1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines structures to encapsulate information gleaned from the 10 // target register and register class definitions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenRegisters.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IntEqClasses.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/TableGen/Error.h" 29 #include "llvm/TableGen/Record.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstdint> 33 #include <iterator> 34 #include <map> 35 #include <queue> 36 #include <set> 37 #include <string> 38 #include <tuple> 39 #include <utility> 40 #include <vector> 41 42 using namespace llvm; 43 44 #define DEBUG_TYPE "regalloc-emitter" 45 46 //===----------------------------------------------------------------------===// 47 // CodeGenSubRegIndex 48 //===----------------------------------------------------------------------===// 49 50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 51 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) { 52 Name = std::string(R->getName()); 53 if (R->getValue("Namespace")) 54 Namespace = std::string(R->getValueAsString("Namespace")); 55 Size = R->getValueAsInt("Size"); 56 Offset = R->getValueAsInt("Offset"); 57 } 58 59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 60 unsigned Enum) 61 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)), 62 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true), 63 Artificial(true) {} 64 65 std::string CodeGenSubRegIndex::getQualifiedName() const { 66 std::string N = getNamespace(); 67 if (!N.empty()) 68 N += "::"; 69 N += getName(); 70 return N; 71 } 72 73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 74 if (!TheDef) 75 return; 76 77 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 78 if (!Comps.empty()) { 79 if (Comps.size() != 2) 80 PrintFatalError(TheDef->getLoc(), 81 "ComposedOf must have exactly two entries"); 82 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 83 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 84 CodeGenSubRegIndex *X = A->addComposite(B, this); 85 if (X) 86 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 87 } 88 89 std::vector<Record*> Parts = 90 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 91 if (!Parts.empty()) { 92 if (Parts.size() < 2) 93 PrintFatalError(TheDef->getLoc(), 94 "CoveredBySubRegs must have two or more entries"); 95 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 96 for (Record *Part : Parts) 97 IdxParts.push_back(RegBank.getSubRegIdx(Part)); 98 setConcatenationOf(IdxParts); 99 } 100 } 101 102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const { 103 // Already computed? 104 if (LaneMask.any()) 105 return LaneMask; 106 107 // Recursion guard, shouldn't be required. 108 LaneMask = LaneBitmask::getAll(); 109 110 // The lane mask is simply the union of all sub-indices. 111 LaneBitmask M; 112 for (const auto &C : Composed) 113 M |= C.second->computeLaneMask(); 114 assert(M.any() && "Missing lane mask, sub-register cycle?"); 115 LaneMask = M; 116 return LaneMask; 117 } 118 119 void CodeGenSubRegIndex::setConcatenationOf( 120 ArrayRef<CodeGenSubRegIndex*> Parts) { 121 if (ConcatenationOf.empty()) 122 ConcatenationOf.assign(Parts.begin(), Parts.end()); 123 else 124 assert(std::equal(Parts.begin(), Parts.end(), 125 ConcatenationOf.begin()) && "parts consistent"); 126 } 127 128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() { 129 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator 130 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) { 131 CodeGenSubRegIndex *SubIdx = *I; 132 SubIdx->computeConcatTransitiveClosure(); 133 #ifndef NDEBUG 134 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf) 135 assert(SRI->ConcatenationOf.empty() && "No transitive closure?"); 136 #endif 137 138 if (SubIdx->ConcatenationOf.empty()) { 139 ++I; 140 } else { 141 I = ConcatenationOf.erase(I); 142 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(), 143 SubIdx->ConcatenationOf.end()); 144 I += SubIdx->ConcatenationOf.size(); 145 } 146 } 147 } 148 149 //===----------------------------------------------------------------------===// 150 // CodeGenRegister 151 //===----------------------------------------------------------------------===// 152 153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 154 : TheDef(R), EnumValue(Enum), 155 CostPerUse(R->getValueAsListOfInts("CostPerUse")), 156 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 157 HasDisjunctSubRegs(false), SubRegsComplete(false), 158 SuperRegsComplete(false), TopoSig(~0u) { 159 Artificial = R->getValueAsBit("isArtificial"); 160 } 161 162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 163 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 164 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 165 166 if (SRIs.size() != SRs.size()) 167 PrintFatalError(TheDef->getLoc(), 168 "SubRegs and SubRegIndices must have the same size"); 169 170 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 171 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 172 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 173 } 174 175 // Also compute leading super-registers. Each register has a list of 176 // covered-by-subregs super-registers where it appears as the first explicit 177 // sub-register. 178 // 179 // This is used by computeSecondarySubRegs() to find candidates. 180 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 181 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 182 183 // Add ad hoc alias links. This is a symmetric relationship between two 184 // registers, so build a symmetric graph by adding links in both ends. 185 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 186 for (Record *Alias : Aliases) { 187 CodeGenRegister *Reg = RegBank.getReg(Alias); 188 ExplicitAliases.push_back(Reg); 189 Reg->ExplicitAliases.push_back(this); 190 } 191 } 192 193 StringRef CodeGenRegister::getName() const { 194 assert(TheDef && "no def"); 195 return TheDef->getName(); 196 } 197 198 namespace { 199 200 // Iterate over all register units in a set of registers. 201 class RegUnitIterator { 202 CodeGenRegister::Vec::const_iterator RegI, RegE; 203 CodeGenRegister::RegUnitList::iterator UnitI, UnitE; 204 static CodeGenRegister::RegUnitList Sentinel; 205 206 public: 207 RegUnitIterator(const CodeGenRegister::Vec &Regs): 208 RegI(Regs.begin()), RegE(Regs.end()) { 209 210 if (RegI == RegE) { 211 UnitI = Sentinel.end(); 212 UnitE = Sentinel.end(); 213 } else { 214 UnitI = (*RegI)->getRegUnits().begin(); 215 UnitE = (*RegI)->getRegUnits().end(); 216 advance(); 217 } 218 } 219 220 bool isValid() const { return UnitI != UnitE; } 221 222 unsigned operator* () const { assert(isValid()); return *UnitI; } 223 224 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 225 226 /// Preincrement. Move to the next unit. 227 void operator++() { 228 assert(isValid() && "Cannot advance beyond the last operand"); 229 ++UnitI; 230 advance(); 231 } 232 233 protected: 234 void advance() { 235 while (UnitI == UnitE) { 236 if (++RegI == RegE) 237 break; 238 UnitI = (*RegI)->getRegUnits().begin(); 239 UnitE = (*RegI)->getRegUnits().end(); 240 } 241 } 242 }; 243 244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel; 245 246 } // end anonymous namespace 247 248 // Return true of this unit appears in RegUnits. 249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 250 return RegUnits.test(Unit); 251 } 252 253 // Inherit register units from subregisters. 254 // Return true if the RegUnits changed. 255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 256 bool changed = false; 257 for (const auto &SubReg : SubRegs) { 258 CodeGenRegister *SR = SubReg.second; 259 // Merge the subregister's units into this register's RegUnits. 260 changed |= (RegUnits |= SR->RegUnits); 261 } 262 263 return changed; 264 } 265 266 const CodeGenRegister::SubRegMap & 267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 268 // Only compute this map once. 269 if (SubRegsComplete) 270 return SubRegs; 271 SubRegsComplete = true; 272 273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1; 274 275 // First insert the explicit subregs and make sure they are fully indexed. 276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 277 CodeGenRegister *SR = ExplicitSubRegs[i]; 278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 279 if (!SR->Artificial) 280 Idx->Artificial = false; 281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 283 " appears twice in Register " + getName()); 284 // Map explicit sub-registers first, so the names take precedence. 285 // The inherited sub-registers are mapped below. 286 SubReg2Idx.insert(std::make_pair(SR, Idx)); 287 } 288 289 // Keep track of inherited subregs and how they can be reached. 290 SmallPtrSet<CodeGenRegister*, 8> Orphans; 291 292 // Clone inherited subregs and place duplicate entries in Orphans. 293 // Here the order is important - earlier subregs take precedence. 294 for (CodeGenRegister *ESR : ExplicitSubRegs) { 295 const SubRegMap &Map = ESR->computeSubRegs(RegBank); 296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs; 297 298 for (const auto &SR : Map) { 299 if (!SubRegs.insert(SR).second) 300 Orphans.insert(SR.second); 301 } 302 } 303 304 // Expand any composed subreg indices. 305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 307 // expanded subreg indices recursively. 308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 309 for (unsigned i = 0; i != Indices.size(); ++i) { 310 CodeGenSubRegIndex *Idx = Indices[i]; 311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 312 CodeGenRegister *SR = SubRegs[Idx]; 313 const SubRegMap &Map = SR->computeSubRegs(RegBank); 314 315 // Look at the possible compositions of Idx. 316 // They may not all be supported by SR. 317 for (auto Comp : Comps) { 318 SubRegMap::const_iterator SRI = Map.find(Comp.first); 319 if (SRI == Map.end()) 320 continue; // Idx + I->first doesn't exist in SR. 321 // Add I->second as a name for the subreg SRI->second, assuming it is 322 // orphaned, and the name isn't already used for something else. 323 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second)) 324 continue; 325 // We found a new name for the orphaned sub-register. 326 SubRegs.insert(std::make_pair(Comp.second, SRI->second)); 327 Indices.push_back(Comp.second); 328 } 329 } 330 331 // Now Orphans contains the inherited subregisters without a direct index. 332 // Create inferred indexes for all missing entries. 333 // Work backwards in the Indices vector in order to compose subregs bottom-up. 334 // Consider this subreg sequence: 335 // 336 // qsub_1 -> dsub_0 -> ssub_0 337 // 338 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 339 // can be reached in two different ways: 340 // 341 // qsub_1 -> ssub_0 342 // dsub_2 -> ssub_0 343 // 344 // We pick the latter composition because another register may have [dsub_0, 345 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 346 // dsub_2 -> ssub_0 composition can be shared. 347 while (!Indices.empty() && !Orphans.empty()) { 348 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 349 CodeGenRegister *SR = SubRegs[Idx]; 350 const SubRegMap &Map = SR->computeSubRegs(RegBank); 351 for (const auto &SubReg : Map) 352 if (Orphans.erase(SubReg.second)) 353 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second; 354 } 355 356 // Compute the inverse SubReg -> Idx map. 357 for (const auto &SubReg : SubRegs) { 358 if (SubReg.second == this) { 359 ArrayRef<SMLoc> Loc; 360 if (TheDef) 361 Loc = TheDef->getLoc(); 362 PrintFatalError(Loc, "Register " + getName() + 363 " has itself as a sub-register"); 364 } 365 366 // Compute AllSuperRegsCovered. 367 if (!CoveredBySubRegs) 368 SubReg.first->AllSuperRegsCovered = false; 369 370 // Ensure that every sub-register has a unique name. 371 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 372 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first; 373 if (Ins->second == SubReg.first) 374 continue; 375 // Trouble: Two different names for SubReg.second. 376 ArrayRef<SMLoc> Loc; 377 if (TheDef) 378 Loc = TheDef->getLoc(); 379 PrintFatalError(Loc, "Sub-register can't have two names: " + 380 SubReg.second->getName() + " available as " + 381 SubReg.first->getName() + " and " + Ins->second->getName()); 382 } 383 384 // Derive possible names for sub-register concatenations from any explicit 385 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 386 // that getConcatSubRegIndex() won't invent any concatenated indices that the 387 // user already specified. 388 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 389 CodeGenRegister *SR = ExplicitSubRegs[i]; 390 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 || 391 SR->Artificial) 392 continue; 393 394 // SR is composed of multiple sub-regs. Find their names in this register. 395 SmallVector<CodeGenSubRegIndex*, 8> Parts; 396 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) { 397 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j]; 398 if (!I.Artificial) 399 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 400 } 401 402 // Offer this as an existing spelling for the concatenation of Parts. 403 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i]; 404 Idx.setConcatenationOf(Parts); 405 } 406 407 // Initialize RegUnitList. Because getSubRegs is called recursively, this 408 // processes the register hierarchy in postorder. 409 // 410 // Inherit all sub-register units. It is good enough to look at the explicit 411 // sub-registers, the other registers won't contribute any more units. 412 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 413 CodeGenRegister *SR = ExplicitSubRegs[i]; 414 RegUnits |= SR->RegUnits; 415 } 416 417 // Absent any ad hoc aliasing, we create one register unit per leaf register. 418 // These units correspond to the maximal cliques in the register overlap 419 // graph which is optimal. 420 // 421 // When there is ad hoc aliasing, we simply create one unit per edge in the 422 // undirected ad hoc aliasing graph. Technically, we could do better by 423 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 424 // are extremely rare anyway (I've never seen one), so we don't bother with 425 // the added complexity. 426 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 427 CodeGenRegister *AR = ExplicitAliases[i]; 428 // Only visit each edge once. 429 if (AR->SubRegsComplete) 430 continue; 431 // Create a RegUnit representing this alias edge, and add it to both 432 // registers. 433 unsigned Unit = RegBank.newRegUnit(this, AR); 434 RegUnits.set(Unit); 435 AR->RegUnits.set(Unit); 436 } 437 438 // Finally, create units for leaf registers without ad hoc aliases. Note that 439 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 440 // necessary. This means the aliasing leaf registers can share a single unit. 441 if (RegUnits.empty()) 442 RegUnits.set(RegBank.newRegUnit(this)); 443 444 // We have now computed the native register units. More may be adopted later 445 // for balancing purposes. 446 NativeRegUnits = RegUnits; 447 448 return SubRegs; 449 } 450 451 // In a register that is covered by its sub-registers, try to find redundant 452 // sub-registers. For example: 453 // 454 // QQ0 = {Q0, Q1} 455 // Q0 = {D0, D1} 456 // Q1 = {D2, D3} 457 // 458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 459 // the register definition. 460 // 461 // The explicitly specified registers form a tree. This function discovers 462 // sub-register relationships that would force a DAG. 463 // 464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 465 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 466 467 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue; 468 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs) 469 SubRegQueue.push(P); 470 471 // Look at the leading super-registers of each sub-register. Those are the 472 // candidates for new sub-registers, assuming they are fully contained in 473 // this register. 474 while (!SubRegQueue.empty()) { 475 CodeGenSubRegIndex *SubRegIdx; 476 const CodeGenRegister *SubReg; 477 std::tie(SubRegIdx, SubReg) = SubRegQueue.front(); 478 SubRegQueue.pop(); 479 480 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 481 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 482 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 483 // Already got this sub-register? 484 if (Cand == this || getSubRegIndex(Cand)) 485 continue; 486 // Check if each component of Cand is already a sub-register. 487 assert(!Cand->ExplicitSubRegs.empty() && 488 "Super-register has no sub-registers"); 489 if (Cand->ExplicitSubRegs.size() == 1) 490 continue; 491 SmallVector<CodeGenSubRegIndex*, 8> Parts; 492 // We know that the first component is (SubRegIdx,SubReg). However we 493 // may still need to split it into smaller subregister parts. 494 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct"); 495 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct"); 496 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) { 497 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) { 498 if (SubRegIdx->ConcatenationOf.empty()) 499 Parts.push_back(SubRegIdx); 500 else 501 append_range(Parts, SubRegIdx->ConcatenationOf); 502 } else { 503 // Sub-register doesn't exist. 504 Parts.clear(); 505 break; 506 } 507 } 508 // There is nothing to do if some Cand sub-register is not part of this 509 // register. 510 if (Parts.empty()) 511 continue; 512 513 // Each part of Cand is a sub-register of this. Make the full Cand also 514 // a sub-register with a concatenated sub-register index. 515 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts); 516 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg = 517 std::make_pair(Concat, Cand); 518 519 if (!SubRegs.insert(NewSubReg).second) 520 continue; 521 522 // We inserted a new subregister. 523 NewSubRegs.push_back(NewSubReg); 524 SubRegQueue.push(NewSubReg); 525 SubReg2Idx.insert(std::make_pair(Cand, Concat)); 526 } 527 } 528 529 // Create sub-register index composition maps for the synthesized indices. 530 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 531 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 532 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 533 for (auto SubReg : NewSubReg->SubRegs) { 534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second); 535 if (!SubIdx) 536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 537 SubReg.second->getName() + 538 " in " + getName()); 539 NewIdx->addComposite(SubReg.first, SubIdx); 540 } 541 } 542 } 543 544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 545 // Only visit each register once. 546 if (SuperRegsComplete) 547 return; 548 SuperRegsComplete = true; 549 550 // Make sure all sub-registers have been visited first, so the super-reg 551 // lists will be topologically ordered. 552 for (auto SubReg : SubRegs) 553 SubReg.second->computeSuperRegs(RegBank); 554 555 // Now add this as a super-register on all sub-registers. 556 // Also compute the TopoSigId in post-order. 557 TopoSigId Id; 558 for (auto SubReg : SubRegs) { 559 // Topological signature computed from SubIdx, TopoId(SubReg). 560 // Loops and idempotent indices have TopoSig = ~0u. 561 Id.push_back(SubReg.first->EnumValue); 562 Id.push_back(SubReg.second->TopoSig); 563 564 // Don't add duplicate entries. 565 if (!SubReg.second->SuperRegs.empty() && 566 SubReg.second->SuperRegs.back() == this) 567 continue; 568 SubReg.second->SuperRegs.push_back(this); 569 } 570 TopoSig = RegBank.getTopoSig(Id); 571 } 572 573 void 574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 575 CodeGenRegBank &RegBank) const { 576 assert(SubRegsComplete && "Must precompute sub-registers"); 577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 578 CodeGenRegister *SR = ExplicitSubRegs[i]; 579 if (OSet.insert(SR)) 580 SR->addSubRegsPreOrder(OSet, RegBank); 581 } 582 // Add any secondary sub-registers that weren't part of the explicit tree. 583 for (auto SubReg : SubRegs) 584 OSet.insert(SubReg.second); 585 } 586 587 // Get the sum of this register's unit weights. 588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 589 unsigned Weight = 0; 590 for (unsigned RegUnit : RegUnits) { 591 Weight += RegBank.getRegUnit(RegUnit).Weight; 592 } 593 return Weight; 594 } 595 596 //===----------------------------------------------------------------------===// 597 // RegisterTuples 598 //===----------------------------------------------------------------------===// 599 600 // A RegisterTuples def is used to generate pseudo-registers from lists of 601 // sub-registers. We provide a SetTheory expander class that returns the new 602 // registers. 603 namespace { 604 605 struct TupleExpander : SetTheory::Expander { 606 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of 607 // the synthesized definitions for their lifetime. 608 std::vector<std::unique_ptr<Record>> &SynthDefs; 609 610 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs) 611 : SynthDefs(SynthDefs) {} 612 613 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override { 614 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 615 unsigned Dim = Indices.size(); 616 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 617 if (Dim != SubRegs->size()) 618 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 619 if (Dim < 2) 620 PrintFatalError(Def->getLoc(), 621 "Tuples must have at least 2 sub-registers"); 622 623 // Evaluate the sub-register lists to be zipped. 624 unsigned Length = ~0u; 625 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 626 for (unsigned i = 0; i != Dim; ++i) { 627 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 628 Length = std::min(Length, unsigned(Lists[i].size())); 629 } 630 631 if (Length == 0) 632 return; 633 634 // Precompute some types. 635 Record *RegisterCl = Def->getRecords().getClass("Register"); 636 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 637 std::vector<StringRef> RegNames = 638 Def->getValueAsListOfStrings("RegAsmNames"); 639 640 // Zip them up. 641 for (unsigned n = 0; n != Length; ++n) { 642 std::string Name; 643 Record *Proto = Lists[0][n]; 644 std::vector<Init*> Tuple; 645 for (unsigned i = 0; i != Dim; ++i) { 646 Record *Reg = Lists[i][n]; 647 if (i) Name += '_'; 648 Name += Reg->getName(); 649 Tuple.push_back(DefInit::get(Reg)); 650 } 651 652 // Take the cost list of the first register in the tuple. 653 ListInit *CostList = Proto->getValueAsListInit("CostPerUse"); 654 SmallVector<Init *, 2> CostPerUse; 655 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end()); 656 657 StringInit *AsmName = StringInit::get(""); 658 if (!RegNames.empty()) { 659 if (RegNames.size() <= n) 660 PrintFatalError(Def->getLoc(), 661 "Register tuple definition missing name for '" + 662 Name + "'."); 663 AsmName = StringInit::get(RegNames[n]); 664 } 665 666 // Create a new Record representing the synthesized register. This record 667 // is only for consumption by CodeGenRegister, it is not added to the 668 // RecordKeeper. 669 SynthDefs.emplace_back( 670 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords())); 671 Record *NewReg = SynthDefs.back().get(); 672 Elts.insert(NewReg); 673 674 // Copy Proto super-classes. 675 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses(); 676 for (const auto &SuperPair : Supers) 677 NewReg->addSuperClass(SuperPair.first, SuperPair.second); 678 679 // Copy Proto fields. 680 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 681 RecordVal RV = Proto->getValues()[i]; 682 683 // Skip existing fields, like NAME. 684 if (NewReg->getValue(RV.getNameInit())) 685 continue; 686 687 StringRef Field = RV.getName(); 688 689 // Replace the sub-register list with Tuple. 690 if (Field == "SubRegs") 691 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 692 693 if (Field == "AsmName") 694 RV.setValue(AsmName); 695 696 // CostPerUse is aggregated from all Tuple members. 697 if (Field == "CostPerUse") 698 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType())); 699 700 // Composite registers are always covered by sub-registers. 701 if (Field == "CoveredBySubRegs") 702 RV.setValue(BitInit::get(true)); 703 704 // Copy fields from the RegisterTuples def. 705 if (Field == "SubRegIndices" || 706 Field == "CompositeIndices") { 707 NewReg->addValue(*Def->getValue(Field)); 708 continue; 709 } 710 711 // Some fields get their default uninitialized value. 712 if (Field == "DwarfNumbers" || 713 Field == "DwarfAlias" || 714 Field == "Aliases") { 715 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 716 NewReg->addValue(*DefRV); 717 continue; 718 } 719 720 // Everything else is copied from Proto. 721 NewReg->addValue(RV); 722 } 723 } 724 } 725 }; 726 727 } // end anonymous namespace 728 729 //===----------------------------------------------------------------------===// 730 // CodeGenRegisterClass 731 //===----------------------------------------------------------------------===// 732 733 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) { 734 llvm::sort(M, deref<std::less<>>()); 735 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end()); 736 } 737 738 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 739 : TheDef(R), Name(std::string(R->getName())), 740 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) { 741 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet"); 742 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 743 if (TypeList.empty()) 744 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!"); 745 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 746 Record *Type = TypeList[i]; 747 if (!Type->isSubClassOf("ValueType")) 748 PrintFatalError(R->getLoc(), 749 "RegTypes list member '" + Type->getName() + 750 "' does not derive from the ValueType class!"); 751 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes())); 752 } 753 754 // Allocation order 0 is the full set. AltOrders provides others. 755 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 756 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 757 Orders.resize(1 + AltOrders->size()); 758 759 // Default allocation order always contains all registers. 760 Artificial = true; 761 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 762 Orders[0].push_back((*Elements)[i]); 763 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 764 Members.push_back(Reg); 765 Artificial &= Reg->Artificial; 766 TopoSigs.set(Reg->getTopoSig()); 767 } 768 sortAndUniqueRegisters(Members); 769 770 // Alternative allocation orders may be subsets. 771 SetTheory::RecSet Order; 772 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 773 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 774 Orders[1 + i].append(Order.begin(), Order.end()); 775 // Verify that all altorder members are regclass members. 776 while (!Order.empty()) { 777 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 778 Order.pop_back(); 779 if (!contains(Reg)) 780 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 781 " is not a class member"); 782 } 783 } 784 785 Namespace = R->getValueAsString("Namespace"); 786 787 if (const RecordVal *RV = R->getValue("RegInfos")) 788 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) 789 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes()); 790 unsigned Size = R->getValueAsInt("Size"); 791 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) && 792 "Impossible to determine register size"); 793 if (!RSI.hasDefault()) { 794 RegSizeInfo RI; 795 RI.RegSize = RI.SpillSize = Size ? Size 796 : VTs[0].getSimple().getSizeInBits(); 797 RI.SpillAlignment = R->getValueAsInt("Alignment"); 798 RSI.insertRegSizeForMode(DefaultMode, RI); 799 } 800 801 CopyCost = R->getValueAsInt("CopyCost"); 802 Allocatable = R->getValueAsBit("isAllocatable"); 803 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 804 int AllocationPriority = R->getValueAsInt("AllocationPriority"); 805 if (AllocationPriority < 0 || AllocationPriority > 63) 806 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]"); 807 this->AllocationPriority = AllocationPriority; 808 809 BitsInit *TSF = R->getValueAsBitsInit("TSFlags"); 810 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) { 811 BitInit *Bit = cast<BitInit>(TSF->getBit(I)); 812 TSFlags |= uint8_t(Bit->getValue()) << I; 813 } 814 } 815 816 // Create an inferred register class that was missing from the .td files. 817 // Most properties will be inherited from the closest super-class after the 818 // class structure has been computed. 819 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 820 StringRef Name, Key Props) 821 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)), 822 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI), 823 CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) { 824 Artificial = true; 825 GeneratePressureSet = false; 826 for (const auto R : Members) { 827 TopoSigs.set(R->getTopoSig()); 828 Artificial &= R->Artificial; 829 } 830 } 831 832 // Compute inherited propertied for a synthesized register class. 833 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 834 assert(!getDef() && "Only synthesized classes can inherit properties"); 835 assert(!SuperClasses.empty() && "Synthesized class without super class"); 836 837 // The last super-class is the smallest one. 838 CodeGenRegisterClass &Super = *SuperClasses.back(); 839 840 // Most properties are copied directly. 841 // Exceptions are members, size, and alignment 842 Namespace = Super.Namespace; 843 VTs = Super.VTs; 844 CopyCost = Super.CopyCost; 845 // Check for allocatable superclasses. 846 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) { 847 return S->Allocatable; 848 }); 849 AltOrderSelect = Super.AltOrderSelect; 850 AllocationPriority = Super.AllocationPriority; 851 TSFlags = Super.TSFlags; 852 GeneratePressureSet |= Super.GeneratePressureSet; 853 854 // Copy all allocation orders, filter out foreign registers from the larger 855 // super-class. 856 Orders.resize(Super.Orders.size()); 857 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 858 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 859 if (contains(RegBank.getReg(Super.Orders[i][j]))) 860 Orders[i].push_back(Super.Orders[i][j]); 861 } 862 863 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 864 return std::binary_search(Members.begin(), Members.end(), Reg, 865 deref<std::less<>>()); 866 } 867 868 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const { 869 if (TheDef && !TheDef->isValueUnset("Weight")) 870 return TheDef->getValueAsInt("Weight"); 871 872 if (Members.empty() || Artificial) 873 return 0; 874 875 return (*Members.begin())->getWeight(RegBank); 876 } 877 878 namespace llvm { 879 880 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 881 OS << "{ " << K.RSI; 882 for (const auto R : *K.Members) 883 OS << ", " << R->getName(); 884 return OS << " }"; 885 } 886 887 } // end namespace llvm 888 889 // This is a simple lexicographical order that can be used to search for sets. 890 // It is not the same as the topological order provided by TopoOrderRC. 891 bool CodeGenRegisterClass::Key:: 892 operator<(const CodeGenRegisterClass::Key &B) const { 893 assert(Members && B.Members); 894 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI); 895 } 896 897 // Returns true if RC is a strict subclass. 898 // RC is a sub-class of this class if it is a valid replacement for any 899 // instruction operand where a register of this classis required. It must 900 // satisfy these conditions: 901 // 902 // 1. All RC registers are also in this. 903 // 2. The RC spill size must not be smaller than our spill size. 904 // 3. RC spill alignment must be compatible with ours. 905 // 906 static bool testSubClass(const CodeGenRegisterClass *A, 907 const CodeGenRegisterClass *B) { 908 return A->RSI.isSubClassOf(B->RSI) && 909 std::includes(A->getMembers().begin(), A->getMembers().end(), 910 B->getMembers().begin(), B->getMembers().end(), 911 deref<std::less<>>()); 912 } 913 914 /// Sorting predicate for register classes. This provides a topological 915 /// ordering that arranges all register classes before their sub-classes. 916 /// 917 /// Register classes with the same registers, spill size, and alignment form a 918 /// clique. They will be ordered alphabetically. 919 /// 920 static bool TopoOrderRC(const CodeGenRegisterClass &PA, 921 const CodeGenRegisterClass &PB) { 922 auto *A = &PA; 923 auto *B = &PB; 924 if (A == B) 925 return false; 926 927 if (A->RSI < B->RSI) 928 return true; 929 if (A->RSI != B->RSI) 930 return false; 931 932 // Order by descending set size. Note that the classes' allocation order may 933 // not have been computed yet. The Members set is always vaild. 934 if (A->getMembers().size() > B->getMembers().size()) 935 return true; 936 if (A->getMembers().size() < B->getMembers().size()) 937 return false; 938 939 // Finally order by name as a tie breaker. 940 return StringRef(A->getName()) < B->getName(); 941 } 942 943 std::string CodeGenRegisterClass::getQualifiedName() const { 944 if (Namespace.empty()) 945 return getName(); 946 else 947 return (Namespace + "::" + getName()).str(); 948 } 949 950 // Compute sub-classes of all register classes. 951 // Assume the classes are ordered topologically. 952 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 953 auto &RegClasses = RegBank.getRegClasses(); 954 955 // Visit backwards so sub-classes are seen first. 956 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) { 957 CodeGenRegisterClass &RC = *I; 958 RC.SubClasses.resize(RegClasses.size()); 959 RC.SubClasses.set(RC.EnumValue); 960 if (RC.Artificial) 961 continue; 962 963 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 964 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) { 965 CodeGenRegisterClass &SubRC = *I2; 966 if (RC.SubClasses.test(SubRC.EnumValue)) 967 continue; 968 if (!testSubClass(&RC, &SubRC)) 969 continue; 970 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 971 // check them again. 972 RC.SubClasses |= SubRC.SubClasses; 973 } 974 975 // Sweep up missed clique members. They will be immediately preceding RC. 976 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2) 977 RC.SubClasses.set(I2->EnumValue); 978 } 979 980 // Compute the SuperClasses lists from the SubClasses vectors. 981 for (auto &RC : RegClasses) { 982 const BitVector &SC = RC.getSubClasses(); 983 auto I = RegClasses.begin(); 984 for (int s = 0, next_s = SC.find_first(); next_s != -1; 985 next_s = SC.find_next(s)) { 986 std::advance(I, next_s - s); 987 s = next_s; 988 if (&*I == &RC) 989 continue; 990 I->SuperClasses.push_back(&RC); 991 } 992 } 993 994 // With the class hierarchy in place, let synthesized register classes inherit 995 // properties from their closest super-class. The iteration order here can 996 // propagate properties down multiple levels. 997 for (auto &RC : RegClasses) 998 if (!RC.getDef()) 999 RC.inheritProperties(RegBank); 1000 } 1001 1002 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>> 1003 CodeGenRegisterClass::getMatchingSubClassWithSubRegs( 1004 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const { 1005 auto SizeOrder = [this](const CodeGenRegisterClass *A, 1006 const CodeGenRegisterClass *B) { 1007 // If there are multiple, identical register classes, prefer the original 1008 // register class. 1009 if (A == B) 1010 return false; 1011 if (A->getMembers().size() == B->getMembers().size()) 1012 return A == this; 1013 return A->getMembers().size() > B->getMembers().size(); 1014 }; 1015 1016 auto &RegClasses = RegBank.getRegClasses(); 1017 1018 // Find all the subclasses of this one that fully support the sub-register 1019 // index and order them by size. BiggestSuperRC should always be first. 1020 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx); 1021 if (!BiggestSuperRegRC) 1022 return None; 1023 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses(); 1024 std::vector<CodeGenRegisterClass *> SuperRegRCs; 1025 for (auto &RC : RegClasses) 1026 if (SuperRegRCsBV[RC.EnumValue]) 1027 SuperRegRCs.emplace_back(&RC); 1028 llvm::stable_sort(SuperRegRCs, SizeOrder); 1029 1030 assert(SuperRegRCs.front() == BiggestSuperRegRC && 1031 "Biggest class wasn't first"); 1032 1033 // Find all the subreg classes and order them by size too. 1034 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses; 1035 for (auto &RC: RegClasses) { 1036 BitVector SuperRegClassesBV(RegClasses.size()); 1037 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV); 1038 if (SuperRegClassesBV.any()) 1039 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV)); 1040 } 1041 llvm::sort(SuperRegClasses, 1042 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A, 1043 const std::pair<CodeGenRegisterClass *, BitVector> &B) { 1044 return SizeOrder(A.first, B.first); 1045 }); 1046 1047 // Find the biggest subclass and subreg class such that R:subidx is in the 1048 // subreg class for all R in subclass. 1049 // 1050 // For example: 1051 // All registers in X86's GR64 have a sub_32bit subregister but no class 1052 // exists that contains all the 32-bit subregisters because GR64 contains RIP 1053 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to 1054 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then, 1055 // having excluded RIP, we are able to find a SubRegRC (GR32). 1056 CodeGenRegisterClass *ChosenSuperRegClass = nullptr; 1057 CodeGenRegisterClass *SubRegRC = nullptr; 1058 for (auto *SuperRegRC : SuperRegRCs) { 1059 for (const auto &SuperRegClassPair : SuperRegClasses) { 1060 const BitVector &SuperRegClassBV = SuperRegClassPair.second; 1061 if (SuperRegClassBV[SuperRegRC->EnumValue]) { 1062 SubRegRC = SuperRegClassPair.first; 1063 ChosenSuperRegClass = SuperRegRC; 1064 1065 // If SubRegRC is bigger than SuperRegRC then there are members of 1066 // SubRegRC that don't have super registers via SubIdx. Keep looking to 1067 // find a better fit and fall back on this one if there isn't one. 1068 // 1069 // This is intended to prevent X86 from making odd choices such as 1070 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above. 1071 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that 1072 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1 1073 // mapping. 1074 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size()) 1075 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1076 } 1077 } 1078 1079 // If we found a fit but it wasn't quite ideal because SubRegRC had excess 1080 // registers, then we're done. 1081 if (ChosenSuperRegClass) 1082 return std::make_pair(ChosenSuperRegClass, SubRegRC); 1083 } 1084 1085 return None; 1086 } 1087 1088 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, 1089 BitVector &Out) const { 1090 auto FindI = SuperRegClasses.find(SubIdx); 1091 if (FindI == SuperRegClasses.end()) 1092 return; 1093 for (CodeGenRegisterClass *RC : FindI->second) 1094 Out.set(RC->EnumValue); 1095 } 1096 1097 // Populate a unique sorted list of units from a register set. 1098 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank, 1099 std::vector<unsigned> &RegUnits) const { 1100 std::vector<unsigned> TmpUnits; 1101 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) { 1102 const RegUnit &RU = RegBank.getRegUnit(*UnitI); 1103 if (!RU.Artificial) 1104 TmpUnits.push_back(*UnitI); 1105 } 1106 llvm::sort(TmpUnits); 1107 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 1108 std::back_inserter(RegUnits)); 1109 } 1110 1111 //===----------------------------------------------------------------------===// 1112 // CodeGenRegisterCategory 1113 //===----------------------------------------------------------------------===// 1114 1115 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank, 1116 Record *R) 1117 : TheDef(R), Name(std::string(R->getName())) { 1118 for (Record *RegClass : R->getValueAsListOfDefs("Classes")) 1119 Classes.push_back(RegBank.getRegClass(RegClass)); 1120 } 1121 1122 //===----------------------------------------------------------------------===// 1123 // CodeGenRegBank 1124 //===----------------------------------------------------------------------===// 1125 1126 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records, 1127 const CodeGenHwModes &Modes) : CGH(Modes) { 1128 // Configure register Sets to understand register classes and tuples. 1129 Sets.addFieldExpander("RegisterClass", "MemberList"); 1130 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 1131 Sets.addExpander("RegisterTuples", 1132 std::make_unique<TupleExpander>(SynthDefs)); 1133 1134 // Read in the user-defined (named) sub-register indices. 1135 // More indices will be synthesized later. 1136 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 1137 llvm::sort(SRIs, LessRecord()); 1138 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 1139 getSubRegIdx(SRIs[i]); 1140 // Build composite maps from ComposedOf fields. 1141 for (auto &Idx : SubRegIndices) 1142 Idx.updateComponents(*this); 1143 1144 // Read in the register definitions. 1145 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 1146 llvm::sort(Regs, LessRecordRegister()); 1147 // Assign the enumeration values. 1148 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 1149 getReg(Regs[i]); 1150 1151 // Expand tuples and number the new registers. 1152 std::vector<Record*> Tups = 1153 Records.getAllDerivedDefinitions("RegisterTuples"); 1154 1155 for (Record *R : Tups) { 1156 std::vector<Record *> TupRegs = *Sets.expand(R); 1157 llvm::sort(TupRegs, LessRecordRegister()); 1158 for (Record *RC : TupRegs) 1159 getReg(RC); 1160 } 1161 1162 // Now all the registers are known. Build the object graph of explicit 1163 // register-register references. 1164 for (auto &Reg : Registers) 1165 Reg.buildObjectGraph(*this); 1166 1167 // Compute register name map. 1168 for (auto &Reg : Registers) 1169 // FIXME: This could just be RegistersByName[name] = register, except that 1170 // causes some failures in MIPS - perhaps they have duplicate register name 1171 // entries? (or maybe there's a reason for it - I don't know much about this 1172 // code, just drive-by refactoring) 1173 RegistersByName.insert( 1174 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg)); 1175 1176 // Precompute all sub-register maps. 1177 // This will create Composite entries for all inferred sub-register indices. 1178 for (auto &Reg : Registers) 1179 Reg.computeSubRegs(*this); 1180 1181 // Compute transitive closure of subregister index ConcatenationOf vectors 1182 // and initialize ConcatIdx map. 1183 for (CodeGenSubRegIndex &SRI : SubRegIndices) { 1184 SRI.computeConcatTransitiveClosure(); 1185 if (!SRI.ConcatenationOf.empty()) 1186 ConcatIdx.insert(std::make_pair( 1187 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(), 1188 SRI.ConcatenationOf.end()), &SRI)); 1189 } 1190 1191 // Infer even more sub-registers by combining leading super-registers. 1192 for (auto &Reg : Registers) 1193 if (Reg.CoveredBySubRegs) 1194 Reg.computeSecondarySubRegs(*this); 1195 1196 // After the sub-register graph is complete, compute the topologically 1197 // ordered SuperRegs list. 1198 for (auto &Reg : Registers) 1199 Reg.computeSuperRegs(*this); 1200 1201 // For each pair of Reg:SR, if both are non-artificial, mark the 1202 // corresponding sub-register index as non-artificial. 1203 for (auto &Reg : Registers) { 1204 if (Reg.Artificial) 1205 continue; 1206 for (auto P : Reg.getSubRegs()) { 1207 const CodeGenRegister *SR = P.second; 1208 if (!SR->Artificial) 1209 P.first->Artificial = false; 1210 } 1211 } 1212 1213 // Native register units are associated with a leaf register. They've all been 1214 // discovered now. 1215 NumNativeRegUnits = RegUnits.size(); 1216 1217 // Read in register class definitions. 1218 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 1219 if (RCs.empty()) 1220 PrintFatalError("No 'RegisterClass' subclasses defined!"); 1221 1222 // Allocate user-defined register classes. 1223 for (auto *R : RCs) { 1224 RegClasses.emplace_back(*this, R); 1225 CodeGenRegisterClass &RC = RegClasses.back(); 1226 if (!RC.Artificial) 1227 addToMaps(&RC); 1228 } 1229 1230 // Infer missing classes to create a full algebra. 1231 computeInferredRegisterClasses(); 1232 1233 // Order register classes topologically and assign enum values. 1234 RegClasses.sort(TopoOrderRC); 1235 unsigned i = 0; 1236 for (auto &RC : RegClasses) 1237 RC.EnumValue = i++; 1238 CodeGenRegisterClass::computeSubClasses(*this); 1239 1240 // Read in the register category definitions. 1241 std::vector<Record *> RCats = 1242 Records.getAllDerivedDefinitions("RegisterCategory"); 1243 for (auto *R : RCats) 1244 RegCategories.emplace_back(*this, R); 1245 } 1246 1247 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1248 CodeGenSubRegIndex* 1249 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1250 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1); 1251 return &SubRegIndices.back(); 1252 } 1253 1254 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1255 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1256 if (Idx) 1257 return Idx; 1258 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1); 1259 Idx = &SubRegIndices.back(); 1260 return Idx; 1261 } 1262 1263 const CodeGenSubRegIndex * 1264 CodeGenRegBank::findSubRegIdx(const Record* Def) const { 1265 return Def2SubRegIdx.lookup(Def); 1266 } 1267 1268 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1269 CodeGenRegister *&Reg = Def2Reg[Def]; 1270 if (Reg) 1271 return Reg; 1272 Registers.emplace_back(Def, Registers.size() + 1); 1273 Reg = &Registers.back(); 1274 return Reg; 1275 } 1276 1277 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1278 if (Record *Def = RC->getDef()) 1279 Def2RC.insert(std::make_pair(Def, RC)); 1280 1281 // Duplicate classes are rejected by insert(). 1282 // That's OK, we only care about the properties handled by CGRC::Key. 1283 CodeGenRegisterClass::Key K(*RC); 1284 Key2RC.insert(std::make_pair(K, RC)); 1285 } 1286 1287 // Create a synthetic sub-class if it is missing. 1288 CodeGenRegisterClass* 1289 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1290 const CodeGenRegister::Vec *Members, 1291 StringRef Name) { 1292 // Synthetic sub-class has the same size and alignment as RC. 1293 CodeGenRegisterClass::Key K(Members, RC->RSI); 1294 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1295 if (FoundI != Key2RC.end()) 1296 return FoundI->second; 1297 1298 // Sub-class doesn't exist, create a new one. 1299 RegClasses.emplace_back(*this, Name, K); 1300 addToMaps(&RegClasses.back()); 1301 return &RegClasses.back(); 1302 } 1303 1304 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const { 1305 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def)) 1306 return RC; 1307 1308 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1309 } 1310 1311 CodeGenSubRegIndex* 1312 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1313 CodeGenSubRegIndex *B) { 1314 // Look for an existing entry. 1315 CodeGenSubRegIndex *Comp = A->compose(B); 1316 if (Comp) 1317 return Comp; 1318 1319 // None exists, synthesize one. 1320 std::string Name = A->getName() + "_then_" + B->getName(); 1321 Comp = createSubRegIndex(Name, A->getNamespace()); 1322 A->addComposite(B, Comp); 1323 return Comp; 1324 } 1325 1326 CodeGenSubRegIndex *CodeGenRegBank:: 1327 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1328 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1329 #ifndef NDEBUG 1330 for (CodeGenSubRegIndex *Idx : Parts) { 1331 assert(Idx->ConcatenationOf.empty() && "No transitive closure?"); 1332 } 1333 #endif 1334 1335 // Look for an existing entry. 1336 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1337 if (Idx) 1338 return Idx; 1339 1340 // None exists, synthesize one. 1341 std::string Name = Parts.front()->getName(); 1342 // Determine whether all parts are contiguous. 1343 bool isContinuous = true; 1344 unsigned Size = Parts.front()->Size; 1345 unsigned LastOffset = Parts.front()->Offset; 1346 unsigned LastSize = Parts.front()->Size; 1347 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1348 Name += '_'; 1349 Name += Parts[i]->getName(); 1350 Size += Parts[i]->Size; 1351 if (Parts[i]->Offset != (LastOffset + LastSize)) 1352 isContinuous = false; 1353 LastOffset = Parts[i]->Offset; 1354 LastSize = Parts[i]->Size; 1355 } 1356 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1357 Idx->Size = Size; 1358 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1359 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end()); 1360 return Idx; 1361 } 1362 1363 void CodeGenRegBank::computeComposites() { 1364 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>; 1365 1366 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from 1367 // register to (sub)register associated with the action of the left-hand 1368 // side subregister. 1369 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction; 1370 for (const CodeGenRegister &R : Registers) { 1371 const CodeGenRegister::SubRegMap &SM = R.getSubRegs(); 1372 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM) 1373 SubRegAction[P.first].insert({&R, P.second}); 1374 } 1375 1376 // Calculate the composition of two subregisters as compositions of their 1377 // associated actions. 1378 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1, 1379 const CodeGenSubRegIndex *Sub2) { 1380 RegMap C; 1381 const RegMap &Img1 = SubRegAction.at(Sub1); 1382 const RegMap &Img2 = SubRegAction.at(Sub2); 1383 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) { 1384 auto F = Img2.find(P.second); 1385 if (F != Img2.end()) 1386 C.insert({P.first, F->second}); 1387 } 1388 return C; 1389 }; 1390 1391 // Check if the two maps agree on the intersection of their domains. 1392 auto agree = [] (const RegMap &Map1, const RegMap &Map2) { 1393 // Technically speaking, an empty map agrees with any other map, but 1394 // this could flag false positives. We're interested in non-vacuous 1395 // agreements. 1396 if (Map1.empty() || Map2.empty()) 1397 return false; 1398 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) { 1399 auto F = Map2.find(P.first); 1400 if (F == Map2.end() || P.second != F->second) 1401 return false; 1402 } 1403 return true; 1404 }; 1405 1406 using CompositePair = std::pair<const CodeGenSubRegIndex*, 1407 const CodeGenSubRegIndex*>; 1408 SmallSet<CompositePair,4> UserDefined; 1409 for (const CodeGenSubRegIndex &Idx : SubRegIndices) 1410 for (auto P : Idx.getComposites()) 1411 UserDefined.insert(std::make_pair(&Idx, P.first)); 1412 1413 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1414 // and many registers will share TopoSigs on regular architectures. 1415 BitVector TopoSigs(getNumTopoSigs()); 1416 1417 for (const auto &Reg1 : Registers) { 1418 // Skip identical subreg structures already processed. 1419 if (TopoSigs.test(Reg1.getTopoSig())) 1420 continue; 1421 TopoSigs.set(Reg1.getTopoSig()); 1422 1423 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs(); 1424 for (auto I1 : SRM1) { 1425 CodeGenSubRegIndex *Idx1 = I1.first; 1426 CodeGenRegister *Reg2 = I1.second; 1427 // Ignore identity compositions. 1428 if (&Reg1 == Reg2) 1429 continue; 1430 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1431 // Try composing Idx1 with another SubRegIndex. 1432 for (auto I2 : SRM2) { 1433 CodeGenSubRegIndex *Idx2 = I2.first; 1434 CodeGenRegister *Reg3 = I2.second; 1435 // Ignore identity compositions. 1436 if (Reg2 == Reg3) 1437 continue; 1438 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1439 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3); 1440 assert(Idx3 && "Sub-register doesn't have an index"); 1441 1442 // Conflicting composition? Emit a warning but allow it. 1443 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) { 1444 // If the composition was not user-defined, always emit a warning. 1445 if (!UserDefined.count({Idx1, Idx2}) || 1446 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3))) 1447 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1448 " and " + Idx2->getQualifiedName() + 1449 " compose ambiguously as " + Prev->getQualifiedName() + 1450 " or " + Idx3->getQualifiedName()); 1451 } 1452 } 1453 } 1454 } 1455 } 1456 1457 // Compute lane masks. This is similar to register units, but at the 1458 // sub-register index level. Each bit in the lane mask is like a register unit 1459 // class, and two lane masks will have a bit in common if two sub-register 1460 // indices overlap in some register. 1461 // 1462 // Conservatively share a lane mask bit if two sub-register indices overlap in 1463 // some registers, but not in others. That shouldn't happen a lot. 1464 void CodeGenRegBank::computeSubRegLaneMasks() { 1465 // First assign individual bits to all the leaf indices. 1466 unsigned Bit = 0; 1467 // Determine mask of lanes that cover their registers. 1468 CoveringLanes = LaneBitmask::getAll(); 1469 for (auto &Idx : SubRegIndices) { 1470 if (Idx.getComposites().empty()) { 1471 if (Bit > LaneBitmask::BitWidth) { 1472 PrintFatalError( 1473 Twine("Ran out of lanemask bits to represent subregister ") 1474 + Idx.getName()); 1475 } 1476 Idx.LaneMask = LaneBitmask::getLane(Bit); 1477 ++Bit; 1478 } else { 1479 Idx.LaneMask = LaneBitmask::getNone(); 1480 } 1481 } 1482 1483 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea 1484 // here is that for each possible target subregister we look at the leafs 1485 // in the subregister graph that compose for this target and create 1486 // transformation sequences for the lanemasks. Each step in the sequence 1487 // consists of a bitmask and a bitrotate operation. As the rotation amounts 1488 // are usually the same for many subregisters we can easily combine the steps 1489 // by combining the masks. 1490 for (const auto &Idx : SubRegIndices) { 1491 const auto &Composites = Idx.getComposites(); 1492 auto &LaneTransforms = Idx.CompositionLaneMaskTransform; 1493 1494 if (Composites.empty()) { 1495 // Moving from a class with no subregisters we just had a single lane: 1496 // The subregister must be a leaf subregister and only occupies 1 bit. 1497 // Move the bit from the class without subregisters into that position. 1498 unsigned DstBit = Idx.LaneMask.getHighestLane(); 1499 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) && 1500 "Must be a leaf subregister"); 1501 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit }; 1502 LaneTransforms.push_back(MaskRol); 1503 } else { 1504 // Go through all leaf subregisters and find the ones that compose with 1505 // Idx. These make out all possible valid bits in the lane mask we want to 1506 // transform. Looking only at the leafs ensure that only a single bit in 1507 // the mask is set. 1508 unsigned NextBit = 0; 1509 for (auto &Idx2 : SubRegIndices) { 1510 // Skip non-leaf subregisters. 1511 if (!Idx2.getComposites().empty()) 1512 continue; 1513 // Replicate the behaviour from the lane mask generation loop above. 1514 unsigned SrcBit = NextBit; 1515 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit); 1516 if (NextBit < LaneBitmask::BitWidth-1) 1517 ++NextBit; 1518 assert(Idx2.LaneMask == SrcMask); 1519 1520 // Get the composed subregister if there is any. 1521 auto C = Composites.find(&Idx2); 1522 if (C == Composites.end()) 1523 continue; 1524 const CodeGenSubRegIndex *Composite = C->second; 1525 // The Composed subreg should be a leaf subreg too 1526 assert(Composite->getComposites().empty()); 1527 1528 // Create Mask+Rotate operation and merge with existing ops if possible. 1529 unsigned DstBit = Composite->LaneMask.getHighestLane(); 1530 int Shift = DstBit - SrcBit; 1531 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift 1532 : LaneBitmask::BitWidth + Shift; 1533 for (auto &I : LaneTransforms) { 1534 if (I.RotateLeft == RotateLeft) { 1535 I.Mask |= SrcMask; 1536 SrcMask = LaneBitmask::getNone(); 1537 } 1538 } 1539 if (SrcMask.any()) { 1540 MaskRolPair MaskRol = { SrcMask, RotateLeft }; 1541 LaneTransforms.push_back(MaskRol); 1542 } 1543 } 1544 } 1545 1546 // Optimize if the transformation consists of one step only: Set mask to 1547 // 0xffffffff (including some irrelevant invalid bits) so that it should 1548 // merge with more entries later while compressing the table. 1549 if (LaneTransforms.size() == 1) 1550 LaneTransforms[0].Mask = LaneBitmask::getAll(); 1551 1552 // Further compression optimization: For invalid compositions resulting 1553 // in a sequence with 0 entries we can just pick any other. Choose 1554 // Mask 0xffffffff with Rotation 0. 1555 if (LaneTransforms.size() == 0) { 1556 MaskRolPair P = { LaneBitmask::getAll(), 0 }; 1557 LaneTransforms.push_back(P); 1558 } 1559 } 1560 1561 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1562 // by the sub-register graph? This doesn't occur in any known targets. 1563 1564 // Inherit lanes from composites. 1565 for (const auto &Idx : SubRegIndices) { 1566 LaneBitmask Mask = Idx.computeLaneMask(); 1567 // If some super-registers without CoveredBySubRegs use this index, we can 1568 // no longer assume that the lanes are covering their registers. 1569 if (!Idx.AllSuperRegsCovered) 1570 CoveringLanes &= ~Mask; 1571 } 1572 1573 // Compute lane mask combinations for register classes. 1574 for (auto &RegClass : RegClasses) { 1575 LaneBitmask LaneMask; 1576 for (const auto &SubRegIndex : SubRegIndices) { 1577 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr) 1578 continue; 1579 LaneMask |= SubRegIndex.LaneMask; 1580 } 1581 1582 // For classes without any subregisters set LaneMask to 1 instead of 0. 1583 // This makes it easier for client code to handle classes uniformly. 1584 if (LaneMask.none()) 1585 LaneMask = LaneBitmask::getLane(0); 1586 1587 RegClass.LaneMask = LaneMask; 1588 } 1589 } 1590 1591 namespace { 1592 1593 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1594 // the transitive closure of the union of overlapping register 1595 // classes. Together, the UberRegSets form a partition of the registers. If we 1596 // consider overlapping register classes to be connected, then each UberRegSet 1597 // is a set of connected components. 1598 // 1599 // An UberRegSet will likely be a horizontal slice of register names of 1600 // the same width. Nontrivial subregisters should then be in a separate 1601 // UberRegSet. But this property isn't required for valid computation of 1602 // register unit weights. 1603 // 1604 // A Weight field caches the max per-register unit weight in each UberRegSet. 1605 // 1606 // A set of SingularDeterminants flags single units of some register in this set 1607 // for which the unit weight equals the set weight. These units should not have 1608 // their weight increased. 1609 struct UberRegSet { 1610 CodeGenRegister::Vec Regs; 1611 unsigned Weight = 0; 1612 CodeGenRegister::RegUnitList SingularDeterminants; 1613 1614 UberRegSet() = default; 1615 }; 1616 1617 } // end anonymous namespace 1618 1619 // Partition registers into UberRegSets, where each set is the transitive 1620 // closure of the union of overlapping register classes. 1621 // 1622 // UberRegSets[0] is a special non-allocatable set. 1623 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1624 std::vector<UberRegSet*> &RegSets, 1625 CodeGenRegBank &RegBank) { 1626 const auto &Registers = RegBank.getRegisters(); 1627 1628 // The Register EnumValue is one greater than its index into Registers. 1629 assert(Registers.size() == Registers.back().EnumValue && 1630 "register enum value mismatch"); 1631 1632 // For simplicitly make the SetID the same as EnumValue. 1633 IntEqClasses UberSetIDs(Registers.size()+1); 1634 std::set<unsigned> AllocatableRegs; 1635 for (auto &RegClass : RegBank.getRegClasses()) { 1636 if (!RegClass.Allocatable) 1637 continue; 1638 1639 const CodeGenRegister::Vec &Regs = RegClass.getMembers(); 1640 if (Regs.empty()) 1641 continue; 1642 1643 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1644 assert(USetID && "register number 0 is invalid"); 1645 1646 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1647 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) { 1648 AllocatableRegs.insert(CGR->EnumValue); 1649 UberSetIDs.join(USetID, CGR->EnumValue); 1650 } 1651 } 1652 // Combine non-allocatable regs. 1653 for (const auto &Reg : Registers) { 1654 unsigned RegNum = Reg.EnumValue; 1655 if (AllocatableRegs.count(RegNum)) 1656 continue; 1657 1658 UberSetIDs.join(0, RegNum); 1659 } 1660 UberSetIDs.compress(); 1661 1662 // Make the first UberSet a special unallocatable set. 1663 unsigned ZeroID = UberSetIDs[0]; 1664 1665 // Insert Registers into the UberSets formed by union-find. 1666 // Do not resize after this. 1667 UberSets.resize(UberSetIDs.getNumClasses()); 1668 unsigned i = 0; 1669 for (const CodeGenRegister &Reg : Registers) { 1670 unsigned USetID = UberSetIDs[Reg.EnumValue]; 1671 if (!USetID) 1672 USetID = ZeroID; 1673 else if (USetID == ZeroID) 1674 USetID = 0; 1675 1676 UberRegSet *USet = &UberSets[USetID]; 1677 USet->Regs.push_back(&Reg); 1678 sortAndUniqueRegisters(USet->Regs); 1679 RegSets[i++] = USet; 1680 } 1681 } 1682 1683 // Recompute each UberSet weight after changing unit weights. 1684 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1685 CodeGenRegBank &RegBank) { 1686 // Skip the first unallocatable set. 1687 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()), 1688 E = UberSets.end(); I != E; ++I) { 1689 1690 // Initialize all unit weights in this set, and remember the max units/reg. 1691 const CodeGenRegister *Reg = nullptr; 1692 unsigned MaxWeight = 0, Weight = 0; 1693 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1694 if (Reg != UnitI.getReg()) { 1695 if (Weight > MaxWeight) 1696 MaxWeight = Weight; 1697 Reg = UnitI.getReg(); 1698 Weight = 0; 1699 } 1700 if (!RegBank.getRegUnit(*UnitI).Artificial) { 1701 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1702 if (!UWeight) { 1703 UWeight = 1; 1704 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1705 } 1706 Weight += UWeight; 1707 } 1708 } 1709 if (Weight > MaxWeight) 1710 MaxWeight = Weight; 1711 if (I->Weight != MaxWeight) { 1712 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight " 1713 << MaxWeight; 1714 for (auto &Unit 1715 : I->Regs) dbgs() 1716 << " " << Unit->getName(); 1717 dbgs() << "\n"); 1718 // Update the set weight. 1719 I->Weight = MaxWeight; 1720 } 1721 1722 // Find singular determinants. 1723 for (const auto R : I->Regs) { 1724 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) { 1725 I->SingularDeterminants |= R->getRegUnits(); 1726 } 1727 } 1728 } 1729 } 1730 1731 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1732 // a register and its subregisters so that they have the same weight as their 1733 // UberSet. Self-recursion processes the subregister tree in postorder so 1734 // subregisters are normalized first. 1735 // 1736 // Side effects: 1737 // - creates new adopted register units 1738 // - causes superregisters to inherit adopted units 1739 // - increases the weight of "singular" units 1740 // - induces recomputation of UberWeights. 1741 static bool normalizeWeight(CodeGenRegister *Reg, 1742 std::vector<UberRegSet> &UberSets, 1743 std::vector<UberRegSet*> &RegSets, 1744 BitVector &NormalRegs, 1745 CodeGenRegister::RegUnitList &NormalUnits, 1746 CodeGenRegBank &RegBank) { 1747 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size())); 1748 if (NormalRegs.test(Reg->EnumValue)) 1749 return false; 1750 NormalRegs.set(Reg->EnumValue); 1751 1752 bool Changed = false; 1753 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1754 for (auto SRI : SRM) { 1755 if (SRI.second == Reg) 1756 continue; // self-cycles happen 1757 1758 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs, 1759 NormalUnits, RegBank); 1760 } 1761 // Postorder register normalization. 1762 1763 // Inherit register units newly adopted by subregisters. 1764 if (Reg->inheritRegUnits(RegBank)) 1765 computeUberWeights(UberSets, RegBank); 1766 1767 // Check if this register is too skinny for its UberRegSet. 1768 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1769 1770 unsigned RegWeight = Reg->getWeight(RegBank); 1771 if (UberSet->Weight > RegWeight) { 1772 // A register unit's weight can be adjusted only if it is the singular unit 1773 // for this register, has not been used to normalize a subregister's set, 1774 // and has not already been used to singularly determine this UberRegSet. 1775 unsigned AdjustUnit = *Reg->getRegUnits().begin(); 1776 if (Reg->getRegUnits().count() != 1 1777 || hasRegUnit(NormalUnits, AdjustUnit) 1778 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1779 // We don't have an adjustable unit, so adopt a new one. 1780 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1781 Reg->adoptRegUnit(AdjustUnit); 1782 // Adopting a unit does not immediately require recomputing set weights. 1783 } 1784 else { 1785 // Adjust the existing single unit. 1786 if (!RegBank.getRegUnit(AdjustUnit).Artificial) 1787 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1788 // The unit may be shared among sets and registers within this set. 1789 computeUberWeights(UberSets, RegBank); 1790 } 1791 Changed = true; 1792 } 1793 1794 // Mark these units normalized so superregisters can't change their weights. 1795 NormalUnits |= Reg->getRegUnits(); 1796 1797 return Changed; 1798 } 1799 1800 // Compute a weight for each register unit created during getSubRegs. 1801 // 1802 // The goal is that two registers in the same class will have the same weight, 1803 // where each register's weight is defined as sum of its units' weights. 1804 void CodeGenRegBank::computeRegUnitWeights() { 1805 std::vector<UberRegSet> UberSets; 1806 std::vector<UberRegSet*> RegSets(Registers.size()); 1807 computeUberSets(UberSets, RegSets, *this); 1808 // UberSets and RegSets are now immutable. 1809 1810 computeUberWeights(UberSets, *this); 1811 1812 // Iterate over each Register, normalizing the unit weights until reaching 1813 // a fix point. 1814 unsigned NumIters = 0; 1815 for (bool Changed = true; Changed; ++NumIters) { 1816 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1817 (void) NumIters; 1818 Changed = false; 1819 for (auto &Reg : Registers) { 1820 CodeGenRegister::RegUnitList NormalUnits; 1821 BitVector NormalRegs; 1822 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs, 1823 NormalUnits, *this); 1824 } 1825 } 1826 } 1827 1828 // Find a set in UniqueSets with the same elements as Set. 1829 // Return an iterator into UniqueSets. 1830 static std::vector<RegUnitSet>::const_iterator 1831 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1832 const RegUnitSet &Set) { 1833 std::vector<RegUnitSet>::const_iterator 1834 I = UniqueSets.begin(), E = UniqueSets.end(); 1835 for(;I != E; ++I) { 1836 if (I->Units == Set.Units) 1837 break; 1838 } 1839 return I; 1840 } 1841 1842 // Return true if the RUSubSet is a subset of RUSuperSet. 1843 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1844 const std::vector<unsigned> &RUSuperSet) { 1845 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1846 RUSubSet.begin(), RUSubSet.end()); 1847 } 1848 1849 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1850 /// but with one or two registers removed. We occasionally have registers like 1851 /// APSR and PC thrown in with the general registers. We also see many 1852 /// special-purpose register subsets, such as tail-call and Thumb 1853 /// encodings. Generating all possible overlapping sets is combinatorial and 1854 /// overkill for modeling pressure. Ideally we could fix this statically in 1855 /// tablegen by (1) having the target define register classes that only include 1856 /// the allocatable registers and marking other classes as non-allocatable and 1857 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1858 /// the purpose of pressure. However, we make an attempt to handle targets that 1859 /// are not nicely defined by merging nearly identical register unit sets 1860 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1861 /// set limit by filtering the reserved registers. 1862 /// 1863 /// Merge sets only if the units have the same weight. For example, on ARM, 1864 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1865 /// should not expand the S set to include D regs. 1866 void CodeGenRegBank::pruneUnitSets() { 1867 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1868 1869 // Form an equivalence class of UnitSets with no significant difference. 1870 std::vector<unsigned> SuperSetIDs; 1871 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1872 SubIdx != EndIdx; ++SubIdx) { 1873 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1874 unsigned SuperIdx = 0; 1875 for (; SuperIdx != EndIdx; ++SuperIdx) { 1876 if (SuperIdx == SubIdx) 1877 continue; 1878 1879 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1880 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1881 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1882 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1883 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1884 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1885 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1886 << "\n"); 1887 // We can pick any of the set names for the merged set. Go for the 1888 // shortest one to avoid picking the name of one of the classes that are 1889 // artificially created by tablegen. So "FPR128_lo" instead of 1890 // "QQQQ_with_qsub3_in_FPR128_lo". 1891 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size()) 1892 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name; 1893 break; 1894 } 1895 } 1896 if (SuperIdx == EndIdx) 1897 SuperSetIDs.push_back(SubIdx); 1898 } 1899 // Populate PrunedUnitSets with each equivalence class's superset. 1900 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1901 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1902 unsigned SuperIdx = SuperSetIDs[i]; 1903 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1904 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1905 } 1906 RegUnitSets.swap(PrunedUnitSets); 1907 } 1908 1909 // Create a RegUnitSet for each RegClass that contains all units in the class 1910 // including adopted units that are necessary to model register pressure. Then 1911 // iteratively compute RegUnitSets such that the union of any two overlapping 1912 // RegUnitSets is repreresented. 1913 // 1914 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1915 // RegUnitSet that is a superset of that RegUnitClass. 1916 void CodeGenRegBank::computeRegUnitSets() { 1917 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1918 1919 // Compute a unique RegUnitSet for each RegClass. 1920 auto &RegClasses = getRegClasses(); 1921 for (auto &RC : RegClasses) { 1922 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet) 1923 continue; 1924 1925 // Speculatively grow the RegUnitSets to hold the new set. 1926 RegUnitSets.resize(RegUnitSets.size() + 1); 1927 RegUnitSets.back().Name = RC.getName(); 1928 1929 // Compute a sorted list of units in this class. 1930 RC.buildRegUnitSet(*this, RegUnitSets.back().Units); 1931 1932 // Find an existing RegUnitSet. 1933 std::vector<RegUnitSet>::const_iterator SetI = 1934 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1935 if (SetI != std::prev(RegUnitSets.end())) 1936 RegUnitSets.pop_back(); 1937 } 1938 1939 if (RegUnitSets.empty()) 1940 PrintFatalError("RegUnitSets cannot be empty!"); 1941 1942 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0, 1943 USEnd = RegUnitSets.size(); 1944 USIdx < USEnd; ++USIdx) { 1945 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1946 for (auto &U : RegUnitSets[USIdx].Units) 1947 printRegUnitName(U); 1948 dbgs() << "\n"; 1949 }); 1950 1951 // Iteratively prune unit sets. 1952 pruneUnitSets(); 1953 1954 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0, 1955 USEnd = RegUnitSets.size(); 1956 USIdx < USEnd; ++USIdx) { 1957 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 1958 for (auto &U : RegUnitSets[USIdx].Units) 1959 printRegUnitName(U); 1960 dbgs() << "\n"; 1961 } dbgs() << "\nUnion sets:\n"); 1962 1963 // Iterate over all unit sets, including new ones added by this loop. 1964 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1965 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1966 // In theory, this is combinatorial. In practice, it needs to be bounded 1967 // by a small number of sets for regpressure to be efficient. 1968 // If the assert is hit, we need to implement pruning. 1969 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1970 1971 // Compare new sets with all original classes. 1972 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1973 SearchIdx != EndIdx; ++SearchIdx) { 1974 std::set<unsigned> Intersection; 1975 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1976 RegUnitSets[Idx].Units.end(), 1977 RegUnitSets[SearchIdx].Units.begin(), 1978 RegUnitSets[SearchIdx].Units.end(), 1979 std::inserter(Intersection, Intersection.begin())); 1980 if (Intersection.empty()) 1981 continue; 1982 1983 // Speculatively grow the RegUnitSets to hold the new set. 1984 RegUnitSets.resize(RegUnitSets.size() + 1); 1985 RegUnitSets.back().Name = 1986 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name; 1987 1988 std::set_union(RegUnitSets[Idx].Units.begin(), 1989 RegUnitSets[Idx].Units.end(), 1990 RegUnitSets[SearchIdx].Units.begin(), 1991 RegUnitSets[SearchIdx].Units.end(), 1992 std::inserter(RegUnitSets.back().Units, 1993 RegUnitSets.back().Units.begin())); 1994 1995 // Find an existing RegUnitSet, or add the union to the unique sets. 1996 std::vector<RegUnitSet>::const_iterator SetI = 1997 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1998 if (SetI != std::prev(RegUnitSets.end())) 1999 RegUnitSets.pop_back(); 2000 else { 2001 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " " 2002 << RegUnitSets.back().Name << ":"; 2003 for (auto &U 2004 : RegUnitSets.back().Units) printRegUnitName(U); 2005 dbgs() << "\n";); 2006 } 2007 } 2008 } 2009 2010 // Iteratively prune unit sets after inferring supersets. 2011 pruneUnitSets(); 2012 2013 LLVM_DEBUG( 2014 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2015 USIdx < USEnd; ++USIdx) { 2016 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":"; 2017 for (auto &U : RegUnitSets[USIdx].Units) 2018 printRegUnitName(U); 2019 dbgs() << "\n"; 2020 }); 2021 2022 // For each register class, list the UnitSets that are supersets. 2023 RegClassUnitSets.resize(RegClasses.size()); 2024 int RCIdx = -1; 2025 for (auto &RC : RegClasses) { 2026 ++RCIdx; 2027 if (!RC.Allocatable) 2028 continue; 2029 2030 // Recompute the sorted list of units in this class. 2031 std::vector<unsigned> RCRegUnits; 2032 RC.buildRegUnitSet(*this, RCRegUnits); 2033 2034 // Don't increase pressure for unallocatable regclasses. 2035 if (RCRegUnits.empty()) 2036 continue; 2037 2038 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n"; 2039 for (auto U 2040 : RCRegUnits) printRegUnitName(U); 2041 dbgs() << "\n UnitSetIDs:"); 2042 2043 // Find all supersets. 2044 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 2045 USIdx != USEnd; ++USIdx) { 2046 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 2047 LLVM_DEBUG(dbgs() << " " << USIdx); 2048 RegClassUnitSets[RCIdx].push_back(USIdx); 2049 } 2050 } 2051 LLVM_DEBUG(dbgs() << "\n"); 2052 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) && 2053 "missing unit set for regclass"); 2054 } 2055 2056 // For each register unit, ensure that we have the list of UnitSets that 2057 // contain the unit. Normally, this matches an existing list of UnitSets for a 2058 // register class. If not, we create a new entry in RegClassUnitSets as a 2059 // "fake" register class. 2060 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 2061 UnitIdx < UnitEnd; ++UnitIdx) { 2062 std::vector<unsigned> RUSets; 2063 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 2064 RegUnitSet &RUSet = RegUnitSets[i]; 2065 if (!is_contained(RUSet.Units, UnitIdx)) 2066 continue; 2067 RUSets.push_back(i); 2068 } 2069 unsigned RCUnitSetsIdx = 0; 2070 for (unsigned e = RegClassUnitSets.size(); 2071 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 2072 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 2073 break; 2074 } 2075 } 2076 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 2077 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 2078 // Create a new list of UnitSets as a "fake" register class. 2079 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 2080 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 2081 } 2082 } 2083 } 2084 2085 void CodeGenRegBank::computeRegUnitLaneMasks() { 2086 for (auto &Register : Registers) { 2087 // Create an initial lane mask for all register units. 2088 const auto &RegUnits = Register.getRegUnits(); 2089 CodeGenRegister::RegUnitLaneMaskList 2090 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone()); 2091 // Iterate through SubRegisters. 2092 typedef CodeGenRegister::SubRegMap SubRegMap; 2093 const SubRegMap &SubRegs = Register.getSubRegs(); 2094 for (auto S : SubRegs) { 2095 CodeGenRegister *SubReg = S.second; 2096 // Ignore non-leaf subregisters, their lane masks are fully covered by 2097 // the leaf subregisters anyway. 2098 if (!SubReg->getSubRegs().empty()) 2099 continue; 2100 CodeGenSubRegIndex *SubRegIndex = S.first; 2101 const CodeGenRegister *SubRegister = S.second; 2102 LaneBitmask LaneMask = SubRegIndex->LaneMask; 2103 // Distribute LaneMask to Register Units touched. 2104 for (unsigned SUI : SubRegister->getRegUnits()) { 2105 bool Found = false; 2106 unsigned u = 0; 2107 for (unsigned RU : RegUnits) { 2108 if (SUI == RU) { 2109 RegUnitLaneMasks[u] |= LaneMask; 2110 assert(!Found); 2111 Found = true; 2112 } 2113 ++u; 2114 } 2115 (void)Found; 2116 assert(Found); 2117 } 2118 } 2119 Register.setRegUnitLaneMasks(RegUnitLaneMasks); 2120 } 2121 } 2122 2123 void CodeGenRegBank::computeDerivedInfo() { 2124 computeComposites(); 2125 computeSubRegLaneMasks(); 2126 2127 // Compute a weight for each register unit created during getSubRegs. 2128 // This may create adopted register units (with unit # >= NumNativeRegUnits). 2129 computeRegUnitWeights(); 2130 2131 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 2132 // supersets for the union of overlapping sets. 2133 computeRegUnitSets(); 2134 2135 computeRegUnitLaneMasks(); 2136 2137 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag. 2138 for (CodeGenRegisterClass &RC : RegClasses) { 2139 RC.HasDisjunctSubRegs = false; 2140 RC.CoveredBySubRegs = true; 2141 for (const CodeGenRegister *Reg : RC.getMembers()) { 2142 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs; 2143 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs; 2144 } 2145 } 2146 2147 // Get the weight of each set. 2148 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2149 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 2150 2151 // Find the order of each set. 2152 RegUnitSetOrder.reserve(RegUnitSets.size()); 2153 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 2154 RegUnitSetOrder.push_back(Idx); 2155 2156 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) { 2157 return getRegPressureSet(ID1).Units.size() < 2158 getRegPressureSet(ID2).Units.size(); 2159 }); 2160 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 2161 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 2162 } 2163 } 2164 2165 // 2166 // Synthesize missing register class intersections. 2167 // 2168 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 2169 // returns a maximal register class for all X. 2170 // 2171 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 2172 assert(!RegClasses.empty()); 2173 // Stash the iterator to the last element so that this loop doesn't visit 2174 // elements added by the getOrCreateSubClass call within it. 2175 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end()); 2176 I != std::next(E); ++I) { 2177 CodeGenRegisterClass *RC1 = RC; 2178 CodeGenRegisterClass *RC2 = &*I; 2179 if (RC1 == RC2) 2180 continue; 2181 2182 // Compute the set intersection of RC1 and RC2. 2183 const CodeGenRegister::Vec &Memb1 = RC1->getMembers(); 2184 const CodeGenRegister::Vec &Memb2 = RC2->getMembers(); 2185 CodeGenRegister::Vec Intersection; 2186 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), 2187 Memb2.end(), 2188 std::inserter(Intersection, Intersection.begin()), 2189 deref<std::less<>>()); 2190 2191 // Skip disjoint class pairs. 2192 if (Intersection.empty()) 2193 continue; 2194 2195 // If RC1 and RC2 have different spill sizes or alignments, use the 2196 // stricter one for sub-classing. If they are equal, prefer RC1. 2197 if (RC2->RSI.hasStricterSpillThan(RC1->RSI)) 2198 std::swap(RC1, RC2); 2199 2200 getOrCreateSubClass(RC1, &Intersection, 2201 RC1->getName() + "_and_" + RC2->getName()); 2202 } 2203 } 2204 2205 // 2206 // Synthesize missing sub-classes for getSubClassWithSubReg(). 2207 // 2208 // Make sure that the set of registers in RC with a given SubIdx sub-register 2209 // form a register class. Update RC->SubClassWithSubReg. 2210 // 2211 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 2212 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 2213 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec, 2214 deref<std::less<>>> 2215 SubReg2SetMap; 2216 2217 // Compute the set of registers supporting each SubRegIndex. 2218 SubReg2SetMap SRSets; 2219 for (const auto R : RC->getMembers()) { 2220 if (R->Artificial) 2221 continue; 2222 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs(); 2223 for (auto I : SRM) { 2224 if (!I.first->Artificial) 2225 SRSets[I.first].push_back(R); 2226 } 2227 } 2228 2229 for (auto I : SRSets) 2230 sortAndUniqueRegisters(I.second); 2231 2232 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 2233 // numerical order to visit synthetic indices last. 2234 for (const auto &SubIdx : SubRegIndices) { 2235 if (SubIdx.Artificial) 2236 continue; 2237 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx); 2238 // Unsupported SubRegIndex. Skip it. 2239 if (I == SRSets.end()) 2240 continue; 2241 // In most cases, all RC registers support the SubRegIndex. 2242 if (I->second.size() == RC->getMembers().size()) { 2243 RC->setSubClassWithSubReg(&SubIdx, RC); 2244 continue; 2245 } 2246 // This is a real subset. See if we have a matching class. 2247 CodeGenRegisterClass *SubRC = 2248 getOrCreateSubClass(RC, &I->second, 2249 RC->getName() + "_with_" + I->first->getName()); 2250 RC->setSubClassWithSubReg(&SubIdx, SubRC); 2251 } 2252 } 2253 2254 // 2255 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 2256 // 2257 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 2258 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 2259 // 2260 2261 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 2262 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) { 2263 SmallVector<std::pair<const CodeGenRegister*, 2264 const CodeGenRegister*>, 16> SSPairs; 2265 BitVector TopoSigs(getNumTopoSigs()); 2266 2267 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 2268 for (auto &SubIdx : SubRegIndices) { 2269 // Skip indexes that aren't fully supported by RC's registers. This was 2270 // computed by inferSubClassWithSubReg() above which should have been 2271 // called first. 2272 if (RC->getSubClassWithSubReg(&SubIdx) != RC) 2273 continue; 2274 2275 // Build list of (Super, Sub) pairs for this SubIdx. 2276 SSPairs.clear(); 2277 TopoSigs.reset(); 2278 for (const auto Super : RC->getMembers()) { 2279 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second; 2280 assert(Sub && "Missing sub-register"); 2281 SSPairs.push_back(std::make_pair(Super, Sub)); 2282 TopoSigs.set(Sub->getTopoSig()); 2283 } 2284 2285 // Iterate over sub-register class candidates. Ignore classes created by 2286 // this loop. They will never be useful. 2287 // Store an iterator to the last element (not end) so that this loop doesn't 2288 // visit newly inserted elements. 2289 assert(!RegClasses.empty()); 2290 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end()); 2291 I != std::next(E); ++I) { 2292 CodeGenRegisterClass &SubRC = *I; 2293 if (SubRC.Artificial) 2294 continue; 2295 // Topological shortcut: SubRC members have the wrong shape. 2296 if (!TopoSigs.anyCommon(SubRC.getTopoSigs())) 2297 continue; 2298 // Compute the subset of RC that maps into SubRC. 2299 CodeGenRegister::Vec SubSetVec; 2300 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 2301 if (SubRC.contains(SSPairs[i].second)) 2302 SubSetVec.push_back(SSPairs[i].first); 2303 2304 if (SubSetVec.empty()) 2305 continue; 2306 2307 // RC injects completely into SubRC. 2308 sortAndUniqueRegisters(SubSetVec); 2309 if (SubSetVec.size() == SSPairs.size()) { 2310 SubRC.addSuperRegClass(&SubIdx, RC); 2311 continue; 2312 } 2313 2314 // Only a subset of RC maps into SubRC. Make sure it is represented by a 2315 // class. 2316 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" + 2317 SubIdx.getName() + "_in_" + 2318 SubRC.getName()); 2319 } 2320 } 2321 } 2322 2323 // 2324 // Infer missing register classes. 2325 // 2326 void CodeGenRegBank::computeInferredRegisterClasses() { 2327 assert(!RegClasses.empty()); 2328 // When this function is called, the register classes have not been sorted 2329 // and assigned EnumValues yet. That means getSubClasses(), 2330 // getSuperClasses(), and hasSubClass() functions are defunct. 2331 2332 // Use one-before-the-end so it doesn't move forward when new elements are 2333 // added. 2334 auto FirstNewRC = std::prev(RegClasses.end()); 2335 2336 // Visit all register classes, including the ones being added by the loop. 2337 // Watch out for iterator invalidation here. 2338 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) { 2339 CodeGenRegisterClass *RC = &*I; 2340 if (RC->Artificial) 2341 continue; 2342 2343 // Synthesize answers for getSubClassWithSubReg(). 2344 inferSubClassWithSubReg(RC); 2345 2346 // Synthesize answers for getCommonSubClass(). 2347 inferCommonSubClass(RC); 2348 2349 // Synthesize answers for getMatchingSuperRegClass(). 2350 inferMatchingSuperRegClass(RC); 2351 2352 // New register classes are created while this loop is running, and we need 2353 // to visit all of them. I particular, inferMatchingSuperRegClass needs 2354 // to match old super-register classes with sub-register classes created 2355 // after inferMatchingSuperRegClass was called. At this point, 2356 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 2357 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 2358 if (I == FirstNewRC) { 2359 auto NextNewRC = std::prev(RegClasses.end()); 2360 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2; 2361 ++I2) 2362 inferMatchingSuperRegClass(&*I2, E2); 2363 FirstNewRC = NextNewRC; 2364 } 2365 } 2366 } 2367 2368 /// getRegisterClassForRegister - Find the register class that contains the 2369 /// specified physical register. If the register is not in a register class, 2370 /// return null. If the register is in multiple classes, and the classes have a 2371 /// superset-subset relationship and the same set of types, return the 2372 /// superclass. Otherwise return null. 2373 const CodeGenRegisterClass* 2374 CodeGenRegBank::getRegClassForRegister(Record *R) { 2375 const CodeGenRegister *Reg = getReg(R); 2376 const CodeGenRegisterClass *FoundRC = nullptr; 2377 for (const auto &RC : getRegClasses()) { 2378 if (!RC.contains(Reg)) 2379 continue; 2380 2381 // If this is the first class that contains the register, 2382 // make a note of it and go on to the next class. 2383 if (!FoundRC) { 2384 FoundRC = &RC; 2385 continue; 2386 } 2387 2388 // If a register's classes have different types, return null. 2389 if (RC.getValueTypes() != FoundRC->getValueTypes()) 2390 return nullptr; 2391 2392 // Check to see if the previously found class that contains 2393 // the register is a subclass of the current class. If so, 2394 // prefer the superclass. 2395 if (RC.hasSubClass(FoundRC)) { 2396 FoundRC = &RC; 2397 continue; 2398 } 2399 2400 // Check to see if the previously found class that contains 2401 // the register is a superclass of the current class. If so, 2402 // prefer the superclass. 2403 if (FoundRC->hasSubClass(&RC)) 2404 continue; 2405 2406 // Multiple classes, and neither is a superclass of the other. 2407 // Return null. 2408 return nullptr; 2409 } 2410 return FoundRC; 2411 } 2412 2413 const CodeGenRegisterClass * 2414 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord, 2415 ValueTypeByHwMode *VT) { 2416 const CodeGenRegister *Reg = getReg(RegRecord); 2417 const CodeGenRegisterClass *BestRC = nullptr; 2418 for (const auto &RC : getRegClasses()) { 2419 if ((!VT || RC.hasType(*VT)) && 2420 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC))) 2421 BestRC = &RC; 2422 } 2423 2424 assert(BestRC && "Couldn't find the register class"); 2425 return BestRC; 2426 } 2427 2428 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 2429 SetVector<const CodeGenRegister*> Set; 2430 2431 // First add Regs with all sub-registers. 2432 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 2433 CodeGenRegister *Reg = getReg(Regs[i]); 2434 if (Set.insert(Reg)) 2435 // Reg is new, add all sub-registers. 2436 // The pre-ordering is not important here. 2437 Reg->addSubRegsPreOrder(Set, *this); 2438 } 2439 2440 // Second, find all super-registers that are completely covered by the set. 2441 for (unsigned i = 0; i != Set.size(); ++i) { 2442 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 2443 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 2444 const CodeGenRegister *Super = SR[j]; 2445 if (!Super->CoveredBySubRegs || Set.count(Super)) 2446 continue; 2447 // This new super-register is covered by its sub-registers. 2448 bool AllSubsInSet = true; 2449 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 2450 for (auto I : SRM) 2451 if (!Set.count(I.second)) { 2452 AllSubsInSet = false; 2453 break; 2454 } 2455 // All sub-registers in Set, add Super as well. 2456 // We will visit Super later to recheck its super-registers. 2457 if (AllSubsInSet) 2458 Set.insert(Super); 2459 } 2460 } 2461 2462 // Convert to BitVector. 2463 BitVector BV(Registers.size() + 1); 2464 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2465 BV.set(Set[i]->EnumValue); 2466 return BV; 2467 } 2468 2469 void CodeGenRegBank::printRegUnitName(unsigned Unit) const { 2470 if (Unit < NumNativeRegUnits) 2471 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName(); 2472 else 2473 dbgs() << " #" << Unit; 2474 } 2475