Comp) 1076 return Comp; 1077 1078 // None exists, synthesize one. 1079 std::string Name = A->getName() + "_then_" + B->getName(); 1080 Comp = createSubRegIndex(Name, A->getNamespace()); 1081 A->addComposite(B, Comp); 1082 return Comp; 1083 } 1084 1085 CodeGenSubRegIndex *CodeGenRegBank:: 1086 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1087 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1088 1089 // Look for an existing entry. 1090 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1091 if (Idx) 1092 return Idx; 1093 1094 // None exists, synthesize one. 1095 std::string Name = Parts.front()->getName(); 1096 // Determine whether all parts are contiguous. 1097 bool isContinuous = true; 1098 unsigned Size = Parts.front()->Size; 1099 unsigned LastOffset = Parts.front()->Offset; 1100 unsigned LastSize = Parts.front()->Size; 1101 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1102 Name += '_'; 1103 Name += Parts[i]->getName(); 1104 Size += Parts[i]->Size; 1105 if (Parts[i]->Offset != (LastOffset + LastSize)) 1106 isContinuous = false; 1107 LastOffset = Parts[i]->Offset; 1108 LastSize = Parts[i]->Size; 1109 } 1110 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1111 Idx->Size = Size; 1112 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1113 return Idx; 1114 } 1115 1116 void CodeGenRegBank::computeComposites() { 1117 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1118 // and many registers will share TopoSigs on regular architectures. 1119 BitVector TopoSigs(getNumTopoSigs()); 1120 1121 for (const auto &Reg1 : Registers) { 1122 // Skip identical subreg structures already processed. 1123 if (TopoSigs.test(Reg1.getTopoSig())) 1124 continue; 1125 TopoSigs.set(Reg1.getTopoSig()); 1126 1127 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1128 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1129 e1 = SRM1.end(); i1 != e1; ++i1) { 1130 CodeGenSubRegIndex *Idx1 = i1->first; 1131 CodeGenRegister *Reg2 = i1->second; 1132 // Ignore identity compositions. 1133 if (&Reg1 == Reg2) 1134 continue; 1135 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1136 // Try composing Idx1 with another SubRegIndex. 1137 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1138 e2 = SRM2.end(); i2 != e2; ++i2) { 1139 CodeGenSubRegIndex *Idx2 = i2->first; 1140 CodeGenRegister *Reg3 = i2->second; 1141 // Ignore identity compositions. 1142 if (Reg2 == Reg3) 1143 continue; 1144 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1145 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1146 assert(Idx3 && "Sub-register doesn't have an index"); 1147 1148 // Conflicting composition? Emit a warning but allow it. 1149 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1150 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1151 " and " + Idx2->getQualifiedName() + 1152 " compose ambiguously as " + Prev->getQualifiedName() + 1153 " or " + Idx3->getQualifiedName()); 1154 } 1155 } 1156 } 1157 } 1158 1159 // Compute lane masks. This is similar to register units, but at the 1160 // sub-register index level. Each bit in the lane mask is like a register unit 1161 // class, and two lane masks will have a bit in common if two sub-register 1162 // indices overlap in some register. 1163 // 1164 // Conservatively share a lane mask bit if two sub-register indices overlap in 1165 // some registers, but not in others. That shouldn't happen a lot. 1166 void CodeGenRegBank::computeSubRegLaneMasks() { 1167 // First assign individual bits to all the leaf indices. 1168 unsigned Bit = 0; 1169 // Determine mask of lanes that cover their registers. 1170 CoveringLanes = ~0u; 1171 for (auto &Idx : SubRegIndices) { 1172 if (Idx.getComposites().empty()) { 1173 if (Bit > 32) { 1174 PrintFatalError( 1175 Twine("Ran out of lanemask bits to represent subregister ") 1176 + Idx.getName()); 1177 } 1178 Idx.LaneMask = 1u << Bit; 1179 ++Bit; 1180 } else { 1181 Idx.LaneMask = 0; 1182 } 1183 } 1184 1185 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1186 // here is that for each possible target subregister we look at the leafs 1187 // in the subregister graph that compose for this target and create 1188 // transformation sequences for the lanemasks. Each step in the sequence 1189 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1190 // are usually the same for many subregisters we can easily combine the steps 1191 // by combining the masks. 1192 for (const auto &Idx : SubRegIndices) { 1193 const auto &Composites = Idx.getComposites(); 1194 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1195 // Go through all leaf subregisters and find the ones that compose with Idx. 1196 // These make out all possible valid bits in the lane mask we want to 1197 // transform. Looking only at the leafs ensure that only a single bit in 1198 // the mask is set. 1199 unsigned NextBit = 0; 1200 for (auto &Idx2 : SubRegIndices) { 1201 // Skip non-leaf subregisters. 1202 if (!Idx2.getComposites().empty()) 1203 continue; 1204 // Replicate the behaviour from the lane mask generation loop above. 1205 unsigned SrcBit = NextBit; 1206 unsigned SrcMask = 1u << SrcBit; 1207 if (NextBit < 31) 1208 ++NextBit; 1209 assert(Idx2.LaneMask == SrcMask); 1210 1211 // Get the composed subregister if there is any. 1212 auto C = Composites.find(&Idx2); 1213 if (C == Composites.end()) 1214 continue; 1215 const CodeGenSubRegIndex *Composite = C->second; 1216 // The Composed subreg should be a leaf subreg too 1217 assert(Composite->getComposites().empty()); 1218 1219 // Create Mask+Rotate operation and merge with existing ops if possible. 1220 unsigned DstBit = Log2_32(Composite->LaneMask); 1221 int Shift = DstBit - SrcBit; 1222 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; 1223 for (auto &I : LaneTransforms) { 1224 if (I.RotateLeft == RotateLeft) { 1225 I.Mask |= SrcMask; 1226 SrcMask = 0; 1227 } 1228 } 1229 if (SrcMask != 0) { 1230 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1231 LaneTransforms.push_back(MaskRol); 1232 } 1233 } 1234 // Optimize if the transformation consists of one step only: Set mask to 1235 // 0xffffffff (including some irrelevant invalid bits) so that it should 1236 // merge with more entries later while compressing the table. 1237 if (LaneTransforms.size() == 1) 1238 LaneTransforms[0].Mask = ~0u; 1239 1240 // Further compression optimization: For invalid compositions resulting 1241 // in a sequence with 0 entries we can just pick any other. Choose 1242 // Mask 0xffffffff with Rotation 0. 1243 if (LaneTransforms.size() == 0) { 1244 MaskRolPair P = { ~0u, 0 }; 1245 LaneTransforms.push_back(P); 1246 } 1247 } 1248 1249 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1250 // by the sub-register graph? This doesn't occur in any known targets. 1251 1252 // Inherit lanes from composites. 1253 for (const auto &Idx : SubRegIndices) { 1254 unsigned Mask = Idx.computeLaneMask(); 1255 // If some super-registers without CoveredBySubRegs use this index, we can 1256 // no longer assume that the lanes are covering their registers. 1257 if (!Idx.AllSuperRegsCovered) 1258 CoveringLanes &= ~Mask; 1259 } 1260 1261 // Compute lane mask combinations for register classes. 1262 for (auto &RegClass : RegClasses) { 1263 unsigned LaneMask = 0; 1264 for (const auto &SubRegIndex : SubRegIndices) { 1265 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1266 continue; 1267 LaneMask |= SubRegIndex.LaneMask; 1268 } 1269 1270 // For classes without any subregisters set LaneMask to ~0u instead of 0. 1271 // This makes it easier for client code to handle classes uniformly. 1272 if (LaneMask == 0) 1273 LaneMask = ~0u; 1274 1275 RegClass.LaneMask = LaneMask; 1276 } 1277 } 1278 1279 namespace { 1280 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1281 // the transitive closure of the union of overlapping register 1282 // classes. Together, the UberRegSets form a partition of the registers. If we 1283 // consider overlapping register classes to be connected, then each UberRegSet 1284 // is a set of connected components. 1285 // 1286 // An UberRegSet will likely be a horizontal slice of register names of 1287 // the same width. Nontrivial subregisters should then be in a separate 1288 // UberRegSet. But this property isn't required for valid computation of 1289 // register unit weights. 1290 // 1291 // A Weight field caches the max per-register unit weight in each UberRegSet. 1292 // 1293 // A set of SingularDeterminants flags single units of some register in this set 1294 // for which the unit weight equals the set weight. These units should not have 1295 // their weight increased. 1296 struct UberRegSet { 1297 CodeGenRegister::Vec Regs; 1298 unsigned Weight; 1299 CodeGenRegister::RegUnitList SingularDeterminants; 1300 1301 UberRegSet(): Weight(0) {} 1302 }; 1303 } // namespace 1304 1305 // Partition registers into UberRegSets, where each set is the transitive 1306 // closure of the union of overlapping register classes. 1307 // 1308 // UberRegSets[0] is a special non-allocatable set. 1309 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1310 std::vector<UberRegSet*> &RegSets, 1311 CodeGenRegBank &RegBank) { 1312 1313 const auto &Registers = RegBank.getRegisters(); 1314 1315 // The Register EnumValue is one greater than its index into Registers. 1316 assert(Registers.size() == Registers.back().EnumValue && 1317 "register enum value mismatch"); 1318 1319 // For simplicitly make the SetID the same as EnumValue. 1320 IntEqClasses UberSetIDs(Registers.size()+1); 1321 std::set<unsigned> AllocatableRegs; 1322 for (auto &RegClass : RegBank.getRegClasses()) { 1323 if (!RegClass.Allocatable) 1324 continue; 1325 1326 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1327 if (Regs.empty()) 1328 continue; 1329 1330 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1331 assert(USetID && "register number 0 is invalid"); 1332 1333 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1334 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1335 AllocatableRegs.insert((*I)->EnumValue); 1336 UberSetIDs.join(USetID, (*I)->EnumValue); 1337 } 1338 } 1339 // Combine non-allocatable regs. 1340 for (const auto &Reg : Registers) { 1341 unsigned RegNum = Reg.EnumValue; 1342 if (AllocatableRegs.count(RegNum)) 1343 continue; 1344 1345 UberSetIDs.join(0, RegNum); 1346 } 1347 UberSetIDs.compress(); 1348 1349 // Make the first UberSet a special unallocatable set. 1350 unsigned ZeroID = UberSetIDs[0]; 1351 1352 // Insert Registers into the UberSets formed by union-find. 1353 // Do not resize after this. 1354 UberSets.resize(UberSetIDs.getNumClasses()); 1355 unsigned i = 0; 1356 for (const CodeGenRegister &Reg : Registers) { 1357 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1358 if (!USetID) 1359 USetID = ZeroID; 1360 else if (USetID == ZeroID) 1361 USetID = 0; 1362 1363 UberRegSet *USet = &UberSets[USetID]; 1364 USet->Regs.push_back(&Reg); 1365 sortAndUniqueRegisters(USet->Regs); 1366 RegSets[i++] = USet; 1367 } 1368 } 1369 1370 // Recompute each UberSet weight after changing unit weights. 1371 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1372 CodeGenRegBank &RegBank) { 1373 // Skip the first unallocatable set. 1374 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1375 E = UberSets.end(); I != E; ++I) { 1376 1377 // Initialize all unit weights in this set, and remember the max units/reg. 1378 const CodeGenRegister *Reg = nullptr; 1379 unsigned MaxWeight = 0, Weight = 0; 1380 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1381 if (Reg != UnitI.getReg()) { 1382 if (Weight > MaxWeight) 1383 MaxWeight = Weight; 1384 Reg = UnitI.getReg(); 1385 Weight = 0; 1386 } 1387 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1388 if (!UWeight) { 1389 UWeight = 1; 1390 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1391 } 1392 Weight += UWeight; 1393 } 1394 if (Weight > MaxWeight) 1395 MaxWeight = Weight; 1396 if (I->Weight != MaxWeight) { 1397 DEBUG( 1398 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1399 for (auto &Unit : I->Regs) 1400 dbgs() << " " << Unit->getName(); 1401 dbgs() << "\n"); 1402 // Update the set weight. 1403 I->Weight = MaxWeight; 1404 } 1405 1406 // Find singular determinants. 1407 for (const auto R : I->Regs) { 1408 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1409 I->SingularDeterminants |= R->getRegUnits(); 1410 } 1411 } 1412 } 1413 } 1414 1415 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1416 // a register and its subregisters so that they have the same weight as their 1417 // UberSet. Self-recursion processes the subregister tree in postorder so 1418 // subregisters are normalized first. 1419 // 1420 // Side effects: 1421 // - creates new adopted register units 1422 // - causes superregisters to inherit adopted units 1423 // - increases the weight of "singular" units 1424 // - induces recomputation of UberWeights. 1425 static bool normalizeWeight(CodeGenRegister *Reg, 1426 std::vector<UberRegSet> &UberSets, 1427 std::vector<UberRegSet*> &RegSets, 1428 SparseBitVector<> &NormalRegs, 1429 CodeGenRegister::RegUnitList &NormalUnits, 1430 CodeGenRegBank &RegBank) { 1431 if (NormalRegs.test(Reg->EnumValue)) 1432 return false; 1433 NormalRegs.set(Reg->EnumValue); 1434 1435 bool Changed = false; 1436 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1437 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1438 SRE = SRM.end(); SRI != SRE; ++SRI) { 1439 if (SRI->second == Reg) 1440 continue; // self-cycles happen 1441 1442 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1443 NormalRegs, NormalUnits, RegBank); 1444 } 1445 // Postorder register normalization. 1446 1447 // Inherit register units newly adopted by subregisters. 1448 if (Reg->inheritRegUnits(RegBank)) 1449 computeUberWeights(UberSets, RegBank); 1450 1451 // Check if this register is too skinny for its UberRegSet. 1452 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1453 1454 unsigned RegWeight = Reg->getWeight(RegBank); 1455 if (UberSet->Weight > RegWeight) { 1456 // A register unit's weight can be adjusted only if it is the singular unit 1457 // for this register, has not been used to normalize a subregister's set, 1458 // and has not already been used to singularly determine this UberRegSet. 1459 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1460 if (Reg->getRegUnits().count() != 1 1461 || hasRegUnit(NormalUnits, AdjustUnit) 1462 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1463 // We don't have an adjustable unit, so adopt a new one. 1464 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1465 Reg->adoptRegUnit(AdjustUnit); 1466 // Adopting a unit does not immediately require recomputing set weights. 1467 } 1468 else { 1469 // Adjust the existing single unit. 1470 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1471 // The unit may be shared among sets and registers within this set. 1472 computeUberWeights(UberSets, RegBank); 1473 } 1474 Changed = true; 1475 } 1476 1477 // Mark these units normalized so superregisters can't change their weights. 1478 NormalUnits |= Reg->getRegUnits(); 1479 1480 return Changed; 1481 } 1482 1483 // Compute a weight for each register unit created during getSubRegs. 1484 // 1485 // The goal is that two registers in the same class will have the same weight, 1486 // where each register's weight is defined as sum of its units' weights. 1487 void CodeGenRegBank::computeRegUnitWeights() { 1488 std::vector<UberRegSet> UberSets; 1489 std::vector<UberRegSet*> RegSets(Registers.size()); 1490 computeUberSets(UberSets, RegSets, *this); 1491 // UberSets and RegSets are now immutable. 1492 1493 computeUberWeights(UberSets, *this); 1494 1495 // Iterate over each Register, normalizing the unit weights until reaching 1496 // a fix point. 1497 unsigned NumIters = 0; 1498 for (bool Changed = true; Changed; ++NumIters) { 1499 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1500 Changed = false; 1501 for (auto &Reg : Registers) { 1502 CodeGenRegister::RegUnitList NormalUnits; 1503 SparseBitVector<> NormalRegs; 1504 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1505 NormalUnits, *this); 1506 } 1507 } 1508 } 1509 1510 // Find a set in UniqueSets with the same elements as Set. 1511 // Return an iterator into UniqueSets. 1512 static std::vector<RegUnitSet>::const_iterator 1513 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1514 const RegUnitSet &Set) { 1515 std::vector<RegUnitSet>::const_iterator 1516 I = UniqueSets.begin(), E = UniqueSets.end(); 1517 for(;I != E; ++I) { 1518 if (I->Units == Set.Units) 1519 break; 1520 } 1521 return I; 1522 } 1523 1524 // Return true if the RUSubSet is a subset of RUSuperSet. 1525 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1526 const std::vector<unsigned> &RUSuperSet) { 1527 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1528 RUSubSet.begin(), RUSubSet.end()); 1529 } 1530 1531 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1532 /// but with one or two registers removed. We occasionally have registers like 1533 /// APSR and PC thrown in with the general registers. We also see many 1534 /// special-purpose register subsets, such as tail-call and Thumb 1535 /// encodings. Generating all possible overlapping sets is combinatorial and 1536 /// overkill for modeling pressure. Ideally we could fix this statically in 1537 /// tablegen by (1) having the target define register classes that only include 1538 /// the allocatable registers and marking other classes as non-allocatable and 1539 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1540 /// the purpose of pressure. However, we make an attempt to handle targets that 1541 /// are not nicely defined by merging nearly identical register unit sets 1542 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1543 /// set limit by filtering the reserved registers. 1544 /// 1545 /// Merge sets only if the units have the same weight. For example, on ARM, 1546 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1547 /// should not expand the S set to include D regs. 1548 void CodeGenRegBank::pruneUnitSets() { 1549 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1550 1551 // Form an equivalence class of UnitSets with no significant difference. 1552 std::vector<unsigned> SuperSetIDs; 1553 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1554 SubIdx != EndIdx; ++SubIdx) { 1555 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1556 unsigned SuperIdx = 0; 1557 for (; SuperIdx != EndIdx; ++SuperIdx) { 1558 if (SuperIdx == SubIdx) 1559 continue; 1560 1561 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1562 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1563 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1564 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1565 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1566 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1567 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1568 << "\n"); 1569 // We can pick any of the set names for the merged set. Go for the 1570 // shortest one to avoid picking the name of one of the classes that are 1571 // artificially created by tablegen. So "FPR128_lo" instead of 1572 // "QQQQ_with_qsub3_in_FPR128_lo". 1573 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1574 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1575 break; 1576 } 1577 } 1578 if (SuperIdx == EndIdx) 1579 SuperSetIDs.push_back(SubIdx); 1580 } 1581 // Populate PrunedUnitSets with each equivalence class's superset. 1582 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1583 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1584 unsigned SuperIdx = SuperSetIDs[i]; 1585 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1586 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1587 } 1588 RegUnitSets.swap(PrunedUnitSets); 1589 } 1590 1591 // Create a RegUnitSet for each RegClass that contains all units in the class 1592 // including adopted units that are necessary to model register pressure. Then 1593 // iteratively compute RegUnitSets such that the union of any two overlapping 1594 // RegUnitSets is repreresented. 1595 // 1596 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1597 // RegUnitSet that is a superset of that RegUnitClass. 1598 void CodeGenRegBank::computeRegUnitSets() { 1599 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1600 1601 // Compute a unique RegUnitSet for each RegClass. 1602 auto &RegClasses = getRegClasses(); 1603 for (auto &RC : RegClasses) { 1604 if (!RC.Allocatable) 1605 continue; 1606 1607 // Speculatively grow the RegUnitSets to hold the new set. 1608 RegUnitSets.resize(RegUnitSets.size() + 1); 1609 RegUnitSets.back().Name = RC.getName(); 1610 1611 // Compute a sorted list of units in this class. 1612 RC.buildRegUnitSet(RegUnitSets.back().Units); 1613 1614 // Find an existing RegUnitSet. 1615 std::vector<RegUnitSet>::const_iterator SetI = 1616 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1617 if (SetI != std::prev(RegUnitSets.end())) 1618 RegUnitSets.pop_back(); 1619 } 1620 1621 DEBUG(dbgs() << "\nBefore pruning:\n"; 1622 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1623 USIdx < USEnd; ++USIdx) { 1624 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1625 << ":"; 1626 for (auto &U : RegUnitSets[USIdx].Units) 1627 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1628 dbgs() << "\n"; 1629 }); 1630 1631 // Iteratively prune unit sets. 1632 pruneUnitSets(); 1633 1634 DEBUG(dbgs() << "\nBefore union:\n"; 1635 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1636 USIdx < USEnd; ++USIdx) { 1637 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1638 << ":"; 1639 for (auto &U : RegUnitSets[USIdx].Units) 1640 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1641 dbgs() << "\n"; 1642 } 1643 dbgs() << "\nUnion sets:\n"); 1644 1645 // Iterate over all unit sets, including new ones added by this loop. 1646 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1647 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1648 // In theory, this is combinatorial. In practice, it needs to be bounded 1649 // by a small number of sets for regpressure to be efficient. 1650 // If the assert is hit, we need to implement pruning. 1651 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1652 1653 // Compare new sets with all original classes. 1654 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1655 SearchIdx != EndIdx; ++SearchIdx) { 1656 std::set<unsigned> Intersection; 1657 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1658 RegUnitSets[Idx].Units.end(), 1659 RegUnitSets[SearchIdx].Units.begin(), 1660 RegUnitSets[SearchIdx].Units.end(), 1661 std::inserter(Intersection, Intersection.begin())); 1662 if (Intersection.empty()) 1663 continue; 1664 1665 // Speculatively grow the RegUnitSets to hold the new set. 1666 RegUnitSets.resize(RegUnitSets.size() + 1); 1667 RegUnitSets.back().Name = 1668 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1669 1670 std::set_union(RegUnitSets[Idx].Units.begin(), 1671 RegUnitSets[Idx].Units.end(), 1672 RegUnitSets[SearchIdx].Units.begin(), 1673 RegUnitSets[SearchIdx].Units.end(), 1674 std::inserter(RegUnitSets.back().Units, 1675 RegUnitSets.back().Units.begin())); 1676 1677 // Find an existing RegUnitSet, or add the union to the unique sets. 1678 std::vector<RegUnitSet>::const_iterator SetI = 1679 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1680 if (SetI != std::prev(RegUnitSets.end())) 1681 RegUnitSets.pop_back(); 1682 else { 1683 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1684 << " " << RegUnitSets.back().Name << ":"; 1685 for (auto &U : RegUnitSets.back().Units) 1686 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1687 dbgs() << "\n";); 1688 } 1689 } 1690 } 1691 1692 // Iteratively prune unit sets after inferring supersets. 1693 pruneUnitSets(); 1694 1695 DEBUG(dbgs() << "\n"; 1696 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1697 USIdx < USEnd; ++USIdx) { 1698 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1699 << ":"; 1700 for (auto &U : RegUnitSets[USIdx].Units) 1701 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1702 dbgs() << "\n"; 1703 }); 1704 1705 // For each register class, list the UnitSets that are supersets. 1706 RegClassUnitSets.resize(RegClasses.size()); 1707 int RCIdx = -1; 1708 for (auto &RC : RegClasses) { 1709 ++RCIdx; 1710 if (!RC.Allocatable) 1711 continue; 1712 1713 // Recompute the sorted list of units in this class. 1714 std::vector<unsigned> RCRegUnits; 1715 RC.buildRegUnitSet(RCRegUnits); 1716 1717 // Don't increase pressure for unallocatable regclasses. 1718 if (RCRegUnits.empty()) 1719 continue; 1720 1721 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1722 for (auto &U : RCRegUnits) 1723 dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; 1724 dbgs() << "\n UnitSetIDs:"); 1725 1726 // Find all supersets. 1727 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1728 USIdx != USEnd; ++USIdx) { 1729 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1730 DEBUG(dbgs() << " " << USIdx); 1731 RegClassUnitSets[RCIdx].push_back(USIdx); 1732 } 1733 } 1734 DEBUG(dbgs() << "\n"); 1735 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1736 } 1737 1738 // For each register unit, ensure that we have the list of UnitSets that 1739 // contain the unit. Normally, this matches an existing list of UnitSets for a 1740 // register class. If not, we create a new entry in RegClassUnitSets as a 1741 // "fake" register class. 1742 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1743 UnitIdx < UnitEnd; ++UnitIdx) { 1744 std::vector<unsigned> RUSets; 1745 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1746 RegUnitSet &RUSet = RegUnitSets[i]; 1747 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1748 == RUSet.Units.end()) 1749 continue; 1750 RUSets.push_back(i); 1751 } 1752 unsigned RCUnitSetsIdx = 0; 1753 for (unsigned e = RegClassUnitSets.size(); 1754 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1755 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1756 break; 1757 } 1758 } 1759 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1760 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1761 // Create a new list of UnitSets as a "fake" register class. 1762 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1763 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1764 } 1765 } 1766 } 1767 1768 void CodeGenRegBank::computeRegUnitLaneMasks() { 1769 for (auto &Register : Registers) { 1770 // Create an initial lane mask for all register units. 1771 const auto &RegUnits = Register.getRegUnits(); 1772 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0); 1773 // Iterate through SubRegisters. 1774 typedef CodeGenRegister::SubRegMap SubRegMap; 1775 const SubRegMap &SubRegs = Register.getSubRegs(); 1776 for (SubRegMap::const_iterator S = SubRegs.begin(), 1777 SE = SubRegs.end(); S != SE; ++S) { 1778 CodeGenRegister *SubReg = S->second; 1779 // Ignore non-leaf subregisters, their lane masks are fully covered by 1780 // the leaf subregisters anyway. 1781 if (SubReg->getSubRegs().size() != 0) 1782 continue; 1783 CodeGenSubRegIndex *SubRegIndex = S->first; 1784 const CodeGenRegister *SubRegister = S->second; 1785 unsigned LaneMask = SubRegIndex->LaneMask; 1786 // Distribute LaneMask to Register Units touched. 1787 for (unsigned SUI : SubRegister->getRegUnits()) { 1788 bool Found = false; 1789 unsigned u = 0; 1790 for (unsigned RU : RegUnits) { 1791 if (SUI == RU) { 1792 RegUnitLaneMasks[u] |= LaneMask; 1793 assert(!Found); 1794 Found = true; 1795 } 1796 ++u; 1797 } 1798 (void)Found; 1799 assert(Found); 1800 } 1801 } 1802 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1803 } 1804 } 1805 1806 void CodeGenRegBank::computeDerivedInfo() { 1807 computeComposites(); 1808 computeSubRegLaneMasks(); 1809 1810 // Compute a weight for each register unit created during getSubRegs. 1811 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1812 computeRegUnitWeights(); 1813 1814 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1815 // supersets for the union of overlapping sets. 1816 computeRegUnitSets(); 1817 1818 computeRegUnitLaneMasks(); 1819 1820 // Compute register class HasDisjunctSubRegs flag. 1821 for (CodeGenRegisterClass &RC : RegClasses) { 1822 RC.HasDisjunctSubRegs = false; 1823 for (const CodeGenRegister *Reg : RC.getMembers()) 1824 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 1825 } 1826 1827 // Get the weight of each set. 1828 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1829 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1830 1831 // Find the order of each set. 1832 RegUnitSetOrder.reserve(RegUnitSets.size()); 1833 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1834 RegUnitSetOrder.push_back(Idx); 1835 1836 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1837 [this](unsigned ID1, unsigned ID2) { 1838 return getRegPressureSet(ID1).Units.size() < 1839 getRegPressureSet(ID2).Units.size(); 1840 }); 1841 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1842 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1843 } 1844 } 1845 1846 // 1847 // Synthesize missing register class intersections. 1848 // 1849 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1850 // returns a maximal register class for all X. 1851 // 1852 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1853 assert(!RegClasses.empty()); 1854 // Stash the iterator to the last element so that this loop doesn't visit 1855 // elements added by the getOrCreateSubClass call within it. 1856 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1857 I != std::next(E); ++I) { 1858 CodeGenRegisterClass *RC1 = RC; 1859 CodeGenRegisterClass *RC2 = &*I; 1860 if (RC1 == RC2) 1861 continue; 1862 1863 // Compute the set intersection of RC1 and RC2. 1864 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 1865 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 1866 CodeGenRegister::Vec Intersection; 1867 std::set_intersection( 1868 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 1869 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 1870 1871 // Skip disjoint class pairs. 1872 if (Intersection.empty()) 1873 continue; 1874 1875 // If RC1 and RC2 have different spill sizes or alignments, use the 1876 // larger size for sub-classing. If they are equal, prefer RC1. 1877 if (RC2->SpillSize > RC1->SpillSize || 1878 (RC2->SpillSize == RC1->SpillSize && 1879 RC2->SpillAlignment > RC1->SpillAlignment)) 1880 std::swap(RC1, RC2); 1881 1882 getOrCreateSubClass(RC1, &Intersection, 1883 RC1->getName() + "_and_" + RC2->getName()); 1884 } 1885 } 1886 1887 // 1888 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1889 // 1890 // Make sure that the set of registers in RC with a given SubIdx sub-register 1891 // form a register class. Update RC->SubClassWithSubReg. 1892 // 1893 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1894 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1895 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 1896 deref<llvm::less>> SubReg2SetMap; 1897 1898 // Compute the set of registers supporting each SubRegIndex. 1899 SubReg2SetMap SRSets; 1900 for (const auto R : RC->getMembers()) { 1901 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 1902 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1903 E = SRM.end(); I != E; ++I) 1904 SRSets[I->first].push_back(R); 1905 } 1906 1907 for (auto I : SRSets) 1908 sortAndUniqueRegisters(I.second); 1909 1910 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1911 // numerical order to visit synthetic indices last. 1912 for (const auto &SubIdx : SubRegIndices) { 1913 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1914 // Unsupported SubRegIndex. Skip it. 1915 if (I == SRSets.end()) 1916 continue; 1917 // In most cases, all RC registers support the SubRegIndex. 1918 if (I->second.size() == RC->getMembers().size()) { 1919 RC->setSubClassWithSubReg(&SubIdx, RC); 1920 continue; 1921 } 1922 // This is a real subset. See if we have a matching class. 1923 CodeGenRegisterClass *SubRC = 1924 getOrCreateSubClass(RC, &I->second, 1925 RC->getName() + "_with_" + I->first->getName()); 1926 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1927 } 1928 } 1929 1930 // 1931 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1932 // 1933 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1934 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1935 // 1936 1937 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1938 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1939 SmallVector<std::pair<const CodeGenRegister*, 1940 const CodeGenRegister*>, 16> SSPairs; 1941 BitVector TopoSigs(getNumTopoSigs()); 1942 1943 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1944 for (auto &SubIdx : SubRegIndices) { 1945 // Skip indexes that aren't fully supported by RC's registers. This was 1946 // computed by inferSubClassWithSubReg() above which should have been 1947 // called first. 1948 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1949 continue; 1950 1951 // Build list of (Super, Sub) pairs for this SubIdx. 1952 SSPairs.clear(); 1953 TopoSigs.reset(); 1954 for (const auto Super : RC->getMembers()) { 1955 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1956 assert(Sub && "Missing sub-register"); 1957 SSPairs.push_back(std::make_pair(Super, Sub)); 1958 TopoSigs.set(Sub->getTopoSig()); 1959 } 1960 1961 // Iterate over sub-register class candidates. Ignore classes created by 1962 // this loop. They will never be useful. 1963 // Store an iterator to the last element (not end) so that this loop doesn't 1964 // visit newly inserted elements. 1965 assert(!RegClasses.empty()); 1966 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 1967 I != std::next(E); ++I) { 1968 CodeGenRegisterClass &SubRC = *I; 1969 // Topological shortcut: SubRC members have the wrong shape. 1970 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 1971 continue; 1972 // Compute the subset of RC that maps into SubRC. 1973 CodeGenRegister::Vec SubSetVec; 1974 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1975 if (SubRC.contains(SSPairs[i].second)) 1976 SubSetVec.push_back(SSPairs[i].first); 1977 1978 if (SubSetVec.empty()) 1979 continue; 1980 1981 // RC injects completely into SubRC. 1982 sortAndUniqueRegisters(SubSetVec); 1983 if (SubSetVec.size() == SSPairs.size()) { 1984 SubRC.addSuperRegClass(&SubIdx, RC); 1985 continue; 1986 } 1987 1988 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1989 // class. 1990 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 1991 SubIdx.getName() + "_in_" + 1992 SubRC.getName()); 1993 } 1994 } 1995 } 1996 1997 1998 // 1999 // Infer missing register classes. 2000 // 2001 void CodeGenRegBank::computeInferredRegisterClasses() { 2002 assert(!RegClasses.empty()); 2003 // When this function is called, the register classes have not been sorted 2004 // and assigned EnumValues yet. That means getSubClasses(), 2005 // getSuperClasses(), and hasSubClass() functions are defunct. 2006 2007 // Use one-before-the-end so it doesn't move forward when new elements are 2008 // added. 2009 auto FirstNewRC = std::prev(RegClasses.end()); 2010 2011 // Visit all register classes, including the ones being added by the loop. 2012 // Watch out for iterator invalidation here. 2013 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2014 CodeGenRegisterClass *RC = &*I; 2015 2016 // Synthesize answers for getSubClassWithSubReg(). 2017 inferSubClassWithSubReg(RC); 2018 2019 // Synthesize answers for getCommonSubClass(). 2020 inferCommonSubClass(RC); 2021 2022 // Synthesize answers for getMatchingSuperRegClass(). 2023 inferMatchingSuperRegClass(RC); 2024 2025 // New register classes are created while this loop is running, and we need 2026 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2027 // to match old super-register classes with sub-register classes created 2028 // after inferMatchingSuperRegClass was called. At this point, 2029 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2030 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2031 if (I == FirstNewRC) { 2032 auto NextNewRC = std::prev(RegClasses.end()); 2033 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2034 ++I2) 2035 inferMatchingSuperRegClass(&*I2, E2); 2036 FirstNewRC = NextNewRC; 2037 } 2038 } 2039 } 2040 2041 /// getRegisterClassForRegister - Find the register class that contains the 2042 /// specified physical register. If the register is not in a register class, 2043 /// return null. If the register is in multiple classes, and the classes have a 2044 /// superset-subset relationship and the same set of types, return the 2045 /// superclass. Otherwise return null. 2046 const CodeGenRegisterClass* 2047 CodeGenRegBank::getRegClassForRegister(Record *R) { 2048 const CodeGenRegister *Reg = getReg(R); 2049 const CodeGenRegisterClass *FoundRC = nullptr; 2050 for (const auto &RC : getRegClasses()) { 2051 if (!RC.contains(Reg)) 2052 continue; 2053 2054 // If this is the first class that contains the register, 2055 // make a note of it and go on to the next class. 2056 if (!FoundRC) { 2057 FoundRC = &RC; 2058 continue; 2059 } 2060 2061 // If a register's classes have different types, return null. 2062 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2063 return nullptr; 2064 2065 // Check to see if the previously found class that contains 2066 // the register is a subclass of the current class. If so, 2067 // prefer the superclass. 2068 if (RC.hasSubClass(FoundRC)) { 2069 FoundRC = &RC; 2070 continue; 2071 } 2072 2073 // Check to see if the previously found class that contains 2074 // the register is a superclass of the current class. If so, 2075 // prefer the superclass. 2076 if (FoundRC->hasSubClass(&RC)) 2077 continue; 2078 2079 // Multiple classes, and neither is a superclass of the other. 2080 // Return null. 2081 return nullptr; 2082 } 2083 return FoundRC; 2084 } 2085 2086 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2087 SetVector<const CodeGenRegister*> Set; 2088 2089 // First add Regs with all sub-registers. 2090 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2091 CodeGenRegister *Reg = getReg(Regs[i]); 2092 if (Set.insert(Reg)) 2093 // Reg is new, add all sub-registers. 2094 // The pre-ordering is not important here. 2095 Reg->addSubRegsPreOrder(Set, *this); 2096 } 2097 2098 // Second, find all super-registers that are completely covered by the set. 2099 for (unsigned i = 0; i != Set.size(); ++i) { 2100 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2101 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2102 const CodeGenRegister *Super = SR[j]; 2103 if (!Super->CoveredBySubRegs || Set.count(Super)) 2104 continue; 2105 // This new super-register is covered by its sub-registers. 2106 bool AllSubsInSet = true; 2107 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2108 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2109 E = SRM.end(); I != E; ++I) 2110 if (!Set.count(I->second)) { 2111 AllSubsInSet = false; 2112 break; 2113 } 2114 // All sub-registers in Set, add Super as well. 2115 // We will visit Super later to recheck its super-registers. 2116 if (AllSubsInSet) 2117 Set.insert(Super); 2118 } 2119 } 2120 2121 // Convert to BitVector. 2122 BitVector BV(Registers.size() + 1); 2123 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2124 BV.set(Set[i]->EnumValue); 2125 return BV; 2126 } 2127