1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenRegisters.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/IntEqClasses.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/TableGen/Error.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "regalloc-emitter" 28 29 //===----------------------------------------------------------------------===// 30 // CodeGenSubRegIndex 31 //===----------------------------------------------------------------------===// 32 33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40 } 41 42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(nullptr), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46 } 47 48 std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54 } 55 56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83 } 84 85 unsigned CodeGenSubRegIndex::computeLaneMask() const { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (const auto &C : Composed) 96 M |= C.second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // CodeGenRegister 104 //===----------------------------------------------------------------------===// 105 106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 SubRegsComplete(false), 112 SuperRegsComplete(false), 113 TopoSig(~0u) 114 {} 115 116 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 117 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 118 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 119 120 if (SRIs.size() != SRs.size()) 121 PrintFatalError(TheDef->getLoc(), 122 "SubRegs and SubRegIndices must have the same size"); 123 124 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 125 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 126 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 127 } 128 129 // Also compute leading super-registers. Each register has a list of 130 // covered-by-subregs super-registers where it appears as the first explicit 131 // sub-register. 132 // 133 // This is used by computeSecondarySubRegs() to find candidates. 134 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 135 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 136 137 // Add ad hoc alias links. This is a symmetric relationship between two 138 // registers, so build a symmetric graph by adding links in both ends. 139 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 140 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 141 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 142 ExplicitAliases.push_back(Reg); 143 Reg->ExplicitAliases.push_back(this); 144 } 145 } 146 147 const std::string &CodeGenRegister::getName() const { 148 assert(TheDef && "no def"); 149 return TheDef->getName(); 150 } 151 152 namespace { 153 // Iterate over all register units in a set of registers. 154 class RegUnitIterator { 155 CodeGenRegister::Vec::const_iterator RegI, RegE; 156 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 157 158 public: 159 RegUnitIterator(const CodeGenRegister::Vec &Regs): 160 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 161 162 if (RegI != RegE) { 163 UnitI = (*RegI)->getRegUnits().begin(); 164 UnitE = (*RegI)->getRegUnits().end(); 165 advance(); 166 } 167 } 168 169 bool isValid() const { return UnitI != UnitE; } 170 171 unsigned operator* () const { assert(isValid()); return *UnitI; } 172 173 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 174 175 /// Preincrement. Move to the next unit. 176 void operator++() { 177 assert(isValid() && "Cannot advance beyond the last operand"); 178 ++UnitI; 179 advance(); 180 } 181 182 protected: 183 void advance() { 184 while (UnitI == UnitE) { 185 if (++RegI == RegE) 186 break; 187 UnitI = (*RegI)->getRegUnits().begin(); 188 UnitE = (*RegI)->getRegUnits().end(); 189 } 190 } 191 }; 192 } // namespace 193 194 // Return true of this unit appears in RegUnits. 195 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 196 return RegUnits.test(Unit); 197 } 198 199 // Inherit register units from subregisters. 200 // Return true if the RegUnits changed. 201 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 202 bool changed = false; 203 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 204 I != E; ++I) { 205 CodeGenRegister *SR = I->second; 206 // Merge the subregister's units into this register's RegUnits. 207 changed |= (RegUnits |= SR->RegUnits); 208 } 209 210 return changed; 211 } 212 213 const CodeGenRegister::SubRegMap & 214 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 215 // Only compute this map once. 216 if (SubRegsComplete) 217 return SubRegs; 218 SubRegsComplete = true; 219 220 // First insert the explicit subregs and make sure they are fully indexed. 221 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 222 CodeGenRegister *SR = ExplicitSubRegs[i]; 223 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 224 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 225 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 226 " appears twice in Register " + getName()); 227 // Map explicit sub-registers first, so the names take precedence. 228 // The inherited sub-registers are mapped below. 229 SubReg2Idx.insert(std::make_pair(SR, Idx)); 230 } 231 232 // Keep track of inherited subregs and how they can be reached. 233 SmallPtrSet<CodeGenRegister*, 8> Orphans; 234 235 // Clone inherited subregs and place duplicate entries in Orphans. 236 // Here the order is important - earlier subregs take precedence. 237 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 238 CodeGenRegister *SR = ExplicitSubRegs[i]; 239 const SubRegMap &Map = SR->computeSubRegs(RegBank); 240 241 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 242 ++SI) { 243 if (!SubRegs.insert(*SI).second) 244 Orphans.insert(SI->second); 245 } 246 } 247 248 // Expand any composed subreg indices. 249 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 250 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 251 // expanded subreg indices recursively. 252 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 253 for (unsigned i = 0; i != Indices.size(); ++i) { 254 CodeGenSubRegIndex *Idx = Indices[i]; 255 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 256 CodeGenRegister *SR = SubRegs[Idx]; 257 const SubRegMap &Map = SR->computeSubRegs(RegBank); 258 259 // Look at the possible compositions of Idx. 260 // They may not all be supported by SR. 261 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 262 E = Comps.end(); I != E; ++I) { 263 SubRegMap::const_iterator SRI = Map.find(I->first); 264 if (SRI == Map.end()) 265 continue; // Idx + I->first doesn't exist in SR. 266 // Add I->second as a name for the subreg SRI->second, assuming it is 267 // orphaned, and the name isn't already used for something else. 268 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 269 continue; 270 // We found a new name for the orphaned sub-register. 271 SubRegs.insert(std::make_pair(I->second, SRI->second)); 272 Indices.push_back(I->second); 273 } 274 } 275 276 // Now Orphans contains the inherited subregisters without a direct index. 277 // Create inferred indexes for all missing entries. 278 // Work backwards in the Indices vector in order to compose subregs bottom-up. 279 // Consider this subreg sequence: 280 // 281 // qsub_1 -> dsub_0 -> ssub_0 282 // 283 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 284 // can be reached in two different ways: 285 // 286 // qsub_1 -> ssub_0 287 // dsub_2 -> ssub_0 288 // 289 // We pick the latter composition because another register may have [dsub_0, 290 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 291 // dsub_2 -> ssub_0 composition can be shared. 292 while (!Indices.empty() && !Orphans.empty()) { 293 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 294 CodeGenRegister *SR = SubRegs[Idx]; 295 const SubRegMap &Map = SR->computeSubRegs(RegBank); 296 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 297 ++SI) 298 if (Orphans.erase(SI->second)) 299 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 300 } 301 302 // Compute the inverse SubReg -> Idx map. 303 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 304 SI != SE; ++SI) { 305 if (SI->second == this) { 306 ArrayRef<SMLoc> Loc; 307 if (TheDef) 308 Loc = TheDef->getLoc(); 309 PrintFatalError(Loc, "Register " + getName() + 310 " has itself as a sub-register"); 311 } 312 313 // Compute AllSuperRegsCovered. 314 if (!CoveredBySubRegs) 315 SI->first->AllSuperRegsCovered = false; 316 317 // Ensure that every sub-register has a unique name. 318 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 319 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 320 if (Ins->second == SI->first) 321 continue; 322 // Trouble: Two different names for SI->second. 323 ArrayRef<SMLoc> Loc; 324 if (TheDef) 325 Loc = TheDef->getLoc(); 326 PrintFatalError(Loc, "Sub-register can't have two names: " + 327 SI->second->getName() + " available as " + 328 SI->first->getName() + " and " + Ins->second->getName()); 329 } 330 331 // Derive possible names for sub-register concatenations from any explicit 332 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 333 // that getConcatSubRegIndex() won't invent any concatenated indices that the 334 // user already specified. 335 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 336 CodeGenRegister *SR = ExplicitSubRegs[i]; 337 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 338 continue; 339 340 // SR is composed of multiple sub-regs. Find their names in this register. 341 SmallVector<CodeGenSubRegIndex*, 8> Parts; 342 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 343 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 344 345 // Offer this as an existing spelling for the concatenation of Parts. 346 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 347 } 348 349 // Initialize RegUnitList. Because getSubRegs is called recursively, this 350 // processes the register hierarchy in postorder. 351 // 352 // Inherit all sub-register units. It is good enough to look at the explicit 353 // sub-registers, the other registers won't contribute any more units. 354 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 355 CodeGenRegister *SR = ExplicitSubRegs[i]; 356 RegUnits |= SR->RegUnits; 357 } 358 359 // Absent any ad hoc aliasing, we create one register unit per leaf register. 360 // These units correspond to the maximal cliques in the register overlap 361 // graph which is optimal. 362 // 363 // When there is ad hoc aliasing, we simply create one unit per edge in the 364 // undirected ad hoc aliasing graph. Technically, we could do better by 365 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 366 // are extremely rare anyway (I've never seen one), so we don't bother with 367 // the added complexity. 368 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 369 CodeGenRegister *AR = ExplicitAliases[i]; 370 // Only visit each edge once. 371 if (AR->SubRegsComplete) 372 continue; 373 // Create a RegUnit representing this alias edge, and add it to both 374 // registers. 375 unsigned Unit = RegBank.newRegUnit(this, AR); 376 RegUnits.set(Unit); 377 AR->RegUnits.set(Unit); 378 } 379 380 // Finally, create units for leaf registers without ad hoc aliases. Note that 381 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 382 // necessary. This means the aliasing leaf registers can share a single unit. 383 if (RegUnits.empty()) 384 RegUnits.set(RegBank.newRegUnit(this)); 385 386 // We have now computed the native register units. More may be adopted later 387 // for balancing purposes. 388 NativeRegUnits = RegUnits; 389 390 return SubRegs; 391 } 392 393 // In a register that is covered by its sub-registers, try to find redundant 394 // sub-registers. For example: 395 // 396 // QQ0 = {Q0, Q1} 397 // Q0 = {D0, D1} 398 // Q1 = {D2, D3} 399 // 400 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 401 // the register definition. 402 // 403 // The explicitly specified registers form a tree. This function discovers 404 // sub-register relationships that would force a DAG. 405 // 406 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 407 // Collect new sub-registers first, add them later. 408 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 409 410 // Look at the leading super-registers of each sub-register. Those are the 411 // candidates for new sub-registers, assuming they are fully contained in 412 // this register. 413 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 414 const CodeGenRegister *SubReg = I->second; 415 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 416 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 417 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 418 // Already got this sub-register? 419 if (Cand == this || getSubRegIndex(Cand)) 420 continue; 421 // Check if each component of Cand is already a sub-register. 422 // We know that the first component is I->second, and is present with the 423 // name I->first. 424 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 425 assert(!Cand->ExplicitSubRegs.empty() && 426 "Super-register has no sub-registers"); 427 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 428 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 429 Parts.push_back(Idx); 430 else { 431 // Sub-register doesn't exist. 432 Parts.clear(); 433 break; 434 } 435 } 436 // If some Cand sub-register is not part of this register, or if Cand only 437 // has one sub-register, there is nothing to do. 438 if (Parts.size() <= 1) 439 continue; 440 441 // Each part of Cand is a sub-register of this. Make the full Cand also 442 // a sub-register with a concatenated sub-register index. 443 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 444 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 445 } 446 } 447 448 // Now add all the new sub-registers. 449 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 450 // Don't add Cand if another sub-register is already using the index. 451 if (!SubRegs.insert(NewSubRegs[i]).second) 452 continue; 453 454 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 455 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 456 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 457 } 458 459 // Create sub-register index composition maps for the synthesized indices. 460 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 461 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 462 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 463 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 464 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 465 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 466 if (!SubIdx) 467 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 468 SI->second->getName() + " in " + getName()); 469 NewIdx->addComposite(SI->first, SubIdx); 470 } 471 } 472 } 473 474 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 475 // Only visit each register once. 476 if (SuperRegsComplete) 477 return; 478 SuperRegsComplete = true; 479 480 // Make sure all sub-registers have been visited first, so the super-reg 481 // lists will be topologically ordered. 482 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 483 I != E; ++I) 484 I->second->computeSuperRegs(RegBank); 485 486 // Now add this as a super-register on all sub-registers. 487 // Also compute the TopoSigId in post-order. 488 TopoSigId Id; 489 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 490 I != E; ++I) { 491 // Topological signature computed from SubIdx, TopoId(SubReg). 492 // Loops and idempotent indices have TopoSig = ~0u. 493 Id.push_back(I->first->EnumValue); 494 Id.push_back(I->second->TopoSig); 495 496 // Don't add duplicate entries. 497 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 498 continue; 499 I->second->SuperRegs.push_back(this); 500 } 501 TopoSig = RegBank.getTopoSig(Id); 502 } 503 504 void 505 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 506 CodeGenRegBank &RegBank) const { 507 assert(SubRegsComplete && "Must precompute sub-registers"); 508 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 509 CodeGenRegister *SR = ExplicitSubRegs[i]; 510 if (OSet.insert(SR)) 511 SR->addSubRegsPreOrder(OSet, RegBank); 512 } 513 // Add any secondary sub-registers that weren't part of the explicit tree. 514 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 515 I != E; ++I) 516 OSet.insert(I->second); 517 } 518 519 // Get the sum of this register's unit weights. 520 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 521 unsigned Weight = 0; 522 for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end(); 523 I != E; ++I) { 524 Weight += RegBank.getRegUnit(*I).Weight; 525 } 526 return Weight; 527 } 528 529 //===----------------------------------------------------------------------===// 530 // RegisterTuples 531 //===----------------------------------------------------------------------===// 532 533 // A RegisterTuples def is used to generate pseudo-registers from lists of 534 // sub-registers. We provide a SetTheory expander class that returns the new 535 // registers. 536 namespace { 537 struct TupleExpander : SetTheory::Expander { 538 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 539 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 540 unsigned Dim = Indices.size(); 541 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 542 if (Dim != SubRegs->getSize()) 543 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 544 if (Dim < 2) 545 PrintFatalError(Def->getLoc(), 546 "Tuples must have at least 2 sub-registers"); 547 548 // Evaluate the sub-register lists to be zipped. 549 unsigned Length = ~0u; 550 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 551 for (unsigned i = 0; i != Dim; ++i) { 552 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 553 Length = std::min(Length, unsigned(Lists[i].size())); 554 } 555 556 if (Length == 0) 557 return; 558 559 // Precompute some types. 560 Record *RegisterCl = Def->getRecords().getClass("Register"); 561 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 562 StringInit *BlankName = StringInit::get(""); 563 564 // Zip them up. 565 for (unsigned n = 0; n != Length; ++n) { 566 std::string Name; 567 Record *Proto = Lists[0][n]; 568 std::vector<Init*> Tuple; 569 unsigned CostPerUse = 0; 570 for (unsigned i = 0; i != Dim; ++i) { 571 Record *Reg = Lists[i][n]; 572 if (i) Name += '_'; 573 Name += Reg->getName(); 574 Tuple.push_back(DefInit::get(Reg)); 575 CostPerUse = std::max(CostPerUse, 576 unsigned(Reg->getValueAsInt("CostPerUse"))); 577 } 578 579 // Create a new Record representing the synthesized register. This record 580 // is only for consumption by CodeGenRegister, it is not added to the 581 // RecordKeeper. 582 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 583 Elts.insert(NewReg); 584 585 // Copy Proto super-classes. 586 ArrayRef<Record *> Supers = Proto->getSuperClasses(); 587 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); 588 for (unsigned i = 0, e = Supers.size(); i != e; ++i) 589 NewReg->addSuperClass(Supers[i], Ranges[i]); 590 591 // Copy Proto fields. 592 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 593 RecordVal RV = Proto->getValues()[i]; 594 595 // Skip existing fields, like NAME. 596 if (NewReg->getValue(RV.getNameInit())) 597 continue; 598 599 StringRef Field = RV.getName(); 600 601 // Replace the sub-register list with Tuple. 602 if (Field == "SubRegs") 603 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 604 605 // Provide a blank AsmName. MC hacks are required anyway. 606 if (Field == "AsmName") 607 RV.setValue(BlankName); 608 609 // CostPerUse is aggregated from all Tuple members. 610 if (Field == "CostPerUse") 611 RV.setValue(IntInit::get(CostPerUse)); 612 613 // Composite registers are always covered by sub-registers. 614 if (Field == "CoveredBySubRegs") 615 RV.setValue(BitInit::get(true)); 616 617 // Copy fields from the RegisterTuples def. 618 if (Field == "SubRegIndices" || 619 Field == "CompositeIndices") { 620 NewReg->addValue(*Def->getValue(Field)); 621 continue; 622 } 623 624 // Some fields get their default uninitialized value. 625 if (Field == "DwarfNumbers" || 626 Field == "DwarfAlias" || 627 Field == "Aliases") { 628 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 629 NewReg->addValue(*DefRV); 630 continue; 631 } 632 633 // Everything else is copied from Proto. 634 NewReg->addValue(RV); 635 } 636 } 637 } 638 }; 639 } 640 641 //===----------------------------------------------------------------------===// 642 // CodeGenRegisterClass 643 //===----------------------------------------------------------------------===// 644 645 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 646 std::sort(M.begin(), M.end(), deref<llvm::less>()); 647 M.erase(std::unique(M.begin(), M.end(), deref<llvm::equal>()), M.end()); 648 } 649 650 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 651 : TheDef(R), 652 Name(R->getName()), 653 TopoSigs(RegBank.getNumTopoSigs()), 654 EnumValue(-1), 655 LaneMask(0) { 656 // Rename anonymous register classes. 657 if (R->getName().size() > 9 && R->getName()[9] == '.') { 658 static unsigned AnonCounter = 0; 659 R->setName("AnonRegClass_" + utostr(AnonCounter++)); 660 } 661 662 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 663 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 664 Record *Type = TypeList[i]; 665 if (!Type->isSubClassOf("ValueType")) 666 PrintFatalError("RegTypes list member '" + Type->getName() + 667 "' does not derive from the ValueType class!"); 668 VTs.push_back(getValueType(Type)); 669 } 670 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 671 672 // Allocation order 0 is the full set. AltOrders provides others. 673 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 674 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 675 Orders.resize(1 + AltOrders->size()); 676 677 // Default allocation order always contains all registers. 678 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 679 Orders[0].push_back((*Elements)[i]); 680 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 681 Members.push_back(Reg); 682 TopoSigs.set(Reg->getTopoSig()); 683 } 684 sortAndUniqueRegisters(Members); 685 686 // Alternative allocation orders may be subsets. 687 SetTheory::RecSet Order; 688 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 689 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 690 Orders[1 + i].append(Order.begin(), Order.end()); 691 // Verify that all altorder members are regclass members. 692 while (!Order.empty()) { 693 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 694 Order.pop_back(); 695 if (!contains(Reg)) 696 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 697 " is not a class member"); 698 } 699 } 700 701 // Allow targets to override the size in bits of the RegisterClass. 702 unsigned Size = R->getValueAsInt("Size"); 703 704 Namespace = R->getValueAsString("Namespace"); 705 SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits(); 706 SpillAlignment = R->getValueAsInt("Alignment"); 707 CopyCost = R->getValueAsInt("CopyCost"); 708 Allocatable = R->getValueAsBit("isAllocatable"); 709 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 710 } 711 712 // Create an inferred register class that was missing from the .td files. 713 // Most properties will be inherited from the closest super-class after the 714 // class structure has been computed. 715 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 716 StringRef Name, Key Props) 717 : Members(*Props.Members), 718 TheDef(nullptr), 719 Name(Name), 720 TopoSigs(RegBank.getNumTopoSigs()), 721 EnumValue(-1), 722 SpillSize(Props.SpillSize), 723 SpillAlignment(Props.SpillAlignment), 724 CopyCost(0), 725 Allocatable(true) { 726 for (const auto R : Members) 727 TopoSigs.set(R->getTopoSig()); 728 } 729 730 // Compute inherited propertied for a synthesized register class. 731 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 732 assert(!getDef() && "Only synthesized classes can inherit properties"); 733 assert(!SuperClasses.empty() && "Synthesized class without super class"); 734 735 // The last super-class is the smallest one. 736 CodeGenRegisterClass &Super = *SuperClasses.back(); 737 738 // Most properties are copied directly. 739 // Exceptions are members, size, and alignment 740 Namespace = Super.Namespace; 741 VTs = Super.VTs; 742 CopyCost = Super.CopyCost; 743 Allocatable = Super.Allocatable; 744 AltOrderSelect = Super.AltOrderSelect; 745 746 // Copy all allocation orders, filter out foreign registers from the larger 747 // super-class. 748 Orders.resize(Super.Orders.size()); 749 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 750 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 751 if (contains(RegBank.getReg(Super.Orders[i][j]))) 752 Orders[i].push_back(Super.Orders[i][j]); 753 } 754 755 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 756 return std::binary_search(Members.begin(), Members.end(), Reg, 757 deref<llvm::less>()); 758 } 759 760 namespace llvm { 761 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 762 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 763 for (const auto R : *K.Members) 764 OS << ", " << R->getName(); 765 return OS << " }"; 766 } 767 } 768 769 // This is a simple lexicographical order that can be used to search for sets. 770 // It is not the same as the topological order provided by TopoOrderRC. 771 bool CodeGenRegisterClass::Key:: 772 operator<(const CodeGenRegisterClass::Key &B) const { 773 assert(Members && B.Members); 774 return std::tie(*Members, SpillSize, SpillAlignment) < 775 std::tie(*B.Members, B.SpillSize, B.SpillAlignment); 776 } 777 778 // Returns true if RC is a strict subclass. 779 // RC is a sub-class of this class if it is a valid replacement for any 780 // instruction operand where a register of this classis required. It must 781 // satisfy these conditions: 782 // 783 // 1. All RC registers are also in this. 784 // 2. The RC spill size must not be smaller than our spill size. 785 // 3. RC spill alignment must be compatible with ours. 786 // 787 static bool testSubClass(const CodeGenRegisterClass *A, 788 const CodeGenRegisterClass *B) { 789 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 790 A->SpillSize <= B->SpillSize && 791 std::includes(A->getMembers().begin(), A->getMembers().end(), 792 B->getMembers().begin(), B->getMembers().end(), 793 deref<llvm::less>()); 794 } 795 796 /// Sorting predicate for register classes. This provides a topological 797 /// ordering that arranges all register classes before their sub-classes. 798 /// 799 /// Register classes with the same registers, spill size, and alignment form a 800 /// clique. They will be ordered alphabetically. 801 /// 802 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 803 const CodeGenRegisterClass &PB) { 804 auto *A = &PA; 805 auto *B = &PB; 806 if (A == B) 807 return 0; 808 809 // Order by ascending spill size. 810 if (A->SpillSize < B->SpillSize) 811 return true; 812 if (A->SpillSize > B->SpillSize) 813 return false; 814 815 // Order by ascending spill alignment. 816 if (A->SpillAlignment < B->SpillAlignment) 817 return true; 818 if (A->SpillAlignment > B->SpillAlignment) 819 return false; 820 821 // Order by descending set size. Note that the classes' allocation order may 822 // not have been computed yet. The Members set is always vaild. 823 if (A->getMembers().size() > B->getMembers().size()) 824 return true; 825 if (A->getMembers().size() < B->getMembers().size()) 826 return false; 827 828 // Finally order by name as a tie breaker. 829 return StringRef(A->getName()) < B->getName(); 830 } 831 832 std::string CodeGenRegisterClass::getQualifiedName() const { 833 if (Namespace.empty()) 834 return getName(); 835 else 836 return Namespace + "::" + getName(); 837 } 838 839 // Compute sub-classes of all register classes. 840 // Assume the classes are ordered topologically. 841 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 842 auto &RegClasses = RegBank.getRegClasses(); 843 844 // Visit backwards so sub-classes are seen first. 845 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 846 CodeGenRegisterClass &RC = *I; 847 RC.SubClasses.resize(RegClasses.size()); 848 RC.SubClasses.set(RC.EnumValue); 849 850 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 851 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 852 CodeGenRegisterClass &SubRC = *I2; 853 if (RC.SubClasses.test(SubRC.EnumValue)) 854 continue; 855 if (!testSubClass(&RC, &SubRC)) 856 continue; 857 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 858 // check them again. 859 RC.SubClasses |= SubRC.SubClasses; 860 } 861 862 // Sweep up missed clique members. They will be immediately preceding RC. 863 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 864 RC.SubClasses.set(I2->EnumValue); 865 } 866 867 // Compute the SuperClasses lists from the SubClasses vectors. 868 for (auto &RC : RegClasses) { 869 const BitVector &SC = RC.getSubClasses(); 870 auto I = RegClasses.begin(); 871 for (int s = 0, next_s = SC.find_first(); next_s != -1; 872 next_s = SC.find_next(s)) { 873 std::advance(I, next_s - s); 874 s = next_s; 875 if (&*I == &RC) 876 continue; 877 I->SuperClasses.push_back(&RC); 878 } 879 } 880 881 // With the class hierarchy in place, let synthesized register classes inherit 882 // properties from their closest super-class. The iteration order here can 883 // propagate properties down multiple levels. 884 for (auto &RC : RegClasses) 885 if (!RC.getDef()) 886 RC.inheritProperties(RegBank); 887 } 888 889 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 890 BitVector &Out) const { 891 auto FindI = SuperRegClasses.find(SubIdx); 892 if (FindI == SuperRegClasses.end()) 893 return; 894 for (CodeGenRegisterClass *RC : FindI->second) 895 Out.set(RC->EnumValue); 896 } 897 898 // Populate a unique sorted list of units from a register set. 899 void CodeGenRegisterClass::buildRegUnitSet( 900 std::vector<unsigned> &RegUnits) const { 901 std::vector<unsigned> TmpUnits; 902 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 903 TmpUnits.push_back(*UnitI); 904 std::sort(TmpUnits.begin(), TmpUnits.end()); 905 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 906 std::back_inserter(RegUnits)); 907 } 908 909 //===----------------------------------------------------------------------===// 910 // CodeGenRegBank 911 //===----------------------------------------------------------------------===// 912 913 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 914 // Configure register Sets to understand register classes and tuples. 915 Sets.addFieldExpander("RegisterClass", "MemberList"); 916 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 917 Sets.addExpander("RegisterTuples", new TupleExpander()); 918 919 // Read in the user-defined (named) sub-register indices. 920 // More indices will be synthesized later. 921 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 922 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 923 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 924 getSubRegIdx(SRIs[i]); 925 // Build composite maps from ComposedOf fields. 926 for (auto &Idx : SubRegIndices) 927 Idx.updateComponents(*this); 928 929 // Read in the register definitions. 930 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 931 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 932 // Assign the enumeration values. 933 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 934 getReg(Regs[i]); 935 936 // Expand tuples and number the new registers. 937 std::vector<Record*> Tups = 938 Records.getAllDerivedDefinitions("RegisterTuples"); 939 940 for (Record *R : Tups) { 941 std::vector<Record *> TupRegs = *Sets.expand(R); 942 std::sort(TupRegs.begin(), TupRegs.end(), LessRecordRegister()); 943 for (Record *RC : TupRegs) 944 getReg(RC); 945 } 946 947 // Now all the registers are known. Build the object graph of explicit 948 // register-register references. 949 for (auto &Reg : Registers) 950 Reg.buildObjectGraph(*this); 951 952 // Compute register name map. 953 for (auto &Reg : Registers) 954 // FIXME: This could just be RegistersByName[name] = register, except that 955 // causes some failures in MIPS - perhaps they have duplicate register name 956 // entries? (or maybe there's a reason for it - I don't know much about this 957 // code, just drive-by refactoring) 958 RegistersByName.insert( 959 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 960 961 // Precompute all sub-register maps. 962 // This will create Composite entries for all inferred sub-register indices. 963 for (auto &Reg : Registers) 964 Reg.computeSubRegs(*this); 965 966 // Infer even more sub-registers by combining leading super-registers. 967 for (auto &Reg : Registers) 968 if (Reg.CoveredBySubRegs) 969 Reg.computeSecondarySubRegs(*this); 970 971 // After the sub-register graph is complete, compute the topologically 972 // ordered SuperRegs list. 973 for (auto &Reg : Registers) 974 Reg.computeSuperRegs(*this); 975 976 // Native register units are associated with a leaf register. They've all been 977 // discovered now. 978 NumNativeRegUnits = RegUnits.size(); 979 980 // Read in register class definitions. 981 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 982 if (RCs.empty()) 983 PrintFatalError("No 'RegisterClass' subclasses defined!"); 984 985 // Allocate user-defined register classes. 986 for (auto *RC : RCs) { 987 RegClasses.push_back(CodeGenRegisterClass(*this, RC)); 988 addToMaps(&RegClasses.back()); 989 } 990 991 // Infer missing classes to create a full algebra. 992 computeInferredRegisterClasses(); 993 994 // Order register classes topologically and assign enum values. 995 RegClasses.sort(TopoOrderRC); 996 unsigned i = 0; 997 for (auto &RC : RegClasses) 998 RC.EnumValue = i++; 999 CodeGenRegisterClass::computeSubClasses(*this); 1000 } 1001 1002 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1003 CodeGenSubRegIndex* 1004 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1005 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1006 return &SubRegIndices.back(); 1007 } 1008 1009 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1010 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1011 if (Idx) 1012 return Idx; 1013 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1014 Idx = &SubRegIndices.back(); 1015 return Idx; 1016 } 1017 1018 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1019 CodeGenRegister *&Reg = Def2Reg[Def]; 1020 if (Reg) 1021 return Reg; 1022 Registers.emplace_back(Def, Registers.size() + 1); 1023 Reg = &Registers.back(); 1024 return Reg; 1025 } 1026 1027 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1028 if (Record *Def = RC->getDef()) 1029 Def2RC.insert(std::make_pair(Def, RC)); 1030 1031 // Duplicate classes are rejected by insert(). 1032 // That's OK, we only care about the properties handled by CGRC::Key. 1033 CodeGenRegisterClass::Key K(*RC); 1034 Key2RC.insert(std::make_pair(K, RC)); 1035 } 1036 1037 // Create a synthetic sub-class if it is missing. 1038 CodeGenRegisterClass* 1039 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1040 const CodeGenRegister::Vec *Members, 1041 StringRef Name) { 1042 // Synthetic sub-class has the same size and alignment as RC. 1043 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1044 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1045 if (FoundI != Key2RC.end()) 1046 return FoundI->second; 1047 1048 // Sub-class doesn't exist, create a new one. 1049 RegClasses.push_back(CodeGenRegisterClass(*this, Name, K)); 1050 addToMaps(&RegClasses.back()); 1051 return &RegClasses.back(); 1052 } 1053 1054 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1055 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1056 return RC; 1057 1058 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1059 } 1060 1061 CodeGenSubRegIndex* 1062 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1063 CodeGenSubRegIndex *B) { 1064 // Look for an existing entry. 1065 CodeGenSubRegIndex *Comp = A->compose(B); 1066 if (Comp) 1067 return Comp; 1068 1069 // None exists, synthesize one. 1070 std::string Name = A->getName() + "_then_" + B->getName(); 1071 Comp = createSubRegIndex(Name, A->getNamespace()); 1072 A->addComposite(B, Comp); 1073 return Comp; 1074 } 1075 1076 CodeGenSubRegIndex *CodeGenRegBank:: 1077 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1078 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1079 1080 // Look for an existing entry. 1081 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1082 if (Idx) 1083 return Idx; 1084 1085 // None exists, synthesize one. 1086 std::string Name = Parts.front()->getName(); 1087 // Determine whether all parts are contiguous. 1088 bool isContinuous = true; 1089 unsigned Size = Parts.front()->Size; 1090 unsigned LastOffset = Parts.front()->Offset; 1091 unsigned LastSize = Parts.front()->Size; 1092 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1093 Name += '_'; 1094 Name += Parts[i]->getName(); 1095 Size += Parts[i]->Size; 1096 if (Parts[i]->Offset != (LastOffset + LastSize)) 1097 isContinuous = false; 1098 LastOffset = Parts[i]->Offset; 1099 LastSize = Parts[i]->Size; 1100 } 1101 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1102 Idx->Size = Size; 1103 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1104 return Idx; 1105 } 1106 1107 void CodeGenRegBank::computeComposites() { 1108 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1109 // and many registers will share TopoSigs on regular architectures. 1110 BitVector TopoSigs(getNumTopoSigs()); 1111 1112 for (const auto &Reg1 : Registers) { 1113 // Skip identical subreg structures already processed. 1114 if (TopoSigs.test(Reg1.getTopoSig())) 1115 continue; 1116 TopoSigs.set(Reg1.getTopoSig()); 1117 1118 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1119 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1120 e1 = SRM1.end(); i1 != e1; ++i1) { 1121 CodeGenSubRegIndex *Idx1 = i1->first; 1122 CodeGenRegister *Reg2 = i1->second; 1123 // Ignore identity compositions. 1124 if (&Reg1 == Reg2) 1125 continue; 1126 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1127 // Try composing Idx1 with another SubRegIndex. 1128 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1129 e2 = SRM2.end(); i2 != e2; ++i2) { 1130 CodeGenSubRegIndex *Idx2 = i2->first; 1131 CodeGenRegister *Reg3 = i2->second; 1132 // Ignore identity compositions. 1133 if (Reg2 == Reg3) 1134 continue; 1135 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1136 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1137 assert(Idx3 && "Sub-register doesn't have an index"); 1138 1139 // Conflicting composition? Emit a warning but allow it. 1140 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1141 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1142 " and " + Idx2->getQualifiedName() + 1143 " compose ambiguously as " + Prev->getQualifiedName() + 1144 " or " + Idx3->getQualifiedName()); 1145 } 1146 } 1147 } 1148 } 1149 1150 // Compute lane masks. This is similar to register units, but at the 1151 // sub-register index level. Each bit in the lane mask is like a register unit 1152 // class, and two lane masks will have a bit in common if two sub-register 1153 // indices overlap in some register. 1154 // 1155 // Conservatively share a lane mask bit if two sub-register indices overlap in 1156 // some registers, but not in others. That shouldn't happen a lot. 1157 void CodeGenRegBank::computeSubRegLaneMasks() { 1158 // First assign individual bits to all the leaf indices. 1159 unsigned Bit = 0; 1160 // Determine mask of lanes that cover their registers. 1161 CoveringLanes = ~0u; 1162 for (auto &Idx : SubRegIndices) { 1163 if (Idx.getComposites().empty()) { 1164 Idx.LaneMask = 1u << Bit; 1165 // Share bit 31 in the unlikely case there are more than 32 leafs. 1166 // 1167 // Sharing bits is harmless; it allows graceful degradation in targets 1168 // with more than 32 vector lanes. They simply get a limited resolution 1169 // view of lanes beyond the 32nd. 1170 // 1171 // See also the comment for getSubRegIndexLaneMask(). 1172 if (Bit < 31) 1173 ++Bit; 1174 else 1175 // Once bit 31 is shared among multiple leafs, the 'lane' it represents 1176 // is no longer covering its registers. 1177 CoveringLanes &= ~(1u << Bit); 1178 } else { 1179 Idx.LaneMask = 0; 1180 } 1181 } 1182 1183 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1184 // here is that for each possible target subregister we look at the leafs 1185 // in the subregister graph that compose for this target and create 1186 // transformation sequences for the lanemasks. Each step in the sequence 1187 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1188 // are usually the same for many subregisters we can easily combine the steps 1189 // by combining the masks. 1190 for (const auto &Idx : SubRegIndices) { 1191 const auto &Composites = Idx.getComposites(); 1192 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1193 // Go through all leaf subregisters and find the ones that compose with Idx. 1194 // These make out all possible valid bits in the lane mask we want to 1195 // transform. Looking only at the leafs ensure that only a single bit in 1196 // the mask is set. 1197 unsigned NextBit = 0; 1198 for (auto &Idx2 : SubRegIndices) { 1199 // Skip non-leaf subregisters. 1200 if (!Idx2.getComposites().empty()) 1201 continue; 1202 // Replicate the behaviour from the lane mask generation loop above. 1203 unsigned SrcBit = NextBit; 1204 unsigned SrcMask = 1u << SrcBit; 1205 if (NextBit < 31) 1206 ++NextBit; 1207 assert(Idx2.LaneMask == SrcMask); 1208 1209 // Get the composed subregister if there is any. 1210 auto C = Composites.find(&Idx2); 1211 if (C == Composites.end()) 1212 continue; 1213 const CodeGenSubRegIndex *Composite = C->second; 1214 // The Composed subreg should be a leaf subreg too 1215 assert(Composite->getComposites().empty()); 1216 1217 // Create Mask+Rotate operation and merge with existing ops if possible. 1218 unsigned DstBit = Log2_32(Composite->LaneMask); 1219 int Shift = DstBit - SrcBit; 1220 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift : 32+Shift; 1221 for (auto &I : LaneTransforms) { 1222 if (I.RotateLeft == RotateLeft) { 1223 I.Mask |= SrcMask; 1224 SrcMask = 0; 1225 } 1226 } 1227 if (SrcMask != 0) { 1228 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1229 LaneTransforms.push_back(MaskRol); 1230 } 1231 } 1232 // Optimize if the transformation consists of one step only: Set mask to 1233 // 0xffffffff (including some irrelevant invalid bits) so that it should 1234 // merge with more entries later while compressing the table. 1235 if (LaneTransforms.size() == 1) 1236 LaneTransforms[0].Mask = ~0u; 1237 1238 // Further compression optimization: For invalid compositions resulting 1239 // in a sequence with 0 entries we can just pick any other. Choose 1240 // Mask 0xffffffff with Rotation 0. 1241 if (LaneTransforms.size() == 0) { 1242 MaskRolPair P = { ~0u, 0 }; 1243 LaneTransforms.push_back(P); 1244 } 1245 } 1246 1247 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1248 // by the sub-register graph? This doesn't occur in any known targets. 1249 1250 // Inherit lanes from composites. 1251 for (const auto &Idx : SubRegIndices) { 1252 unsigned Mask = Idx.computeLaneMask(); 1253 // If some super-registers without CoveredBySubRegs use this index, we can 1254 // no longer assume that the lanes are covering their registers. 1255 if (!Idx.AllSuperRegsCovered) 1256 CoveringLanes &= ~Mask; 1257 } 1258 1259 // Compute lane mask combinations for register classes. 1260 for (auto &RegClass : RegClasses) { 1261 unsigned LaneMask = 0; 1262 for (const auto &SubRegIndex : SubRegIndices) { 1263 if (RegClass.getSubClassWithSubReg(&SubRegIndex) != &RegClass) 1264 continue; 1265 LaneMask |= SubRegIndex.LaneMask; 1266 } 1267 RegClass.LaneMask = LaneMask; 1268 } 1269 } 1270 1271 namespace { 1272 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1273 // the transitive closure of the union of overlapping register 1274 // classes. Together, the UberRegSets form a partition of the registers. If we 1275 // consider overlapping register classes to be connected, then each UberRegSet 1276 // is a set of connected components. 1277 // 1278 // An UberRegSet will likely be a horizontal slice of register names of 1279 // the same width. Nontrivial subregisters should then be in a separate 1280 // UberRegSet. But this property isn't required for valid computation of 1281 // register unit weights. 1282 // 1283 // A Weight field caches the max per-register unit weight in each UberRegSet. 1284 // 1285 // A set of SingularDeterminants flags single units of some register in this set 1286 // for which the unit weight equals the set weight. These units should not have 1287 // their weight increased. 1288 struct UberRegSet { 1289 CodeGenRegister::Vec Regs; 1290 unsigned Weight; 1291 CodeGenRegister::RegUnitList SingularDeterminants; 1292 1293 UberRegSet(): Weight(0) {} 1294 }; 1295 } // namespace 1296 1297 // Partition registers into UberRegSets, where each set is the transitive 1298 // closure of the union of overlapping register classes. 1299 // 1300 // UberRegSets[0] is a special non-allocatable set. 1301 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1302 std::vector<UberRegSet*> &RegSets, 1303 CodeGenRegBank &RegBank) { 1304 1305 const auto &Registers = RegBank.getRegisters(); 1306 1307 // The Register EnumValue is one greater than its index into Registers. 1308 assert(Registers.size() == Registers.back().EnumValue && 1309 "register enum value mismatch"); 1310 1311 // For simplicitly make the SetID the same as EnumValue. 1312 IntEqClasses UberSetIDs(Registers.size()+1); 1313 std::set<unsigned> AllocatableRegs; 1314 for (auto &RegClass : RegBank.getRegClasses()) { 1315 if (!RegClass.Allocatable) 1316 continue; 1317 1318 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1319 if (Regs.empty()) 1320 continue; 1321 1322 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1323 assert(USetID && "register number 0 is invalid"); 1324 1325 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1326 for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) { 1327 AllocatableRegs.insert((*I)->EnumValue); 1328 UberSetIDs.join(USetID, (*I)->EnumValue); 1329 } 1330 } 1331 // Combine non-allocatable regs. 1332 for (const auto &Reg : Registers) { 1333 unsigned RegNum = Reg.EnumValue; 1334 if (AllocatableRegs.count(RegNum)) 1335 continue; 1336 1337 UberSetIDs.join(0, RegNum); 1338 } 1339 UberSetIDs.compress(); 1340 1341 // Make the first UberSet a special unallocatable set. 1342 unsigned ZeroID = UberSetIDs[0]; 1343 1344 // Insert Registers into the UberSets formed by union-find. 1345 // Do not resize after this. 1346 UberSets.resize(UberSetIDs.getNumClasses()); 1347 unsigned i = 0; 1348 for (const CodeGenRegister &Reg : Registers) { 1349 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1350 if (!USetID) 1351 USetID = ZeroID; 1352 else if (USetID == ZeroID) 1353 USetID = 0; 1354 1355 UberRegSet *USet = &UberSets[USetID]; 1356 USet->Regs.push_back(&Reg); 1357 sortAndUniqueRegisters(USet->Regs); 1358 RegSets[i++] = USet; 1359 } 1360 } 1361 1362 // Recompute each UberSet weight after changing unit weights. 1363 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1364 CodeGenRegBank &RegBank) { 1365 // Skip the first unallocatable set. 1366 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1367 E = UberSets.end(); I != E; ++I) { 1368 1369 // Initialize all unit weights in this set, and remember the max units/reg. 1370 const CodeGenRegister *Reg = nullptr; 1371 unsigned MaxWeight = 0, Weight = 0; 1372 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1373 if (Reg != UnitI.getReg()) { 1374 if (Weight > MaxWeight) 1375 MaxWeight = Weight; 1376 Reg = UnitI.getReg(); 1377 Weight = 0; 1378 } 1379 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1380 if (!UWeight) { 1381 UWeight = 1; 1382 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1383 } 1384 Weight += UWeight; 1385 } 1386 if (Weight > MaxWeight) 1387 MaxWeight = Weight; 1388 if (I->Weight != MaxWeight) { 1389 DEBUG( 1390 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1391 for (auto &Unit : I->Regs) 1392 dbgs() << " " << Unit->getName(); 1393 dbgs() << "\n"); 1394 // Update the set weight. 1395 I->Weight = MaxWeight; 1396 } 1397 1398 // Find singular determinants. 1399 for (const auto R : I->Regs) { 1400 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1401 I->SingularDeterminants |= R->getRegUnits(); 1402 } 1403 } 1404 } 1405 } 1406 1407 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1408 // a register and its subregisters so that they have the same weight as their 1409 // UberSet. Self-recursion processes the subregister tree in postorder so 1410 // subregisters are normalized first. 1411 // 1412 // Side effects: 1413 // - creates new adopted register units 1414 // - causes superregisters to inherit adopted units 1415 // - increases the weight of "singular" units 1416 // - induces recomputation of UberWeights. 1417 static bool normalizeWeight(CodeGenRegister *Reg, 1418 std::vector<UberRegSet> &UberSets, 1419 std::vector<UberRegSet*> &RegSets, 1420 SparseBitVector<> &NormalRegs, 1421 CodeGenRegister::RegUnitList &NormalUnits, 1422 CodeGenRegBank &RegBank) { 1423 if (NormalRegs.test(Reg->EnumValue)) 1424 return false; 1425 NormalRegs.set(Reg->EnumValue); 1426 1427 bool Changed = false; 1428 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1429 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1430 SRE = SRM.end(); SRI != SRE; ++SRI) { 1431 if (SRI->second == Reg) 1432 continue; // self-cycles happen 1433 1434 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1435 NormalRegs, NormalUnits, RegBank); 1436 } 1437 // Postorder register normalization. 1438 1439 // Inherit register units newly adopted by subregisters. 1440 if (Reg->inheritRegUnits(RegBank)) 1441 computeUberWeights(UberSets, RegBank); 1442 1443 // Check if this register is too skinny for its UberRegSet. 1444 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1445 1446 unsigned RegWeight = Reg->getWeight(RegBank); 1447 if (UberSet->Weight > RegWeight) { 1448 // A register unit's weight can be adjusted only if it is the singular unit 1449 // for this register, has not been used to normalize a subregister's set, 1450 // and has not already been used to singularly determine this UberRegSet. 1451 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1452 if (Reg->getRegUnits().count() != 1 1453 || hasRegUnit(NormalUnits, AdjustUnit) 1454 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1455 // We don't have an adjustable unit, so adopt a new one. 1456 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1457 Reg->adoptRegUnit(AdjustUnit); 1458 // Adopting a unit does not immediately require recomputing set weights. 1459 } 1460 else { 1461 // Adjust the existing single unit. 1462 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1463 // The unit may be shared among sets and registers within this set. 1464 computeUberWeights(UberSets, RegBank); 1465 } 1466 Changed = true; 1467 } 1468 1469 // Mark these units normalized so superregisters can't change their weights. 1470 NormalUnits |= Reg->getRegUnits(); 1471 1472 return Changed; 1473 } 1474 1475 // Compute a weight for each register unit created during getSubRegs. 1476 // 1477 // The goal is that two registers in the same class will have the same weight, 1478 // where each register's weight is defined as sum of its units' weights. 1479 void CodeGenRegBank::computeRegUnitWeights() { 1480 std::vector<UberRegSet> UberSets; 1481 std::vector<UberRegSet*> RegSets(Registers.size()); 1482 computeUberSets(UberSets, RegSets, *this); 1483 // UberSets and RegSets are now immutable. 1484 1485 computeUberWeights(UberSets, *this); 1486 1487 // Iterate over each Register, normalizing the unit weights until reaching 1488 // a fix point. 1489 unsigned NumIters = 0; 1490 for (bool Changed = true; Changed; ++NumIters) { 1491 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1492 Changed = false; 1493 for (auto &Reg : Registers) { 1494 CodeGenRegister::RegUnitList NormalUnits; 1495 SparseBitVector<> NormalRegs; 1496 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1497 NormalUnits, *this); 1498 } 1499 } 1500 } 1501 1502 // Find a set in UniqueSets with the same elements as Set. 1503 // Return an iterator into UniqueSets. 1504 static std::vector<RegUnitSet>::const_iterator 1505 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1506 const RegUnitSet &Set) { 1507 std::vector<RegUnitSet>::const_iterator 1508 I = UniqueSets.begin(), E = UniqueSets.end(); 1509 for(;I != E; ++I) { 1510 if (I->Units == Set.Units) 1511 break; 1512 } 1513 return I; 1514 } 1515 1516 // Return true if the RUSubSet is a subset of RUSuperSet. 1517 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1518 const std::vector<unsigned> &RUSuperSet) { 1519 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1520 RUSubSet.begin(), RUSubSet.end()); 1521 } 1522 1523 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1524 /// but with one or two registers removed. We occasionally have registers like 1525 /// APSR and PC thrown in with the general registers. We also see many 1526 /// special-purpose register subsets, such as tail-call and Thumb 1527 /// encodings. Generating all possible overlapping sets is combinatorial and 1528 /// overkill for modeling pressure. Ideally we could fix this statically in 1529 /// tablegen by (1) having the target define register classes that only include 1530 /// the allocatable registers and marking other classes as non-allocatable and 1531 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1532 /// the purpose of pressure. However, we make an attempt to handle targets that 1533 /// are not nicely defined by merging nearly identical register unit sets 1534 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1535 /// set limit by filtering the reserved registers. 1536 /// 1537 /// Merge sets only if the units have the same weight. For example, on ARM, 1538 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1539 /// should not expand the S set to include D regs. 1540 void CodeGenRegBank::pruneUnitSets() { 1541 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1542 1543 // Form an equivalence class of UnitSets with no significant difference. 1544 std::vector<unsigned> SuperSetIDs; 1545 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1546 SubIdx != EndIdx; ++SubIdx) { 1547 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1548 unsigned SuperIdx = 0; 1549 for (; SuperIdx != EndIdx; ++SuperIdx) { 1550 if (SuperIdx == SubIdx) 1551 continue; 1552 1553 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1554 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1555 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1556 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1557 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1558 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1559 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1560 << "\n"); 1561 break; 1562 } 1563 } 1564 if (SuperIdx == EndIdx) 1565 SuperSetIDs.push_back(SubIdx); 1566 } 1567 // Populate PrunedUnitSets with each equivalence class's superset. 1568 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1569 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1570 unsigned SuperIdx = SuperSetIDs[i]; 1571 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1572 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1573 } 1574 RegUnitSets.swap(PrunedUnitSets); 1575 } 1576 1577 // Create a RegUnitSet for each RegClass that contains all units in the class 1578 // including adopted units that are necessary to model register pressure. Then 1579 // iteratively compute RegUnitSets such that the union of any two overlapping 1580 // RegUnitSets is repreresented. 1581 // 1582 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1583 // RegUnitSet that is a superset of that RegUnitClass. 1584 void CodeGenRegBank::computeRegUnitSets() { 1585 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1586 1587 // Compute a unique RegUnitSet for each RegClass. 1588 auto &RegClasses = getRegClasses(); 1589 for (auto &RC : RegClasses) { 1590 if (!RC.Allocatable) 1591 continue; 1592 1593 // Speculatively grow the RegUnitSets to hold the new set. 1594 RegUnitSets.resize(RegUnitSets.size() + 1); 1595 RegUnitSets.back().Name = RC.getName(); 1596 1597 // Compute a sorted list of units in this class. 1598 RC.buildRegUnitSet(RegUnitSets.back().Units); 1599 1600 // Find an existing RegUnitSet. 1601 std::vector<RegUnitSet>::const_iterator SetI = 1602 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1603 if (SetI != std::prev(RegUnitSets.end())) 1604 RegUnitSets.pop_back(); 1605 } 1606 1607 DEBUG(dbgs() << "\nBefore pruning:\n"; 1608 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1609 USIdx < USEnd; ++USIdx) { 1610 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1611 << ":"; 1612 for (auto &U : RegUnitSets[USIdx].Units) 1613 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1614 dbgs() << "\n"; 1615 }); 1616 1617 // Iteratively prune unit sets. 1618 pruneUnitSets(); 1619 1620 DEBUG(dbgs() << "\nBefore union:\n"; 1621 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1622 USIdx < USEnd; ++USIdx) { 1623 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1624 << ":"; 1625 for (auto &U : RegUnitSets[USIdx].Units) 1626 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1627 dbgs() << "\n"; 1628 } 1629 dbgs() << "\nUnion sets:\n"); 1630 1631 // Iterate over all unit sets, including new ones added by this loop. 1632 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1633 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1634 // In theory, this is combinatorial. In practice, it needs to be bounded 1635 // by a small number of sets for regpressure to be efficient. 1636 // If the assert is hit, we need to implement pruning. 1637 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1638 1639 // Compare new sets with all original classes. 1640 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1641 SearchIdx != EndIdx; ++SearchIdx) { 1642 std::set<unsigned> Intersection; 1643 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1644 RegUnitSets[Idx].Units.end(), 1645 RegUnitSets[SearchIdx].Units.begin(), 1646 RegUnitSets[SearchIdx].Units.end(), 1647 std::inserter(Intersection, Intersection.begin())); 1648 if (Intersection.empty()) 1649 continue; 1650 1651 // Speculatively grow the RegUnitSets to hold the new set. 1652 RegUnitSets.resize(RegUnitSets.size() + 1); 1653 RegUnitSets.back().Name = 1654 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1655 1656 std::set_union(RegUnitSets[Idx].Units.begin(), 1657 RegUnitSets[Idx].Units.end(), 1658 RegUnitSets[SearchIdx].Units.begin(), 1659 RegUnitSets[SearchIdx].Units.end(), 1660 std::inserter(RegUnitSets.back().Units, 1661 RegUnitSets.back().Units.begin())); 1662 1663 // Find an existing RegUnitSet, or add the union to the unique sets. 1664 std::vector<RegUnitSet>::const_iterator SetI = 1665 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1666 if (SetI != std::prev(RegUnitSets.end())) 1667 RegUnitSets.pop_back(); 1668 else { 1669 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1670 << " " << RegUnitSets.back().Name << ":"; 1671 for (auto &U : RegUnitSets.back().Units) 1672 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1673 dbgs() << "\n";); 1674 } 1675 } 1676 } 1677 1678 // Iteratively prune unit sets after inferring supersets. 1679 pruneUnitSets(); 1680 1681 DEBUG(dbgs() << "\n"; 1682 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1683 USIdx < USEnd; ++USIdx) { 1684 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1685 << ":"; 1686 for (auto &U : RegUnitSets[USIdx].Units) 1687 dbgs() << " " << RegUnits[U].Roots[0]->getName(); 1688 dbgs() << "\n"; 1689 }); 1690 1691 // For each register class, list the UnitSets that are supersets. 1692 RegClassUnitSets.resize(RegClasses.size()); 1693 int RCIdx = -1; 1694 for (auto &RC : RegClasses) { 1695 ++RCIdx; 1696 if (!RC.Allocatable) 1697 continue; 1698 1699 // Recompute the sorted list of units in this class. 1700 std::vector<unsigned> RCRegUnits; 1701 RC.buildRegUnitSet(RCRegUnits); 1702 1703 // Don't increase pressure for unallocatable regclasses. 1704 if (RCRegUnits.empty()) 1705 continue; 1706 1707 DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n"; 1708 for (auto &U : RCRegUnits) 1709 dbgs() << RegUnits[U].getRoots()[0]->getName() << " "; 1710 dbgs() << "\n UnitSetIDs:"); 1711 1712 // Find all supersets. 1713 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1714 USIdx != USEnd; ++USIdx) { 1715 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1716 DEBUG(dbgs() << " " << USIdx); 1717 RegClassUnitSets[RCIdx].push_back(USIdx); 1718 } 1719 } 1720 DEBUG(dbgs() << "\n"); 1721 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1722 } 1723 1724 // For each register unit, ensure that we have the list of UnitSets that 1725 // contain the unit. Normally, this matches an existing list of UnitSets for a 1726 // register class. If not, we create a new entry in RegClassUnitSets as a 1727 // "fake" register class. 1728 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1729 UnitIdx < UnitEnd; ++UnitIdx) { 1730 std::vector<unsigned> RUSets; 1731 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1732 RegUnitSet &RUSet = RegUnitSets[i]; 1733 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1734 == RUSet.Units.end()) 1735 continue; 1736 RUSets.push_back(i); 1737 } 1738 unsigned RCUnitSetsIdx = 0; 1739 for (unsigned e = RegClassUnitSets.size(); 1740 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1741 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1742 break; 1743 } 1744 } 1745 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1746 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1747 // Create a new list of UnitSets as a "fake" register class. 1748 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1749 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1750 } 1751 } 1752 } 1753 1754 void CodeGenRegBank::computeRegUnitLaneMasks() { 1755 for (auto &Register : Registers) { 1756 // Create an initial lane mask for all register units. 1757 const auto &RegUnits = Register.getRegUnits(); 1758 CodeGenRegister::RegUnitLaneMaskList RegUnitLaneMasks(RegUnits.count(), 0); 1759 // Iterate through SubRegisters. 1760 typedef CodeGenRegister::SubRegMap SubRegMap; 1761 const SubRegMap &SubRegs = Register.getSubRegs(); 1762 for (SubRegMap::const_iterator S = SubRegs.begin(), 1763 SE = SubRegs.end(); S != SE; ++S) { 1764 CodeGenRegister *SubReg = S->second; 1765 // Ignore non-leaf subregisters, their lane masks are fully covered by 1766 // the leaf subregisters anyway. 1767 if (SubReg->getSubRegs().size() != 0) 1768 continue; 1769 CodeGenSubRegIndex *SubRegIndex = S->first; 1770 const CodeGenRegister *SubRegister = S->second; 1771 unsigned LaneMask = SubRegIndex->LaneMask; 1772 // Distribute LaneMask to Register Units touched. 1773 for (const auto &SUI : SubRegister->getRegUnits()) { 1774 bool Found = false; 1775 unsigned u = 0; 1776 for (unsigned RU : RegUnits) { 1777 if (SUI == RU) { 1778 RegUnitLaneMasks[u] |= LaneMask; 1779 assert(!Found); 1780 Found = true; 1781 } 1782 ++u; 1783 } 1784 assert(Found); 1785 } 1786 } 1787 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 1788 } 1789 } 1790 1791 void CodeGenRegBank::computeDerivedInfo() { 1792 computeComposites(); 1793 computeSubRegLaneMasks(); 1794 1795 // Compute a weight for each register unit created during getSubRegs. 1796 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1797 computeRegUnitWeights(); 1798 1799 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1800 // supersets for the union of overlapping sets. 1801 computeRegUnitSets(); 1802 1803 computeRegUnitLaneMasks(); 1804 1805 // Get the weight of each set. 1806 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1807 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1808 1809 // Find the order of each set. 1810 RegUnitSetOrder.reserve(RegUnitSets.size()); 1811 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1812 RegUnitSetOrder.push_back(Idx); 1813 1814 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1815 [this](unsigned ID1, unsigned ID2) { 1816 return getRegPressureSet(ID1).Units.size() < 1817 getRegPressureSet(ID2).Units.size(); 1818 }); 1819 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1820 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1821 } 1822 } 1823 1824 // 1825 // Synthesize missing register class intersections. 1826 // 1827 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1828 // returns a maximal register class for all X. 1829 // 1830 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1831 assert(!RegClasses.empty()); 1832 // Stash the iterator to the last element so that this loop doesn't visit 1833 // elements added by the getOrCreateSubClass call within it. 1834 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 1835 I != std::next(E); ++I) { 1836 CodeGenRegisterClass *RC1 = RC; 1837 CodeGenRegisterClass *RC2 = &*I; 1838 if (RC1 == RC2) 1839 continue; 1840 1841 // Compute the set intersection of RC1 and RC2. 1842 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 1843 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 1844 CodeGenRegister::Vec Intersection; 1845 std::set_intersection( 1846 Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), 1847 std::inserter(Intersection, Intersection.begin()), deref<llvm::less>()); 1848 1849 // Skip disjoint class pairs. 1850 if (Intersection.empty()) 1851 continue; 1852 1853 // If RC1 and RC2 have different spill sizes or alignments, use the 1854 // larger size for sub-classing. If they are equal, prefer RC1. 1855 if (RC2->SpillSize > RC1->SpillSize || 1856 (RC2->SpillSize == RC1->SpillSize && 1857 RC2->SpillAlignment > RC1->SpillAlignment)) 1858 std::swap(RC1, RC2); 1859 1860 getOrCreateSubClass(RC1, &Intersection, 1861 RC1->getName() + "_and_" + RC2->getName()); 1862 } 1863 } 1864 1865 // 1866 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1867 // 1868 // Make sure that the set of registers in RC with a given SubIdx sub-register 1869 // form a register class. Update RC->SubClassWithSubReg. 1870 // 1871 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1872 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1873 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 1874 deref<llvm::less>> SubReg2SetMap; 1875 1876 // Compute the set of registers supporting each SubRegIndex. 1877 SubReg2SetMap SRSets; 1878 for (const auto R : RC->getMembers()) { 1879 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 1880 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1881 E = SRM.end(); I != E; ++I) 1882 SRSets[I->first].push_back(R); 1883 } 1884 1885 for (auto I : SRSets) 1886 sortAndUniqueRegisters(I.second); 1887 1888 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1889 // numerical order to visit synthetic indices last. 1890 for (const auto &SubIdx : SubRegIndices) { 1891 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 1892 // Unsupported SubRegIndex. Skip it. 1893 if (I == SRSets.end()) 1894 continue; 1895 // In most cases, all RC registers support the SubRegIndex. 1896 if (I->second.size() == RC->getMembers().size()) { 1897 RC->setSubClassWithSubReg(&SubIdx, RC); 1898 continue; 1899 } 1900 // This is a real subset. See if we have a matching class. 1901 CodeGenRegisterClass *SubRC = 1902 getOrCreateSubClass(RC, &I->second, 1903 RC->getName() + "_with_" + I->first->getName()); 1904 RC->setSubClassWithSubReg(&SubIdx, SubRC); 1905 } 1906 } 1907 1908 // 1909 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1910 // 1911 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1912 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1913 // 1914 1915 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1916 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 1917 SmallVector<std::pair<const CodeGenRegister*, 1918 const CodeGenRegister*>, 16> SSPairs; 1919 BitVector TopoSigs(getNumTopoSigs()); 1920 1921 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1922 for (auto &SubIdx : SubRegIndices) { 1923 // Skip indexes that aren't fully supported by RC's registers. This was 1924 // computed by inferSubClassWithSubReg() above which should have been 1925 // called first. 1926 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 1927 continue; 1928 1929 // Build list of (Super, Sub) pairs for this SubIdx. 1930 SSPairs.clear(); 1931 TopoSigs.reset(); 1932 for (const auto Super : RC->getMembers()) { 1933 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 1934 assert(Sub && "Missing sub-register"); 1935 SSPairs.push_back(std::make_pair(Super, Sub)); 1936 TopoSigs.set(Sub->getTopoSig()); 1937 } 1938 1939 // Iterate over sub-register class candidates. Ignore classes created by 1940 // this loop. They will never be useful. 1941 // Store an iterator to the last element (not end) so that this loop doesn't 1942 // visit newly inserted elements. 1943 assert(!RegClasses.empty()); 1944 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 1945 I != std::next(E); ++I) { 1946 CodeGenRegisterClass &SubRC = *I; 1947 // Topological shortcut: SubRC members have the wrong shape. 1948 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 1949 continue; 1950 // Compute the subset of RC that maps into SubRC. 1951 CodeGenRegister::Vec SubSetVec; 1952 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1953 if (SubRC.contains(SSPairs[i].second)) 1954 SubSetVec.push_back(SSPairs[i].first); 1955 1956 if (SubSetVec.empty()) 1957 continue; 1958 1959 // RC injects completely into SubRC. 1960 sortAndUniqueRegisters(SubSetVec); 1961 if (SubSetVec.size() == SSPairs.size()) { 1962 SubRC.addSuperRegClass(&SubIdx, RC); 1963 continue; 1964 } 1965 1966 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1967 // class. 1968 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 1969 SubIdx.getName() + "_in_" + 1970 SubRC.getName()); 1971 } 1972 } 1973 } 1974 1975 1976 // 1977 // Infer missing register classes. 1978 // 1979 void CodeGenRegBank::computeInferredRegisterClasses() { 1980 assert(!RegClasses.empty()); 1981 // When this function is called, the register classes have not been sorted 1982 // and assigned EnumValues yet. That means getSubClasses(), 1983 // getSuperClasses(), and hasSubClass() functions are defunct. 1984 1985 // Use one-before-the-end so it doesn't move forward when new elements are 1986 // added. 1987 auto FirstNewRC = std::prev(RegClasses.end()); 1988 1989 // Visit all register classes, including the ones being added by the loop. 1990 // Watch out for iterator invalidation here. 1991 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 1992 CodeGenRegisterClass *RC = &*I; 1993 1994 // Synthesize answers for getSubClassWithSubReg(). 1995 inferSubClassWithSubReg(RC); 1996 1997 // Synthesize answers for getCommonSubClass(). 1998 inferCommonSubClass(RC); 1999 2000 // Synthesize answers for getMatchingSuperRegClass(). 2001 inferMatchingSuperRegClass(RC); 2002 2003 // New register classes are created while this loop is running, and we need 2004 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2005 // to match old super-register classes with sub-register classes created 2006 // after inferMatchingSuperRegClass was called. At this point, 2007 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2008 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2009 if (I == FirstNewRC) { 2010 auto NextNewRC = std::prev(RegClasses.end()); 2011 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2012 ++I2) 2013 inferMatchingSuperRegClass(&*I2, E2); 2014 FirstNewRC = NextNewRC; 2015 } 2016 } 2017 } 2018 2019 /// getRegisterClassForRegister - Find the register class that contains the 2020 /// specified physical register. If the register is not in a register class, 2021 /// return null. If the register is in multiple classes, and the classes have a 2022 /// superset-subset relationship and the same set of types, return the 2023 /// superclass. Otherwise return null. 2024 const CodeGenRegisterClass* 2025 CodeGenRegBank::getRegClassForRegister(Record *R) { 2026 const CodeGenRegister *Reg = getReg(R); 2027 const CodeGenRegisterClass *FoundRC = nullptr; 2028 for (const auto &RC : getRegClasses()) { 2029 if (!RC.contains(Reg)) 2030 continue; 2031 2032 // If this is the first class that contains the register, 2033 // make a note of it and go on to the next class. 2034 if (!FoundRC) { 2035 FoundRC = &RC; 2036 continue; 2037 } 2038 2039 // If a register's classes have different types, return null. 2040 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2041 return nullptr; 2042 2043 // Check to see if the previously found class that contains 2044 // the register is a subclass of the current class. If so, 2045 // prefer the superclass. 2046 if (RC.hasSubClass(FoundRC)) { 2047 FoundRC = &RC; 2048 continue; 2049 } 2050 2051 // Check to see if the previously found class that contains 2052 // the register is a superclass of the current class. If so, 2053 // prefer the superclass. 2054 if (FoundRC->hasSubClass(&RC)) 2055 continue; 2056 2057 // Multiple classes, and neither is a superclass of the other. 2058 // Return null. 2059 return nullptr; 2060 } 2061 return FoundRC; 2062 } 2063 2064 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2065 SetVector<const CodeGenRegister*> Set; 2066 2067 // First add Regs with all sub-registers. 2068 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2069 CodeGenRegister *Reg = getReg(Regs[i]); 2070 if (Set.insert(Reg)) 2071 // Reg is new, add all sub-registers. 2072 // The pre-ordering is not important here. 2073 Reg->addSubRegsPreOrder(Set, *this); 2074 } 2075 2076 // Second, find all super-registers that are completely covered by the set. 2077 for (unsigned i = 0; i != Set.size(); ++i) { 2078 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2079 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2080 const CodeGenRegister *Super = SR[j]; 2081 if (!Super->CoveredBySubRegs || Set.count(Super)) 2082 continue; 2083 // This new super-register is covered by its sub-registers. 2084 bool AllSubsInSet = true; 2085 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2086 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 2087 E = SRM.end(); I != E; ++I) 2088 if (!Set.count(I->second)) { 2089 AllSubsInSet = false; 2090 break; 2091 } 2092 // All sub-registers in Set, add Super as well. 2093 // We will visit Super later to recheck its super-registers. 2094 if (AllSubsInSet) 2095 Set.insert(Super); 2096 } 2097 } 2098 2099 // Convert to BitVector. 2100 BitVector BV(Registers.size() + 1); 2101 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2102 BV.set(Set[i]->EnumValue); 2103 return BV; 2104 } 2105