1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "dag-patterns"
36 
37 static inline bool isIntegerOrPtr(MVT VT) {
38   return VT.isInteger() || VT == MVT::iPTR;
39 }
40 static inline bool isFloatingPoint(MVT VT) {
41   return VT.isFloatingPoint();
42 }
43 static inline bool isVector(MVT VT) {
44   return VT.isVector();
45 }
46 static inline bool isScalar(MVT VT) {
47   return !VT.isVector();
48 }
49 
50 template <typename Predicate>
51 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52   bool Erased = false;
53   // It is ok to iterate over MachineValueTypeSet and remove elements from it
54   // at the same time.
55   for (MVT T : S) {
56     if (!P(T))
57       continue;
58     Erased = true;
59     S.erase(T);
60   }
61   return Erased;
62 }
63 
64 // --- TypeSetByHwMode
65 
66 // This is a parameterized type-set class. For each mode there is a list
67 // of types that are currently possible for a given tree node. Type
68 // inference will apply to each mode separately.
69 
70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71   for (const ValueTypeByHwMode &VVT : VTList) {
72     insert(VVT);
73     AddrSpaces.push_back(VVT.PtrAddrSpace);
74   }
75 }
76 
77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78   for (const auto &I : *this) {
79     if (I.second.size() > 1)
80       return false;
81     if (!AllowEmpty && I.second.empty())
82       return false;
83   }
84   return true;
85 }
86 
87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88   assert(isValueTypeByHwMode(true) &&
89          "The type set has multiple types for at least one HW mode");
90   ValueTypeByHwMode VVT;
91   auto ASI = AddrSpaces.begin();
92 
93   for (const auto &I : *this) {
94     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95     VVT.getOrCreateTypeForMode(I.first, T);
96     if (ASI != AddrSpaces.end())
97       VVT.PtrAddrSpace = *ASI++;
98   }
99   return VVT;
100 }
101 
102 bool TypeSetByHwMode::isPossible() const {
103   for (const auto &I : *this)
104     if (!I.second.empty())
105       return true;
106   return false;
107 }
108 
109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110   bool Changed = false;
111   bool ContainsDefault = false;
112   MVT DT = MVT::Other;
113 
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     // Make sure there exists a set for each specific mode from VVT.
117     Changed |= getOrCreate(M).insert(P.second).second;
118     // Cache VVT's default mode.
119     if (DefaultMode == M) {
120       ContainsDefault = true;
121       DT = P.second;
122     }
123   }
124 
125   // If VVT has a default mode, add the corresponding type to all
126   // modes in "this" that do not exist in VVT.
127   if (ContainsDefault)
128     for (auto &I : *this)
129       if (!VVT.hasMode(I.first))
130         Changed |= I.second.insert(DT).second;
131 
132   return Changed;
133 }
134 
135 // Constrain the type set to be the intersection with VTS.
136 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
137   bool Changed = false;
138   if (hasDefault()) {
139     for (const auto &I : VTS) {
140       unsigned M = I.first;
141       if (M == DefaultMode || hasMode(M))
142         continue;
143       Map.insert({M, Map.at(DefaultMode)});
144       Changed = true;
145     }
146   }
147 
148   for (auto &I : *this) {
149     unsigned M = I.first;
150     SetType &S = I.second;
151     if (VTS.hasMode(M) || VTS.hasDefault()) {
152       Changed |= intersect(I.second, VTS.get(M));
153     } else if (!S.empty()) {
154       S.clear();
155       Changed = true;
156     }
157   }
158   return Changed;
159 }
160 
161 template <typename Predicate>
162 bool TypeSetByHwMode::constrain(Predicate P) {
163   bool Changed = false;
164   for (auto &I : *this)
165     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
166   return Changed;
167 }
168 
169 template <typename Predicate>
170 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
171   assert(empty());
172   for (const auto &I : VTS) {
173     SetType &S = getOrCreate(I.first);
174     for (auto J : I.second)
175       if (P(J))
176         S.insert(J);
177   }
178   return !empty();
179 }
180 
181 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
182   SmallVector<unsigned, 4> Modes;
183   Modes.reserve(Map.size());
184 
185   for (const auto &I : *this)
186     Modes.push_back(I.first);
187   if (Modes.empty()) {
188     OS << "{}";
189     return;
190   }
191   array_pod_sort(Modes.begin(), Modes.end());
192 
193   OS << '{';
194   for (unsigned M : Modes) {
195     OS << ' ' << getModeName(M) << ':';
196     writeToStream(get(M), OS);
197   }
198   OS << " }";
199 }
200 
201 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
202   SmallVector<MVT, 4> Types(S.begin(), S.end());
203   array_pod_sort(Types.begin(), Types.end());
204 
205   OS << '[';
206   ListSeparator LS(" ");
207   for (const MVT &T : Types)
208     OS << LS << ValueTypeByHwMode::getMVTName(T);
209   OS << ']';
210 }
211 
212 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
213   // The isSimple call is much quicker than hasDefault - check this first.
214   bool IsSimple = isSimple();
215   bool VTSIsSimple = VTS.isSimple();
216   if (IsSimple && VTSIsSimple)
217     return *begin() == *VTS.begin();
218 
219   // Speedup: We have a default if the set is simple.
220   bool HaveDefault = IsSimple || hasDefault();
221   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
222   if (HaveDefault != VTSHaveDefault)
223     return false;
224 
225   SmallSet<unsigned, 4> Modes;
226   for (auto &I : *this)
227     Modes.insert(I.first);
228   for (const auto &I : VTS)
229     Modes.insert(I.first);
230 
231   if (HaveDefault) {
232     // Both sets have default mode.
233     for (unsigned M : Modes) {
234       if (get(M) != VTS.get(M))
235         return false;
236     }
237   } else {
238     // Neither set has default mode.
239     for (unsigned M : Modes) {
240       // If there is no default mode, an empty set is equivalent to not having
241       // the corresponding mode.
242       bool NoModeThis = !hasMode(M) || get(M).empty();
243       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
244       if (NoModeThis != NoModeVTS)
245         return false;
246       if (!NoModeThis)
247         if (get(M) != VTS.get(M))
248           return false;
249     }
250   }
251 
252   return true;
253 }
254 
255 namespace llvm {
256   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
257     T.writeToStream(OS);
258     return OS;
259   }
260 }
261 
262 LLVM_DUMP_METHOD
263 void TypeSetByHwMode::dump() const {
264   dbgs() << *this << '\n';
265 }
266 
267 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
268   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
269   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
270 
271   if (OutP == InP)
272     return berase_if(Out, Int);
273 
274   // Compute the intersection of scalars separately to account for only
275   // one set containing iPTR.
276   // The intersection of iPTR with a set of integer scalar types that does not
277   // include iPTR will result in the most specific scalar type:
278   // - iPTR is more specific than any set with two elements or more
279   // - iPTR is less specific than any single integer scalar type.
280   // For example
281   // { iPTR } * { i32 }     -> { i32 }
282   // { iPTR } * { i32 i64 } -> { iPTR }
283   // and
284   // { iPTR i32 } * { i32 }          -> { i32 }
285   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
286   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
287 
288   // Compute the difference between the two sets in such a way that the
289   // iPTR is in the set that is being subtracted. This is to see if there
290   // are any extra scalars in the set without iPTR that are not in the
291   // set containing iPTR. Then the iPTR could be considered a "wildcard"
292   // matching these scalars. If there is only one such scalar, it would
293   // replace the iPTR, if there are more, the iPTR would be retained.
294   SetType Diff;
295   if (InP) {
296     Diff = Out;
297     berase_if(Diff, [&In](MVT T) { return In.count(T); });
298     // Pre-remove these elements and rely only on InP/OutP to determine
299     // whether a change has been made.
300     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
301   } else {
302     Diff = In;
303     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
304     Out.erase(MVT::iPTR);
305   }
306 
307   // The actual intersection.
308   bool Changed = berase_if(Out, Int);
309   unsigned NumD = Diff.size();
310   if (NumD == 0)
311     return Changed;
312 
313   if (NumD == 1) {
314     Out.insert(*Diff.begin());
315     // This is a change only if Out was the one with iPTR (which is now
316     // being replaced).
317     Changed |= OutP;
318   } else {
319     // Multiple elements from Out are now replaced with iPTR.
320     Out.insert(MVT::iPTR);
321     Changed |= !OutP;
322   }
323   return Changed;
324 }
325 
326 bool TypeSetByHwMode::validate() const {
327 #ifndef NDEBUG
328   if (empty())
329     return true;
330   bool AllEmpty = true;
331   for (const auto &I : *this)
332     AllEmpty &= I.second.empty();
333   return !AllEmpty;
334 #endif
335   return true;
336 }
337 
338 // --- TypeInfer
339 
340 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
341                                 const TypeSetByHwMode &In) {
342   ValidateOnExit _1(Out, *this);
343   In.validate();
344   if (In.empty() || Out == In || TP.hasError())
345     return false;
346   if (Out.empty()) {
347     Out = In;
348     return true;
349   }
350 
351   bool Changed = Out.constrain(In);
352   if (Changed && Out.empty())
353     TP.error("Type contradiction");
354 
355   return Changed;
356 }
357 
358 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
359   ValidateOnExit _1(Out, *this);
360   if (TP.hasError())
361     return false;
362   assert(!Out.empty() && "cannot pick from an empty set");
363 
364   bool Changed = false;
365   for (auto &I : Out) {
366     TypeSetByHwMode::SetType &S = I.second;
367     if (S.size() <= 1)
368       continue;
369     MVT T = *S.begin(); // Pick the first element.
370     S.clear();
371     S.insert(T);
372     Changed = true;
373   }
374   return Changed;
375 }
376 
377 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
378   ValidateOnExit _1(Out, *this);
379   if (TP.hasError())
380     return false;
381   if (!Out.empty())
382     return Out.constrain(isIntegerOrPtr);
383 
384   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
385 }
386 
387 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
388   ValidateOnExit _1(Out, *this);
389   if (TP.hasError())
390     return false;
391   if (!Out.empty())
392     return Out.constrain(isFloatingPoint);
393 
394   return Out.assign_if(getLegalTypes(), isFloatingPoint);
395 }
396 
397 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
398   ValidateOnExit _1(Out, *this);
399   if (TP.hasError())
400     return false;
401   if (!Out.empty())
402     return Out.constrain(isScalar);
403 
404   return Out.assign_if(getLegalTypes(), isScalar);
405 }
406 
407 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
408   ValidateOnExit _1(Out, *this);
409   if (TP.hasError())
410     return false;
411   if (!Out.empty())
412     return Out.constrain(isVector);
413 
414   return Out.assign_if(getLegalTypes(), isVector);
415 }
416 
417 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
418   ValidateOnExit _1(Out, *this);
419   if (TP.hasError() || !Out.empty())
420     return false;
421 
422   Out = getLegalTypes();
423   return true;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Min = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Min == E || L(*I, *Min))
435       Min = I;
436   }
437   return Min;
438 }
439 
440 template <typename Iter, typename Pred, typename Less>
441 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
442   if (B == E)
443     return E;
444   Iter Max = E;
445   for (Iter I = B; I != E; ++I) {
446     if (!P(*I))
447       continue;
448     if (Max == E || L(*Max, *I))
449       Max = I;
450   }
451   return Max;
452 }
453 
454 /// Make sure that for each type in Small, there exists a larger type in Big.
455 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
456                                    TypeSetByHwMode &Big) {
457   ValidateOnExit _1(Small, *this), _2(Big, *this);
458   if (TP.hasError())
459     return false;
460   bool Changed = false;
461 
462   if (Small.empty())
463     Changed |= EnforceAny(Small);
464   if (Big.empty())
465     Changed |= EnforceAny(Big);
466 
467   assert(Small.hasDefault() && Big.hasDefault());
468 
469   SmallVector<unsigned, 4> Modes;
470   union_modes(Small, Big, Modes);
471 
472   // 1. Only allow integer or floating point types and make sure that
473   //    both sides are both integer or both floating point.
474   // 2. Make sure that either both sides have vector types, or neither
475   //    of them does.
476   for (unsigned M : Modes) {
477     TypeSetByHwMode::SetType &S = Small.get(M);
478     TypeSetByHwMode::SetType &B = Big.get(M);
479 
480     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
481       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
482       Changed |= berase_if(S, NotInt);
483       Changed |= berase_if(B, NotInt);
484     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
485       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
486       Changed |= berase_if(S, NotFP);
487       Changed |= berase_if(B, NotFP);
488     } else if (S.empty() || B.empty()) {
489       Changed = !S.empty() || !B.empty();
490       S.clear();
491       B.clear();
492     } else {
493       TP.error("Incompatible types");
494       return Changed;
495     }
496 
497     if (none_of(S, isVector) || none_of(B, isVector)) {
498       Changed |= berase_if(S, isVector);
499       Changed |= berase_if(B, isVector);
500     }
501   }
502 
503   auto LT = [](MVT A, MVT B) -> bool {
504     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
505     // purposes of ordering.
506     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
507                                  A.getSizeInBits().getKnownMinSize());
508     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
509                                  B.getSizeInBits().getKnownMinSize());
510     return ASize < BSize;
511   };
512   auto SameKindLE = [](MVT A, MVT B) -> bool {
513     // This function is used when removing elements: when a vector is compared
514     // to a non-vector or a scalable vector to any non-scalable MVT, it should
515     // return false (to avoid removal).
516     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
517         std::make_tuple(B.isVector(), B.isScalableVector()))
518       return false;
519 
520     return std::make_tuple(A.getScalarSizeInBits(),
521                            A.getSizeInBits().getKnownMinSize()) <=
522            std::make_tuple(B.getScalarSizeInBits(),
523                            B.getSizeInBits().getKnownMinSize());
524   };
525 
526   for (unsigned M : Modes) {
527     TypeSetByHwMode::SetType &S = Small.get(M);
528     TypeSetByHwMode::SetType &B = Big.get(M);
529     // MinS = min scalar in Small, remove all scalars from Big that are
530     // smaller-or-equal than MinS.
531     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
532     if (MinS != S.end())
533       Changed |= berase_if(B, std::bind(SameKindLE,
534                                         std::placeholders::_1, *MinS));
535 
536     // MaxS = max scalar in Big, remove all scalars from Small that are
537     // larger than MaxS.
538     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
539     if (MaxS != B.end())
540       Changed |= berase_if(S, std::bind(SameKindLE,
541                                         *MaxS, std::placeholders::_1));
542 
543     // MinV = min vector in Small, remove all vectors from Big that are
544     // smaller-or-equal than MinV.
545     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
546     if (MinV != S.end())
547       Changed |= berase_if(B, std::bind(SameKindLE,
548                                         std::placeholders::_1, *MinV));
549 
550     // MaxV = max vector in Big, remove all vectors from Small that are
551     // larger than MaxV.
552     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
553     if (MaxV != B.end())
554       Changed |= berase_if(S, std::bind(SameKindLE,
555                                         *MaxV, std::placeholders::_1));
556   }
557 
558   return Changed;
559 }
560 
561 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
562 ///    for each type U in Elem, U is a scalar type.
563 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
564 ///    type T in Vec, such that U is the element type of T.
565 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
566                                        TypeSetByHwMode &Elem) {
567   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
568   if (TP.hasError())
569     return false;
570   bool Changed = false;
571 
572   if (Vec.empty())
573     Changed |= EnforceVector(Vec);
574   if (Elem.empty())
575     Changed |= EnforceScalar(Elem);
576 
577   SmallVector<unsigned, 4> Modes;
578   union_modes(Vec, Elem, Modes);
579   for (unsigned M : Modes) {
580     TypeSetByHwMode::SetType &V = Vec.get(M);
581     TypeSetByHwMode::SetType &E = Elem.get(M);
582 
583     Changed |= berase_if(V, isScalar);  // Scalar = !vector
584     Changed |= berase_if(E, isVector);  // Vector = !scalar
585     assert(!V.empty() && !E.empty());
586 
587     MachineValueTypeSet VT, ST;
588     // Collect element types from the "vector" set.
589     for (MVT T : V)
590       VT.insert(T.getVectorElementType());
591     // Collect scalar types from the "element" set.
592     for (MVT T : E)
593       ST.insert(T);
594 
595     // Remove from V all (vector) types whose element type is not in S.
596     Changed |= berase_if(V, [&ST](MVT T) -> bool {
597                               return !ST.count(T.getVectorElementType());
598                             });
599     // Remove from E all (scalar) types, for which there is no corresponding
600     // type in V.
601     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
602   }
603 
604   return Changed;
605 }
606 
607 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
608                                        const ValueTypeByHwMode &VVT) {
609   TypeSetByHwMode Tmp(VVT);
610   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
611   return EnforceVectorEltTypeIs(Vec, Tmp);
612 }
613 
614 /// Ensure that for each type T in Sub, T is a vector type, and there
615 /// exists a type U in Vec such that U is a vector type with the same
616 /// element type as T and at least as many elements as T.
617 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
618                                              TypeSetByHwMode &Sub) {
619   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
620   if (TP.hasError())
621     return false;
622 
623   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
624   auto IsSubVec = [](MVT B, MVT P) -> bool {
625     if (!B.isVector() || !P.isVector())
626       return false;
627     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
628     // but until there are obvious use-cases for this, keep the
629     // types separate.
630     if (B.isScalableVector() != P.isScalableVector())
631       return false;
632     if (B.getVectorElementType() != P.getVectorElementType())
633       return false;
634     return B.getVectorNumElements() < P.getVectorNumElements();
635   };
636 
637   /// Return true if S has no element (vector type) that T is a sub-vector of,
638   /// i.e. has the same element type as T and more elements.
639   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
640     for (auto I : S)
641       if (IsSubVec(T, I))
642         return false;
643     return true;
644   };
645 
646   /// Return true if S has no element (vector type) that T is a super-vector
647   /// of, i.e. has the same element type as T and fewer elements.
648   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
649     for (auto I : S)
650       if (IsSubVec(I, T))
651         return false;
652     return true;
653   };
654 
655   bool Changed = false;
656 
657   if (Vec.empty())
658     Changed |= EnforceVector(Vec);
659   if (Sub.empty())
660     Changed |= EnforceVector(Sub);
661 
662   SmallVector<unsigned, 4> Modes;
663   union_modes(Vec, Sub, Modes);
664   for (unsigned M : Modes) {
665     TypeSetByHwMode::SetType &S = Sub.get(M);
666     TypeSetByHwMode::SetType &V = Vec.get(M);
667 
668     Changed |= berase_if(S, isScalar);
669 
670     // Erase all types from S that are not sub-vectors of a type in V.
671     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
672 
673     // Erase all types from V that are not super-vectors of a type in S.
674     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
675   }
676 
677   return Changed;
678 }
679 
680 /// 1. Ensure that V has a scalar type iff W has a scalar type.
681 /// 2. Ensure that for each vector type T in V, there exists a vector
682 ///    type U in W, such that T and U have the same number of elements.
683 /// 3. Ensure that for each vector type U in W, there exists a vector
684 ///    type T in V, such that T and U have the same number of elements
685 ///    (reverse of 2).
686 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
687   ValidateOnExit _1(V, *this), _2(W, *this);
688   if (TP.hasError())
689     return false;
690 
691   bool Changed = false;
692   if (V.empty())
693     Changed |= EnforceAny(V);
694   if (W.empty())
695     Changed |= EnforceAny(W);
696 
697   // An actual vector type cannot have 0 elements, so we can treat scalars
698   // as zero-length vectors. This way both vectors and scalars can be
699   // processed identically.
700   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
701     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
702   };
703 
704   SmallVector<unsigned, 4> Modes;
705   union_modes(V, W, Modes);
706   for (unsigned M : Modes) {
707     TypeSetByHwMode::SetType &VS = V.get(M);
708     TypeSetByHwMode::SetType &WS = W.get(M);
709 
710     SmallSet<unsigned,2> VN, WN;
711     for (MVT T : VS)
712       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
713     for (MVT T : WS)
714       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
715 
716     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
717     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
718   }
719   return Changed;
720 }
721 
722 namespace {
723 struct TypeSizeComparator {
724   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
725     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
726            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
727   }
728 };
729 } // end anonymous namespace
730 
731 /// 1. Ensure that for each type T in A, there exists a type U in B,
732 ///    such that T and U have equal size in bits.
733 /// 2. Ensure that for each type U in B, there exists a type T in A
734 ///    such that T and U have equal size in bits (reverse of 1).
735 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
736   ValidateOnExit _1(A, *this), _2(B, *this);
737   if (TP.hasError())
738     return false;
739   bool Changed = false;
740   if (A.empty())
741     Changed |= EnforceAny(A);
742   if (B.empty())
743     Changed |= EnforceAny(B);
744 
745   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
746 
747   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
748     return !Sizes.count(T.getSizeInBits());
749   };
750 
751   SmallVector<unsigned, 4> Modes;
752   union_modes(A, B, Modes);
753   for (unsigned M : Modes) {
754     TypeSetByHwMode::SetType &AS = A.get(M);
755     TypeSetByHwMode::SetType &BS = B.get(M);
756     TypeSizeSet AN, BN;
757 
758     for (MVT T : AS)
759       AN.insert(T.getSizeInBits());
760     for (MVT T : BS)
761       BN.insert(T.getSizeInBits());
762 
763     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
764     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
765   }
766 
767   return Changed;
768 }
769 
770 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
771   ValidateOnExit _1(VTS, *this);
772   const TypeSetByHwMode &Legal = getLegalTypes();
773   assert(Legal.isDefaultOnly() && "Default-mode only expected");
774   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
775 
776   for (auto &I : VTS)
777     expandOverloads(I.second, LegalTypes);
778 }
779 
780 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
781                                 const TypeSetByHwMode::SetType &Legal) {
782   std::set<MVT> Ovs;
783   for (MVT T : Out) {
784     if (!T.isOverloaded())
785       continue;
786 
787     Ovs.insert(T);
788     // MachineValueTypeSet allows iteration and erasing.
789     Out.erase(T);
790   }
791 
792   for (MVT Ov : Ovs) {
793     switch (Ov.SimpleTy) {
794       case MVT::iPTRAny:
795         Out.insert(MVT::iPTR);
796         return;
797       case MVT::iAny:
798         for (MVT T : MVT::integer_valuetypes())
799           if (Legal.count(T))
800             Out.insert(T);
801         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
802           if (Legal.count(T))
803             Out.insert(T);
804         for (MVT T : MVT::integer_scalable_vector_valuetypes())
805           if (Legal.count(T))
806             Out.insert(T);
807         return;
808       case MVT::fAny:
809         for (MVT T : MVT::fp_valuetypes())
810           if (Legal.count(T))
811             Out.insert(T);
812         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
813           if (Legal.count(T))
814             Out.insert(T);
815         for (MVT T : MVT::fp_scalable_vector_valuetypes())
816           if (Legal.count(T))
817             Out.insert(T);
818         return;
819       case MVT::vAny:
820         for (MVT T : MVT::vector_valuetypes())
821           if (Legal.count(T))
822             Out.insert(T);
823         return;
824       case MVT::Any:
825         for (MVT T : MVT::all_valuetypes())
826           if (Legal.count(T))
827             Out.insert(T);
828         return;
829       default:
830         break;
831     }
832   }
833 }
834 
835 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
836   if (!LegalTypesCached) {
837     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
838     // Stuff all types from all modes into the default mode.
839     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
840     for (const auto &I : LTS)
841       LegalTypes.insert(I.second);
842     LegalTypesCached = true;
843   }
844   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
845   return LegalCache;
846 }
847 
848 #ifndef NDEBUG
849 TypeInfer::ValidateOnExit::~ValidateOnExit() {
850   if (Infer.Validate && !VTS.validate()) {
851     dbgs() << "Type set is empty for each HW mode:\n"
852               "possible type contradiction in the pattern below "
853               "(use -print-records with llvm-tblgen to see all "
854               "expanded records).\n";
855     Infer.TP.dump();
856     dbgs() << "Generated from record:\n";
857     Infer.TP.getRecord()->dump();
858     PrintFatalError(Infer.TP.getRecord()->getLoc(),
859                     "Type set is empty for each HW mode in '" +
860                         Infer.TP.getRecord()->getName() + "'");
861   }
862 }
863 #endif
864 
865 
866 //===----------------------------------------------------------------------===//
867 // ScopedName Implementation
868 //===----------------------------------------------------------------------===//
869 
870 bool ScopedName::operator==(const ScopedName &o) const {
871   return Scope == o.Scope && Identifier == o.Identifier;
872 }
873 
874 bool ScopedName::operator!=(const ScopedName &o) const {
875   return !(*this == o);
876 }
877 
878 
879 //===----------------------------------------------------------------------===//
880 // TreePredicateFn Implementation
881 //===----------------------------------------------------------------------===//
882 
883 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
884 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
885   assert(
886       (!hasPredCode() || !hasImmCode()) &&
887       ".td file corrupt: can't have a node predicate *and* an imm predicate");
888 }
889 
890 bool TreePredicateFn::hasPredCode() const {
891   return isLoad() || isStore() || isAtomic() ||
892          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
893 }
894 
895 std::string TreePredicateFn::getPredCode() const {
896   std::string Code;
897 
898   if (!isLoad() && !isStore() && !isAtomic()) {
899     Record *MemoryVT = getMemoryVT();
900 
901     if (MemoryVT)
902       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
903                       "MemoryVT requires IsLoad or IsStore");
904   }
905 
906   if (!isLoad() && !isStore()) {
907     if (isUnindexed())
908       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
909                       "IsUnindexed requires IsLoad or IsStore");
910 
911     Record *ScalarMemoryVT = getScalarMemoryVT();
912 
913     if (ScalarMemoryVT)
914       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915                       "ScalarMemoryVT requires IsLoad or IsStore");
916   }
917 
918   if (isLoad() + isStore() + isAtomic() > 1)
919     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
921 
922   if (isLoad()) {
923     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
924         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
925         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
926         getMinAlignment() < 1)
927       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928                       "IsLoad cannot be used by itself");
929   } else {
930     if (isNonExtLoad())
931       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932                       "IsNonExtLoad requires IsLoad");
933     if (isAnyExtLoad())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAnyExtLoad requires IsLoad");
936     if (isSignExtLoad())
937       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938                       "IsSignExtLoad requires IsLoad");
939     if (isZeroExtLoad())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsZeroExtLoad requires IsLoad");
942   }
943 
944   if (isStore()) {
945     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
946         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
947         getAddressSpaces() == nullptr && getMinAlignment() < 1)
948       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                       "IsStore cannot be used by itself");
950   } else {
951     if (isNonTruncStore())
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsNonTruncStore requires IsStore");
954     if (isTruncStore())
955       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956                       "IsTruncStore requires IsStore");
957   }
958 
959   if (isAtomic()) {
960     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
961         getAddressSpaces() == nullptr &&
962         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
963         !isAtomicOrderingAcquireRelease() &&
964         !isAtomicOrderingSequentiallyConsistent() &&
965         !isAtomicOrderingAcquireOrStronger() &&
966         !isAtomicOrderingReleaseOrStronger() &&
967         !isAtomicOrderingWeakerThanAcquire() &&
968         !isAtomicOrderingWeakerThanRelease())
969       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970                       "IsAtomic cannot be used by itself");
971   } else {
972     if (isAtomicOrderingMonotonic())
973       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974                       "IsAtomicOrderingMonotonic requires IsAtomic");
975     if (isAtomicOrderingAcquire())
976       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
977                       "IsAtomicOrderingAcquire requires IsAtomic");
978     if (isAtomicOrderingRelease())
979       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980                       "IsAtomicOrderingRelease requires IsAtomic");
981     if (isAtomicOrderingAcquireRelease())
982       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
983                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
984     if (isAtomicOrderingSequentiallyConsistent())
985       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
986                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
987     if (isAtomicOrderingAcquireOrStronger())
988       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
989                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
990     if (isAtomicOrderingReleaseOrStronger())
991       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
992                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
993     if (isAtomicOrderingWeakerThanAcquire())
994       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
995                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
996   }
997 
998   if (isLoad() || isStore() || isAtomic()) {
999     if (ListInit *AddressSpaces = getAddressSpaces()) {
1000       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1001         " if (";
1002 
1003       ListSeparator LS(" && ");
1004       for (Init *Val : AddressSpaces->getValues()) {
1005         Code += LS;
1006 
1007         IntInit *IntVal = dyn_cast<IntInit>(Val);
1008         if (!IntVal) {
1009           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1010                           "AddressSpaces element must be integer");
1011         }
1012 
1013         Code += "AddrSpace != " + utostr(IntVal->getValue());
1014       }
1015 
1016       Code += ")\nreturn false;\n";
1017     }
1018 
1019     int64_t MinAlign = getMinAlignment();
1020     if (MinAlign > 0) {
1021       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1022       Code += utostr(MinAlign);
1023       Code += "))\nreturn false;\n";
1024     }
1025 
1026     Record *MemoryVT = getMemoryVT();
1027 
1028     if (MemoryVT)
1029       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1030                MemoryVT->getName() + ") return false;\n")
1031                   .str();
1032   }
1033 
1034   if (isAtomic() && isAtomicOrderingMonotonic())
1035     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1036             "AtomicOrdering::Monotonic) return false;\n";
1037   if (isAtomic() && isAtomicOrderingAcquire())
1038     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1039             "AtomicOrdering::Acquire) return false;\n";
1040   if (isAtomic() && isAtomicOrderingRelease())
1041     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1042             "AtomicOrdering::Release) return false;\n";
1043   if (isAtomic() && isAtomicOrderingAcquireRelease())
1044     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1045             "AtomicOrdering::AcquireRelease) return false;\n";
1046   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1047     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1048             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1049 
1050   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1051     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1052             "return false;\n";
1053   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1054     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1055             "return false;\n";
1056 
1057   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1058     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1059             "return false;\n";
1060   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1061     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1062             "return false;\n";
1063 
1064   if (isLoad() || isStore()) {
1065     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1066 
1067     if (isUnindexed())
1068       Code += ("if (cast<" + SDNodeName +
1069                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1070                "return false;\n")
1071                   .str();
1072 
1073     if (isLoad()) {
1074       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1075            isZeroExtLoad()) > 1)
1076         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1077                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1078                         "IsZeroExtLoad are mutually exclusive");
1079       if (isNonExtLoad())
1080         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1081                 "ISD::NON_EXTLOAD) return false;\n";
1082       if (isAnyExtLoad())
1083         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1084                 "return false;\n";
1085       if (isSignExtLoad())
1086         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1087                 "return false;\n";
1088       if (isZeroExtLoad())
1089         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1090                 "return false;\n";
1091     } else {
1092       if ((isNonTruncStore() + isTruncStore()) > 1)
1093         PrintFatalError(
1094             getOrigPatFragRecord()->getRecord()->getLoc(),
1095             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1096       if (isNonTruncStore())
1097         Code +=
1098             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1099       if (isTruncStore())
1100         Code +=
1101             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1102     }
1103 
1104     Record *ScalarMemoryVT = getScalarMemoryVT();
1105 
1106     if (ScalarMemoryVT)
1107       Code += ("if (cast<" + SDNodeName +
1108                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1109                ScalarMemoryVT->getName() + ") return false;\n")
1110                   .str();
1111   }
1112 
1113   std::string PredicateCode =
1114       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1115 
1116   Code += PredicateCode;
1117 
1118   if (PredicateCode.empty() && !Code.empty())
1119     Code += "return true;\n";
1120 
1121   return Code;
1122 }
1123 
1124 bool TreePredicateFn::hasImmCode() const {
1125   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1126 }
1127 
1128 std::string TreePredicateFn::getImmCode() const {
1129   return std::string(
1130       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1131 }
1132 
1133 bool TreePredicateFn::immCodeUsesAPInt() const {
1134   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1135 }
1136 
1137 bool TreePredicateFn::immCodeUsesAPFloat() const {
1138   bool Unset;
1139   // The return value will be false when IsAPFloat is unset.
1140   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1141                                                                    Unset);
1142 }
1143 
1144 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1145                                                    bool Value) const {
1146   bool Unset;
1147   bool Result =
1148       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1149   if (Unset)
1150     return false;
1151   return Result == Value;
1152 }
1153 bool TreePredicateFn::usesOperands() const {
1154   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1155 }
1156 bool TreePredicateFn::isLoad() const {
1157   return isPredefinedPredicateEqualTo("IsLoad", true);
1158 }
1159 bool TreePredicateFn::isStore() const {
1160   return isPredefinedPredicateEqualTo("IsStore", true);
1161 }
1162 bool TreePredicateFn::isAtomic() const {
1163   return isPredefinedPredicateEqualTo("IsAtomic", true);
1164 }
1165 bool TreePredicateFn::isUnindexed() const {
1166   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1167 }
1168 bool TreePredicateFn::isNonExtLoad() const {
1169   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1170 }
1171 bool TreePredicateFn::isAnyExtLoad() const {
1172   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1173 }
1174 bool TreePredicateFn::isSignExtLoad() const {
1175   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1176 }
1177 bool TreePredicateFn::isZeroExtLoad() const {
1178   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1179 }
1180 bool TreePredicateFn::isNonTruncStore() const {
1181   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1182 }
1183 bool TreePredicateFn::isTruncStore() const {
1184   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1185 }
1186 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1187   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1188 }
1189 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1190   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1191 }
1192 bool TreePredicateFn::isAtomicOrderingRelease() const {
1193   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1194 }
1195 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1196   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1197 }
1198 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1199   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1200                                       true);
1201 }
1202 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1203   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1204 }
1205 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1206   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1207 }
1208 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1209   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1210 }
1211 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1212   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1213 }
1214 Record *TreePredicateFn::getMemoryVT() const {
1215   Record *R = getOrigPatFragRecord()->getRecord();
1216   if (R->isValueUnset("MemoryVT"))
1217     return nullptr;
1218   return R->getValueAsDef("MemoryVT");
1219 }
1220 
1221 ListInit *TreePredicateFn::getAddressSpaces() const {
1222   Record *R = getOrigPatFragRecord()->getRecord();
1223   if (R->isValueUnset("AddressSpaces"))
1224     return nullptr;
1225   return R->getValueAsListInit("AddressSpaces");
1226 }
1227 
1228 int64_t TreePredicateFn::getMinAlignment() const {
1229   Record *R = getOrigPatFragRecord()->getRecord();
1230   if (R->isValueUnset("MinAlignment"))
1231     return 0;
1232   return R->getValueAsInt("MinAlignment");
1233 }
1234 
1235 Record *TreePredicateFn::getScalarMemoryVT() const {
1236   Record *R = getOrigPatFragRecord()->getRecord();
1237   if (R->isValueUnset("ScalarMemoryVT"))
1238     return nullptr;
1239   return R->getValueAsDef("ScalarMemoryVT");
1240 }
1241 bool TreePredicateFn::hasGISelPredicateCode() const {
1242   return !PatFragRec->getRecord()
1243               ->getValueAsString("GISelPredicateCode")
1244               .empty();
1245 }
1246 std::string TreePredicateFn::getGISelPredicateCode() const {
1247   return std::string(
1248       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1249 }
1250 
1251 StringRef TreePredicateFn::getImmType() const {
1252   if (immCodeUsesAPInt())
1253     return "const APInt &";
1254   if (immCodeUsesAPFloat())
1255     return "const APFloat &";
1256   return "int64_t";
1257 }
1258 
1259 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1260   if (immCodeUsesAPInt())
1261     return "APInt";
1262   if (immCodeUsesAPFloat())
1263     return "APFloat";
1264   return "I64";
1265 }
1266 
1267 /// isAlwaysTrue - Return true if this is a noop predicate.
1268 bool TreePredicateFn::isAlwaysTrue() const {
1269   return !hasPredCode() && !hasImmCode();
1270 }
1271 
1272 /// Return the name to use in the generated code to reference this, this is
1273 /// "Predicate_foo" if from a pattern fragment "foo".
1274 std::string TreePredicateFn::getFnName() const {
1275   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1276 }
1277 
1278 /// getCodeToRunOnSDNode - Return the code for the function body that
1279 /// evaluates this predicate.  The argument is expected to be in "Node",
1280 /// not N.  This handles casting and conversion to a concrete node type as
1281 /// appropriate.
1282 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1283   // Handle immediate predicates first.
1284   std::string ImmCode = getImmCode();
1285   if (!ImmCode.empty()) {
1286     if (isLoad())
1287       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1288                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1289     if (isStore())
1290       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1291                       "IsStore cannot be used with ImmLeaf or its subclasses");
1292     if (isUnindexed())
1293       PrintFatalError(
1294           getOrigPatFragRecord()->getRecord()->getLoc(),
1295           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1296     if (isNonExtLoad())
1297       PrintFatalError(
1298           getOrigPatFragRecord()->getRecord()->getLoc(),
1299           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1300     if (isAnyExtLoad())
1301       PrintFatalError(
1302           getOrigPatFragRecord()->getRecord()->getLoc(),
1303           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1304     if (isSignExtLoad())
1305       PrintFatalError(
1306           getOrigPatFragRecord()->getRecord()->getLoc(),
1307           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1308     if (isZeroExtLoad())
1309       PrintFatalError(
1310           getOrigPatFragRecord()->getRecord()->getLoc(),
1311           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1312     if (isNonTruncStore())
1313       PrintFatalError(
1314           getOrigPatFragRecord()->getRecord()->getLoc(),
1315           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1316     if (isTruncStore())
1317       PrintFatalError(
1318           getOrigPatFragRecord()->getRecord()->getLoc(),
1319           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1320     if (getMemoryVT())
1321       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1322                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1323     if (getScalarMemoryVT())
1324       PrintFatalError(
1325           getOrigPatFragRecord()->getRecord()->getLoc(),
1326           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1327 
1328     std::string Result = ("    " + getImmType() + " Imm = ").str();
1329     if (immCodeUsesAPFloat())
1330       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1331     else if (immCodeUsesAPInt())
1332       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1333     else
1334       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1335     return Result + ImmCode;
1336   }
1337 
1338   // Handle arbitrary node predicates.
1339   assert(hasPredCode() && "Don't have any predicate code!");
1340 
1341   // If this is using PatFrags, there are multiple trees to search. They should
1342   // all have the same class.  FIXME: Is there a way to find a common
1343   // superclass?
1344   StringRef ClassName;
1345   for (const auto &Tree : PatFragRec->getTrees()) {
1346     StringRef TreeClassName;
1347     if (Tree->isLeaf())
1348       TreeClassName = "SDNode";
1349     else {
1350       Record *Op = Tree->getOperator();
1351       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1352       TreeClassName = Info.getSDClassName();
1353     }
1354 
1355     if (ClassName.empty())
1356       ClassName = TreeClassName;
1357     else if (ClassName != TreeClassName) {
1358       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1359                       "PatFrags trees do not have consistent class");
1360     }
1361   }
1362 
1363   std::string Result;
1364   if (ClassName == "SDNode")
1365     Result = "    SDNode *N = Node;\n";
1366   else
1367     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1368 
1369   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1370 }
1371 
1372 //===----------------------------------------------------------------------===//
1373 // PatternToMatch implementation
1374 //
1375 
1376 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1377   if (!P->isLeaf())
1378     return false;
1379   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1380   if (!DI)
1381     return false;
1382 
1383   Record *R = DI->getDef();
1384   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1385 }
1386 
1387 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1388 /// patterns before small ones.  This is used to determine the size of a
1389 /// pattern.
1390 static unsigned getPatternSize(const TreePatternNode *P,
1391                                const CodeGenDAGPatterns &CGP) {
1392   unsigned Size = 3;  // The node itself.
1393   // If the root node is a ConstantSDNode, increases its size.
1394   // e.g. (set R32:$dst, 0).
1395   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1396     Size += 2;
1397 
1398   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1399     Size += AM->getComplexity();
1400     // We don't want to count any children twice, so return early.
1401     return Size;
1402   }
1403 
1404   // If this node has some predicate function that must match, it adds to the
1405   // complexity of this node.
1406   if (!P->getPredicateCalls().empty())
1407     ++Size;
1408 
1409   // Count children in the count if they are also nodes.
1410   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1411     const TreePatternNode *Child = P->getChild(i);
1412     if (!Child->isLeaf() && Child->getNumTypes()) {
1413       const TypeSetByHwMode &T0 = Child->getExtType(0);
1414       // At this point, all variable type sets should be simple, i.e. only
1415       // have a default mode.
1416       if (T0.getMachineValueType() != MVT::Other) {
1417         Size += getPatternSize(Child, CGP);
1418         continue;
1419       }
1420     }
1421     if (Child->isLeaf()) {
1422       if (isa<IntInit>(Child->getLeafValue()))
1423         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1424       else if (Child->getComplexPatternInfo(CGP))
1425         Size += getPatternSize(Child, CGP);
1426       else if (isImmAllOnesAllZerosMatch(Child))
1427         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1428       else if (!Child->getPredicateCalls().empty())
1429         ++Size;
1430     }
1431   }
1432 
1433   return Size;
1434 }
1435 
1436 /// Compute the complexity metric for the input pattern.  This roughly
1437 /// corresponds to the number of nodes that are covered.
1438 int PatternToMatch::
1439 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1440   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1441 }
1442 
1443 void PatternToMatch::getPredicateRecords(
1444     SmallVectorImpl<Record *> &PredicateRecs) const {
1445   for (Init *I : Predicates->getValues()) {
1446     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1447       Record *Def = Pred->getDef();
1448       if (!Def->isSubClassOf("Predicate")) {
1449 #ifndef NDEBUG
1450         Def->dump();
1451 #endif
1452         llvm_unreachable("Unknown predicate type!");
1453       }
1454       PredicateRecs.push_back(Def);
1455     }
1456   }
1457   // Sort so that different orders get canonicalized to the same string.
1458   llvm::sort(PredicateRecs, LessRecord());
1459 }
1460 
1461 /// getPredicateCheck - Return a single string containing all of this
1462 /// pattern's predicates concatenated with "&&" operators.
1463 ///
1464 std::string PatternToMatch::getPredicateCheck() const {
1465   SmallVector<Record *, 4> PredicateRecs;
1466   getPredicateRecords(PredicateRecs);
1467 
1468   SmallString<128> PredicateCheck;
1469   for (Record *Pred : PredicateRecs) {
1470     StringRef CondString = Pred->getValueAsString("CondString");
1471     if (CondString.empty())
1472       continue;
1473     if (!PredicateCheck.empty())
1474       PredicateCheck += " && ";
1475     PredicateCheck += "(";
1476     PredicateCheck += CondString;
1477     PredicateCheck += ")";
1478   }
1479 
1480   if (!HwModeFeatures.empty()) {
1481     if (!PredicateCheck.empty())
1482       PredicateCheck += " && ";
1483     PredicateCheck += HwModeFeatures;
1484   }
1485 
1486   return std::string(PredicateCheck);
1487 }
1488 
1489 //===----------------------------------------------------------------------===//
1490 // SDTypeConstraint implementation
1491 //
1492 
1493 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1494   OperandNo = R->getValueAsInt("OperandNum");
1495 
1496   if (R->isSubClassOf("SDTCisVT")) {
1497     ConstraintType = SDTCisVT;
1498     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1499     for (const auto &P : VVT)
1500       if (P.second == MVT::isVoid)
1501         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1502   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1503     ConstraintType = SDTCisPtrTy;
1504   } else if (R->isSubClassOf("SDTCisInt")) {
1505     ConstraintType = SDTCisInt;
1506   } else if (R->isSubClassOf("SDTCisFP")) {
1507     ConstraintType = SDTCisFP;
1508   } else if (R->isSubClassOf("SDTCisVec")) {
1509     ConstraintType = SDTCisVec;
1510   } else if (R->isSubClassOf("SDTCisSameAs")) {
1511     ConstraintType = SDTCisSameAs;
1512     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1513   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1514     ConstraintType = SDTCisVTSmallerThanOp;
1515     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1516       R->getValueAsInt("OtherOperandNum");
1517   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1518     ConstraintType = SDTCisOpSmallerThanOp;
1519     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1520       R->getValueAsInt("BigOperandNum");
1521   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1522     ConstraintType = SDTCisEltOfVec;
1523     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1524   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1525     ConstraintType = SDTCisSubVecOfVec;
1526     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1527       R->getValueAsInt("OtherOpNum");
1528   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1529     ConstraintType = SDTCVecEltisVT;
1530     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1531     for (const auto &P : VVT) {
1532       MVT T = P.second;
1533       if (T.isVector())
1534         PrintFatalError(R->getLoc(),
1535                         "Cannot use vector type as SDTCVecEltisVT");
1536       if (!T.isInteger() && !T.isFloatingPoint())
1537         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1538                                      "as SDTCVecEltisVT");
1539     }
1540   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1541     ConstraintType = SDTCisSameNumEltsAs;
1542     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1543       R->getValueAsInt("OtherOperandNum");
1544   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1545     ConstraintType = SDTCisSameSizeAs;
1546     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1547       R->getValueAsInt("OtherOperandNum");
1548   } else {
1549     PrintFatalError(R->getLoc(),
1550                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1551   }
1552 }
1553 
1554 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1555 /// N, and the result number in ResNo.
1556 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1557                                       const SDNodeInfo &NodeInfo,
1558                                       unsigned &ResNo) {
1559   unsigned NumResults = NodeInfo.getNumResults();
1560   if (OpNo < NumResults) {
1561     ResNo = OpNo;
1562     return N;
1563   }
1564 
1565   OpNo -= NumResults;
1566 
1567   if (OpNo >= N->getNumChildren()) {
1568     std::string S;
1569     raw_string_ostream OS(S);
1570     OS << "Invalid operand number in type constraint "
1571            << (OpNo+NumResults) << " ";
1572     N->print(OS);
1573     PrintFatalError(OS.str());
1574   }
1575 
1576   return N->getChild(OpNo);
1577 }
1578 
1579 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1580 /// constraint to the nodes operands.  This returns true if it makes a
1581 /// change, false otherwise.  If a type contradiction is found, flag an error.
1582 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1583                                            const SDNodeInfo &NodeInfo,
1584                                            TreePattern &TP) const {
1585   if (TP.hasError())
1586     return false;
1587 
1588   unsigned ResNo = 0; // The result number being referenced.
1589   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1590   TypeInfer &TI = TP.getInfer();
1591 
1592   switch (ConstraintType) {
1593   case SDTCisVT:
1594     // Operand must be a particular type.
1595     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1596   case SDTCisPtrTy:
1597     // Operand must be same as target pointer type.
1598     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1599   case SDTCisInt:
1600     // Require it to be one of the legal integer VTs.
1601      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1602   case SDTCisFP:
1603     // Require it to be one of the legal fp VTs.
1604     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1605   case SDTCisVec:
1606     // Require it to be one of the legal vector VTs.
1607     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1608   case SDTCisSameAs: {
1609     unsigned OResNo = 0;
1610     TreePatternNode *OtherNode =
1611       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1612     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1613            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1614   }
1615   case SDTCisVTSmallerThanOp: {
1616     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1617     // have an integer type that is smaller than the VT.
1618     if (!NodeToApply->isLeaf() ||
1619         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1620         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1621                ->isSubClassOf("ValueType")) {
1622       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1623       return false;
1624     }
1625     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1626     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1627     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1628     TypeSetByHwMode TypeListTmp(VVT);
1629 
1630     unsigned OResNo = 0;
1631     TreePatternNode *OtherNode =
1632       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1633                     OResNo);
1634 
1635     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1636   }
1637   case SDTCisOpSmallerThanOp: {
1638     unsigned BResNo = 0;
1639     TreePatternNode *BigOperand =
1640       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1641                     BResNo);
1642     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1643                                  BigOperand->getExtType(BResNo));
1644   }
1645   case SDTCisEltOfVec: {
1646     unsigned VResNo = 0;
1647     TreePatternNode *VecOperand =
1648       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1649                     VResNo);
1650     // Filter vector types out of VecOperand that don't have the right element
1651     // type.
1652     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1653                                      NodeToApply->getExtType(ResNo));
1654   }
1655   case SDTCisSubVecOfVec: {
1656     unsigned VResNo = 0;
1657     TreePatternNode *BigVecOperand =
1658       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1659                     VResNo);
1660 
1661     // Filter vector types out of BigVecOperand that don't have the
1662     // right subvector type.
1663     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1664                                            NodeToApply->getExtType(ResNo));
1665   }
1666   case SDTCVecEltisVT: {
1667     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1668   }
1669   case SDTCisSameNumEltsAs: {
1670     unsigned OResNo = 0;
1671     TreePatternNode *OtherNode =
1672       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1673                     N, NodeInfo, OResNo);
1674     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1675                                  NodeToApply->getExtType(ResNo));
1676   }
1677   case SDTCisSameSizeAs: {
1678     unsigned OResNo = 0;
1679     TreePatternNode *OtherNode =
1680       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1681                     N, NodeInfo, OResNo);
1682     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1683                               NodeToApply->getExtType(ResNo));
1684   }
1685   }
1686   llvm_unreachable("Invalid ConstraintType!");
1687 }
1688 
1689 // Update the node type to match an instruction operand or result as specified
1690 // in the ins or outs lists on the instruction definition. Return true if the
1691 // type was actually changed.
1692 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1693                                              Record *Operand,
1694                                              TreePattern &TP) {
1695   // The 'unknown' operand indicates that types should be inferred from the
1696   // context.
1697   if (Operand->isSubClassOf("unknown_class"))
1698     return false;
1699 
1700   // The Operand class specifies a type directly.
1701   if (Operand->isSubClassOf("Operand")) {
1702     Record *R = Operand->getValueAsDef("Type");
1703     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1704     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1705   }
1706 
1707   // PointerLikeRegClass has a type that is determined at runtime.
1708   if (Operand->isSubClassOf("PointerLikeRegClass"))
1709     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1710 
1711   // Both RegisterClass and RegisterOperand operands derive their types from a
1712   // register class def.
1713   Record *RC = nullptr;
1714   if (Operand->isSubClassOf("RegisterClass"))
1715     RC = Operand;
1716   else if (Operand->isSubClassOf("RegisterOperand"))
1717     RC = Operand->getValueAsDef("RegClass");
1718 
1719   assert(RC && "Unknown operand type");
1720   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1721   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1722 }
1723 
1724 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1725   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1726     if (!TP.getInfer().isConcrete(Types[i], true))
1727       return true;
1728   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1729     if (getChild(i)->ContainsUnresolvedType(TP))
1730       return true;
1731   return false;
1732 }
1733 
1734 bool TreePatternNode::hasProperTypeByHwMode() const {
1735   for (const TypeSetByHwMode &S : Types)
1736     if (!S.isDefaultOnly())
1737       return true;
1738   for (const TreePatternNodePtr &C : Children)
1739     if (C->hasProperTypeByHwMode())
1740       return true;
1741   return false;
1742 }
1743 
1744 bool TreePatternNode::hasPossibleType() const {
1745   for (const TypeSetByHwMode &S : Types)
1746     if (!S.isPossible())
1747       return false;
1748   for (const TreePatternNodePtr &C : Children)
1749     if (!C->hasPossibleType())
1750       return false;
1751   return true;
1752 }
1753 
1754 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1755   for (TypeSetByHwMode &S : Types) {
1756     S.makeSimple(Mode);
1757     // Check if the selected mode had a type conflict.
1758     if (S.get(DefaultMode).empty())
1759       return false;
1760   }
1761   for (const TreePatternNodePtr &C : Children)
1762     if (!C->setDefaultMode(Mode))
1763       return false;
1764   return true;
1765 }
1766 
1767 //===----------------------------------------------------------------------===//
1768 // SDNodeInfo implementation
1769 //
1770 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1771   EnumName    = R->getValueAsString("Opcode");
1772   SDClassName = R->getValueAsString("SDClass");
1773   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1774   NumResults = TypeProfile->getValueAsInt("NumResults");
1775   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1776 
1777   // Parse the properties.
1778   Properties = parseSDPatternOperatorProperties(R);
1779 
1780   // Parse the type constraints.
1781   std::vector<Record*> ConstraintList =
1782     TypeProfile->getValueAsListOfDefs("Constraints");
1783   for (Record *R : ConstraintList)
1784     TypeConstraints.emplace_back(R, CGH);
1785 }
1786 
1787 /// getKnownType - If the type constraints on this node imply a fixed type
1788 /// (e.g. all stores return void, etc), then return it as an
1789 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1790 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1791   unsigned NumResults = getNumResults();
1792   assert(NumResults <= 1 &&
1793          "We only work with nodes with zero or one result so far!");
1794   assert(ResNo == 0 && "Only handles single result nodes so far");
1795 
1796   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1797     // Make sure that this applies to the correct node result.
1798     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1799       continue;
1800 
1801     switch (Constraint.ConstraintType) {
1802     default: break;
1803     case SDTypeConstraint::SDTCisVT:
1804       if (Constraint.VVT.isSimple())
1805         return Constraint.VVT.getSimple().SimpleTy;
1806       break;
1807     case SDTypeConstraint::SDTCisPtrTy:
1808       return MVT::iPTR;
1809     }
1810   }
1811   return MVT::Other;
1812 }
1813 
1814 //===----------------------------------------------------------------------===//
1815 // TreePatternNode implementation
1816 //
1817 
1818 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1819   if (Operator->getName() == "set" ||
1820       Operator->getName() == "implicit")
1821     return 0;  // All return nothing.
1822 
1823   if (Operator->isSubClassOf("Intrinsic"))
1824     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1825 
1826   if (Operator->isSubClassOf("SDNode"))
1827     return CDP.getSDNodeInfo(Operator).getNumResults();
1828 
1829   if (Operator->isSubClassOf("PatFrags")) {
1830     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1831     // the forward reference case where one pattern fragment references another
1832     // before it is processed.
1833     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1834       // The number of results of a fragment with alternative records is the
1835       // maximum number of results across all alternatives.
1836       unsigned NumResults = 0;
1837       for (const auto &T : PFRec->getTrees())
1838         NumResults = std::max(NumResults, T->getNumTypes());
1839       return NumResults;
1840     }
1841 
1842     ListInit *LI = Operator->getValueAsListInit("Fragments");
1843     assert(LI && "Invalid Fragment");
1844     unsigned NumResults = 0;
1845     for (Init *I : LI->getValues()) {
1846       Record *Op = nullptr;
1847       if (DagInit *Dag = dyn_cast<DagInit>(I))
1848         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1849           Op = DI->getDef();
1850       assert(Op && "Invalid Fragment");
1851       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1852     }
1853     return NumResults;
1854   }
1855 
1856   if (Operator->isSubClassOf("Instruction")) {
1857     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1858 
1859     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1860 
1861     // Subtract any defaulted outputs.
1862     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1863       Record *OperandNode = InstInfo.Operands[i].Rec;
1864 
1865       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1866           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1867         --NumDefsToAdd;
1868     }
1869 
1870     // Add on one implicit def if it has a resolvable type.
1871     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1872       ++NumDefsToAdd;
1873     return NumDefsToAdd;
1874   }
1875 
1876   if (Operator->isSubClassOf("SDNodeXForm"))
1877     return 1;  // FIXME: Generalize SDNodeXForm
1878 
1879   if (Operator->isSubClassOf("ValueType"))
1880     return 1;  // A type-cast of one result.
1881 
1882   if (Operator->isSubClassOf("ComplexPattern"))
1883     return 1;
1884 
1885   errs() << *Operator;
1886   PrintFatalError("Unhandled node in GetNumNodeResults");
1887 }
1888 
1889 void TreePatternNode::print(raw_ostream &OS) const {
1890   if (isLeaf())
1891     OS << *getLeafValue();
1892   else
1893     OS << '(' << getOperator()->getName();
1894 
1895   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1896     OS << ':';
1897     getExtType(i).writeToStream(OS);
1898   }
1899 
1900   if (!isLeaf()) {
1901     if (getNumChildren() != 0) {
1902       OS << " ";
1903       ListSeparator LS;
1904       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1905         OS << LS;
1906         getChild(i)->print(OS);
1907       }
1908     }
1909     OS << ")";
1910   }
1911 
1912   for (const TreePredicateCall &Pred : PredicateCalls) {
1913     OS << "<<P:";
1914     if (Pred.Scope)
1915       OS << Pred.Scope << ":";
1916     OS << Pred.Fn.getFnName() << ">>";
1917   }
1918   if (TransformFn)
1919     OS << "<<X:" << TransformFn->getName() << ">>";
1920   if (!getName().empty())
1921     OS << ":$" << getName();
1922 
1923   for (const ScopedName &Name : NamesAsPredicateArg)
1924     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1925 }
1926 void TreePatternNode::dump() const {
1927   print(errs());
1928 }
1929 
1930 /// isIsomorphicTo - Return true if this node is recursively
1931 /// isomorphic to the specified node.  For this comparison, the node's
1932 /// entire state is considered. The assigned name is ignored, since
1933 /// nodes with differing names are considered isomorphic. However, if
1934 /// the assigned name is present in the dependent variable set, then
1935 /// the assigned name is considered significant and the node is
1936 /// isomorphic if the names match.
1937 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1938                                      const MultipleUseVarSet &DepVars) const {
1939   if (N == this) return true;
1940   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1941       getPredicateCalls() != N->getPredicateCalls() ||
1942       getTransformFn() != N->getTransformFn())
1943     return false;
1944 
1945   if (isLeaf()) {
1946     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1947       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1948         return ((DI->getDef() == NDI->getDef())
1949                 && (DepVars.find(getName()) == DepVars.end()
1950                     || getName() == N->getName()));
1951       }
1952     }
1953     return getLeafValue() == N->getLeafValue();
1954   }
1955 
1956   if (N->getOperator() != getOperator() ||
1957       N->getNumChildren() != getNumChildren()) return false;
1958   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1959     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1960       return false;
1961   return true;
1962 }
1963 
1964 /// clone - Make a copy of this tree and all of its children.
1965 ///
1966 TreePatternNodePtr TreePatternNode::clone() const {
1967   TreePatternNodePtr New;
1968   if (isLeaf()) {
1969     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1970   } else {
1971     std::vector<TreePatternNodePtr> CChildren;
1972     CChildren.reserve(Children.size());
1973     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1974       CChildren.push_back(getChild(i)->clone());
1975     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1976                                             getNumTypes());
1977   }
1978   New->setName(getName());
1979   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1980   New->Types = Types;
1981   New->setPredicateCalls(getPredicateCalls());
1982   New->setTransformFn(getTransformFn());
1983   return New;
1984 }
1985 
1986 /// RemoveAllTypes - Recursively strip all the types of this tree.
1987 void TreePatternNode::RemoveAllTypes() {
1988   // Reset to unknown type.
1989   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1990   if (isLeaf()) return;
1991   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1992     getChild(i)->RemoveAllTypes();
1993 }
1994 
1995 
1996 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1997 /// with actual values specified by ArgMap.
1998 void TreePatternNode::SubstituteFormalArguments(
1999     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2000   if (isLeaf()) return;
2001 
2002   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2003     TreePatternNode *Child = getChild(i);
2004     if (Child->isLeaf()) {
2005       Init *Val = Child->getLeafValue();
2006       // Note that, when substituting into an output pattern, Val might be an
2007       // UnsetInit.
2008       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2009           cast<DefInit>(Val)->getDef()->getName() == "node")) {
2010         // We found a use of a formal argument, replace it with its value.
2011         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2012         assert(NewChild && "Couldn't find formal argument!");
2013         assert((Child->getPredicateCalls().empty() ||
2014                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2015                "Non-empty child predicate clobbered!");
2016         setChild(i, std::move(NewChild));
2017       }
2018     } else {
2019       getChild(i)->SubstituteFormalArguments(ArgMap);
2020     }
2021   }
2022 }
2023 
2024 
2025 /// InlinePatternFragments - If this pattern refers to any pattern
2026 /// fragments, return the set of inlined versions (this can be more than
2027 /// one if a PatFrags record has multiple alternatives).
2028 void TreePatternNode::InlinePatternFragments(
2029   TreePatternNodePtr T, TreePattern &TP,
2030   std::vector<TreePatternNodePtr> &OutAlternatives) {
2031 
2032   if (TP.hasError())
2033     return;
2034 
2035   if (isLeaf()) {
2036     OutAlternatives.push_back(T);  // nothing to do.
2037     return;
2038   }
2039 
2040   Record *Op = getOperator();
2041 
2042   if (!Op->isSubClassOf("PatFrags")) {
2043     if (getNumChildren() == 0) {
2044       OutAlternatives.push_back(T);
2045       return;
2046     }
2047 
2048     // Recursively inline children nodes.
2049     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2050     ChildAlternatives.resize(getNumChildren());
2051     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2052       TreePatternNodePtr Child = getChildShared(i);
2053       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2054       // If there are no alternatives for any child, there are no
2055       // alternatives for this expression as whole.
2056       if (ChildAlternatives[i].empty())
2057         return;
2058 
2059       assert((Child->getPredicateCalls().empty() ||
2060               llvm::all_of(ChildAlternatives[i],
2061                            [&](const TreePatternNodePtr &NewChild) {
2062                              return NewChild->getPredicateCalls() ==
2063                                     Child->getPredicateCalls();
2064                            })) &&
2065              "Non-empty child predicate clobbered!");
2066     }
2067 
2068     // The end result is an all-pairs construction of the resultant pattern.
2069     std::vector<unsigned> Idxs;
2070     Idxs.resize(ChildAlternatives.size());
2071     bool NotDone;
2072     do {
2073       // Create the variant and add it to the output list.
2074       std::vector<TreePatternNodePtr> NewChildren;
2075       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2076         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2077       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2078           getOperator(), std::move(NewChildren), getNumTypes());
2079 
2080       // Copy over properties.
2081       R->setName(getName());
2082       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2083       R->setPredicateCalls(getPredicateCalls());
2084       R->setTransformFn(getTransformFn());
2085       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2086         R->setType(i, getExtType(i));
2087       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2088         R->setResultIndex(i, getResultIndex(i));
2089 
2090       // Register alternative.
2091       OutAlternatives.push_back(R);
2092 
2093       // Increment indices to the next permutation by incrementing the
2094       // indices from last index backward, e.g., generate the sequence
2095       // [0, 0], [0, 1], [1, 0], [1, 1].
2096       int IdxsIdx;
2097       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2098         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2099           Idxs[IdxsIdx] = 0;
2100         else
2101           break;
2102       }
2103       NotDone = (IdxsIdx >= 0);
2104     } while (NotDone);
2105 
2106     return;
2107   }
2108 
2109   // Otherwise, we found a reference to a fragment.  First, look up its
2110   // TreePattern record.
2111   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2112 
2113   // Verify that we are passing the right number of operands.
2114   if (Frag->getNumArgs() != Children.size()) {
2115     TP.error("'" + Op->getName() + "' fragment requires " +
2116              Twine(Frag->getNumArgs()) + " operands!");
2117     return;
2118   }
2119 
2120   TreePredicateFn PredFn(Frag);
2121   unsigned Scope = 0;
2122   if (TreePredicateFn(Frag).usesOperands())
2123     Scope = TP.getDAGPatterns().allocateScope();
2124 
2125   // Compute the map of formal to actual arguments.
2126   std::map<std::string, TreePatternNodePtr> ArgMap;
2127   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2128     TreePatternNodePtr Child = getChildShared(i);
2129     if (Scope != 0) {
2130       Child = Child->clone();
2131       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2132     }
2133     ArgMap[Frag->getArgName(i)] = Child;
2134   }
2135 
2136   // Loop over all fragment alternatives.
2137   for (const auto &Alternative : Frag->getTrees()) {
2138     TreePatternNodePtr FragTree = Alternative->clone();
2139 
2140     if (!PredFn.isAlwaysTrue())
2141       FragTree->addPredicateCall(PredFn, Scope);
2142 
2143     // Resolve formal arguments to their actual value.
2144     if (Frag->getNumArgs())
2145       FragTree->SubstituteFormalArguments(ArgMap);
2146 
2147     // Transfer types.  Note that the resolved alternative may have fewer
2148     // (but not more) results than the PatFrags node.
2149     FragTree->setName(getName());
2150     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2151       FragTree->UpdateNodeType(i, getExtType(i), TP);
2152 
2153     // Transfer in the old predicates.
2154     for (const TreePredicateCall &Pred : getPredicateCalls())
2155       FragTree->addPredicateCall(Pred);
2156 
2157     // The fragment we inlined could have recursive inlining that is needed.  See
2158     // if there are any pattern fragments in it and inline them as needed.
2159     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2160   }
2161 }
2162 
2163 /// getImplicitType - Check to see if the specified record has an implicit
2164 /// type which should be applied to it.  This will infer the type of register
2165 /// references from the register file information, for example.
2166 ///
2167 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2168 /// the F8RC register class argument in:
2169 ///
2170 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2171 ///
2172 /// When Unnamed is false, return the type of a named DAG operand such as the
2173 /// GPR:$src operand above.
2174 ///
2175 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2176                                        bool NotRegisters,
2177                                        bool Unnamed,
2178                                        TreePattern &TP) {
2179   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2180 
2181   // Check to see if this is a register operand.
2182   if (R->isSubClassOf("RegisterOperand")) {
2183     assert(ResNo == 0 && "Regoperand ref only has one result!");
2184     if (NotRegisters)
2185       return TypeSetByHwMode(); // Unknown.
2186     Record *RegClass = R->getValueAsDef("RegClass");
2187     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2188     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2189   }
2190 
2191   // Check to see if this is a register or a register class.
2192   if (R->isSubClassOf("RegisterClass")) {
2193     assert(ResNo == 0 && "Regclass ref only has one result!");
2194     // An unnamed register class represents itself as an i32 immediate, for
2195     // example on a COPY_TO_REGCLASS instruction.
2196     if (Unnamed)
2197       return TypeSetByHwMode(MVT::i32);
2198 
2199     // In a named operand, the register class provides the possible set of
2200     // types.
2201     if (NotRegisters)
2202       return TypeSetByHwMode(); // Unknown.
2203     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2204     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2205   }
2206 
2207   if (R->isSubClassOf("PatFrags")) {
2208     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2209     // Pattern fragment types will be resolved when they are inlined.
2210     return TypeSetByHwMode(); // Unknown.
2211   }
2212 
2213   if (R->isSubClassOf("Register")) {
2214     assert(ResNo == 0 && "Registers only produce one result!");
2215     if (NotRegisters)
2216       return TypeSetByHwMode(); // Unknown.
2217     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2218     return TypeSetByHwMode(T.getRegisterVTs(R));
2219   }
2220 
2221   if (R->isSubClassOf("SubRegIndex")) {
2222     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2223     return TypeSetByHwMode(MVT::i32);
2224   }
2225 
2226   if (R->isSubClassOf("ValueType")) {
2227     assert(ResNo == 0 && "This node only has one result!");
2228     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2229     //
2230     //   (sext_inreg GPR:$src, i16)
2231     //                         ~~~
2232     if (Unnamed)
2233       return TypeSetByHwMode(MVT::Other);
2234     // With a name, the ValueType simply provides the type of the named
2235     // variable.
2236     //
2237     //   (sext_inreg i32:$src, i16)
2238     //               ~~~~~~~~
2239     if (NotRegisters)
2240       return TypeSetByHwMode(); // Unknown.
2241     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2242     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2243   }
2244 
2245   if (R->isSubClassOf("CondCode")) {
2246     assert(ResNo == 0 && "This node only has one result!");
2247     // Using a CondCodeSDNode.
2248     return TypeSetByHwMode(MVT::Other);
2249   }
2250 
2251   if (R->isSubClassOf("ComplexPattern")) {
2252     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2253     if (NotRegisters)
2254       return TypeSetByHwMode(); // Unknown.
2255     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2256   }
2257   if (R->isSubClassOf("PointerLikeRegClass")) {
2258     assert(ResNo == 0 && "Regclass can only have one result!");
2259     TypeSetByHwMode VTS(MVT::iPTR);
2260     TP.getInfer().expandOverloads(VTS);
2261     return VTS;
2262   }
2263 
2264   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2265       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2266       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2267     // Placeholder.
2268     return TypeSetByHwMode(); // Unknown.
2269   }
2270 
2271   if (R->isSubClassOf("Operand")) {
2272     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2273     Record *T = R->getValueAsDef("Type");
2274     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2275   }
2276 
2277   TP.error("Unknown node flavor used in pattern: " + R->getName());
2278   return TypeSetByHwMode(MVT::Other);
2279 }
2280 
2281 
2282 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2283 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2284 const CodeGenIntrinsic *TreePatternNode::
2285 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2286   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2287       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2288       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2289     return nullptr;
2290 
2291   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2292   return &CDP.getIntrinsicInfo(IID);
2293 }
2294 
2295 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2296 /// return the ComplexPattern information, otherwise return null.
2297 const ComplexPattern *
2298 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2299   Record *Rec;
2300   if (isLeaf()) {
2301     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2302     if (!DI)
2303       return nullptr;
2304     Rec = DI->getDef();
2305   } else
2306     Rec = getOperator();
2307 
2308   if (!Rec->isSubClassOf("ComplexPattern"))
2309     return nullptr;
2310   return &CGP.getComplexPattern(Rec);
2311 }
2312 
2313 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2314   // A ComplexPattern specifically declares how many results it fills in.
2315   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2316     return CP->getNumOperands();
2317 
2318   // If MIOperandInfo is specified, that gives the count.
2319   if (isLeaf()) {
2320     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2321     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2322       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2323       if (MIOps->getNumArgs())
2324         return MIOps->getNumArgs();
2325     }
2326   }
2327 
2328   // Otherwise there is just one result.
2329   return 1;
2330 }
2331 
2332 /// NodeHasProperty - Return true if this node has the specified property.
2333 bool TreePatternNode::NodeHasProperty(SDNP Property,
2334                                       const CodeGenDAGPatterns &CGP) const {
2335   if (isLeaf()) {
2336     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2337       return CP->hasProperty(Property);
2338 
2339     return false;
2340   }
2341 
2342   if (Property != SDNPHasChain) {
2343     // The chain proprety is already present on the different intrinsic node
2344     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2345     // on the intrinsic. Anything else is specific to the individual intrinsic.
2346     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2347       return Int->hasProperty(Property);
2348   }
2349 
2350   if (!Operator->isSubClassOf("SDPatternOperator"))
2351     return false;
2352 
2353   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2354 }
2355 
2356 
2357 
2358 
2359 /// TreeHasProperty - Return true if any node in this tree has the specified
2360 /// property.
2361 bool TreePatternNode::TreeHasProperty(SDNP Property,
2362                                       const CodeGenDAGPatterns &CGP) const {
2363   if (NodeHasProperty(Property, CGP))
2364     return true;
2365   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2366     if (getChild(i)->TreeHasProperty(Property, CGP))
2367       return true;
2368   return false;
2369 }
2370 
2371 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2372 /// commutative intrinsic.
2373 bool
2374 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2375   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2376     return Int->isCommutative;
2377   return false;
2378 }
2379 
2380 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2381   if (!N->isLeaf())
2382     return N->getOperator()->isSubClassOf(Class);
2383 
2384   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2385   if (DI && DI->getDef()->isSubClassOf(Class))
2386     return true;
2387 
2388   return false;
2389 }
2390 
2391 static void emitTooManyOperandsError(TreePattern &TP,
2392                                      StringRef InstName,
2393                                      unsigned Expected,
2394                                      unsigned Actual) {
2395   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2396            " operands but expected only " + Twine(Expected) + "!");
2397 }
2398 
2399 static void emitTooFewOperandsError(TreePattern &TP,
2400                                     StringRef InstName,
2401                                     unsigned Actual) {
2402   TP.error("Instruction '" + InstName +
2403            "' expects more than the provided " + Twine(Actual) + " operands!");
2404 }
2405 
2406 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2407 /// this node and its children in the tree.  This returns true if it makes a
2408 /// change, false otherwise.  If a type contradiction is found, flag an error.
2409 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2410   if (TP.hasError())
2411     return false;
2412 
2413   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2414   if (isLeaf()) {
2415     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2416       // If it's a regclass or something else known, include the type.
2417       bool MadeChange = false;
2418       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2419         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2420                                                         NotRegisters,
2421                                                         !hasName(), TP), TP);
2422       return MadeChange;
2423     }
2424 
2425     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2426       assert(Types.size() == 1 && "Invalid IntInit");
2427 
2428       // Int inits are always integers. :)
2429       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2430 
2431       if (!TP.getInfer().isConcrete(Types[0], false))
2432         return MadeChange;
2433 
2434       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2435       for (auto &P : VVT) {
2436         MVT::SimpleValueType VT = P.second.SimpleTy;
2437         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2438           continue;
2439         unsigned Size = MVT(VT).getFixedSizeInBits();
2440         // Make sure that the value is representable for this type.
2441         if (Size >= 32)
2442           continue;
2443         // Check that the value doesn't use more bits than we have. It must
2444         // either be a sign- or zero-extended equivalent of the original.
2445         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2446         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2447             SignBitAndAbove == 1)
2448           continue;
2449 
2450         TP.error("Integer value '" + Twine(II->getValue()) +
2451                  "' is out of range for type '" + getEnumName(VT) + "'!");
2452         break;
2453       }
2454       return MadeChange;
2455     }
2456 
2457     return false;
2458   }
2459 
2460   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2461     bool MadeChange = false;
2462 
2463     // Apply the result type to the node.
2464     unsigned NumRetVTs = Int->IS.RetVTs.size();
2465     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2466 
2467     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2468       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2469 
2470     if (getNumChildren() != NumParamVTs + 1) {
2471       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2472                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2473       return false;
2474     }
2475 
2476     // Apply type info to the intrinsic ID.
2477     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2478 
2479     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2480       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2481 
2482       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2483       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2484       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2485     }
2486     return MadeChange;
2487   }
2488 
2489   if (getOperator()->isSubClassOf("SDNode")) {
2490     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2491 
2492     // Check that the number of operands is sane.  Negative operands -> varargs.
2493     if (NI.getNumOperands() >= 0 &&
2494         getNumChildren() != (unsigned)NI.getNumOperands()) {
2495       TP.error(getOperator()->getName() + " node requires exactly " +
2496                Twine(NI.getNumOperands()) + " operands!");
2497       return false;
2498     }
2499 
2500     bool MadeChange = false;
2501     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2502       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2503     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2504     return MadeChange;
2505   }
2506 
2507   if (getOperator()->isSubClassOf("Instruction")) {
2508     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2509     CodeGenInstruction &InstInfo =
2510       CDP.getTargetInfo().getInstruction(getOperator());
2511 
2512     bool MadeChange = false;
2513 
2514     // Apply the result types to the node, these come from the things in the
2515     // (outs) list of the instruction.
2516     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2517                                         Inst.getNumResults());
2518     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2519       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2520 
2521     // If the instruction has implicit defs, we apply the first one as a result.
2522     // FIXME: This sucks, it should apply all implicit defs.
2523     if (!InstInfo.ImplicitDefs.empty()) {
2524       unsigned ResNo = NumResultsToAdd;
2525 
2526       // FIXME: Generalize to multiple possible types and multiple possible
2527       // ImplicitDefs.
2528       MVT::SimpleValueType VT =
2529         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2530 
2531       if (VT != MVT::Other)
2532         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2533     }
2534 
2535     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2536     // be the same.
2537     if (getOperator()->getName() == "INSERT_SUBREG") {
2538       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2539       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2540       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2541     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2542       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2543       // variadic.
2544 
2545       unsigned NChild = getNumChildren();
2546       if (NChild < 3) {
2547         TP.error("REG_SEQUENCE requires at least 3 operands!");
2548         return false;
2549       }
2550 
2551       if (NChild % 2 == 0) {
2552         TP.error("REG_SEQUENCE requires an odd number of operands!");
2553         return false;
2554       }
2555 
2556       if (!isOperandClass(getChild(0), "RegisterClass")) {
2557         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2558         return false;
2559       }
2560 
2561       for (unsigned I = 1; I < NChild; I += 2) {
2562         TreePatternNode *SubIdxChild = getChild(I + 1);
2563         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2564           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2565                    Twine(I + 1) + "!");
2566           return false;
2567         }
2568       }
2569     }
2570 
2571     unsigned NumResults = Inst.getNumResults();
2572     unsigned NumFixedOperands = InstInfo.Operands.size();
2573 
2574     // If one or more operands with a default value appear at the end of the
2575     // formal operand list for an instruction, we allow them to be overridden
2576     // by optional operands provided in the pattern.
2577     //
2578     // But if an operand B without a default appears at any point after an
2579     // operand A with a default, then we don't allow A to be overridden,
2580     // because there would be no way to specify whether the next operand in
2581     // the pattern was intended to override A or skip it.
2582     unsigned NonOverridableOperands = NumFixedOperands;
2583     while (NonOverridableOperands > NumResults &&
2584            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2585       --NonOverridableOperands;
2586 
2587     unsigned ChildNo = 0;
2588     assert(NumResults <= NumFixedOperands);
2589     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2590       Record *OperandNode = InstInfo.Operands[i].Rec;
2591 
2592       // If the operand has a default value, do we use it? We must use the
2593       // default if we've run out of children of the pattern DAG to consume,
2594       // or if the operand is followed by a non-defaulted one.
2595       if (CDP.operandHasDefault(OperandNode) &&
2596           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2597         continue;
2598 
2599       // If we have run out of child nodes and there _isn't_ a default
2600       // value we can use for the next operand, give an error.
2601       if (ChildNo >= getNumChildren()) {
2602         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2603         return false;
2604       }
2605 
2606       TreePatternNode *Child = getChild(ChildNo++);
2607       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2608 
2609       // If the operand has sub-operands, they may be provided by distinct
2610       // child patterns, so attempt to match each sub-operand separately.
2611       if (OperandNode->isSubClassOf("Operand")) {
2612         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2613         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2614           // But don't do that if the whole operand is being provided by
2615           // a single ComplexPattern-related Operand.
2616 
2617           if (Child->getNumMIResults(CDP) < NumArgs) {
2618             // Match first sub-operand against the child we already have.
2619             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2620             MadeChange |=
2621               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2622 
2623             // And the remaining sub-operands against subsequent children.
2624             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2625               if (ChildNo >= getNumChildren()) {
2626                 emitTooFewOperandsError(TP, getOperator()->getName(),
2627                                         getNumChildren());
2628                 return false;
2629               }
2630               Child = getChild(ChildNo++);
2631 
2632               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2633               MadeChange |=
2634                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2635             }
2636             continue;
2637           }
2638         }
2639       }
2640 
2641       // If we didn't match by pieces above, attempt to match the whole
2642       // operand now.
2643       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2644     }
2645 
2646     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2647       emitTooManyOperandsError(TP, getOperator()->getName(),
2648                                ChildNo, getNumChildren());
2649       return false;
2650     }
2651 
2652     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2653       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2654     return MadeChange;
2655   }
2656 
2657   if (getOperator()->isSubClassOf("ComplexPattern")) {
2658     bool MadeChange = false;
2659 
2660     for (unsigned i = 0; i < getNumChildren(); ++i)
2661       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2662 
2663     return MadeChange;
2664   }
2665 
2666   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2667 
2668   // Node transforms always take one operand.
2669   if (getNumChildren() != 1) {
2670     TP.error("Node transform '" + getOperator()->getName() +
2671              "' requires one operand!");
2672     return false;
2673   }
2674 
2675   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2676   return MadeChange;
2677 }
2678 
2679 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2680 /// RHS of a commutative operation, not the on LHS.
2681 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2682   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2683     return true;
2684   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2685     return true;
2686   if (isImmAllOnesAllZerosMatch(N))
2687     return true;
2688   return false;
2689 }
2690 
2691 
2692 /// canPatternMatch - If it is impossible for this pattern to match on this
2693 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2694 /// used as a sanity check for .td files (to prevent people from writing stuff
2695 /// that can never possibly work), and to prevent the pattern permuter from
2696 /// generating stuff that is useless.
2697 bool TreePatternNode::canPatternMatch(std::string &Reason,
2698                                       const CodeGenDAGPatterns &CDP) {
2699   if (isLeaf()) return true;
2700 
2701   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2702     if (!getChild(i)->canPatternMatch(Reason, CDP))
2703       return false;
2704 
2705   // If this is an intrinsic, handle cases that would make it not match.  For
2706   // example, if an operand is required to be an immediate.
2707   if (getOperator()->isSubClassOf("Intrinsic")) {
2708     // TODO:
2709     return true;
2710   }
2711 
2712   if (getOperator()->isSubClassOf("ComplexPattern"))
2713     return true;
2714 
2715   // If this node is a commutative operator, check that the LHS isn't an
2716   // immediate.
2717   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2718   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2719   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2720     // Scan all of the operands of the node and make sure that only the last one
2721     // is a constant node, unless the RHS also is.
2722     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2723       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2724       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2725         if (OnlyOnRHSOfCommutative(getChild(i))) {
2726           Reason="Immediate value must be on the RHS of commutative operators!";
2727           return false;
2728         }
2729     }
2730   }
2731 
2732   return true;
2733 }
2734 
2735 //===----------------------------------------------------------------------===//
2736 // TreePattern implementation
2737 //
2738 
2739 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2740                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2741                          isInputPattern(isInput), HasError(false),
2742                          Infer(*this) {
2743   for (Init *I : RawPat->getValues())
2744     Trees.push_back(ParseTreePattern(I, ""));
2745 }
2746 
2747 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2748                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2749                          isInputPattern(isInput), HasError(false),
2750                          Infer(*this) {
2751   Trees.push_back(ParseTreePattern(Pat, ""));
2752 }
2753 
2754 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2755                          CodeGenDAGPatterns &cdp)
2756     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2757       Infer(*this) {
2758   Trees.push_back(Pat);
2759 }
2760 
2761 void TreePattern::error(const Twine &Msg) {
2762   if (HasError)
2763     return;
2764   dump();
2765   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2766   HasError = true;
2767 }
2768 
2769 void TreePattern::ComputeNamedNodes() {
2770   for (TreePatternNodePtr &Tree : Trees)
2771     ComputeNamedNodes(Tree.get());
2772 }
2773 
2774 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2775   if (!N->getName().empty())
2776     NamedNodes[N->getName()].push_back(N);
2777 
2778   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2779     ComputeNamedNodes(N->getChild(i));
2780 }
2781 
2782 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2783                                                  StringRef OpName) {
2784   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2785     Record *R = DI->getDef();
2786 
2787     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2788     // TreePatternNode of its own.  For example:
2789     ///   (foo GPR, imm) -> (foo GPR, (imm))
2790     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2791       return ParseTreePattern(
2792         DagInit::get(DI, nullptr,
2793                      std::vector<std::pair<Init*, StringInit*> >()),
2794         OpName);
2795 
2796     // Input argument?
2797     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2798     if (R->getName() == "node" && !OpName.empty()) {
2799       if (OpName.empty())
2800         error("'node' argument requires a name to match with operand list");
2801       Args.push_back(std::string(OpName));
2802     }
2803 
2804     Res->setName(OpName);
2805     return Res;
2806   }
2807 
2808   // ?:$name or just $name.
2809   if (isa<UnsetInit>(TheInit)) {
2810     if (OpName.empty())
2811       error("'?' argument requires a name to match with operand list");
2812     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2813     Args.push_back(std::string(OpName));
2814     Res->setName(OpName);
2815     return Res;
2816   }
2817 
2818   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2819     if (!OpName.empty())
2820       error("Constant int or bit argument should not have a name!");
2821     if (isa<BitInit>(TheInit))
2822       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2823     return std::make_shared<TreePatternNode>(TheInit, 1);
2824   }
2825 
2826   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2827     // Turn this into an IntInit.
2828     Init *II = BI->convertInitializerTo(IntRecTy::get());
2829     if (!II || !isa<IntInit>(II))
2830       error("Bits value must be constants!");
2831     return ParseTreePattern(II, OpName);
2832   }
2833 
2834   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2835   if (!Dag) {
2836     TheInit->print(errs());
2837     error("Pattern has unexpected init kind!");
2838   }
2839   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2840   if (!OpDef) error("Pattern has unexpected operator type!");
2841   Record *Operator = OpDef->getDef();
2842 
2843   if (Operator->isSubClassOf("ValueType")) {
2844     // If the operator is a ValueType, then this must be "type cast" of a leaf
2845     // node.
2846     if (Dag->getNumArgs() != 1)
2847       error("Type cast only takes one operand!");
2848 
2849     TreePatternNodePtr New =
2850         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2851 
2852     // Apply the type cast.
2853     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2854     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2855     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2856 
2857     if (!OpName.empty())
2858       error("ValueType cast should not have a name!");
2859     return New;
2860   }
2861 
2862   // Verify that this is something that makes sense for an operator.
2863   if (!Operator->isSubClassOf("PatFrags") &&
2864       !Operator->isSubClassOf("SDNode") &&
2865       !Operator->isSubClassOf("Instruction") &&
2866       !Operator->isSubClassOf("SDNodeXForm") &&
2867       !Operator->isSubClassOf("Intrinsic") &&
2868       !Operator->isSubClassOf("ComplexPattern") &&
2869       Operator->getName() != "set" &&
2870       Operator->getName() != "implicit")
2871     error("Unrecognized node '" + Operator->getName() + "'!");
2872 
2873   //  Check to see if this is something that is illegal in an input pattern.
2874   if (isInputPattern) {
2875     if (Operator->isSubClassOf("Instruction") ||
2876         Operator->isSubClassOf("SDNodeXForm"))
2877       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2878   } else {
2879     if (Operator->isSubClassOf("Intrinsic"))
2880       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2881 
2882     if (Operator->isSubClassOf("SDNode") &&
2883         Operator->getName() != "imm" &&
2884         Operator->getName() != "timm" &&
2885         Operator->getName() != "fpimm" &&
2886         Operator->getName() != "tglobaltlsaddr" &&
2887         Operator->getName() != "tconstpool" &&
2888         Operator->getName() != "tjumptable" &&
2889         Operator->getName() != "tframeindex" &&
2890         Operator->getName() != "texternalsym" &&
2891         Operator->getName() != "tblockaddress" &&
2892         Operator->getName() != "tglobaladdr" &&
2893         Operator->getName() != "bb" &&
2894         Operator->getName() != "vt" &&
2895         Operator->getName() != "mcsym")
2896       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2897   }
2898 
2899   std::vector<TreePatternNodePtr> Children;
2900 
2901   // Parse all the operands.
2902   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2903     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2904 
2905   // Get the actual number of results before Operator is converted to an intrinsic
2906   // node (which is hard-coded to have either zero or one result).
2907   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2908 
2909   // If the operator is an intrinsic, then this is just syntactic sugar for
2910   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2911   // convert the intrinsic name to a number.
2912   if (Operator->isSubClassOf("Intrinsic")) {
2913     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2914     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2915 
2916     // If this intrinsic returns void, it must have side-effects and thus a
2917     // chain.
2918     if (Int.IS.RetVTs.empty())
2919       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2920     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2921       // Has side-effects, requires chain.
2922       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2923     else // Otherwise, no chain.
2924       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2925 
2926     Children.insert(Children.begin(),
2927                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2928   }
2929 
2930   if (Operator->isSubClassOf("ComplexPattern")) {
2931     for (unsigned i = 0; i < Children.size(); ++i) {
2932       TreePatternNodePtr Child = Children[i];
2933 
2934       if (Child->getName().empty())
2935         error("All arguments to a ComplexPattern must be named");
2936 
2937       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2938       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2939       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2940       auto OperandId = std::make_pair(Operator, i);
2941       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2942       if (PrevOp != ComplexPatternOperands.end()) {
2943         if (PrevOp->getValue() != OperandId)
2944           error("All ComplexPattern operands must appear consistently: "
2945                 "in the same order in just one ComplexPattern instance.");
2946       } else
2947         ComplexPatternOperands[Child->getName()] = OperandId;
2948     }
2949   }
2950 
2951   TreePatternNodePtr Result =
2952       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2953                                         NumResults);
2954   Result->setName(OpName);
2955 
2956   if (Dag->getName()) {
2957     assert(Result->getName().empty());
2958     Result->setName(Dag->getNameStr());
2959   }
2960   return Result;
2961 }
2962 
2963 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2964 /// will never match in favor of something obvious that will.  This is here
2965 /// strictly as a convenience to target authors because it allows them to write
2966 /// more type generic things and have useless type casts fold away.
2967 ///
2968 /// This returns true if any change is made.
2969 static bool SimplifyTree(TreePatternNodePtr &N) {
2970   if (N->isLeaf())
2971     return false;
2972 
2973   // If we have a bitconvert with a resolved type and if the source and
2974   // destination types are the same, then the bitconvert is useless, remove it.
2975   //
2976   // We make an exception if the types are completely empty. This can come up
2977   // when the pattern being simplified is in the Fragments list of a PatFrags,
2978   // so that the operand is just an untyped "node". In that situation we leave
2979   // bitconverts unsimplified, and simplify them later once the fragment is
2980   // expanded into its true context.
2981   if (N->getOperator()->getName() == "bitconvert" &&
2982       N->getExtType(0).isValueTypeByHwMode(false) &&
2983       !N->getExtType(0).empty() &&
2984       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2985       N->getName().empty()) {
2986     N = N->getChildShared(0);
2987     SimplifyTree(N);
2988     return true;
2989   }
2990 
2991   // Walk all children.
2992   bool MadeChange = false;
2993   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2994     TreePatternNodePtr Child = N->getChildShared(i);
2995     MadeChange |= SimplifyTree(Child);
2996     N->setChild(i, std::move(Child));
2997   }
2998   return MadeChange;
2999 }
3000 
3001 
3002 
3003 /// InferAllTypes - Infer/propagate as many types throughout the expression
3004 /// patterns as possible.  Return true if all types are inferred, false
3005 /// otherwise.  Flags an error if a type contradiction is found.
3006 bool TreePattern::
3007 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3008   if (NamedNodes.empty())
3009     ComputeNamedNodes();
3010 
3011   bool MadeChange = true;
3012   while (MadeChange) {
3013     MadeChange = false;
3014     for (TreePatternNodePtr &Tree : Trees) {
3015       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3016       MadeChange |= SimplifyTree(Tree);
3017     }
3018 
3019     // If there are constraints on our named nodes, apply them.
3020     for (auto &Entry : NamedNodes) {
3021       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3022 
3023       // If we have input named node types, propagate their types to the named
3024       // values here.
3025       if (InNamedTypes) {
3026         if (!InNamedTypes->count(Entry.getKey())) {
3027           error("Node '" + std::string(Entry.getKey()) +
3028                 "' in output pattern but not input pattern");
3029           return true;
3030         }
3031 
3032         const SmallVectorImpl<TreePatternNode*> &InNodes =
3033           InNamedTypes->find(Entry.getKey())->second;
3034 
3035         // The input types should be fully resolved by now.
3036         for (TreePatternNode *Node : Nodes) {
3037           // If this node is a register class, and it is the root of the pattern
3038           // then we're mapping something onto an input register.  We allow
3039           // changing the type of the input register in this case.  This allows
3040           // us to match things like:
3041           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3042           if (Node == Trees[0].get() && Node->isLeaf()) {
3043             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3044             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3045                        DI->getDef()->isSubClassOf("RegisterOperand")))
3046               continue;
3047           }
3048 
3049           assert(Node->getNumTypes() == 1 &&
3050                  InNodes[0]->getNumTypes() == 1 &&
3051                  "FIXME: cannot name multiple result nodes yet");
3052           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3053                                              *this);
3054         }
3055       }
3056 
3057       // If there are multiple nodes with the same name, they must all have the
3058       // same type.
3059       if (Entry.second.size() > 1) {
3060         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3061           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3062           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3063                  "FIXME: cannot name multiple result nodes yet");
3064 
3065           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3066           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3067         }
3068       }
3069     }
3070   }
3071 
3072   bool HasUnresolvedTypes = false;
3073   for (const TreePatternNodePtr &Tree : Trees)
3074     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3075   return !HasUnresolvedTypes;
3076 }
3077 
3078 void TreePattern::print(raw_ostream &OS) const {
3079   OS << getRecord()->getName();
3080   if (!Args.empty()) {
3081     OS << "(";
3082     ListSeparator LS;
3083     for (const std::string &Arg : Args)
3084       OS << LS << Arg;
3085     OS << ")";
3086   }
3087   OS << ": ";
3088 
3089   if (Trees.size() > 1)
3090     OS << "[\n";
3091   for (const TreePatternNodePtr &Tree : Trees) {
3092     OS << "\t";
3093     Tree->print(OS);
3094     OS << "\n";
3095   }
3096 
3097   if (Trees.size() > 1)
3098     OS << "]\n";
3099 }
3100 
3101 void TreePattern::dump() const { print(errs()); }
3102 
3103 //===----------------------------------------------------------------------===//
3104 // CodeGenDAGPatterns implementation
3105 //
3106 
3107 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3108                                        PatternRewriterFn PatternRewriter)
3109     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3110       PatternRewriter(PatternRewriter) {
3111 
3112   Intrinsics = CodeGenIntrinsicTable(Records);
3113   ParseNodeInfo();
3114   ParseNodeTransforms();
3115   ParseComplexPatterns();
3116   ParsePatternFragments();
3117   ParseDefaultOperands();
3118   ParseInstructions();
3119   ParsePatternFragments(/*OutFrags*/true);
3120   ParsePatterns();
3121 
3122   // Generate variants.  For example, commutative patterns can match
3123   // multiple ways.  Add them to PatternsToMatch as well.
3124   GenerateVariants();
3125 
3126   // Break patterns with parameterized types into a series of patterns,
3127   // where each one has a fixed type and is predicated on the conditions
3128   // of the associated HW mode.
3129   ExpandHwModeBasedTypes();
3130 
3131   // Infer instruction flags.  For example, we can detect loads,
3132   // stores, and side effects in many cases by examining an
3133   // instruction's pattern.
3134   InferInstructionFlags();
3135 
3136   // Verify that instruction flags match the patterns.
3137   VerifyInstructionFlags();
3138 }
3139 
3140 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3141   Record *N = Records.getDef(Name);
3142   if (!N || !N->isSubClassOf("SDNode"))
3143     PrintFatalError("Error getting SDNode '" + Name + "'!");
3144 
3145   return N;
3146 }
3147 
3148 // Parse all of the SDNode definitions for the target, populating SDNodes.
3149 void CodeGenDAGPatterns::ParseNodeInfo() {
3150   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3151   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3152 
3153   while (!Nodes.empty()) {
3154     Record *R = Nodes.back();
3155     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3156     Nodes.pop_back();
3157   }
3158 
3159   // Get the builtin intrinsic nodes.
3160   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3161   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3162   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3163 }
3164 
3165 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3166 /// map, and emit them to the file as functions.
3167 void CodeGenDAGPatterns::ParseNodeTransforms() {
3168   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3169   while (!Xforms.empty()) {
3170     Record *XFormNode = Xforms.back();
3171     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3172     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3173     SDNodeXForms.insert(
3174         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3175 
3176     Xforms.pop_back();
3177   }
3178 }
3179 
3180 void CodeGenDAGPatterns::ParseComplexPatterns() {
3181   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3182   while (!AMs.empty()) {
3183     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3184     AMs.pop_back();
3185   }
3186 }
3187 
3188 
3189 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3190 /// file, building up the PatternFragments map.  After we've collected them all,
3191 /// inline fragments together as necessary, so that there are no references left
3192 /// inside a pattern fragment to a pattern fragment.
3193 ///
3194 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3195   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3196 
3197   // First step, parse all of the fragments.
3198   for (Record *Frag : Fragments) {
3199     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3200       continue;
3201 
3202     ListInit *LI = Frag->getValueAsListInit("Fragments");
3203     TreePattern *P =
3204         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3205              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3206              *this)).get();
3207 
3208     // Validate the argument list, converting it to set, to discard duplicates.
3209     std::vector<std::string> &Args = P->getArgList();
3210     // Copy the args so we can take StringRefs to them.
3211     auto ArgsCopy = Args;
3212     SmallDenseSet<StringRef, 4> OperandsSet;
3213     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3214 
3215     if (OperandsSet.count(""))
3216       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3217 
3218     // Parse the operands list.
3219     DagInit *OpsList = Frag->getValueAsDag("Operands");
3220     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3221     // Special cases: ops == outs == ins. Different names are used to
3222     // improve readability.
3223     if (!OpsOp ||
3224         (OpsOp->getDef()->getName() != "ops" &&
3225          OpsOp->getDef()->getName() != "outs" &&
3226          OpsOp->getDef()->getName() != "ins"))
3227       P->error("Operands list should start with '(ops ... '!");
3228 
3229     // Copy over the arguments.
3230     Args.clear();
3231     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3232       if (!isa<DefInit>(OpsList->getArg(j)) ||
3233           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3234         P->error("Operands list should all be 'node' values.");
3235       if (!OpsList->getArgName(j))
3236         P->error("Operands list should have names for each operand!");
3237       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3238       if (!OperandsSet.count(ArgNameStr))
3239         P->error("'" + ArgNameStr +
3240                  "' does not occur in pattern or was multiply specified!");
3241       OperandsSet.erase(ArgNameStr);
3242       Args.push_back(std::string(ArgNameStr));
3243     }
3244 
3245     if (!OperandsSet.empty())
3246       P->error("Operands list does not contain an entry for operand '" +
3247                *OperandsSet.begin() + "'!");
3248 
3249     // If there is a node transformation corresponding to this, keep track of
3250     // it.
3251     Record *Transform = Frag->getValueAsDef("OperandTransform");
3252     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3253       for (const auto &T : P->getTrees())
3254         T->setTransformFn(Transform);
3255   }
3256 
3257   // Now that we've parsed all of the tree fragments, do a closure on them so
3258   // that there are not references to PatFrags left inside of them.
3259   for (Record *Frag : Fragments) {
3260     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3261       continue;
3262 
3263     TreePattern &ThePat = *PatternFragments[Frag];
3264     ThePat.InlinePatternFragments();
3265 
3266     // Infer as many types as possible.  Don't worry about it if we don't infer
3267     // all of them, some may depend on the inputs of the pattern.  Also, don't
3268     // validate type sets; validation may cause spurious failures e.g. if a
3269     // fragment needs floating-point types but the current target does not have
3270     // any (this is only an error if that fragment is ever used!).
3271     {
3272       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3273       ThePat.InferAllTypes();
3274       ThePat.resetError();
3275     }
3276 
3277     // If debugging, print out the pattern fragment result.
3278     LLVM_DEBUG(ThePat.dump());
3279   }
3280 }
3281 
3282 void CodeGenDAGPatterns::ParseDefaultOperands() {
3283   std::vector<Record*> DefaultOps;
3284   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3285 
3286   // Find some SDNode.
3287   assert(!SDNodes.empty() && "No SDNodes parsed?");
3288   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3289 
3290   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3291     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3292 
3293     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3294     // SomeSDnode so that we can parse this.
3295     std::vector<std::pair<Init*, StringInit*> > Ops;
3296     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3297       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3298                                    DefaultInfo->getArgName(op)));
3299     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3300 
3301     // Create a TreePattern to parse this.
3302     TreePattern P(DefaultOps[i], DI, false, *this);
3303     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3304 
3305     // Copy the operands over into a DAGDefaultOperand.
3306     DAGDefaultOperand DefaultOpInfo;
3307 
3308     const TreePatternNodePtr &T = P.getTree(0);
3309     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3310       TreePatternNodePtr TPN = T->getChildShared(op);
3311       while (TPN->ApplyTypeConstraints(P, false))
3312         /* Resolve all types */;
3313 
3314       if (TPN->ContainsUnresolvedType(P)) {
3315         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3316                         DefaultOps[i]->getName() +
3317                         "' doesn't have a concrete type!");
3318       }
3319       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3320     }
3321 
3322     // Insert it into the DefaultOperands map so we can find it later.
3323     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3324   }
3325 }
3326 
3327 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3328 /// instruction input.  Return true if this is a real use.
3329 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3330                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3331   // No name -> not interesting.
3332   if (Pat->getName().empty()) {
3333     if (Pat->isLeaf()) {
3334       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3335       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3336                  DI->getDef()->isSubClassOf("RegisterOperand")))
3337         I.error("Input " + DI->getDef()->getName() + " must be named!");
3338     }
3339     return false;
3340   }
3341 
3342   Record *Rec;
3343   if (Pat->isLeaf()) {
3344     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3345     if (!DI)
3346       I.error("Input $" + Pat->getName() + " must be an identifier!");
3347     Rec = DI->getDef();
3348   } else {
3349     Rec = Pat->getOperator();
3350   }
3351 
3352   // SRCVALUE nodes are ignored.
3353   if (Rec->getName() == "srcvalue")
3354     return false;
3355 
3356   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3357   if (!Slot) {
3358     Slot = Pat;
3359     return true;
3360   }
3361   Record *SlotRec;
3362   if (Slot->isLeaf()) {
3363     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3364   } else {
3365     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3366     SlotRec = Slot->getOperator();
3367   }
3368 
3369   // Ensure that the inputs agree if we've already seen this input.
3370   if (Rec != SlotRec)
3371     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3372   // Ensure that the types can agree as well.
3373   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3374   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3375   if (Slot->getExtTypes() != Pat->getExtTypes())
3376     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3377   return true;
3378 }
3379 
3380 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3381 /// part of "I", the instruction), computing the set of inputs and outputs of
3382 /// the pattern.  Report errors if we see anything naughty.
3383 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3384     TreePattern &I, TreePatternNodePtr Pat,
3385     std::map<std::string, TreePatternNodePtr> &InstInputs,
3386     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3387         &InstResults,
3388     std::vector<Record *> &InstImpResults) {
3389 
3390   // The instruction pattern still has unresolved fragments.  For *named*
3391   // nodes we must resolve those here.  This may not result in multiple
3392   // alternatives.
3393   if (!Pat->getName().empty()) {
3394     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3395     SrcPattern.InlinePatternFragments();
3396     SrcPattern.InferAllTypes();
3397     Pat = SrcPattern.getOnlyTree();
3398   }
3399 
3400   if (Pat->isLeaf()) {
3401     bool isUse = HandleUse(I, Pat, InstInputs);
3402     if (!isUse && Pat->getTransformFn())
3403       I.error("Cannot specify a transform function for a non-input value!");
3404     return;
3405   }
3406 
3407   if (Pat->getOperator()->getName() == "implicit") {
3408     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3409       TreePatternNode *Dest = Pat->getChild(i);
3410       if (!Dest->isLeaf())
3411         I.error("implicitly defined value should be a register!");
3412 
3413       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3414       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3415         I.error("implicitly defined value should be a register!");
3416       InstImpResults.push_back(Val->getDef());
3417     }
3418     return;
3419   }
3420 
3421   if (Pat->getOperator()->getName() != "set") {
3422     // If this is not a set, verify that the children nodes are not void typed,
3423     // and recurse.
3424     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3425       if (Pat->getChild(i)->getNumTypes() == 0)
3426         I.error("Cannot have void nodes inside of patterns!");
3427       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3428                                   InstResults, InstImpResults);
3429     }
3430 
3431     // If this is a non-leaf node with no children, treat it basically as if
3432     // it were a leaf.  This handles nodes like (imm).
3433     bool isUse = HandleUse(I, Pat, InstInputs);
3434 
3435     if (!isUse && Pat->getTransformFn())
3436       I.error("Cannot specify a transform function for a non-input value!");
3437     return;
3438   }
3439 
3440   // Otherwise, this is a set, validate and collect instruction results.
3441   if (Pat->getNumChildren() == 0)
3442     I.error("set requires operands!");
3443 
3444   if (Pat->getTransformFn())
3445     I.error("Cannot specify a transform function on a set node!");
3446 
3447   // Check the set destinations.
3448   unsigned NumDests = Pat->getNumChildren()-1;
3449   for (unsigned i = 0; i != NumDests; ++i) {
3450     TreePatternNodePtr Dest = Pat->getChildShared(i);
3451     // For set destinations we also must resolve fragments here.
3452     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3453     DestPattern.InlinePatternFragments();
3454     DestPattern.InferAllTypes();
3455     Dest = DestPattern.getOnlyTree();
3456 
3457     if (!Dest->isLeaf())
3458       I.error("set destination should be a register!");
3459 
3460     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3461     if (!Val) {
3462       I.error("set destination should be a register!");
3463       continue;
3464     }
3465 
3466     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3467         Val->getDef()->isSubClassOf("ValueType") ||
3468         Val->getDef()->isSubClassOf("RegisterOperand") ||
3469         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3470       if (Dest->getName().empty())
3471         I.error("set destination must have a name!");
3472       if (InstResults.count(Dest->getName()))
3473         I.error("cannot set '" + Dest->getName() + "' multiple times");
3474       InstResults[Dest->getName()] = Dest;
3475     } else if (Val->getDef()->isSubClassOf("Register")) {
3476       InstImpResults.push_back(Val->getDef());
3477     } else {
3478       I.error("set destination should be a register!");
3479     }
3480   }
3481 
3482   // Verify and collect info from the computation.
3483   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3484                               InstResults, InstImpResults);
3485 }
3486 
3487 //===----------------------------------------------------------------------===//
3488 // Instruction Analysis
3489 //===----------------------------------------------------------------------===//
3490 
3491 class InstAnalyzer {
3492   const CodeGenDAGPatterns &CDP;
3493 public:
3494   bool hasSideEffects;
3495   bool mayStore;
3496   bool mayLoad;
3497   bool isBitcast;
3498   bool isVariadic;
3499   bool hasChain;
3500 
3501   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3502     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3503       isBitcast(false), isVariadic(false), hasChain(false) {}
3504 
3505   void Analyze(const PatternToMatch &Pat) {
3506     const TreePatternNode *N = Pat.getSrcPattern();
3507     AnalyzeNode(N);
3508     // These properties are detected only on the root node.
3509     isBitcast = IsNodeBitcast(N);
3510   }
3511 
3512 private:
3513   bool IsNodeBitcast(const TreePatternNode *N) const {
3514     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3515       return false;
3516 
3517     if (N->isLeaf())
3518       return false;
3519     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3520       return false;
3521 
3522     if (N->getOperator()->isSubClassOf("ComplexPattern"))
3523       return false;
3524 
3525     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3526     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3527       return false;
3528     return OpInfo.getEnumName() == "ISD::BITCAST";
3529   }
3530 
3531 public:
3532   void AnalyzeNode(const TreePatternNode *N) {
3533     if (N->isLeaf()) {
3534       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3535         Record *LeafRec = DI->getDef();
3536         // Handle ComplexPattern leaves.
3537         if (LeafRec->isSubClassOf("ComplexPattern")) {
3538           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3539           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3540           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3541           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3542         }
3543       }
3544       return;
3545     }
3546 
3547     // Analyze children.
3548     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3549       AnalyzeNode(N->getChild(i));
3550 
3551     // Notice properties of the node.
3552     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3553     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3554     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3555     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3556     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3557 
3558     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3559       // If this is an intrinsic, analyze it.
3560       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3561         mayLoad = true;// These may load memory.
3562 
3563       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3564         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3565 
3566       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3567           IntInfo->hasSideEffects)
3568         // ReadWriteMem intrinsics can have other strange effects.
3569         hasSideEffects = true;
3570     }
3571   }
3572 
3573 };
3574 
3575 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3576                              const InstAnalyzer &PatInfo,
3577                              Record *PatDef) {
3578   bool Error = false;
3579 
3580   // Remember where InstInfo got its flags.
3581   if (InstInfo.hasUndefFlags())
3582       InstInfo.InferredFrom = PatDef;
3583 
3584   // Check explicitly set flags for consistency.
3585   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3586       !InstInfo.hasSideEffects_Unset) {
3587     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3588     // the pattern has no side effects. That could be useful for div/rem
3589     // instructions that may trap.
3590     if (!InstInfo.hasSideEffects) {
3591       Error = true;
3592       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3593                  Twine(InstInfo.hasSideEffects));
3594     }
3595   }
3596 
3597   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3598     Error = true;
3599     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3600                Twine(InstInfo.mayStore));
3601   }
3602 
3603   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3604     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3605     // Some targets translate immediates to loads.
3606     if (!InstInfo.mayLoad) {
3607       Error = true;
3608       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3609                  Twine(InstInfo.mayLoad));
3610     }
3611   }
3612 
3613   // Transfer inferred flags.
3614   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3615   InstInfo.mayStore |= PatInfo.mayStore;
3616   InstInfo.mayLoad |= PatInfo.mayLoad;
3617 
3618   // These flags are silently added without any verification.
3619   // FIXME: To match historical behavior of TableGen, for now add those flags
3620   // only when we're inferring from the primary instruction pattern.
3621   if (PatDef->isSubClassOf("Instruction")) {
3622     InstInfo.isBitcast |= PatInfo.isBitcast;
3623     InstInfo.hasChain |= PatInfo.hasChain;
3624     InstInfo.hasChain_Inferred = true;
3625   }
3626 
3627   // Don't infer isVariadic. This flag means something different on SDNodes and
3628   // instructions. For example, a CALL SDNode is variadic because it has the
3629   // call arguments as operands, but a CALL instruction is not variadic - it
3630   // has argument registers as implicit, not explicit uses.
3631 
3632   return Error;
3633 }
3634 
3635 /// hasNullFragReference - Return true if the DAG has any reference to the
3636 /// null_frag operator.
3637 static bool hasNullFragReference(DagInit *DI) {
3638   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3639   if (!OpDef) return false;
3640   Record *Operator = OpDef->getDef();
3641 
3642   // If this is the null fragment, return true.
3643   if (Operator->getName() == "null_frag") return true;
3644   // If any of the arguments reference the null fragment, return true.
3645   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3646     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3647       if (Arg->getDef()->getName() == "null_frag")
3648         return true;
3649     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3650     if (Arg && hasNullFragReference(Arg))
3651       return true;
3652   }
3653 
3654   return false;
3655 }
3656 
3657 /// hasNullFragReference - Return true if any DAG in the list references
3658 /// the null_frag operator.
3659 static bool hasNullFragReference(ListInit *LI) {
3660   for (Init *I : LI->getValues()) {
3661     DagInit *DI = dyn_cast<DagInit>(I);
3662     assert(DI && "non-dag in an instruction Pattern list?!");
3663     if (hasNullFragReference(DI))
3664       return true;
3665   }
3666   return false;
3667 }
3668 
3669 /// Get all the instructions in a tree.
3670 static void
3671 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3672   if (Tree->isLeaf())
3673     return;
3674   if (Tree->getOperator()->isSubClassOf("Instruction"))
3675     Instrs.push_back(Tree->getOperator());
3676   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3677     getInstructionsInTree(Tree->getChild(i), Instrs);
3678 }
3679 
3680 /// Check the class of a pattern leaf node against the instruction operand it
3681 /// represents.
3682 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3683                               Record *Leaf) {
3684   if (OI.Rec == Leaf)
3685     return true;
3686 
3687   // Allow direct value types to be used in instruction set patterns.
3688   // The type will be checked later.
3689   if (Leaf->isSubClassOf("ValueType"))
3690     return true;
3691 
3692   // Patterns can also be ComplexPattern instances.
3693   if (Leaf->isSubClassOf("ComplexPattern"))
3694     return true;
3695 
3696   return false;
3697 }
3698 
3699 void CodeGenDAGPatterns::parseInstructionPattern(
3700     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3701 
3702   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3703 
3704   // Parse the instruction.
3705   TreePattern I(CGI.TheDef, Pat, true, *this);
3706 
3707   // InstInputs - Keep track of all of the inputs of the instruction, along
3708   // with the record they are declared as.
3709   std::map<std::string, TreePatternNodePtr> InstInputs;
3710 
3711   // InstResults - Keep track of all the virtual registers that are 'set'
3712   // in the instruction, including what reg class they are.
3713   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3714       InstResults;
3715 
3716   std::vector<Record*> InstImpResults;
3717 
3718   // Verify that the top-level forms in the instruction are of void type, and
3719   // fill in the InstResults map.
3720   SmallString<32> TypesString;
3721   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3722     TypesString.clear();
3723     TreePatternNodePtr Pat = I.getTree(j);
3724     if (Pat->getNumTypes() != 0) {
3725       raw_svector_ostream OS(TypesString);
3726       ListSeparator LS;
3727       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3728         OS << LS;
3729         Pat->getExtType(k).writeToStream(OS);
3730       }
3731       I.error("Top-level forms in instruction pattern should have"
3732                " void types, has types " +
3733                OS.str());
3734     }
3735 
3736     // Find inputs and outputs, and verify the structure of the uses/defs.
3737     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3738                                 InstImpResults);
3739   }
3740 
3741   // Now that we have inputs and outputs of the pattern, inspect the operands
3742   // list for the instruction.  This determines the order that operands are
3743   // added to the machine instruction the node corresponds to.
3744   unsigned NumResults = InstResults.size();
3745 
3746   // Parse the operands list from the (ops) list, validating it.
3747   assert(I.getArgList().empty() && "Args list should still be empty here!");
3748 
3749   // Check that all of the results occur first in the list.
3750   std::vector<Record*> Results;
3751   std::vector<unsigned> ResultIndices;
3752   SmallVector<TreePatternNodePtr, 2> ResNodes;
3753   for (unsigned i = 0; i != NumResults; ++i) {
3754     if (i == CGI.Operands.size()) {
3755       const std::string &OpName =
3756           llvm::find_if(
3757               InstResults,
3758               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3759                 return P.second;
3760               })
3761               ->first;
3762 
3763       I.error("'" + OpName + "' set but does not appear in operand list!");
3764     }
3765 
3766     const std::string &OpName = CGI.Operands[i].Name;
3767 
3768     // Check that it exists in InstResults.
3769     auto InstResultIter = InstResults.find(OpName);
3770     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3771       I.error("Operand $" + OpName + " does not exist in operand list!");
3772 
3773     TreePatternNodePtr RNode = InstResultIter->second;
3774     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3775     ResNodes.push_back(std::move(RNode));
3776     if (!R)
3777       I.error("Operand $" + OpName + " should be a set destination: all "
3778                "outputs must occur before inputs in operand list!");
3779 
3780     if (!checkOperandClass(CGI.Operands[i], R))
3781       I.error("Operand $" + OpName + " class mismatch!");
3782 
3783     // Remember the return type.
3784     Results.push_back(CGI.Operands[i].Rec);
3785 
3786     // Remember the result index.
3787     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3788 
3789     // Okay, this one checks out.
3790     InstResultIter->second = nullptr;
3791   }
3792 
3793   // Loop over the inputs next.
3794   std::vector<TreePatternNodePtr> ResultNodeOperands;
3795   std::vector<Record*> Operands;
3796   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3797     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3798     const std::string &OpName = Op.Name;
3799     if (OpName.empty())
3800       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3801 
3802     if (!InstInputs.count(OpName)) {
3803       // If this is an operand with a DefaultOps set filled in, we can ignore
3804       // this.  When we codegen it, we will do so as always executed.
3805       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3806         // Does it have a non-empty DefaultOps field?  If so, ignore this
3807         // operand.
3808         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3809           continue;
3810       }
3811       I.error("Operand $" + OpName +
3812                " does not appear in the instruction pattern");
3813     }
3814     TreePatternNodePtr InVal = InstInputs[OpName];
3815     InstInputs.erase(OpName);   // It occurred, remove from map.
3816 
3817     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3818       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3819       if (!checkOperandClass(Op, InRec))
3820         I.error("Operand $" + OpName + "'s register class disagrees"
3821                  " between the operand and pattern");
3822     }
3823     Operands.push_back(Op.Rec);
3824 
3825     // Construct the result for the dest-pattern operand list.
3826     TreePatternNodePtr OpNode = InVal->clone();
3827 
3828     // No predicate is useful on the result.
3829     OpNode->clearPredicateCalls();
3830 
3831     // Promote the xform function to be an explicit node if set.
3832     if (Record *Xform = OpNode->getTransformFn()) {
3833       OpNode->setTransformFn(nullptr);
3834       std::vector<TreePatternNodePtr> Children;
3835       Children.push_back(OpNode);
3836       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3837                                                  OpNode->getNumTypes());
3838     }
3839 
3840     ResultNodeOperands.push_back(std::move(OpNode));
3841   }
3842 
3843   if (!InstInputs.empty())
3844     I.error("Input operand $" + InstInputs.begin()->first +
3845             " occurs in pattern but not in operands list!");
3846 
3847   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3848       I.getRecord(), std::move(ResultNodeOperands),
3849       GetNumNodeResults(I.getRecord(), *this));
3850   // Copy fully inferred output node types to instruction result pattern.
3851   for (unsigned i = 0; i != NumResults; ++i) {
3852     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3853     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3854     ResultPattern->setResultIndex(i, ResultIndices[i]);
3855   }
3856 
3857   // FIXME: Assume only the first tree is the pattern. The others are clobber
3858   // nodes.
3859   TreePatternNodePtr Pattern = I.getTree(0);
3860   TreePatternNodePtr SrcPattern;
3861   if (Pattern->getOperator()->getName() == "set") {
3862     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3863   } else{
3864     // Not a set (store or something?)
3865     SrcPattern = Pattern;
3866   }
3867 
3868   // Create and insert the instruction.
3869   // FIXME: InstImpResults should not be part of DAGInstruction.
3870   Record *R = I.getRecord();
3871   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3872                    std::forward_as_tuple(Results, Operands, InstImpResults,
3873                                          SrcPattern, ResultPattern));
3874 
3875   LLVM_DEBUG(I.dump());
3876 }
3877 
3878 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3879 /// any fragments involved.  This populates the Instructions list with fully
3880 /// resolved instructions.
3881 void CodeGenDAGPatterns::ParseInstructions() {
3882   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3883 
3884   for (Record *Instr : Instrs) {
3885     ListInit *LI = nullptr;
3886 
3887     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3888       LI = Instr->getValueAsListInit("Pattern");
3889 
3890     // If there is no pattern, only collect minimal information about the
3891     // instruction for its operand list.  We have to assume that there is one
3892     // result, as we have no detailed info. A pattern which references the
3893     // null_frag operator is as-if no pattern were specified. Normally this
3894     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3895     // null_frag.
3896     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3897       std::vector<Record*> Results;
3898       std::vector<Record*> Operands;
3899 
3900       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3901 
3902       if (InstInfo.Operands.size() != 0) {
3903         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3904           Results.push_back(InstInfo.Operands[j].Rec);
3905 
3906         // The rest are inputs.
3907         for (unsigned j = InstInfo.Operands.NumDefs,
3908                e = InstInfo.Operands.size(); j < e; ++j)
3909           Operands.push_back(InstInfo.Operands[j].Rec);
3910       }
3911 
3912       // Create and insert the instruction.
3913       std::vector<Record*> ImpResults;
3914       Instructions.insert(std::make_pair(Instr,
3915                             DAGInstruction(Results, Operands, ImpResults)));
3916       continue;  // no pattern.
3917     }
3918 
3919     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3920     parseInstructionPattern(CGI, LI, Instructions);
3921   }
3922 
3923   // If we can, convert the instructions to be patterns that are matched!
3924   for (auto &Entry : Instructions) {
3925     Record *Instr = Entry.first;
3926     DAGInstruction &TheInst = Entry.second;
3927     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3928     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3929 
3930     if (SrcPattern && ResultPattern) {
3931       TreePattern Pattern(Instr, SrcPattern, true, *this);
3932       TreePattern Result(Instr, ResultPattern, false, *this);
3933       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3934     }
3935   }
3936 }
3937 
3938 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3939 
3940 static void FindNames(TreePatternNode *P,
3941                       std::map<std::string, NameRecord> &Names,
3942                       TreePattern *PatternTop) {
3943   if (!P->getName().empty()) {
3944     NameRecord &Rec = Names[P->getName()];
3945     // If this is the first instance of the name, remember the node.
3946     if (Rec.second++ == 0)
3947       Rec.first = P;
3948     else if (Rec.first->getExtTypes() != P->getExtTypes())
3949       PatternTop->error("repetition of value: $" + P->getName() +
3950                         " where different uses have different types!");
3951   }
3952 
3953   if (!P->isLeaf()) {
3954     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3955       FindNames(P->getChild(i), Names, PatternTop);
3956   }
3957 }
3958 
3959 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3960                                            PatternToMatch &&PTM) {
3961   // Do some sanity checking on the pattern we're about to match.
3962   std::string Reason;
3963   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3964     PrintWarning(Pattern->getRecord()->getLoc(),
3965       Twine("Pattern can never match: ") + Reason);
3966     return;
3967   }
3968 
3969   // If the source pattern's root is a complex pattern, that complex pattern
3970   // must specify the nodes it can potentially match.
3971   if (const ComplexPattern *CP =
3972         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3973     if (CP->getRootNodes().empty())
3974       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3975                      " could match");
3976 
3977 
3978   // Find all of the named values in the input and output, ensure they have the
3979   // same type.
3980   std::map<std::string, NameRecord> SrcNames, DstNames;
3981   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3982   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3983 
3984   // Scan all of the named values in the destination pattern, rejecting them if
3985   // they don't exist in the input pattern.
3986   for (const auto &Entry : DstNames) {
3987     if (SrcNames[Entry.first].first == nullptr)
3988       Pattern->error("Pattern has input without matching name in output: $" +
3989                      Entry.first);
3990   }
3991 
3992   // Scan all of the named values in the source pattern, rejecting them if the
3993   // name isn't used in the dest, and isn't used to tie two values together.
3994   for (const auto &Entry : SrcNames)
3995     if (DstNames[Entry.first].first == nullptr &&
3996         SrcNames[Entry.first].second == 1)
3997       Pattern->error("Pattern has dead named input: $" + Entry.first);
3998 
3999   PatternsToMatch.push_back(std::move(PTM));
4000 }
4001 
4002 void CodeGenDAGPatterns::InferInstructionFlags() {
4003   ArrayRef<const CodeGenInstruction*> Instructions =
4004     Target.getInstructionsByEnumValue();
4005 
4006   unsigned Errors = 0;
4007 
4008   // Try to infer flags from all patterns in PatternToMatch.  These include
4009   // both the primary instruction patterns (which always come first) and
4010   // patterns defined outside the instruction.
4011   for (const PatternToMatch &PTM : ptms()) {
4012     // We can only infer from single-instruction patterns, otherwise we won't
4013     // know which instruction should get the flags.
4014     SmallVector<Record*, 8> PatInstrs;
4015     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4016     if (PatInstrs.size() != 1)
4017       continue;
4018 
4019     // Get the single instruction.
4020     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4021 
4022     // Only infer properties from the first pattern. We'll verify the others.
4023     if (InstInfo.InferredFrom)
4024       continue;
4025 
4026     InstAnalyzer PatInfo(*this);
4027     PatInfo.Analyze(PTM);
4028     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4029   }
4030 
4031   if (Errors)
4032     PrintFatalError("pattern conflicts");
4033 
4034   // If requested by the target, guess any undefined properties.
4035   if (Target.guessInstructionProperties()) {
4036     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4037       CodeGenInstruction *InstInfo =
4038         const_cast<CodeGenInstruction *>(Instructions[i]);
4039       if (InstInfo->InferredFrom)
4040         continue;
4041       // The mayLoad and mayStore flags default to false.
4042       // Conservatively assume hasSideEffects if it wasn't explicit.
4043       if (InstInfo->hasSideEffects_Unset)
4044         InstInfo->hasSideEffects = true;
4045     }
4046     return;
4047   }
4048 
4049   // Complain about any flags that are still undefined.
4050   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4051     CodeGenInstruction *InstInfo =
4052       const_cast<CodeGenInstruction *>(Instructions[i]);
4053     if (InstInfo->InferredFrom)
4054       continue;
4055     if (InstInfo->hasSideEffects_Unset)
4056       PrintError(InstInfo->TheDef->getLoc(),
4057                  "Can't infer hasSideEffects from patterns");
4058     if (InstInfo->mayStore_Unset)
4059       PrintError(InstInfo->TheDef->getLoc(),
4060                  "Can't infer mayStore from patterns");
4061     if (InstInfo->mayLoad_Unset)
4062       PrintError(InstInfo->TheDef->getLoc(),
4063                  "Can't infer mayLoad from patterns");
4064   }
4065 }
4066 
4067 
4068 /// Verify instruction flags against pattern node properties.
4069 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4070   unsigned Errors = 0;
4071   for (const PatternToMatch &PTM : ptms()) {
4072     SmallVector<Record*, 8> Instrs;
4073     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4074     if (Instrs.empty())
4075       continue;
4076 
4077     // Count the number of instructions with each flag set.
4078     unsigned NumSideEffects = 0;
4079     unsigned NumStores = 0;
4080     unsigned NumLoads = 0;
4081     for (const Record *Instr : Instrs) {
4082       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4083       NumSideEffects += InstInfo.hasSideEffects;
4084       NumStores += InstInfo.mayStore;
4085       NumLoads += InstInfo.mayLoad;
4086     }
4087 
4088     // Analyze the source pattern.
4089     InstAnalyzer PatInfo(*this);
4090     PatInfo.Analyze(PTM);
4091 
4092     // Collect error messages.
4093     SmallVector<std::string, 4> Msgs;
4094 
4095     // Check for missing flags in the output.
4096     // Permit extra flags for now at least.
4097     if (PatInfo.hasSideEffects && !NumSideEffects)
4098       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4099 
4100     // Don't verify store flags on instructions with side effects. At least for
4101     // intrinsics, side effects implies mayStore.
4102     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4103       Msgs.push_back("pattern may store, but mayStore isn't set");
4104 
4105     // Similarly, mayStore implies mayLoad on intrinsics.
4106     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4107       Msgs.push_back("pattern may load, but mayLoad isn't set");
4108 
4109     // Print error messages.
4110     if (Msgs.empty())
4111       continue;
4112     ++Errors;
4113 
4114     for (const std::string &Msg : Msgs)
4115       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4116                  (Instrs.size() == 1 ?
4117                   "instruction" : "output instructions"));
4118     // Provide the location of the relevant instruction definitions.
4119     for (const Record *Instr : Instrs) {
4120       if (Instr != PTM.getSrcRecord())
4121         PrintError(Instr->getLoc(), "defined here");
4122       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4123       if (InstInfo.InferredFrom &&
4124           InstInfo.InferredFrom != InstInfo.TheDef &&
4125           InstInfo.InferredFrom != PTM.getSrcRecord())
4126         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4127     }
4128   }
4129   if (Errors)
4130     PrintFatalError("Errors in DAG patterns");
4131 }
4132 
4133 /// Given a pattern result with an unresolved type, see if we can find one
4134 /// instruction with an unresolved result type.  Force this result type to an
4135 /// arbitrary element if it's possible types to converge results.
4136 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4137   if (N->isLeaf())
4138     return false;
4139 
4140   // Analyze children.
4141   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4142     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4143       return true;
4144 
4145   if (!N->getOperator()->isSubClassOf("Instruction"))
4146     return false;
4147 
4148   // If this type is already concrete or completely unknown we can't do
4149   // anything.
4150   TypeInfer &TI = TP.getInfer();
4151   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4152     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4153       continue;
4154 
4155     // Otherwise, force its type to an arbitrary choice.
4156     if (TI.forceArbitrary(N->getExtType(i)))
4157       return true;
4158   }
4159 
4160   return false;
4161 }
4162 
4163 // Promote xform function to be an explicit node wherever set.
4164 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4165   if (Record *Xform = N->getTransformFn()) {
4166       N->setTransformFn(nullptr);
4167       std::vector<TreePatternNodePtr> Children;
4168       Children.push_back(PromoteXForms(N));
4169       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4170                                                N->getNumTypes());
4171   }
4172 
4173   if (!N->isLeaf())
4174     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4175       TreePatternNodePtr Child = N->getChildShared(i);
4176       N->setChild(i, PromoteXForms(Child));
4177     }
4178   return N;
4179 }
4180 
4181 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4182        TreePattern &Pattern, TreePattern &Result,
4183        const std::vector<Record *> &InstImpResults) {
4184 
4185   // Inline pattern fragments and expand multiple alternatives.
4186   Pattern.InlinePatternFragments();
4187   Result.InlinePatternFragments();
4188 
4189   if (Result.getNumTrees() != 1)
4190     Result.error("Cannot use multi-alternative fragments in result pattern!");
4191 
4192   // Infer types.
4193   bool IterateInference;
4194   bool InferredAllPatternTypes, InferredAllResultTypes;
4195   do {
4196     // Infer as many types as possible.  If we cannot infer all of them, we
4197     // can never do anything with this pattern: report it to the user.
4198     InferredAllPatternTypes =
4199         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4200 
4201     // Infer as many types as possible.  If we cannot infer all of them, we
4202     // can never do anything with this pattern: report it to the user.
4203     InferredAllResultTypes =
4204         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4205 
4206     IterateInference = false;
4207 
4208     // Apply the type of the result to the source pattern.  This helps us
4209     // resolve cases where the input type is known to be a pointer type (which
4210     // is considered resolved), but the result knows it needs to be 32- or
4211     // 64-bits.  Infer the other way for good measure.
4212     for (const auto &T : Pattern.getTrees())
4213       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4214                                         T->getNumTypes());
4215          i != e; ++i) {
4216         IterateInference |= T->UpdateNodeType(
4217             i, Result.getOnlyTree()->getExtType(i), Result);
4218         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4219             i, T->getExtType(i), Result);
4220       }
4221 
4222     // If our iteration has converged and the input pattern's types are fully
4223     // resolved but the result pattern is not fully resolved, we may have a
4224     // situation where we have two instructions in the result pattern and
4225     // the instructions require a common register class, but don't care about
4226     // what actual MVT is used.  This is actually a bug in our modelling:
4227     // output patterns should have register classes, not MVTs.
4228     //
4229     // In any case, to handle this, we just go through and disambiguate some
4230     // arbitrary types to the result pattern's nodes.
4231     if (!IterateInference && InferredAllPatternTypes &&
4232         !InferredAllResultTypes)
4233       IterateInference =
4234           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4235   } while (IterateInference);
4236 
4237   // Verify that we inferred enough types that we can do something with the
4238   // pattern and result.  If these fire the user has to add type casts.
4239   if (!InferredAllPatternTypes)
4240     Pattern.error("Could not infer all types in pattern!");
4241   if (!InferredAllResultTypes) {
4242     Pattern.dump();
4243     Result.error("Could not infer all types in pattern result!");
4244   }
4245 
4246   // Promote xform function to be an explicit node wherever set.
4247   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4248 
4249   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4250   Temp.InferAllTypes();
4251 
4252   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4253   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4254 
4255   if (PatternRewriter)
4256     PatternRewriter(&Pattern);
4257 
4258   // A pattern may end up with an "impossible" type, i.e. a situation
4259   // where all types have been eliminated for some node in this pattern.
4260   // This could occur for intrinsics that only make sense for a specific
4261   // value type, and use a specific register class. If, for some mode,
4262   // that register class does not accept that type, the type inference
4263   // will lead to a contradiction, which is not an error however, but
4264   // a sign that this pattern will simply never match.
4265   if (Temp.getOnlyTree()->hasPossibleType())
4266     for (const auto &T : Pattern.getTrees())
4267       if (T->hasPossibleType())
4268         AddPatternToMatch(&Pattern,
4269                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4270                                          InstImpResults, Complexity,
4271                                          TheDef->getID()));
4272 }
4273 
4274 void CodeGenDAGPatterns::ParsePatterns() {
4275   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4276 
4277   for (Record *CurPattern : Patterns) {
4278     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4279 
4280     // If the pattern references the null_frag, there's nothing to do.
4281     if (hasNullFragReference(Tree))
4282       continue;
4283 
4284     TreePattern Pattern(CurPattern, Tree, true, *this);
4285 
4286     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4287     if (LI->empty()) continue;  // no pattern.
4288 
4289     // Parse the instruction.
4290     TreePattern Result(CurPattern, LI, false, *this);
4291 
4292     if (Result.getNumTrees() != 1)
4293       Result.error("Cannot handle instructions producing instructions "
4294                    "with temporaries yet!");
4295 
4296     // Validate that the input pattern is correct.
4297     std::map<std::string, TreePatternNodePtr> InstInputs;
4298     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4299         InstResults;
4300     std::vector<Record*> InstImpResults;
4301     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4302       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4303                                   InstResults, InstImpResults);
4304 
4305     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4306   }
4307 }
4308 
4309 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4310   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4311     for (const auto &I : VTS)
4312       Modes.insert(I.first);
4313 
4314   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4315     collectModes(Modes, N->getChild(i));
4316 }
4317 
4318 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4319   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4320   std::vector<PatternToMatch> Copy;
4321   PatternsToMatch.swap(Copy);
4322 
4323   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4324                               StringRef Check) {
4325     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4326     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4327     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4328       return;
4329     }
4330 
4331     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4332                                  std::move(NewSrc), std::move(NewDst),
4333                                  P.getDstRegs(), P.getAddedComplexity(),
4334                                  Record::getNewUID(), Mode, Check);
4335   };
4336 
4337   for (PatternToMatch &P : Copy) {
4338     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4339     if (P.getSrcPattern()->hasProperTypeByHwMode())
4340       SrcP = P.getSrcPatternShared();
4341     if (P.getDstPattern()->hasProperTypeByHwMode())
4342       DstP = P.getDstPatternShared();
4343     if (!SrcP && !DstP) {
4344       PatternsToMatch.push_back(P);
4345       continue;
4346     }
4347 
4348     std::set<unsigned> Modes;
4349     if (SrcP)
4350       collectModes(Modes, SrcP.get());
4351     if (DstP)
4352       collectModes(Modes, DstP.get());
4353 
4354     // The predicate for the default mode needs to be constructed for each
4355     // pattern separately.
4356     // Since not all modes must be present in each pattern, if a mode m is
4357     // absent, then there is no point in constructing a check for m. If such
4358     // a check was created, it would be equivalent to checking the default
4359     // mode, except not all modes' predicates would be a part of the checking
4360     // code. The subsequently generated check for the default mode would then
4361     // have the exact same patterns, but a different predicate code. To avoid
4362     // duplicated patterns with different predicate checks, construct the
4363     // default check as a negation of all predicates that are actually present
4364     // in the source/destination patterns.
4365     SmallString<128> DefaultCheck;
4366 
4367     for (unsigned M : Modes) {
4368       if (M == DefaultMode)
4369         continue;
4370 
4371       // Fill the map entry for this mode.
4372       const HwMode &HM = CGH.getMode(M);
4373       AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))");
4374 
4375       // Add negations of the HM's predicates to the default predicate.
4376       if (!DefaultCheck.empty())
4377         DefaultCheck += " && ";
4378       DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\"";
4379       DefaultCheck += HM.Features;
4380       DefaultCheck += "\")))";
4381     }
4382 
4383     bool HasDefault = Modes.count(DefaultMode);
4384     if (HasDefault)
4385       AppendPattern(P, DefaultMode, DefaultCheck);
4386   }
4387 }
4388 
4389 /// Dependent variable map for CodeGenDAGPattern variant generation
4390 typedef StringMap<int> DepVarMap;
4391 
4392 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4393   if (N->isLeaf()) {
4394     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4395       DepMap[N->getName()]++;
4396   } else {
4397     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4398       FindDepVarsOf(N->getChild(i), DepMap);
4399   }
4400 }
4401 
4402 /// Find dependent variables within child patterns
4403 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4404   DepVarMap depcounts;
4405   FindDepVarsOf(N, depcounts);
4406   for (const auto &Pair : depcounts) {
4407     if (Pair.getValue() > 1)
4408       DepVars.insert(Pair.getKey());
4409   }
4410 }
4411 
4412 #ifndef NDEBUG
4413 /// Dump the dependent variable set:
4414 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4415   if (DepVars.empty()) {
4416     LLVM_DEBUG(errs() << "<empty set>");
4417   } else {
4418     LLVM_DEBUG(errs() << "[ ");
4419     for (const auto &DepVar : DepVars) {
4420       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4421     }
4422     LLVM_DEBUG(errs() << "]");
4423   }
4424 }
4425 #endif
4426 
4427 
4428 /// CombineChildVariants - Given a bunch of permutations of each child of the
4429 /// 'operator' node, put them together in all possible ways.
4430 static void CombineChildVariants(
4431     TreePatternNodePtr Orig,
4432     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4433     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4434     const MultipleUseVarSet &DepVars) {
4435   // Make sure that each operand has at least one variant to choose from.
4436   for (const auto &Variants : ChildVariants)
4437     if (Variants.empty())
4438       return;
4439 
4440   // The end result is an all-pairs construction of the resultant pattern.
4441   std::vector<unsigned> Idxs;
4442   Idxs.resize(ChildVariants.size());
4443   bool NotDone;
4444   do {
4445 #ifndef NDEBUG
4446     LLVM_DEBUG(if (!Idxs.empty()) {
4447       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4448       for (unsigned Idx : Idxs) {
4449         errs() << Idx << " ";
4450       }
4451       errs() << "]\n";
4452     });
4453 #endif
4454     // Create the variant and add it to the output list.
4455     std::vector<TreePatternNodePtr> NewChildren;
4456     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4457       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4458     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4459         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4460 
4461     // Copy over properties.
4462     R->setName(Orig->getName());
4463     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4464     R->setPredicateCalls(Orig->getPredicateCalls());
4465     R->setTransformFn(Orig->getTransformFn());
4466     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4467       R->setType(i, Orig->getExtType(i));
4468 
4469     // If this pattern cannot match, do not include it as a variant.
4470     std::string ErrString;
4471     // Scan to see if this pattern has already been emitted.  We can get
4472     // duplication due to things like commuting:
4473     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4474     // which are the same pattern.  Ignore the dups.
4475     if (R->canPatternMatch(ErrString, CDP) &&
4476         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4477           return R->isIsomorphicTo(Variant.get(), DepVars);
4478         }))
4479       OutVariants.push_back(R);
4480 
4481     // Increment indices to the next permutation by incrementing the
4482     // indices from last index backward, e.g., generate the sequence
4483     // [0, 0], [0, 1], [1, 0], [1, 1].
4484     int IdxsIdx;
4485     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4486       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4487         Idxs[IdxsIdx] = 0;
4488       else
4489         break;
4490     }
4491     NotDone = (IdxsIdx >= 0);
4492   } while (NotDone);
4493 }
4494 
4495 /// CombineChildVariants - A helper function for binary operators.
4496 ///
4497 static void CombineChildVariants(TreePatternNodePtr Orig,
4498                                  const std::vector<TreePatternNodePtr> &LHS,
4499                                  const std::vector<TreePatternNodePtr> &RHS,
4500                                  std::vector<TreePatternNodePtr> &OutVariants,
4501                                  CodeGenDAGPatterns &CDP,
4502                                  const MultipleUseVarSet &DepVars) {
4503   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4504   ChildVariants.push_back(LHS);
4505   ChildVariants.push_back(RHS);
4506   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4507 }
4508 
4509 static void
4510 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4511                                   std::vector<TreePatternNodePtr> &Children) {
4512   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4513   Record *Operator = N->getOperator();
4514 
4515   // Only permit raw nodes.
4516   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4517       N->getTransformFn()) {
4518     Children.push_back(N);
4519     return;
4520   }
4521 
4522   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4523     Children.push_back(N->getChildShared(0));
4524   else
4525     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4526 
4527   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4528     Children.push_back(N->getChildShared(1));
4529   else
4530     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4531 }
4532 
4533 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4534 /// the (potentially recursive) pattern by using algebraic laws.
4535 ///
4536 static void GenerateVariantsOf(TreePatternNodePtr N,
4537                                std::vector<TreePatternNodePtr> &OutVariants,
4538                                CodeGenDAGPatterns &CDP,
4539                                const MultipleUseVarSet &DepVars) {
4540   // We cannot permute leaves or ComplexPattern uses.
4541   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4542     OutVariants.push_back(N);
4543     return;
4544   }
4545 
4546   // Look up interesting info about the node.
4547   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4548 
4549   // If this node is associative, re-associate.
4550   if (NodeInfo.hasProperty(SDNPAssociative)) {
4551     // Re-associate by pulling together all of the linked operators
4552     std::vector<TreePatternNodePtr> MaximalChildren;
4553     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4554 
4555     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4556     // permutations.
4557     if (MaximalChildren.size() == 3) {
4558       // Find the variants of all of our maximal children.
4559       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4560       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4561       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4562       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4563 
4564       // There are only two ways we can permute the tree:
4565       //   (A op B) op C    and    A op (B op C)
4566       // Within these forms, we can also permute A/B/C.
4567 
4568       // Generate legal pair permutations of A/B/C.
4569       std::vector<TreePatternNodePtr> ABVariants;
4570       std::vector<TreePatternNodePtr> BAVariants;
4571       std::vector<TreePatternNodePtr> ACVariants;
4572       std::vector<TreePatternNodePtr> CAVariants;
4573       std::vector<TreePatternNodePtr> BCVariants;
4574       std::vector<TreePatternNodePtr> CBVariants;
4575       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4576       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4577       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4578       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4579       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4580       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4581 
4582       // Combine those into the result: (x op x) op x
4583       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4584       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4585       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4586       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4587       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4588       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4589 
4590       // Combine those into the result: x op (x op x)
4591       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4592       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4593       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4594       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4595       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4596       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4597       return;
4598     }
4599   }
4600 
4601   // Compute permutations of all children.
4602   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4603   ChildVariants.resize(N->getNumChildren());
4604   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4605     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4606 
4607   // Build all permutations based on how the children were formed.
4608   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4609 
4610   // If this node is commutative, consider the commuted order.
4611   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4612   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4613     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4614            "Commutative but doesn't have 2 children!");
4615     // Don't count children which are actually register references.
4616     unsigned NC = 0;
4617     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4618       TreePatternNode *Child = N->getChild(i);
4619       if (Child->isLeaf())
4620         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4621           Record *RR = DI->getDef();
4622           if (RR->isSubClassOf("Register"))
4623             continue;
4624         }
4625       NC++;
4626     }
4627     // Consider the commuted order.
4628     if (isCommIntrinsic) {
4629       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4630       // operands are the commutative operands, and there might be more operands
4631       // after those.
4632       assert(NC >= 3 &&
4633              "Commutative intrinsic should have at least 3 children!");
4634       std::vector<std::vector<TreePatternNodePtr>> Variants;
4635       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4636       Variants.push_back(std::move(ChildVariants[2]));
4637       Variants.push_back(std::move(ChildVariants[1]));
4638       for (unsigned i = 3; i != NC; ++i)
4639         Variants.push_back(std::move(ChildVariants[i]));
4640       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4641     } else if (NC == N->getNumChildren()) {
4642       std::vector<std::vector<TreePatternNodePtr>> Variants;
4643       Variants.push_back(std::move(ChildVariants[1]));
4644       Variants.push_back(std::move(ChildVariants[0]));
4645       for (unsigned i = 2; i != NC; ++i)
4646         Variants.push_back(std::move(ChildVariants[i]));
4647       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4648     }
4649   }
4650 }
4651 
4652 
4653 // GenerateVariants - Generate variants.  For example, commutative patterns can
4654 // match multiple ways.  Add them to PatternsToMatch as well.
4655 void CodeGenDAGPatterns::GenerateVariants() {
4656   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4657 
4658   // Loop over all of the patterns we've collected, checking to see if we can
4659   // generate variants of the instruction, through the exploitation of
4660   // identities.  This permits the target to provide aggressive matching without
4661   // the .td file having to contain tons of variants of instructions.
4662   //
4663   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4664   // intentionally do not reconsider these.  Any variants of added patterns have
4665   // already been added.
4666   //
4667   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4668   BitVector MatchedPatterns(NumOriginalPatterns);
4669   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4670                                            BitVector(NumOriginalPatterns));
4671 
4672   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4673       DepsAndVariants;
4674   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4675 
4676   // Collect patterns with more than one variant.
4677   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4678     MultipleUseVarSet DepVars;
4679     std::vector<TreePatternNodePtr> Variants;
4680     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4681     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4682     LLVM_DEBUG(DumpDepVars(DepVars));
4683     LLVM_DEBUG(errs() << "\n");
4684     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4685                        *this, DepVars);
4686 
4687     assert(!Variants.empty() && "Must create at least original variant!");
4688     if (Variants.size() == 1) // No additional variants for this pattern.
4689       continue;
4690 
4691     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4692                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4693 
4694     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4695 
4696     // Cache matching predicates.
4697     if (MatchedPatterns[i])
4698       continue;
4699 
4700     ListInit *Predicates = PatternsToMatch[i].getPredicates();
4701     StringRef HwModeFeatures = PatternsToMatch[i].getHwModeFeatures();
4702 
4703     BitVector &Matches = MatchedPredicates[i];
4704     MatchedPatterns.set(i);
4705     Matches.set(i);
4706 
4707     // Don't test patterns that have already been cached - it won't match.
4708     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4709       if (!MatchedPatterns[p])
4710         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()) &&
4711                      (HwModeFeatures == PatternsToMatch[p].getHwModeFeatures());
4712 
4713     // Copy this to all the matching patterns.
4714     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4715       if (p != (int)i) {
4716         MatchedPatterns.set(p);
4717         MatchedPredicates[p] = Matches;
4718       }
4719   }
4720 
4721   for (const auto &it : PatternsWithVariants) {
4722     unsigned i = it.first;
4723     const MultipleUseVarSet &DepVars = it.second.first;
4724     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4725 
4726     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4727       TreePatternNodePtr Variant = Variants[v];
4728       BitVector &Matches = MatchedPredicates[i];
4729 
4730       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4731                  errs() << "\n");
4732 
4733       // Scan to see if an instruction or explicit pattern already matches this.
4734       bool AlreadyExists = false;
4735       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4736         // Skip if the top level predicates do not match.
4737         if (!Matches[p])
4738           continue;
4739         // Check to see if this variant already exists.
4740         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4741                                     DepVars)) {
4742           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4743           AlreadyExists = true;
4744           break;
4745         }
4746       }
4747       // If we already have it, ignore the variant.
4748       if (AlreadyExists) continue;
4749 
4750       // Otherwise, add it to the list of patterns we have.
4751       PatternsToMatch.emplace_back(
4752           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4753           Variant, PatternsToMatch[i].getDstPatternShared(),
4754           PatternsToMatch[i].getDstRegs(),
4755           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(),
4756           PatternsToMatch[i].getForceMode(),
4757           PatternsToMatch[i].getHwModeFeatures().str());
4758       MatchedPredicates.push_back(Matches);
4759 
4760       // Add a new match the same as this pattern.
4761       for (auto &P : MatchedPredicates)
4762         P.push_back(P[i]);
4763     }
4764 
4765     LLVM_DEBUG(errs() << "\n");
4766   }
4767 }
4768