1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Support/Debug.h" 20 #include <set> 21 #include <algorithm> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // EEVT::TypeSet Implementation 26 //===----------------------------------------------------------------------===// 27 28 static inline bool isInteger(MVT::SimpleValueType VT) { 29 return EVT(VT).isInteger(); 30 } 31 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 32 return EVT(VT).isFloatingPoint(); 33 } 34 static inline bool isVector(MVT::SimpleValueType VT) { 35 return EVT(VT).isVector(); 36 } 37 static inline bool isScalar(MVT::SimpleValueType VT) { 38 return !EVT(VT).isVector(); 39 } 40 41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 42 if (VT == MVT::iAny) 43 EnforceInteger(TP); 44 else if (VT == MVT::fAny) 45 EnforceFloatingPoint(TP); 46 else if (VT == MVT::vAny) 47 EnforceVector(TP); 48 else { 49 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 50 VT == MVT::iPTRAny) && "Not a concrete type!"); 51 TypeVec.push_back(VT); 52 } 53 } 54 55 56 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 57 assert(!VTList.empty() && "empty list?"); 58 TypeVec.append(VTList.begin(), VTList.end()); 59 60 if (!VTList.empty()) 61 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 62 VTList[0] != MVT::fAny); 63 64 // Verify no duplicates. 65 array_pod_sort(TypeVec.begin(), TypeVec.end()); 66 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 67 } 68 69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 70 /// on completely unknown type sets. 71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 72 bool (*Pred)(MVT::SimpleValueType), 73 const char *PredicateName) { 74 assert(isCompletelyUnknown()); 75 const std::vector<MVT::SimpleValueType> &LegalTypes = 76 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 77 78 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 79 if (Pred == 0 || Pred(LegalTypes[i])) 80 TypeVec.push_back(LegalTypes[i]); 81 82 // If we have nothing that matches the predicate, bail out. 83 if (TypeVec.empty()) 84 TP.error("Type inference contradiction found, no " + 85 std::string(PredicateName) + " types found"); 86 // No need to sort with one element. 87 if (TypeVec.size() == 1) return true; 88 89 // Remove duplicates. 90 array_pod_sort(TypeVec.begin(), TypeVec.end()); 91 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 92 93 return true; 94 } 95 96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 97 /// integer value type. 98 bool EEVT::TypeSet::hasIntegerTypes() const { 99 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 100 if (isInteger(TypeVec[i])) 101 return true; 102 return false; 103 } 104 105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 106 /// a floating point value type. 107 bool EEVT::TypeSet::hasFloatingPointTypes() const { 108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 109 if (isFloatingPoint(TypeVec[i])) 110 return true; 111 return false; 112 } 113 114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 115 /// value type. 116 bool EEVT::TypeSet::hasVectorTypes() const { 117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 118 if (isVector(TypeVec[i])) 119 return true; 120 return false; 121 } 122 123 124 std::string EEVT::TypeSet::getName() const { 125 if (TypeVec.empty()) return "<empty>"; 126 127 std::string Result; 128 129 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 130 std::string VTName = llvm::getEnumName(TypeVec[i]); 131 // Strip off MVT:: prefix if present. 132 if (VTName.substr(0,5) == "MVT::") 133 VTName = VTName.substr(5); 134 if (i) Result += ':'; 135 Result += VTName; 136 } 137 138 if (TypeVec.size() == 1) 139 return Result; 140 return "{" + Result + "}"; 141 } 142 143 /// MergeInTypeInfo - This merges in type information from the specified 144 /// argument. If 'this' changes, it returns true. If the two types are 145 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 147 if (InVT.isCompletelyUnknown() || *this == InVT) 148 return false; 149 150 if (isCompletelyUnknown()) { 151 *this = InVT; 152 return true; 153 } 154 155 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 156 157 // Handle the abstract cases, seeing if we can resolve them better. 158 switch (TypeVec[0]) { 159 default: break; 160 case MVT::iPTR: 161 case MVT::iPTRAny: 162 if (InVT.hasIntegerTypes()) { 163 EEVT::TypeSet InCopy(InVT); 164 InCopy.EnforceInteger(TP); 165 InCopy.EnforceScalar(TP); 166 167 if (InCopy.isConcrete()) { 168 // If the RHS has one integer type, upgrade iPTR to i32. 169 TypeVec[0] = InVT.TypeVec[0]; 170 return true; 171 } 172 173 // If the input has multiple scalar integers, this doesn't add any info. 174 if (!InCopy.isCompletelyUnknown()) 175 return false; 176 } 177 break; 178 } 179 180 // If the input constraint is iAny/iPTR and this is an integer type list, 181 // remove non-integer types from the list. 182 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 183 hasIntegerTypes()) { 184 bool MadeChange = EnforceInteger(TP); 185 186 // If we're merging in iPTR/iPTRAny and the node currently has a list of 187 // multiple different integer types, replace them with a single iPTR. 188 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 189 TypeVec.size() != 1) { 190 TypeVec.resize(1); 191 TypeVec[0] = InVT.TypeVec[0]; 192 MadeChange = true; 193 } 194 195 return MadeChange; 196 } 197 198 // If this is a type list and the RHS is a typelist as well, eliminate entries 199 // from this list that aren't in the other one. 200 bool MadeChange = false; 201 TypeSet InputSet(*this); 202 203 for (unsigned i = 0; i != TypeVec.size(); ++i) { 204 bool InInVT = false; 205 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 206 if (TypeVec[i] == InVT.TypeVec[j]) { 207 InInVT = true; 208 break; 209 } 210 211 if (InInVT) continue; 212 TypeVec.erase(TypeVec.begin()+i--); 213 MadeChange = true; 214 } 215 216 // If we removed all of our types, we have a type contradiction. 217 if (!TypeVec.empty()) 218 return MadeChange; 219 220 // FIXME: Really want an SMLoc here! 221 TP.error("Type inference contradiction found, merging '" + 222 InVT.getName() + "' into '" + InputSet.getName() + "'"); 223 return true; // unreachable 224 } 225 226 /// EnforceInteger - Remove all non-integer types from this set. 227 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 228 // If we know nothing, then get the full set. 229 if (TypeVec.empty()) 230 return FillWithPossibleTypes(TP, isInteger, "integer"); 231 if (!hasFloatingPointTypes()) 232 return false; 233 234 TypeSet InputSet(*this); 235 236 // Filter out all the fp types. 237 for (unsigned i = 0; i != TypeVec.size(); ++i) 238 if (!isInteger(TypeVec[i])) 239 TypeVec.erase(TypeVec.begin()+i--); 240 241 if (TypeVec.empty()) 242 TP.error("Type inference contradiction found, '" + 243 InputSet.getName() + "' needs to be integer"); 244 return true; 245 } 246 247 /// EnforceFloatingPoint - Remove all integer types from this set. 248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 252 253 if (!hasIntegerTypes()) 254 return false; 255 256 TypeSet InputSet(*this); 257 258 // Filter out all the fp types. 259 for (unsigned i = 0; i != TypeVec.size(); ++i) 260 if (!isFloatingPoint(TypeVec[i])) 261 TypeVec.erase(TypeVec.begin()+i--); 262 263 if (TypeVec.empty()) 264 TP.error("Type inference contradiction found, '" + 265 InputSet.getName() + "' needs to be floating point"); 266 return true; 267 } 268 269 /// EnforceScalar - Remove all vector types from this. 270 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 271 // If we know nothing, then get the full set. 272 if (TypeVec.empty()) 273 return FillWithPossibleTypes(TP, isScalar, "scalar"); 274 275 if (!hasVectorTypes()) 276 return false; 277 278 TypeSet InputSet(*this); 279 280 // Filter out all the vector types. 281 for (unsigned i = 0; i != TypeVec.size(); ++i) 282 if (!isScalar(TypeVec[i])) 283 TypeVec.erase(TypeVec.begin()+i--); 284 285 if (TypeVec.empty()) 286 TP.error("Type inference contradiction found, '" + 287 InputSet.getName() + "' needs to be scalar"); 288 return true; 289 } 290 291 /// EnforceVector - Remove all vector types from this. 292 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 293 // If we know nothing, then get the full set. 294 if (TypeVec.empty()) 295 return FillWithPossibleTypes(TP, isVector, "vector"); 296 297 TypeSet InputSet(*this); 298 bool MadeChange = false; 299 300 // Filter out all the scalar types. 301 for (unsigned i = 0; i != TypeVec.size(); ++i) 302 if (!isVector(TypeVec[i])) { 303 TypeVec.erase(TypeVec.begin()+i--); 304 MadeChange = true; 305 } 306 307 if (TypeVec.empty()) 308 TP.error("Type inference contradiction found, '" + 309 InputSet.getName() + "' needs to be a vector"); 310 return MadeChange; 311 } 312 313 314 315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 316 /// this an other based on this information. 317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 318 // Both operands must be integer or FP, but we don't care which. 319 bool MadeChange = false; 320 321 if (isCompletelyUnknown()) 322 MadeChange = FillWithPossibleTypes(TP); 323 324 if (Other.isCompletelyUnknown()) 325 MadeChange = Other.FillWithPossibleTypes(TP); 326 327 // If one side is known to be integer or known to be FP but the other side has 328 // no information, get at least the type integrality info in there. 329 if (!hasFloatingPointTypes()) 330 MadeChange |= Other.EnforceInteger(TP); 331 else if (!hasIntegerTypes()) 332 MadeChange |= Other.EnforceFloatingPoint(TP); 333 if (!Other.hasFloatingPointTypes()) 334 MadeChange |= EnforceInteger(TP); 335 else if (!Other.hasIntegerTypes()) 336 MadeChange |= EnforceFloatingPoint(TP); 337 338 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 339 "Should have a type list now"); 340 341 // If one contains vectors but the other doesn't pull vectors out. 342 if (!hasVectorTypes()) 343 MadeChange |= Other.EnforceScalar(TP); 344 if (!hasVectorTypes()) 345 MadeChange |= EnforceScalar(TP); 346 347 // This code does not currently handle nodes which have multiple types, 348 // where some types are integer, and some are fp. Assert that this is not 349 // the case. 350 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 351 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 352 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 353 354 // Okay, find the smallest type from the current set and remove it from the 355 // largest set. 356 MVT::SimpleValueType Smallest = TypeVec[0]; 357 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 358 if (TypeVec[i] < Smallest) 359 Smallest = TypeVec[i]; 360 361 // If this is the only type in the large set, the constraint can never be 362 // satisfied. 363 if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest) 364 TP.error("Type inference contradiction found, '" + 365 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 366 367 SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 368 std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest); 369 if (TVI != Other.TypeVec.end()) { 370 Other.TypeVec.erase(TVI); 371 MadeChange = true; 372 } 373 374 // Okay, find the largest type in the Other set and remove it from the 375 // current set. 376 MVT::SimpleValueType Largest = Other.TypeVec[0]; 377 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 378 if (Other.TypeVec[i] > Largest) 379 Largest = Other.TypeVec[i]; 380 381 // If this is the only type in the small set, the constraint can never be 382 // satisfied. 383 if (TypeVec.size() == 1 && TypeVec[0] == Largest) 384 TP.error("Type inference contradiction found, '" + 385 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 386 387 TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest); 388 if (TVI != TypeVec.end()) { 389 TypeVec.erase(TVI); 390 MadeChange = true; 391 } 392 393 return MadeChange; 394 } 395 396 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 397 /// whose element is specified by VTOperand. 398 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 399 TreePattern &TP) { 400 // "This" must be a vector and "VTOperand" must be a scalar. 401 bool MadeChange = false; 402 MadeChange |= EnforceVector(TP); 403 MadeChange |= VTOperand.EnforceScalar(TP); 404 405 // If we know the vector type, it forces the scalar to agree. 406 if (isConcrete()) { 407 EVT IVT = getConcrete(); 408 IVT = IVT.getVectorElementType(); 409 return MadeChange | 410 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 411 } 412 413 // If the scalar type is known, filter out vector types whose element types 414 // disagree. 415 if (!VTOperand.isConcrete()) 416 return MadeChange; 417 418 MVT::SimpleValueType VT = VTOperand.getConcrete(); 419 420 TypeSet InputSet(*this); 421 422 // Filter out all the types which don't have the right element type. 423 for (unsigned i = 0; i != TypeVec.size(); ++i) { 424 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 425 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 426 TypeVec.erase(TypeVec.begin()+i--); 427 MadeChange = true; 428 } 429 } 430 431 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 432 TP.error("Type inference contradiction found, forcing '" + 433 InputSet.getName() + "' to have a vector element"); 434 return MadeChange; 435 } 436 437 //===----------------------------------------------------------------------===// 438 // Helpers for working with extended types. 439 440 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 441 return LHS->getID() < RHS->getID(); 442 } 443 444 /// Dependent variable map for CodeGenDAGPattern variant generation 445 typedef std::map<std::string, int> DepVarMap; 446 447 /// Const iterator shorthand for DepVarMap 448 typedef DepVarMap::const_iterator DepVarMap_citer; 449 450 namespace { 451 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 452 if (N->isLeaf()) { 453 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 454 DepMap[N->getName()]++; 455 } 456 } else { 457 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 458 FindDepVarsOf(N->getChild(i), DepMap); 459 } 460 } 461 462 //! Find dependent variables within child patterns 463 /*! 464 */ 465 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 466 DepVarMap depcounts; 467 FindDepVarsOf(N, depcounts); 468 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 469 if (i->second > 1) { // std::pair<std::string, int> 470 DepVars.insert(i->first); 471 } 472 } 473 } 474 475 //! Dump the dependent variable set: 476 #ifndef NDEBUG 477 void DumpDepVars(MultipleUseVarSet &DepVars) { 478 if (DepVars.empty()) { 479 DEBUG(errs() << "<empty set>"); 480 } else { 481 DEBUG(errs() << "[ "); 482 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 483 e = DepVars.end(); i != e; ++i) { 484 DEBUG(errs() << (*i) << " "); 485 } 486 DEBUG(errs() << "]"); 487 } 488 } 489 #endif 490 491 } 492 493 //===----------------------------------------------------------------------===// 494 // PatternToMatch implementation 495 // 496 497 498 /// getPatternSize - Return the 'size' of this pattern. We want to match large 499 /// patterns before small ones. This is used to determine the size of a 500 /// pattern. 501 static unsigned getPatternSize(const TreePatternNode *P, 502 const CodeGenDAGPatterns &CGP) { 503 unsigned Size = 3; // The node itself. 504 // If the root node is a ConstantSDNode, increases its size. 505 // e.g. (set R32:$dst, 0). 506 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 507 Size += 2; 508 509 // FIXME: This is a hack to statically increase the priority of patterns 510 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 511 // Later we can allow complexity / cost for each pattern to be (optionally) 512 // specified. To get best possible pattern match we'll need to dynamically 513 // calculate the complexity of all patterns a dag can potentially map to. 514 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 515 if (AM) 516 Size += AM->getNumOperands() * 3; 517 518 // If this node has some predicate function that must match, it adds to the 519 // complexity of this node. 520 if (!P->getPredicateFns().empty()) 521 ++Size; 522 523 // Count children in the count if they are also nodes. 524 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 525 TreePatternNode *Child = P->getChild(i); 526 if (!Child->isLeaf() && Child->getNumTypes() && 527 Child->getType(0) != MVT::Other) 528 Size += getPatternSize(Child, CGP); 529 else if (Child->isLeaf()) { 530 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 531 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 532 else if (Child->getComplexPatternInfo(CGP)) 533 Size += getPatternSize(Child, CGP); 534 else if (!Child->getPredicateFns().empty()) 535 ++Size; 536 } 537 } 538 539 return Size; 540 } 541 542 /// Compute the complexity metric for the input pattern. This roughly 543 /// corresponds to the number of nodes that are covered. 544 unsigned PatternToMatch:: 545 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 546 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 547 } 548 549 550 /// getPredicateCheck - Return a single string containing all of this 551 /// pattern's predicates concatenated with "&&" operators. 552 /// 553 std::string PatternToMatch::getPredicateCheck() const { 554 std::string PredicateCheck; 555 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 556 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 557 Record *Def = Pred->getDef(); 558 if (!Def->isSubClassOf("Predicate")) { 559 #ifndef NDEBUG 560 Def->dump(); 561 #endif 562 assert(0 && "Unknown predicate type!"); 563 } 564 if (!PredicateCheck.empty()) 565 PredicateCheck += " && "; 566 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 567 } 568 } 569 570 return PredicateCheck; 571 } 572 573 //===----------------------------------------------------------------------===// 574 // SDTypeConstraint implementation 575 // 576 577 SDTypeConstraint::SDTypeConstraint(Record *R) { 578 OperandNo = R->getValueAsInt("OperandNum"); 579 580 if (R->isSubClassOf("SDTCisVT")) { 581 ConstraintType = SDTCisVT; 582 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 583 if (x.SDTCisVT_Info.VT == MVT::isVoid) 584 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 585 586 } else if (R->isSubClassOf("SDTCisPtrTy")) { 587 ConstraintType = SDTCisPtrTy; 588 } else if (R->isSubClassOf("SDTCisInt")) { 589 ConstraintType = SDTCisInt; 590 } else if (R->isSubClassOf("SDTCisFP")) { 591 ConstraintType = SDTCisFP; 592 } else if (R->isSubClassOf("SDTCisVec")) { 593 ConstraintType = SDTCisVec; 594 } else if (R->isSubClassOf("SDTCisSameAs")) { 595 ConstraintType = SDTCisSameAs; 596 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 597 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 598 ConstraintType = SDTCisVTSmallerThanOp; 599 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 600 R->getValueAsInt("OtherOperandNum"); 601 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 602 ConstraintType = SDTCisOpSmallerThanOp; 603 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 604 R->getValueAsInt("BigOperandNum"); 605 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 606 ConstraintType = SDTCisEltOfVec; 607 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 608 } else { 609 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 610 exit(1); 611 } 612 } 613 614 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 615 /// N, and the result number in ResNo. 616 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 617 const SDNodeInfo &NodeInfo, 618 unsigned &ResNo) { 619 unsigned NumResults = NodeInfo.getNumResults(); 620 if (OpNo < NumResults) { 621 ResNo = OpNo; 622 return N; 623 } 624 625 OpNo -= NumResults; 626 627 if (OpNo >= N->getNumChildren()) { 628 errs() << "Invalid operand number in type constraint " 629 << (OpNo+NumResults) << " "; 630 N->dump(); 631 errs() << '\n'; 632 exit(1); 633 } 634 635 return N->getChild(OpNo); 636 } 637 638 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 639 /// constraint to the nodes operands. This returns true if it makes a 640 /// change, false otherwise. If a type contradiction is found, throw an 641 /// exception. 642 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 643 const SDNodeInfo &NodeInfo, 644 TreePattern &TP) const { 645 unsigned ResNo = 0; // The result number being referenced. 646 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 647 648 switch (ConstraintType) { 649 default: assert(0 && "Unknown constraint type!"); 650 case SDTCisVT: 651 // Operand must be a particular type. 652 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 653 case SDTCisPtrTy: 654 // Operand must be same as target pointer type. 655 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 656 case SDTCisInt: 657 // Require it to be one of the legal integer VTs. 658 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 659 case SDTCisFP: 660 // Require it to be one of the legal fp VTs. 661 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 662 case SDTCisVec: 663 // Require it to be one of the legal vector VTs. 664 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 665 case SDTCisSameAs: { 666 unsigned OResNo = 0; 667 TreePatternNode *OtherNode = 668 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 669 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 670 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 671 } 672 case SDTCisVTSmallerThanOp: { 673 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 674 // have an integer type that is smaller than the VT. 675 if (!NodeToApply->isLeaf() || 676 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 677 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 678 ->isSubClassOf("ValueType")) 679 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 680 MVT::SimpleValueType VT = 681 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 682 683 EEVT::TypeSet TypeListTmp(VT, TP); 684 685 unsigned OResNo = 0; 686 TreePatternNode *OtherNode = 687 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 688 OResNo); 689 690 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 691 } 692 case SDTCisOpSmallerThanOp: { 693 unsigned BResNo = 0; 694 TreePatternNode *BigOperand = 695 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 696 BResNo); 697 return NodeToApply->getExtType(ResNo). 698 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 699 } 700 case SDTCisEltOfVec: { 701 unsigned VResNo = 0; 702 TreePatternNode *VecOperand = 703 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 704 VResNo); 705 706 // Filter vector types out of VecOperand that don't have the right element 707 // type. 708 return VecOperand->getExtType(VResNo). 709 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 710 } 711 } 712 return false; 713 } 714 715 //===----------------------------------------------------------------------===// 716 // SDNodeInfo implementation 717 // 718 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 719 EnumName = R->getValueAsString("Opcode"); 720 SDClassName = R->getValueAsString("SDClass"); 721 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 722 NumResults = TypeProfile->getValueAsInt("NumResults"); 723 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 724 725 // Parse the properties. 726 Properties = 0; 727 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 728 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 729 if (PropList[i]->getName() == "SDNPCommutative") { 730 Properties |= 1 << SDNPCommutative; 731 } else if (PropList[i]->getName() == "SDNPAssociative") { 732 Properties |= 1 << SDNPAssociative; 733 } else if (PropList[i]->getName() == "SDNPHasChain") { 734 Properties |= 1 << SDNPHasChain; 735 } else if (PropList[i]->getName() == "SDNPOutFlag") { 736 Properties |= 1 << SDNPOutFlag; 737 } else if (PropList[i]->getName() == "SDNPInFlag") { 738 Properties |= 1 << SDNPInFlag; 739 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 740 Properties |= 1 << SDNPOptInFlag; 741 } else if (PropList[i]->getName() == "SDNPMayStore") { 742 Properties |= 1 << SDNPMayStore; 743 } else if (PropList[i]->getName() == "SDNPMayLoad") { 744 Properties |= 1 << SDNPMayLoad; 745 } else if (PropList[i]->getName() == "SDNPSideEffect") { 746 Properties |= 1 << SDNPSideEffect; 747 } else if (PropList[i]->getName() == "SDNPMemOperand") { 748 Properties |= 1 << SDNPMemOperand; 749 } else if (PropList[i]->getName() == "SDNPVariadic") { 750 Properties |= 1 << SDNPVariadic; 751 } else { 752 errs() << "Unknown SD Node property '" << PropList[i]->getName() 753 << "' on node '" << R->getName() << "'!\n"; 754 exit(1); 755 } 756 } 757 758 759 // Parse the type constraints. 760 std::vector<Record*> ConstraintList = 761 TypeProfile->getValueAsListOfDefs("Constraints"); 762 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 763 } 764 765 /// getKnownType - If the type constraints on this node imply a fixed type 766 /// (e.g. all stores return void, etc), then return it as an 767 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 768 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 769 unsigned NumResults = getNumResults(); 770 assert(NumResults <= 1 && 771 "We only work with nodes with zero or one result so far!"); 772 assert(ResNo == 0 && "Only handles single result nodes so far"); 773 774 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 775 // Make sure that this applies to the correct node result. 776 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 777 continue; 778 779 switch (TypeConstraints[i].ConstraintType) { 780 default: break; 781 case SDTypeConstraint::SDTCisVT: 782 return TypeConstraints[i].x.SDTCisVT_Info.VT; 783 case SDTypeConstraint::SDTCisPtrTy: 784 return MVT::iPTR; 785 } 786 } 787 return MVT::Other; 788 } 789 790 //===----------------------------------------------------------------------===// 791 // TreePatternNode implementation 792 // 793 794 TreePatternNode::~TreePatternNode() { 795 #if 0 // FIXME: implement refcounted tree nodes! 796 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 797 delete getChild(i); 798 #endif 799 } 800 801 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 802 if (Operator->getName() == "set" || 803 Operator->getName() == "implicit") 804 return 0; // All return nothing. 805 806 if (Operator->isSubClassOf("Intrinsic")) 807 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 808 809 if (Operator->isSubClassOf("SDNode")) 810 return CDP.getSDNodeInfo(Operator).getNumResults(); 811 812 if (Operator->isSubClassOf("PatFrag")) { 813 // If we've already parsed this pattern fragment, get it. Otherwise, handle 814 // the forward reference case where one pattern fragment references another 815 // before it is processed. 816 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 817 return PFRec->getOnlyTree()->getNumTypes(); 818 819 // Get the result tree. 820 DagInit *Tree = Operator->getValueAsDag("Fragment"); 821 Record *Op = 0; 822 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 823 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 824 assert(Op && "Invalid Fragment"); 825 return GetNumNodeResults(Op, CDP); 826 } 827 828 if (Operator->isSubClassOf("Instruction")) { 829 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 830 831 // FIXME: Should allow access to all the results here. 832 unsigned NumDefsToAdd = InstInfo.NumDefs ? 1 : 0; 833 834 // Add on one implicit def if it has a resolvable type. 835 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 836 ++NumDefsToAdd; 837 return NumDefsToAdd; 838 } 839 840 if (Operator->isSubClassOf("SDNodeXForm")) 841 return 1; // FIXME: Generalize SDNodeXForm 842 843 Operator->dump(); 844 errs() << "Unhandled node in GetNumNodeResults\n"; 845 exit(1); 846 } 847 848 void TreePatternNode::print(raw_ostream &OS) const { 849 if (isLeaf()) 850 OS << *getLeafValue(); 851 else 852 OS << '(' << getOperator()->getName(); 853 854 for (unsigned i = 0, e = Types.size(); i != e; ++i) 855 OS << ':' << getExtType(i).getName(); 856 857 if (!isLeaf()) { 858 if (getNumChildren() != 0) { 859 OS << " "; 860 getChild(0)->print(OS); 861 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 862 OS << ", "; 863 getChild(i)->print(OS); 864 } 865 } 866 OS << ")"; 867 } 868 869 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 870 OS << "<<P:" << PredicateFns[i] << ">>"; 871 if (TransformFn) 872 OS << "<<X:" << TransformFn->getName() << ">>"; 873 if (!getName().empty()) 874 OS << ":$" << getName(); 875 876 } 877 void TreePatternNode::dump() const { 878 print(errs()); 879 } 880 881 /// isIsomorphicTo - Return true if this node is recursively 882 /// isomorphic to the specified node. For this comparison, the node's 883 /// entire state is considered. The assigned name is ignored, since 884 /// nodes with differing names are considered isomorphic. However, if 885 /// the assigned name is present in the dependent variable set, then 886 /// the assigned name is considered significant and the node is 887 /// isomorphic if the names match. 888 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 889 const MultipleUseVarSet &DepVars) const { 890 if (N == this) return true; 891 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 892 getPredicateFns() != N->getPredicateFns() || 893 getTransformFn() != N->getTransformFn()) 894 return false; 895 896 if (isLeaf()) { 897 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 898 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 899 return ((DI->getDef() == NDI->getDef()) 900 && (DepVars.find(getName()) == DepVars.end() 901 || getName() == N->getName())); 902 } 903 } 904 return getLeafValue() == N->getLeafValue(); 905 } 906 907 if (N->getOperator() != getOperator() || 908 N->getNumChildren() != getNumChildren()) return false; 909 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 910 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 911 return false; 912 return true; 913 } 914 915 /// clone - Make a copy of this tree and all of its children. 916 /// 917 TreePatternNode *TreePatternNode::clone() const { 918 TreePatternNode *New; 919 if (isLeaf()) { 920 New = new TreePatternNode(getLeafValue(), getNumTypes()); 921 } else { 922 std::vector<TreePatternNode*> CChildren; 923 CChildren.reserve(Children.size()); 924 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 925 CChildren.push_back(getChild(i)->clone()); 926 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 927 } 928 New->setName(getName()); 929 New->Types = Types; 930 New->setPredicateFns(getPredicateFns()); 931 New->setTransformFn(getTransformFn()); 932 return New; 933 } 934 935 /// RemoveAllTypes - Recursively strip all the types of this tree. 936 void TreePatternNode::RemoveAllTypes() { 937 for (unsigned i = 0, e = Types.size(); i != e; ++i) 938 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 939 if (isLeaf()) return; 940 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 941 getChild(i)->RemoveAllTypes(); 942 } 943 944 945 /// SubstituteFormalArguments - Replace the formal arguments in this tree 946 /// with actual values specified by ArgMap. 947 void TreePatternNode:: 948 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 949 if (isLeaf()) return; 950 951 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 952 TreePatternNode *Child = getChild(i); 953 if (Child->isLeaf()) { 954 Init *Val = Child->getLeafValue(); 955 if (dynamic_cast<DefInit*>(Val) && 956 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 957 // We found a use of a formal argument, replace it with its value. 958 TreePatternNode *NewChild = ArgMap[Child->getName()]; 959 assert(NewChild && "Couldn't find formal argument!"); 960 assert((Child->getPredicateFns().empty() || 961 NewChild->getPredicateFns() == Child->getPredicateFns()) && 962 "Non-empty child predicate clobbered!"); 963 setChild(i, NewChild); 964 } 965 } else { 966 getChild(i)->SubstituteFormalArguments(ArgMap); 967 } 968 } 969 } 970 971 972 /// InlinePatternFragments - If this pattern refers to any pattern 973 /// fragments, inline them into place, giving us a pattern without any 974 /// PatFrag references. 975 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 976 if (isLeaf()) return this; // nothing to do. 977 Record *Op = getOperator(); 978 979 if (!Op->isSubClassOf("PatFrag")) { 980 // Just recursively inline children nodes. 981 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 982 TreePatternNode *Child = getChild(i); 983 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 984 985 assert((Child->getPredicateFns().empty() || 986 NewChild->getPredicateFns() == Child->getPredicateFns()) && 987 "Non-empty child predicate clobbered!"); 988 989 setChild(i, NewChild); 990 } 991 return this; 992 } 993 994 // Otherwise, we found a reference to a fragment. First, look up its 995 // TreePattern record. 996 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 997 998 // Verify that we are passing the right number of operands. 999 if (Frag->getNumArgs() != Children.size()) 1000 TP.error("'" + Op->getName() + "' fragment requires " + 1001 utostr(Frag->getNumArgs()) + " operands!"); 1002 1003 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1004 1005 std::string Code = Op->getValueAsCode("Predicate"); 1006 if (!Code.empty()) 1007 FragTree->addPredicateFn("Predicate_"+Op->getName()); 1008 1009 // Resolve formal arguments to their actual value. 1010 if (Frag->getNumArgs()) { 1011 // Compute the map of formal to actual arguments. 1012 std::map<std::string, TreePatternNode*> ArgMap; 1013 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1014 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1015 1016 FragTree->SubstituteFormalArguments(ArgMap); 1017 } 1018 1019 FragTree->setName(getName()); 1020 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1021 FragTree->UpdateNodeType(i, getExtType(i), TP); 1022 1023 // Transfer in the old predicates. 1024 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1025 FragTree->addPredicateFn(getPredicateFns()[i]); 1026 1027 // Get a new copy of this fragment to stitch into here. 1028 //delete this; // FIXME: implement refcounting! 1029 1030 // The fragment we inlined could have recursive inlining that is needed. See 1031 // if there are any pattern fragments in it and inline them as needed. 1032 return FragTree->InlinePatternFragments(TP); 1033 } 1034 1035 /// getImplicitType - Check to see if the specified record has an implicit 1036 /// type which should be applied to it. This will infer the type of register 1037 /// references from the register file information, for example. 1038 /// 1039 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1040 bool NotRegisters, TreePattern &TP) { 1041 // Check to see if this is a register or a register class. 1042 if (R->isSubClassOf("RegisterClass")) { 1043 assert(ResNo == 0 && "Regclass ref only has one result!"); 1044 if (NotRegisters) 1045 return EEVT::TypeSet(); // Unknown. 1046 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1047 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1048 } 1049 1050 if (R->isSubClassOf("PatFrag")) { 1051 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1052 // Pattern fragment types will be resolved when they are inlined. 1053 return EEVT::TypeSet(); // Unknown. 1054 } 1055 1056 if (R->isSubClassOf("Register")) { 1057 assert(ResNo == 0 && "Registers only produce one result!"); 1058 if (NotRegisters) 1059 return EEVT::TypeSet(); // Unknown. 1060 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1061 return EEVT::TypeSet(T.getRegisterVTs(R)); 1062 } 1063 1064 if (R->isSubClassOf("SubRegIndex")) { 1065 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1066 return EEVT::TypeSet(); 1067 } 1068 1069 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1070 assert(ResNo == 0 && "This node only has one result!"); 1071 // Using a VTSDNode or CondCodeSDNode. 1072 return EEVT::TypeSet(MVT::Other, TP); 1073 } 1074 1075 if (R->isSubClassOf("ComplexPattern")) { 1076 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1077 if (NotRegisters) 1078 return EEVT::TypeSet(); // Unknown. 1079 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1080 TP); 1081 } 1082 if (R->isSubClassOf("PointerLikeRegClass")) { 1083 assert(ResNo == 0 && "Regclass can only have one result!"); 1084 return EEVT::TypeSet(MVT::iPTR, TP); 1085 } 1086 1087 if (R->getName() == "node" || R->getName() == "srcvalue" || 1088 R->getName() == "zero_reg") { 1089 // Placeholder. 1090 return EEVT::TypeSet(); // Unknown. 1091 } 1092 1093 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1094 return EEVT::TypeSet(MVT::Other, TP); 1095 } 1096 1097 1098 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1099 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1100 const CodeGenIntrinsic *TreePatternNode:: 1101 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1102 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1103 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1104 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1105 return 0; 1106 1107 unsigned IID = 1108 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1109 return &CDP.getIntrinsicInfo(IID); 1110 } 1111 1112 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1113 /// return the ComplexPattern information, otherwise return null. 1114 const ComplexPattern * 1115 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1116 if (!isLeaf()) return 0; 1117 1118 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1119 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1120 return &CGP.getComplexPattern(DI->getDef()); 1121 return 0; 1122 } 1123 1124 /// NodeHasProperty - Return true if this node has the specified property. 1125 bool TreePatternNode::NodeHasProperty(SDNP Property, 1126 const CodeGenDAGPatterns &CGP) const { 1127 if (isLeaf()) { 1128 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1129 return CP->hasProperty(Property); 1130 return false; 1131 } 1132 1133 Record *Operator = getOperator(); 1134 if (!Operator->isSubClassOf("SDNode")) return false; 1135 1136 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1137 } 1138 1139 1140 1141 1142 /// TreeHasProperty - Return true if any node in this tree has the specified 1143 /// property. 1144 bool TreePatternNode::TreeHasProperty(SDNP Property, 1145 const CodeGenDAGPatterns &CGP) const { 1146 if (NodeHasProperty(Property, CGP)) 1147 return true; 1148 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1149 if (getChild(i)->TreeHasProperty(Property, CGP)) 1150 return true; 1151 return false; 1152 } 1153 1154 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1155 /// commutative intrinsic. 1156 bool 1157 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1158 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1159 return Int->isCommutative; 1160 return false; 1161 } 1162 1163 1164 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1165 /// this node and its children in the tree. This returns true if it makes a 1166 /// change, false otherwise. If a type contradiction is found, throw an 1167 /// exception. 1168 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1169 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1170 if (isLeaf()) { 1171 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1172 // If it's a regclass or something else known, include the type. 1173 bool MadeChange = false; 1174 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1175 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1176 NotRegisters, TP), TP); 1177 return MadeChange; 1178 } 1179 1180 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1181 assert(Types.size() == 1 && "Invalid IntInit"); 1182 1183 // Int inits are always integers. :) 1184 bool MadeChange = Types[0].EnforceInteger(TP); 1185 1186 if (!Types[0].isConcrete()) 1187 return MadeChange; 1188 1189 MVT::SimpleValueType VT = getType(0); 1190 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1191 return MadeChange; 1192 1193 unsigned Size = EVT(VT).getSizeInBits(); 1194 // Make sure that the value is representable for this type. 1195 if (Size >= 32) return MadeChange; 1196 1197 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1198 if (Val == II->getValue()) return MadeChange; 1199 1200 // If sign-extended doesn't fit, does it fit as unsigned? 1201 unsigned ValueMask; 1202 unsigned UnsignedVal; 1203 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1204 UnsignedVal = unsigned(II->getValue()); 1205 1206 if ((ValueMask & UnsignedVal) == UnsignedVal) 1207 return MadeChange; 1208 1209 TP.error("Integer value '" + itostr(II->getValue())+ 1210 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1211 return MadeChange; 1212 } 1213 return false; 1214 } 1215 1216 // special handling for set, which isn't really an SDNode. 1217 if (getOperator()->getName() == "set") { 1218 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1219 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1220 unsigned NC = getNumChildren(); 1221 1222 TreePatternNode *SetVal = getChild(NC-1); 1223 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1224 1225 for (unsigned i = 0; i < NC-1; ++i) { 1226 TreePatternNode *Child = getChild(i); 1227 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1228 1229 // Types of operands must match. 1230 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1231 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1232 } 1233 return MadeChange; 1234 } 1235 1236 if (getOperator()->getName() == "implicit") { 1237 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1238 1239 bool MadeChange = false; 1240 for (unsigned i = 0; i < getNumChildren(); ++i) 1241 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1242 return MadeChange; 1243 } 1244 1245 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1246 bool MadeChange = false; 1247 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1248 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1249 1250 assert(getChild(0)->getNumTypes() == 1 && 1251 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1252 1253 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1254 // what type it gets, so if it didn't get a concrete type just give it the 1255 // first viable type from the reg class. 1256 if (!getChild(1)->hasTypeSet(0) && 1257 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1258 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1259 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1260 } 1261 return MadeChange; 1262 } 1263 1264 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1265 bool MadeChange = false; 1266 1267 // Apply the result type to the node. 1268 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1269 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1270 1271 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1272 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1273 1274 if (getNumChildren() != NumParamVTs + 1) 1275 TP.error("Intrinsic '" + Int->Name + "' expects " + 1276 utostr(NumParamVTs) + " operands, not " + 1277 utostr(getNumChildren() - 1) + " operands!"); 1278 1279 // Apply type info to the intrinsic ID. 1280 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1281 1282 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1283 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1284 1285 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1286 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1287 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1288 } 1289 return MadeChange; 1290 } 1291 1292 if (getOperator()->isSubClassOf("SDNode")) { 1293 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1294 1295 // Check that the number of operands is sane. Negative operands -> varargs. 1296 if (NI.getNumOperands() >= 0 && 1297 getNumChildren() != (unsigned)NI.getNumOperands()) 1298 TP.error(getOperator()->getName() + " node requires exactly " + 1299 itostr(NI.getNumOperands()) + " operands!"); 1300 1301 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1302 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1303 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1304 return MadeChange; 1305 } 1306 1307 if (getOperator()->isSubClassOf("Instruction")) { 1308 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1309 CodeGenInstruction &InstInfo = 1310 CDP.getTargetInfo().getInstruction(getOperator()); 1311 1312 bool MadeChange = false; 1313 1314 // Apply the result types to the node, these come from the things in the 1315 // (outs) list of the instruction. 1316 // FIXME: Cap at one result so far. 1317 unsigned NumResultsToAdd = InstInfo.NumDefs ? 1 : 0; 1318 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1319 Record *ResultNode = Inst.getResult(ResNo); 1320 1321 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1322 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1323 } else if (ResultNode->getName() == "unknown") { 1324 // Nothing to do. 1325 } else { 1326 assert(ResultNode->isSubClassOf("RegisterClass") && 1327 "Operands should be register classes!"); 1328 const CodeGenRegisterClass &RC = 1329 CDP.getTargetInfo().getRegisterClass(ResultNode); 1330 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1331 } 1332 } 1333 1334 // If the instruction has implicit defs, we apply the first one as a result. 1335 // FIXME: This sucks, it should apply all implicit defs. 1336 if (!InstInfo.ImplicitDefs.empty()) { 1337 unsigned ResNo = NumResultsToAdd; 1338 1339 // FIXME: Generalize to multiple possible types and multiple possible 1340 // ImplicitDefs. 1341 MVT::SimpleValueType VT = 1342 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1343 1344 if (VT != MVT::Other) 1345 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1346 } 1347 1348 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1349 // be the same. 1350 if (getOperator()->getName() == "INSERT_SUBREG") { 1351 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1352 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1353 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1354 } 1355 1356 unsigned ChildNo = 0; 1357 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1358 Record *OperandNode = Inst.getOperand(i); 1359 1360 // If the instruction expects a predicate or optional def operand, we 1361 // codegen this by setting the operand to it's default value if it has a 1362 // non-empty DefaultOps field. 1363 if ((OperandNode->isSubClassOf("PredicateOperand") || 1364 OperandNode->isSubClassOf("OptionalDefOperand")) && 1365 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1366 continue; 1367 1368 // Verify that we didn't run out of provided operands. 1369 if (ChildNo >= getNumChildren()) 1370 TP.error("Instruction '" + getOperator()->getName() + 1371 "' expects more operands than were provided."); 1372 1373 MVT::SimpleValueType VT; 1374 TreePatternNode *Child = getChild(ChildNo++); 1375 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1376 1377 if (OperandNode->isSubClassOf("RegisterClass")) { 1378 const CodeGenRegisterClass &RC = 1379 CDP.getTargetInfo().getRegisterClass(OperandNode); 1380 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1381 } else if (OperandNode->isSubClassOf("Operand")) { 1382 VT = getValueType(OperandNode->getValueAsDef("Type")); 1383 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1384 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1385 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1386 } else if (OperandNode->getName() == "unknown") { 1387 // Nothing to do. 1388 } else { 1389 assert(0 && "Unknown operand type!"); 1390 abort(); 1391 } 1392 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1393 } 1394 1395 if (ChildNo != getNumChildren()) 1396 TP.error("Instruction '" + getOperator()->getName() + 1397 "' was provided too many operands!"); 1398 1399 return MadeChange; 1400 } 1401 1402 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1403 1404 // Node transforms always take one operand. 1405 if (getNumChildren() != 1) 1406 TP.error("Node transform '" + getOperator()->getName() + 1407 "' requires one operand!"); 1408 1409 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1410 1411 1412 // If either the output or input of the xform does not have exact 1413 // type info. We assume they must be the same. Otherwise, it is perfectly 1414 // legal to transform from one type to a completely different type. 1415 #if 0 1416 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1417 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1418 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1419 return MadeChange; 1420 } 1421 #endif 1422 return MadeChange; 1423 } 1424 1425 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1426 /// RHS of a commutative operation, not the on LHS. 1427 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1428 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1429 return true; 1430 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1431 return true; 1432 return false; 1433 } 1434 1435 1436 /// canPatternMatch - If it is impossible for this pattern to match on this 1437 /// target, fill in Reason and return false. Otherwise, return true. This is 1438 /// used as a sanity check for .td files (to prevent people from writing stuff 1439 /// that can never possibly work), and to prevent the pattern permuter from 1440 /// generating stuff that is useless. 1441 bool TreePatternNode::canPatternMatch(std::string &Reason, 1442 const CodeGenDAGPatterns &CDP) { 1443 if (isLeaf()) return true; 1444 1445 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1446 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1447 return false; 1448 1449 // If this is an intrinsic, handle cases that would make it not match. For 1450 // example, if an operand is required to be an immediate. 1451 if (getOperator()->isSubClassOf("Intrinsic")) { 1452 // TODO: 1453 return true; 1454 } 1455 1456 // If this node is a commutative operator, check that the LHS isn't an 1457 // immediate. 1458 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1459 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1460 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1461 // Scan all of the operands of the node and make sure that only the last one 1462 // is a constant node, unless the RHS also is. 1463 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1464 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1465 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1466 if (OnlyOnRHSOfCommutative(getChild(i))) { 1467 Reason="Immediate value must be on the RHS of commutative operators!"; 1468 return false; 1469 } 1470 } 1471 } 1472 1473 return true; 1474 } 1475 1476 //===----------------------------------------------------------------------===// 1477 // TreePattern implementation 1478 // 1479 1480 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1481 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1482 isInputPattern = isInput; 1483 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1484 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1485 } 1486 1487 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1488 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1489 isInputPattern = isInput; 1490 Trees.push_back(ParseTreePattern(Pat, "")); 1491 } 1492 1493 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1494 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1495 isInputPattern = isInput; 1496 Trees.push_back(Pat); 1497 } 1498 1499 void TreePattern::error(const std::string &Msg) const { 1500 dump(); 1501 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1502 } 1503 1504 void TreePattern::ComputeNamedNodes() { 1505 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1506 ComputeNamedNodes(Trees[i]); 1507 } 1508 1509 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1510 if (!N->getName().empty()) 1511 NamedNodes[N->getName()].push_back(N); 1512 1513 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1514 ComputeNamedNodes(N->getChild(i)); 1515 } 1516 1517 1518 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1519 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1520 Record *R = DI->getDef(); 1521 1522 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1523 // TreePatternNode if its own. For example: 1524 /// (foo GPR, imm) -> (foo GPR, (imm)) 1525 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1526 return ParseTreePattern(new DagInit(DI, "", 1527 std::vector<std::pair<Init*, std::string> >()), 1528 OpName); 1529 1530 // Input argument? 1531 TreePatternNode *Res = new TreePatternNode(DI, 1); 1532 if (R->getName() == "node" && !OpName.empty()) { 1533 if (OpName.empty()) 1534 error("'node' argument requires a name to match with operand list"); 1535 Args.push_back(OpName); 1536 } 1537 1538 Res->setName(OpName); 1539 return Res; 1540 } 1541 1542 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1543 if (!OpName.empty()) 1544 error("Constant int argument should not have a name!"); 1545 return new TreePatternNode(II, 1); 1546 } 1547 1548 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1549 // Turn this into an IntInit. 1550 Init *II = BI->convertInitializerTo(new IntRecTy()); 1551 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1552 error("Bits value must be constants!"); 1553 return ParseTreePattern(II, OpName); 1554 } 1555 1556 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1557 if (!Dag) { 1558 TheInit->dump(); 1559 error("Pattern has unexpected init kind!"); 1560 } 1561 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1562 if (!OpDef) error("Pattern has unexpected operator type!"); 1563 Record *Operator = OpDef->getDef(); 1564 1565 if (Operator->isSubClassOf("ValueType")) { 1566 // If the operator is a ValueType, then this must be "type cast" of a leaf 1567 // node. 1568 if (Dag->getNumArgs() != 1) 1569 error("Type cast only takes one operand!"); 1570 1571 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1572 1573 // Apply the type cast. 1574 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1575 New->UpdateNodeType(0, getValueType(Operator), *this); 1576 1577 if (!OpName.empty()) 1578 error("ValueType cast should not have a name!"); 1579 return New; 1580 } 1581 1582 // Verify that this is something that makes sense for an operator. 1583 if (!Operator->isSubClassOf("PatFrag") && 1584 !Operator->isSubClassOf("SDNode") && 1585 !Operator->isSubClassOf("Instruction") && 1586 !Operator->isSubClassOf("SDNodeXForm") && 1587 !Operator->isSubClassOf("Intrinsic") && 1588 Operator->getName() != "set" && 1589 Operator->getName() != "implicit") 1590 error("Unrecognized node '" + Operator->getName() + "'!"); 1591 1592 // Check to see if this is something that is illegal in an input pattern. 1593 if (isInputPattern) { 1594 if (Operator->isSubClassOf("Instruction") || 1595 Operator->isSubClassOf("SDNodeXForm")) 1596 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1597 } else { 1598 if (Operator->isSubClassOf("Intrinsic")) 1599 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1600 1601 if (Operator->isSubClassOf("SDNode") && 1602 Operator->getName() != "imm" && 1603 Operator->getName() != "fpimm" && 1604 Operator->getName() != "tglobaltlsaddr" && 1605 Operator->getName() != "tconstpool" && 1606 Operator->getName() != "tjumptable" && 1607 Operator->getName() != "tframeindex" && 1608 Operator->getName() != "texternalsym" && 1609 Operator->getName() != "tblockaddress" && 1610 Operator->getName() != "tglobaladdr" && 1611 Operator->getName() != "bb" && 1612 Operator->getName() != "vt") 1613 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1614 } 1615 1616 std::vector<TreePatternNode*> Children; 1617 1618 // Parse all the operands. 1619 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1620 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1621 1622 // If the operator is an intrinsic, then this is just syntactic sugar for for 1623 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1624 // convert the intrinsic name to a number. 1625 if (Operator->isSubClassOf("Intrinsic")) { 1626 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1627 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1628 1629 // If this intrinsic returns void, it must have side-effects and thus a 1630 // chain. 1631 if (Int.IS.RetVTs.empty()) 1632 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1633 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1634 // Has side-effects, requires chain. 1635 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1636 else // Otherwise, no chain. 1637 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1638 1639 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); 1640 Children.insert(Children.begin(), IIDNode); 1641 } 1642 1643 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1644 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1645 Result->setName(OpName); 1646 1647 if (!Dag->getName().empty()) { 1648 assert(Result->getName().empty()); 1649 Result->setName(Dag->getName()); 1650 } 1651 return Result; 1652 } 1653 1654 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1655 /// will never match in favor of something obvious that will. This is here 1656 /// strictly as a convenience to target authors because it allows them to write 1657 /// more type generic things and have useless type casts fold away. 1658 /// 1659 /// This returns true if any change is made. 1660 static bool SimplifyTree(TreePatternNode *&N) { 1661 if (N->isLeaf()) 1662 return false; 1663 1664 // If we have a bitconvert with a resolved type and if the source and 1665 // destination types are the same, then the bitconvert is useless, remove it. 1666 if (N->getOperator()->getName() == "bitconvert" && 1667 N->getExtType(0).isConcrete() && 1668 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1669 N->getName().empty()) { 1670 N = N->getChild(0); 1671 SimplifyTree(N); 1672 return true; 1673 } 1674 1675 // Walk all children. 1676 bool MadeChange = false; 1677 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1678 TreePatternNode *Child = N->getChild(i); 1679 MadeChange |= SimplifyTree(Child); 1680 N->setChild(i, Child); 1681 } 1682 return MadeChange; 1683 } 1684 1685 1686 1687 /// InferAllTypes - Infer/propagate as many types throughout the expression 1688 /// patterns as possible. Return true if all types are inferred, false 1689 /// otherwise. Throw an exception if a type contradiction is found. 1690 bool TreePattern:: 1691 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1692 if (NamedNodes.empty()) 1693 ComputeNamedNodes(); 1694 1695 bool MadeChange = true; 1696 while (MadeChange) { 1697 MadeChange = false; 1698 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1699 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1700 MadeChange |= SimplifyTree(Trees[i]); 1701 } 1702 1703 // If there are constraints on our named nodes, apply them. 1704 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1705 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1706 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1707 1708 // If we have input named node types, propagate their types to the named 1709 // values here. 1710 if (InNamedTypes) { 1711 // FIXME: Should be error? 1712 assert(InNamedTypes->count(I->getKey()) && 1713 "Named node in output pattern but not input pattern?"); 1714 1715 const SmallVectorImpl<TreePatternNode*> &InNodes = 1716 InNamedTypes->find(I->getKey())->second; 1717 1718 // The input types should be fully resolved by now. 1719 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1720 // If this node is a register class, and it is the root of the pattern 1721 // then we're mapping something onto an input register. We allow 1722 // changing the type of the input register in this case. This allows 1723 // us to match things like: 1724 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1725 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1726 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1727 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1728 continue; 1729 } 1730 1731 assert(Nodes[i]->getNumTypes() == 1 && 1732 InNodes[0]->getNumTypes() == 1 && 1733 "FIXME: cannot name multiple result nodes yet"); 1734 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1735 *this); 1736 } 1737 } 1738 1739 // If there are multiple nodes with the same name, they must all have the 1740 // same type. 1741 if (I->second.size() > 1) { 1742 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1743 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1744 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1745 "FIXME: cannot name multiple result nodes yet"); 1746 1747 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1748 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1749 } 1750 } 1751 } 1752 } 1753 1754 bool HasUnresolvedTypes = false; 1755 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1756 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1757 return !HasUnresolvedTypes; 1758 } 1759 1760 void TreePattern::print(raw_ostream &OS) const { 1761 OS << getRecord()->getName(); 1762 if (!Args.empty()) { 1763 OS << "(" << Args[0]; 1764 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1765 OS << ", " << Args[i]; 1766 OS << ")"; 1767 } 1768 OS << ": "; 1769 1770 if (Trees.size() > 1) 1771 OS << "[\n"; 1772 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1773 OS << "\t"; 1774 Trees[i]->print(OS); 1775 OS << "\n"; 1776 } 1777 1778 if (Trees.size() > 1) 1779 OS << "]\n"; 1780 } 1781 1782 void TreePattern::dump() const { print(errs()); } 1783 1784 //===----------------------------------------------------------------------===// 1785 // CodeGenDAGPatterns implementation 1786 // 1787 1788 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { 1789 Intrinsics = LoadIntrinsics(Records, false); 1790 TgtIntrinsics = LoadIntrinsics(Records, true); 1791 ParseNodeInfo(); 1792 ParseNodeTransforms(); 1793 ParseComplexPatterns(); 1794 ParsePatternFragments(); 1795 ParseDefaultOperands(); 1796 ParseInstructions(); 1797 ParsePatterns(); 1798 1799 // Generate variants. For example, commutative patterns can match 1800 // multiple ways. Add them to PatternsToMatch as well. 1801 GenerateVariants(); 1802 1803 // Infer instruction flags. For example, we can detect loads, 1804 // stores, and side effects in many cases by examining an 1805 // instruction's pattern. 1806 InferInstructionFlags(); 1807 } 1808 1809 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1810 for (pf_iterator I = PatternFragments.begin(), 1811 E = PatternFragments.end(); I != E; ++I) 1812 delete I->second; 1813 } 1814 1815 1816 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1817 Record *N = Records.getDef(Name); 1818 if (!N || !N->isSubClassOf("SDNode")) { 1819 errs() << "Error getting SDNode '" << Name << "'!\n"; 1820 exit(1); 1821 } 1822 return N; 1823 } 1824 1825 // Parse all of the SDNode definitions for the target, populating SDNodes. 1826 void CodeGenDAGPatterns::ParseNodeInfo() { 1827 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1828 while (!Nodes.empty()) { 1829 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1830 Nodes.pop_back(); 1831 } 1832 1833 // Get the builtin intrinsic nodes. 1834 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1835 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1836 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1837 } 1838 1839 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1840 /// map, and emit them to the file as functions. 1841 void CodeGenDAGPatterns::ParseNodeTransforms() { 1842 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1843 while (!Xforms.empty()) { 1844 Record *XFormNode = Xforms.back(); 1845 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1846 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1847 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1848 1849 Xforms.pop_back(); 1850 } 1851 } 1852 1853 void CodeGenDAGPatterns::ParseComplexPatterns() { 1854 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 1855 while (!AMs.empty()) { 1856 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 1857 AMs.pop_back(); 1858 } 1859 } 1860 1861 1862 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 1863 /// file, building up the PatternFragments map. After we've collected them all, 1864 /// inline fragments together as necessary, so that there are no references left 1865 /// inside a pattern fragment to a pattern fragment. 1866 /// 1867 void CodeGenDAGPatterns::ParsePatternFragments() { 1868 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 1869 1870 // First step, parse all of the fragments. 1871 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1872 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 1873 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 1874 PatternFragments[Fragments[i]] = P; 1875 1876 // Validate the argument list, converting it to set, to discard duplicates. 1877 std::vector<std::string> &Args = P->getArgList(); 1878 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 1879 1880 if (OperandsSet.count("")) 1881 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 1882 1883 // Parse the operands list. 1884 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 1885 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 1886 // Special cases: ops == outs == ins. Different names are used to 1887 // improve readability. 1888 if (!OpsOp || 1889 (OpsOp->getDef()->getName() != "ops" && 1890 OpsOp->getDef()->getName() != "outs" && 1891 OpsOp->getDef()->getName() != "ins")) 1892 P->error("Operands list should start with '(ops ... '!"); 1893 1894 // Copy over the arguments. 1895 Args.clear(); 1896 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 1897 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 1898 static_cast<DefInit*>(OpsList->getArg(j))-> 1899 getDef()->getName() != "node") 1900 P->error("Operands list should all be 'node' values."); 1901 if (OpsList->getArgName(j).empty()) 1902 P->error("Operands list should have names for each operand!"); 1903 if (!OperandsSet.count(OpsList->getArgName(j))) 1904 P->error("'" + OpsList->getArgName(j) + 1905 "' does not occur in pattern or was multiply specified!"); 1906 OperandsSet.erase(OpsList->getArgName(j)); 1907 Args.push_back(OpsList->getArgName(j)); 1908 } 1909 1910 if (!OperandsSet.empty()) 1911 P->error("Operands list does not contain an entry for operand '" + 1912 *OperandsSet.begin() + "'!"); 1913 1914 // If there is a code init for this fragment, keep track of the fact that 1915 // this fragment uses it. 1916 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 1917 if (!Code.empty()) 1918 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 1919 1920 // If there is a node transformation corresponding to this, keep track of 1921 // it. 1922 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 1923 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 1924 P->getOnlyTree()->setTransformFn(Transform); 1925 } 1926 1927 // Now that we've parsed all of the tree fragments, do a closure on them so 1928 // that there are not references to PatFrags left inside of them. 1929 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1930 TreePattern *ThePat = PatternFragments[Fragments[i]]; 1931 ThePat->InlinePatternFragments(); 1932 1933 // Infer as many types as possible. Don't worry about it if we don't infer 1934 // all of them, some may depend on the inputs of the pattern. 1935 try { 1936 ThePat->InferAllTypes(); 1937 } catch (...) { 1938 // If this pattern fragment is not supported by this target (no types can 1939 // satisfy its constraints), just ignore it. If the bogus pattern is 1940 // actually used by instructions, the type consistency error will be 1941 // reported there. 1942 } 1943 1944 // If debugging, print out the pattern fragment result. 1945 DEBUG(ThePat->dump()); 1946 } 1947 } 1948 1949 void CodeGenDAGPatterns::ParseDefaultOperands() { 1950 std::vector<Record*> DefaultOps[2]; 1951 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 1952 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 1953 1954 // Find some SDNode. 1955 assert(!SDNodes.empty() && "No SDNodes parsed?"); 1956 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 1957 1958 for (unsigned iter = 0; iter != 2; ++iter) { 1959 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 1960 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 1961 1962 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 1963 // SomeSDnode so that we can parse this. 1964 std::vector<std::pair<Init*, std::string> > Ops; 1965 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 1966 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 1967 DefaultInfo->getArgName(op))); 1968 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 1969 1970 // Create a TreePattern to parse this. 1971 TreePattern P(DefaultOps[iter][i], DI, false, *this); 1972 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 1973 1974 // Copy the operands over into a DAGDefaultOperand. 1975 DAGDefaultOperand DefaultOpInfo; 1976 1977 TreePatternNode *T = P.getTree(0); 1978 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 1979 TreePatternNode *TPN = T->getChild(op); 1980 while (TPN->ApplyTypeConstraints(P, false)) 1981 /* Resolve all types */; 1982 1983 if (TPN->ContainsUnresolvedType()) { 1984 if (iter == 0) 1985 throw "Value #" + utostr(i) + " of PredicateOperand '" + 1986 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 1987 else 1988 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 1989 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 1990 } 1991 DefaultOpInfo.DefaultOps.push_back(TPN); 1992 } 1993 1994 // Insert it into the DefaultOperands map so we can find it later. 1995 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 1996 } 1997 } 1998 } 1999 2000 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2001 /// instruction input. Return true if this is a real use. 2002 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2003 std::map<std::string, TreePatternNode*> &InstInputs) { 2004 // No name -> not interesting. 2005 if (Pat->getName().empty()) { 2006 if (Pat->isLeaf()) { 2007 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2008 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 2009 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2010 } 2011 return false; 2012 } 2013 2014 Record *Rec; 2015 if (Pat->isLeaf()) { 2016 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2017 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2018 Rec = DI->getDef(); 2019 } else { 2020 Rec = Pat->getOperator(); 2021 } 2022 2023 // SRCVALUE nodes are ignored. 2024 if (Rec->getName() == "srcvalue") 2025 return false; 2026 2027 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2028 if (!Slot) { 2029 Slot = Pat; 2030 return true; 2031 } 2032 Record *SlotRec; 2033 if (Slot->isLeaf()) { 2034 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2035 } else { 2036 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2037 SlotRec = Slot->getOperator(); 2038 } 2039 2040 // Ensure that the inputs agree if we've already seen this input. 2041 if (Rec != SlotRec) 2042 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2043 if (Slot->getExtTypes() != Pat->getExtTypes()) 2044 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2045 return true; 2046 } 2047 2048 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2049 /// part of "I", the instruction), computing the set of inputs and outputs of 2050 /// the pattern. Report errors if we see anything naughty. 2051 void CodeGenDAGPatterns:: 2052 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2053 std::map<std::string, TreePatternNode*> &InstInputs, 2054 std::map<std::string, TreePatternNode*>&InstResults, 2055 std::vector<Record*> &InstImpResults) { 2056 if (Pat->isLeaf()) { 2057 bool isUse = HandleUse(I, Pat, InstInputs); 2058 if (!isUse && Pat->getTransformFn()) 2059 I->error("Cannot specify a transform function for a non-input value!"); 2060 return; 2061 } 2062 2063 if (Pat->getOperator()->getName() == "implicit") { 2064 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2065 TreePatternNode *Dest = Pat->getChild(i); 2066 if (!Dest->isLeaf()) 2067 I->error("implicitly defined value should be a register!"); 2068 2069 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2070 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2071 I->error("implicitly defined value should be a register!"); 2072 InstImpResults.push_back(Val->getDef()); 2073 } 2074 return; 2075 } 2076 2077 if (Pat->getOperator()->getName() != "set") { 2078 // If this is not a set, verify that the children nodes are not void typed, 2079 // and recurse. 2080 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2081 if (Pat->getChild(i)->getNumTypes() == 0) 2082 I->error("Cannot have void nodes inside of patterns!"); 2083 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2084 InstImpResults); 2085 } 2086 2087 // If this is a non-leaf node with no children, treat it basically as if 2088 // it were a leaf. This handles nodes like (imm). 2089 bool isUse = HandleUse(I, Pat, InstInputs); 2090 2091 if (!isUse && Pat->getTransformFn()) 2092 I->error("Cannot specify a transform function for a non-input value!"); 2093 return; 2094 } 2095 2096 // Otherwise, this is a set, validate and collect instruction results. 2097 if (Pat->getNumChildren() == 0) 2098 I->error("set requires operands!"); 2099 2100 if (Pat->getTransformFn()) 2101 I->error("Cannot specify a transform function on a set node!"); 2102 2103 // Check the set destinations. 2104 unsigned NumDests = Pat->getNumChildren()-1; 2105 for (unsigned i = 0; i != NumDests; ++i) { 2106 TreePatternNode *Dest = Pat->getChild(i); 2107 if (!Dest->isLeaf()) 2108 I->error("set destination should be a register!"); 2109 2110 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2111 if (!Val) 2112 I->error("set destination should be a register!"); 2113 2114 if (Val->getDef()->isSubClassOf("RegisterClass") || 2115 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2116 if (Dest->getName().empty()) 2117 I->error("set destination must have a name!"); 2118 if (InstResults.count(Dest->getName())) 2119 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2120 InstResults[Dest->getName()] = Dest; 2121 } else if (Val->getDef()->isSubClassOf("Register")) { 2122 InstImpResults.push_back(Val->getDef()); 2123 } else { 2124 I->error("set destination should be a register!"); 2125 } 2126 } 2127 2128 // Verify and collect info from the computation. 2129 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2130 InstInputs, InstResults, InstImpResults); 2131 } 2132 2133 //===----------------------------------------------------------------------===// 2134 // Instruction Analysis 2135 //===----------------------------------------------------------------------===// 2136 2137 class InstAnalyzer { 2138 const CodeGenDAGPatterns &CDP; 2139 bool &mayStore; 2140 bool &mayLoad; 2141 bool &HasSideEffects; 2142 bool &IsVariadic; 2143 public: 2144 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2145 bool &maystore, bool &mayload, bool &hse, bool &isv) 2146 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse), 2147 IsVariadic(isv) { 2148 } 2149 2150 /// Analyze - Analyze the specified instruction, returning true if the 2151 /// instruction had a pattern. 2152 bool Analyze(Record *InstRecord) { 2153 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2154 if (Pattern == 0) { 2155 HasSideEffects = 1; 2156 return false; // No pattern. 2157 } 2158 2159 // FIXME: Assume only the first tree is the pattern. The others are clobber 2160 // nodes. 2161 AnalyzeNode(Pattern->getTree(0)); 2162 return true; 2163 } 2164 2165 private: 2166 void AnalyzeNode(const TreePatternNode *N) { 2167 if (N->isLeaf()) { 2168 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2169 Record *LeafRec = DI->getDef(); 2170 // Handle ComplexPattern leaves. 2171 if (LeafRec->isSubClassOf("ComplexPattern")) { 2172 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2173 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2174 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2175 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2176 } 2177 } 2178 return; 2179 } 2180 2181 // Analyze children. 2182 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2183 AnalyzeNode(N->getChild(i)); 2184 2185 // Ignore set nodes, which are not SDNodes. 2186 if (N->getOperator()->getName() == "set") 2187 return; 2188 2189 // Get information about the SDNode for the operator. 2190 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2191 2192 // Notice properties of the node. 2193 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2194 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2195 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2196 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2197 2198 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2199 // If this is an intrinsic, analyze it. 2200 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2201 mayLoad = true;// These may load memory. 2202 2203 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2204 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2205 2206 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2207 // WriteMem intrinsics can have other strange effects. 2208 HasSideEffects = true; 2209 } 2210 } 2211 2212 }; 2213 2214 static void InferFromPattern(const CodeGenInstruction &Inst, 2215 bool &MayStore, bool &MayLoad, 2216 bool &HasSideEffects, bool &IsVariadic, 2217 const CodeGenDAGPatterns &CDP) { 2218 MayStore = MayLoad = HasSideEffects = IsVariadic = false; 2219 2220 bool HadPattern = 2221 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic) 2222 .Analyze(Inst.TheDef); 2223 2224 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2225 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2226 // If we decided that this is a store from the pattern, then the .td file 2227 // entry is redundant. 2228 if (MayStore) 2229 fprintf(stderr, 2230 "Warning: mayStore flag explicitly set on instruction '%s'" 2231 " but flag already inferred from pattern.\n", 2232 Inst.TheDef->getName().c_str()); 2233 MayStore = true; 2234 } 2235 2236 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2237 // If we decided that this is a load from the pattern, then the .td file 2238 // entry is redundant. 2239 if (MayLoad) 2240 fprintf(stderr, 2241 "Warning: mayLoad flag explicitly set on instruction '%s'" 2242 " but flag already inferred from pattern.\n", 2243 Inst.TheDef->getName().c_str()); 2244 MayLoad = true; 2245 } 2246 2247 if (Inst.neverHasSideEffects) { 2248 if (HadPattern) 2249 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2250 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2251 HasSideEffects = false; 2252 } 2253 2254 if (Inst.hasSideEffects) { 2255 if (HasSideEffects) 2256 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2257 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2258 HasSideEffects = true; 2259 } 2260 2261 if (Inst.isVariadic) 2262 IsVariadic = true; // Can warn if we want. 2263 } 2264 2265 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2266 /// any fragments involved. This populates the Instructions list with fully 2267 /// resolved instructions. 2268 void CodeGenDAGPatterns::ParseInstructions() { 2269 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2270 2271 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2272 ListInit *LI = 0; 2273 2274 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2275 LI = Instrs[i]->getValueAsListInit("Pattern"); 2276 2277 // If there is no pattern, only collect minimal information about the 2278 // instruction for its operand list. We have to assume that there is one 2279 // result, as we have no detailed info. 2280 if (!LI || LI->getSize() == 0) { 2281 std::vector<Record*> Results; 2282 std::vector<Record*> Operands; 2283 2284 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2285 2286 if (InstInfo.OperandList.size() != 0) { 2287 if (InstInfo.NumDefs == 0) { 2288 // These produce no results 2289 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) 2290 Operands.push_back(InstInfo.OperandList[j].Rec); 2291 } else { 2292 // Assume the first operand is the result. 2293 Results.push_back(InstInfo.OperandList[0].Rec); 2294 2295 // The rest are inputs. 2296 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) 2297 Operands.push_back(InstInfo.OperandList[j].Rec); 2298 } 2299 } 2300 2301 // Create and insert the instruction. 2302 std::vector<Record*> ImpResults; 2303 Instructions.insert(std::make_pair(Instrs[i], 2304 DAGInstruction(0, Results, Operands, ImpResults))); 2305 continue; // no pattern. 2306 } 2307 2308 // Parse the instruction. 2309 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2310 // Inline pattern fragments into it. 2311 I->InlinePatternFragments(); 2312 2313 // Infer as many types as possible. If we cannot infer all of them, we can 2314 // never do anything with this instruction pattern: report it to the user. 2315 if (!I->InferAllTypes()) 2316 I->error("Could not infer all types in pattern!"); 2317 2318 // InstInputs - Keep track of all of the inputs of the instruction, along 2319 // with the record they are declared as. 2320 std::map<std::string, TreePatternNode*> InstInputs; 2321 2322 // InstResults - Keep track of all the virtual registers that are 'set' 2323 // in the instruction, including what reg class they are. 2324 std::map<std::string, TreePatternNode*> InstResults; 2325 2326 std::vector<Record*> InstImpResults; 2327 2328 // Verify that the top-level forms in the instruction are of void type, and 2329 // fill in the InstResults map. 2330 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2331 TreePatternNode *Pat = I->getTree(j); 2332 if (Pat->getNumTypes() != 0) 2333 I->error("Top-level forms in instruction pattern should have" 2334 " void types"); 2335 2336 // Find inputs and outputs, and verify the structure of the uses/defs. 2337 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2338 InstImpResults); 2339 } 2340 2341 // Now that we have inputs and outputs of the pattern, inspect the operands 2342 // list for the instruction. This determines the order that operands are 2343 // added to the machine instruction the node corresponds to. 2344 unsigned NumResults = InstResults.size(); 2345 2346 // Parse the operands list from the (ops) list, validating it. 2347 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2348 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2349 2350 // Check that all of the results occur first in the list. 2351 std::vector<Record*> Results; 2352 TreePatternNode *Res0Node = 0; 2353 for (unsigned i = 0; i != NumResults; ++i) { 2354 if (i == CGI.OperandList.size()) 2355 I->error("'" + InstResults.begin()->first + 2356 "' set but does not appear in operand list!"); 2357 const std::string &OpName = CGI.OperandList[i].Name; 2358 2359 // Check that it exists in InstResults. 2360 TreePatternNode *RNode = InstResults[OpName]; 2361 if (RNode == 0) 2362 I->error("Operand $" + OpName + " does not exist in operand list!"); 2363 2364 if (i == 0) 2365 Res0Node = RNode; 2366 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2367 if (R == 0) 2368 I->error("Operand $" + OpName + " should be a set destination: all " 2369 "outputs must occur before inputs in operand list!"); 2370 2371 if (CGI.OperandList[i].Rec != R) 2372 I->error("Operand $" + OpName + " class mismatch!"); 2373 2374 // Remember the return type. 2375 Results.push_back(CGI.OperandList[i].Rec); 2376 2377 // Okay, this one checks out. 2378 InstResults.erase(OpName); 2379 } 2380 2381 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2382 // the copy while we're checking the inputs. 2383 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2384 2385 std::vector<TreePatternNode*> ResultNodeOperands; 2386 std::vector<Record*> Operands; 2387 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { 2388 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; 2389 const std::string &OpName = Op.Name; 2390 if (OpName.empty()) 2391 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2392 2393 if (!InstInputsCheck.count(OpName)) { 2394 // If this is an predicate operand or optional def operand with an 2395 // DefaultOps set filled in, we can ignore this. When we codegen it, 2396 // we will do so as always executed. 2397 if (Op.Rec->isSubClassOf("PredicateOperand") || 2398 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2399 // Does it have a non-empty DefaultOps field? If so, ignore this 2400 // operand. 2401 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2402 continue; 2403 } 2404 I->error("Operand $" + OpName + 2405 " does not appear in the instruction pattern"); 2406 } 2407 TreePatternNode *InVal = InstInputsCheck[OpName]; 2408 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2409 2410 if (InVal->isLeaf() && 2411 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2412 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2413 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2414 I->error("Operand $" + OpName + "'s register class disagrees" 2415 " between the operand and pattern"); 2416 } 2417 Operands.push_back(Op.Rec); 2418 2419 // Construct the result for the dest-pattern operand list. 2420 TreePatternNode *OpNode = InVal->clone(); 2421 2422 // No predicate is useful on the result. 2423 OpNode->clearPredicateFns(); 2424 2425 // Promote the xform function to be an explicit node if set. 2426 if (Record *Xform = OpNode->getTransformFn()) { 2427 OpNode->setTransformFn(0); 2428 std::vector<TreePatternNode*> Children; 2429 Children.push_back(OpNode); 2430 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2431 } 2432 2433 ResultNodeOperands.push_back(OpNode); 2434 } 2435 2436 if (!InstInputsCheck.empty()) 2437 I->error("Input operand $" + InstInputsCheck.begin()->first + 2438 " occurs in pattern but not in operands list!"); 2439 2440 TreePatternNode *ResultPattern = 2441 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2442 GetNumNodeResults(I->getRecord(), *this)); 2443 // Copy fully inferred output node type to instruction result pattern. 2444 for (unsigned i = 0; i != NumResults; ++i) 2445 ResultPattern->setType(i, Res0Node->getExtType(i)); 2446 2447 // Create and insert the instruction. 2448 // FIXME: InstImpResults should not be part of DAGInstruction. 2449 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2450 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2451 2452 // Use a temporary tree pattern to infer all types and make sure that the 2453 // constructed result is correct. This depends on the instruction already 2454 // being inserted into the Instructions map. 2455 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2456 Temp.InferAllTypes(&I->getNamedNodesMap()); 2457 2458 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2459 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2460 2461 DEBUG(I->dump()); 2462 } 2463 2464 // If we can, convert the instructions to be patterns that are matched! 2465 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2466 Instructions.begin(), 2467 E = Instructions.end(); II != E; ++II) { 2468 DAGInstruction &TheInst = II->second; 2469 const TreePattern *I = TheInst.getPattern(); 2470 if (I == 0) continue; // No pattern. 2471 2472 // FIXME: Assume only the first tree is the pattern. The others are clobber 2473 // nodes. 2474 TreePatternNode *Pattern = I->getTree(0); 2475 TreePatternNode *SrcPattern; 2476 if (Pattern->getOperator()->getName() == "set") { 2477 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2478 } else{ 2479 // Not a set (store or something?) 2480 SrcPattern = Pattern; 2481 } 2482 2483 Record *Instr = II->first; 2484 AddPatternToMatch(I, 2485 PatternToMatch(Instr->getValueAsListInit("Predicates"), 2486 SrcPattern, 2487 TheInst.getResultPattern(), 2488 TheInst.getImpResults(), 2489 Instr->getValueAsInt("AddedComplexity"), 2490 Instr->getID())); 2491 } 2492 } 2493 2494 2495 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2496 2497 static void FindNames(const TreePatternNode *P, 2498 std::map<std::string, NameRecord> &Names, 2499 const TreePattern *PatternTop) { 2500 if (!P->getName().empty()) { 2501 NameRecord &Rec = Names[P->getName()]; 2502 // If this is the first instance of the name, remember the node. 2503 if (Rec.second++ == 0) 2504 Rec.first = P; 2505 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2506 PatternTop->error("repetition of value: $" + P->getName() + 2507 " where different uses have different types!"); 2508 } 2509 2510 if (!P->isLeaf()) { 2511 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2512 FindNames(P->getChild(i), Names, PatternTop); 2513 } 2514 } 2515 2516 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2517 const PatternToMatch &PTM) { 2518 // Do some sanity checking on the pattern we're about to match. 2519 std::string Reason; 2520 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2521 Pattern->error("Pattern can never match: " + Reason); 2522 2523 // If the source pattern's root is a complex pattern, that complex pattern 2524 // must specify the nodes it can potentially match. 2525 if (const ComplexPattern *CP = 2526 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2527 if (CP->getRootNodes().empty()) 2528 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2529 " could match"); 2530 2531 2532 // Find all of the named values in the input and output, ensure they have the 2533 // same type. 2534 std::map<std::string, NameRecord> SrcNames, DstNames; 2535 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2536 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2537 2538 // Scan all of the named values in the destination pattern, rejecting them if 2539 // they don't exist in the input pattern. 2540 for (std::map<std::string, NameRecord>::iterator 2541 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2542 if (SrcNames[I->first].first == 0) 2543 Pattern->error("Pattern has input without matching name in output: $" + 2544 I->first); 2545 } 2546 2547 // Scan all of the named values in the source pattern, rejecting them if the 2548 // name isn't used in the dest, and isn't used to tie two values together. 2549 for (std::map<std::string, NameRecord>::iterator 2550 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2551 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2552 Pattern->error("Pattern has dead named input: $" + I->first); 2553 2554 PatternsToMatch.push_back(PTM); 2555 } 2556 2557 2558 2559 void CodeGenDAGPatterns::InferInstructionFlags() { 2560 const std::vector<const CodeGenInstruction*> &Instructions = 2561 Target.getInstructionsByEnumValue(); 2562 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2563 CodeGenInstruction &InstInfo = 2564 const_cast<CodeGenInstruction &>(*Instructions[i]); 2565 // Determine properties of the instruction from its pattern. 2566 bool MayStore, MayLoad, HasSideEffects, IsVariadic; 2567 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic, 2568 *this); 2569 InstInfo.mayStore = MayStore; 2570 InstInfo.mayLoad = MayLoad; 2571 InstInfo.hasSideEffects = HasSideEffects; 2572 InstInfo.isVariadic = IsVariadic; 2573 } 2574 } 2575 2576 /// Given a pattern result with an unresolved type, see if we can find one 2577 /// instruction with an unresolved result type. Force this result type to an 2578 /// arbitrary element if it's possible types to converge results. 2579 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2580 if (N->isLeaf()) 2581 return false; 2582 2583 // Analyze children. 2584 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2585 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2586 return true; 2587 2588 if (!N->getOperator()->isSubClassOf("Instruction")) 2589 return false; 2590 2591 // If this type is already concrete or completely unknown we can't do 2592 // anything. 2593 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2594 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2595 continue; 2596 2597 // Otherwise, force its type to the first possibility (an arbitrary choice). 2598 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2599 return true; 2600 } 2601 2602 return false; 2603 } 2604 2605 void CodeGenDAGPatterns::ParsePatterns() { 2606 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2607 2608 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2609 Record *CurPattern = Patterns[i]; 2610 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2611 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2612 2613 // Inline pattern fragments into it. 2614 Pattern->InlinePatternFragments(); 2615 2616 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2617 if (LI->getSize() == 0) continue; // no pattern. 2618 2619 // Parse the instruction. 2620 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2621 2622 // Inline pattern fragments into it. 2623 Result->InlinePatternFragments(); 2624 2625 if (Result->getNumTrees() != 1) 2626 Result->error("Cannot handle instructions producing instructions " 2627 "with temporaries yet!"); 2628 2629 bool IterateInference; 2630 bool InferredAllPatternTypes, InferredAllResultTypes; 2631 do { 2632 // Infer as many types as possible. If we cannot infer all of them, we 2633 // can never do anything with this pattern: report it to the user. 2634 InferredAllPatternTypes = 2635 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2636 2637 // Infer as many types as possible. If we cannot infer all of them, we 2638 // can never do anything with this pattern: report it to the user. 2639 InferredAllResultTypes = 2640 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2641 2642 IterateInference = false; 2643 2644 // Apply the type of the result to the source pattern. This helps us 2645 // resolve cases where the input type is known to be a pointer type (which 2646 // is considered resolved), but the result knows it needs to be 32- or 2647 // 64-bits. Infer the other way for good measure. 2648 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2649 Pattern->getTree(0)->getNumTypes()); 2650 i != e; ++i) { 2651 IterateInference = Pattern->getTree(0)-> 2652 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2653 IterateInference |= Result->getTree(0)-> 2654 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2655 } 2656 2657 // If our iteration has converged and the input pattern's types are fully 2658 // resolved but the result pattern is not fully resolved, we may have a 2659 // situation where we have two instructions in the result pattern and 2660 // the instructions require a common register class, but don't care about 2661 // what actual MVT is used. This is actually a bug in our modelling: 2662 // output patterns should have register classes, not MVTs. 2663 // 2664 // In any case, to handle this, we just go through and disambiguate some 2665 // arbitrary types to the result pattern's nodes. 2666 if (!IterateInference && InferredAllPatternTypes && 2667 !InferredAllResultTypes) 2668 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2669 *Result); 2670 } while (IterateInference); 2671 2672 // Verify that we inferred enough types that we can do something with the 2673 // pattern and result. If these fire the user has to add type casts. 2674 if (!InferredAllPatternTypes) 2675 Pattern->error("Could not infer all types in pattern!"); 2676 if (!InferredAllResultTypes) { 2677 Pattern->dump(); 2678 Result->error("Could not infer all types in pattern result!"); 2679 } 2680 2681 // Validate that the input pattern is correct. 2682 std::map<std::string, TreePatternNode*> InstInputs; 2683 std::map<std::string, TreePatternNode*> InstResults; 2684 std::vector<Record*> InstImpResults; 2685 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2686 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2687 InstInputs, InstResults, 2688 InstImpResults); 2689 2690 // Promote the xform function to be an explicit node if set. 2691 TreePatternNode *DstPattern = Result->getOnlyTree(); 2692 std::vector<TreePatternNode*> ResultNodeOperands; 2693 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2694 TreePatternNode *OpNode = DstPattern->getChild(ii); 2695 if (Record *Xform = OpNode->getTransformFn()) { 2696 OpNode->setTransformFn(0); 2697 std::vector<TreePatternNode*> Children; 2698 Children.push_back(OpNode); 2699 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2700 } 2701 ResultNodeOperands.push_back(OpNode); 2702 } 2703 DstPattern = Result->getOnlyTree(); 2704 if (!DstPattern->isLeaf()) 2705 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2706 ResultNodeOperands, 2707 DstPattern->getNumTypes()); 2708 2709 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2710 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2711 2712 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2713 Temp.InferAllTypes(); 2714 2715 2716 AddPatternToMatch(Pattern, 2717 PatternToMatch(CurPattern->getValueAsListInit("Predicates"), 2718 Pattern->getTree(0), 2719 Temp.getOnlyTree(), InstImpResults, 2720 CurPattern->getValueAsInt("AddedComplexity"), 2721 CurPattern->getID())); 2722 } 2723 } 2724 2725 /// CombineChildVariants - Given a bunch of permutations of each child of the 2726 /// 'operator' node, put them together in all possible ways. 2727 static void CombineChildVariants(TreePatternNode *Orig, 2728 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2729 std::vector<TreePatternNode*> &OutVariants, 2730 CodeGenDAGPatterns &CDP, 2731 const MultipleUseVarSet &DepVars) { 2732 // Make sure that each operand has at least one variant to choose from. 2733 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2734 if (ChildVariants[i].empty()) 2735 return; 2736 2737 // The end result is an all-pairs construction of the resultant pattern. 2738 std::vector<unsigned> Idxs; 2739 Idxs.resize(ChildVariants.size()); 2740 bool NotDone; 2741 do { 2742 #ifndef NDEBUG 2743 DEBUG(if (!Idxs.empty()) { 2744 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2745 for (unsigned i = 0; i < Idxs.size(); ++i) { 2746 errs() << Idxs[i] << " "; 2747 } 2748 errs() << "]\n"; 2749 }); 2750 #endif 2751 // Create the variant and add it to the output list. 2752 std::vector<TreePatternNode*> NewChildren; 2753 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2754 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2755 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 2756 Orig->getNumTypes()); 2757 2758 // Copy over properties. 2759 R->setName(Orig->getName()); 2760 R->setPredicateFns(Orig->getPredicateFns()); 2761 R->setTransformFn(Orig->getTransformFn()); 2762 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 2763 R->setType(i, Orig->getExtType(i)); 2764 2765 // If this pattern cannot match, do not include it as a variant. 2766 std::string ErrString; 2767 if (!R->canPatternMatch(ErrString, CDP)) { 2768 delete R; 2769 } else { 2770 bool AlreadyExists = false; 2771 2772 // Scan to see if this pattern has already been emitted. We can get 2773 // duplication due to things like commuting: 2774 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2775 // which are the same pattern. Ignore the dups. 2776 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2777 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2778 AlreadyExists = true; 2779 break; 2780 } 2781 2782 if (AlreadyExists) 2783 delete R; 2784 else 2785 OutVariants.push_back(R); 2786 } 2787 2788 // Increment indices to the next permutation by incrementing the 2789 // indicies from last index backward, e.g., generate the sequence 2790 // [0, 0], [0, 1], [1, 0], [1, 1]. 2791 int IdxsIdx; 2792 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2793 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2794 Idxs[IdxsIdx] = 0; 2795 else 2796 break; 2797 } 2798 NotDone = (IdxsIdx >= 0); 2799 } while (NotDone); 2800 } 2801 2802 /// CombineChildVariants - A helper function for binary operators. 2803 /// 2804 static void CombineChildVariants(TreePatternNode *Orig, 2805 const std::vector<TreePatternNode*> &LHS, 2806 const std::vector<TreePatternNode*> &RHS, 2807 std::vector<TreePatternNode*> &OutVariants, 2808 CodeGenDAGPatterns &CDP, 2809 const MultipleUseVarSet &DepVars) { 2810 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2811 ChildVariants.push_back(LHS); 2812 ChildVariants.push_back(RHS); 2813 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2814 } 2815 2816 2817 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2818 std::vector<TreePatternNode *> &Children) { 2819 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 2820 Record *Operator = N->getOperator(); 2821 2822 // Only permit raw nodes. 2823 if (!N->getName().empty() || !N->getPredicateFns().empty() || 2824 N->getTransformFn()) { 2825 Children.push_back(N); 2826 return; 2827 } 2828 2829 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 2830 Children.push_back(N->getChild(0)); 2831 else 2832 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 2833 2834 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 2835 Children.push_back(N->getChild(1)); 2836 else 2837 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 2838 } 2839 2840 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 2841 /// the (potentially recursive) pattern by using algebraic laws. 2842 /// 2843 static void GenerateVariantsOf(TreePatternNode *N, 2844 std::vector<TreePatternNode*> &OutVariants, 2845 CodeGenDAGPatterns &CDP, 2846 const MultipleUseVarSet &DepVars) { 2847 // We cannot permute leaves. 2848 if (N->isLeaf()) { 2849 OutVariants.push_back(N); 2850 return; 2851 } 2852 2853 // Look up interesting info about the node. 2854 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 2855 2856 // If this node is associative, re-associate. 2857 if (NodeInfo.hasProperty(SDNPAssociative)) { 2858 // Re-associate by pulling together all of the linked operators 2859 std::vector<TreePatternNode*> MaximalChildren; 2860 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 2861 2862 // Only handle child sizes of 3. Otherwise we'll end up trying too many 2863 // permutations. 2864 if (MaximalChildren.size() == 3) { 2865 // Find the variants of all of our maximal children. 2866 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 2867 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 2868 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 2869 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 2870 2871 // There are only two ways we can permute the tree: 2872 // (A op B) op C and A op (B op C) 2873 // Within these forms, we can also permute A/B/C. 2874 2875 // Generate legal pair permutations of A/B/C. 2876 std::vector<TreePatternNode*> ABVariants; 2877 std::vector<TreePatternNode*> BAVariants; 2878 std::vector<TreePatternNode*> ACVariants; 2879 std::vector<TreePatternNode*> CAVariants; 2880 std::vector<TreePatternNode*> BCVariants; 2881 std::vector<TreePatternNode*> CBVariants; 2882 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 2883 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 2884 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 2885 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 2886 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 2887 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 2888 2889 // Combine those into the result: (x op x) op x 2890 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 2891 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 2892 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 2893 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 2894 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 2895 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 2896 2897 // Combine those into the result: x op (x op x) 2898 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 2899 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 2900 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 2901 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 2902 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 2903 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 2904 return; 2905 } 2906 } 2907 2908 // Compute permutations of all children. 2909 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2910 ChildVariants.resize(N->getNumChildren()); 2911 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2912 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 2913 2914 // Build all permutations based on how the children were formed. 2915 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 2916 2917 // If this node is commutative, consider the commuted order. 2918 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 2919 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2920 assert((N->getNumChildren()==2 || isCommIntrinsic) && 2921 "Commutative but doesn't have 2 children!"); 2922 // Don't count children which are actually register references. 2923 unsigned NC = 0; 2924 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2925 TreePatternNode *Child = N->getChild(i); 2926 if (Child->isLeaf()) 2927 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 2928 Record *RR = DI->getDef(); 2929 if (RR->isSubClassOf("Register")) 2930 continue; 2931 } 2932 NC++; 2933 } 2934 // Consider the commuted order. 2935 if (isCommIntrinsic) { 2936 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 2937 // operands are the commutative operands, and there might be more operands 2938 // after those. 2939 assert(NC >= 3 && 2940 "Commutative intrinsic should have at least 3 childrean!"); 2941 std::vector<std::vector<TreePatternNode*> > Variants; 2942 Variants.push_back(ChildVariants[0]); // Intrinsic id. 2943 Variants.push_back(ChildVariants[2]); 2944 Variants.push_back(ChildVariants[1]); 2945 for (unsigned i = 3; i != NC; ++i) 2946 Variants.push_back(ChildVariants[i]); 2947 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 2948 } else if (NC == 2) 2949 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 2950 OutVariants, CDP, DepVars); 2951 } 2952 } 2953 2954 2955 // GenerateVariants - Generate variants. For example, commutative patterns can 2956 // match multiple ways. Add them to PatternsToMatch as well. 2957 void CodeGenDAGPatterns::GenerateVariants() { 2958 DEBUG(errs() << "Generating instruction variants.\n"); 2959 2960 // Loop over all of the patterns we've collected, checking to see if we can 2961 // generate variants of the instruction, through the exploitation of 2962 // identities. This permits the target to provide aggressive matching without 2963 // the .td file having to contain tons of variants of instructions. 2964 // 2965 // Note that this loop adds new patterns to the PatternsToMatch list, but we 2966 // intentionally do not reconsider these. Any variants of added patterns have 2967 // already been added. 2968 // 2969 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 2970 MultipleUseVarSet DepVars; 2971 std::vector<TreePatternNode*> Variants; 2972 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 2973 DEBUG(errs() << "Dependent/multiply used variables: "); 2974 DEBUG(DumpDepVars(DepVars)); 2975 DEBUG(errs() << "\n"); 2976 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 2977 DepVars); 2978 2979 assert(!Variants.empty() && "Must create at least original variant!"); 2980 Variants.erase(Variants.begin()); // Remove the original pattern. 2981 2982 if (Variants.empty()) // No variants for this pattern. 2983 continue; 2984 2985 DEBUG(errs() << "FOUND VARIANTS OF: "; 2986 PatternsToMatch[i].getSrcPattern()->dump(); 2987 errs() << "\n"); 2988 2989 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 2990 TreePatternNode *Variant = Variants[v]; 2991 2992 DEBUG(errs() << " VAR#" << v << ": "; 2993 Variant->dump(); 2994 errs() << "\n"); 2995 2996 // Scan to see if an instruction or explicit pattern already matches this. 2997 bool AlreadyExists = false; 2998 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 2999 // Skip if the top level predicates do not match. 3000 if (PatternsToMatch[i].getPredicates() != 3001 PatternsToMatch[p].getPredicates()) 3002 continue; 3003 // Check to see if this variant already exists. 3004 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3005 DepVars)) { 3006 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3007 AlreadyExists = true; 3008 break; 3009 } 3010 } 3011 // If we already have it, ignore the variant. 3012 if (AlreadyExists) continue; 3013 3014 // Otherwise, add it to the list of patterns we have. 3015 PatternsToMatch. 3016 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), 3017 Variant, PatternsToMatch[i].getDstPattern(), 3018 PatternsToMatch[i].getDstRegs(), 3019 PatternsToMatch[i].getAddedComplexity(), 3020 Record::getNewUID())); 3021 } 3022 3023 DEBUG(errs() << "\n"); 3024 } 3025 } 3026 3027