1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/TableGen/Error.h" 23 #include "llvm/TableGen/Record.h" 24 #include <algorithm> 25 #include <cstdio> 26 #include <set> 27 using namespace llvm; 28 29 #define DEBUG_TYPE "dag-patterns" 30 31 //===----------------------------------------------------------------------===// 32 // EEVT::TypeSet Implementation 33 //===----------------------------------------------------------------------===// 34 35 static inline bool isInteger(MVT::SimpleValueType VT) { 36 return MVT(VT).isInteger(); 37 } 38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 39 return MVT(VT).isFloatingPoint(); 40 } 41 static inline bool isVector(MVT::SimpleValueType VT) { 42 return MVT(VT).isVector(); 43 } 44 static inline bool isScalar(MVT::SimpleValueType VT) { 45 return !MVT(VT).isVector(); 46 } 47 48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 49 if (VT == MVT::iAny) 50 EnforceInteger(TP); 51 else if (VT == MVT::fAny) 52 EnforceFloatingPoint(TP); 53 else if (VT == MVT::vAny) 54 EnforceVector(TP); 55 else { 56 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 57 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); 58 TypeVec.push_back(VT); 59 } 60 } 61 62 63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 64 assert(!VTList.empty() && "empty list?"); 65 TypeVec.append(VTList.begin(), VTList.end()); 66 67 if (!VTList.empty()) 68 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 69 VTList[0] != MVT::fAny); 70 71 // Verify no duplicates. 72 array_pod_sort(TypeVec.begin(), TypeVec.end()); 73 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 74 } 75 76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 77 /// on completely unknown type sets. 78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 79 bool (*Pred)(MVT::SimpleValueType), 80 const char *PredicateName) { 81 assert(isCompletelyUnknown()); 82 ArrayRef<MVT::SimpleValueType> LegalTypes = 83 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 84 85 if (TP.hasError()) 86 return false; 87 88 for (MVT::SimpleValueType VT : LegalTypes) 89 if (!Pred || Pred(VT)) 90 TypeVec.push_back(VT); 91 92 // If we have nothing that matches the predicate, bail out. 93 if (TypeVec.empty()) { 94 TP.error("Type inference contradiction found, no " + 95 std::string(PredicateName) + " types found"); 96 return false; 97 } 98 // No need to sort with one element. 99 if (TypeVec.size() == 1) return true; 100 101 // Remove duplicates. 102 array_pod_sort(TypeVec.begin(), TypeVec.end()); 103 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 104 105 return true; 106 } 107 108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 109 /// integer value type. 110 bool EEVT::TypeSet::hasIntegerTypes() const { 111 return any_of(TypeVec, isInteger); 112 } 113 114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 115 /// a floating point value type. 116 bool EEVT::TypeSet::hasFloatingPointTypes() const { 117 return any_of(TypeVec, isFloatingPoint); 118 } 119 120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 121 bool EEVT::TypeSet::hasScalarTypes() const { 122 return any_of(TypeVec, isScalar); 123 } 124 125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 126 /// value type. 127 bool EEVT::TypeSet::hasVectorTypes() const { 128 return any_of(TypeVec, isVector); 129 } 130 131 132 std::string EEVT::TypeSet::getName() const { 133 if (TypeVec.empty()) return "<empty>"; 134 135 std::string Result; 136 137 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 138 std::string VTName = llvm::getEnumName(TypeVec[i]); 139 // Strip off MVT:: prefix if present. 140 if (VTName.substr(0,5) == "MVT::") 141 VTName = VTName.substr(5); 142 if (i) Result += ':'; 143 Result += VTName; 144 } 145 146 if (TypeVec.size() == 1) 147 return Result; 148 return "{" + Result + "}"; 149 } 150 151 /// MergeInTypeInfo - This merges in type information from the specified 152 /// argument. If 'this' changes, it returns true. If the two types are 153 /// contradictory (e.g. merge f32 into i32) then this flags an error. 154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 155 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 156 return false; 157 158 if (isCompletelyUnknown()) { 159 *this = InVT; 160 return true; 161 } 162 163 assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns"); 164 165 // Handle the abstract cases, seeing if we can resolve them better. 166 switch (TypeVec[0]) { 167 default: break; 168 case MVT::iPTR: 169 case MVT::iPTRAny: 170 if (InVT.hasIntegerTypes()) { 171 EEVT::TypeSet InCopy(InVT); 172 InCopy.EnforceInteger(TP); 173 InCopy.EnforceScalar(TP); 174 175 if (InCopy.isConcrete()) { 176 // If the RHS has one integer type, upgrade iPTR to i32. 177 TypeVec[0] = InVT.TypeVec[0]; 178 return true; 179 } 180 181 // If the input has multiple scalar integers, this doesn't add any info. 182 if (!InCopy.isCompletelyUnknown()) 183 return false; 184 } 185 break; 186 } 187 188 // If the input constraint is iAny/iPTR and this is an integer type list, 189 // remove non-integer types from the list. 190 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 191 hasIntegerTypes()) { 192 bool MadeChange = EnforceInteger(TP); 193 194 // If we're merging in iPTR/iPTRAny and the node currently has a list of 195 // multiple different integer types, replace them with a single iPTR. 196 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 197 TypeVec.size() != 1) { 198 TypeVec.assign(1, InVT.TypeVec[0]); 199 MadeChange = true; 200 } 201 202 return MadeChange; 203 } 204 205 // If this is a type list and the RHS is a typelist as well, eliminate entries 206 // from this list that aren't in the other one. 207 TypeSet InputSet(*this); 208 209 TypeVec.clear(); 210 std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(), 211 InVT.TypeVec.begin(), InVT.TypeVec.end(), 212 std::back_inserter(TypeVec)); 213 214 // If the intersection is the same size as the original set then we're done. 215 if (TypeVec.size() == InputSet.TypeVec.size()) 216 return false; 217 218 // If we removed all of our types, we have a type contradiction. 219 if (!TypeVec.empty()) 220 return true; 221 222 // FIXME: Really want an SMLoc here! 223 TP.error("Type inference contradiction found, merging '" + 224 InVT.getName() + "' into '" + InputSet.getName() + "'"); 225 return false; 226 } 227 228 /// EnforceInteger - Remove all non-integer types from this set. 229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 230 if (TP.hasError()) 231 return false; 232 // If we know nothing, then get the full set. 233 if (TypeVec.empty()) 234 return FillWithPossibleTypes(TP, isInteger, "integer"); 235 236 if (!hasFloatingPointTypes()) 237 return false; 238 239 TypeSet InputSet(*this); 240 241 // Filter out all the fp types. 242 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isInteger))), 243 TypeVec.end()); 244 245 if (TypeVec.empty()) { 246 TP.error("Type inference contradiction found, '" + 247 InputSet.getName() + "' needs to be integer"); 248 return false; 249 } 250 return true; 251 } 252 253 /// EnforceFloatingPoint - Remove all integer types from this set. 254 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 255 if (TP.hasError()) 256 return false; 257 // If we know nothing, then get the full set. 258 if (TypeVec.empty()) 259 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 260 261 if (!hasIntegerTypes()) 262 return false; 263 264 TypeSet InputSet(*this); 265 266 // Filter out all the integer types. 267 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isFloatingPoint))), 268 TypeVec.end()); 269 270 if (TypeVec.empty()) { 271 TP.error("Type inference contradiction found, '" + 272 InputSet.getName() + "' needs to be floating point"); 273 return false; 274 } 275 return true; 276 } 277 278 /// EnforceScalar - Remove all vector types from this. 279 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 280 if (TP.hasError()) 281 return false; 282 283 // If we know nothing, then get the full set. 284 if (TypeVec.empty()) 285 return FillWithPossibleTypes(TP, isScalar, "scalar"); 286 287 if (!hasVectorTypes()) 288 return false; 289 290 TypeSet InputSet(*this); 291 292 // Filter out all the vector types. 293 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isScalar))), 294 TypeVec.end()); 295 296 if (TypeVec.empty()) { 297 TP.error("Type inference contradiction found, '" + 298 InputSet.getName() + "' needs to be scalar"); 299 return false; 300 } 301 return true; 302 } 303 304 /// EnforceVector - Remove all vector types from this. 305 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 306 if (TP.hasError()) 307 return false; 308 309 // If we know nothing, then get the full set. 310 if (TypeVec.empty()) 311 return FillWithPossibleTypes(TP, isVector, "vector"); 312 313 TypeSet InputSet(*this); 314 bool MadeChange = false; 315 316 // Filter out all the scalar types. 317 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isVector))), 318 TypeVec.end()); 319 320 if (TypeVec.empty()) { 321 TP.error("Type inference contradiction found, '" + 322 InputSet.getName() + "' needs to be a vector"); 323 return false; 324 } 325 return MadeChange; 326 } 327 328 329 330 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 331 /// this should be based on the element type. Update this and other based on 332 /// this information. 333 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 334 if (TP.hasError()) 335 return false; 336 337 // Both operands must be integer or FP, but we don't care which. 338 bool MadeChange = false; 339 340 if (isCompletelyUnknown()) 341 MadeChange = FillWithPossibleTypes(TP); 342 343 if (Other.isCompletelyUnknown()) 344 MadeChange = Other.FillWithPossibleTypes(TP); 345 346 // If one side is known to be integer or known to be FP but the other side has 347 // no information, get at least the type integrality info in there. 348 if (!hasFloatingPointTypes()) 349 MadeChange |= Other.EnforceInteger(TP); 350 else if (!hasIntegerTypes()) 351 MadeChange |= Other.EnforceFloatingPoint(TP); 352 if (!Other.hasFloatingPointTypes()) 353 MadeChange |= EnforceInteger(TP); 354 else if (!Other.hasIntegerTypes()) 355 MadeChange |= EnforceFloatingPoint(TP); 356 357 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 358 "Should have a type list now"); 359 360 // If one contains vectors but the other doesn't pull vectors out. 361 if (!hasVectorTypes()) 362 MadeChange |= Other.EnforceScalar(TP); 363 else if (!hasScalarTypes()) 364 MadeChange |= Other.EnforceVector(TP); 365 if (!Other.hasVectorTypes()) 366 MadeChange |= EnforceScalar(TP); 367 else if (!Other.hasScalarTypes()) 368 MadeChange |= EnforceVector(TP); 369 370 // This code does not currently handle nodes which have multiple types, 371 // where some types are integer, and some are fp. Assert that this is not 372 // the case. 373 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 374 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 375 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 376 377 if (TP.hasError()) 378 return false; 379 380 // Okay, find the smallest type from current set and remove anything the 381 // same or smaller from the other set. We need to ensure that the scalar 382 // type size is smaller than the scalar size of the smallest type. For 383 // vectors, we also need to make sure that the total size is no larger than 384 // the size of the smallest type. 385 { 386 TypeSet InputSet(Other); 387 MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(), 388 [](MVT A, MVT B) { 389 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 390 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 391 A.getSizeInBits() < B.getSizeInBits()); 392 }); 393 394 auto I = remove_if(Other.TypeVec, [Smallest](MVT OtherVT) { 395 // Don't compare vector and non-vector types. 396 if (OtherVT.isVector() != Smallest.isVector()) 397 return false; 398 // The getSizeInBits() check here is only needed for vectors, but is 399 // a subset of the scalar check for scalars so no need to qualify. 400 return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() || 401 OtherVT.getSizeInBits() < Smallest.getSizeInBits(); 402 }); 403 MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types. 404 Other.TypeVec.erase(I, Other.TypeVec.end()); 405 406 if (Other.TypeVec.empty()) { 407 TP.error("Type inference contradiction found, '" + InputSet.getName() + 408 "' has nothing larger than '" + getName() +"'!"); 409 return false; 410 } 411 } 412 413 // Okay, find the largest type from the other set and remove anything the 414 // same or smaller from the current set. We need to ensure that the scalar 415 // type size is larger than the scalar size of the largest type. For 416 // vectors, we also need to make sure that the total size is no smaller than 417 // the size of the largest type. 418 { 419 TypeSet InputSet(*this); 420 MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(), 421 [](MVT A, MVT B) { 422 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 423 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 424 A.getSizeInBits() < B.getSizeInBits()); 425 }); 426 auto I = remove_if(TypeVec, [Largest](MVT OtherVT) { 427 // Don't compare vector and non-vector types. 428 if (OtherVT.isVector() != Largest.isVector()) 429 return false; 430 return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || 431 OtherVT.getSizeInBits() > Largest.getSizeInBits(); 432 }); 433 MadeChange |= I != TypeVec.end(); // If we're about to remove types. 434 TypeVec.erase(I, TypeVec.end()); 435 436 if (TypeVec.empty()) { 437 TP.error("Type inference contradiction found, '" + InputSet.getName() + 438 "' has nothing smaller than '" + Other.getName() +"'!"); 439 return false; 440 } 441 } 442 443 return MadeChange; 444 } 445 446 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 447 /// whose element is specified by VTOperand. 448 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, 449 TreePattern &TP) { 450 bool MadeChange = false; 451 452 MadeChange |= EnforceVector(TP); 453 454 TypeSet InputSet(*this); 455 456 // Filter out all the types which don't have the right element type. 457 auto I = remove_if(TypeVec, [VT](MVT VVT) { 458 return VVT.getVectorElementType().SimpleTy != VT; 459 }); 460 MadeChange |= I != TypeVec.end(); 461 TypeVec.erase(I, TypeVec.end()); 462 463 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 464 TP.error("Type inference contradiction found, forcing '" + 465 InputSet.getName() + "' to have a vector element of type " + 466 getEnumName(VT)); 467 return false; 468 } 469 470 return MadeChange; 471 } 472 473 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 474 /// whose element is specified by VTOperand. 475 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 476 TreePattern &TP) { 477 if (TP.hasError()) 478 return false; 479 480 // "This" must be a vector and "VTOperand" must be a scalar. 481 bool MadeChange = false; 482 MadeChange |= EnforceVector(TP); 483 MadeChange |= VTOperand.EnforceScalar(TP); 484 485 // If we know the vector type, it forces the scalar to agree. 486 if (isConcrete()) { 487 MVT IVT = getConcrete(); 488 IVT = IVT.getVectorElementType(); 489 return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 490 } 491 492 // If the scalar type is known, filter out vector types whose element types 493 // disagree. 494 if (!VTOperand.isConcrete()) 495 return MadeChange; 496 497 MVT::SimpleValueType VT = VTOperand.getConcrete(); 498 499 MadeChange |= EnforceVectorEltTypeIs(VT, TP); 500 501 return MadeChange; 502 } 503 504 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a 505 /// vector type specified by VTOperand. 506 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 507 TreePattern &TP) { 508 if (TP.hasError()) 509 return false; 510 511 // "This" must be a vector and "VTOperand" must be a vector. 512 bool MadeChange = false; 513 MadeChange |= EnforceVector(TP); 514 MadeChange |= VTOperand.EnforceVector(TP); 515 516 // If one side is known to be integer or known to be FP but the other side has 517 // no information, get at least the type integrality info in there. 518 if (!hasFloatingPointTypes()) 519 MadeChange |= VTOperand.EnforceInteger(TP); 520 else if (!hasIntegerTypes()) 521 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 522 if (!VTOperand.hasFloatingPointTypes()) 523 MadeChange |= EnforceInteger(TP); 524 else if (!VTOperand.hasIntegerTypes()) 525 MadeChange |= EnforceFloatingPoint(TP); 526 527 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 528 "Should have a type list now"); 529 530 // If we know the vector type, it forces the scalar types to agree. 531 // Also force one vector to have more elements than the other. 532 if (isConcrete()) { 533 MVT IVT = getConcrete(); 534 unsigned NumElems = IVT.getVectorNumElements(); 535 IVT = IVT.getVectorElementType(); 536 537 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 538 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 539 540 // Only keep types that have less elements than VTOperand. 541 TypeSet InputSet(VTOperand); 542 543 auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { 544 return VVT.getVectorNumElements() >= NumElems; 545 }); 546 MadeChange |= I != VTOperand.TypeVec.end(); 547 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 548 549 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 550 TP.error("Type inference contradiction found, forcing '" + 551 InputSet.getName() + "' to have less vector elements than '" + 552 getName() + "'"); 553 return false; 554 } 555 } else if (VTOperand.isConcrete()) { 556 MVT IVT = VTOperand.getConcrete(); 557 unsigned NumElems = IVT.getVectorNumElements(); 558 IVT = IVT.getVectorElementType(); 559 560 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 561 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 562 563 // Only keep types that have more elements than 'this'. 564 TypeSet InputSet(*this); 565 566 auto I = remove_if(TypeVec, [NumElems](MVT VVT) { 567 return VVT.getVectorNumElements() <= NumElems; 568 }); 569 MadeChange |= I != TypeVec.end(); 570 TypeVec.erase(I, TypeVec.end()); 571 572 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 573 TP.error("Type inference contradiction found, forcing '" + 574 InputSet.getName() + "' to have more vector elements than '" + 575 VTOperand.getName() + "'"); 576 return false; 577 } 578 } 579 580 return MadeChange; 581 } 582 583 /// EnforceVectorSameNumElts - 'this' is now constrained to 584 /// be a vector with same num elements as VTOperand. 585 bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand, 586 TreePattern &TP) { 587 if (TP.hasError()) 588 return false; 589 590 // "This" must be a vector and "VTOperand" must be a vector. 591 bool MadeChange = false; 592 MadeChange |= EnforceVector(TP); 593 MadeChange |= VTOperand.EnforceVector(TP); 594 595 // If we know one of the vector types, it forces the other type to agree. 596 if (isConcrete()) { 597 MVT IVT = getConcrete(); 598 unsigned NumElems = IVT.getVectorNumElements(); 599 600 // Only keep types that have same elements as 'this'. 601 TypeSet InputSet(VTOperand); 602 603 auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { 604 return VVT.getVectorNumElements() != NumElems; 605 }); 606 MadeChange |= I != VTOperand.TypeVec.end(); 607 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 608 609 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 610 TP.error("Type inference contradiction found, forcing '" + 611 InputSet.getName() + "' to have same number elements as '" + 612 getName() + "'"); 613 return false; 614 } 615 } else if (VTOperand.isConcrete()) { 616 MVT IVT = VTOperand.getConcrete(); 617 unsigned NumElems = IVT.getVectorNumElements(); 618 619 // Only keep types that have same elements as VTOperand. 620 TypeSet InputSet(*this); 621 622 auto I = remove_if(TypeVec, [NumElems](MVT VVT) { 623 return VVT.getVectorNumElements() != NumElems; 624 }); 625 MadeChange |= I != TypeVec.end(); 626 TypeVec.erase(I, TypeVec.end()); 627 628 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 629 TP.error("Type inference contradiction found, forcing '" + 630 InputSet.getName() + "' to have same number elements than '" + 631 VTOperand.getName() + "'"); 632 return false; 633 } 634 } 635 636 return MadeChange; 637 } 638 639 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand. 640 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand, 641 TreePattern &TP) { 642 if (TP.hasError()) 643 return false; 644 645 bool MadeChange = false; 646 647 // If we know one of the types, it forces the other type agree. 648 if (isConcrete()) { 649 MVT IVT = getConcrete(); 650 unsigned Size = IVT.getSizeInBits(); 651 652 // Only keep types that have the same size as 'this'. 653 TypeSet InputSet(VTOperand); 654 655 auto I = remove_if(VTOperand.TypeVec, 656 [&](MVT VT) { return VT.getSizeInBits() != Size; }); 657 MadeChange |= I != VTOperand.TypeVec.end(); 658 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 659 660 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 661 TP.error("Type inference contradiction found, forcing '" + 662 InputSet.getName() + "' to have same size as '" + 663 getName() + "'"); 664 return false; 665 } 666 } else if (VTOperand.isConcrete()) { 667 MVT IVT = VTOperand.getConcrete(); 668 unsigned Size = IVT.getSizeInBits(); 669 670 // Only keep types that have the same size as VTOperand. 671 TypeSet InputSet(*this); 672 673 auto I = 674 remove_if(TypeVec, [&](MVT VT) { return VT.getSizeInBits() != Size; }); 675 MadeChange |= I != TypeVec.end(); 676 TypeVec.erase(I, TypeVec.end()); 677 678 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 679 TP.error("Type inference contradiction found, forcing '" + 680 InputSet.getName() + "' to have same size as '" + 681 VTOperand.getName() + "'"); 682 return false; 683 } 684 } 685 686 return MadeChange; 687 } 688 689 //===----------------------------------------------------------------------===// 690 // Helpers for working with extended types. 691 692 /// Dependent variable map for CodeGenDAGPattern variant generation 693 typedef std::map<std::string, int> DepVarMap; 694 695 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 696 if (N->isLeaf()) { 697 if (isa<DefInit>(N->getLeafValue())) 698 DepMap[N->getName()]++; 699 } else { 700 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 701 FindDepVarsOf(N->getChild(i), DepMap); 702 } 703 } 704 705 /// Find dependent variables within child patterns 706 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 707 DepVarMap depcounts; 708 FindDepVarsOf(N, depcounts); 709 for (const std::pair<std::string, int> &Pair : depcounts) { 710 if (Pair.second > 1) 711 DepVars.insert(Pair.first); 712 } 713 } 714 715 #ifndef NDEBUG 716 /// Dump the dependent variable set: 717 static void DumpDepVars(MultipleUseVarSet &DepVars) { 718 if (DepVars.empty()) { 719 DEBUG(errs() << "<empty set>"); 720 } else { 721 DEBUG(errs() << "[ "); 722 for (const std::string &DepVar : DepVars) { 723 DEBUG(errs() << DepVar << " "); 724 } 725 DEBUG(errs() << "]"); 726 } 727 } 728 #endif 729 730 731 //===----------------------------------------------------------------------===// 732 // TreePredicateFn Implementation 733 //===----------------------------------------------------------------------===// 734 735 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 736 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 737 assert((getPredCode().empty() || getImmCode().empty()) && 738 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 739 } 740 741 std::string TreePredicateFn::getPredCode() const { 742 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 743 } 744 745 std::string TreePredicateFn::getImmCode() const { 746 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 747 } 748 749 750 /// isAlwaysTrue - Return true if this is a noop predicate. 751 bool TreePredicateFn::isAlwaysTrue() const { 752 return getPredCode().empty() && getImmCode().empty(); 753 } 754 755 /// Return the name to use in the generated code to reference this, this is 756 /// "Predicate_foo" if from a pattern fragment "foo". 757 std::string TreePredicateFn::getFnName() const { 758 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 759 } 760 761 /// getCodeToRunOnSDNode - Return the code for the function body that 762 /// evaluates this predicate. The argument is expected to be in "Node", 763 /// not N. This handles casting and conversion to a concrete node type as 764 /// appropriate. 765 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 766 // Handle immediate predicates first. 767 std::string ImmCode = getImmCode(); 768 if (!ImmCode.empty()) { 769 std::string Result = 770 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 771 return Result + ImmCode; 772 } 773 774 // Handle arbitrary node predicates. 775 assert(!getPredCode().empty() && "Don't have any predicate code!"); 776 std::string ClassName; 777 if (PatFragRec->getOnlyTree()->isLeaf()) 778 ClassName = "SDNode"; 779 else { 780 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 781 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 782 } 783 std::string Result; 784 if (ClassName == "SDNode") 785 Result = " SDNode *N = Node;\n"; 786 else 787 Result = " auto *N = cast<" + ClassName + ">(Node);\n"; 788 789 return Result + getPredCode(); 790 } 791 792 //===----------------------------------------------------------------------===// 793 // PatternToMatch implementation 794 // 795 796 797 /// getPatternSize - Return the 'size' of this pattern. We want to match large 798 /// patterns before small ones. This is used to determine the size of a 799 /// pattern. 800 static unsigned getPatternSize(const TreePatternNode *P, 801 const CodeGenDAGPatterns &CGP) { 802 unsigned Size = 3; // The node itself. 803 // If the root node is a ConstantSDNode, increases its size. 804 // e.g. (set R32:$dst, 0). 805 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 806 Size += 2; 807 808 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 809 if (AM) { 810 Size += AM->getComplexity(); 811 812 // We don't want to count any children twice, so return early. 813 return Size; 814 } 815 816 // If this node has some predicate function that must match, it adds to the 817 // complexity of this node. 818 if (!P->getPredicateFns().empty()) 819 ++Size; 820 821 // Count children in the count if they are also nodes. 822 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 823 TreePatternNode *Child = P->getChild(i); 824 if (!Child->isLeaf() && Child->getNumTypes() && 825 Child->getType(0) != MVT::Other) 826 Size += getPatternSize(Child, CGP); 827 else if (Child->isLeaf()) { 828 if (isa<IntInit>(Child->getLeafValue())) 829 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 830 else if (Child->getComplexPatternInfo(CGP)) 831 Size += getPatternSize(Child, CGP); 832 else if (!Child->getPredicateFns().empty()) 833 ++Size; 834 } 835 } 836 837 return Size; 838 } 839 840 /// Compute the complexity metric for the input pattern. This roughly 841 /// corresponds to the number of nodes that are covered. 842 int PatternToMatch:: 843 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 844 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 845 } 846 847 848 /// getPredicateCheck - Return a single string containing all of this 849 /// pattern's predicates concatenated with "&&" operators. 850 /// 851 std::string PatternToMatch::getPredicateCheck() const { 852 SmallVector<Record *, 4> PredicateRecs; 853 for (Init *I : Predicates->getValues()) { 854 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 855 Record *Def = Pred->getDef(); 856 if (!Def->isSubClassOf("Predicate")) { 857 #ifndef NDEBUG 858 Def->dump(); 859 #endif 860 llvm_unreachable("Unknown predicate type!"); 861 } 862 PredicateRecs.push_back(Def); 863 } 864 } 865 // Sort so that different orders get canonicalized to the same string. 866 std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord()); 867 868 SmallString<128> PredicateCheck; 869 for (Record *Pred : PredicateRecs) { 870 if (!PredicateCheck.empty()) 871 PredicateCheck += " && "; 872 PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")"; 873 } 874 875 return PredicateCheck.str(); 876 } 877 878 //===----------------------------------------------------------------------===// 879 // SDTypeConstraint implementation 880 // 881 882 SDTypeConstraint::SDTypeConstraint(Record *R) { 883 OperandNo = R->getValueAsInt("OperandNum"); 884 885 if (R->isSubClassOf("SDTCisVT")) { 886 ConstraintType = SDTCisVT; 887 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 888 if (x.SDTCisVT_Info.VT == MVT::isVoid) 889 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 890 891 } else if (R->isSubClassOf("SDTCisPtrTy")) { 892 ConstraintType = SDTCisPtrTy; 893 } else if (R->isSubClassOf("SDTCisInt")) { 894 ConstraintType = SDTCisInt; 895 } else if (R->isSubClassOf("SDTCisFP")) { 896 ConstraintType = SDTCisFP; 897 } else if (R->isSubClassOf("SDTCisVec")) { 898 ConstraintType = SDTCisVec; 899 } else if (R->isSubClassOf("SDTCisSameAs")) { 900 ConstraintType = SDTCisSameAs; 901 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 902 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 903 ConstraintType = SDTCisVTSmallerThanOp; 904 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 905 R->getValueAsInt("OtherOperandNum"); 906 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 907 ConstraintType = SDTCisOpSmallerThanOp; 908 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 909 R->getValueAsInt("BigOperandNum"); 910 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 911 ConstraintType = SDTCisEltOfVec; 912 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 913 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 914 ConstraintType = SDTCisSubVecOfVec; 915 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 916 R->getValueAsInt("OtherOpNum"); 917 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 918 ConstraintType = SDTCVecEltisVT; 919 x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 920 if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) 921 PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); 922 if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && 923 !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) 924 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 925 "as SDTCVecEltisVT"); 926 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 927 ConstraintType = SDTCisSameNumEltsAs; 928 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 929 R->getValueAsInt("OtherOperandNum"); 930 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 931 ConstraintType = SDTCisSameSizeAs; 932 x.SDTCisSameSizeAs_Info.OtherOperandNum = 933 R->getValueAsInt("OtherOperandNum"); 934 } else { 935 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 936 } 937 } 938 939 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 940 /// N, and the result number in ResNo. 941 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 942 const SDNodeInfo &NodeInfo, 943 unsigned &ResNo) { 944 unsigned NumResults = NodeInfo.getNumResults(); 945 if (OpNo < NumResults) { 946 ResNo = OpNo; 947 return N; 948 } 949 950 OpNo -= NumResults; 951 952 if (OpNo >= N->getNumChildren()) { 953 std::string S; 954 raw_string_ostream OS(S); 955 OS << "Invalid operand number in type constraint " 956 << (OpNo+NumResults) << " "; 957 N->print(OS); 958 PrintFatalError(OS.str()); 959 } 960 961 return N->getChild(OpNo); 962 } 963 964 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 965 /// constraint to the nodes operands. This returns true if it makes a 966 /// change, false otherwise. If a type contradiction is found, flag an error. 967 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 968 const SDNodeInfo &NodeInfo, 969 TreePattern &TP) const { 970 if (TP.hasError()) 971 return false; 972 973 unsigned ResNo = 0; // The result number being referenced. 974 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 975 976 switch (ConstraintType) { 977 case SDTCisVT: 978 // Operand must be a particular type. 979 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 980 case SDTCisPtrTy: 981 // Operand must be same as target pointer type. 982 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 983 case SDTCisInt: 984 // Require it to be one of the legal integer VTs. 985 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 986 case SDTCisFP: 987 // Require it to be one of the legal fp VTs. 988 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 989 case SDTCisVec: 990 // Require it to be one of the legal vector VTs. 991 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 992 case SDTCisSameAs: { 993 unsigned OResNo = 0; 994 TreePatternNode *OtherNode = 995 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 996 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 997 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 998 } 999 case SDTCisVTSmallerThanOp: { 1000 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1001 // have an integer type that is smaller than the VT. 1002 if (!NodeToApply->isLeaf() || 1003 !isa<DefInit>(NodeToApply->getLeafValue()) || 1004 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1005 ->isSubClassOf("ValueType")) { 1006 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1007 return false; 1008 } 1009 MVT::SimpleValueType VT = 1010 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 1011 1012 EEVT::TypeSet TypeListTmp(VT, TP); 1013 1014 unsigned OResNo = 0; 1015 TreePatternNode *OtherNode = 1016 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1017 OResNo); 1018 1019 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 1020 } 1021 case SDTCisOpSmallerThanOp: { 1022 unsigned BResNo = 0; 1023 TreePatternNode *BigOperand = 1024 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1025 BResNo); 1026 return NodeToApply->getExtType(ResNo). 1027 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 1028 } 1029 case SDTCisEltOfVec: { 1030 unsigned VResNo = 0; 1031 TreePatternNode *VecOperand = 1032 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1033 VResNo); 1034 1035 // Filter vector types out of VecOperand that don't have the right element 1036 // type. 1037 return VecOperand->getExtType(VResNo). 1038 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 1039 } 1040 case SDTCisSubVecOfVec: { 1041 unsigned VResNo = 0; 1042 TreePatternNode *BigVecOperand = 1043 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1044 VResNo); 1045 1046 // Filter vector types out of BigVecOperand that don't have the 1047 // right subvector type. 1048 return BigVecOperand->getExtType(VResNo). 1049 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 1050 } 1051 case SDTCVecEltisVT: { 1052 return NodeToApply->getExtType(ResNo). 1053 EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); 1054 } 1055 case SDTCisSameNumEltsAs: { 1056 unsigned OResNo = 0; 1057 TreePatternNode *OtherNode = 1058 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1059 N, NodeInfo, OResNo); 1060 return OtherNode->getExtType(OResNo). 1061 EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP); 1062 } 1063 case SDTCisSameSizeAs: { 1064 unsigned OResNo = 0; 1065 TreePatternNode *OtherNode = 1066 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1067 N, NodeInfo, OResNo); 1068 return OtherNode->getExtType(OResNo). 1069 EnforceSameSize(NodeToApply->getExtType(ResNo), TP); 1070 } 1071 } 1072 llvm_unreachable("Invalid ConstraintType!"); 1073 } 1074 1075 // Update the node type to match an instruction operand or result as specified 1076 // in the ins or outs lists on the instruction definition. Return true if the 1077 // type was actually changed. 1078 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1079 Record *Operand, 1080 TreePattern &TP) { 1081 // The 'unknown' operand indicates that types should be inferred from the 1082 // context. 1083 if (Operand->isSubClassOf("unknown_class")) 1084 return false; 1085 1086 // The Operand class specifies a type directly. 1087 if (Operand->isSubClassOf("Operand")) 1088 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 1089 TP); 1090 1091 // PointerLikeRegClass has a type that is determined at runtime. 1092 if (Operand->isSubClassOf("PointerLikeRegClass")) 1093 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1094 1095 // Both RegisterClass and RegisterOperand operands derive their types from a 1096 // register class def. 1097 Record *RC = nullptr; 1098 if (Operand->isSubClassOf("RegisterClass")) 1099 RC = Operand; 1100 else if (Operand->isSubClassOf("RegisterOperand")) 1101 RC = Operand->getValueAsDef("RegClass"); 1102 1103 assert(RC && "Unknown operand type"); 1104 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1105 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1106 } 1107 1108 1109 //===----------------------------------------------------------------------===// 1110 // SDNodeInfo implementation 1111 // 1112 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1113 EnumName = R->getValueAsString("Opcode"); 1114 SDClassName = R->getValueAsString("SDClass"); 1115 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1116 NumResults = TypeProfile->getValueAsInt("NumResults"); 1117 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1118 1119 // Parse the properties. 1120 Properties = 0; 1121 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1122 if (Property->getName() == "SDNPCommutative") { 1123 Properties |= 1 << SDNPCommutative; 1124 } else if (Property->getName() == "SDNPAssociative") { 1125 Properties |= 1 << SDNPAssociative; 1126 } else if (Property->getName() == "SDNPHasChain") { 1127 Properties |= 1 << SDNPHasChain; 1128 } else if (Property->getName() == "SDNPOutGlue") { 1129 Properties |= 1 << SDNPOutGlue; 1130 } else if (Property->getName() == "SDNPInGlue") { 1131 Properties |= 1 << SDNPInGlue; 1132 } else if (Property->getName() == "SDNPOptInGlue") { 1133 Properties |= 1 << SDNPOptInGlue; 1134 } else if (Property->getName() == "SDNPMayStore") { 1135 Properties |= 1 << SDNPMayStore; 1136 } else if (Property->getName() == "SDNPMayLoad") { 1137 Properties |= 1 << SDNPMayLoad; 1138 } else if (Property->getName() == "SDNPSideEffect") { 1139 Properties |= 1 << SDNPSideEffect; 1140 } else if (Property->getName() == "SDNPMemOperand") { 1141 Properties |= 1 << SDNPMemOperand; 1142 } else if (Property->getName() == "SDNPVariadic") { 1143 Properties |= 1 << SDNPVariadic; 1144 } else { 1145 PrintFatalError("Unknown SD Node property '" + 1146 Property->getName() + "' on node '" + 1147 R->getName() + "'!"); 1148 } 1149 } 1150 1151 1152 // Parse the type constraints. 1153 std::vector<Record*> ConstraintList = 1154 TypeProfile->getValueAsListOfDefs("Constraints"); 1155 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1156 } 1157 1158 /// getKnownType - If the type constraints on this node imply a fixed type 1159 /// (e.g. all stores return void, etc), then return it as an 1160 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1161 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1162 unsigned NumResults = getNumResults(); 1163 assert(NumResults <= 1 && 1164 "We only work with nodes with zero or one result so far!"); 1165 assert(ResNo == 0 && "Only handles single result nodes so far"); 1166 1167 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1168 // Make sure that this applies to the correct node result. 1169 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1170 continue; 1171 1172 switch (Constraint.ConstraintType) { 1173 default: break; 1174 case SDTypeConstraint::SDTCisVT: 1175 return Constraint.x.SDTCisVT_Info.VT; 1176 case SDTypeConstraint::SDTCisPtrTy: 1177 return MVT::iPTR; 1178 } 1179 } 1180 return MVT::Other; 1181 } 1182 1183 //===----------------------------------------------------------------------===// 1184 // TreePatternNode implementation 1185 // 1186 1187 TreePatternNode::~TreePatternNode() { 1188 #if 0 // FIXME: implement refcounted tree nodes! 1189 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1190 delete getChild(i); 1191 #endif 1192 } 1193 1194 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1195 if (Operator->getName() == "set" || 1196 Operator->getName() == "implicit") 1197 return 0; // All return nothing. 1198 1199 if (Operator->isSubClassOf("Intrinsic")) 1200 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1201 1202 if (Operator->isSubClassOf("SDNode")) 1203 return CDP.getSDNodeInfo(Operator).getNumResults(); 1204 1205 if (Operator->isSubClassOf("PatFrag")) { 1206 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1207 // the forward reference case where one pattern fragment references another 1208 // before it is processed. 1209 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1210 return PFRec->getOnlyTree()->getNumTypes(); 1211 1212 // Get the result tree. 1213 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1214 Record *Op = nullptr; 1215 if (Tree) 1216 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1217 Op = DI->getDef(); 1218 assert(Op && "Invalid Fragment"); 1219 return GetNumNodeResults(Op, CDP); 1220 } 1221 1222 if (Operator->isSubClassOf("Instruction")) { 1223 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1224 1225 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1226 1227 // Subtract any defaulted outputs. 1228 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1229 Record *OperandNode = InstInfo.Operands[i].Rec; 1230 1231 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1232 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1233 --NumDefsToAdd; 1234 } 1235 1236 // Add on one implicit def if it has a resolvable type. 1237 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1238 ++NumDefsToAdd; 1239 return NumDefsToAdd; 1240 } 1241 1242 if (Operator->isSubClassOf("SDNodeXForm")) 1243 return 1; // FIXME: Generalize SDNodeXForm 1244 1245 if (Operator->isSubClassOf("ValueType")) 1246 return 1; // A type-cast of one result. 1247 1248 if (Operator->isSubClassOf("ComplexPattern")) 1249 return 1; 1250 1251 Operator->dump(); 1252 PrintFatalError("Unhandled node in GetNumNodeResults"); 1253 } 1254 1255 void TreePatternNode::print(raw_ostream &OS) const { 1256 if (isLeaf()) 1257 OS << *getLeafValue(); 1258 else 1259 OS << '(' << getOperator()->getName(); 1260 1261 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1262 OS << ':' << getExtType(i).getName(); 1263 1264 if (!isLeaf()) { 1265 if (getNumChildren() != 0) { 1266 OS << " "; 1267 getChild(0)->print(OS); 1268 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1269 OS << ", "; 1270 getChild(i)->print(OS); 1271 } 1272 } 1273 OS << ")"; 1274 } 1275 1276 for (const TreePredicateFn &Pred : PredicateFns) 1277 OS << "<<P:" << Pred.getFnName() << ">>"; 1278 if (TransformFn) 1279 OS << "<<X:" << TransformFn->getName() << ">>"; 1280 if (!getName().empty()) 1281 OS << ":$" << getName(); 1282 1283 } 1284 void TreePatternNode::dump() const { 1285 print(errs()); 1286 } 1287 1288 /// isIsomorphicTo - Return true if this node is recursively 1289 /// isomorphic to the specified node. For this comparison, the node's 1290 /// entire state is considered. The assigned name is ignored, since 1291 /// nodes with differing names are considered isomorphic. However, if 1292 /// the assigned name is present in the dependent variable set, then 1293 /// the assigned name is considered significant and the node is 1294 /// isomorphic if the names match. 1295 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1296 const MultipleUseVarSet &DepVars) const { 1297 if (N == this) return true; 1298 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1299 getPredicateFns() != N->getPredicateFns() || 1300 getTransformFn() != N->getTransformFn()) 1301 return false; 1302 1303 if (isLeaf()) { 1304 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1305 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1306 return ((DI->getDef() == NDI->getDef()) 1307 && (DepVars.find(getName()) == DepVars.end() 1308 || getName() == N->getName())); 1309 } 1310 } 1311 return getLeafValue() == N->getLeafValue(); 1312 } 1313 1314 if (N->getOperator() != getOperator() || 1315 N->getNumChildren() != getNumChildren()) return false; 1316 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1317 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1318 return false; 1319 return true; 1320 } 1321 1322 /// clone - Make a copy of this tree and all of its children. 1323 /// 1324 TreePatternNode *TreePatternNode::clone() const { 1325 TreePatternNode *New; 1326 if (isLeaf()) { 1327 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1328 } else { 1329 std::vector<TreePatternNode*> CChildren; 1330 CChildren.reserve(Children.size()); 1331 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1332 CChildren.push_back(getChild(i)->clone()); 1333 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1334 } 1335 New->setName(getName()); 1336 New->Types = Types; 1337 New->setPredicateFns(getPredicateFns()); 1338 New->setTransformFn(getTransformFn()); 1339 return New; 1340 } 1341 1342 /// RemoveAllTypes - Recursively strip all the types of this tree. 1343 void TreePatternNode::RemoveAllTypes() { 1344 // Reset to unknown type. 1345 std::fill(Types.begin(), Types.end(), EEVT::TypeSet()); 1346 if (isLeaf()) return; 1347 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1348 getChild(i)->RemoveAllTypes(); 1349 } 1350 1351 1352 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1353 /// with actual values specified by ArgMap. 1354 void TreePatternNode:: 1355 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1356 if (isLeaf()) return; 1357 1358 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1359 TreePatternNode *Child = getChild(i); 1360 if (Child->isLeaf()) { 1361 Init *Val = Child->getLeafValue(); 1362 // Note that, when substituting into an output pattern, Val might be an 1363 // UnsetInit. 1364 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1365 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1366 // We found a use of a formal argument, replace it with its value. 1367 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1368 assert(NewChild && "Couldn't find formal argument!"); 1369 assert((Child->getPredicateFns().empty() || 1370 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1371 "Non-empty child predicate clobbered!"); 1372 setChild(i, NewChild); 1373 } 1374 } else { 1375 getChild(i)->SubstituteFormalArguments(ArgMap); 1376 } 1377 } 1378 } 1379 1380 1381 /// InlinePatternFragments - If this pattern refers to any pattern 1382 /// fragments, inline them into place, giving us a pattern without any 1383 /// PatFrag references. 1384 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1385 if (TP.hasError()) 1386 return nullptr; 1387 1388 if (isLeaf()) 1389 return this; // nothing to do. 1390 Record *Op = getOperator(); 1391 1392 if (!Op->isSubClassOf("PatFrag")) { 1393 // Just recursively inline children nodes. 1394 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1395 TreePatternNode *Child = getChild(i); 1396 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1397 1398 assert((Child->getPredicateFns().empty() || 1399 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1400 "Non-empty child predicate clobbered!"); 1401 1402 setChild(i, NewChild); 1403 } 1404 return this; 1405 } 1406 1407 // Otherwise, we found a reference to a fragment. First, look up its 1408 // TreePattern record. 1409 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1410 1411 // Verify that we are passing the right number of operands. 1412 if (Frag->getNumArgs() != Children.size()) { 1413 TP.error("'" + Op->getName() + "' fragment requires " + 1414 utostr(Frag->getNumArgs()) + " operands!"); 1415 return nullptr; 1416 } 1417 1418 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1419 1420 TreePredicateFn PredFn(Frag); 1421 if (!PredFn.isAlwaysTrue()) 1422 FragTree->addPredicateFn(PredFn); 1423 1424 // Resolve formal arguments to their actual value. 1425 if (Frag->getNumArgs()) { 1426 // Compute the map of formal to actual arguments. 1427 std::map<std::string, TreePatternNode*> ArgMap; 1428 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1429 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1430 1431 FragTree->SubstituteFormalArguments(ArgMap); 1432 } 1433 1434 FragTree->setName(getName()); 1435 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1436 FragTree->UpdateNodeType(i, getExtType(i), TP); 1437 1438 // Transfer in the old predicates. 1439 for (const TreePredicateFn &Pred : getPredicateFns()) 1440 FragTree->addPredicateFn(Pred); 1441 1442 // Get a new copy of this fragment to stitch into here. 1443 //delete this; // FIXME: implement refcounting! 1444 1445 // The fragment we inlined could have recursive inlining that is needed. See 1446 // if there are any pattern fragments in it and inline them as needed. 1447 return FragTree->InlinePatternFragments(TP); 1448 } 1449 1450 /// getImplicitType - Check to see if the specified record has an implicit 1451 /// type which should be applied to it. This will infer the type of register 1452 /// references from the register file information, for example. 1453 /// 1454 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1455 /// the F8RC register class argument in: 1456 /// 1457 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1458 /// 1459 /// When Unnamed is false, return the type of a named DAG operand such as the 1460 /// GPR:$src operand above. 1461 /// 1462 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1463 bool NotRegisters, 1464 bool Unnamed, 1465 TreePattern &TP) { 1466 // Check to see if this is a register operand. 1467 if (R->isSubClassOf("RegisterOperand")) { 1468 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1469 if (NotRegisters) 1470 return EEVT::TypeSet(); // Unknown. 1471 Record *RegClass = R->getValueAsDef("RegClass"); 1472 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1473 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1474 } 1475 1476 // Check to see if this is a register or a register class. 1477 if (R->isSubClassOf("RegisterClass")) { 1478 assert(ResNo == 0 && "Regclass ref only has one result!"); 1479 // An unnamed register class represents itself as an i32 immediate, for 1480 // example on a COPY_TO_REGCLASS instruction. 1481 if (Unnamed) 1482 return EEVT::TypeSet(MVT::i32, TP); 1483 1484 // In a named operand, the register class provides the possible set of 1485 // types. 1486 if (NotRegisters) 1487 return EEVT::TypeSet(); // Unknown. 1488 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1489 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1490 } 1491 1492 if (R->isSubClassOf("PatFrag")) { 1493 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1494 // Pattern fragment types will be resolved when they are inlined. 1495 return EEVT::TypeSet(); // Unknown. 1496 } 1497 1498 if (R->isSubClassOf("Register")) { 1499 assert(ResNo == 0 && "Registers only produce one result!"); 1500 if (NotRegisters) 1501 return EEVT::TypeSet(); // Unknown. 1502 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1503 return EEVT::TypeSet(T.getRegisterVTs(R)); 1504 } 1505 1506 if (R->isSubClassOf("SubRegIndex")) { 1507 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1508 return EEVT::TypeSet(MVT::i32, TP); 1509 } 1510 1511 if (R->isSubClassOf("ValueType")) { 1512 assert(ResNo == 0 && "This node only has one result!"); 1513 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1514 // 1515 // (sext_inreg GPR:$src, i16) 1516 // ~~~ 1517 if (Unnamed) 1518 return EEVT::TypeSet(MVT::Other, TP); 1519 // With a name, the ValueType simply provides the type of the named 1520 // variable. 1521 // 1522 // (sext_inreg i32:$src, i16) 1523 // ~~~~~~~~ 1524 if (NotRegisters) 1525 return EEVT::TypeSet(); // Unknown. 1526 return EEVT::TypeSet(getValueType(R), TP); 1527 } 1528 1529 if (R->isSubClassOf("CondCode")) { 1530 assert(ResNo == 0 && "This node only has one result!"); 1531 // Using a CondCodeSDNode. 1532 return EEVT::TypeSet(MVT::Other, TP); 1533 } 1534 1535 if (R->isSubClassOf("ComplexPattern")) { 1536 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1537 if (NotRegisters) 1538 return EEVT::TypeSet(); // Unknown. 1539 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1540 TP); 1541 } 1542 if (R->isSubClassOf("PointerLikeRegClass")) { 1543 assert(ResNo == 0 && "Regclass can only have one result!"); 1544 return EEVT::TypeSet(MVT::iPTR, TP); 1545 } 1546 1547 if (R->getName() == "node" || R->getName() == "srcvalue" || 1548 R->getName() == "zero_reg") { 1549 // Placeholder. 1550 return EEVT::TypeSet(); // Unknown. 1551 } 1552 1553 if (R->isSubClassOf("Operand")) 1554 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1555 1556 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1557 return EEVT::TypeSet(MVT::Other, TP); 1558 } 1559 1560 1561 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1562 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1563 const CodeGenIntrinsic *TreePatternNode:: 1564 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1565 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1566 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1567 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1568 return nullptr; 1569 1570 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1571 return &CDP.getIntrinsicInfo(IID); 1572 } 1573 1574 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1575 /// return the ComplexPattern information, otherwise return null. 1576 const ComplexPattern * 1577 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1578 Record *Rec; 1579 if (isLeaf()) { 1580 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1581 if (!DI) 1582 return nullptr; 1583 Rec = DI->getDef(); 1584 } else 1585 Rec = getOperator(); 1586 1587 if (!Rec->isSubClassOf("ComplexPattern")) 1588 return nullptr; 1589 return &CGP.getComplexPattern(Rec); 1590 } 1591 1592 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1593 // A ComplexPattern specifically declares how many results it fills in. 1594 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1595 return CP->getNumOperands(); 1596 1597 // If MIOperandInfo is specified, that gives the count. 1598 if (isLeaf()) { 1599 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1600 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1601 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1602 if (MIOps->getNumArgs()) 1603 return MIOps->getNumArgs(); 1604 } 1605 } 1606 1607 // Otherwise there is just one result. 1608 return 1; 1609 } 1610 1611 /// NodeHasProperty - Return true if this node has the specified property. 1612 bool TreePatternNode::NodeHasProperty(SDNP Property, 1613 const CodeGenDAGPatterns &CGP) const { 1614 if (isLeaf()) { 1615 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1616 return CP->hasProperty(Property); 1617 return false; 1618 } 1619 1620 Record *Operator = getOperator(); 1621 if (!Operator->isSubClassOf("SDNode")) return false; 1622 1623 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1624 } 1625 1626 1627 1628 1629 /// TreeHasProperty - Return true if any node in this tree has the specified 1630 /// property. 1631 bool TreePatternNode::TreeHasProperty(SDNP Property, 1632 const CodeGenDAGPatterns &CGP) const { 1633 if (NodeHasProperty(Property, CGP)) 1634 return true; 1635 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1636 if (getChild(i)->TreeHasProperty(Property, CGP)) 1637 return true; 1638 return false; 1639 } 1640 1641 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1642 /// commutative intrinsic. 1643 bool 1644 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1645 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1646 return Int->isCommutative; 1647 return false; 1648 } 1649 1650 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 1651 if (!N->isLeaf()) 1652 return N->getOperator()->isSubClassOf(Class); 1653 1654 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 1655 if (DI && DI->getDef()->isSubClassOf(Class)) 1656 return true; 1657 1658 return false; 1659 } 1660 1661 static void emitTooManyOperandsError(TreePattern &TP, 1662 StringRef InstName, 1663 unsigned Expected, 1664 unsigned Actual) { 1665 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 1666 " operands but expected only " + Twine(Expected) + "!"); 1667 } 1668 1669 static void emitTooFewOperandsError(TreePattern &TP, 1670 StringRef InstName, 1671 unsigned Actual) { 1672 TP.error("Instruction '" + InstName + 1673 "' expects more than the provided " + Twine(Actual) + " operands!"); 1674 } 1675 1676 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1677 /// this node and its children in the tree. This returns true if it makes a 1678 /// change, false otherwise. If a type contradiction is found, flag an error. 1679 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1680 if (TP.hasError()) 1681 return false; 1682 1683 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1684 if (isLeaf()) { 1685 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1686 // If it's a regclass or something else known, include the type. 1687 bool MadeChange = false; 1688 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1689 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1690 NotRegisters, 1691 !hasName(), TP), TP); 1692 return MadeChange; 1693 } 1694 1695 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1696 assert(Types.size() == 1 && "Invalid IntInit"); 1697 1698 // Int inits are always integers. :) 1699 bool MadeChange = Types[0].EnforceInteger(TP); 1700 1701 if (!Types[0].isConcrete()) 1702 return MadeChange; 1703 1704 MVT::SimpleValueType VT = getType(0); 1705 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1706 return MadeChange; 1707 1708 unsigned Size = MVT(VT).getSizeInBits(); 1709 // Make sure that the value is representable for this type. 1710 if (Size >= 32) return MadeChange; 1711 1712 // Check that the value doesn't use more bits than we have. It must either 1713 // be a sign- or zero-extended equivalent of the original. 1714 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1715 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1716 return MadeChange; 1717 1718 TP.error("Integer value '" + itostr(II->getValue()) + 1719 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1720 return false; 1721 } 1722 return false; 1723 } 1724 1725 // special handling for set, which isn't really an SDNode. 1726 if (getOperator()->getName() == "set") { 1727 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1728 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1729 unsigned NC = getNumChildren(); 1730 1731 TreePatternNode *SetVal = getChild(NC-1); 1732 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1733 1734 for (unsigned i = 0; i < NC-1; ++i) { 1735 TreePatternNode *Child = getChild(i); 1736 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1737 1738 // Types of operands must match. 1739 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1740 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1741 } 1742 return MadeChange; 1743 } 1744 1745 if (getOperator()->getName() == "implicit") { 1746 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1747 1748 bool MadeChange = false; 1749 for (unsigned i = 0; i < getNumChildren(); ++i) 1750 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1751 return MadeChange; 1752 } 1753 1754 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1755 bool MadeChange = false; 1756 1757 // Apply the result type to the node. 1758 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1759 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1760 1761 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1762 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1763 1764 if (getNumChildren() != NumParamVTs + 1) { 1765 TP.error("Intrinsic '" + Int->Name + "' expects " + 1766 utostr(NumParamVTs) + " operands, not " + 1767 utostr(getNumChildren() - 1) + " operands!"); 1768 return false; 1769 } 1770 1771 // Apply type info to the intrinsic ID. 1772 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1773 1774 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1775 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1776 1777 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1778 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1779 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1780 } 1781 return MadeChange; 1782 } 1783 1784 if (getOperator()->isSubClassOf("SDNode")) { 1785 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1786 1787 // Check that the number of operands is sane. Negative operands -> varargs. 1788 if (NI.getNumOperands() >= 0 && 1789 getNumChildren() != (unsigned)NI.getNumOperands()) { 1790 TP.error(getOperator()->getName() + " node requires exactly " + 1791 itostr(NI.getNumOperands()) + " operands!"); 1792 return false; 1793 } 1794 1795 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1796 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1797 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1798 return MadeChange; 1799 } 1800 1801 if (getOperator()->isSubClassOf("Instruction")) { 1802 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1803 CodeGenInstruction &InstInfo = 1804 CDP.getTargetInfo().getInstruction(getOperator()); 1805 1806 bool MadeChange = false; 1807 1808 // Apply the result types to the node, these come from the things in the 1809 // (outs) list of the instruction. 1810 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 1811 Inst.getNumResults()); 1812 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1813 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1814 1815 // If the instruction has implicit defs, we apply the first one as a result. 1816 // FIXME: This sucks, it should apply all implicit defs. 1817 if (!InstInfo.ImplicitDefs.empty()) { 1818 unsigned ResNo = NumResultsToAdd; 1819 1820 // FIXME: Generalize to multiple possible types and multiple possible 1821 // ImplicitDefs. 1822 MVT::SimpleValueType VT = 1823 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1824 1825 if (VT != MVT::Other) 1826 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1827 } 1828 1829 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1830 // be the same. 1831 if (getOperator()->getName() == "INSERT_SUBREG") { 1832 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1833 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1834 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1835 } else if (getOperator()->getName() == "REG_SEQUENCE") { 1836 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 1837 // variadic. 1838 1839 unsigned NChild = getNumChildren(); 1840 if (NChild < 3) { 1841 TP.error("REG_SEQUENCE requires at least 3 operands!"); 1842 return false; 1843 } 1844 1845 if (NChild % 2 == 0) { 1846 TP.error("REG_SEQUENCE requires an odd number of operands!"); 1847 return false; 1848 } 1849 1850 if (!isOperandClass(getChild(0), "RegisterClass")) { 1851 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 1852 return false; 1853 } 1854 1855 for (unsigned I = 1; I < NChild; I += 2) { 1856 TreePatternNode *SubIdxChild = getChild(I + 1); 1857 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 1858 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 1859 itostr(I + 1) + "!"); 1860 return false; 1861 } 1862 } 1863 } 1864 1865 unsigned ChildNo = 0; 1866 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1867 Record *OperandNode = Inst.getOperand(i); 1868 1869 // If the instruction expects a predicate or optional def operand, we 1870 // codegen this by setting the operand to it's default value if it has a 1871 // non-empty DefaultOps field. 1872 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1873 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1874 continue; 1875 1876 // Verify that we didn't run out of provided operands. 1877 if (ChildNo >= getNumChildren()) { 1878 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 1879 return false; 1880 } 1881 1882 TreePatternNode *Child = getChild(ChildNo++); 1883 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1884 1885 // If the operand has sub-operands, they may be provided by distinct 1886 // child patterns, so attempt to match each sub-operand separately. 1887 if (OperandNode->isSubClassOf("Operand")) { 1888 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1889 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1890 // But don't do that if the whole operand is being provided by 1891 // a single ComplexPattern-related Operand. 1892 1893 if (Child->getNumMIResults(CDP) < NumArgs) { 1894 // Match first sub-operand against the child we already have. 1895 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1896 MadeChange |= 1897 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1898 1899 // And the remaining sub-operands against subsequent children. 1900 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1901 if (ChildNo >= getNumChildren()) { 1902 emitTooFewOperandsError(TP, getOperator()->getName(), 1903 getNumChildren()); 1904 return false; 1905 } 1906 Child = getChild(ChildNo++); 1907 1908 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1909 MadeChange |= 1910 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1911 } 1912 continue; 1913 } 1914 } 1915 } 1916 1917 // If we didn't match by pieces above, attempt to match the whole 1918 // operand now. 1919 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1920 } 1921 1922 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 1923 emitTooManyOperandsError(TP, getOperator()->getName(), 1924 ChildNo, getNumChildren()); 1925 return false; 1926 } 1927 1928 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1929 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1930 return MadeChange; 1931 } 1932 1933 if (getOperator()->isSubClassOf("ComplexPattern")) { 1934 bool MadeChange = false; 1935 1936 for (unsigned i = 0; i < getNumChildren(); ++i) 1937 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1938 1939 return MadeChange; 1940 } 1941 1942 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1943 1944 // Node transforms always take one operand. 1945 if (getNumChildren() != 1) { 1946 TP.error("Node transform '" + getOperator()->getName() + 1947 "' requires one operand!"); 1948 return false; 1949 } 1950 1951 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1952 1953 1954 // If either the output or input of the xform does not have exact 1955 // type info. We assume they must be the same. Otherwise, it is perfectly 1956 // legal to transform from one type to a completely different type. 1957 #if 0 1958 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1959 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1960 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1961 return MadeChange; 1962 } 1963 #endif 1964 return MadeChange; 1965 } 1966 1967 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1968 /// RHS of a commutative operation, not the on LHS. 1969 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1970 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1971 return true; 1972 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1973 return true; 1974 return false; 1975 } 1976 1977 1978 /// canPatternMatch - If it is impossible for this pattern to match on this 1979 /// target, fill in Reason and return false. Otherwise, return true. This is 1980 /// used as a sanity check for .td files (to prevent people from writing stuff 1981 /// that can never possibly work), and to prevent the pattern permuter from 1982 /// generating stuff that is useless. 1983 bool TreePatternNode::canPatternMatch(std::string &Reason, 1984 const CodeGenDAGPatterns &CDP) { 1985 if (isLeaf()) return true; 1986 1987 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1988 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1989 return false; 1990 1991 // If this is an intrinsic, handle cases that would make it not match. For 1992 // example, if an operand is required to be an immediate. 1993 if (getOperator()->isSubClassOf("Intrinsic")) { 1994 // TODO: 1995 return true; 1996 } 1997 1998 if (getOperator()->isSubClassOf("ComplexPattern")) 1999 return true; 2000 2001 // If this node is a commutative operator, check that the LHS isn't an 2002 // immediate. 2003 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2004 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2005 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2006 // Scan all of the operands of the node and make sure that only the last one 2007 // is a constant node, unless the RHS also is. 2008 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2009 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2010 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2011 if (OnlyOnRHSOfCommutative(getChild(i))) { 2012 Reason="Immediate value must be on the RHS of commutative operators!"; 2013 return false; 2014 } 2015 } 2016 } 2017 2018 return true; 2019 } 2020 2021 //===----------------------------------------------------------------------===// 2022 // TreePattern implementation 2023 // 2024 2025 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2026 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2027 isInputPattern(isInput), HasError(false) { 2028 for (Init *I : RawPat->getValues()) 2029 Trees.push_back(ParseTreePattern(I, "")); 2030 } 2031 2032 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2033 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2034 isInputPattern(isInput), HasError(false) { 2035 Trees.push_back(ParseTreePattern(Pat, "")); 2036 } 2037 2038 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2039 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2040 isInputPattern(isInput), HasError(false) { 2041 Trees.push_back(Pat); 2042 } 2043 2044 void TreePattern::error(const Twine &Msg) { 2045 if (HasError) 2046 return; 2047 dump(); 2048 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2049 HasError = true; 2050 } 2051 2052 void TreePattern::ComputeNamedNodes() { 2053 for (TreePatternNode *Tree : Trees) 2054 ComputeNamedNodes(Tree); 2055 } 2056 2057 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2058 if (!N->getName().empty()) 2059 NamedNodes[N->getName()].push_back(N); 2060 2061 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2062 ComputeNamedNodes(N->getChild(i)); 2063 } 2064 2065 2066 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2067 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2068 Record *R = DI->getDef(); 2069 2070 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2071 // TreePatternNode of its own. For example: 2072 /// (foo GPR, imm) -> (foo GPR, (imm)) 2073 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2074 return ParseTreePattern( 2075 DagInit::get(DI, nullptr, 2076 std::vector<std::pair<Init*, StringInit*> >()), 2077 OpName); 2078 2079 // Input argument? 2080 TreePatternNode *Res = new TreePatternNode(DI, 1); 2081 if (R->getName() == "node" && !OpName.empty()) { 2082 if (OpName.empty()) 2083 error("'node' argument requires a name to match with operand list"); 2084 Args.push_back(OpName); 2085 } 2086 2087 Res->setName(OpName); 2088 return Res; 2089 } 2090 2091 // ?:$name or just $name. 2092 if (isa<UnsetInit>(TheInit)) { 2093 if (OpName.empty()) 2094 error("'?' argument requires a name to match with operand list"); 2095 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2096 Args.push_back(OpName); 2097 Res->setName(OpName); 2098 return Res; 2099 } 2100 2101 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2102 if (!OpName.empty()) 2103 error("Constant int argument should not have a name!"); 2104 return new TreePatternNode(II, 1); 2105 } 2106 2107 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2108 // Turn this into an IntInit. 2109 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2110 if (!II || !isa<IntInit>(II)) 2111 error("Bits value must be constants!"); 2112 return ParseTreePattern(II, OpName); 2113 } 2114 2115 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2116 if (!Dag) { 2117 TheInit->dump(); 2118 error("Pattern has unexpected init kind!"); 2119 } 2120 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2121 if (!OpDef) error("Pattern has unexpected operator type!"); 2122 Record *Operator = OpDef->getDef(); 2123 2124 if (Operator->isSubClassOf("ValueType")) { 2125 // If the operator is a ValueType, then this must be "type cast" of a leaf 2126 // node. 2127 if (Dag->getNumArgs() != 1) 2128 error("Type cast only takes one operand!"); 2129 2130 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), 2131 Dag->getArgNameStr(0)); 2132 2133 // Apply the type cast. 2134 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2135 New->UpdateNodeType(0, getValueType(Operator), *this); 2136 2137 if (!OpName.empty()) 2138 error("ValueType cast should not have a name!"); 2139 return New; 2140 } 2141 2142 // Verify that this is something that makes sense for an operator. 2143 if (!Operator->isSubClassOf("PatFrag") && 2144 !Operator->isSubClassOf("SDNode") && 2145 !Operator->isSubClassOf("Instruction") && 2146 !Operator->isSubClassOf("SDNodeXForm") && 2147 !Operator->isSubClassOf("Intrinsic") && 2148 !Operator->isSubClassOf("ComplexPattern") && 2149 Operator->getName() != "set" && 2150 Operator->getName() != "implicit") 2151 error("Unrecognized node '" + Operator->getName() + "'!"); 2152 2153 // Check to see if this is something that is illegal in an input pattern. 2154 if (isInputPattern) { 2155 if (Operator->isSubClassOf("Instruction") || 2156 Operator->isSubClassOf("SDNodeXForm")) 2157 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2158 } else { 2159 if (Operator->isSubClassOf("Intrinsic")) 2160 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2161 2162 if (Operator->isSubClassOf("SDNode") && 2163 Operator->getName() != "imm" && 2164 Operator->getName() != "fpimm" && 2165 Operator->getName() != "tglobaltlsaddr" && 2166 Operator->getName() != "tconstpool" && 2167 Operator->getName() != "tjumptable" && 2168 Operator->getName() != "tframeindex" && 2169 Operator->getName() != "texternalsym" && 2170 Operator->getName() != "tblockaddress" && 2171 Operator->getName() != "tglobaladdr" && 2172 Operator->getName() != "bb" && 2173 Operator->getName() != "vt" && 2174 Operator->getName() != "mcsym") 2175 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2176 } 2177 2178 std::vector<TreePatternNode*> Children; 2179 2180 // Parse all the operands. 2181 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2182 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2183 2184 // If the operator is an intrinsic, then this is just syntactic sugar for for 2185 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2186 // convert the intrinsic name to a number. 2187 if (Operator->isSubClassOf("Intrinsic")) { 2188 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2189 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2190 2191 // If this intrinsic returns void, it must have side-effects and thus a 2192 // chain. 2193 if (Int.IS.RetVTs.empty()) 2194 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2195 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2196 // Has side-effects, requires chain. 2197 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2198 else // Otherwise, no chain. 2199 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2200 2201 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2202 Children.insert(Children.begin(), IIDNode); 2203 } 2204 2205 if (Operator->isSubClassOf("ComplexPattern")) { 2206 for (unsigned i = 0; i < Children.size(); ++i) { 2207 TreePatternNode *Child = Children[i]; 2208 2209 if (Child->getName().empty()) 2210 error("All arguments to a ComplexPattern must be named"); 2211 2212 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2213 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2214 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2215 auto OperandId = std::make_pair(Operator, i); 2216 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2217 if (PrevOp != ComplexPatternOperands.end()) { 2218 if (PrevOp->getValue() != OperandId) 2219 error("All ComplexPattern operands must appear consistently: " 2220 "in the same order in just one ComplexPattern instance."); 2221 } else 2222 ComplexPatternOperands[Child->getName()] = OperandId; 2223 } 2224 } 2225 2226 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2227 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2228 Result->setName(OpName); 2229 2230 if (Dag->getName()) { 2231 assert(Result->getName().empty()); 2232 Result->setName(Dag->getNameStr()); 2233 } 2234 return Result; 2235 } 2236 2237 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2238 /// will never match in favor of something obvious that will. This is here 2239 /// strictly as a convenience to target authors because it allows them to write 2240 /// more type generic things and have useless type casts fold away. 2241 /// 2242 /// This returns true if any change is made. 2243 static bool SimplifyTree(TreePatternNode *&N) { 2244 if (N->isLeaf()) 2245 return false; 2246 2247 // If we have a bitconvert with a resolved type and if the source and 2248 // destination types are the same, then the bitconvert is useless, remove it. 2249 if (N->getOperator()->getName() == "bitconvert" && 2250 N->getExtType(0).isConcrete() && 2251 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2252 N->getName().empty()) { 2253 N = N->getChild(0); 2254 SimplifyTree(N); 2255 return true; 2256 } 2257 2258 // Walk all children. 2259 bool MadeChange = false; 2260 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2261 TreePatternNode *Child = N->getChild(i); 2262 MadeChange |= SimplifyTree(Child); 2263 N->setChild(i, Child); 2264 } 2265 return MadeChange; 2266 } 2267 2268 2269 2270 /// InferAllTypes - Infer/propagate as many types throughout the expression 2271 /// patterns as possible. Return true if all types are inferred, false 2272 /// otherwise. Flags an error if a type contradiction is found. 2273 bool TreePattern:: 2274 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2275 if (NamedNodes.empty()) 2276 ComputeNamedNodes(); 2277 2278 bool MadeChange = true; 2279 while (MadeChange) { 2280 MadeChange = false; 2281 for (TreePatternNode *Tree : Trees) { 2282 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2283 MadeChange |= SimplifyTree(Tree); 2284 } 2285 2286 // If there are constraints on our named nodes, apply them. 2287 for (auto &Entry : NamedNodes) { 2288 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2289 2290 // If we have input named node types, propagate their types to the named 2291 // values here. 2292 if (InNamedTypes) { 2293 if (!InNamedTypes->count(Entry.getKey())) { 2294 error("Node '" + std::string(Entry.getKey()) + 2295 "' in output pattern but not input pattern"); 2296 return true; 2297 } 2298 2299 const SmallVectorImpl<TreePatternNode*> &InNodes = 2300 InNamedTypes->find(Entry.getKey())->second; 2301 2302 // The input types should be fully resolved by now. 2303 for (TreePatternNode *Node : Nodes) { 2304 // If this node is a register class, and it is the root of the pattern 2305 // then we're mapping something onto an input register. We allow 2306 // changing the type of the input register in this case. This allows 2307 // us to match things like: 2308 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2309 if (Node == Trees[0] && Node->isLeaf()) { 2310 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2311 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2312 DI->getDef()->isSubClassOf("RegisterOperand"))) 2313 continue; 2314 } 2315 2316 assert(Node->getNumTypes() == 1 && 2317 InNodes[0]->getNumTypes() == 1 && 2318 "FIXME: cannot name multiple result nodes yet"); 2319 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2320 *this); 2321 } 2322 } 2323 2324 // If there are multiple nodes with the same name, they must all have the 2325 // same type. 2326 if (Entry.second.size() > 1) { 2327 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2328 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2329 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2330 "FIXME: cannot name multiple result nodes yet"); 2331 2332 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2333 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2334 } 2335 } 2336 } 2337 } 2338 2339 bool HasUnresolvedTypes = false; 2340 for (const TreePatternNode *Tree : Trees) 2341 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(); 2342 return !HasUnresolvedTypes; 2343 } 2344 2345 void TreePattern::print(raw_ostream &OS) const { 2346 OS << getRecord()->getName(); 2347 if (!Args.empty()) { 2348 OS << "(" << Args[0]; 2349 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2350 OS << ", " << Args[i]; 2351 OS << ")"; 2352 } 2353 OS << ": "; 2354 2355 if (Trees.size() > 1) 2356 OS << "[\n"; 2357 for (const TreePatternNode *Tree : Trees) { 2358 OS << "\t"; 2359 Tree->print(OS); 2360 OS << "\n"; 2361 } 2362 2363 if (Trees.size() > 1) 2364 OS << "]\n"; 2365 } 2366 2367 void TreePattern::dump() const { print(errs()); } 2368 2369 //===----------------------------------------------------------------------===// 2370 // CodeGenDAGPatterns implementation 2371 // 2372 2373 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2374 Records(R), Target(R) { 2375 2376 Intrinsics = CodeGenIntrinsicTable(Records, false); 2377 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2378 ParseNodeInfo(); 2379 ParseNodeTransforms(); 2380 ParseComplexPatterns(); 2381 ParsePatternFragments(); 2382 ParseDefaultOperands(); 2383 ParseInstructions(); 2384 ParsePatternFragments(/*OutFrags*/true); 2385 ParsePatterns(); 2386 2387 // Generate variants. For example, commutative patterns can match 2388 // multiple ways. Add them to PatternsToMatch as well. 2389 GenerateVariants(); 2390 2391 // Infer instruction flags. For example, we can detect loads, 2392 // stores, and side effects in many cases by examining an 2393 // instruction's pattern. 2394 InferInstructionFlags(); 2395 2396 // Verify that instruction flags match the patterns. 2397 VerifyInstructionFlags(); 2398 } 2399 2400 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2401 Record *N = Records.getDef(Name); 2402 if (!N || !N->isSubClassOf("SDNode")) 2403 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2404 2405 return N; 2406 } 2407 2408 // Parse all of the SDNode definitions for the target, populating SDNodes. 2409 void CodeGenDAGPatterns::ParseNodeInfo() { 2410 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2411 while (!Nodes.empty()) { 2412 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2413 Nodes.pop_back(); 2414 } 2415 2416 // Get the builtin intrinsic nodes. 2417 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2418 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2419 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2420 } 2421 2422 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2423 /// map, and emit them to the file as functions. 2424 void CodeGenDAGPatterns::ParseNodeTransforms() { 2425 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2426 while (!Xforms.empty()) { 2427 Record *XFormNode = Xforms.back(); 2428 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2429 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2430 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2431 2432 Xforms.pop_back(); 2433 } 2434 } 2435 2436 void CodeGenDAGPatterns::ParseComplexPatterns() { 2437 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2438 while (!AMs.empty()) { 2439 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2440 AMs.pop_back(); 2441 } 2442 } 2443 2444 2445 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2446 /// file, building up the PatternFragments map. After we've collected them all, 2447 /// inline fragments together as necessary, so that there are no references left 2448 /// inside a pattern fragment to a pattern fragment. 2449 /// 2450 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2451 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2452 2453 // First step, parse all of the fragments. 2454 for (Record *Frag : Fragments) { 2455 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2456 continue; 2457 2458 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2459 TreePattern *P = 2460 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2461 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2462 *this)).get(); 2463 2464 // Validate the argument list, converting it to set, to discard duplicates. 2465 std::vector<std::string> &Args = P->getArgList(); 2466 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2467 2468 if (OperandsSet.count("")) 2469 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2470 2471 // Parse the operands list. 2472 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2473 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2474 // Special cases: ops == outs == ins. Different names are used to 2475 // improve readability. 2476 if (!OpsOp || 2477 (OpsOp->getDef()->getName() != "ops" && 2478 OpsOp->getDef()->getName() != "outs" && 2479 OpsOp->getDef()->getName() != "ins")) 2480 P->error("Operands list should start with '(ops ... '!"); 2481 2482 // Copy over the arguments. 2483 Args.clear(); 2484 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2485 if (!isa<DefInit>(OpsList->getArg(j)) || 2486 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2487 P->error("Operands list should all be 'node' values."); 2488 if (!OpsList->getArgName(j)) 2489 P->error("Operands list should have names for each operand!"); 2490 StringRef ArgNameStr = OpsList->getArgNameStr(j); 2491 if (!OperandsSet.count(ArgNameStr)) 2492 P->error("'" + ArgNameStr + 2493 "' does not occur in pattern or was multiply specified!"); 2494 OperandsSet.erase(ArgNameStr); 2495 Args.push_back(ArgNameStr); 2496 } 2497 2498 if (!OperandsSet.empty()) 2499 P->error("Operands list does not contain an entry for operand '" + 2500 *OperandsSet.begin() + "'!"); 2501 2502 // If there is a code init for this fragment, keep track of the fact that 2503 // this fragment uses it. 2504 TreePredicateFn PredFn(P); 2505 if (!PredFn.isAlwaysTrue()) 2506 P->getOnlyTree()->addPredicateFn(PredFn); 2507 2508 // If there is a node transformation corresponding to this, keep track of 2509 // it. 2510 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2511 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2512 P->getOnlyTree()->setTransformFn(Transform); 2513 } 2514 2515 // Now that we've parsed all of the tree fragments, do a closure on them so 2516 // that there are not references to PatFrags left inside of them. 2517 for (Record *Frag : Fragments) { 2518 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2519 continue; 2520 2521 TreePattern &ThePat = *PatternFragments[Frag]; 2522 ThePat.InlinePatternFragments(); 2523 2524 // Infer as many types as possible. Don't worry about it if we don't infer 2525 // all of them, some may depend on the inputs of the pattern. 2526 ThePat.InferAllTypes(); 2527 ThePat.resetError(); 2528 2529 // If debugging, print out the pattern fragment result. 2530 DEBUG(ThePat.dump()); 2531 } 2532 } 2533 2534 void CodeGenDAGPatterns::ParseDefaultOperands() { 2535 std::vector<Record*> DefaultOps; 2536 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2537 2538 // Find some SDNode. 2539 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2540 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2541 2542 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2543 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2544 2545 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2546 // SomeSDnode so that we can parse this. 2547 std::vector<std::pair<Init*, StringInit*> > Ops; 2548 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2549 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2550 DefaultInfo->getArgName(op))); 2551 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 2552 2553 // Create a TreePattern to parse this. 2554 TreePattern P(DefaultOps[i], DI, false, *this); 2555 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2556 2557 // Copy the operands over into a DAGDefaultOperand. 2558 DAGDefaultOperand DefaultOpInfo; 2559 2560 TreePatternNode *T = P.getTree(0); 2561 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2562 TreePatternNode *TPN = T->getChild(op); 2563 while (TPN->ApplyTypeConstraints(P, false)) 2564 /* Resolve all types */; 2565 2566 if (TPN->ContainsUnresolvedType()) { 2567 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2568 DefaultOps[i]->getName() + 2569 "' doesn't have a concrete type!"); 2570 } 2571 DefaultOpInfo.DefaultOps.push_back(TPN); 2572 } 2573 2574 // Insert it into the DefaultOperands map so we can find it later. 2575 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2576 } 2577 } 2578 2579 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2580 /// instruction input. Return true if this is a real use. 2581 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2582 std::map<std::string, TreePatternNode*> &InstInputs) { 2583 // No name -> not interesting. 2584 if (Pat->getName().empty()) { 2585 if (Pat->isLeaf()) { 2586 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2587 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2588 DI->getDef()->isSubClassOf("RegisterOperand"))) 2589 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2590 } 2591 return false; 2592 } 2593 2594 Record *Rec; 2595 if (Pat->isLeaf()) { 2596 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2597 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2598 Rec = DI->getDef(); 2599 } else { 2600 Rec = Pat->getOperator(); 2601 } 2602 2603 // SRCVALUE nodes are ignored. 2604 if (Rec->getName() == "srcvalue") 2605 return false; 2606 2607 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2608 if (!Slot) { 2609 Slot = Pat; 2610 return true; 2611 } 2612 Record *SlotRec; 2613 if (Slot->isLeaf()) { 2614 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2615 } else { 2616 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2617 SlotRec = Slot->getOperator(); 2618 } 2619 2620 // Ensure that the inputs agree if we've already seen this input. 2621 if (Rec != SlotRec) 2622 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2623 if (Slot->getExtTypes() != Pat->getExtTypes()) 2624 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2625 return true; 2626 } 2627 2628 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2629 /// part of "I", the instruction), computing the set of inputs and outputs of 2630 /// the pattern. Report errors if we see anything naughty. 2631 void CodeGenDAGPatterns:: 2632 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2633 std::map<std::string, TreePatternNode*> &InstInputs, 2634 std::map<std::string, TreePatternNode*>&InstResults, 2635 std::vector<Record*> &InstImpResults) { 2636 if (Pat->isLeaf()) { 2637 bool isUse = HandleUse(I, Pat, InstInputs); 2638 if (!isUse && Pat->getTransformFn()) 2639 I->error("Cannot specify a transform function for a non-input value!"); 2640 return; 2641 } 2642 2643 if (Pat->getOperator()->getName() == "implicit") { 2644 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2645 TreePatternNode *Dest = Pat->getChild(i); 2646 if (!Dest->isLeaf()) 2647 I->error("implicitly defined value should be a register!"); 2648 2649 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2650 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2651 I->error("implicitly defined value should be a register!"); 2652 InstImpResults.push_back(Val->getDef()); 2653 } 2654 return; 2655 } 2656 2657 if (Pat->getOperator()->getName() != "set") { 2658 // If this is not a set, verify that the children nodes are not void typed, 2659 // and recurse. 2660 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2661 if (Pat->getChild(i)->getNumTypes() == 0) 2662 I->error("Cannot have void nodes inside of patterns!"); 2663 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2664 InstImpResults); 2665 } 2666 2667 // If this is a non-leaf node with no children, treat it basically as if 2668 // it were a leaf. This handles nodes like (imm). 2669 bool isUse = HandleUse(I, Pat, InstInputs); 2670 2671 if (!isUse && Pat->getTransformFn()) 2672 I->error("Cannot specify a transform function for a non-input value!"); 2673 return; 2674 } 2675 2676 // Otherwise, this is a set, validate and collect instruction results. 2677 if (Pat->getNumChildren() == 0) 2678 I->error("set requires operands!"); 2679 2680 if (Pat->getTransformFn()) 2681 I->error("Cannot specify a transform function on a set node!"); 2682 2683 // Check the set destinations. 2684 unsigned NumDests = Pat->getNumChildren()-1; 2685 for (unsigned i = 0; i != NumDests; ++i) { 2686 TreePatternNode *Dest = Pat->getChild(i); 2687 if (!Dest->isLeaf()) 2688 I->error("set destination should be a register!"); 2689 2690 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2691 if (!Val) { 2692 I->error("set destination should be a register!"); 2693 continue; 2694 } 2695 2696 if (Val->getDef()->isSubClassOf("RegisterClass") || 2697 Val->getDef()->isSubClassOf("ValueType") || 2698 Val->getDef()->isSubClassOf("RegisterOperand") || 2699 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2700 if (Dest->getName().empty()) 2701 I->error("set destination must have a name!"); 2702 if (InstResults.count(Dest->getName())) 2703 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2704 InstResults[Dest->getName()] = Dest; 2705 } else if (Val->getDef()->isSubClassOf("Register")) { 2706 InstImpResults.push_back(Val->getDef()); 2707 } else { 2708 I->error("set destination should be a register!"); 2709 } 2710 } 2711 2712 // Verify and collect info from the computation. 2713 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2714 InstInputs, InstResults, InstImpResults); 2715 } 2716 2717 //===----------------------------------------------------------------------===// 2718 // Instruction Analysis 2719 //===----------------------------------------------------------------------===// 2720 2721 class InstAnalyzer { 2722 const CodeGenDAGPatterns &CDP; 2723 public: 2724 bool hasSideEffects; 2725 bool mayStore; 2726 bool mayLoad; 2727 bool isBitcast; 2728 bool isVariadic; 2729 2730 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2731 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2732 isBitcast(false), isVariadic(false) {} 2733 2734 void Analyze(const TreePattern *Pat) { 2735 // Assume only the first tree is the pattern. The others are clobber nodes. 2736 AnalyzeNode(Pat->getTree(0)); 2737 } 2738 2739 void Analyze(const PatternToMatch *Pat) { 2740 AnalyzeNode(Pat->getSrcPattern()); 2741 } 2742 2743 private: 2744 bool IsNodeBitcast(const TreePatternNode *N) const { 2745 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2746 return false; 2747 2748 if (N->getNumChildren() != 2) 2749 return false; 2750 2751 const TreePatternNode *N0 = N->getChild(0); 2752 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2753 return false; 2754 2755 const TreePatternNode *N1 = N->getChild(1); 2756 if (N1->isLeaf()) 2757 return false; 2758 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2759 return false; 2760 2761 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2762 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2763 return false; 2764 return OpInfo.getEnumName() == "ISD::BITCAST"; 2765 } 2766 2767 public: 2768 void AnalyzeNode(const TreePatternNode *N) { 2769 if (N->isLeaf()) { 2770 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2771 Record *LeafRec = DI->getDef(); 2772 // Handle ComplexPattern leaves. 2773 if (LeafRec->isSubClassOf("ComplexPattern")) { 2774 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2775 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2776 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2777 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2778 } 2779 } 2780 return; 2781 } 2782 2783 // Analyze children. 2784 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2785 AnalyzeNode(N->getChild(i)); 2786 2787 // Ignore set nodes, which are not SDNodes. 2788 if (N->getOperator()->getName() == "set") { 2789 isBitcast = IsNodeBitcast(N); 2790 return; 2791 } 2792 2793 // Notice properties of the node. 2794 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2795 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2796 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2797 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2798 2799 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2800 // If this is an intrinsic, analyze it. 2801 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 2802 mayLoad = true;// These may load memory. 2803 2804 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 2805 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2806 2807 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2808 // ReadWriteMem intrinsics can have other strange effects. 2809 hasSideEffects = true; 2810 } 2811 } 2812 2813 }; 2814 2815 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2816 const InstAnalyzer &PatInfo, 2817 Record *PatDef) { 2818 bool Error = false; 2819 2820 // Remember where InstInfo got its flags. 2821 if (InstInfo.hasUndefFlags()) 2822 InstInfo.InferredFrom = PatDef; 2823 2824 // Check explicitly set flags for consistency. 2825 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2826 !InstInfo.hasSideEffects_Unset) { 2827 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2828 // the pattern has no side effects. That could be useful for div/rem 2829 // instructions that may trap. 2830 if (!InstInfo.hasSideEffects) { 2831 Error = true; 2832 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2833 Twine(InstInfo.hasSideEffects)); 2834 } 2835 } 2836 2837 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2838 Error = true; 2839 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2840 Twine(InstInfo.mayStore)); 2841 } 2842 2843 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2844 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2845 // Some targets translate immediates to loads. 2846 if (!InstInfo.mayLoad) { 2847 Error = true; 2848 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2849 Twine(InstInfo.mayLoad)); 2850 } 2851 } 2852 2853 // Transfer inferred flags. 2854 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2855 InstInfo.mayStore |= PatInfo.mayStore; 2856 InstInfo.mayLoad |= PatInfo.mayLoad; 2857 2858 // These flags are silently added without any verification. 2859 InstInfo.isBitcast |= PatInfo.isBitcast; 2860 2861 // Don't infer isVariadic. This flag means something different on SDNodes and 2862 // instructions. For example, a CALL SDNode is variadic because it has the 2863 // call arguments as operands, but a CALL instruction is not variadic - it 2864 // has argument registers as implicit, not explicit uses. 2865 2866 return Error; 2867 } 2868 2869 /// hasNullFragReference - Return true if the DAG has any reference to the 2870 /// null_frag operator. 2871 static bool hasNullFragReference(DagInit *DI) { 2872 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2873 if (!OpDef) return false; 2874 Record *Operator = OpDef->getDef(); 2875 2876 // If this is the null fragment, return true. 2877 if (Operator->getName() == "null_frag") return true; 2878 // If any of the arguments reference the null fragment, return true. 2879 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2880 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2881 if (Arg && hasNullFragReference(Arg)) 2882 return true; 2883 } 2884 2885 return false; 2886 } 2887 2888 /// hasNullFragReference - Return true if any DAG in the list references 2889 /// the null_frag operator. 2890 static bool hasNullFragReference(ListInit *LI) { 2891 for (Init *I : LI->getValues()) { 2892 DagInit *DI = dyn_cast<DagInit>(I); 2893 assert(DI && "non-dag in an instruction Pattern list?!"); 2894 if (hasNullFragReference(DI)) 2895 return true; 2896 } 2897 return false; 2898 } 2899 2900 /// Get all the instructions in a tree. 2901 static void 2902 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2903 if (Tree->isLeaf()) 2904 return; 2905 if (Tree->getOperator()->isSubClassOf("Instruction")) 2906 Instrs.push_back(Tree->getOperator()); 2907 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2908 getInstructionsInTree(Tree->getChild(i), Instrs); 2909 } 2910 2911 /// Check the class of a pattern leaf node against the instruction operand it 2912 /// represents. 2913 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2914 Record *Leaf) { 2915 if (OI.Rec == Leaf) 2916 return true; 2917 2918 // Allow direct value types to be used in instruction set patterns. 2919 // The type will be checked later. 2920 if (Leaf->isSubClassOf("ValueType")) 2921 return true; 2922 2923 // Patterns can also be ComplexPattern instances. 2924 if (Leaf->isSubClassOf("ComplexPattern")) 2925 return true; 2926 2927 return false; 2928 } 2929 2930 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2931 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2932 2933 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2934 2935 // Parse the instruction. 2936 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2937 // Inline pattern fragments into it. 2938 I->InlinePatternFragments(); 2939 2940 // Infer as many types as possible. If we cannot infer all of them, we can 2941 // never do anything with this instruction pattern: report it to the user. 2942 if (!I->InferAllTypes()) 2943 I->error("Could not infer all types in pattern!"); 2944 2945 // InstInputs - Keep track of all of the inputs of the instruction, along 2946 // with the record they are declared as. 2947 std::map<std::string, TreePatternNode*> InstInputs; 2948 2949 // InstResults - Keep track of all the virtual registers that are 'set' 2950 // in the instruction, including what reg class they are. 2951 std::map<std::string, TreePatternNode*> InstResults; 2952 2953 std::vector<Record*> InstImpResults; 2954 2955 // Verify that the top-level forms in the instruction are of void type, and 2956 // fill in the InstResults map. 2957 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2958 TreePatternNode *Pat = I->getTree(j); 2959 if (Pat->getNumTypes() != 0) { 2960 std::string Types; 2961 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 2962 if (k > 0) 2963 Types += ", "; 2964 Types += Pat->getExtType(k).getName(); 2965 } 2966 I->error("Top-level forms in instruction pattern should have" 2967 " void types, has types " + Types); 2968 } 2969 2970 // Find inputs and outputs, and verify the structure of the uses/defs. 2971 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2972 InstImpResults); 2973 } 2974 2975 // Now that we have inputs and outputs of the pattern, inspect the operands 2976 // list for the instruction. This determines the order that operands are 2977 // added to the machine instruction the node corresponds to. 2978 unsigned NumResults = InstResults.size(); 2979 2980 // Parse the operands list from the (ops) list, validating it. 2981 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2982 2983 // Check that all of the results occur first in the list. 2984 std::vector<Record*> Results; 2985 SmallVector<TreePatternNode *, 2> ResNodes; 2986 for (unsigned i = 0; i != NumResults; ++i) { 2987 if (i == CGI.Operands.size()) 2988 I->error("'" + InstResults.begin()->first + 2989 "' set but does not appear in operand list!"); 2990 const std::string &OpName = CGI.Operands[i].Name; 2991 2992 // Check that it exists in InstResults. 2993 TreePatternNode *RNode = InstResults[OpName]; 2994 if (!RNode) 2995 I->error("Operand $" + OpName + " does not exist in operand list!"); 2996 2997 ResNodes.push_back(RNode); 2998 2999 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3000 if (!R) 3001 I->error("Operand $" + OpName + " should be a set destination: all " 3002 "outputs must occur before inputs in operand list!"); 3003 3004 if (!checkOperandClass(CGI.Operands[i], R)) 3005 I->error("Operand $" + OpName + " class mismatch!"); 3006 3007 // Remember the return type. 3008 Results.push_back(CGI.Operands[i].Rec); 3009 3010 // Okay, this one checks out. 3011 InstResults.erase(OpName); 3012 } 3013 3014 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3015 // the copy while we're checking the inputs. 3016 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3017 3018 std::vector<TreePatternNode*> ResultNodeOperands; 3019 std::vector<Record*> Operands; 3020 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3021 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3022 const std::string &OpName = Op.Name; 3023 if (OpName.empty()) 3024 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 3025 3026 if (!InstInputsCheck.count(OpName)) { 3027 // If this is an operand with a DefaultOps set filled in, we can ignore 3028 // this. When we codegen it, we will do so as always executed. 3029 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3030 // Does it have a non-empty DefaultOps field? If so, ignore this 3031 // operand. 3032 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3033 continue; 3034 } 3035 I->error("Operand $" + OpName + 3036 " does not appear in the instruction pattern"); 3037 } 3038 TreePatternNode *InVal = InstInputsCheck[OpName]; 3039 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3040 3041 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3042 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3043 if (!checkOperandClass(Op, InRec)) 3044 I->error("Operand $" + OpName + "'s register class disagrees" 3045 " between the operand and pattern"); 3046 } 3047 Operands.push_back(Op.Rec); 3048 3049 // Construct the result for the dest-pattern operand list. 3050 TreePatternNode *OpNode = InVal->clone(); 3051 3052 // No predicate is useful on the result. 3053 OpNode->clearPredicateFns(); 3054 3055 // Promote the xform function to be an explicit node if set. 3056 if (Record *Xform = OpNode->getTransformFn()) { 3057 OpNode->setTransformFn(nullptr); 3058 std::vector<TreePatternNode*> Children; 3059 Children.push_back(OpNode); 3060 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3061 } 3062 3063 ResultNodeOperands.push_back(OpNode); 3064 } 3065 3066 if (!InstInputsCheck.empty()) 3067 I->error("Input operand $" + InstInputsCheck.begin()->first + 3068 " occurs in pattern but not in operands list!"); 3069 3070 TreePatternNode *ResultPattern = 3071 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3072 GetNumNodeResults(I->getRecord(), *this)); 3073 // Copy fully inferred output node types to instruction result pattern. 3074 for (unsigned i = 0; i != NumResults; ++i) { 3075 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3076 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3077 } 3078 3079 // Create and insert the instruction. 3080 // FIXME: InstImpResults should not be part of DAGInstruction. 3081 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3082 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3083 3084 // Use a temporary tree pattern to infer all types and make sure that the 3085 // constructed result is correct. This depends on the instruction already 3086 // being inserted into the DAGInsts map. 3087 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3088 Temp.InferAllTypes(&I->getNamedNodesMap()); 3089 3090 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3091 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3092 3093 return TheInsertedInst; 3094 } 3095 3096 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3097 /// any fragments involved. This populates the Instructions list with fully 3098 /// resolved instructions. 3099 void CodeGenDAGPatterns::ParseInstructions() { 3100 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3101 3102 for (Record *Instr : Instrs) { 3103 ListInit *LI = nullptr; 3104 3105 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3106 LI = Instr->getValueAsListInit("Pattern"); 3107 3108 // If there is no pattern, only collect minimal information about the 3109 // instruction for its operand list. We have to assume that there is one 3110 // result, as we have no detailed info. A pattern which references the 3111 // null_frag operator is as-if no pattern were specified. Normally this 3112 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3113 // null_frag. 3114 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3115 std::vector<Record*> Results; 3116 std::vector<Record*> Operands; 3117 3118 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3119 3120 if (InstInfo.Operands.size() != 0) { 3121 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3122 Results.push_back(InstInfo.Operands[j].Rec); 3123 3124 // The rest are inputs. 3125 for (unsigned j = InstInfo.Operands.NumDefs, 3126 e = InstInfo.Operands.size(); j < e; ++j) 3127 Operands.push_back(InstInfo.Operands[j].Rec); 3128 } 3129 3130 // Create and insert the instruction. 3131 std::vector<Record*> ImpResults; 3132 Instructions.insert(std::make_pair(Instr, 3133 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3134 continue; // no pattern. 3135 } 3136 3137 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3138 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3139 3140 (void)DI; 3141 DEBUG(DI.getPattern()->dump()); 3142 } 3143 3144 // If we can, convert the instructions to be patterns that are matched! 3145 for (auto &Entry : Instructions) { 3146 DAGInstruction &TheInst = Entry.second; 3147 TreePattern *I = TheInst.getPattern(); 3148 if (!I) continue; // No pattern. 3149 3150 // FIXME: Assume only the first tree is the pattern. The others are clobber 3151 // nodes. 3152 TreePatternNode *Pattern = I->getTree(0); 3153 TreePatternNode *SrcPattern; 3154 if (Pattern->getOperator()->getName() == "set") { 3155 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3156 } else{ 3157 // Not a set (store or something?) 3158 SrcPattern = Pattern; 3159 } 3160 3161 Record *Instr = Entry.first; 3162 AddPatternToMatch(I, 3163 PatternToMatch(Instr, 3164 Instr->getValueAsListInit("Predicates"), 3165 SrcPattern, 3166 TheInst.getResultPattern(), 3167 TheInst.getImpResults(), 3168 Instr->getValueAsInt("AddedComplexity"), 3169 Instr->getID())); 3170 } 3171 } 3172 3173 3174 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3175 3176 static void FindNames(const TreePatternNode *P, 3177 std::map<std::string, NameRecord> &Names, 3178 TreePattern *PatternTop) { 3179 if (!P->getName().empty()) { 3180 NameRecord &Rec = Names[P->getName()]; 3181 // If this is the first instance of the name, remember the node. 3182 if (Rec.second++ == 0) 3183 Rec.first = P; 3184 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3185 PatternTop->error("repetition of value: $" + P->getName() + 3186 " where different uses have different types!"); 3187 } 3188 3189 if (!P->isLeaf()) { 3190 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3191 FindNames(P->getChild(i), Names, PatternTop); 3192 } 3193 } 3194 3195 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3196 const PatternToMatch &PTM) { 3197 // Do some sanity checking on the pattern we're about to match. 3198 std::string Reason; 3199 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3200 PrintWarning(Pattern->getRecord()->getLoc(), 3201 Twine("Pattern can never match: ") + Reason); 3202 return; 3203 } 3204 3205 // If the source pattern's root is a complex pattern, that complex pattern 3206 // must specify the nodes it can potentially match. 3207 if (const ComplexPattern *CP = 3208 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3209 if (CP->getRootNodes().empty()) 3210 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3211 " could match"); 3212 3213 3214 // Find all of the named values in the input and output, ensure they have the 3215 // same type. 3216 std::map<std::string, NameRecord> SrcNames, DstNames; 3217 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3218 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3219 3220 // Scan all of the named values in the destination pattern, rejecting them if 3221 // they don't exist in the input pattern. 3222 for (const auto &Entry : DstNames) { 3223 if (SrcNames[Entry.first].first == nullptr) 3224 Pattern->error("Pattern has input without matching name in output: $" + 3225 Entry.first); 3226 } 3227 3228 // Scan all of the named values in the source pattern, rejecting them if the 3229 // name isn't used in the dest, and isn't used to tie two values together. 3230 for (const auto &Entry : SrcNames) 3231 if (DstNames[Entry.first].first == nullptr && 3232 SrcNames[Entry.first].second == 1) 3233 Pattern->error("Pattern has dead named input: $" + Entry.first); 3234 3235 PatternsToMatch.push_back(PTM); 3236 } 3237 3238 3239 3240 void CodeGenDAGPatterns::InferInstructionFlags() { 3241 ArrayRef<const CodeGenInstruction*> Instructions = 3242 Target.getInstructionsByEnumValue(); 3243 3244 // First try to infer flags from the primary instruction pattern, if any. 3245 SmallVector<CodeGenInstruction*, 8> Revisit; 3246 unsigned Errors = 0; 3247 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3248 CodeGenInstruction &InstInfo = 3249 const_cast<CodeGenInstruction &>(*Instructions[i]); 3250 3251 // Get the primary instruction pattern. 3252 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3253 if (!Pattern) { 3254 if (InstInfo.hasUndefFlags()) 3255 Revisit.push_back(&InstInfo); 3256 continue; 3257 } 3258 InstAnalyzer PatInfo(*this); 3259 PatInfo.Analyze(Pattern); 3260 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3261 } 3262 3263 // Second, look for single-instruction patterns defined outside the 3264 // instruction. 3265 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3266 const PatternToMatch &PTM = *I; 3267 3268 // We can only infer from single-instruction patterns, otherwise we won't 3269 // know which instruction should get the flags. 3270 SmallVector<Record*, 8> PatInstrs; 3271 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3272 if (PatInstrs.size() != 1) 3273 continue; 3274 3275 // Get the single instruction. 3276 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3277 3278 // Only infer properties from the first pattern. We'll verify the others. 3279 if (InstInfo.InferredFrom) 3280 continue; 3281 3282 InstAnalyzer PatInfo(*this); 3283 PatInfo.Analyze(&PTM); 3284 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3285 } 3286 3287 if (Errors) 3288 PrintFatalError("pattern conflicts"); 3289 3290 // Revisit instructions with undefined flags and no pattern. 3291 if (Target.guessInstructionProperties()) { 3292 for (CodeGenInstruction *InstInfo : Revisit) { 3293 if (InstInfo->InferredFrom) 3294 continue; 3295 // The mayLoad and mayStore flags default to false. 3296 // Conservatively assume hasSideEffects if it wasn't explicit. 3297 if (InstInfo->hasSideEffects_Unset) 3298 InstInfo->hasSideEffects = true; 3299 } 3300 return; 3301 } 3302 3303 // Complain about any flags that are still undefined. 3304 for (CodeGenInstruction *InstInfo : Revisit) { 3305 if (InstInfo->InferredFrom) 3306 continue; 3307 if (InstInfo->hasSideEffects_Unset) 3308 PrintError(InstInfo->TheDef->getLoc(), 3309 "Can't infer hasSideEffects from patterns"); 3310 if (InstInfo->mayStore_Unset) 3311 PrintError(InstInfo->TheDef->getLoc(), 3312 "Can't infer mayStore from patterns"); 3313 if (InstInfo->mayLoad_Unset) 3314 PrintError(InstInfo->TheDef->getLoc(), 3315 "Can't infer mayLoad from patterns"); 3316 } 3317 } 3318 3319 3320 /// Verify instruction flags against pattern node properties. 3321 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3322 unsigned Errors = 0; 3323 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3324 const PatternToMatch &PTM = *I; 3325 SmallVector<Record*, 8> Instrs; 3326 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3327 if (Instrs.empty()) 3328 continue; 3329 3330 // Count the number of instructions with each flag set. 3331 unsigned NumSideEffects = 0; 3332 unsigned NumStores = 0; 3333 unsigned NumLoads = 0; 3334 for (const Record *Instr : Instrs) { 3335 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3336 NumSideEffects += InstInfo.hasSideEffects; 3337 NumStores += InstInfo.mayStore; 3338 NumLoads += InstInfo.mayLoad; 3339 } 3340 3341 // Analyze the source pattern. 3342 InstAnalyzer PatInfo(*this); 3343 PatInfo.Analyze(&PTM); 3344 3345 // Collect error messages. 3346 SmallVector<std::string, 4> Msgs; 3347 3348 // Check for missing flags in the output. 3349 // Permit extra flags for now at least. 3350 if (PatInfo.hasSideEffects && !NumSideEffects) 3351 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3352 3353 // Don't verify store flags on instructions with side effects. At least for 3354 // intrinsics, side effects implies mayStore. 3355 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3356 Msgs.push_back("pattern may store, but mayStore isn't set"); 3357 3358 // Similarly, mayStore implies mayLoad on intrinsics. 3359 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3360 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3361 3362 // Print error messages. 3363 if (Msgs.empty()) 3364 continue; 3365 ++Errors; 3366 3367 for (const std::string &Msg : Msgs) 3368 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3369 (Instrs.size() == 1 ? 3370 "instruction" : "output instructions")); 3371 // Provide the location of the relevant instruction definitions. 3372 for (const Record *Instr : Instrs) { 3373 if (Instr != PTM.getSrcRecord()) 3374 PrintError(Instr->getLoc(), "defined here"); 3375 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3376 if (InstInfo.InferredFrom && 3377 InstInfo.InferredFrom != InstInfo.TheDef && 3378 InstInfo.InferredFrom != PTM.getSrcRecord()) 3379 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3380 } 3381 } 3382 if (Errors) 3383 PrintFatalError("Errors in DAG patterns"); 3384 } 3385 3386 /// Given a pattern result with an unresolved type, see if we can find one 3387 /// instruction with an unresolved result type. Force this result type to an 3388 /// arbitrary element if it's possible types to converge results. 3389 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3390 if (N->isLeaf()) 3391 return false; 3392 3393 // Analyze children. 3394 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3395 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3396 return true; 3397 3398 if (!N->getOperator()->isSubClassOf("Instruction")) 3399 return false; 3400 3401 // If this type is already concrete or completely unknown we can't do 3402 // anything. 3403 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3404 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3405 continue; 3406 3407 // Otherwise, force its type to the first possibility (an arbitrary choice). 3408 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3409 return true; 3410 } 3411 3412 return false; 3413 } 3414 3415 void CodeGenDAGPatterns::ParsePatterns() { 3416 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3417 3418 for (Record *CurPattern : Patterns) { 3419 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3420 3421 // If the pattern references the null_frag, there's nothing to do. 3422 if (hasNullFragReference(Tree)) 3423 continue; 3424 3425 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3426 3427 // Inline pattern fragments into it. 3428 Pattern->InlinePatternFragments(); 3429 3430 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3431 if (LI->empty()) continue; // no pattern. 3432 3433 // Parse the instruction. 3434 TreePattern Result(CurPattern, LI, false, *this); 3435 3436 // Inline pattern fragments into it. 3437 Result.InlinePatternFragments(); 3438 3439 if (Result.getNumTrees() != 1) 3440 Result.error("Cannot handle instructions producing instructions " 3441 "with temporaries yet!"); 3442 3443 bool IterateInference; 3444 bool InferredAllPatternTypes, InferredAllResultTypes; 3445 do { 3446 // Infer as many types as possible. If we cannot infer all of them, we 3447 // can never do anything with this pattern: report it to the user. 3448 InferredAllPatternTypes = 3449 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3450 3451 // Infer as many types as possible. If we cannot infer all of them, we 3452 // can never do anything with this pattern: report it to the user. 3453 InferredAllResultTypes = 3454 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3455 3456 IterateInference = false; 3457 3458 // Apply the type of the result to the source pattern. This helps us 3459 // resolve cases where the input type is known to be a pointer type (which 3460 // is considered resolved), but the result knows it needs to be 32- or 3461 // 64-bits. Infer the other way for good measure. 3462 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3463 Pattern->getTree(0)->getNumTypes()); 3464 i != e; ++i) { 3465 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3466 i, Result.getTree(0)->getExtType(i), Result); 3467 IterateInference |= Result.getTree(0)->UpdateNodeType( 3468 i, Pattern->getTree(0)->getExtType(i), Result); 3469 } 3470 3471 // If our iteration has converged and the input pattern's types are fully 3472 // resolved but the result pattern is not fully resolved, we may have a 3473 // situation where we have two instructions in the result pattern and 3474 // the instructions require a common register class, but don't care about 3475 // what actual MVT is used. This is actually a bug in our modelling: 3476 // output patterns should have register classes, not MVTs. 3477 // 3478 // In any case, to handle this, we just go through and disambiguate some 3479 // arbitrary types to the result pattern's nodes. 3480 if (!IterateInference && InferredAllPatternTypes && 3481 !InferredAllResultTypes) 3482 IterateInference = 3483 ForceArbitraryInstResultType(Result.getTree(0), Result); 3484 } while (IterateInference); 3485 3486 // Verify that we inferred enough types that we can do something with the 3487 // pattern and result. If these fire the user has to add type casts. 3488 if (!InferredAllPatternTypes) 3489 Pattern->error("Could not infer all types in pattern!"); 3490 if (!InferredAllResultTypes) { 3491 Pattern->dump(); 3492 Result.error("Could not infer all types in pattern result!"); 3493 } 3494 3495 // Validate that the input pattern is correct. 3496 std::map<std::string, TreePatternNode*> InstInputs; 3497 std::map<std::string, TreePatternNode*> InstResults; 3498 std::vector<Record*> InstImpResults; 3499 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3500 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3501 InstInputs, InstResults, 3502 InstImpResults); 3503 3504 // Promote the xform function to be an explicit node if set. 3505 TreePatternNode *DstPattern = Result.getOnlyTree(); 3506 std::vector<TreePatternNode*> ResultNodeOperands; 3507 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3508 TreePatternNode *OpNode = DstPattern->getChild(ii); 3509 if (Record *Xform = OpNode->getTransformFn()) { 3510 OpNode->setTransformFn(nullptr); 3511 std::vector<TreePatternNode*> Children; 3512 Children.push_back(OpNode); 3513 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3514 } 3515 ResultNodeOperands.push_back(OpNode); 3516 } 3517 DstPattern = Result.getOnlyTree(); 3518 if (!DstPattern->isLeaf()) 3519 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3520 ResultNodeOperands, 3521 DstPattern->getNumTypes()); 3522 3523 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3524 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3525 3526 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3527 Temp.InferAllTypes(); 3528 3529 3530 AddPatternToMatch(Pattern, 3531 PatternToMatch(CurPattern, 3532 CurPattern->getValueAsListInit("Predicates"), 3533 Pattern->getTree(0), 3534 Temp.getOnlyTree(), InstImpResults, 3535 CurPattern->getValueAsInt("AddedComplexity"), 3536 CurPattern->getID())); 3537 } 3538 } 3539 3540 /// CombineChildVariants - Given a bunch of permutations of each child of the 3541 /// 'operator' node, put them together in all possible ways. 3542 static void CombineChildVariants(TreePatternNode *Orig, 3543 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3544 std::vector<TreePatternNode*> &OutVariants, 3545 CodeGenDAGPatterns &CDP, 3546 const MultipleUseVarSet &DepVars) { 3547 // Make sure that each operand has at least one variant to choose from. 3548 for (const auto &Variants : ChildVariants) 3549 if (Variants.empty()) 3550 return; 3551 3552 // The end result is an all-pairs construction of the resultant pattern. 3553 std::vector<unsigned> Idxs; 3554 Idxs.resize(ChildVariants.size()); 3555 bool NotDone; 3556 do { 3557 #ifndef NDEBUG 3558 DEBUG(if (!Idxs.empty()) { 3559 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3560 for (unsigned Idx : Idxs) { 3561 errs() << Idx << " "; 3562 } 3563 errs() << "]\n"; 3564 }); 3565 #endif 3566 // Create the variant and add it to the output list. 3567 std::vector<TreePatternNode*> NewChildren; 3568 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3569 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3570 auto R = llvm::make_unique<TreePatternNode>( 3571 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 3572 3573 // Copy over properties. 3574 R->setName(Orig->getName()); 3575 R->setPredicateFns(Orig->getPredicateFns()); 3576 R->setTransformFn(Orig->getTransformFn()); 3577 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3578 R->setType(i, Orig->getExtType(i)); 3579 3580 // If this pattern cannot match, do not include it as a variant. 3581 std::string ErrString; 3582 // Scan to see if this pattern has already been emitted. We can get 3583 // duplication due to things like commuting: 3584 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3585 // which are the same pattern. Ignore the dups. 3586 if (R->canPatternMatch(ErrString, CDP) && 3587 none_of(OutVariants, [&](TreePatternNode *Variant) { 3588 return R->isIsomorphicTo(Variant, DepVars); 3589 })) 3590 OutVariants.push_back(R.release()); 3591 3592 // Increment indices to the next permutation by incrementing the 3593 // indices from last index backward, e.g., generate the sequence 3594 // [0, 0], [0, 1], [1, 0], [1, 1]. 3595 int IdxsIdx; 3596 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3597 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3598 Idxs[IdxsIdx] = 0; 3599 else 3600 break; 3601 } 3602 NotDone = (IdxsIdx >= 0); 3603 } while (NotDone); 3604 } 3605 3606 /// CombineChildVariants - A helper function for binary operators. 3607 /// 3608 static void CombineChildVariants(TreePatternNode *Orig, 3609 const std::vector<TreePatternNode*> &LHS, 3610 const std::vector<TreePatternNode*> &RHS, 3611 std::vector<TreePatternNode*> &OutVariants, 3612 CodeGenDAGPatterns &CDP, 3613 const MultipleUseVarSet &DepVars) { 3614 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3615 ChildVariants.push_back(LHS); 3616 ChildVariants.push_back(RHS); 3617 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3618 } 3619 3620 3621 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3622 std::vector<TreePatternNode *> &Children) { 3623 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3624 Record *Operator = N->getOperator(); 3625 3626 // Only permit raw nodes. 3627 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3628 N->getTransformFn()) { 3629 Children.push_back(N); 3630 return; 3631 } 3632 3633 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3634 Children.push_back(N->getChild(0)); 3635 else 3636 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3637 3638 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3639 Children.push_back(N->getChild(1)); 3640 else 3641 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3642 } 3643 3644 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3645 /// the (potentially recursive) pattern by using algebraic laws. 3646 /// 3647 static void GenerateVariantsOf(TreePatternNode *N, 3648 std::vector<TreePatternNode*> &OutVariants, 3649 CodeGenDAGPatterns &CDP, 3650 const MultipleUseVarSet &DepVars) { 3651 // We cannot permute leaves or ComplexPattern uses. 3652 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3653 OutVariants.push_back(N); 3654 return; 3655 } 3656 3657 // Look up interesting info about the node. 3658 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3659 3660 // If this node is associative, re-associate. 3661 if (NodeInfo.hasProperty(SDNPAssociative)) { 3662 // Re-associate by pulling together all of the linked operators 3663 std::vector<TreePatternNode*> MaximalChildren; 3664 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3665 3666 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3667 // permutations. 3668 if (MaximalChildren.size() == 3) { 3669 // Find the variants of all of our maximal children. 3670 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3671 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3672 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3673 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3674 3675 // There are only two ways we can permute the tree: 3676 // (A op B) op C and A op (B op C) 3677 // Within these forms, we can also permute A/B/C. 3678 3679 // Generate legal pair permutations of A/B/C. 3680 std::vector<TreePatternNode*> ABVariants; 3681 std::vector<TreePatternNode*> BAVariants; 3682 std::vector<TreePatternNode*> ACVariants; 3683 std::vector<TreePatternNode*> CAVariants; 3684 std::vector<TreePatternNode*> BCVariants; 3685 std::vector<TreePatternNode*> CBVariants; 3686 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3687 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3688 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3689 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3690 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3691 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3692 3693 // Combine those into the result: (x op x) op x 3694 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3695 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3696 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3697 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3698 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3699 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3700 3701 // Combine those into the result: x op (x op x) 3702 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3703 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3704 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3705 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3706 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3707 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3708 return; 3709 } 3710 } 3711 3712 // Compute permutations of all children. 3713 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3714 ChildVariants.resize(N->getNumChildren()); 3715 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3716 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3717 3718 // Build all permutations based on how the children were formed. 3719 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3720 3721 // If this node is commutative, consider the commuted order. 3722 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3723 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3724 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3725 "Commutative but doesn't have 2 children!"); 3726 // Don't count children which are actually register references. 3727 unsigned NC = 0; 3728 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3729 TreePatternNode *Child = N->getChild(i); 3730 if (Child->isLeaf()) 3731 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3732 Record *RR = DI->getDef(); 3733 if (RR->isSubClassOf("Register")) 3734 continue; 3735 } 3736 NC++; 3737 } 3738 // Consider the commuted order. 3739 if (isCommIntrinsic) { 3740 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3741 // operands are the commutative operands, and there might be more operands 3742 // after those. 3743 assert(NC >= 3 && 3744 "Commutative intrinsic should have at least 3 children!"); 3745 std::vector<std::vector<TreePatternNode*> > Variants; 3746 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3747 Variants.push_back(ChildVariants[2]); 3748 Variants.push_back(ChildVariants[1]); 3749 for (unsigned i = 3; i != NC; ++i) 3750 Variants.push_back(ChildVariants[i]); 3751 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3752 } else if (NC == 2) 3753 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3754 OutVariants, CDP, DepVars); 3755 } 3756 } 3757 3758 3759 // GenerateVariants - Generate variants. For example, commutative patterns can 3760 // match multiple ways. Add them to PatternsToMatch as well. 3761 void CodeGenDAGPatterns::GenerateVariants() { 3762 DEBUG(errs() << "Generating instruction variants.\n"); 3763 3764 // Loop over all of the patterns we've collected, checking to see if we can 3765 // generate variants of the instruction, through the exploitation of 3766 // identities. This permits the target to provide aggressive matching without 3767 // the .td file having to contain tons of variants of instructions. 3768 // 3769 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3770 // intentionally do not reconsider these. Any variants of added patterns have 3771 // already been added. 3772 // 3773 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3774 MultipleUseVarSet DepVars; 3775 std::vector<TreePatternNode*> Variants; 3776 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3777 DEBUG(errs() << "Dependent/multiply used variables: "); 3778 DEBUG(DumpDepVars(DepVars)); 3779 DEBUG(errs() << "\n"); 3780 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3781 DepVars); 3782 3783 assert(!Variants.empty() && "Must create at least original variant!"); 3784 Variants.erase(Variants.begin()); // Remove the original pattern. 3785 3786 if (Variants.empty()) // No variants for this pattern. 3787 continue; 3788 3789 DEBUG(errs() << "FOUND VARIANTS OF: "; 3790 PatternsToMatch[i].getSrcPattern()->dump(); 3791 errs() << "\n"); 3792 3793 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3794 TreePatternNode *Variant = Variants[v]; 3795 3796 DEBUG(errs() << " VAR#" << v << ": "; 3797 Variant->dump(); 3798 errs() << "\n"); 3799 3800 // Scan to see if an instruction or explicit pattern already matches this. 3801 bool AlreadyExists = false; 3802 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3803 // Skip if the top level predicates do not match. 3804 if (PatternsToMatch[i].getPredicates() != 3805 PatternsToMatch[p].getPredicates()) 3806 continue; 3807 // Check to see if this variant already exists. 3808 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3809 DepVars)) { 3810 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3811 AlreadyExists = true; 3812 break; 3813 } 3814 } 3815 // If we already have it, ignore the variant. 3816 if (AlreadyExists) continue; 3817 3818 // Otherwise, add it to the list of patterns we have. 3819 PatternsToMatch.emplace_back( 3820 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 3821 Variant, PatternsToMatch[i].getDstPattern(), 3822 PatternsToMatch[i].getDstRegs(), 3823 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 3824 } 3825 3826 DEBUG(errs() << "\n"); 3827 } 3828 } 3829