1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/IntEqClasses.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/TableGen/Error.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "regalloc-emitter"
28 
29 //===----------------------------------------------------------------------===//
30 //                             CodeGenSubRegIndex
31 //===----------------------------------------------------------------------===//
32 
33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
34   : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
35   Name = R->getName();
36   if (R->getValue("Namespace"))
37     Namespace = R->getValueAsString("Namespace");
38   Size = R->getValueAsInt("Size");
39   Offset = R->getValueAsInt("Offset");
40 }
41 
42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
43                                        unsigned Enum)
44   : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1),
45     EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) {
46 }
47 
48 std::string CodeGenSubRegIndex::getQualifiedName() const {
49   std::string N = getNamespace();
50   if (!N.empty())
51     N += "::";
52   N += getName();
53   return N;
54 }
55 
56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
57   if (!TheDef)
58     return;
59 
60   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
61   if (!Comps.empty()) {
62     if (Comps.size() != 2)
63       PrintFatalError(TheDef->getLoc(),
64                       "ComposedOf must have exactly two entries");
65     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
66     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
67     CodeGenSubRegIndex *X = A->addComposite(B, this);
68     if (X)
69       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
70   }
71 
72   std::vector<Record*> Parts =
73     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
74   if (!Parts.empty()) {
75     if (Parts.size() < 2)
76       PrintFatalError(TheDef->getLoc(),
77                       "CoveredBySubRegs must have two or more entries");
78     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
79     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
80       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
81     RegBank.addConcatSubRegIndex(IdxParts, this);
82   }
83 }
84 
85 unsigned CodeGenSubRegIndex::computeLaneMask() const {
86   // Already computed?
87   if (LaneMask)
88     return LaneMask;
89 
90   // Recursion guard, shouldn't be required.
91   LaneMask = ~0u;
92 
93   // The lane mask is simply the union of all sub-indices.
94   unsigned M = 0;
95   for (const auto &C : Composed)
96     M |= C.second->computeLaneMask();
97   assert(M && "Missing lane mask, sub-register cycle?");
98   LaneMask = M;
99   return LaneMask;
100 }
101 
102 //===----------------------------------------------------------------------===//
103 //                              CodeGenRegister
104 //===----------------------------------------------------------------------===//
105 
106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
107   : TheDef(R),
108     EnumValue(Enum),
109     CostPerUse(R->getValueAsInt("CostPerUse")),
110     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
111     HasDisjunctSubRegs(false),
112     SubRegsComplete(false),
113     SuperRegsComplete(false),
114     TopoSig(~0u)
115 {}
116 
117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
118   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
119   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
120 
121   if (SRIs.size() != SRs.size())
122     PrintFatalError(TheDef->getLoc(),
123                     "SubRegs and SubRegIndices must have the same size");
124 
125   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
126     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
127     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
128   }
129 
130   // Also compute leading super-registers. Each register has a list of
131   // covered-by-subregs super-registers where it appears as the first explicit
132   // sub-register.
133   //
134   // This is used by computeSecondarySubRegs() to find candidates.
135   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
136     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
137 
138   // Add ad hoc alias links. This is a symmetric relationship between two
139   // registers, so build a symmetric graph by adding links in both ends.
140   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
141   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
142     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
143     ExplicitAliases.push_back(Reg);
144     Reg->ExplicitAliases.push_back(this);
145   }
146 }
147 
148 const std::string &CodeGenRegister::getName() const {
149   assert(TheDef && "no def");
150   return TheDef->getName();
151 }
152 
153 namespace {
154 // Iterate over all register units in a set of registers.
155 class RegUnitIterator {
156   CodeGenRegister::Vec::const_iterator RegI, RegE;
157   CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
158 
159 public:
160   RegUnitIterator(const CodeGenRegister::Vec &Regs):
161     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
162 
163     if (RegI != RegE) {
164       UnitI = (*RegI)->getRegUnits().begin();
165       UnitE = (*RegI)->getRegUnits().end();
166       advance();
167     }
168   }
169 
170   bool isValid() const { return UnitI != UnitE; }
171 
172   unsigned operator* () const { assert(isValid()); return *UnitI; }
173 
174   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
175 
176   /// Preincrement.  Move to the next unit.
177   void operator++() {
178     assert(isValid() && "Cannot advance beyond the last operand");
179     ++UnitI;
180     advance();
181   }
182 
183 protected:
184   void advance() {
185     while (UnitI == UnitE) {
186       if (++RegI == RegE)
187         break;
188       UnitI = (*RegI)->getRegUnits().begin();
189       UnitE = (*RegI)->getRegUnits().end();
190     }
191   }
192 };
193 } // namespace
194 
195 // Return true of this unit appears in RegUnits.
196 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
197   return RegUnits.test(Unit);
198 }
199 
200 // Inherit register units from subregisters.
201 // Return true if the RegUnits changed.
202 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
203   bool changed = false;
204   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
205        I != E; ++I) {
206     CodeGenRegister *SR = I->second;
207     // Merge the subregister's units into this register's RegUnits.
208     changed |= (RegUnits |= SR->RegUnits);
209   }
210 
211   return changed;
212 }
213 
214 const CodeGenRegister::SubRegMap &
215 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
216   // Only compute this map once.
217   if (SubRegsComplete)
218     return SubRegs;
219   SubRegsComplete = true;
220 
221   HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
222 
223   // First insert the explicit subregs and make sure they are fully indexed.
224   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
225     CodeGenRegister *SR = ExplicitSubRegs[i];
226     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
227     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
228       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
229                       " appears twice in Register " + getName());
230     // Map explicit sub-registers first, so the names take precedence.
231     // The inherited sub-registers are mapped below.
232     SubReg2Idx.insert(std::make_pair(SR, Idx));
233   }
234 
235   // Keep track of inherited subregs and how they can be reached.
236   SmallPtrSet<CodeGenRegister*, 8> Orphans;
237 
238   // Clone inherited subregs and place duplicate entries in Orphans.
239   // Here the order is important - earlier subregs take precedence.
240   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
241     CodeGenRegister *SR = ExplicitSubRegs[i];
242     const SubRegMap &Map = SR->computeSubRegs(RegBank);
243     HasDisjunctSubRegs |= SR->HasDisjunctSubRegs;
244 
245     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
246          ++SI) {
247       if (!SubRegs.insert(*SI).second)
248         Orphans.insert(SI->second);
249     }
250   }
251 
252   // Expand any composed subreg indices.
253   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
254   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
255   // expanded subreg indices recursively.
256   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
257   for (unsigned i = 0; i != Indices.size(); ++i) {
258     CodeGenSubRegIndex *Idx = Indices[i];
259     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
260     CodeGenRegister *SR = SubRegs[Idx];
261     const SubRegMap &Map = SR->computeSubRegs(RegBank);
262 
263     // Look at the possible compositions of Idx.
264     // They may not all be supported by SR.
265     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
266            E = Comps.end(); I != E; ++I) {
267       SubRegMap::const_iterator SRI = Map.find(I->first);
268       if (SRI == Map.end())
269         continue; // Idx + I->first doesn't exist in SR.
270       // Add I->second as a name for the subreg SRI->second, assuming it is
271       // orphaned, and the name isn't already used for something else.
272       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
273         continue;
274       // We found a new name for the orphaned sub-register.
275       SubRegs.insert(std::make_pair(I->second, SRI->second));
276       Indices.push_back(I->second);
277     }
278   }
279 
280   // Now Orphans contains the inherited subregisters without a direct index.
281   // Create inferred indexes for all missing entries.
282   // Work backwards in the Indices vector in order to compose subregs bottom-up.
283   // Consider this subreg sequence:
284   //
285   //   qsub_1 -> dsub_0 -> ssub_0
286   //
287   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
288   // can be reached in two different ways:
289   //
290   //   qsub_1 -> ssub_0
291   //   dsub_2 -> ssub_0
292   //
293   // We pick the latter composition because another register may have [dsub_0,
294   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
295   // dsub_2 -> ssub_0 composition can be shared.
296   while (!Indices.empty() && !Orphans.empty()) {
297     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
298     CodeGenRegister *SR = SubRegs[Idx];
299     const SubRegMap &Map = SR->computeSubRegs(RegBank);
300     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
301          ++SI)
302       if (Orphans.erase(SI->second))
303         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
304   }
305 
306   // Compute the inverse SubReg -> Idx map.
307   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
308        SI != SE; ++SI) {
309     if (SI->second == this) {
310       ArrayRef<SMLoc> Loc;
311       if (TheDef)
312         Loc = TheDef->getLoc();
313       PrintFatalError(Loc, "Register " + getName() +
314                       " has itself as a sub-register");
315     }
316 
317     // Compute AllSuperRegsCovered.
318     if (!CoveredBySubRegs)
319       SI->first->AllSuperRegsCovered = false;
320 
321     // Ensure that every sub-register has a unique name.
322     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
323       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
324     if (Ins->second == SI->first)
325       continue;
326     // Trouble: Two different names for SI->second.
327     ArrayRef<SMLoc> Loc;
328     if (TheDef)
329       Loc = TheDef->getLoc();
330     PrintFatalError(Loc, "Sub-register can't have two names: " +
331                   SI->second->getName() + " available as " +
332                   SI->first->getName() + " and " + Ins->second->getName());
333   }
334 
335   // Derive possible names for sub-register concatenations from any explicit
336   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
337   // that getConcatSubRegIndex() won't invent any concatenated indices that the
338   // user already specified.
339   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
340     CodeGenRegister *SR = ExplicitSubRegs[i];
341     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
342       continue;
343 
344     // SR is composed of multiple sub-regs. Find their names in this register.
345     SmallVector<CodeGenSubRegIndex*, 8> Parts;
346     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
347       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
348 
349     // Offer this as an existing spelling for the concatenation of Parts.
350     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
351   }
352 
353   // Initialize RegUnitList. Because getSubRegs is called recursively, this
354   // processes the register hierarchy in postorder.
355   //
356   // Inherit all sub-register units. It is good enough to look at the explicit
357   // sub-registers, the other registers won't contribute any more units.
358   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
359     CodeGenRegister *SR = ExplicitSubRegs[i];
360     RegUnits |= SR->RegUnits;
361   }
362 
363   // Absent any ad hoc aliasing, we create one register unit per leaf register.
364   // These units correspond to the maximal cliques in the register overlap
365   // graph which is optimal.
366   //
367   // When there is ad hoc aliasing, we simply create one unit per edge in the
368   // undirected ad hoc aliasing graph. Technically, we could do better by
369   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
370   // are extremely rare anyway (I've never seen one), so we don't bother with
371   // the added complexity.
372   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
373     CodeGenRegister *AR = ExplicitAliases[i];
374     // Only visit each edge once.
375     if (AR->SubRegsComplete)
376       continue;
377     // Create a RegUnit representing this alias edge, and add it to both
378     // registers.
379     unsigned Unit = RegBank.newRegUnit(this, AR);
380     RegUnits.set(Unit);
381     AR->RegUnits.set(Unit);
382   }
383 
384   // Finally, create units for leaf registers without ad hoc aliases. Note that
385   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
386   // necessary. This means the aliasing leaf registers can share a single unit.
387   if (RegUnits.empty())
388     RegUnits.set(RegBank.newRegUnit(this));
389 
390   // We have now computed the native register units. More may be adopted later
391   // for balancing purposes.
392   NativeRegUnits = RegUnits;
393 
394   return SubRegs;
395 }
396 
397 // In a register that is covered by its sub-registers, try to find redundant
398 // sub-registers. For example:
399 //
400 //   QQ0 = {Q0, Q1}
401 //   Q0 = {D0, D1}
402 //   Q1 = {D2, D3}
403 //
404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
405 // the register definition.
406 //
407 // The explicitly specified registers form a tree. This function discovers
408 // sub-register relationships that would force a DAG.
409 //
410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
411   // Collect new sub-registers first, add them later.
412   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
413 
414   // Look at the leading super-registers of each sub-register. Those are the
415   // candidates for new sub-registers, assuming they are fully contained in
416   // this register.
417   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
418     const CodeGenRegister *SubReg = I->second;
419     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
420     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
421       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
422       // Already got this sub-register?
423       if (Cand == this || getSubRegIndex(Cand))
424         continue;
425       // Check if each component of Cand is already a sub-register.
426       // We know that the first component is I->second, and is present with the
427       // name I->first.
428       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
429       assert(!Cand->ExplicitSubRegs.empty() &&
430              "Super-register has no sub-registers");
431       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
432         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
433           Parts.push_back(Idx);
434         else {
435           // Sub-register doesn't exist.
436           Parts.clear();
437           break;
438         }
439       }
440       // If some Cand sub-register is not part of this register, or if Cand only
441       // has one sub-register, there is nothing to do.
442       if (Parts.size() <= 1)
443         continue;
444 
445       // Each part of Cand is a sub-register of this. Make the full Cand also
446       // a sub-register with a concatenated sub-register index.
447       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
448       NewSubRegs.push_back(std::make_pair(Concat, Cand));
449     }
450   }
451 
452   // Now add all the new sub-registers.
453   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
454     // Don't add Cand if another sub-register is already using the index.
455     if (!SubRegs.insert(NewSubRegs[i]).second)
456       continue;
457 
458     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
459     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
460     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
461   }
462 
463   // Create sub-register index composition maps for the synthesized indices.
464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
465     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
466     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
467     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
468            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
469       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
470       if (!SubIdx)
471         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
472                         SI->second->getName() + " in " + getName());
473       NewIdx->addComposite(SI->first, SubIdx);
474     }
475   }
476 }
477 
478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
479   // Only visit each register once.
480   if (SuperRegsComplete)
481     return;
482   SuperRegsComplete = true;
483 
484   // Make sure all sub-registers have been visited first, so the super-reg
485   // lists will be topologically ordered.
486   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
487        I != E; ++I)
488     I->second->computeSuperRegs(RegBank);
489 
490   // Now add this as a super-register on all sub-registers.
491   // Also compute the TopoSigId in post-order.
492   TopoSigId Id;
493   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
494        I != E; ++I) {
495     // Topological signature computed from SubIdx, TopoId(SubReg).
496     // Loops and idempotent indices have TopoSig = ~0u.
497     Id.push_back(I->first->EnumValue);
498     Id.push_back(I->second->TopoSig);
499 
500     // Don't add duplicate entries.
501     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
502       continue;
503     I->second->SuperRegs.push_back(this);
504   }
505   TopoSig = RegBank.getTopoSig(Id);
506 }
507 
508 void
509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
510                                     CodeGenRegBank &RegBank) const {
511   assert(SubRegsComplete && "Must precompute sub-registers");
512   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
513     CodeGenRegister *SR = ExplicitSubRegs[i];
514     if (OSet.insert(SR))
515       SR->addSubRegsPreOrder(OSet, RegBank);
516   }
517   // Add any secondary sub-registers that weren't part of the explicit tree.
518   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
519        I != E; ++I)
520     OSet.insert(I->second);
521 }
522 
523 // Get the sum of this register's unit weights.
524 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
525   unsigned Weight = 0;
526   for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
527        I != E; ++I) {
528     Weight += RegBank.getRegUnit(*I).Weight;
529   }
530   return Weight;
531 }
532 
533 //===----------------------------------------------------------------------===//
534 //                               RegisterTuples
535 //===----------------------------------------------------------------------===//
536 
537 // A RegisterTuples def is used to generate pseudo-registers from lists of
538 // sub-registers. We provide a SetTheory expander class that returns the new
539 // registers.
540 namespace {
541 struct TupleExpander : SetTheory::Expander {
542   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
543     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
544     unsigned Dim = Indices.size();
545     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
546     if (Dim != SubRegs->size())
547       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
548     if (Dim < 2)
549       PrintFatalError(Def->getLoc(),
550                       "Tuples must have at least 2 sub-registers");
551 
552     // Evaluate the sub-register lists to be zipped.
553     unsigned Length = ~0u;
554     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
555     for (unsigned i = 0; i != Dim; ++i) {
556       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
557       Length = std::min(Length, unsigned(Lists[i].size()));
558     }
559 
560     if (Length == 0)
561       return;
562 
563     // Precompute some types.
564     Record *RegisterCl = Def->getRecords().getClass("Register");
565     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
566     StringInit *BlankName = StringInit::get("");
567 
568     // Zip them up.
569     for (unsigned n = 0; n != Length; ++n) {
570       std::string Name;
571       Record *Proto = Lists[0][n];
572       std::vector<Init*> Tuple;
573       unsigned CostPerUse = 0;
574       for (unsigned i = 0; i != Dim; ++i) {
575         Record *Reg = Lists[i][n];
576         if (i) Name += '_';
577         Name += Reg->getName();
578         Tuple.push_back(DefInit::get(Reg));
579         CostPerUse = std::max(CostPerUse,
580                               unsigned(Reg->getValueAsInt("CostPerUse")));
581       }
582 
583       // Create a new Record representing the synthesized register. This record
584       // is only for consumption by CodeGenRegister, it is not added to the
585       // RecordKeeper.
586       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
587       Elts.insert(NewReg);
588 
589       // Copy Proto super-classes.
590       ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
591       for (const auto &SuperPair : Supers)
592         NewReg->addSuperClass(SuperPair.first, SuperPair.second);
593 
594       // Copy Proto fields.
595       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
596         RecordVal RV = Proto->getValues()[i];
597 
598         // Skip existing fields, like NAME.
599         if (NewReg->getValue(RV.getNameInit()))
600           continue;
601 
602         StringRef Field = RV.getName();
603 
604         // Replace the sub-register list with Tuple.
605         if (Field == "SubRegs")
606           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
607 
608         // Provide a blank AsmName. MC hacks are required anyway.
609         if (Field == "AsmName")
610           RV.setValue(BlankName);
611 
612         // CostPerUse is aggregated from all Tuple members.
613         if (Field == "CostPerUse")
614           RV.setValue(IntInit::get(CostPerUse));
615 
616         // Composite registers are always covered by sub-registers.
617         if (Field == "CoveredBySubRegs")
618           RV.setValue(BitInit::get(true));
619 
620         // Copy fields from the RegisterTuples def.
621         if (Field == "SubRegIndices" ||
622             Field == "CompositeIndices") {
623           NewReg->addValue(*Def->getValue(Field));
624           continue;
625         }
626 
627         // Some fields get their default uninitialized value.
628         if (Field == "DwarfNumbers" ||
629             Field == "DwarfAlias" ||
630             Field == "Aliases") {
631           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
632             NewReg->addValue(*DefRV);
633           continue;
634         }
635 
636         // Everything else is copied from Proto.
637         NewReg->addValue(RV);
638       }
639     }
640   }
641 };
642 }
643 
644 //===----------------------------------------------------------------------===//
645 //                            CodeGenRegisterClass
646 //===----------------------------------------------------------------------===//
647 
648 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
649   std::sort(M.begin(), M.end(), deref<llvm::less>());
650   M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end());
651 }
652 
653 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
654   : TheDef(R),
655     Name(R->getName()),
656     TopoSigs(RegBank.getNumTopoSigs()),
657     EnumValue(-1),
658     LaneMask(0) {
659   // Rename anonymous register classes.
660   if (R->getName().size() > 9 && R->getName()[9] == '.') {
661     static unsigned AnonCounter = 0;
662     R->setName("AnonRegClass_" + utostr(AnonCounter++));
663   }
664 
665   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
666   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
667     Record *Type = TypeList[i];
668     if (!Type->isSubClassOf("ValueType"))
669       PrintFatalError("RegTypes list member '" + Type->getName() +
670         "' does not derive from the ValueType class!");
671     VTs.push_back(getValueType(Type));
672   }
673   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
674 
675   // Allocation order 0 is the full set. AltOrders provides others.
676   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
677   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
678   Orders.resize(1 + AltOrders->size());
679 
680   // Default allocation order always contains all registers.
681   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
682     Orders[0].push_back((*Elements)[i]);
683     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
684     Members.push_back(Reg);
685     TopoSigs.set(Reg->getTopoSig());
686   }
687   sortAndUniqueRegisters(Members);
688 
689   // Alternative allocation orders may be subsets.
690   SetTheory::RecSet Order;
691   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
692     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
693     Orders[1 + i].append(Order.begin(), Order.end());
694     // Verify that all altorder members are regclass members.
695     while (!Order.empty()) {
696       CodeGenRegister *Reg = RegBank.getReg(Order.back());
697       Order.pop_back();
698       if (!contains(Reg))
699         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
700                       " is not a class member");
701     }
702   }
703 
704   // Allow targets to override the size in bits of the RegisterClass.
705   unsigned Size = R->getValueAsInt("Size");
706 
707   Namespace = R->getValueAsString("Namespace");
708   SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
709   SpillAlignment = R->getValueAsInt("Alignment");
710   CopyCost = R->getValueAsInt("CopyCost");
711   Allocatable = R->getValueAsBit("isAllocatable");
712   AltOrderSelect = R->getValueAsString("AltOrderSelect");
713   int AllocationPriority = R->getValueAsInt("AllocationPriority");
714   if (AllocationPriority < 0 || AllocationPriority > 63)
715     PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
716   this->AllocationPriority = AllocationPriority;
717 }
718 
719 // Create an inferred register class that was missing from the .td files.
720 // Most properties will be inherited from the closest super-class after the
721 // class structure has been computed.
722 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
723                                            StringRef Name, Key Props)
724   : Members(*Props.Members),
725     TheDef(nullptr),
726     Name(Name),
727     TopoSigs(RegBank.getNumTopoSigs()),
728     EnumValue(-1),
729     SpillSize(Props.SpillSize),
730     SpillAlignment(Props.SpillAlignment),
731     CopyCost(0),
732     Allocatable(true),
733     AllocationPriority(0) {
734   for (const auto R : Members)
735     TopoSigs.set(R->getTopoSig());
736 }
737 
738 // Compute inherited propertied for a synthesized register class.
739 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
740   assert(!getDef() && "Only synthesized classes can inherit properties");
741   assert(!SuperClasses.empty() && "Synthesized class without super class");
742 
743   // The last super-class is the smallest one.
744   CodeGenRegisterClass &Super = *SuperClasses.back();
745 
746   // Most properties are copied directly.
747   // Exceptions are members, size, and alignment
748   Namespace = Super.Namespace;
749   VTs = Super.VTs;
750   CopyCost = Super.CopyCost;
751   Allocatable = Super.Allocatable;
752   AltOrderSelect = Super.AltOrderSelect;
753   AllocationPriority = Super.AllocationPriority;
754 
755   // Copy all allocation orders, filter out foreign registers from the larger
756   // super-class.
757   Orders.resize(Super.Orders.size());
758   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
759     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
760       if (contains(RegBank.getReg(Super.Orders[i][j])))
761         Orders[i].push_back(Super.Orders[i][j]);
762 }
763 
764 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
765   return std::binary_search(Members.begin(), Members.end(), Reg,
766                             deref<llvm::less>());
767 }
768 
769 namespace llvm {
770   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
771     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
772     for (const auto R : *K.Members)
773       OS << ", " << R->getName();
774     return OS << " }";
775   }
776 }
777 
778 // This is a simple lexicographical order that can be used to search for sets.
779 // It is not the same as the topological order provided by TopoOrderRC.
780 bool CodeGenRegisterClass::Key::
781 operator<(const CodeGenRegisterClass::Key &B) const {
782   assert(Members && B.Members);
783   return std::tie(*Members, SpillSize, SpillAlignment) <
784          std::tie(*B.Members, B.SpillSize, B.SpillAlignment);
785 }
786 
787 // Returns true if RC is a strict subclass.
788 // RC is a sub-class of this class if it is a valid replacement for any
789 // instruction operand where a register of this classis required. It must
790 // satisfy these conditions:
791 //
792 // 1. All RC registers are also in this.
793 // 2. The RC spill size must not be smaller than our spill size.
794 // 3. RC spill alignment must be compatible with ours.
795 //
796 static bool testSubClass(const CodeGenRegisterClass *A,
797                          const CodeGenRegisterClass *B) {
798   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
799          A->SpillSize <= B->SpillSize &&
800          std::includes(A->getMembers().begin(), A->getMembers().end(),
801                        B->getMembers().begin(), B->getMembers().end(),
802                        deref<llvm::less>());
803 }
804 
805 /// Sorting predicate for register classes.  This provides a topological
806 /// ordering that arranges all register classes before their sub-classes.
807 ///
808 /// Register classes with the same registers, spill size, and alignment form a
809 /// clique.  They will be ordered alphabetically.
810 ///
811 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
812                         const CodeGenRegisterClass &PB) {
813   auto *A = &PA;
814   auto *B = &PB;
815   if (A == B)
816     return 0;
817 
818   // Order by ascending spill size.
819   if (A->SpillSize < B->SpillSize)
820     return true;
821   if (A->SpillSize > B->SpillSize)
822     return false;
823 
824   // Order by ascending spill alignment.
825   if (A->SpillAlignment < B->SpillAlignment)
826     return true;
827   if (A->SpillAlignment > B->SpillAlignment)
828     return false;
829 
830   // Order by descending set size.  Note that the classes' allocation order may
831   // not have been computed yet.  The Members set is always vaild.
832   if (A->getMembers().size() > B->getMembers().size())
833     return true;
834   if (A->getMembers().size() < B->getMembers().size())
835     return false;
836 
837   // Finally order by name as a tie breaker.
838   return StringRef(A->getName()) < B->getName();
839 }
840 
841 std::string CodeGenRegisterClass::getQualifiedName() const {
842   if (Namespace.empty())
843     return getName();
844   else
845     return Namespace + "::" + getName();
846 }
847 
848 // Compute sub-classes of all register classes.
849 // Assume the classes are ordered topologically.
850 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
851   auto &RegClasses = RegBank.getRegClasses();
852 
853   // Visit backwards so sub-classes are seen first.
854   for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
855     CodeGenRegisterClass &RC = *I;
856     RC.SubClasses.resize(RegClasses.size());
857     RC.SubClasses.set(RC.EnumValue);
858 
859     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
860     for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
861       CodeGenRegisterClass &SubRC = *I2;
862       if (RC.SubClasses.test(SubRC.EnumValue))
863         continue;
864       if (!testSubClass(&RC, &SubRC))
865         continue;
866       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
867       // check them again.
868       RC.SubClasses |= SubRC.SubClasses;
869     }
870 
871     // Sweep up missed clique members.  They will be immediately preceding RC.
872     for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
873       RC.SubClasses.set(I2->EnumValue);
874   }
875 
876   // Compute the SuperClasses lists from the SubClasses vectors.
877   for (auto &RC : RegClasses) {
878     const BitVector &SC = RC.getSubClasses();
879     auto I = RegClasses.begin();
880     for (int s = 0, next_s = SC.find_first(); next_s != -1;
881          next_s = SC.find_next(s)) {
882       std::advance(I, next_s - s);
883       s = next_s;
884       if (&*I == &RC)
885         continue;
886       I->SuperClasses.push_back(&RC);
887     }
888   }
889 
890   // With the class hierarchy in place, let synthesized register classes inherit
891   // properties from their closest super-class. The iteration order here can
892   // propagate properties down multiple levels.
893   for (auto &RC : RegClasses)
894     if (!RC.getDef())
895       RC.inheritProperties(RegBank);
896 }
897 
898 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
899                                               BitVector &Out) const {
900   auto FindI = SuperRegClasses.find(SubIdx);
901   if (FindI == SuperRegClasses.end())
902     return;
903   for (CodeGenRegisterClass *RC : FindI->second)
904     Out.set(RC->EnumValue);
905 }
906 
907 // Populate a unique sorted list of units from a register set.
908 void CodeGenRegisterClass::buildRegUnitSet(
909   std::vector<unsigned> &RegUnits) const {
910   std::vector<unsigned> TmpUnits;
911   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
912     TmpUnits.push_back(*UnitI);
913   std::sort(TmpUnits.begin(), TmpUnits.end());
914   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
915                    std::back_inserter(RegUnits));
916 }
917 
918 //===----------------------------------------------------------------------===//
919 //                               CodeGenRegBank
920 //===----------------------------------------------------------------------===//
921 
922 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
923   // Configure register Sets to understand register classes and tuples.
924   Sets.addFieldExpander("RegisterClass", "MemberList");
925   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
926   Sets.addExpander("RegisterTuples", llvm::make_unique<TupleExpander>());
927 
928   // Read in the user-defined (named) sub-register indices.
929   // More indices will be synthesized later.
930   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
931   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
932   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
933     getSubRegIdx(SRIs[i]);
934   // Build composite maps from ComposedOf fields.
935   for (auto &Idx : SubRegIndices)
936     Idx.updateComponents(*this);
937 
938   // Read in the register definitions.
939   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
940   std::sort(Regs.begin(), Regs.end(), LessRecordRegister());
941   // Assign the enumeration values.
942   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
943     getReg(Regs[i]);
944 
945   // Expand tuples and number the new registers.
946   std::vector<Record*> Tups =
947     Records.getAllDerivedDefinitions("RegisterTuples");
948 
949   for (Record *R : Tups) {
950     std::vector<Record *> TupRegs = *Sets.expand(R);
951     std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister());
952     for (Record *RC : TupRegs)
953       getReg(RC);
954   }
955 
956   // Now all the registers are known. Build the object graph of explicit
957   // register-register references.
958   for (auto &Reg : Registers)
959     Reg.buildObjectGraph(*this);
960 
961   // Compute register name map.
962   for (auto &Reg : Registers)
963     // FIXME: This could just be RegistersByName[name] = register, except that
964     // causes some failures in MIPS - perhaps they have duplicate register name
965     // entries? (or maybe there's a reason for it - I don't know much about this
966     // code, just drive-by refactoring)
967     RegistersByName.insert(
968         std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
969 
970   // Precompute all sub-register maps.
971   // This will create Composite entries for all inferred sub-register indices.
972   for (auto &Reg : Registers)
973     Reg.computeSubRegs(*this);
974 
975   // Infer even more sub-registers by combining leading super-registers.
976   for (auto &Reg : Registers)
977     if (Reg.CoveredBySubRegs)
978       Reg.computeSecondarySubRegs(*this);
979 
980   // After the sub-register graph is complete, compute the topologically
981   // ordered SuperRegs list.
982   for (auto &Reg : Registers)
983     Reg.computeSuperRegs(*this);
984 
985   // Native register units are associated with a leaf register. They've all been
986   // discovered now.
987   NumNativeRegUnits = RegUnits.size();
988 
989   // Read in register class definitions.
990   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
991   if (RCs.empty())
992     PrintFatalError("No 'RegisterClass' subclasses defined!");
993 
994   // Allocate user-defined register classes.
995   for (auto *RC : RCs) {
996     RegClasses.emplace_back(*this, RC);
997     addToMaps(&RegClasses.back());
998   }
999 
1000   // Infer missing classes to create a full algebra.
1001   computeInferredRegisterClasses();
1002 
1003   // Order register classes topologically and assign enum values.
1004   RegClasses.sort(TopoOrderRC);
1005   unsigned i = 0;
1006   for (auto &RC : RegClasses)
1007     RC.EnumValue = i++;
1008   CodeGenRegisterClass::computeSubClasses(*this);
1009 }
1010 
1011 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1012 CodeGenSubRegIndex*
1013 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1014   SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1015   return &SubRegIndices.back();
1016 }
1017 
1018 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1019   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1020   if (Idx)
1021     return Idx;
1022   SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1023   Idx = &SubRegIndices.back();
1024   return Idx;
1025 }
1026 
1027 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1028   CodeGenRegister *&Reg = Def2Reg[Def];
1029   if (Reg)
1030     return Reg;
1031   Registers.emplace_back(Def, Registers.size() + 1);
1032   Reg = &Registers.back();
1033   return Reg;
1034 }
1035 
1036 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1037   if (Record *Def = RC->getDef())
1038     Def2RC.insert(std::make_pair(Def, RC));
1039 
1040   // Duplicate classes are rejected by insert().
1041   // That's OK, we only care about the properties handled by CGRC::Key.
1042   CodeGenRegisterClass::Key K(*RC);
1043   Key2RC.insert(std::make_pair(K, RC));
1044 }
1045 
1046 // Create a synthetic sub-class if it is missing.
1047 CodeGenRegisterClass*
1048 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1049                                     const CodeGenRegister::Vec *Members,
1050                                     StringRef Name) {
1051   // Synthetic sub-class has the same size and alignment as RC.
1052   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
1053   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1054   if (FoundI != Key2RC.end())
1055     return FoundI->second;
1056 
1057   // Sub-class doesn't exist, create a new one.
1058   RegClasses.emplace_back(*this, Name, K);
1059   addToMaps(&RegClasses.back());
1060   return &RegClasses.back();
1061 }
1062 
1063 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
1064   if (CodeGenRegisterClass *RC = Def2RC[Def])
1065     return RC;
1066 
1067   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1068 }
1069 
1070 CodeGenSubRegIndex*
1071 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1072                                         CodeGenSubRegIndex *B) {
1073   // Look for an existing entry.
1074   CodeGenSubRegIndex *Comp = A->compose(B);
1075   if (Comp)
1076     return Comp;
1077 
1078   // None exists, synthesize one.
1079   std::string Name = A->getName() + "_then_" + B->getName();
1080   Comp = createSubRegIndex(Name, A->getNamespace());
1081   A->addComposite(B, Comp);
1082   return Comp;
1083 }
1084 
1085 CodeGenSubRegIndex *CodeGenRegBank::
1086 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1087   assert(Parts.size() > 1 && "Need two parts to concatenate");
1088 
1089   // Look for an existing entry.
1090   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1091   if (Idx)
1092     return Idx;
1093 
1094   // None exists, synthesize one.
1095   std::string Name = Parts.front()->getName();
1096   // Determine whether all parts are contiguous.
1097   bool isContinuous = true;
1098   unsigned Size = Parts.front()->Size;
1099   unsigned LastOffset = Parts.front()->Offset;
1100   unsigned LastSize = Parts.front()->Size;
1101   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1102     Name += '_';
1103     Name += Parts[i]->getName();
1104     Size += Parts[i]->Size;
1105     if (Parts[i]->Offset != (LastOffset + LastSize))
1106       isContinuous = false;
1107     LastOffset = Parts[i]->Offset;
1108     LastSize = Parts[i]->Size;
1109   }
1110   Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1111   Idx->Size = Size;
1112   Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1113   return Idx;
1114 }
1115 
1116 void CodeGenRegBank::computeComposites() {
1117   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1118   // and many registers will share TopoSigs on regular architectures.
1119   BitVector TopoSigs(getNumTopoSigs());
1120 
1121   for (const auto &Reg1 : Registers) {
1122     // Skip identical subreg structures already processed.
1123     if (TopoSigs.test(Reg1.getTopoSig()))
1124       continue;
1125     TopoSigs.set(Reg1.getTopoSig());
1126 
1127     const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1128     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1129          e1 = SRM1.end(); i1 != e1; ++i1) {
1130       CodeGenSubRegIndex *Idx1 = i1->first;
1131       CodeGenRegister *Reg2 = i1->second;
1132       // Ignore identity compositions.
1133       if (&Reg1 == Reg2)
1134         continue;
1135       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1136       // Try composing Idx1 with another SubRegIndex.
1137       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1138            e2 = SRM2.end(); i2 != e2; ++i2) {
1139         CodeGenSubRegIndex *Idx2 = i2->first;
1140         CodeGenRegister *Reg3 = i2->second;
1141         // Ignore identity compositions.
1142         if (Reg2 == Reg3)
1143           continue;
1144         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1145         CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1146         assert(Idx3 && "Sub-register doesn't have an index");
1147 
1148         // Conflicting composition? Emit a warning but allow it.
1149         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
1150           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1151                        " and " + Idx2->getQualifiedName() +
1152                        " compose ambiguously as " + Prev->getQualifiedName() +
1153                        " or " + Idx3->getQualifiedName());
1154       }
1155     }
1156   }
1157 }
1158 
1159 // Compute lane masks. This is similar to register units, but at the
1160 // sub-register index level. Each bit in the lane mask is like a register unit
1161 // class, and two lane masks will have a bit in common if two sub-register
1162 // indices overlap in some register.
1163 //
1164 // Conservatively share a lane mask bit if two sub-register indices overlap in
1165 // some registers, but not in others. That shouldn't happen a lot.
1166 void CodeGenRegBank::computeSubRegLaneMasks() {
1167   // First assign individual bits to all the leaf indices.
1168   unsigned Bit = 0;
1169   // Determine mask of lanes that cover their registers.
1170   CoveringLanes = ~0u;
1171   for (auto &Idx : SubRegIndices) {
1172     if (Idx.getComposites().empty()) {
1173       if (Bit > 32) {
1174         PrintFatalError(
1175           Twine("Ran out of lanemask bits to represent subregister ")
1176           + Idx.getName());
1177       }
1178       Idx.LaneMask = 1u << Bit;
1179       ++Bit;
1180     } else {
1181       Idx.LaneMask = 0;
1182     }
1183   }
1184 
1185   // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1186   // here is that for each possible target subregister we look at the leafs
1187   // in the subregister graph that compose for this target and create
1188   // transformation sequences for the lanemasks. Each step in the sequence
1189   // consists of a bitmask and a bitrotate operation. As the rotation amounts
1190   // are usually the same for many subregisters we can easily combine the steps
1191   // by combining the masks.
1192   for (const auto &Idx : SubRegIndices) {
1193     const auto &Composites = Idx.getComposites();
1194     auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1195     // Go through all leaf subregisters and find the ones that compose with Idx.
1196     // These make out all possible valid bits in the lane mask we want to
1197     // transform. Looking only at the leafs ensure that only a single bit in
1198     // the mask is set.
1199     unsigned NextBit = 0;
1200     for (auto &Idx2 : SubRegIndices) {
1201       // Skip non-leaf subregisters.
1202       if (!Idx2.getComposites().empty())
1203         continue;
1204       // Replicate the behaviour from the lane mask generation loop above.
1205       unsigned SrcBit = NextBit;
1206       unsigned SrcMask = 1u << SrcBit;
1207       if (NextBit < 31)
1208         ++NextBit;
1209       assert(Idx2.LaneMask == SrcMask);
1210 
1211       // Get the composed subregister if there is any.
1212       auto C = Composites.find(&Idx2);
1213       if (C == Composites.end())
1214         continue;
1215       const CodeGenSubRegIndex *Composite = C->second;
1216       // The Composed subreg should be a leaf subreg too
1217       assert(Composite->getComposites().empty());
1218 
1219       // Create Mask+Rotate operation and merge with existing ops if possible.
1220       unsigned DstBit = Log2_32(Composite->LaneMask);
1221       int Shift = DstBit - SrcBit;
1222       uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift;
1223       for (auto &I : LaneTransforms) {
1224         if (I.RotateLeft == RotateLeft) {
1225           I.Mask |= SrcMask;
1226           SrcMask = 0;
1227         }
1228       }
1229       if (SrcMask != 0) {
1230         MaskRolPair MaskRol = { SrcMask, RotateLeft };
1231         LaneTransforms.push_back(MaskRol);
1232       }
1233     }
1234     // Optimize if the transformation consists of one step only: Set mask to
1235     // 0xffffffff (including some irrelevant invalid bits) so that it should
1236     // merge with more entries later while compressing the table.
1237     if (LaneTransforms.size() == 1)
1238       LaneTransforms[0].Mask = ~0u;
1239 
1240     // Further compression optimization: For invalid compositions resulting
1241     // in a sequence with 0 entries we can just pick any other. Choose
1242     // Mask 0xffffffff with Rotation 0.
1243     if (LaneTransforms.size() == 0) {
1244       MaskRolPair P = { ~0u, 0 };
1245       LaneTransforms.push_back(P);
1246     }
1247   }
1248 
1249   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1250   // by the sub-register graph? This doesn't occur in any known targets.
1251 
1252   // Inherit lanes from composites.
1253   for (const auto &Idx : SubRegIndices) {
1254     unsigned Mask = Idx.computeLaneMask();
1255     // If some super-registers without CoveredBySubRegs use this index, we can
1256     // no longer assume that the lanes are covering their registers.
1257     if (!Idx.AllSuperRegsCovered)
1258       CoveringLanes &= ~Mask;
1259   }
1260 
1261   // Compute lane mask combinations for register classes.
1262   for (auto &RegClass : RegClasses) {
1263     unsigned LaneMask = 0;
1264     for (const auto &SubRegIndex : SubRegIndices) {
1265       if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1266         continue;
1267       LaneMask |= SubRegIndex.LaneMask;
1268     }
1269 
1270     // For classes without any subregisters set LaneMask to ~0u instead of 0.
1271     // This makes it easier for client code to handle classes uniformly.
1272     if (LaneMask == 0)
1273       LaneMask = ~0u;
1274 
1275     RegClass.LaneMask = LaneMask;
1276   }
1277 }
1278 
1279 namespace {
1280 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1281 // the transitive closure of the union of overlapping register
1282 // classes. Together, the UberRegSets form a partition of the registers. If we
1283 // consider overlapping register classes to be connected, then each UberRegSet
1284 // is a set of connected components.
1285 //
1286 // An UberRegSet will likely be a horizontal slice of register names of
1287 // the same width. Nontrivial subregisters should then be in a separate
1288 // UberRegSet. But this property isn't required for valid computation of
1289 // register unit weights.
1290 //
1291 // A Weight field caches the max per-register unit weight in each UberRegSet.
1292 //
1293 // A set of SingularDeterminants flags single units of some register in this set
1294 // for which the unit weight equals the set weight. These units should not have
1295 // their weight increased.
1296 struct UberRegSet {
1297   CodeGenRegister::Vec Regs;
1298   unsigned Weight;
1299   CodeGenRegister::RegUnitList SingularDeterminants;
1300 
1301   UberRegSet(): Weight(0) {}
1302 };
1303 } // namespace
1304 
1305 // Partition registers into UberRegSets, where each set is the transitive
1306 // closure of the union of overlapping register classes.
1307 //
1308 // UberRegSets[0] is a special non-allocatable set.
1309 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1310                             std::vector<UberRegSet*> &RegSets,
1311                             CodeGenRegBank &RegBank) {
1312 
1313   const auto &Registers = RegBank.getRegisters();
1314 
1315   // The Register EnumValue is one greater than its index into Registers.
1316   assert(Registers.size() == Registers.back().EnumValue &&
1317          "register enum value mismatch");
1318 
1319   // For simplicitly make the SetID the same as EnumValue.
1320   IntEqClasses UberSetIDs(Registers.size()+1);
1321   std::set<unsigned> AllocatableRegs;
1322   for (auto &RegClass : RegBank.getRegClasses()) {
1323     if (!RegClass.Allocatable)
1324       continue;
1325 
1326     const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1327     if (Regs.empty())
1328       continue;
1329 
1330     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1331     assert(USetID && "register number 0 is invalid");
1332 
1333     AllocatableRegs.insert((*Regs.begin())->EnumValue);
1334     for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1335       AllocatableRegs.insert((*I)->EnumValue);
1336       UberSetIDs.join(USetID, (*I)->EnumValue);
1337     }
1338   }
1339   // Combine non-allocatable regs.
1340   for (const auto &Reg : Registers) {
1341     unsigned RegNum = Reg.EnumValue;
1342     if (AllocatableRegs.count(RegNum))
1343       continue;
1344 
1345     UberSetIDs.join(0, RegNum);
1346   }
1347   UberSetIDs.compress();
1348 
1349   // Make the first UberSet a special unallocatable set.
1350   unsigned ZeroID = UberSetIDs[0];
1351 
1352   // Insert Registers into the UberSets formed by union-find.
1353   // Do not resize after this.
1354   UberSets.resize(UberSetIDs.getNumClasses());
1355   unsigned i = 0;
1356   for (const CodeGenRegister &Reg : Registers) {
1357     unsigned USetID = UberSetIDs[Reg.EnumValue];
1358     if (!USetID)
1359       USetID = ZeroID;
1360     else if (USetID == ZeroID)
1361       USetID = 0;
1362 
1363     UberRegSet *USet = &UberSets[USetID];
1364     USet->Regs.push_back(&Reg);
1365     sortAndUniqueRegisters(USet->Regs);
1366     RegSets[i++] = USet;
1367   }
1368 }
1369 
1370 // Recompute each UberSet weight after changing unit weights.
1371 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1372                                CodeGenRegBank &RegBank) {
1373   // Skip the first unallocatable set.
1374   for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1375          E = UberSets.end(); I != E; ++I) {
1376 
1377     // Initialize all unit weights in this set, and remember the max units/reg.
1378     const CodeGenRegister *Reg = nullptr;
1379     unsigned MaxWeight = 0, Weight = 0;
1380     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1381       if (Reg != UnitI.getReg()) {
1382         if (Weight > MaxWeight)
1383           MaxWeight = Weight;
1384         Reg = UnitI.getReg();
1385         Weight = 0;
1386       }
1387       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1388       if (!UWeight) {
1389         UWeight = 1;
1390         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1391       }
1392       Weight += UWeight;
1393     }
1394     if (Weight > MaxWeight)
1395       MaxWeight = Weight;
1396     if (I->Weight != MaxWeight) {
1397       DEBUG(
1398         dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight;
1399         for (auto &Unit : I->Regs)
1400           dbgs() << " " << Unit->getName();
1401         dbgs() << "\n");
1402       // Update the set weight.
1403       I->Weight = MaxWeight;
1404     }
1405 
1406     // Find singular determinants.
1407     for (const auto R : I->Regs) {
1408       if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1409         I->SingularDeterminants |= R->getRegUnits();
1410       }
1411     }
1412   }
1413 }
1414 
1415 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1416 // a register and its subregisters so that they have the same weight as their
1417 // UberSet. Self-recursion processes the subregister tree in postorder so
1418 // subregisters are normalized first.
1419 //
1420 // Side effects:
1421 // - creates new adopted register units
1422 // - causes superregisters to inherit adopted units
1423 // - increases the weight of "singular" units
1424 // - induces recomputation of UberWeights.
1425 static bool normalizeWeight(CodeGenRegister *Reg,
1426                             std::vector<UberRegSet> &UberSets,
1427                             std::vector<UberRegSet*> &RegSets,
1428                             SparseBitVector<> &NormalRegs,
1429                             CodeGenRegister::RegUnitList &NormalUnits,
1430                             CodeGenRegBank &RegBank) {
1431   if (NormalRegs.test(Reg->EnumValue))
1432     return false;
1433   NormalRegs.set(Reg->EnumValue);
1434 
1435   bool Changed = false;
1436   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1437   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1438          SRE = SRM.end(); SRI != SRE; ++SRI) {
1439     if (SRI->second == Reg)
1440       continue; // self-cycles happen
1441 
1442     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1443                                NormalRegs, NormalUnits, RegBank);
1444   }
1445   // Postorder register normalization.
1446 
1447   // Inherit register units newly adopted by subregisters.
1448   if (Reg->inheritRegUnits(RegBank))
1449     computeUberWeights(UberSets, RegBank);
1450 
1451   // Check if this register is too skinny for its UberRegSet.
1452   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1453 
1454   unsigned RegWeight = Reg->getWeight(RegBank);
1455   if (UberSet->Weight > RegWeight) {
1456     // A register unit's weight can be adjusted only if it is the singular unit
1457     // for this register, has not been used to normalize a subregister's set,
1458     // and has not already been used to singularly determine this UberRegSet.
1459     unsigned AdjustUnit = *Reg->getRegUnits().begin();
1460     if (Reg->getRegUnits().count() != 1
1461         || hasRegUnit(NormalUnits, AdjustUnit)
1462         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1463       // We don't have an adjustable unit, so adopt a new one.
1464       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1465       Reg->adoptRegUnit(AdjustUnit);
1466       // Adopting a unit does not immediately require recomputing set weights.
1467     }
1468     else {
1469       // Adjust the existing single unit.
1470       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1471       // The unit may be shared among sets and registers within this set.
1472       computeUberWeights(UberSets, RegBank);
1473     }
1474     Changed = true;
1475   }
1476 
1477   // Mark these units normalized so superregisters can't change their weights.
1478   NormalUnits |= Reg->getRegUnits();
1479 
1480   return Changed;
1481 }
1482 
1483 // Compute a weight for each register unit created during getSubRegs.
1484 //
1485 // The goal is that two registers in the same class will have the same weight,
1486 // where each register's weight is defined as sum of its units' weights.
1487 void CodeGenRegBank::computeRegUnitWeights() {
1488   std::vector<UberRegSet> UberSets;
1489   std::vector<UberRegSet*> RegSets(Registers.size());
1490   computeUberSets(UberSets, RegSets, *this);
1491   // UberSets and RegSets are now immutable.
1492 
1493   computeUberWeights(UberSets, *this);
1494 
1495   // Iterate over each Register, normalizing the unit weights until reaching
1496   // a fix point.
1497   unsigned NumIters = 0;
1498   for (bool Changed = true; Changed; ++NumIters) {
1499     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1500     Changed = false;
1501     for (auto &Reg : Registers) {
1502       CodeGenRegister::RegUnitList NormalUnits;
1503       SparseBitVector<> NormalRegs;
1504       Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1505                                  NormalUnits, *this);
1506     }
1507   }
1508 }
1509 
1510 // Find a set in UniqueSets with the same elements as Set.
1511 // Return an iterator into UniqueSets.
1512 static std::vector<RegUnitSet>::const_iterator
1513 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1514                const RegUnitSet &Set) {
1515   std::vector<RegUnitSet>::const_iterator
1516     I = UniqueSets.begin(), E = UniqueSets.end();
1517   for(;I != E; ++I) {
1518     if (I->Units == Set.Units)
1519       break;
1520   }
1521   return I;
1522 }
1523 
1524 // Return true if the RUSubSet is a subset of RUSuperSet.
1525 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1526                             const std::vector<unsigned> &RUSuperSet) {
1527   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1528                        RUSubSet.begin(), RUSubSet.end());
1529 }
1530 
1531 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1532 /// but with one or two registers removed. We occasionally have registers like
1533 /// APSR and PC thrown in with the general registers. We also see many
1534 /// special-purpose register subsets, such as tail-call and Thumb
1535 /// encodings. Generating all possible overlapping sets is combinatorial and
1536 /// overkill for modeling pressure. Ideally we could fix this statically in
1537 /// tablegen by (1) having the target define register classes that only include
1538 /// the allocatable registers and marking other classes as non-allocatable and
1539 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1540 /// the purpose of pressure.  However, we make an attempt to handle targets that
1541 /// are not nicely defined by merging nearly identical register unit sets
1542 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1543 /// set limit by filtering the reserved registers.
1544 ///
1545 /// Merge sets only if the units have the same weight. For example, on ARM,
1546 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1547 /// should not expand the S set to include D regs.
1548 void CodeGenRegBank::pruneUnitSets() {
1549   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1550 
1551   // Form an equivalence class of UnitSets with no significant difference.
1552   std::vector<unsigned> SuperSetIDs;
1553   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1554        SubIdx != EndIdx; ++SubIdx) {
1555     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1556     unsigned SuperIdx = 0;
1557     for (; SuperIdx != EndIdx; ++SuperIdx) {
1558       if (SuperIdx == SubIdx)
1559         continue;
1560 
1561       unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1562       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1563       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1564           && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1565           && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1566           && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1567         DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1568               << "\n");
1569         // We can pick any of the set names for the merged set. Go for the
1570         // shortest one to avoid picking the name of one of the classes that are
1571         // artificially created by tablegen. So "FPR128_lo" instead of
1572         // "QQQQ_with_qsub3_in_FPR128_lo".
1573         if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1574           RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1575         break;
1576       }
1577     }
1578     if (SuperIdx == EndIdx)
1579       SuperSetIDs.push_back(SubIdx);
1580   }
1581   // Populate PrunedUnitSets with each equivalence class's superset.
1582   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1583   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1584     unsigned SuperIdx = SuperSetIDs[i];
1585     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1586     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1587   }
1588   RegUnitSets.swap(PrunedUnitSets);
1589 }
1590 
1591 // Create a RegUnitSet for each RegClass that contains all units in the class
1592 // including adopted units that are necessary to model register pressure. Then
1593 // iteratively compute RegUnitSets such that the union of any two overlapping
1594 // RegUnitSets is repreresented.
1595 //
1596 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1597 // RegUnitSet that is a superset of that RegUnitClass.
1598 void CodeGenRegBank::computeRegUnitSets() {
1599   assert(RegUnitSets.empty() && "dirty RegUnitSets");
1600 
1601   // Compute a unique RegUnitSet for each RegClass.
1602   auto &RegClasses = getRegClasses();
1603   for (auto &RC : RegClasses) {
1604     if (!RC.Allocatable)
1605       continue;
1606 
1607     // Speculatively grow the RegUnitSets to hold the new set.
1608     RegUnitSets.resize(RegUnitSets.size() + 1);
1609     RegUnitSets.back().Name = RC.getName();
1610 
1611     // Compute a sorted list of units in this class.
1612     RC.buildRegUnitSet(RegUnitSets.back().Units);
1613 
1614     // Find an existing RegUnitSet.
1615     std::vector<RegUnitSet>::const_iterator SetI =
1616       findRegUnitSet(RegUnitSets, RegUnitSets.back());
1617     if (SetI != std::prev(RegUnitSets.end()))
1618       RegUnitSets.pop_back();
1619   }
1620 
1621   DEBUG(dbgs() << "\nBefore pruning:\n";
1622         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1623              USIdx < USEnd; ++USIdx) {
1624           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1625                  << ":";
1626           for (auto &U : RegUnitSets[USIdx].Units)
1627             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1628           dbgs() << "\n";
1629         });
1630 
1631   // Iteratively prune unit sets.
1632   pruneUnitSets();
1633 
1634   DEBUG(dbgs() << "\nBefore union:\n";
1635         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1636              USIdx < USEnd; ++USIdx) {
1637           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1638                  << ":";
1639           for (auto &U : RegUnitSets[USIdx].Units)
1640             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1641           dbgs() << "\n";
1642         }
1643         dbgs() << "\nUnion sets:\n");
1644 
1645   // Iterate over all unit sets, including new ones added by this loop.
1646   unsigned NumRegUnitSubSets = RegUnitSets.size();
1647   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1648     // In theory, this is combinatorial. In practice, it needs to be bounded
1649     // by a small number of sets for regpressure to be efficient.
1650     // If the assert is hit, we need to implement pruning.
1651     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1652 
1653     // Compare new sets with all original classes.
1654     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1655          SearchIdx != EndIdx; ++SearchIdx) {
1656       std::set<unsigned> Intersection;
1657       std::set_intersection(RegUnitSets[Idx].Units.begin(),
1658                             RegUnitSets[Idx].Units.end(),
1659                             RegUnitSets[SearchIdx].Units.begin(),
1660                             RegUnitSets[SearchIdx].Units.end(),
1661                             std::inserter(Intersection, Intersection.begin()));
1662       if (Intersection.empty())
1663         continue;
1664 
1665       // Speculatively grow the RegUnitSets to hold the new set.
1666       RegUnitSets.resize(RegUnitSets.size() + 1);
1667       RegUnitSets.back().Name =
1668         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
1669 
1670       std::set_union(RegUnitSets[Idx].Units.begin(),
1671                      RegUnitSets[Idx].Units.end(),
1672                      RegUnitSets[SearchIdx].Units.begin(),
1673                      RegUnitSets[SearchIdx].Units.end(),
1674                      std::inserter(RegUnitSets.back().Units,
1675                                    RegUnitSets.back().Units.begin()));
1676 
1677       // Find an existing RegUnitSet, or add the union to the unique sets.
1678       std::vector<RegUnitSet>::const_iterator SetI =
1679         findRegUnitSet(RegUnitSets, RegUnitSets.back());
1680       if (SetI != std::prev(RegUnitSets.end()))
1681         RegUnitSets.pop_back();
1682       else {
1683         DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1
1684               << " " << RegUnitSets.back().Name << ":";
1685               for (auto &U : RegUnitSets.back().Units)
1686                 dbgs() << " " << RegUnits[U].Roots[0]->getName();
1687               dbgs() << "\n";);
1688       }
1689     }
1690   }
1691 
1692   // Iteratively prune unit sets after inferring supersets.
1693   pruneUnitSets();
1694 
1695   DEBUG(dbgs() << "\n";
1696         for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1697              USIdx < USEnd; ++USIdx) {
1698           dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name
1699                  << ":";
1700           for (auto &U : RegUnitSets[USIdx].Units)
1701             dbgs() << " " << RegUnits[U].Roots[0]->getName();
1702           dbgs() << "\n";
1703         });
1704 
1705   // For each register class, list the UnitSets that are supersets.
1706   RegClassUnitSets.resize(RegClasses.size());
1707   int RCIdx = -1;
1708   for (auto &RC : RegClasses) {
1709     ++RCIdx;
1710     if (!RC.Allocatable)
1711       continue;
1712 
1713     // Recompute the sorted list of units in this class.
1714     std::vector<unsigned> RCRegUnits;
1715     RC.buildRegUnitSet(RCRegUnits);
1716 
1717     // Don't increase pressure for unallocatable regclasses.
1718     if (RCRegUnits.empty())
1719       continue;
1720 
1721     DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
1722           for (auto &U : RCRegUnits)
1723             dbgs() << RegUnits[U].getRoots()[0]->getName() << " ";
1724           dbgs() << "\n  UnitSetIDs:");
1725 
1726     // Find all supersets.
1727     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1728          USIdx != USEnd; ++USIdx) {
1729       if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
1730         DEBUG(dbgs() << " " << USIdx);
1731         RegClassUnitSets[RCIdx].push_back(USIdx);
1732       }
1733     }
1734     DEBUG(dbgs() << "\n");
1735     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
1736   }
1737 
1738   // For each register unit, ensure that we have the list of UnitSets that
1739   // contain the unit. Normally, this matches an existing list of UnitSets for a
1740   // register class. If not, we create a new entry in RegClassUnitSets as a
1741   // "fake" register class.
1742   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
1743        UnitIdx < UnitEnd; ++UnitIdx) {
1744     std::vector<unsigned> RUSets;
1745     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
1746       RegUnitSet &RUSet = RegUnitSets[i];
1747       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
1748           == RUSet.Units.end())
1749         continue;
1750       RUSets.push_back(i);
1751     }
1752     unsigned RCUnitSetsIdx = 0;
1753     for (unsigned e = RegClassUnitSets.size();
1754          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
1755       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
1756         break;
1757       }
1758     }
1759     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
1760     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
1761       // Create a new list of UnitSets as a "fake" register class.
1762       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
1763       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
1764     }
1765   }
1766 }
1767 
1768 void CodeGenRegBank::computeRegUnitLaneMasks() {
1769   for (auto &Register : Registers) {
1770     // Create an initial lane mask for all register units.
1771     const auto &RegUnits = Register.getRegUnits();
1772     CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0);
1773     // Iterate through SubRegisters.
1774     typedef CodeGenRegister::SubRegMap SubRegMap;
1775     const SubRegMap &SubRegs = Register.getSubRegs();
1776     for (SubRegMap::const_iterator S = SubRegs.begin(),
1777          SE = SubRegs.end(); S != SE; ++S) {
1778       CodeGenRegister *SubReg = S->second;
1779       // Ignore non-leaf subregisters, their lane masks are fully covered by
1780       // the leaf subregisters anyway.
1781       if (SubReg->getSubRegs().size() != 0)
1782         continue;
1783       CodeGenSubRegIndex *SubRegIndex = S->first;
1784       const CodeGenRegister *SubRegister = S->second;
1785       unsigned LaneMask = SubRegIndex->LaneMask;
1786       // Distribute LaneMask to Register Units touched.
1787       for (unsigned SUI : SubRegister->getRegUnits()) {
1788         bool Found = false;
1789         unsigned u = 0;
1790         for (unsigned RU : RegUnits) {
1791           if (SUI == RU) {
1792             RegUnitLaneMasks[u] |= LaneMask;
1793             assert(!Found);
1794             Found = true;
1795           }
1796           ++u;
1797         }
1798         (void)Found;
1799         assert(Found);
1800       }
1801     }
1802     Register.setRegUnitLaneMasks(RegUnitLaneMasks);
1803   }
1804 }
1805 
1806 void CodeGenRegBank::computeDerivedInfo() {
1807   computeComposites();
1808   computeSubRegLaneMasks();
1809 
1810   // Compute a weight for each register unit created during getSubRegs.
1811   // This may create adopted register units (with unit # >= NumNativeRegUnits).
1812   computeRegUnitWeights();
1813 
1814   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
1815   // supersets for the union of overlapping sets.
1816   computeRegUnitSets();
1817 
1818   computeRegUnitLaneMasks();
1819 
1820   // Compute register class HasDisjunctSubRegs flag.
1821   for (CodeGenRegisterClass &RC : RegClasses) {
1822     RC.HasDisjunctSubRegs = false;
1823     for (const CodeGenRegister *Reg : RC.getMembers())
1824       RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
1825   }
1826 
1827   // Get the weight of each set.
1828   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1829     RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
1830 
1831   // Find the order of each set.
1832   RegUnitSetOrder.reserve(RegUnitSets.size());
1833   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
1834     RegUnitSetOrder.push_back(Idx);
1835 
1836   std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(),
1837                    [this](unsigned ID1, unsigned ID2) {
1838     return getRegPressureSet(ID1).Units.size() <
1839            getRegPressureSet(ID2).Units.size();
1840   });
1841   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1842     RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
1843   }
1844 }
1845 
1846 //
1847 // Synthesize missing register class intersections.
1848 //
1849 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
1850 // returns a maximal register class for all X.
1851 //
1852 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
1853   assert(!RegClasses.empty());
1854   // Stash the iterator to the last element so that this loop doesn't visit
1855   // elements added by the getOrCreateSubClass call within it.
1856   for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
1857        I != std::next(E); ++I) {
1858     CodeGenRegisterClass *RC1 = RC;
1859     CodeGenRegisterClass *RC2 = &*I;
1860     if (RC1 == RC2)
1861       continue;
1862 
1863     // Compute the set intersection of RC1 and RC2.
1864     const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
1865     const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
1866     CodeGenRegister::Vec Intersection;
1867     std::set_intersection(
1868         Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(),
1869         std::inserter(Intersection, Intersection.begin()), deref<llvm::less>());
1870 
1871     // Skip disjoint class pairs.
1872     if (Intersection.empty())
1873       continue;
1874 
1875     // If RC1 and RC2 have different spill sizes or alignments, use the
1876     // larger size for sub-classing.  If they are equal, prefer RC1.
1877     if (RC2->SpillSize > RC1->SpillSize ||
1878         (RC2->SpillSize == RC1->SpillSize &&
1879          RC2->SpillAlignment > RC1->SpillAlignment))
1880       std::swap(RC1, RC2);
1881 
1882     getOrCreateSubClass(RC1, &Intersection,
1883                         RC1->getName() + "_and_" + RC2->getName());
1884   }
1885 }
1886 
1887 //
1888 // Synthesize missing sub-classes for getSubClassWithSubReg().
1889 //
1890 // Make sure that the set of registers in RC with a given SubIdx sub-register
1891 // form a register class.  Update RC->SubClassWithSubReg.
1892 //
1893 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
1894   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
1895   typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
1896                    deref<llvm::less>> SubReg2SetMap;
1897 
1898   // Compute the set of registers supporting each SubRegIndex.
1899   SubReg2SetMap SRSets;
1900   for (const auto R : RC->getMembers()) {
1901     const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
1902     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
1903          E = SRM.end(); I != E; ++I)
1904       SRSets[I->first].push_back(R);
1905   }
1906 
1907   for (auto I : SRSets)
1908     sortAndUniqueRegisters(I.second);
1909 
1910   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
1911   // numerical order to visit synthetic indices last.
1912   for (const auto &SubIdx : SubRegIndices) {
1913     SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
1914     // Unsupported SubRegIndex. Skip it.
1915     if (I == SRSets.end())
1916       continue;
1917     // In most cases, all RC registers support the SubRegIndex.
1918     if (I->second.size() == RC->getMembers().size()) {
1919       RC->setSubClassWithSubReg(&SubIdx, RC);
1920       continue;
1921     }
1922     // This is a real subset.  See if we have a matching class.
1923     CodeGenRegisterClass *SubRC =
1924       getOrCreateSubClass(RC, &I->second,
1925                           RC->getName() + "_with_" + I->first->getName());
1926     RC->setSubClassWithSubReg(&SubIdx, SubRC);
1927   }
1928 }
1929 
1930 //
1931 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
1932 //
1933 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
1934 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
1935 //
1936 
1937 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
1938                                                 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
1939   SmallVector<std::pair<const CodeGenRegister*,
1940                         const CodeGenRegister*>, 16> SSPairs;
1941   BitVector TopoSigs(getNumTopoSigs());
1942 
1943   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
1944   for (auto &SubIdx : SubRegIndices) {
1945     // Skip indexes that aren't fully supported by RC's registers. This was
1946     // computed by inferSubClassWithSubReg() above which should have been
1947     // called first.
1948     if (RC->getSubClassWithSubReg(&SubIdx) != RC)
1949       continue;
1950 
1951     // Build list of (Super, Sub) pairs for this SubIdx.
1952     SSPairs.clear();
1953     TopoSigs.reset();
1954     for (const auto Super : RC->getMembers()) {
1955       const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
1956       assert(Sub && "Missing sub-register");
1957       SSPairs.push_back(std::make_pair(Super, Sub));
1958       TopoSigs.set(Sub->getTopoSig());
1959     }
1960 
1961     // Iterate over sub-register class candidates.  Ignore classes created by
1962     // this loop. They will never be useful.
1963     // Store an iterator to the last element (not end) so that this loop doesn't
1964     // visit newly inserted elements.
1965     assert(!RegClasses.empty());
1966     for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
1967          I != std::next(E); ++I) {
1968       CodeGenRegisterClass &SubRC = *I;
1969       // Topological shortcut: SubRC members have the wrong shape.
1970       if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
1971         continue;
1972       // Compute the subset of RC that maps into SubRC.
1973       CodeGenRegister::Vec SubSetVec;
1974       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
1975         if (SubRC.contains(SSPairs[i].second))
1976           SubSetVec.push_back(SSPairs[i].first);
1977 
1978       if (SubSetVec.empty())
1979         continue;
1980 
1981       // RC injects completely into SubRC.
1982       sortAndUniqueRegisters(SubSetVec);
1983       if (SubSetVec.size() == SSPairs.size()) {
1984         SubRC.addSuperRegClass(&SubIdx, RC);
1985         continue;
1986       }
1987 
1988       // Only a subset of RC maps into SubRC. Make sure it is represented by a
1989       // class.
1990       getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
1991                                           SubIdx.getName() + "_in_" +
1992                                           SubRC.getName());
1993     }
1994   }
1995 }
1996 
1997 
1998 //
1999 // Infer missing register classes.
2000 //
2001 void CodeGenRegBank::computeInferredRegisterClasses() {
2002   assert(!RegClasses.empty());
2003   // When this function is called, the register classes have not been sorted
2004   // and assigned EnumValues yet.  That means getSubClasses(),
2005   // getSuperClasses(), and hasSubClass() functions are defunct.
2006 
2007   // Use one-before-the-end so it doesn't move forward when new elements are
2008   // added.
2009   auto FirstNewRC = std::prev(RegClasses.end());
2010 
2011   // Visit all register classes, including the ones being added by the loop.
2012   // Watch out for iterator invalidation here.
2013   for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2014     CodeGenRegisterClass *RC = &*I;
2015 
2016     // Synthesize answers for getSubClassWithSubReg().
2017     inferSubClassWithSubReg(RC);
2018 
2019     // Synthesize answers for getCommonSubClass().
2020     inferCommonSubClass(RC);
2021 
2022     // Synthesize answers for getMatchingSuperRegClass().
2023     inferMatchingSuperRegClass(RC);
2024 
2025     // New register classes are created while this loop is running, and we need
2026     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2027     // to match old super-register classes with sub-register classes created
2028     // after inferMatchingSuperRegClass was called.  At this point,
2029     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2030     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2031     if (I == FirstNewRC) {
2032       auto NextNewRC = std::prev(RegClasses.end());
2033       for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2034            ++I2)
2035         inferMatchingSuperRegClass(&*I2, E2);
2036       FirstNewRC = NextNewRC;
2037     }
2038   }
2039 }
2040 
2041 /// getRegisterClassForRegister - Find the register class that contains the
2042 /// specified physical register.  If the register is not in a register class,
2043 /// return null. If the register is in multiple classes, and the classes have a
2044 /// superset-subset relationship and the same set of types, return the
2045 /// superclass.  Otherwise return null.
2046 const CodeGenRegisterClass*
2047 CodeGenRegBank::getRegClassForRegister(Record *R) {
2048   const CodeGenRegister *Reg = getReg(R);
2049   const CodeGenRegisterClass *FoundRC = nullptr;
2050   for (const auto &RC : getRegClasses()) {
2051     if (!RC.contains(Reg))
2052       continue;
2053 
2054     // If this is the first class that contains the register,
2055     // make a note of it and go on to the next class.
2056     if (!FoundRC) {
2057       FoundRC = &RC;
2058       continue;
2059     }
2060 
2061     // If a register's classes have different types, return null.
2062     if (RC.getValueTypes() != FoundRC->getValueTypes())
2063       return nullptr;
2064 
2065     // Check to see if the previously found class that contains
2066     // the register is a subclass of the current class. If so,
2067     // prefer the superclass.
2068     if (RC.hasSubClass(FoundRC)) {
2069       FoundRC = &RC;
2070       continue;
2071     }
2072 
2073     // Check to see if the previously found class that contains
2074     // the register is a superclass of the current class. If so,
2075     // prefer the superclass.
2076     if (FoundRC->hasSubClass(&RC))
2077       continue;
2078 
2079     // Multiple classes, and neither is a superclass of the other.
2080     // Return null.
2081     return nullptr;
2082   }
2083   return FoundRC;
2084 }
2085 
2086 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2087   SetVector<const CodeGenRegister*> Set;
2088 
2089   // First add Regs with all sub-registers.
2090   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2091     CodeGenRegister *Reg = getReg(Regs[i]);
2092     if (Set.insert(Reg))
2093       // Reg is new, add all sub-registers.
2094       // The pre-ordering is not important here.
2095       Reg->addSubRegsPreOrder(Set, *this);
2096   }
2097 
2098   // Second, find all super-registers that are completely covered by the set.
2099   for (unsigned i = 0; i != Set.size(); ++i) {
2100     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2101     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2102       const CodeGenRegister *Super = SR[j];
2103       if (!Super->CoveredBySubRegs || Set.count(Super))
2104         continue;
2105       // This new super-register is covered by its sub-registers.
2106       bool AllSubsInSet = true;
2107       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2108       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2109              E = SRM.end(); I != E; ++I)
2110         if (!Set.count(I->second)) {
2111           AllSubsInSet = false;
2112           break;
2113         }
2114       // All sub-registers in Set, add Super as well.
2115       // We will visit Super later to recheck its super-registers.
2116       if (AllSubsInSet)
2117         Set.insert(Super);
2118     }
2119   }
2120 
2121   // Convert to BitVector.
2122   BitVector BV(Registers.size() + 1);
2123   for (unsigned i = 0, e = Set.size(); i != e; ++i)
2124     BV.set(Set[i]->EnumValue);
2125   return BV;
2126 }
2127