1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   SmallDenseSet<unsigned, 4> Modes;
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     Modes.insert(M);
117     // Make sure there exists a set for each specific mode from VVT.
118     Changed |= getOrCreate(M).insert(P.second).second;
119     // Cache VVT's default mode.
120     if (DefaultMode == M) {
121       ContainsDefault = true;
122       DT = P.second;
123     }
124   }
125 
126   // If VVT has a default mode, add the corresponding type to all
127   // modes in "this" that do not exist in VVT.
128   if (ContainsDefault)
129     for (auto &I : *this)
130       if (!Modes.count(I.first))
131         Changed |= I.second.insert(DT).second;
132 
133   return Changed;
134 }
135 
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138   bool Changed = false;
139   if (hasDefault()) {
140     for (const auto &I : VTS) {
141       unsigned M = I.first;
142       if (M == DefaultMode || hasMode(M))
143         continue;
144       Map.insert({M, Map.at(DefaultMode)});
145       Changed = true;
146     }
147   }
148 
149   for (auto &I : *this) {
150     unsigned M = I.first;
151     SetType &S = I.second;
152     if (VTS.hasMode(M) || VTS.hasDefault()) {
153       Changed |= intersect(I.second, VTS.get(M));
154     } else if (!S.empty()) {
155       S.clear();
156       Changed = true;
157     }
158   }
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164   bool Changed = false;
165   for (auto &I : *this)
166     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167   return Changed;
168 }
169 
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172   assert(empty());
173   for (const auto &I : VTS) {
174     SetType &S = getOrCreate(I.first);
175     for (auto J : I.second)
176       if (P(J))
177         S.insert(J);
178   }
179   return !empty();
180 }
181 
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183   SmallVector<unsigned, 4> Modes;
184   Modes.reserve(Map.size());
185 
186   for (const auto &I : *this)
187     Modes.push_back(I.first);
188   if (Modes.empty()) {
189     OS << "{}";
190     return;
191   }
192   array_pod_sort(Modes.begin(), Modes.end());
193 
194   OS << '{';
195   for (unsigned M : Modes) {
196     OS << ' ' << getModeName(M) << ':';
197     writeToStream(get(M), OS);
198   }
199   OS << " }";
200 }
201 
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203   SmallVector<MVT, 4> Types(S.begin(), S.end());
204   array_pod_sort(Types.begin(), Types.end());
205 
206   OS << '[';
207   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208     OS << ValueTypeByHwMode::getMVTName(Types[i]);
209     if (i != e-1)
210       OS << ' ';
211   }
212   OS << ']';
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallDenseSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263 }
264 
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267   dbgs() << *this << '\n';
268 }
269 
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273 
274   if (OutP == InP)
275     return berase_if(Out, Int);
276 
277   // Compute the intersection of scalars separately to account for only
278   // one set containing iPTR.
279   // The itersection of iPTR with a set of integer scalar types that does not
280   // include iPTR will result in the most specific scalar type:
281   // - iPTR is more specific than any set with two elements or more
282   // - iPTR is less specific than any single integer scalar type.
283   // For example
284   // { iPTR } * { i32 }     -> { i32 }
285   // { iPTR } * { i32 i64 } -> { iPTR }
286   // and
287   // { iPTR i32 } * { i32 }          -> { i32 }
288   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
289   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290 
291   // Compute the difference between the two sets in such a way that the
292   // iPTR is in the set that is being subtracted. This is to see if there
293   // are any extra scalars in the set without iPTR that are not in the
294   // set containing iPTR. Then the iPTR could be considered a "wildcard"
295   // matching these scalars. If there is only one such scalar, it would
296   // replace the iPTR, if there are more, the iPTR would be retained.
297   SetType Diff;
298   if (InP) {
299     Diff = Out;
300     berase_if(Diff, [&In](MVT T) { return In.count(T); });
301     // Pre-remove these elements and rely only on InP/OutP to determine
302     // whether a change has been made.
303     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304   } else {
305     Diff = In;
306     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307     Out.erase(MVT::iPTR);
308   }
309 
310   // The actual intersection.
311   bool Changed = berase_if(Out, Int);
312   unsigned NumD = Diff.size();
313   if (NumD == 0)
314     return Changed;
315 
316   if (NumD == 1) {
317     Out.insert(*Diff.begin());
318     // This is a change only if Out was the one with iPTR (which is now
319     // being replaced).
320     Changed |= OutP;
321   } else {
322     // Multiple elements from Out are now replaced with iPTR.
323     Out.insert(MVT::iPTR);
324     Changed |= !OutP;
325   }
326   return Changed;
327 }
328 
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331   if (empty())
332     return true;
333   bool AllEmpty = true;
334   for (const auto &I : *this)
335     AllEmpty &= I.second.empty();
336   return !AllEmpty;
337 #endif
338   return true;
339 }
340 
341 // --- TypeInfer
342 
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344                                 const TypeSetByHwMode &In) {
345   ValidateOnExit _1(Out, *this);
346   In.validate();
347   if (In.empty() || Out == In || TP.hasError())
348     return false;
349   if (Out.empty()) {
350     Out = In;
351     return true;
352   }
353 
354   bool Changed = Out.constrain(In);
355   if (Changed && Out.empty())
356     TP.error("Type contradiction");
357 
358   return Changed;
359 }
360 
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362   ValidateOnExit _1(Out, *this);
363   if (TP.hasError())
364     return false;
365   assert(!Out.empty() && "cannot pick from an empty set");
366 
367   bool Changed = false;
368   for (auto &I : Out) {
369     TypeSetByHwMode::SetType &S = I.second;
370     if (S.size() <= 1)
371       continue;
372     MVT T = *S.begin(); // Pick the first element.
373     S.clear();
374     S.insert(T);
375     Changed = true;
376   }
377   return Changed;
378 }
379 
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   if (!Out.empty())
385     return Out.constrain(isIntegerOrPtr);
386 
387   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388 }
389 
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391   ValidateOnExit _1(Out, *this);
392   if (TP.hasError())
393     return false;
394   if (!Out.empty())
395     return Out.constrain(isFloatingPoint);
396 
397   return Out.assign_if(getLegalTypes(), isFloatingPoint);
398 }
399 
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401   ValidateOnExit _1(Out, *this);
402   if (TP.hasError())
403     return false;
404   if (!Out.empty())
405     return Out.constrain(isScalar);
406 
407   return Out.assign_if(getLegalTypes(), isScalar);
408 }
409 
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411   ValidateOnExit _1(Out, *this);
412   if (TP.hasError())
413     return false;
414   if (!Out.empty())
415     return Out.constrain(isVector);
416 
417   return Out.assign_if(getLegalTypes(), isVector);
418 }
419 
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421   ValidateOnExit _1(Out, *this);
422   if (TP.hasError() || !Out.empty())
423     return false;
424 
425   Out = getLegalTypes();
426   return true;
427 }
428 
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431   if (B == E)
432     return E;
433   Iter Min = E;
434   for (Iter I = B; I != E; ++I) {
435     if (!P(*I))
436       continue;
437     if (Min == E || L(*I, *Min))
438       Min = I;
439   }
440   return Min;
441 }
442 
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445   if (B == E)
446     return E;
447   Iter Max = E;
448   for (Iter I = B; I != E; ++I) {
449     if (!P(*I))
450       continue;
451     if (Max == E || L(*Max, *I))
452       Max = I;
453   }
454   return Max;
455 }
456 
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459                                    TypeSetByHwMode &Big) {
460   ValidateOnExit _1(Small, *this), _2(Big, *this);
461   if (TP.hasError())
462     return false;
463   bool Changed = false;
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   std::vector<unsigned> Modes = union_modes(Small, Big);
473 
474   // 1. Only allow integer or floating point types and make sure that
475   //    both sides are both integer or both floating point.
476   // 2. Make sure that either both sides have vector types, or neither
477   //    of them does.
478   for (unsigned M : Modes) {
479     TypeSetByHwMode::SetType &S = Small.get(M);
480     TypeSetByHwMode::SetType &B = Big.get(M);
481 
482     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484       Changed |= berase_if(S, NotInt) |
485                  berase_if(B, NotInt);
486     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488       Changed |= berase_if(S, NotFP) |
489                  berase_if(B, NotFP);
490     } else if (S.empty() || B.empty()) {
491       Changed = !S.empty() || !B.empty();
492       S.clear();
493       B.clear();
494     } else {
495       TP.error("Incompatible types");
496       return Changed;
497     }
498 
499     if (none_of(S, isVector) || none_of(B, isVector)) {
500       Changed |= berase_if(S, isVector) |
501                  berase_if(B, isVector);
502     }
503   }
504 
505   auto LT = [](MVT A, MVT B) -> bool {
506     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508             A.getSizeInBits() < B.getSizeInBits());
509   };
510   auto LE = [&LT](MVT A, MVT B) -> bool {
511     // This function is used when removing elements: when a vector is compared
512     // to a non-vector, it should return false (to avoid removal).
513     if (A.isVector() != B.isVector())
514       return false;
515 
516     return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517                         A.getSizeInBits() == B.getSizeInBits());
518   };
519 
520   for (unsigned M : Modes) {
521     TypeSetByHwMode::SetType &S = Small.get(M);
522     TypeSetByHwMode::SetType &B = Big.get(M);
523     // MinS = min scalar in Small, remove all scalars from Big that are
524     // smaller-or-equal than MinS.
525     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526     if (MinS != S.end())
527       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528 
529     // MaxS = max scalar in Big, remove all scalars from Small that are
530     // larger than MaxS.
531     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532     if (MaxS != B.end())
533       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534 
535     // MinV = min vector in Small, remove all vectors from Big that are
536     // smaller-or-equal than MinV.
537     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538     if (MinV != S.end())
539       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540 
541     // MaxV = max vector in Big, remove all vectors from Small that are
542     // larger than MaxV.
543     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544     if (MaxV != B.end())
545       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546   }
547 
548   return Changed;
549 }
550 
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 ///    for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 ///    type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556                                        TypeSetByHwMode &Elem) {
557   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558   if (TP.hasError())
559     return false;
560   bool Changed = false;
561 
562   if (Vec.empty())
563     Changed |= EnforceVector(Vec);
564   if (Elem.empty())
565     Changed |= EnforceScalar(Elem);
566 
567   for (unsigned M : union_modes(Vec, Elem)) {
568     TypeSetByHwMode::SetType &V = Vec.get(M);
569     TypeSetByHwMode::SetType &E = Elem.get(M);
570 
571     Changed |= berase_if(V, isScalar);  // Scalar = !vector
572     Changed |= berase_if(E, isVector);  // Vector = !scalar
573     assert(!V.empty() && !E.empty());
574 
575     SmallSet<MVT,4> VT, ST;
576     // Collect element types from the "vector" set.
577     for (MVT T : V)
578       VT.insert(T.getVectorElementType());
579     // Collect scalar types from the "element" set.
580     for (MVT T : E)
581       ST.insert(T);
582 
583     // Remove from V all (vector) types whose element type is not in S.
584     Changed |= berase_if(V, [&ST](MVT T) -> bool {
585                               return !ST.count(T.getVectorElementType());
586                             });
587     // Remove from E all (scalar) types, for which there is no corresponding
588     // type in V.
589     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590   }
591 
592   return Changed;
593 }
594 
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596                                        const ValueTypeByHwMode &VVT) {
597   TypeSetByHwMode Tmp(VVT);
598   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599   return EnforceVectorEltTypeIs(Vec, Tmp);
600 }
601 
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606                                              TypeSetByHwMode &Sub) {
607   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608   if (TP.hasError())
609     return false;
610 
611   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612   auto IsSubVec = [](MVT B, MVT P) -> bool {
613     if (!B.isVector() || !P.isVector())
614       return false;
615     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616     // but until there are obvious use-cases for this, keep the
617     // types separate.
618     if (B.isScalableVector() != P.isScalableVector())
619       return false;
620     if (B.getVectorElementType() != P.getVectorElementType())
621       return false;
622     return B.getVectorNumElements() < P.getVectorNumElements();
623   };
624 
625   /// Return true if S has no element (vector type) that T is a sub-vector of,
626   /// i.e. has the same element type as T and more elements.
627   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(T, I))
630         return false;
631     return true;
632   };
633 
634   /// Return true if S has no element (vector type) that T is a super-vector
635   /// of, i.e. has the same element type as T and fewer elements.
636   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637     for (const auto &I : S)
638       if (IsSubVec(I, T))
639         return false;
640     return true;
641   };
642 
643   bool Changed = false;
644 
645   if (Vec.empty())
646     Changed |= EnforceVector(Vec);
647   if (Sub.empty())
648     Changed |= EnforceVector(Sub);
649 
650   for (unsigned M : union_modes(Vec, Sub)) {
651     TypeSetByHwMode::SetType &S = Sub.get(M);
652     TypeSetByHwMode::SetType &V = Vec.get(M);
653 
654     Changed |= berase_if(S, isScalar);
655 
656     // Erase all types from S that are not sub-vectors of a type in V.
657     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658 
659     // Erase all types from V that are not super-vectors of a type in S.
660     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661   }
662 
663   return Changed;
664 }
665 
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 ///    type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 ///    type T in V, such that T and U have the same number of elements
671 ///    (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673   ValidateOnExit _1(V, *this), _2(W, *this);
674   if (TP.hasError())
675     return false;
676 
677   bool Changed = false;
678   if (V.empty())
679     Changed |= EnforceAny(V);
680   if (W.empty())
681     Changed |= EnforceAny(W);
682 
683   // An actual vector type cannot have 0 elements, so we can treat scalars
684   // as zero-length vectors. This way both vectors and scalars can be
685   // processed identically.
686   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688   };
689 
690   for (unsigned M : union_modes(V, W)) {
691     TypeSetByHwMode::SetType &VS = V.get(M);
692     TypeSetByHwMode::SetType &WS = W.get(M);
693 
694     SmallSet<unsigned,2> VN, WN;
695     for (MVT T : VS)
696       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697     for (MVT T : WS)
698       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699 
700     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702   }
703   return Changed;
704 }
705 
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 ///    such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 ///    such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711   ValidateOnExit _1(A, *this), _2(B, *this);
712   if (TP.hasError())
713     return false;
714   bool Changed = false;
715   if (A.empty())
716     Changed |= EnforceAny(A);
717   if (B.empty())
718     Changed |= EnforceAny(B);
719 
720   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721     return !Sizes.count(T.getSizeInBits());
722   };
723 
724   for (unsigned M : union_modes(A, B)) {
725     TypeSetByHwMode::SetType &AS = A.get(M);
726     TypeSetByHwMode::SetType &BS = B.get(M);
727     SmallSet<unsigned,2> AN, BN;
728 
729     for (MVT T : AS)
730       AN.insert(T.getSizeInBits());
731     for (MVT T : BS)
732       BN.insert(T.getSizeInBits());
733 
734     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736   }
737 
738   return Changed;
739 }
740 
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742   ValidateOnExit _1(VTS, *this);
743   const TypeSetByHwMode &Legal = getLegalTypes();
744   assert(Legal.isDefaultOnly() && "Default-mode only expected");
745   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746 
747   for (auto &I : VTS)
748     expandOverloads(I.second, LegalTypes);
749 }
750 
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752                                 const TypeSetByHwMode::SetType &Legal) {
753   std::set<MVT> Ovs;
754   for (MVT T : Out) {
755     if (!T.isOverloaded())
756       continue;
757 
758     Ovs.insert(T);
759     // MachineValueTypeSet allows iteration and erasing.
760     Out.erase(T);
761   }
762 
763   for (MVT Ov : Ovs) {
764     switch (Ov.SimpleTy) {
765       case MVT::iPTRAny:
766         Out.insert(MVT::iPTR);
767         return;
768       case MVT::iAny:
769         for (MVT T : MVT::integer_valuetypes())
770           if (Legal.count(T))
771             Out.insert(T);
772         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         for (MVT T : MVT::integer_scalable_vector_valuetypes())
776           if (Legal.count(T))
777             Out.insert(T);
778         return;
779       case MVT::fAny:
780         for (MVT T : MVT::fp_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
784           if (Legal.count(T))
785             Out.insert(T);
786         for (MVT T : MVT::fp_scalable_vector_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       case MVT::vAny:
791         for (MVT T : MVT::vector_valuetypes())
792           if (Legal.count(T))
793             Out.insert(T);
794         return;
795       case MVT::Any:
796         for (MVT T : MVT::all_valuetypes())
797           if (Legal.count(T))
798             Out.insert(T);
799         return;
800       default:
801         break;
802     }
803   }
804 }
805 
806 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
807   if (!LegalTypesCached) {
808     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
809     // Stuff all types from all modes into the default mode.
810     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
811     for (const auto &I : LTS)
812       LegalTypes.insert(I.second);
813     LegalTypesCached = true;
814   }
815   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
816   return LegalCache;
817 }
818 
819 #ifndef NDEBUG
820 TypeInfer::ValidateOnExit::~ValidateOnExit() {
821   if (Infer.Validate && !VTS.validate()) {
822     dbgs() << "Type set is empty for each HW mode:\n"
823               "possible type contradiction in the pattern below "
824               "(use -print-records with llvm-tblgen to see all "
825               "expanded records).\n";
826     Infer.TP.dump();
827     llvm_unreachable(nullptr);
828   }
829 }
830 #endif
831 
832 
833 //===----------------------------------------------------------------------===//
834 // ScopedName Implementation
835 //===----------------------------------------------------------------------===//
836 
837 bool ScopedName::operator==(const ScopedName &o) const {
838   return Scope == o.Scope && Identifier == o.Identifier;
839 }
840 
841 bool ScopedName::operator!=(const ScopedName &o) const {
842   return !(*this == o);
843 }
844 
845 
846 //===----------------------------------------------------------------------===//
847 // TreePredicateFn Implementation
848 //===----------------------------------------------------------------------===//
849 
850 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
851 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
852   assert(
853       (!hasPredCode() || !hasImmCode()) &&
854       ".td file corrupt: can't have a node predicate *and* an imm predicate");
855 }
856 
857 bool TreePredicateFn::hasPredCode() const {
858   return isLoad() || isStore() || isAtomic() ||
859          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
860 }
861 
862 std::string TreePredicateFn::getPredCode() const {
863   std::string Code = "";
864 
865   if (!isLoad() && !isStore() && !isAtomic()) {
866     Record *MemoryVT = getMemoryVT();
867 
868     if (MemoryVT)
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "MemoryVT requires IsLoad or IsStore");
871   }
872 
873   if (!isLoad() && !isStore()) {
874     if (isUnindexed())
875       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876                       "IsUnindexed requires IsLoad or IsStore");
877 
878     Record *ScalarMemoryVT = getScalarMemoryVT();
879 
880     if (ScalarMemoryVT)
881       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
882                       "ScalarMemoryVT requires IsLoad or IsStore");
883   }
884 
885   if (isLoad() + isStore() + isAtomic() > 1)
886     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
888 
889   if (isLoad()) {
890     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
891         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
892         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
893         getMinAlignment() < 1)
894       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895                       "IsLoad cannot be used by itself");
896   } else {
897     if (isNonExtLoad())
898       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
899                       "IsNonExtLoad requires IsLoad");
900     if (isAnyExtLoad())
901       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
902                       "IsAnyExtLoad requires IsLoad");
903     if (isSignExtLoad())
904       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
905                       "IsSignExtLoad requires IsLoad");
906     if (isZeroExtLoad())
907       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908                       "IsZeroExtLoad requires IsLoad");
909   }
910 
911   if (isStore()) {
912     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
913         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
914         getAddressSpaces() == nullptr && getMinAlignment() < 1)
915       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916                       "IsStore cannot be used by itself");
917   } else {
918     if (isNonTruncStore())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsNonTruncStore requires IsStore");
921     if (isTruncStore())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsTruncStore requires IsStore");
924   }
925 
926   if (isAtomic()) {
927     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
928         getAddressSpaces() == nullptr &&
929         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
930         !isAtomicOrderingAcquireRelease() &&
931         !isAtomicOrderingSequentiallyConsistent() &&
932         !isAtomicOrderingAcquireOrStronger() &&
933         !isAtomicOrderingReleaseOrStronger() &&
934         !isAtomicOrderingWeakerThanAcquire() &&
935         !isAtomicOrderingWeakerThanRelease())
936       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937                       "IsAtomic cannot be used by itself");
938   } else {
939     if (isAtomicOrderingMonotonic())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsAtomicOrderingMonotonic requires IsAtomic");
942     if (isAtomicOrderingAcquire())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAtomicOrderingAcquire requires IsAtomic");
945     if (isAtomicOrderingRelease())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsAtomicOrderingRelease requires IsAtomic");
948     if (isAtomicOrderingAcquireRelease())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
951     if (isAtomicOrderingSequentiallyConsistent())
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
954     if (isAtomicOrderingAcquireOrStronger())
955       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
957     if (isAtomicOrderingReleaseOrStronger())
958       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
959                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
960     if (isAtomicOrderingWeakerThanAcquire())
961       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
962                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
963   }
964 
965   if (isLoad() || isStore() || isAtomic()) {
966     if (ListInit *AddressSpaces = getAddressSpaces()) {
967       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
968         " if (";
969 
970       bool First = true;
971       for (Init *Val : AddressSpaces->getValues()) {
972         if (First)
973           First = false;
974         else
975           Code += " && ";
976 
977         IntInit *IntVal = dyn_cast<IntInit>(Val);
978         if (!IntVal) {
979           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980                           "AddressSpaces element must be integer");
981         }
982 
983         Code += "AddrSpace != " + utostr(IntVal->getValue());
984       }
985 
986       Code += ")\nreturn false;\n";
987     }
988 
989     int64_t MinAlign = getMinAlignment();
990     if (MinAlign > 0) {
991       Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
992       Code += utostr(MinAlign);
993       Code += ")\nreturn false;\n";
994     }
995 
996     Record *MemoryVT = getMemoryVT();
997 
998     if (MemoryVT)
999       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1000                MemoryVT->getName() + ") return false;\n")
1001                   .str();
1002   }
1003 
1004   if (isAtomic() && isAtomicOrderingMonotonic())
1005     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1006             "AtomicOrdering::Monotonic) return false;\n";
1007   if (isAtomic() && isAtomicOrderingAcquire())
1008     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1009             "AtomicOrdering::Acquire) return false;\n";
1010   if (isAtomic() && isAtomicOrderingRelease())
1011     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1012             "AtomicOrdering::Release) return false;\n";
1013   if (isAtomic() && isAtomicOrderingAcquireRelease())
1014     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1015             "AtomicOrdering::AcquireRelease) return false;\n";
1016   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1017     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1018             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1019 
1020   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1021     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1022             "return false;\n";
1023   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1024     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1025             "return false;\n";
1026 
1027   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1028     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1029             "return false;\n";
1030   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1031     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1032             "return false;\n";
1033 
1034   if (isLoad() || isStore()) {
1035     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1036 
1037     if (isUnindexed())
1038       Code += ("if (cast<" + SDNodeName +
1039                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1040                "return false;\n")
1041                   .str();
1042 
1043     if (isLoad()) {
1044       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1045            isZeroExtLoad()) > 1)
1046         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1047                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1048                         "IsZeroExtLoad are mutually exclusive");
1049       if (isNonExtLoad())
1050         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1051                 "ISD::NON_EXTLOAD) return false;\n";
1052       if (isAnyExtLoad())
1053         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1054                 "return false;\n";
1055       if (isSignExtLoad())
1056         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1057                 "return false;\n";
1058       if (isZeroExtLoad())
1059         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1060                 "return false;\n";
1061     } else {
1062       if ((isNonTruncStore() + isTruncStore()) > 1)
1063         PrintFatalError(
1064             getOrigPatFragRecord()->getRecord()->getLoc(),
1065             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1066       if (isNonTruncStore())
1067         Code +=
1068             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1069       if (isTruncStore())
1070         Code +=
1071             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1072     }
1073 
1074     Record *ScalarMemoryVT = getScalarMemoryVT();
1075 
1076     if (ScalarMemoryVT)
1077       Code += ("if (cast<" + SDNodeName +
1078                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1079                ScalarMemoryVT->getName() + ") return false;\n")
1080                   .str();
1081   }
1082 
1083   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1084 
1085   Code += PredicateCode;
1086 
1087   if (PredicateCode.empty() && !Code.empty())
1088     Code += "return true;\n";
1089 
1090   return Code;
1091 }
1092 
1093 bool TreePredicateFn::hasImmCode() const {
1094   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1095 }
1096 
1097 std::string TreePredicateFn::getImmCode() const {
1098   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1099 }
1100 
1101 bool TreePredicateFn::immCodeUsesAPInt() const {
1102   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1103 }
1104 
1105 bool TreePredicateFn::immCodeUsesAPFloat() const {
1106   bool Unset;
1107   // The return value will be false when IsAPFloat is unset.
1108   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1109                                                                    Unset);
1110 }
1111 
1112 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1113                                                    bool Value) const {
1114   bool Unset;
1115   bool Result =
1116       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1117   if (Unset)
1118     return false;
1119   return Result == Value;
1120 }
1121 bool TreePredicateFn::usesOperands() const {
1122   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1123 }
1124 bool TreePredicateFn::isLoad() const {
1125   return isPredefinedPredicateEqualTo("IsLoad", true);
1126 }
1127 bool TreePredicateFn::isStore() const {
1128   return isPredefinedPredicateEqualTo("IsStore", true);
1129 }
1130 bool TreePredicateFn::isAtomic() const {
1131   return isPredefinedPredicateEqualTo("IsAtomic", true);
1132 }
1133 bool TreePredicateFn::isUnindexed() const {
1134   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1135 }
1136 bool TreePredicateFn::isNonExtLoad() const {
1137   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1138 }
1139 bool TreePredicateFn::isAnyExtLoad() const {
1140   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1141 }
1142 bool TreePredicateFn::isSignExtLoad() const {
1143   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1144 }
1145 bool TreePredicateFn::isZeroExtLoad() const {
1146   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1147 }
1148 bool TreePredicateFn::isNonTruncStore() const {
1149   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1150 }
1151 bool TreePredicateFn::isTruncStore() const {
1152   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1153 }
1154 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1155   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1156 }
1157 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1158   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1159 }
1160 bool TreePredicateFn::isAtomicOrderingRelease() const {
1161   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1162 }
1163 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1164   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1165 }
1166 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1167   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1168                                       true);
1169 }
1170 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1171   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1172 }
1173 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1174   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1175 }
1176 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1177   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1178 }
1179 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1180   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1181 }
1182 Record *TreePredicateFn::getMemoryVT() const {
1183   Record *R = getOrigPatFragRecord()->getRecord();
1184   if (R->isValueUnset("MemoryVT"))
1185     return nullptr;
1186   return R->getValueAsDef("MemoryVT");
1187 }
1188 
1189 ListInit *TreePredicateFn::getAddressSpaces() const {
1190   Record *R = getOrigPatFragRecord()->getRecord();
1191   if (R->isValueUnset("AddressSpaces"))
1192     return nullptr;
1193   return R->getValueAsListInit("AddressSpaces");
1194 }
1195 
1196 int64_t TreePredicateFn::getMinAlignment() const {
1197   Record *R = getOrigPatFragRecord()->getRecord();
1198   if (R->isValueUnset("MinAlignment"))
1199     return 0;
1200   return R->getValueAsInt("MinAlignment");
1201 }
1202 
1203 Record *TreePredicateFn::getScalarMemoryVT() const {
1204   Record *R = getOrigPatFragRecord()->getRecord();
1205   if (R->isValueUnset("ScalarMemoryVT"))
1206     return nullptr;
1207   return R->getValueAsDef("ScalarMemoryVT");
1208 }
1209 bool TreePredicateFn::hasGISelPredicateCode() const {
1210   return !PatFragRec->getRecord()
1211               ->getValueAsString("GISelPredicateCode")
1212               .empty();
1213 }
1214 std::string TreePredicateFn::getGISelPredicateCode() const {
1215   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1216 }
1217 
1218 StringRef TreePredicateFn::getImmType() const {
1219   if (immCodeUsesAPInt())
1220     return "const APInt &";
1221   if (immCodeUsesAPFloat())
1222     return "const APFloat &";
1223   return "int64_t";
1224 }
1225 
1226 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1227   if (immCodeUsesAPInt())
1228     return "APInt";
1229   else if (immCodeUsesAPFloat())
1230     return "APFloat";
1231   return "I64";
1232 }
1233 
1234 /// isAlwaysTrue - Return true if this is a noop predicate.
1235 bool TreePredicateFn::isAlwaysTrue() const {
1236   return !hasPredCode() && !hasImmCode();
1237 }
1238 
1239 /// Return the name to use in the generated code to reference this, this is
1240 /// "Predicate_foo" if from a pattern fragment "foo".
1241 std::string TreePredicateFn::getFnName() const {
1242   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1243 }
1244 
1245 /// getCodeToRunOnSDNode - Return the code for the function body that
1246 /// evaluates this predicate.  The argument is expected to be in "Node",
1247 /// not N.  This handles casting and conversion to a concrete node type as
1248 /// appropriate.
1249 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1250   // Handle immediate predicates first.
1251   std::string ImmCode = getImmCode();
1252   if (!ImmCode.empty()) {
1253     if (isLoad())
1254       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1255                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1256     if (isStore())
1257       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1258                       "IsStore cannot be used with ImmLeaf or its subclasses");
1259     if (isUnindexed())
1260       PrintFatalError(
1261           getOrigPatFragRecord()->getRecord()->getLoc(),
1262           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1263     if (isNonExtLoad())
1264       PrintFatalError(
1265           getOrigPatFragRecord()->getRecord()->getLoc(),
1266           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1267     if (isAnyExtLoad())
1268       PrintFatalError(
1269           getOrigPatFragRecord()->getRecord()->getLoc(),
1270           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1271     if (isSignExtLoad())
1272       PrintFatalError(
1273           getOrigPatFragRecord()->getRecord()->getLoc(),
1274           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1275     if (isZeroExtLoad())
1276       PrintFatalError(
1277           getOrigPatFragRecord()->getRecord()->getLoc(),
1278           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1279     if (isNonTruncStore())
1280       PrintFatalError(
1281           getOrigPatFragRecord()->getRecord()->getLoc(),
1282           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1283     if (isTruncStore())
1284       PrintFatalError(
1285           getOrigPatFragRecord()->getRecord()->getLoc(),
1286           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1287     if (getMemoryVT())
1288       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1289                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1290     if (getScalarMemoryVT())
1291       PrintFatalError(
1292           getOrigPatFragRecord()->getRecord()->getLoc(),
1293           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1294 
1295     std::string Result = ("    " + getImmType() + " Imm = ").str();
1296     if (immCodeUsesAPFloat())
1297       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1298     else if (immCodeUsesAPInt())
1299       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1300     else
1301       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1302     return Result + ImmCode;
1303   }
1304 
1305   // Handle arbitrary node predicates.
1306   assert(hasPredCode() && "Don't have any predicate code!");
1307   StringRef ClassName;
1308   if (PatFragRec->getOnlyTree()->isLeaf())
1309     ClassName = "SDNode";
1310   else {
1311     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1312     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1313   }
1314   std::string Result;
1315   if (ClassName == "SDNode")
1316     Result = "    SDNode *N = Node;\n";
1317   else
1318     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1319 
1320   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1321 }
1322 
1323 //===----------------------------------------------------------------------===//
1324 // PatternToMatch implementation
1325 //
1326 
1327 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1328   if (!P->isLeaf())
1329     return false;
1330   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1331   if (!DI)
1332     return false;
1333 
1334   Record *R = DI->getDef();
1335   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1336 }
1337 
1338 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1339 /// patterns before small ones.  This is used to determine the size of a
1340 /// pattern.
1341 static unsigned getPatternSize(const TreePatternNode *P,
1342                                const CodeGenDAGPatterns &CGP) {
1343   unsigned Size = 3;  // The node itself.
1344   // If the root node is a ConstantSDNode, increases its size.
1345   // e.g. (set R32:$dst, 0).
1346   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1347     Size += 2;
1348 
1349   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1350     Size += AM->getComplexity();
1351     // We don't want to count any children twice, so return early.
1352     return Size;
1353   }
1354 
1355   // If this node has some predicate function that must match, it adds to the
1356   // complexity of this node.
1357   if (!P->getPredicateCalls().empty())
1358     ++Size;
1359 
1360   // Count children in the count if they are also nodes.
1361   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1362     const TreePatternNode *Child = P->getChild(i);
1363     if (!Child->isLeaf() && Child->getNumTypes()) {
1364       const TypeSetByHwMode &T0 = Child->getExtType(0);
1365       // At this point, all variable type sets should be simple, i.e. only
1366       // have a default mode.
1367       if (T0.getMachineValueType() != MVT::Other) {
1368         Size += getPatternSize(Child, CGP);
1369         continue;
1370       }
1371     }
1372     if (Child->isLeaf()) {
1373       if (isa<IntInit>(Child->getLeafValue()))
1374         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1375       else if (Child->getComplexPatternInfo(CGP))
1376         Size += getPatternSize(Child, CGP);
1377       else if (isImmAllOnesAllZerosMatch(Child))
1378         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1379       else if (!Child->getPredicateCalls().empty())
1380         ++Size;
1381     }
1382   }
1383 
1384   return Size;
1385 }
1386 
1387 /// Compute the complexity metric for the input pattern.  This roughly
1388 /// corresponds to the number of nodes that are covered.
1389 int PatternToMatch::
1390 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1391   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1392 }
1393 
1394 /// getPredicateCheck - Return a single string containing all of this
1395 /// pattern's predicates concatenated with "&&" operators.
1396 ///
1397 std::string PatternToMatch::getPredicateCheck() const {
1398   SmallVector<const Predicate*,4> PredList;
1399   for (const Predicate &P : Predicates) {
1400     if (!P.getCondString().empty())
1401       PredList.push_back(&P);
1402   }
1403   llvm::sort(PredList, deref<std::less<>>());
1404 
1405   std::string Check;
1406   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1407     if (i != 0)
1408       Check += " && ";
1409     Check += '(' + PredList[i]->getCondString() + ')';
1410   }
1411   return Check;
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 // SDTypeConstraint implementation
1416 //
1417 
1418 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1419   OperandNo = R->getValueAsInt("OperandNum");
1420 
1421   if (R->isSubClassOf("SDTCisVT")) {
1422     ConstraintType = SDTCisVT;
1423     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1424     for (const auto &P : VVT)
1425       if (P.second == MVT::isVoid)
1426         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1427   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1428     ConstraintType = SDTCisPtrTy;
1429   } else if (R->isSubClassOf("SDTCisInt")) {
1430     ConstraintType = SDTCisInt;
1431   } else if (R->isSubClassOf("SDTCisFP")) {
1432     ConstraintType = SDTCisFP;
1433   } else if (R->isSubClassOf("SDTCisVec")) {
1434     ConstraintType = SDTCisVec;
1435   } else if (R->isSubClassOf("SDTCisSameAs")) {
1436     ConstraintType = SDTCisSameAs;
1437     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1438   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1439     ConstraintType = SDTCisVTSmallerThanOp;
1440     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1441       R->getValueAsInt("OtherOperandNum");
1442   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1443     ConstraintType = SDTCisOpSmallerThanOp;
1444     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1445       R->getValueAsInt("BigOperandNum");
1446   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1447     ConstraintType = SDTCisEltOfVec;
1448     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1449   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1450     ConstraintType = SDTCisSubVecOfVec;
1451     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1452       R->getValueAsInt("OtherOpNum");
1453   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1454     ConstraintType = SDTCVecEltisVT;
1455     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1456     for (const auto &P : VVT) {
1457       MVT T = P.second;
1458       if (T.isVector())
1459         PrintFatalError(R->getLoc(),
1460                         "Cannot use vector type as SDTCVecEltisVT");
1461       if (!T.isInteger() && !T.isFloatingPoint())
1462         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1463                                      "as SDTCVecEltisVT");
1464     }
1465   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1466     ConstraintType = SDTCisSameNumEltsAs;
1467     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1468       R->getValueAsInt("OtherOperandNum");
1469   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1470     ConstraintType = SDTCisSameSizeAs;
1471     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1472       R->getValueAsInt("OtherOperandNum");
1473   } else {
1474     PrintFatalError(R->getLoc(),
1475                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1476   }
1477 }
1478 
1479 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1480 /// N, and the result number in ResNo.
1481 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1482                                       const SDNodeInfo &NodeInfo,
1483                                       unsigned &ResNo) {
1484   unsigned NumResults = NodeInfo.getNumResults();
1485   if (OpNo < NumResults) {
1486     ResNo = OpNo;
1487     return N;
1488   }
1489 
1490   OpNo -= NumResults;
1491 
1492   if (OpNo >= N->getNumChildren()) {
1493     std::string S;
1494     raw_string_ostream OS(S);
1495     OS << "Invalid operand number in type constraint "
1496            << (OpNo+NumResults) << " ";
1497     N->print(OS);
1498     PrintFatalError(OS.str());
1499   }
1500 
1501   return N->getChild(OpNo);
1502 }
1503 
1504 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1505 /// constraint to the nodes operands.  This returns true if it makes a
1506 /// change, false otherwise.  If a type contradiction is found, flag an error.
1507 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1508                                            const SDNodeInfo &NodeInfo,
1509                                            TreePattern &TP) const {
1510   if (TP.hasError())
1511     return false;
1512 
1513   unsigned ResNo = 0; // The result number being referenced.
1514   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1515   TypeInfer &TI = TP.getInfer();
1516 
1517   switch (ConstraintType) {
1518   case SDTCisVT:
1519     // Operand must be a particular type.
1520     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1521   case SDTCisPtrTy:
1522     // Operand must be same as target pointer type.
1523     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1524   case SDTCisInt:
1525     // Require it to be one of the legal integer VTs.
1526      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1527   case SDTCisFP:
1528     // Require it to be one of the legal fp VTs.
1529     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1530   case SDTCisVec:
1531     // Require it to be one of the legal vector VTs.
1532     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1533   case SDTCisSameAs: {
1534     unsigned OResNo = 0;
1535     TreePatternNode *OtherNode =
1536       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1537     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1538            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1539   }
1540   case SDTCisVTSmallerThanOp: {
1541     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1542     // have an integer type that is smaller than the VT.
1543     if (!NodeToApply->isLeaf() ||
1544         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1545         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1546                ->isSubClassOf("ValueType")) {
1547       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1548       return false;
1549     }
1550     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1551     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1552     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1553     TypeSetByHwMode TypeListTmp(VVT);
1554 
1555     unsigned OResNo = 0;
1556     TreePatternNode *OtherNode =
1557       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1558                     OResNo);
1559 
1560     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1561   }
1562   case SDTCisOpSmallerThanOp: {
1563     unsigned BResNo = 0;
1564     TreePatternNode *BigOperand =
1565       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1566                     BResNo);
1567     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1568                                  BigOperand->getExtType(BResNo));
1569   }
1570   case SDTCisEltOfVec: {
1571     unsigned VResNo = 0;
1572     TreePatternNode *VecOperand =
1573       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1574                     VResNo);
1575     // Filter vector types out of VecOperand that don't have the right element
1576     // type.
1577     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1578                                      NodeToApply->getExtType(ResNo));
1579   }
1580   case SDTCisSubVecOfVec: {
1581     unsigned VResNo = 0;
1582     TreePatternNode *BigVecOperand =
1583       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1584                     VResNo);
1585 
1586     // Filter vector types out of BigVecOperand that don't have the
1587     // right subvector type.
1588     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1589                                            NodeToApply->getExtType(ResNo));
1590   }
1591   case SDTCVecEltisVT: {
1592     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1593   }
1594   case SDTCisSameNumEltsAs: {
1595     unsigned OResNo = 0;
1596     TreePatternNode *OtherNode =
1597       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1598                     N, NodeInfo, OResNo);
1599     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1600                                  NodeToApply->getExtType(ResNo));
1601   }
1602   case SDTCisSameSizeAs: {
1603     unsigned OResNo = 0;
1604     TreePatternNode *OtherNode =
1605       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1606                     N, NodeInfo, OResNo);
1607     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1608                               NodeToApply->getExtType(ResNo));
1609   }
1610   }
1611   llvm_unreachable("Invalid ConstraintType!");
1612 }
1613 
1614 // Update the node type to match an instruction operand or result as specified
1615 // in the ins or outs lists on the instruction definition. Return true if the
1616 // type was actually changed.
1617 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1618                                              Record *Operand,
1619                                              TreePattern &TP) {
1620   // The 'unknown' operand indicates that types should be inferred from the
1621   // context.
1622   if (Operand->isSubClassOf("unknown_class"))
1623     return false;
1624 
1625   // The Operand class specifies a type directly.
1626   if (Operand->isSubClassOf("Operand")) {
1627     Record *R = Operand->getValueAsDef("Type");
1628     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1629     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1630   }
1631 
1632   // PointerLikeRegClass has a type that is determined at runtime.
1633   if (Operand->isSubClassOf("PointerLikeRegClass"))
1634     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1635 
1636   // Both RegisterClass and RegisterOperand operands derive their types from a
1637   // register class def.
1638   Record *RC = nullptr;
1639   if (Operand->isSubClassOf("RegisterClass"))
1640     RC = Operand;
1641   else if (Operand->isSubClassOf("RegisterOperand"))
1642     RC = Operand->getValueAsDef("RegClass");
1643 
1644   assert(RC && "Unknown operand type");
1645   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1646   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1647 }
1648 
1649 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1650   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1651     if (!TP.getInfer().isConcrete(Types[i], true))
1652       return true;
1653   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1654     if (getChild(i)->ContainsUnresolvedType(TP))
1655       return true;
1656   return false;
1657 }
1658 
1659 bool TreePatternNode::hasProperTypeByHwMode() const {
1660   for (const TypeSetByHwMode &S : Types)
1661     if (!S.isDefaultOnly())
1662       return true;
1663   for (const TreePatternNodePtr &C : Children)
1664     if (C->hasProperTypeByHwMode())
1665       return true;
1666   return false;
1667 }
1668 
1669 bool TreePatternNode::hasPossibleType() const {
1670   for (const TypeSetByHwMode &S : Types)
1671     if (!S.isPossible())
1672       return false;
1673   for (const TreePatternNodePtr &C : Children)
1674     if (!C->hasPossibleType())
1675       return false;
1676   return true;
1677 }
1678 
1679 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1680   for (TypeSetByHwMode &S : Types) {
1681     S.makeSimple(Mode);
1682     // Check if the selected mode had a type conflict.
1683     if (S.get(DefaultMode).empty())
1684       return false;
1685   }
1686   for (const TreePatternNodePtr &C : Children)
1687     if (!C->setDefaultMode(Mode))
1688       return false;
1689   return true;
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 // SDNodeInfo implementation
1694 //
1695 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1696   EnumName    = R->getValueAsString("Opcode");
1697   SDClassName = R->getValueAsString("SDClass");
1698   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1699   NumResults = TypeProfile->getValueAsInt("NumResults");
1700   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1701 
1702   // Parse the properties.
1703   Properties = parseSDPatternOperatorProperties(R);
1704 
1705   // Parse the type constraints.
1706   std::vector<Record*> ConstraintList =
1707     TypeProfile->getValueAsListOfDefs("Constraints");
1708   for (Record *R : ConstraintList)
1709     TypeConstraints.emplace_back(R, CGH);
1710 }
1711 
1712 /// getKnownType - If the type constraints on this node imply a fixed type
1713 /// (e.g. all stores return void, etc), then return it as an
1714 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1715 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1716   unsigned NumResults = getNumResults();
1717   assert(NumResults <= 1 &&
1718          "We only work with nodes with zero or one result so far!");
1719   assert(ResNo == 0 && "Only handles single result nodes so far");
1720 
1721   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1722     // Make sure that this applies to the correct node result.
1723     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1724       continue;
1725 
1726     switch (Constraint.ConstraintType) {
1727     default: break;
1728     case SDTypeConstraint::SDTCisVT:
1729       if (Constraint.VVT.isSimple())
1730         return Constraint.VVT.getSimple().SimpleTy;
1731       break;
1732     case SDTypeConstraint::SDTCisPtrTy:
1733       return MVT::iPTR;
1734     }
1735   }
1736   return MVT::Other;
1737 }
1738 
1739 //===----------------------------------------------------------------------===//
1740 // TreePatternNode implementation
1741 //
1742 
1743 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1744   if (Operator->getName() == "set" ||
1745       Operator->getName() == "implicit")
1746     return 0;  // All return nothing.
1747 
1748   if (Operator->isSubClassOf("Intrinsic"))
1749     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1750 
1751   if (Operator->isSubClassOf("SDNode"))
1752     return CDP.getSDNodeInfo(Operator).getNumResults();
1753 
1754   if (Operator->isSubClassOf("PatFrags")) {
1755     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1756     // the forward reference case where one pattern fragment references another
1757     // before it is processed.
1758     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1759       // The number of results of a fragment with alternative records is the
1760       // maximum number of results across all alternatives.
1761       unsigned NumResults = 0;
1762       for (auto T : PFRec->getTrees())
1763         NumResults = std::max(NumResults, T->getNumTypes());
1764       return NumResults;
1765     }
1766 
1767     ListInit *LI = Operator->getValueAsListInit("Fragments");
1768     assert(LI && "Invalid Fragment");
1769     unsigned NumResults = 0;
1770     for (Init *I : LI->getValues()) {
1771       Record *Op = nullptr;
1772       if (DagInit *Dag = dyn_cast<DagInit>(I))
1773         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1774           Op = DI->getDef();
1775       assert(Op && "Invalid Fragment");
1776       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1777     }
1778     return NumResults;
1779   }
1780 
1781   if (Operator->isSubClassOf("Instruction")) {
1782     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1783 
1784     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1785 
1786     // Subtract any defaulted outputs.
1787     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1788       Record *OperandNode = InstInfo.Operands[i].Rec;
1789 
1790       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1791           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1792         --NumDefsToAdd;
1793     }
1794 
1795     // Add on one implicit def if it has a resolvable type.
1796     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1797       ++NumDefsToAdd;
1798     return NumDefsToAdd;
1799   }
1800 
1801   if (Operator->isSubClassOf("SDNodeXForm"))
1802     return 1;  // FIXME: Generalize SDNodeXForm
1803 
1804   if (Operator->isSubClassOf("ValueType"))
1805     return 1;  // A type-cast of one result.
1806 
1807   if (Operator->isSubClassOf("ComplexPattern"))
1808     return 1;
1809 
1810   errs() << *Operator;
1811   PrintFatalError("Unhandled node in GetNumNodeResults");
1812 }
1813 
1814 void TreePatternNode::print(raw_ostream &OS) const {
1815   if (isLeaf())
1816     OS << *getLeafValue();
1817   else
1818     OS << '(' << getOperator()->getName();
1819 
1820   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1821     OS << ':';
1822     getExtType(i).writeToStream(OS);
1823   }
1824 
1825   if (!isLeaf()) {
1826     if (getNumChildren() != 0) {
1827       OS << " ";
1828       getChild(0)->print(OS);
1829       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1830         OS << ", ";
1831         getChild(i)->print(OS);
1832       }
1833     }
1834     OS << ")";
1835   }
1836 
1837   for (const TreePredicateCall &Pred : PredicateCalls) {
1838     OS << "<<P:";
1839     if (Pred.Scope)
1840       OS << Pred.Scope << ":";
1841     OS << Pred.Fn.getFnName() << ">>";
1842   }
1843   if (TransformFn)
1844     OS << "<<X:" << TransformFn->getName() << ">>";
1845   if (!getName().empty())
1846     OS << ":$" << getName();
1847 
1848   for (const ScopedName &Name : NamesAsPredicateArg)
1849     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1850 }
1851 void TreePatternNode::dump() const {
1852   print(errs());
1853 }
1854 
1855 /// isIsomorphicTo - Return true if this node is recursively
1856 /// isomorphic to the specified node.  For this comparison, the node's
1857 /// entire state is considered. The assigned name is ignored, since
1858 /// nodes with differing names are considered isomorphic. However, if
1859 /// the assigned name is present in the dependent variable set, then
1860 /// the assigned name is considered significant and the node is
1861 /// isomorphic if the names match.
1862 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1863                                      const MultipleUseVarSet &DepVars) const {
1864   if (N == this) return true;
1865   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1866       getPredicateCalls() != N->getPredicateCalls() ||
1867       getTransformFn() != N->getTransformFn())
1868     return false;
1869 
1870   if (isLeaf()) {
1871     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1872       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1873         return ((DI->getDef() == NDI->getDef())
1874                 && (DepVars.find(getName()) == DepVars.end()
1875                     || getName() == N->getName()));
1876       }
1877     }
1878     return getLeafValue() == N->getLeafValue();
1879   }
1880 
1881   if (N->getOperator() != getOperator() ||
1882       N->getNumChildren() != getNumChildren()) return false;
1883   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1884     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1885       return false;
1886   return true;
1887 }
1888 
1889 /// clone - Make a copy of this tree and all of its children.
1890 ///
1891 TreePatternNodePtr TreePatternNode::clone() const {
1892   TreePatternNodePtr New;
1893   if (isLeaf()) {
1894     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1895   } else {
1896     std::vector<TreePatternNodePtr> CChildren;
1897     CChildren.reserve(Children.size());
1898     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1899       CChildren.push_back(getChild(i)->clone());
1900     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1901                                             getNumTypes());
1902   }
1903   New->setName(getName());
1904   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1905   New->Types = Types;
1906   New->setPredicateCalls(getPredicateCalls());
1907   New->setTransformFn(getTransformFn());
1908   return New;
1909 }
1910 
1911 /// RemoveAllTypes - Recursively strip all the types of this tree.
1912 void TreePatternNode::RemoveAllTypes() {
1913   // Reset to unknown type.
1914   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1915   if (isLeaf()) return;
1916   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1917     getChild(i)->RemoveAllTypes();
1918 }
1919 
1920 
1921 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1922 /// with actual values specified by ArgMap.
1923 void TreePatternNode::SubstituteFormalArguments(
1924     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1925   if (isLeaf()) return;
1926 
1927   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1928     TreePatternNode *Child = getChild(i);
1929     if (Child->isLeaf()) {
1930       Init *Val = Child->getLeafValue();
1931       // Note that, when substituting into an output pattern, Val might be an
1932       // UnsetInit.
1933       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1934           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1935         // We found a use of a formal argument, replace it with its value.
1936         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1937         assert(NewChild && "Couldn't find formal argument!");
1938         assert((Child->getPredicateCalls().empty() ||
1939                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1940                "Non-empty child predicate clobbered!");
1941         setChild(i, std::move(NewChild));
1942       }
1943     } else {
1944       getChild(i)->SubstituteFormalArguments(ArgMap);
1945     }
1946   }
1947 }
1948 
1949 
1950 /// InlinePatternFragments - If this pattern refers to any pattern
1951 /// fragments, return the set of inlined versions (this can be more than
1952 /// one if a PatFrags record has multiple alternatives).
1953 void TreePatternNode::InlinePatternFragments(
1954   TreePatternNodePtr T, TreePattern &TP,
1955   std::vector<TreePatternNodePtr> &OutAlternatives) {
1956 
1957   if (TP.hasError())
1958     return;
1959 
1960   if (isLeaf()) {
1961     OutAlternatives.push_back(T);  // nothing to do.
1962     return;
1963   }
1964 
1965   Record *Op = getOperator();
1966 
1967   if (!Op->isSubClassOf("PatFrags")) {
1968     if (getNumChildren() == 0) {
1969       OutAlternatives.push_back(T);
1970       return;
1971     }
1972 
1973     // Recursively inline children nodes.
1974     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1975     ChildAlternatives.resize(getNumChildren());
1976     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1977       TreePatternNodePtr Child = getChildShared(i);
1978       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1979       // If there are no alternatives for any child, there are no
1980       // alternatives for this expression as whole.
1981       if (ChildAlternatives[i].empty())
1982         return;
1983 
1984       for (auto NewChild : ChildAlternatives[i])
1985         assert((Child->getPredicateCalls().empty() ||
1986                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1987                "Non-empty child predicate clobbered!");
1988     }
1989 
1990     // The end result is an all-pairs construction of the resultant pattern.
1991     std::vector<unsigned> Idxs;
1992     Idxs.resize(ChildAlternatives.size());
1993     bool NotDone;
1994     do {
1995       // Create the variant and add it to the output list.
1996       std::vector<TreePatternNodePtr> NewChildren;
1997       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1998         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1999       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2000           getOperator(), std::move(NewChildren), getNumTypes());
2001 
2002       // Copy over properties.
2003       R->setName(getName());
2004       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2005       R->setPredicateCalls(getPredicateCalls());
2006       R->setTransformFn(getTransformFn());
2007       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2008         R->setType(i, getExtType(i));
2009       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2010         R->setResultIndex(i, getResultIndex(i));
2011 
2012       // Register alternative.
2013       OutAlternatives.push_back(R);
2014 
2015       // Increment indices to the next permutation by incrementing the
2016       // indices from last index backward, e.g., generate the sequence
2017       // [0, 0], [0, 1], [1, 0], [1, 1].
2018       int IdxsIdx;
2019       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2020         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2021           Idxs[IdxsIdx] = 0;
2022         else
2023           break;
2024       }
2025       NotDone = (IdxsIdx >= 0);
2026     } while (NotDone);
2027 
2028     return;
2029   }
2030 
2031   // Otherwise, we found a reference to a fragment.  First, look up its
2032   // TreePattern record.
2033   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2034 
2035   // Verify that we are passing the right number of operands.
2036   if (Frag->getNumArgs() != Children.size()) {
2037     TP.error("'" + Op->getName() + "' fragment requires " +
2038              Twine(Frag->getNumArgs()) + " operands!");
2039     return;
2040   }
2041 
2042   TreePredicateFn PredFn(Frag);
2043   unsigned Scope = 0;
2044   if (TreePredicateFn(Frag).usesOperands())
2045     Scope = TP.getDAGPatterns().allocateScope();
2046 
2047   // Compute the map of formal to actual arguments.
2048   std::map<std::string, TreePatternNodePtr> ArgMap;
2049   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2050     TreePatternNodePtr Child = getChildShared(i);
2051     if (Scope != 0) {
2052       Child = Child->clone();
2053       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2054     }
2055     ArgMap[Frag->getArgName(i)] = Child;
2056   }
2057 
2058   // Loop over all fragment alternatives.
2059   for (auto Alternative : Frag->getTrees()) {
2060     TreePatternNodePtr FragTree = Alternative->clone();
2061 
2062     if (!PredFn.isAlwaysTrue())
2063       FragTree->addPredicateCall(PredFn, Scope);
2064 
2065     // Resolve formal arguments to their actual value.
2066     if (Frag->getNumArgs())
2067       FragTree->SubstituteFormalArguments(ArgMap);
2068 
2069     // Transfer types.  Note that the resolved alternative may have fewer
2070     // (but not more) results than the PatFrags node.
2071     FragTree->setName(getName());
2072     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2073       FragTree->UpdateNodeType(i, getExtType(i), TP);
2074 
2075     // Transfer in the old predicates.
2076     for (const TreePredicateCall &Pred : getPredicateCalls())
2077       FragTree->addPredicateCall(Pred);
2078 
2079     // The fragment we inlined could have recursive inlining that is needed.  See
2080     // if there are any pattern fragments in it and inline them as needed.
2081     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2082   }
2083 }
2084 
2085 /// getImplicitType - Check to see if the specified record has an implicit
2086 /// type which should be applied to it.  This will infer the type of register
2087 /// references from the register file information, for example.
2088 ///
2089 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2090 /// the F8RC register class argument in:
2091 ///
2092 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2093 ///
2094 /// When Unnamed is false, return the type of a named DAG operand such as the
2095 /// GPR:$src operand above.
2096 ///
2097 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2098                                        bool NotRegisters,
2099                                        bool Unnamed,
2100                                        TreePattern &TP) {
2101   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2102 
2103   // Check to see if this is a register operand.
2104   if (R->isSubClassOf("RegisterOperand")) {
2105     assert(ResNo == 0 && "Regoperand ref only has one result!");
2106     if (NotRegisters)
2107       return TypeSetByHwMode(); // Unknown.
2108     Record *RegClass = R->getValueAsDef("RegClass");
2109     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2110     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2111   }
2112 
2113   // Check to see if this is a register or a register class.
2114   if (R->isSubClassOf("RegisterClass")) {
2115     assert(ResNo == 0 && "Regclass ref only has one result!");
2116     // An unnamed register class represents itself as an i32 immediate, for
2117     // example on a COPY_TO_REGCLASS instruction.
2118     if (Unnamed)
2119       return TypeSetByHwMode(MVT::i32);
2120 
2121     // In a named operand, the register class provides the possible set of
2122     // types.
2123     if (NotRegisters)
2124       return TypeSetByHwMode(); // Unknown.
2125     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2126     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2127   }
2128 
2129   if (R->isSubClassOf("PatFrags")) {
2130     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2131     // Pattern fragment types will be resolved when they are inlined.
2132     return TypeSetByHwMode(); // Unknown.
2133   }
2134 
2135   if (R->isSubClassOf("Register")) {
2136     assert(ResNo == 0 && "Registers only produce one result!");
2137     if (NotRegisters)
2138       return TypeSetByHwMode(); // Unknown.
2139     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2140     return TypeSetByHwMode(T.getRegisterVTs(R));
2141   }
2142 
2143   if (R->isSubClassOf("SubRegIndex")) {
2144     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2145     return TypeSetByHwMode(MVT::i32);
2146   }
2147 
2148   if (R->isSubClassOf("ValueType")) {
2149     assert(ResNo == 0 && "This node only has one result!");
2150     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2151     //
2152     //   (sext_inreg GPR:$src, i16)
2153     //                         ~~~
2154     if (Unnamed)
2155       return TypeSetByHwMode(MVT::Other);
2156     // With a name, the ValueType simply provides the type of the named
2157     // variable.
2158     //
2159     //   (sext_inreg i32:$src, i16)
2160     //               ~~~~~~~~
2161     if (NotRegisters)
2162       return TypeSetByHwMode(); // Unknown.
2163     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2164     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2165   }
2166 
2167   if (R->isSubClassOf("CondCode")) {
2168     assert(ResNo == 0 && "This node only has one result!");
2169     // Using a CondCodeSDNode.
2170     return TypeSetByHwMode(MVT::Other);
2171   }
2172 
2173   if (R->isSubClassOf("ComplexPattern")) {
2174     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2175     if (NotRegisters)
2176       return TypeSetByHwMode(); // Unknown.
2177     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2178   }
2179   if (R->isSubClassOf("PointerLikeRegClass")) {
2180     assert(ResNo == 0 && "Regclass can only have one result!");
2181     TypeSetByHwMode VTS(MVT::iPTR);
2182     TP.getInfer().expandOverloads(VTS);
2183     return VTS;
2184   }
2185 
2186   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2187       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2188       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2189     // Placeholder.
2190     return TypeSetByHwMode(); // Unknown.
2191   }
2192 
2193   if (R->isSubClassOf("Operand")) {
2194     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2195     Record *T = R->getValueAsDef("Type");
2196     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2197   }
2198 
2199   TP.error("Unknown node flavor used in pattern: " + R->getName());
2200   return TypeSetByHwMode(MVT::Other);
2201 }
2202 
2203 
2204 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2205 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2206 const CodeGenIntrinsic *TreePatternNode::
2207 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2208   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2209       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2210       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2211     return nullptr;
2212 
2213   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2214   return &CDP.getIntrinsicInfo(IID);
2215 }
2216 
2217 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2218 /// return the ComplexPattern information, otherwise return null.
2219 const ComplexPattern *
2220 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2221   Record *Rec;
2222   if (isLeaf()) {
2223     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2224     if (!DI)
2225       return nullptr;
2226     Rec = DI->getDef();
2227   } else
2228     Rec = getOperator();
2229 
2230   if (!Rec->isSubClassOf("ComplexPattern"))
2231     return nullptr;
2232   return &CGP.getComplexPattern(Rec);
2233 }
2234 
2235 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2236   // A ComplexPattern specifically declares how many results it fills in.
2237   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2238     return CP->getNumOperands();
2239 
2240   // If MIOperandInfo is specified, that gives the count.
2241   if (isLeaf()) {
2242     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2243     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2244       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2245       if (MIOps->getNumArgs())
2246         return MIOps->getNumArgs();
2247     }
2248   }
2249 
2250   // Otherwise there is just one result.
2251   return 1;
2252 }
2253 
2254 /// NodeHasProperty - Return true if this node has the specified property.
2255 bool TreePatternNode::NodeHasProperty(SDNP Property,
2256                                       const CodeGenDAGPatterns &CGP) const {
2257   if (isLeaf()) {
2258     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2259       return CP->hasProperty(Property);
2260 
2261     return false;
2262   }
2263 
2264   if (Property != SDNPHasChain) {
2265     // The chain proprety is already present on the different intrinsic node
2266     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2267     // on the intrinsic. Anything else is specific to the individual intrinsic.
2268     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2269       return Int->hasProperty(Property);
2270   }
2271 
2272   if (!Operator->isSubClassOf("SDPatternOperator"))
2273     return false;
2274 
2275   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2276 }
2277 
2278 
2279 
2280 
2281 /// TreeHasProperty - Return true if any node in this tree has the specified
2282 /// property.
2283 bool TreePatternNode::TreeHasProperty(SDNP Property,
2284                                       const CodeGenDAGPatterns &CGP) const {
2285   if (NodeHasProperty(Property, CGP))
2286     return true;
2287   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2288     if (getChild(i)->TreeHasProperty(Property, CGP))
2289       return true;
2290   return false;
2291 }
2292 
2293 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2294 /// commutative intrinsic.
2295 bool
2296 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2297   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2298     return Int->isCommutative;
2299   return false;
2300 }
2301 
2302 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2303   if (!N->isLeaf())
2304     return N->getOperator()->isSubClassOf(Class);
2305 
2306   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2307   if (DI && DI->getDef()->isSubClassOf(Class))
2308     return true;
2309 
2310   return false;
2311 }
2312 
2313 static void emitTooManyOperandsError(TreePattern &TP,
2314                                      StringRef InstName,
2315                                      unsigned Expected,
2316                                      unsigned Actual) {
2317   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2318            " operands but expected only " + Twine(Expected) + "!");
2319 }
2320 
2321 static void emitTooFewOperandsError(TreePattern &TP,
2322                                     StringRef InstName,
2323                                     unsigned Actual) {
2324   TP.error("Instruction '" + InstName +
2325            "' expects more than the provided " + Twine(Actual) + " operands!");
2326 }
2327 
2328 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2329 /// this node and its children in the tree.  This returns true if it makes a
2330 /// change, false otherwise.  If a type contradiction is found, flag an error.
2331 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2332   if (TP.hasError())
2333     return false;
2334 
2335   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2336   if (isLeaf()) {
2337     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2338       // If it's a regclass or something else known, include the type.
2339       bool MadeChange = false;
2340       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2341         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2342                                                         NotRegisters,
2343                                                         !hasName(), TP), TP);
2344       return MadeChange;
2345     }
2346 
2347     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2348       assert(Types.size() == 1 && "Invalid IntInit");
2349 
2350       // Int inits are always integers. :)
2351       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2352 
2353       if (!TP.getInfer().isConcrete(Types[0], false))
2354         return MadeChange;
2355 
2356       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2357       for (auto &P : VVT) {
2358         MVT::SimpleValueType VT = P.second.SimpleTy;
2359         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2360           continue;
2361         unsigned Size = MVT(VT).getSizeInBits();
2362         // Make sure that the value is representable for this type.
2363         if (Size >= 32)
2364           continue;
2365         // Check that the value doesn't use more bits than we have. It must
2366         // either be a sign- or zero-extended equivalent of the original.
2367         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2368         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2369             SignBitAndAbove == 1)
2370           continue;
2371 
2372         TP.error("Integer value '" + Twine(II->getValue()) +
2373                  "' is out of range for type '" + getEnumName(VT) + "'!");
2374         break;
2375       }
2376       return MadeChange;
2377     }
2378 
2379     return false;
2380   }
2381 
2382   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2383     bool MadeChange = false;
2384 
2385     // Apply the result type to the node.
2386     unsigned NumRetVTs = Int->IS.RetVTs.size();
2387     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2388 
2389     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2390       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2391 
2392     if (getNumChildren() != NumParamVTs + 1) {
2393       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2394                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2395       return false;
2396     }
2397 
2398     // Apply type info to the intrinsic ID.
2399     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2400 
2401     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2402       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2403 
2404       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2405       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2406       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2407     }
2408     return MadeChange;
2409   }
2410 
2411   if (getOperator()->isSubClassOf("SDNode")) {
2412     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2413 
2414     // Check that the number of operands is sane.  Negative operands -> varargs.
2415     if (NI.getNumOperands() >= 0 &&
2416         getNumChildren() != (unsigned)NI.getNumOperands()) {
2417       TP.error(getOperator()->getName() + " node requires exactly " +
2418                Twine(NI.getNumOperands()) + " operands!");
2419       return false;
2420     }
2421 
2422     bool MadeChange = false;
2423     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2424       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2425     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2426     return MadeChange;
2427   }
2428 
2429   if (getOperator()->isSubClassOf("Instruction")) {
2430     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2431     CodeGenInstruction &InstInfo =
2432       CDP.getTargetInfo().getInstruction(getOperator());
2433 
2434     bool MadeChange = false;
2435 
2436     // Apply the result types to the node, these come from the things in the
2437     // (outs) list of the instruction.
2438     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2439                                         Inst.getNumResults());
2440     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2441       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2442 
2443     // If the instruction has implicit defs, we apply the first one as a result.
2444     // FIXME: This sucks, it should apply all implicit defs.
2445     if (!InstInfo.ImplicitDefs.empty()) {
2446       unsigned ResNo = NumResultsToAdd;
2447 
2448       // FIXME: Generalize to multiple possible types and multiple possible
2449       // ImplicitDefs.
2450       MVT::SimpleValueType VT =
2451         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2452 
2453       if (VT != MVT::Other)
2454         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2455     }
2456 
2457     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2458     // be the same.
2459     if (getOperator()->getName() == "INSERT_SUBREG") {
2460       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2461       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2462       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2463     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2464       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2465       // variadic.
2466 
2467       unsigned NChild = getNumChildren();
2468       if (NChild < 3) {
2469         TP.error("REG_SEQUENCE requires at least 3 operands!");
2470         return false;
2471       }
2472 
2473       if (NChild % 2 == 0) {
2474         TP.error("REG_SEQUENCE requires an odd number of operands!");
2475         return false;
2476       }
2477 
2478       if (!isOperandClass(getChild(0), "RegisterClass")) {
2479         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2480         return false;
2481       }
2482 
2483       for (unsigned I = 1; I < NChild; I += 2) {
2484         TreePatternNode *SubIdxChild = getChild(I + 1);
2485         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2486           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2487                    Twine(I + 1) + "!");
2488           return false;
2489         }
2490       }
2491     }
2492 
2493     // If one or more operands with a default value appear at the end of the
2494     // formal operand list for an instruction, we allow them to be overridden
2495     // by optional operands provided in the pattern.
2496     //
2497     // But if an operand B without a default appears at any point after an
2498     // operand A with a default, then we don't allow A to be overridden,
2499     // because there would be no way to specify whether the next operand in
2500     // the pattern was intended to override A or skip it.
2501     unsigned NonOverridableOperands = Inst.getNumOperands();
2502     while (NonOverridableOperands > 0 &&
2503            CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2504       --NonOverridableOperands;
2505 
2506     unsigned ChildNo = 0;
2507     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2508       Record *OperandNode = Inst.getOperand(i);
2509 
2510       // If the operand has a default value, do we use it? We must use the
2511       // default if we've run out of children of the pattern DAG to consume,
2512       // or if the operand is followed by a non-defaulted one.
2513       if (CDP.operandHasDefault(OperandNode) &&
2514           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2515         continue;
2516 
2517       // If we have run out of child nodes and there _isn't_ a default
2518       // value we can use for the next operand, give an error.
2519       if (ChildNo >= getNumChildren()) {
2520         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2521         return false;
2522       }
2523 
2524       TreePatternNode *Child = getChild(ChildNo++);
2525       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2526 
2527       // If the operand has sub-operands, they may be provided by distinct
2528       // child patterns, so attempt to match each sub-operand separately.
2529       if (OperandNode->isSubClassOf("Operand")) {
2530         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2531         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2532           // But don't do that if the whole operand is being provided by
2533           // a single ComplexPattern-related Operand.
2534 
2535           if (Child->getNumMIResults(CDP) < NumArgs) {
2536             // Match first sub-operand against the child we already have.
2537             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2538             MadeChange |=
2539               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2540 
2541             // And the remaining sub-operands against subsequent children.
2542             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2543               if (ChildNo >= getNumChildren()) {
2544                 emitTooFewOperandsError(TP, getOperator()->getName(),
2545                                         getNumChildren());
2546                 return false;
2547               }
2548               Child = getChild(ChildNo++);
2549 
2550               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2551               MadeChange |=
2552                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2553             }
2554             continue;
2555           }
2556         }
2557       }
2558 
2559       // If we didn't match by pieces above, attempt to match the whole
2560       // operand now.
2561       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2562     }
2563 
2564     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2565       emitTooManyOperandsError(TP, getOperator()->getName(),
2566                                ChildNo, getNumChildren());
2567       return false;
2568     }
2569 
2570     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2571       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2572     return MadeChange;
2573   }
2574 
2575   if (getOperator()->isSubClassOf("ComplexPattern")) {
2576     bool MadeChange = false;
2577 
2578     for (unsigned i = 0; i < getNumChildren(); ++i)
2579       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2580 
2581     return MadeChange;
2582   }
2583 
2584   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2585 
2586   // Node transforms always take one operand.
2587   if (getNumChildren() != 1) {
2588     TP.error("Node transform '" + getOperator()->getName() +
2589              "' requires one operand!");
2590     return false;
2591   }
2592 
2593   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2594   return MadeChange;
2595 }
2596 
2597 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2598 /// RHS of a commutative operation, not the on LHS.
2599 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2600   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2601     return true;
2602   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2603     return true;
2604   return false;
2605 }
2606 
2607 
2608 /// canPatternMatch - If it is impossible for this pattern to match on this
2609 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2610 /// used as a sanity check for .td files (to prevent people from writing stuff
2611 /// that can never possibly work), and to prevent the pattern permuter from
2612 /// generating stuff that is useless.
2613 bool TreePatternNode::canPatternMatch(std::string &Reason,
2614                                       const CodeGenDAGPatterns &CDP) {
2615   if (isLeaf()) return true;
2616 
2617   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2618     if (!getChild(i)->canPatternMatch(Reason, CDP))
2619       return false;
2620 
2621   // If this is an intrinsic, handle cases that would make it not match.  For
2622   // example, if an operand is required to be an immediate.
2623   if (getOperator()->isSubClassOf("Intrinsic")) {
2624     // TODO:
2625     return true;
2626   }
2627 
2628   if (getOperator()->isSubClassOf("ComplexPattern"))
2629     return true;
2630 
2631   // If this node is a commutative operator, check that the LHS isn't an
2632   // immediate.
2633   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2634   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2635   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2636     // Scan all of the operands of the node and make sure that only the last one
2637     // is a constant node, unless the RHS also is.
2638     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2639       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2640       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2641         if (OnlyOnRHSOfCommutative(getChild(i))) {
2642           Reason="Immediate value must be on the RHS of commutative operators!";
2643           return false;
2644         }
2645     }
2646   }
2647 
2648   return true;
2649 }
2650 
2651 //===----------------------------------------------------------------------===//
2652 // TreePattern implementation
2653 //
2654 
2655 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2656                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2657                          isInputPattern(isInput), HasError(false),
2658                          Infer(*this) {
2659   for (Init *I : RawPat->getValues())
2660     Trees.push_back(ParseTreePattern(I, ""));
2661 }
2662 
2663 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2664                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2665                          isInputPattern(isInput), HasError(false),
2666                          Infer(*this) {
2667   Trees.push_back(ParseTreePattern(Pat, ""));
2668 }
2669 
2670 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2671                          CodeGenDAGPatterns &cdp)
2672     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2673       Infer(*this) {
2674   Trees.push_back(Pat);
2675 }
2676 
2677 void TreePattern::error(const Twine &Msg) {
2678   if (HasError)
2679     return;
2680   dump();
2681   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2682   HasError = true;
2683 }
2684 
2685 void TreePattern::ComputeNamedNodes() {
2686   for (TreePatternNodePtr &Tree : Trees)
2687     ComputeNamedNodes(Tree.get());
2688 }
2689 
2690 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2691   if (!N->getName().empty())
2692     NamedNodes[N->getName()].push_back(N);
2693 
2694   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2695     ComputeNamedNodes(N->getChild(i));
2696 }
2697 
2698 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2699                                                  StringRef OpName) {
2700   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2701     Record *R = DI->getDef();
2702 
2703     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2704     // TreePatternNode of its own.  For example:
2705     ///   (foo GPR, imm) -> (foo GPR, (imm))
2706     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2707       return ParseTreePattern(
2708         DagInit::get(DI, nullptr,
2709                      std::vector<std::pair<Init*, StringInit*> >()),
2710         OpName);
2711 
2712     // Input argument?
2713     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2714     if (R->getName() == "node" && !OpName.empty()) {
2715       if (OpName.empty())
2716         error("'node' argument requires a name to match with operand list");
2717       Args.push_back(OpName);
2718     }
2719 
2720     Res->setName(OpName);
2721     return Res;
2722   }
2723 
2724   // ?:$name or just $name.
2725   if (isa<UnsetInit>(TheInit)) {
2726     if (OpName.empty())
2727       error("'?' argument requires a name to match with operand list");
2728     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2729     Args.push_back(OpName);
2730     Res->setName(OpName);
2731     return Res;
2732   }
2733 
2734   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2735     if (!OpName.empty())
2736       error("Constant int or bit argument should not have a name!");
2737     if (isa<BitInit>(TheInit))
2738       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2739     return std::make_shared<TreePatternNode>(TheInit, 1);
2740   }
2741 
2742   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2743     // Turn this into an IntInit.
2744     Init *II = BI->convertInitializerTo(IntRecTy::get());
2745     if (!II || !isa<IntInit>(II))
2746       error("Bits value must be constants!");
2747     return ParseTreePattern(II, OpName);
2748   }
2749 
2750   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2751   if (!Dag) {
2752     TheInit->print(errs());
2753     error("Pattern has unexpected init kind!");
2754   }
2755   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2756   if (!OpDef) error("Pattern has unexpected operator type!");
2757   Record *Operator = OpDef->getDef();
2758 
2759   if (Operator->isSubClassOf("ValueType")) {
2760     // If the operator is a ValueType, then this must be "type cast" of a leaf
2761     // node.
2762     if (Dag->getNumArgs() != 1)
2763       error("Type cast only takes one operand!");
2764 
2765     TreePatternNodePtr New =
2766         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2767 
2768     // Apply the type cast.
2769     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2770     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2771     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2772 
2773     if (!OpName.empty())
2774       error("ValueType cast should not have a name!");
2775     return New;
2776   }
2777 
2778   // Verify that this is something that makes sense for an operator.
2779   if (!Operator->isSubClassOf("PatFrags") &&
2780       !Operator->isSubClassOf("SDNode") &&
2781       !Operator->isSubClassOf("Instruction") &&
2782       !Operator->isSubClassOf("SDNodeXForm") &&
2783       !Operator->isSubClassOf("Intrinsic") &&
2784       !Operator->isSubClassOf("ComplexPattern") &&
2785       Operator->getName() != "set" &&
2786       Operator->getName() != "implicit")
2787     error("Unrecognized node '" + Operator->getName() + "'!");
2788 
2789   //  Check to see if this is something that is illegal in an input pattern.
2790   if (isInputPattern) {
2791     if (Operator->isSubClassOf("Instruction") ||
2792         Operator->isSubClassOf("SDNodeXForm"))
2793       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2794   } else {
2795     if (Operator->isSubClassOf("Intrinsic"))
2796       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2797 
2798     if (Operator->isSubClassOf("SDNode") &&
2799         Operator->getName() != "imm" &&
2800         Operator->getName() != "fpimm" &&
2801         Operator->getName() != "tglobaltlsaddr" &&
2802         Operator->getName() != "tconstpool" &&
2803         Operator->getName() != "tjumptable" &&
2804         Operator->getName() != "tframeindex" &&
2805         Operator->getName() != "texternalsym" &&
2806         Operator->getName() != "tblockaddress" &&
2807         Operator->getName() != "tglobaladdr" &&
2808         Operator->getName() != "bb" &&
2809         Operator->getName() != "vt" &&
2810         Operator->getName() != "mcsym")
2811       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2812   }
2813 
2814   std::vector<TreePatternNodePtr> Children;
2815 
2816   // Parse all the operands.
2817   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2818     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2819 
2820   // Get the actual number of results before Operator is converted to an intrinsic
2821   // node (which is hard-coded to have either zero or one result).
2822   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2823 
2824   // If the operator is an intrinsic, then this is just syntactic sugar for
2825   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2826   // convert the intrinsic name to a number.
2827   if (Operator->isSubClassOf("Intrinsic")) {
2828     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2829     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2830 
2831     // If this intrinsic returns void, it must have side-effects and thus a
2832     // chain.
2833     if (Int.IS.RetVTs.empty())
2834       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2835     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2836       // Has side-effects, requires chain.
2837       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2838     else // Otherwise, no chain.
2839       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2840 
2841     Children.insert(Children.begin(),
2842                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2843   }
2844 
2845   if (Operator->isSubClassOf("ComplexPattern")) {
2846     for (unsigned i = 0; i < Children.size(); ++i) {
2847       TreePatternNodePtr Child = Children[i];
2848 
2849       if (Child->getName().empty())
2850         error("All arguments to a ComplexPattern must be named");
2851 
2852       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2853       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2854       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2855       auto OperandId = std::make_pair(Operator, i);
2856       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2857       if (PrevOp != ComplexPatternOperands.end()) {
2858         if (PrevOp->getValue() != OperandId)
2859           error("All ComplexPattern operands must appear consistently: "
2860                 "in the same order in just one ComplexPattern instance.");
2861       } else
2862         ComplexPatternOperands[Child->getName()] = OperandId;
2863     }
2864   }
2865 
2866   TreePatternNodePtr Result =
2867       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2868                                         NumResults);
2869   Result->setName(OpName);
2870 
2871   if (Dag->getName()) {
2872     assert(Result->getName().empty());
2873     Result->setName(Dag->getNameStr());
2874   }
2875   return Result;
2876 }
2877 
2878 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2879 /// will never match in favor of something obvious that will.  This is here
2880 /// strictly as a convenience to target authors because it allows them to write
2881 /// more type generic things and have useless type casts fold away.
2882 ///
2883 /// This returns true if any change is made.
2884 static bool SimplifyTree(TreePatternNodePtr &N) {
2885   if (N->isLeaf())
2886     return false;
2887 
2888   // If we have a bitconvert with a resolved type and if the source and
2889   // destination types are the same, then the bitconvert is useless, remove it.
2890   if (N->getOperator()->getName() == "bitconvert" &&
2891       N->getExtType(0).isValueTypeByHwMode(false) &&
2892       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2893       N->getName().empty()) {
2894     N = N->getChildShared(0);
2895     SimplifyTree(N);
2896     return true;
2897   }
2898 
2899   // Walk all children.
2900   bool MadeChange = false;
2901   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2902     TreePatternNodePtr Child = N->getChildShared(i);
2903     MadeChange |= SimplifyTree(Child);
2904     N->setChild(i, std::move(Child));
2905   }
2906   return MadeChange;
2907 }
2908 
2909 
2910 
2911 /// InferAllTypes - Infer/propagate as many types throughout the expression
2912 /// patterns as possible.  Return true if all types are inferred, false
2913 /// otherwise.  Flags an error if a type contradiction is found.
2914 bool TreePattern::
2915 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2916   if (NamedNodes.empty())
2917     ComputeNamedNodes();
2918 
2919   bool MadeChange = true;
2920   while (MadeChange) {
2921     MadeChange = false;
2922     for (TreePatternNodePtr &Tree : Trees) {
2923       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2924       MadeChange |= SimplifyTree(Tree);
2925     }
2926 
2927     // If there are constraints on our named nodes, apply them.
2928     for (auto &Entry : NamedNodes) {
2929       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2930 
2931       // If we have input named node types, propagate their types to the named
2932       // values here.
2933       if (InNamedTypes) {
2934         if (!InNamedTypes->count(Entry.getKey())) {
2935           error("Node '" + std::string(Entry.getKey()) +
2936                 "' in output pattern but not input pattern");
2937           return true;
2938         }
2939 
2940         const SmallVectorImpl<TreePatternNode*> &InNodes =
2941           InNamedTypes->find(Entry.getKey())->second;
2942 
2943         // The input types should be fully resolved by now.
2944         for (TreePatternNode *Node : Nodes) {
2945           // If this node is a register class, and it is the root of the pattern
2946           // then we're mapping something onto an input register.  We allow
2947           // changing the type of the input register in this case.  This allows
2948           // us to match things like:
2949           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2950           if (Node == Trees[0].get() && Node->isLeaf()) {
2951             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2952             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2953                        DI->getDef()->isSubClassOf("RegisterOperand")))
2954               continue;
2955           }
2956 
2957           assert(Node->getNumTypes() == 1 &&
2958                  InNodes[0]->getNumTypes() == 1 &&
2959                  "FIXME: cannot name multiple result nodes yet");
2960           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2961                                              *this);
2962         }
2963       }
2964 
2965       // If there are multiple nodes with the same name, they must all have the
2966       // same type.
2967       if (Entry.second.size() > 1) {
2968         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2969           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2970           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2971                  "FIXME: cannot name multiple result nodes yet");
2972 
2973           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2974           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2975         }
2976       }
2977     }
2978   }
2979 
2980   bool HasUnresolvedTypes = false;
2981   for (const TreePatternNodePtr &Tree : Trees)
2982     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2983   return !HasUnresolvedTypes;
2984 }
2985 
2986 void TreePattern::print(raw_ostream &OS) const {
2987   OS << getRecord()->getName();
2988   if (!Args.empty()) {
2989     OS << "(" << Args[0];
2990     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2991       OS << ", " << Args[i];
2992     OS << ")";
2993   }
2994   OS << ": ";
2995 
2996   if (Trees.size() > 1)
2997     OS << "[\n";
2998   for (const TreePatternNodePtr &Tree : Trees) {
2999     OS << "\t";
3000     Tree->print(OS);
3001     OS << "\n";
3002   }
3003 
3004   if (Trees.size() > 1)
3005     OS << "]\n";
3006 }
3007 
3008 void TreePattern::dump() const { print(errs()); }
3009 
3010 //===----------------------------------------------------------------------===//
3011 // CodeGenDAGPatterns implementation
3012 //
3013 
3014 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3015                                        PatternRewriterFn PatternRewriter)
3016     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3017       PatternRewriter(PatternRewriter) {
3018 
3019   Intrinsics = CodeGenIntrinsicTable(Records, false);
3020   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
3021   ParseNodeInfo();
3022   ParseNodeTransforms();
3023   ParseComplexPatterns();
3024   ParsePatternFragments();
3025   ParseDefaultOperands();
3026   ParseInstructions();
3027   ParsePatternFragments(/*OutFrags*/true);
3028   ParsePatterns();
3029 
3030   // Break patterns with parameterized types into a series of patterns,
3031   // where each one has a fixed type and is predicated on the conditions
3032   // of the associated HW mode.
3033   ExpandHwModeBasedTypes();
3034 
3035   // Generate variants.  For example, commutative patterns can match
3036   // multiple ways.  Add them to PatternsToMatch as well.
3037   GenerateVariants();
3038 
3039   // Infer instruction flags.  For example, we can detect loads,
3040   // stores, and side effects in many cases by examining an
3041   // instruction's pattern.
3042   InferInstructionFlags();
3043 
3044   // Verify that instruction flags match the patterns.
3045   VerifyInstructionFlags();
3046 }
3047 
3048 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3049   Record *N = Records.getDef(Name);
3050   if (!N || !N->isSubClassOf("SDNode"))
3051     PrintFatalError("Error getting SDNode '" + Name + "'!");
3052 
3053   return N;
3054 }
3055 
3056 // Parse all of the SDNode definitions for the target, populating SDNodes.
3057 void CodeGenDAGPatterns::ParseNodeInfo() {
3058   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3059   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3060 
3061   while (!Nodes.empty()) {
3062     Record *R = Nodes.back();
3063     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3064     Nodes.pop_back();
3065   }
3066 
3067   // Get the builtin intrinsic nodes.
3068   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3069   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3070   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3071 }
3072 
3073 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3074 /// map, and emit them to the file as functions.
3075 void CodeGenDAGPatterns::ParseNodeTransforms() {
3076   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3077   while (!Xforms.empty()) {
3078     Record *XFormNode = Xforms.back();
3079     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3080     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3081     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3082 
3083     Xforms.pop_back();
3084   }
3085 }
3086 
3087 void CodeGenDAGPatterns::ParseComplexPatterns() {
3088   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3089   while (!AMs.empty()) {
3090     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3091     AMs.pop_back();
3092   }
3093 }
3094 
3095 
3096 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3097 /// file, building up the PatternFragments map.  After we've collected them all,
3098 /// inline fragments together as necessary, so that there are no references left
3099 /// inside a pattern fragment to a pattern fragment.
3100 ///
3101 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3102   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3103 
3104   // First step, parse all of the fragments.
3105   for (Record *Frag : Fragments) {
3106     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3107       continue;
3108 
3109     ListInit *LI = Frag->getValueAsListInit("Fragments");
3110     TreePattern *P =
3111         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3112              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3113              *this)).get();
3114 
3115     // Validate the argument list, converting it to set, to discard duplicates.
3116     std::vector<std::string> &Args = P->getArgList();
3117     // Copy the args so we can take StringRefs to them.
3118     auto ArgsCopy = Args;
3119     SmallDenseSet<StringRef, 4> OperandsSet;
3120     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3121 
3122     if (OperandsSet.count(""))
3123       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3124 
3125     // Parse the operands list.
3126     DagInit *OpsList = Frag->getValueAsDag("Operands");
3127     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3128     // Special cases: ops == outs == ins. Different names are used to
3129     // improve readability.
3130     if (!OpsOp ||
3131         (OpsOp->getDef()->getName() != "ops" &&
3132          OpsOp->getDef()->getName() != "outs" &&
3133          OpsOp->getDef()->getName() != "ins"))
3134       P->error("Operands list should start with '(ops ... '!");
3135 
3136     // Copy over the arguments.
3137     Args.clear();
3138     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3139       if (!isa<DefInit>(OpsList->getArg(j)) ||
3140           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3141         P->error("Operands list should all be 'node' values.");
3142       if (!OpsList->getArgName(j))
3143         P->error("Operands list should have names for each operand!");
3144       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3145       if (!OperandsSet.count(ArgNameStr))
3146         P->error("'" + ArgNameStr +
3147                  "' does not occur in pattern or was multiply specified!");
3148       OperandsSet.erase(ArgNameStr);
3149       Args.push_back(ArgNameStr);
3150     }
3151 
3152     if (!OperandsSet.empty())
3153       P->error("Operands list does not contain an entry for operand '" +
3154                *OperandsSet.begin() + "'!");
3155 
3156     // If there is a node transformation corresponding to this, keep track of
3157     // it.
3158     Record *Transform = Frag->getValueAsDef("OperandTransform");
3159     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3160       for (auto T : P->getTrees())
3161         T->setTransformFn(Transform);
3162   }
3163 
3164   // Now that we've parsed all of the tree fragments, do a closure on them so
3165   // that there are not references to PatFrags left inside of them.
3166   for (Record *Frag : Fragments) {
3167     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3168       continue;
3169 
3170     TreePattern &ThePat = *PatternFragments[Frag];
3171     ThePat.InlinePatternFragments();
3172 
3173     // Infer as many types as possible.  Don't worry about it if we don't infer
3174     // all of them, some may depend on the inputs of the pattern.  Also, don't
3175     // validate type sets; validation may cause spurious failures e.g. if a
3176     // fragment needs floating-point types but the current target does not have
3177     // any (this is only an error if that fragment is ever used!).
3178     {
3179       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3180       ThePat.InferAllTypes();
3181       ThePat.resetError();
3182     }
3183 
3184     // If debugging, print out the pattern fragment result.
3185     LLVM_DEBUG(ThePat.dump());
3186   }
3187 }
3188 
3189 void CodeGenDAGPatterns::ParseDefaultOperands() {
3190   std::vector<Record*> DefaultOps;
3191   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3192 
3193   // Find some SDNode.
3194   assert(!SDNodes.empty() && "No SDNodes parsed?");
3195   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3196 
3197   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3198     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3199 
3200     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3201     // SomeSDnode so that we can parse this.
3202     std::vector<std::pair<Init*, StringInit*> > Ops;
3203     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3204       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3205                                    DefaultInfo->getArgName(op)));
3206     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3207 
3208     // Create a TreePattern to parse this.
3209     TreePattern P(DefaultOps[i], DI, false, *this);
3210     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3211 
3212     // Copy the operands over into a DAGDefaultOperand.
3213     DAGDefaultOperand DefaultOpInfo;
3214 
3215     const TreePatternNodePtr &T = P.getTree(0);
3216     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3217       TreePatternNodePtr TPN = T->getChildShared(op);
3218       while (TPN->ApplyTypeConstraints(P, false))
3219         /* Resolve all types */;
3220 
3221       if (TPN->ContainsUnresolvedType(P)) {
3222         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3223                         DefaultOps[i]->getName() +
3224                         "' doesn't have a concrete type!");
3225       }
3226       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3227     }
3228 
3229     // Insert it into the DefaultOperands map so we can find it later.
3230     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3231   }
3232 }
3233 
3234 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3235 /// instruction input.  Return true if this is a real use.
3236 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3237                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3238   // No name -> not interesting.
3239   if (Pat->getName().empty()) {
3240     if (Pat->isLeaf()) {
3241       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3242       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3243                  DI->getDef()->isSubClassOf("RegisterOperand")))
3244         I.error("Input " + DI->getDef()->getName() + " must be named!");
3245     }
3246     return false;
3247   }
3248 
3249   Record *Rec;
3250   if (Pat->isLeaf()) {
3251     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3252     if (!DI)
3253       I.error("Input $" + Pat->getName() + " must be an identifier!");
3254     Rec = DI->getDef();
3255   } else {
3256     Rec = Pat->getOperator();
3257   }
3258 
3259   // SRCVALUE nodes are ignored.
3260   if (Rec->getName() == "srcvalue")
3261     return false;
3262 
3263   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3264   if (!Slot) {
3265     Slot = Pat;
3266     return true;
3267   }
3268   Record *SlotRec;
3269   if (Slot->isLeaf()) {
3270     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3271   } else {
3272     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3273     SlotRec = Slot->getOperator();
3274   }
3275 
3276   // Ensure that the inputs agree if we've already seen this input.
3277   if (Rec != SlotRec)
3278     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3279   // Ensure that the types can agree as well.
3280   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3281   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3282   if (Slot->getExtTypes() != Pat->getExtTypes())
3283     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3284   return true;
3285 }
3286 
3287 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3288 /// part of "I", the instruction), computing the set of inputs and outputs of
3289 /// the pattern.  Report errors if we see anything naughty.
3290 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3291     TreePattern &I, TreePatternNodePtr Pat,
3292     std::map<std::string, TreePatternNodePtr> &InstInputs,
3293     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3294         &InstResults,
3295     std::vector<Record *> &InstImpResults) {
3296 
3297   // The instruction pattern still has unresolved fragments.  For *named*
3298   // nodes we must resolve those here.  This may not result in multiple
3299   // alternatives.
3300   if (!Pat->getName().empty()) {
3301     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3302     SrcPattern.InlinePatternFragments();
3303     SrcPattern.InferAllTypes();
3304     Pat = SrcPattern.getOnlyTree();
3305   }
3306 
3307   if (Pat->isLeaf()) {
3308     bool isUse = HandleUse(I, Pat, InstInputs);
3309     if (!isUse && Pat->getTransformFn())
3310       I.error("Cannot specify a transform function for a non-input value!");
3311     return;
3312   }
3313 
3314   if (Pat->getOperator()->getName() == "implicit") {
3315     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3316       TreePatternNode *Dest = Pat->getChild(i);
3317       if (!Dest->isLeaf())
3318         I.error("implicitly defined value should be a register!");
3319 
3320       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3321       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3322         I.error("implicitly defined value should be a register!");
3323       InstImpResults.push_back(Val->getDef());
3324     }
3325     return;
3326   }
3327 
3328   if (Pat->getOperator()->getName() != "set") {
3329     // If this is not a set, verify that the children nodes are not void typed,
3330     // and recurse.
3331     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3332       if (Pat->getChild(i)->getNumTypes() == 0)
3333         I.error("Cannot have void nodes inside of patterns!");
3334       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3335                                   InstResults, InstImpResults);
3336     }
3337 
3338     // If this is a non-leaf node with no children, treat it basically as if
3339     // it were a leaf.  This handles nodes like (imm).
3340     bool isUse = HandleUse(I, Pat, InstInputs);
3341 
3342     if (!isUse && Pat->getTransformFn())
3343       I.error("Cannot specify a transform function for a non-input value!");
3344     return;
3345   }
3346 
3347   // Otherwise, this is a set, validate and collect instruction results.
3348   if (Pat->getNumChildren() == 0)
3349     I.error("set requires operands!");
3350 
3351   if (Pat->getTransformFn())
3352     I.error("Cannot specify a transform function on a set node!");
3353 
3354   // Check the set destinations.
3355   unsigned NumDests = Pat->getNumChildren()-1;
3356   for (unsigned i = 0; i != NumDests; ++i) {
3357     TreePatternNodePtr Dest = Pat->getChildShared(i);
3358     // For set destinations we also must resolve fragments here.
3359     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3360     DestPattern.InlinePatternFragments();
3361     DestPattern.InferAllTypes();
3362     Dest = DestPattern.getOnlyTree();
3363 
3364     if (!Dest->isLeaf())
3365       I.error("set destination should be a register!");
3366 
3367     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3368     if (!Val) {
3369       I.error("set destination should be a register!");
3370       continue;
3371     }
3372 
3373     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3374         Val->getDef()->isSubClassOf("ValueType") ||
3375         Val->getDef()->isSubClassOf("RegisterOperand") ||
3376         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3377       if (Dest->getName().empty())
3378         I.error("set destination must have a name!");
3379       if (InstResults.count(Dest->getName()))
3380         I.error("cannot set '" + Dest->getName() + "' multiple times");
3381       InstResults[Dest->getName()] = Dest;
3382     } else if (Val->getDef()->isSubClassOf("Register")) {
3383       InstImpResults.push_back(Val->getDef());
3384     } else {
3385       I.error("set destination should be a register!");
3386     }
3387   }
3388 
3389   // Verify and collect info from the computation.
3390   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3391                               InstResults, InstImpResults);
3392 }
3393 
3394 //===----------------------------------------------------------------------===//
3395 // Instruction Analysis
3396 //===----------------------------------------------------------------------===//
3397 
3398 class InstAnalyzer {
3399   const CodeGenDAGPatterns &CDP;
3400 public:
3401   bool hasSideEffects;
3402   bool mayStore;
3403   bool mayLoad;
3404   bool isBitcast;
3405   bool isVariadic;
3406   bool hasChain;
3407 
3408   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3409     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3410       isBitcast(false), isVariadic(false), hasChain(false) {}
3411 
3412   void Analyze(const PatternToMatch &Pat) {
3413     const TreePatternNode *N = Pat.getSrcPattern();
3414     AnalyzeNode(N);
3415     // These properties are detected only on the root node.
3416     isBitcast = IsNodeBitcast(N);
3417   }
3418 
3419 private:
3420   bool IsNodeBitcast(const TreePatternNode *N) const {
3421     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3422       return false;
3423 
3424     if (N->isLeaf())
3425       return false;
3426     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3427       return false;
3428 
3429     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3430     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3431       return false;
3432     return OpInfo.getEnumName() == "ISD::BITCAST";
3433   }
3434 
3435 public:
3436   void AnalyzeNode(const TreePatternNode *N) {
3437     if (N->isLeaf()) {
3438       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3439         Record *LeafRec = DI->getDef();
3440         // Handle ComplexPattern leaves.
3441         if (LeafRec->isSubClassOf("ComplexPattern")) {
3442           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3443           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3444           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3445           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3446         }
3447       }
3448       return;
3449     }
3450 
3451     // Analyze children.
3452     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3453       AnalyzeNode(N->getChild(i));
3454 
3455     // Notice properties of the node.
3456     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3457     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3458     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3459     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3460     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3461 
3462     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3463       // If this is an intrinsic, analyze it.
3464       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3465         mayLoad = true;// These may load memory.
3466 
3467       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3468         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3469 
3470       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3471           IntInfo->hasSideEffects)
3472         // ReadWriteMem intrinsics can have other strange effects.
3473         hasSideEffects = true;
3474     }
3475   }
3476 
3477 };
3478 
3479 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3480                              const InstAnalyzer &PatInfo,
3481                              Record *PatDef) {
3482   bool Error = false;
3483 
3484   // Remember where InstInfo got its flags.
3485   if (InstInfo.hasUndefFlags())
3486       InstInfo.InferredFrom = PatDef;
3487 
3488   // Check explicitly set flags for consistency.
3489   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3490       !InstInfo.hasSideEffects_Unset) {
3491     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3492     // the pattern has no side effects. That could be useful for div/rem
3493     // instructions that may trap.
3494     if (!InstInfo.hasSideEffects) {
3495       Error = true;
3496       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3497                  Twine(InstInfo.hasSideEffects));
3498     }
3499   }
3500 
3501   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3502     Error = true;
3503     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3504                Twine(InstInfo.mayStore));
3505   }
3506 
3507   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3508     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3509     // Some targets translate immediates to loads.
3510     if (!InstInfo.mayLoad) {
3511       Error = true;
3512       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3513                  Twine(InstInfo.mayLoad));
3514     }
3515   }
3516 
3517   // Transfer inferred flags.
3518   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3519   InstInfo.mayStore |= PatInfo.mayStore;
3520   InstInfo.mayLoad |= PatInfo.mayLoad;
3521 
3522   // These flags are silently added without any verification.
3523   // FIXME: To match historical behavior of TableGen, for now add those flags
3524   // only when we're inferring from the primary instruction pattern.
3525   if (PatDef->isSubClassOf("Instruction")) {
3526     InstInfo.isBitcast |= PatInfo.isBitcast;
3527     InstInfo.hasChain |= PatInfo.hasChain;
3528     InstInfo.hasChain_Inferred = true;
3529   }
3530 
3531   // Don't infer isVariadic. This flag means something different on SDNodes and
3532   // instructions. For example, a CALL SDNode is variadic because it has the
3533   // call arguments as operands, but a CALL instruction is not variadic - it
3534   // has argument registers as implicit, not explicit uses.
3535 
3536   return Error;
3537 }
3538 
3539 /// hasNullFragReference - Return true if the DAG has any reference to the
3540 /// null_frag operator.
3541 static bool hasNullFragReference(DagInit *DI) {
3542   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3543   if (!OpDef) return false;
3544   Record *Operator = OpDef->getDef();
3545 
3546   // If this is the null fragment, return true.
3547   if (Operator->getName() == "null_frag") return true;
3548   // If any of the arguments reference the null fragment, return true.
3549   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3550     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3551     if (Arg && hasNullFragReference(Arg))
3552       return true;
3553   }
3554 
3555   return false;
3556 }
3557 
3558 /// hasNullFragReference - Return true if any DAG in the list references
3559 /// the null_frag operator.
3560 static bool hasNullFragReference(ListInit *LI) {
3561   for (Init *I : LI->getValues()) {
3562     DagInit *DI = dyn_cast<DagInit>(I);
3563     assert(DI && "non-dag in an instruction Pattern list?!");
3564     if (hasNullFragReference(DI))
3565       return true;
3566   }
3567   return false;
3568 }
3569 
3570 /// Get all the instructions in a tree.
3571 static void
3572 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3573   if (Tree->isLeaf())
3574     return;
3575   if (Tree->getOperator()->isSubClassOf("Instruction"))
3576     Instrs.push_back(Tree->getOperator());
3577   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3578     getInstructionsInTree(Tree->getChild(i), Instrs);
3579 }
3580 
3581 /// Check the class of a pattern leaf node against the instruction operand it
3582 /// represents.
3583 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3584                               Record *Leaf) {
3585   if (OI.Rec == Leaf)
3586     return true;
3587 
3588   // Allow direct value types to be used in instruction set patterns.
3589   // The type will be checked later.
3590   if (Leaf->isSubClassOf("ValueType"))
3591     return true;
3592 
3593   // Patterns can also be ComplexPattern instances.
3594   if (Leaf->isSubClassOf("ComplexPattern"))
3595     return true;
3596 
3597   return false;
3598 }
3599 
3600 void CodeGenDAGPatterns::parseInstructionPattern(
3601     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3602 
3603   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3604 
3605   // Parse the instruction.
3606   TreePattern I(CGI.TheDef, Pat, true, *this);
3607 
3608   // InstInputs - Keep track of all of the inputs of the instruction, along
3609   // with the record they are declared as.
3610   std::map<std::string, TreePatternNodePtr> InstInputs;
3611 
3612   // InstResults - Keep track of all the virtual registers that are 'set'
3613   // in the instruction, including what reg class they are.
3614   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3615       InstResults;
3616 
3617   std::vector<Record*> InstImpResults;
3618 
3619   // Verify that the top-level forms in the instruction are of void type, and
3620   // fill in the InstResults map.
3621   SmallString<32> TypesString;
3622   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3623     TypesString.clear();
3624     TreePatternNodePtr Pat = I.getTree(j);
3625     if (Pat->getNumTypes() != 0) {
3626       raw_svector_ostream OS(TypesString);
3627       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3628         if (k > 0)
3629           OS << ", ";
3630         Pat->getExtType(k).writeToStream(OS);
3631       }
3632       I.error("Top-level forms in instruction pattern should have"
3633                " void types, has types " +
3634                OS.str());
3635     }
3636 
3637     // Find inputs and outputs, and verify the structure of the uses/defs.
3638     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3639                                 InstImpResults);
3640   }
3641 
3642   // Now that we have inputs and outputs of the pattern, inspect the operands
3643   // list for the instruction.  This determines the order that operands are
3644   // added to the machine instruction the node corresponds to.
3645   unsigned NumResults = InstResults.size();
3646 
3647   // Parse the operands list from the (ops) list, validating it.
3648   assert(I.getArgList().empty() && "Args list should still be empty here!");
3649 
3650   // Check that all of the results occur first in the list.
3651   std::vector<Record*> Results;
3652   std::vector<unsigned> ResultIndices;
3653   SmallVector<TreePatternNodePtr, 2> ResNodes;
3654   for (unsigned i = 0; i != NumResults; ++i) {
3655     if (i == CGI.Operands.size()) {
3656       const std::string &OpName =
3657           std::find_if(InstResults.begin(), InstResults.end(),
3658                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3659                          return P.second;
3660                        })
3661               ->first;
3662 
3663       I.error("'" + OpName + "' set but does not appear in operand list!");
3664     }
3665 
3666     const std::string &OpName = CGI.Operands[i].Name;
3667 
3668     // Check that it exists in InstResults.
3669     auto InstResultIter = InstResults.find(OpName);
3670     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3671       I.error("Operand $" + OpName + " does not exist in operand list!");
3672 
3673     TreePatternNodePtr RNode = InstResultIter->second;
3674     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3675     ResNodes.push_back(std::move(RNode));
3676     if (!R)
3677       I.error("Operand $" + OpName + " should be a set destination: all "
3678                "outputs must occur before inputs in operand list!");
3679 
3680     if (!checkOperandClass(CGI.Operands[i], R))
3681       I.error("Operand $" + OpName + " class mismatch!");
3682 
3683     // Remember the return type.
3684     Results.push_back(CGI.Operands[i].Rec);
3685 
3686     // Remember the result index.
3687     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3688 
3689     // Okay, this one checks out.
3690     InstResultIter->second = nullptr;
3691   }
3692 
3693   // Loop over the inputs next.
3694   std::vector<TreePatternNodePtr> ResultNodeOperands;
3695   std::vector<Record*> Operands;
3696   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3697     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3698     const std::string &OpName = Op.Name;
3699     if (OpName.empty())
3700       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3701 
3702     if (!InstInputs.count(OpName)) {
3703       // If this is an operand with a DefaultOps set filled in, we can ignore
3704       // this.  When we codegen it, we will do so as always executed.
3705       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3706         // Does it have a non-empty DefaultOps field?  If so, ignore this
3707         // operand.
3708         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3709           continue;
3710       }
3711       I.error("Operand $" + OpName +
3712                " does not appear in the instruction pattern");
3713     }
3714     TreePatternNodePtr InVal = InstInputs[OpName];
3715     InstInputs.erase(OpName);   // It occurred, remove from map.
3716 
3717     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3718       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3719       if (!checkOperandClass(Op, InRec))
3720         I.error("Operand $" + OpName + "'s register class disagrees"
3721                  " between the operand and pattern");
3722     }
3723     Operands.push_back(Op.Rec);
3724 
3725     // Construct the result for the dest-pattern operand list.
3726     TreePatternNodePtr OpNode = InVal->clone();
3727 
3728     // No predicate is useful on the result.
3729     OpNode->clearPredicateCalls();
3730 
3731     // Promote the xform function to be an explicit node if set.
3732     if (Record *Xform = OpNode->getTransformFn()) {
3733       OpNode->setTransformFn(nullptr);
3734       std::vector<TreePatternNodePtr> Children;
3735       Children.push_back(OpNode);
3736       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3737                                                  OpNode->getNumTypes());
3738     }
3739 
3740     ResultNodeOperands.push_back(std::move(OpNode));
3741   }
3742 
3743   if (!InstInputs.empty())
3744     I.error("Input operand $" + InstInputs.begin()->first +
3745             " occurs in pattern but not in operands list!");
3746 
3747   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3748       I.getRecord(), std::move(ResultNodeOperands),
3749       GetNumNodeResults(I.getRecord(), *this));
3750   // Copy fully inferred output node types to instruction result pattern.
3751   for (unsigned i = 0; i != NumResults; ++i) {
3752     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3753     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3754     ResultPattern->setResultIndex(i, ResultIndices[i]);
3755   }
3756 
3757   // FIXME: Assume only the first tree is the pattern. The others are clobber
3758   // nodes.
3759   TreePatternNodePtr Pattern = I.getTree(0);
3760   TreePatternNodePtr SrcPattern;
3761   if (Pattern->getOperator()->getName() == "set") {
3762     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3763   } else{
3764     // Not a set (store or something?)
3765     SrcPattern = Pattern;
3766   }
3767 
3768   // Create and insert the instruction.
3769   // FIXME: InstImpResults should not be part of DAGInstruction.
3770   Record *R = I.getRecord();
3771   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3772                    std::forward_as_tuple(Results, Operands, InstImpResults,
3773                                          SrcPattern, ResultPattern));
3774 
3775   LLVM_DEBUG(I.dump());
3776 }
3777 
3778 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3779 /// any fragments involved.  This populates the Instructions list with fully
3780 /// resolved instructions.
3781 void CodeGenDAGPatterns::ParseInstructions() {
3782   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3783 
3784   for (Record *Instr : Instrs) {
3785     ListInit *LI = nullptr;
3786 
3787     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3788       LI = Instr->getValueAsListInit("Pattern");
3789 
3790     // If there is no pattern, only collect minimal information about the
3791     // instruction for its operand list.  We have to assume that there is one
3792     // result, as we have no detailed info. A pattern which references the
3793     // null_frag operator is as-if no pattern were specified. Normally this
3794     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3795     // null_frag.
3796     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3797       std::vector<Record*> Results;
3798       std::vector<Record*> Operands;
3799 
3800       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3801 
3802       if (InstInfo.Operands.size() != 0) {
3803         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3804           Results.push_back(InstInfo.Operands[j].Rec);
3805 
3806         // The rest are inputs.
3807         for (unsigned j = InstInfo.Operands.NumDefs,
3808                e = InstInfo.Operands.size(); j < e; ++j)
3809           Operands.push_back(InstInfo.Operands[j].Rec);
3810       }
3811 
3812       // Create and insert the instruction.
3813       std::vector<Record*> ImpResults;
3814       Instructions.insert(std::make_pair(Instr,
3815                             DAGInstruction(Results, Operands, ImpResults)));
3816       continue;  // no pattern.
3817     }
3818 
3819     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3820     parseInstructionPattern(CGI, LI, Instructions);
3821   }
3822 
3823   // If we can, convert the instructions to be patterns that are matched!
3824   for (auto &Entry : Instructions) {
3825     Record *Instr = Entry.first;
3826     DAGInstruction &TheInst = Entry.second;
3827     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3828     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3829 
3830     if (SrcPattern && ResultPattern) {
3831       TreePattern Pattern(Instr, SrcPattern, true, *this);
3832       TreePattern Result(Instr, ResultPattern, false, *this);
3833       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3834     }
3835   }
3836 }
3837 
3838 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3839 
3840 static void FindNames(TreePatternNode *P,
3841                       std::map<std::string, NameRecord> &Names,
3842                       TreePattern *PatternTop) {
3843   if (!P->getName().empty()) {
3844     NameRecord &Rec = Names[P->getName()];
3845     // If this is the first instance of the name, remember the node.
3846     if (Rec.second++ == 0)
3847       Rec.first = P;
3848     else if (Rec.first->getExtTypes() != P->getExtTypes())
3849       PatternTop->error("repetition of value: $" + P->getName() +
3850                         " where different uses have different types!");
3851   }
3852 
3853   if (!P->isLeaf()) {
3854     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3855       FindNames(P->getChild(i), Names, PatternTop);
3856   }
3857 }
3858 
3859 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3860   std::vector<Predicate> Preds;
3861   for (Init *I : L->getValues()) {
3862     if (DefInit *Pred = dyn_cast<DefInit>(I))
3863       Preds.push_back(Pred->getDef());
3864     else
3865       llvm_unreachable("Non-def on the list");
3866   }
3867 
3868   // Sort so that different orders get canonicalized to the same string.
3869   llvm::sort(Preds);
3870   return Preds;
3871 }
3872 
3873 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3874                                            PatternToMatch &&PTM) {
3875   // Do some sanity checking on the pattern we're about to match.
3876   std::string Reason;
3877   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3878     PrintWarning(Pattern->getRecord()->getLoc(),
3879       Twine("Pattern can never match: ") + Reason);
3880     return;
3881   }
3882 
3883   // If the source pattern's root is a complex pattern, that complex pattern
3884   // must specify the nodes it can potentially match.
3885   if (const ComplexPattern *CP =
3886         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3887     if (CP->getRootNodes().empty())
3888       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3889                      " could match");
3890 
3891 
3892   // Find all of the named values in the input and output, ensure they have the
3893   // same type.
3894   std::map<std::string, NameRecord> SrcNames, DstNames;
3895   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3896   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3897 
3898   // Scan all of the named values in the destination pattern, rejecting them if
3899   // they don't exist in the input pattern.
3900   for (const auto &Entry : DstNames) {
3901     if (SrcNames[Entry.first].first == nullptr)
3902       Pattern->error("Pattern has input without matching name in output: $" +
3903                      Entry.first);
3904   }
3905 
3906   // Scan all of the named values in the source pattern, rejecting them if the
3907   // name isn't used in the dest, and isn't used to tie two values together.
3908   for (const auto &Entry : SrcNames)
3909     if (DstNames[Entry.first].first == nullptr &&
3910         SrcNames[Entry.first].second == 1)
3911       Pattern->error("Pattern has dead named input: $" + Entry.first);
3912 
3913   PatternsToMatch.push_back(PTM);
3914 }
3915 
3916 void CodeGenDAGPatterns::InferInstructionFlags() {
3917   ArrayRef<const CodeGenInstruction*> Instructions =
3918     Target.getInstructionsByEnumValue();
3919 
3920   unsigned Errors = 0;
3921 
3922   // Try to infer flags from all patterns in PatternToMatch.  These include
3923   // both the primary instruction patterns (which always come first) and
3924   // patterns defined outside the instruction.
3925   for (const PatternToMatch &PTM : ptms()) {
3926     // We can only infer from single-instruction patterns, otherwise we won't
3927     // know which instruction should get the flags.
3928     SmallVector<Record*, 8> PatInstrs;
3929     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3930     if (PatInstrs.size() != 1)
3931       continue;
3932 
3933     // Get the single instruction.
3934     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3935 
3936     // Only infer properties from the first pattern. We'll verify the others.
3937     if (InstInfo.InferredFrom)
3938       continue;
3939 
3940     InstAnalyzer PatInfo(*this);
3941     PatInfo.Analyze(PTM);
3942     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3943   }
3944 
3945   if (Errors)
3946     PrintFatalError("pattern conflicts");
3947 
3948   // If requested by the target, guess any undefined properties.
3949   if (Target.guessInstructionProperties()) {
3950     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3951       CodeGenInstruction *InstInfo =
3952         const_cast<CodeGenInstruction *>(Instructions[i]);
3953       if (InstInfo->InferredFrom)
3954         continue;
3955       // The mayLoad and mayStore flags default to false.
3956       // Conservatively assume hasSideEffects if it wasn't explicit.
3957       if (InstInfo->hasSideEffects_Unset)
3958         InstInfo->hasSideEffects = true;
3959     }
3960     return;
3961   }
3962 
3963   // Complain about any flags that are still undefined.
3964   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3965     CodeGenInstruction *InstInfo =
3966       const_cast<CodeGenInstruction *>(Instructions[i]);
3967     if (InstInfo->InferredFrom)
3968       continue;
3969     if (InstInfo->hasSideEffects_Unset)
3970       PrintError(InstInfo->TheDef->getLoc(),
3971                  "Can't infer hasSideEffects from patterns");
3972     if (InstInfo->mayStore_Unset)
3973       PrintError(InstInfo->TheDef->getLoc(),
3974                  "Can't infer mayStore from patterns");
3975     if (InstInfo->mayLoad_Unset)
3976       PrintError(InstInfo->TheDef->getLoc(),
3977                  "Can't infer mayLoad from patterns");
3978   }
3979 }
3980 
3981 
3982 /// Verify instruction flags against pattern node properties.
3983 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3984   unsigned Errors = 0;
3985   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3986     const PatternToMatch &PTM = *I;
3987     SmallVector<Record*, 8> Instrs;
3988     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3989     if (Instrs.empty())
3990       continue;
3991 
3992     // Count the number of instructions with each flag set.
3993     unsigned NumSideEffects = 0;
3994     unsigned NumStores = 0;
3995     unsigned NumLoads = 0;
3996     for (const Record *Instr : Instrs) {
3997       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3998       NumSideEffects += InstInfo.hasSideEffects;
3999       NumStores += InstInfo.mayStore;
4000       NumLoads += InstInfo.mayLoad;
4001     }
4002 
4003     // Analyze the source pattern.
4004     InstAnalyzer PatInfo(*this);
4005     PatInfo.Analyze(PTM);
4006 
4007     // Collect error messages.
4008     SmallVector<std::string, 4> Msgs;
4009 
4010     // Check for missing flags in the output.
4011     // Permit extra flags for now at least.
4012     if (PatInfo.hasSideEffects && !NumSideEffects)
4013       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4014 
4015     // Don't verify store flags on instructions with side effects. At least for
4016     // intrinsics, side effects implies mayStore.
4017     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4018       Msgs.push_back("pattern may store, but mayStore isn't set");
4019 
4020     // Similarly, mayStore implies mayLoad on intrinsics.
4021     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4022       Msgs.push_back("pattern may load, but mayLoad isn't set");
4023 
4024     // Print error messages.
4025     if (Msgs.empty())
4026       continue;
4027     ++Errors;
4028 
4029     for (const std::string &Msg : Msgs)
4030       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4031                  (Instrs.size() == 1 ?
4032                   "instruction" : "output instructions"));
4033     // Provide the location of the relevant instruction definitions.
4034     for (const Record *Instr : Instrs) {
4035       if (Instr != PTM.getSrcRecord())
4036         PrintError(Instr->getLoc(), "defined here");
4037       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4038       if (InstInfo.InferredFrom &&
4039           InstInfo.InferredFrom != InstInfo.TheDef &&
4040           InstInfo.InferredFrom != PTM.getSrcRecord())
4041         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4042     }
4043   }
4044   if (Errors)
4045     PrintFatalError("Errors in DAG patterns");
4046 }
4047 
4048 /// Given a pattern result with an unresolved type, see if we can find one
4049 /// instruction with an unresolved result type.  Force this result type to an
4050 /// arbitrary element if it's possible types to converge results.
4051 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4052   if (N->isLeaf())
4053     return false;
4054 
4055   // Analyze children.
4056   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4057     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4058       return true;
4059 
4060   if (!N->getOperator()->isSubClassOf("Instruction"))
4061     return false;
4062 
4063   // If this type is already concrete or completely unknown we can't do
4064   // anything.
4065   TypeInfer &TI = TP.getInfer();
4066   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4067     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4068       continue;
4069 
4070     // Otherwise, force its type to an arbitrary choice.
4071     if (TI.forceArbitrary(N->getExtType(i)))
4072       return true;
4073   }
4074 
4075   return false;
4076 }
4077 
4078 // Promote xform function to be an explicit node wherever set.
4079 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4080   if (Record *Xform = N->getTransformFn()) {
4081       N->setTransformFn(nullptr);
4082       std::vector<TreePatternNodePtr> Children;
4083       Children.push_back(PromoteXForms(N));
4084       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4085                                                N->getNumTypes());
4086   }
4087 
4088   if (!N->isLeaf())
4089     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4090       TreePatternNodePtr Child = N->getChildShared(i);
4091       N->setChild(i, PromoteXForms(Child));
4092     }
4093   return N;
4094 }
4095 
4096 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4097        TreePattern &Pattern, TreePattern &Result,
4098        const std::vector<Record *> &InstImpResults) {
4099 
4100   // Inline pattern fragments and expand multiple alternatives.
4101   Pattern.InlinePatternFragments();
4102   Result.InlinePatternFragments();
4103 
4104   if (Result.getNumTrees() != 1)
4105     Result.error("Cannot use multi-alternative fragments in result pattern!");
4106 
4107   // Infer types.
4108   bool IterateInference;
4109   bool InferredAllPatternTypes, InferredAllResultTypes;
4110   do {
4111     // Infer as many types as possible.  If we cannot infer all of them, we
4112     // can never do anything with this pattern: report it to the user.
4113     InferredAllPatternTypes =
4114         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4115 
4116     // Infer as many types as possible.  If we cannot infer all of them, we
4117     // can never do anything with this pattern: report it to the user.
4118     InferredAllResultTypes =
4119         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4120 
4121     IterateInference = false;
4122 
4123     // Apply the type of the result to the source pattern.  This helps us
4124     // resolve cases where the input type is known to be a pointer type (which
4125     // is considered resolved), but the result knows it needs to be 32- or
4126     // 64-bits.  Infer the other way for good measure.
4127     for (auto T : Pattern.getTrees())
4128       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4129                                         T->getNumTypes());
4130          i != e; ++i) {
4131         IterateInference |= T->UpdateNodeType(
4132             i, Result.getOnlyTree()->getExtType(i), Result);
4133         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4134             i, T->getExtType(i), Result);
4135       }
4136 
4137     // If our iteration has converged and the input pattern's types are fully
4138     // resolved but the result pattern is not fully resolved, we may have a
4139     // situation where we have two instructions in the result pattern and
4140     // the instructions require a common register class, but don't care about
4141     // what actual MVT is used.  This is actually a bug in our modelling:
4142     // output patterns should have register classes, not MVTs.
4143     //
4144     // In any case, to handle this, we just go through and disambiguate some
4145     // arbitrary types to the result pattern's nodes.
4146     if (!IterateInference && InferredAllPatternTypes &&
4147         !InferredAllResultTypes)
4148       IterateInference =
4149           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4150   } while (IterateInference);
4151 
4152   // Verify that we inferred enough types that we can do something with the
4153   // pattern and result.  If these fire the user has to add type casts.
4154   if (!InferredAllPatternTypes)
4155     Pattern.error("Could not infer all types in pattern!");
4156   if (!InferredAllResultTypes) {
4157     Pattern.dump();
4158     Result.error("Could not infer all types in pattern result!");
4159   }
4160 
4161   // Promote xform function to be an explicit node wherever set.
4162   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4163 
4164   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4165   Temp.InferAllTypes();
4166 
4167   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4168   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4169 
4170   if (PatternRewriter)
4171     PatternRewriter(&Pattern);
4172 
4173   // A pattern may end up with an "impossible" type, i.e. a situation
4174   // where all types have been eliminated for some node in this pattern.
4175   // This could occur for intrinsics that only make sense for a specific
4176   // value type, and use a specific register class. If, for some mode,
4177   // that register class does not accept that type, the type inference
4178   // will lead to a contradiction, which is not an error however, but
4179   // a sign that this pattern will simply never match.
4180   if (Temp.getOnlyTree()->hasPossibleType())
4181     for (auto T : Pattern.getTrees())
4182       if (T->hasPossibleType())
4183         AddPatternToMatch(&Pattern,
4184                           PatternToMatch(TheDef, makePredList(Preds),
4185                                          T, Temp.getOnlyTree(),
4186                                          InstImpResults, Complexity,
4187                                          TheDef->getID()));
4188 }
4189 
4190 void CodeGenDAGPatterns::ParsePatterns() {
4191   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4192 
4193   for (Record *CurPattern : Patterns) {
4194     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4195 
4196     // If the pattern references the null_frag, there's nothing to do.
4197     if (hasNullFragReference(Tree))
4198       continue;
4199 
4200     TreePattern Pattern(CurPattern, Tree, true, *this);
4201 
4202     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4203     if (LI->empty()) continue;  // no pattern.
4204 
4205     // Parse the instruction.
4206     TreePattern Result(CurPattern, LI, false, *this);
4207 
4208     if (Result.getNumTrees() != 1)
4209       Result.error("Cannot handle instructions producing instructions "
4210                    "with temporaries yet!");
4211 
4212     // Validate that the input pattern is correct.
4213     std::map<std::string, TreePatternNodePtr> InstInputs;
4214     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4215         InstResults;
4216     std::vector<Record*> InstImpResults;
4217     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4218       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4219                                   InstResults, InstImpResults);
4220 
4221     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4222   }
4223 }
4224 
4225 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4226   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4227     for (const auto &I : VTS)
4228       Modes.insert(I.first);
4229 
4230   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4231     collectModes(Modes, N->getChild(i));
4232 }
4233 
4234 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4235   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4236   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4237   std::vector<PatternToMatch> Copy = PatternsToMatch;
4238   PatternsToMatch.clear();
4239 
4240   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4241     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4242     TreePatternNodePtr NewDst = P.DstPattern->clone();
4243     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4244       return;
4245     }
4246 
4247     std::vector<Predicate> Preds = P.Predicates;
4248     const std::vector<Predicate> &MC = ModeChecks[Mode];
4249     Preds.insert(Preds.end(), MC.begin(), MC.end());
4250     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4251                                  std::move(NewDst), P.getDstRegs(),
4252                                  P.getAddedComplexity(), Record::getNewUID(),
4253                                  Mode);
4254   };
4255 
4256   for (PatternToMatch &P : Copy) {
4257     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4258     if (P.SrcPattern->hasProperTypeByHwMode())
4259       SrcP = P.SrcPattern;
4260     if (P.DstPattern->hasProperTypeByHwMode())
4261       DstP = P.DstPattern;
4262     if (!SrcP && !DstP) {
4263       PatternsToMatch.push_back(P);
4264       continue;
4265     }
4266 
4267     std::set<unsigned> Modes;
4268     if (SrcP)
4269       collectModes(Modes, SrcP.get());
4270     if (DstP)
4271       collectModes(Modes, DstP.get());
4272 
4273     // The predicate for the default mode needs to be constructed for each
4274     // pattern separately.
4275     // Since not all modes must be present in each pattern, if a mode m is
4276     // absent, then there is no point in constructing a check for m. If such
4277     // a check was created, it would be equivalent to checking the default
4278     // mode, except not all modes' predicates would be a part of the checking
4279     // code. The subsequently generated check for the default mode would then
4280     // have the exact same patterns, but a different predicate code. To avoid
4281     // duplicated patterns with different predicate checks, construct the
4282     // default check as a negation of all predicates that are actually present
4283     // in the source/destination patterns.
4284     std::vector<Predicate> DefaultPred;
4285 
4286     for (unsigned M : Modes) {
4287       if (M == DefaultMode)
4288         continue;
4289       if (ModeChecks.find(M) != ModeChecks.end())
4290         continue;
4291 
4292       // Fill the map entry for this mode.
4293       const HwMode &HM = CGH.getMode(M);
4294       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4295 
4296       // Add negations of the HM's predicates to the default predicate.
4297       DefaultPred.emplace_back(Predicate(HM.Features, false));
4298     }
4299 
4300     for (unsigned M : Modes) {
4301       if (M == DefaultMode)
4302         continue;
4303       AppendPattern(P, M);
4304     }
4305 
4306     bool HasDefault = Modes.count(DefaultMode);
4307     if (HasDefault)
4308       AppendPattern(P, DefaultMode);
4309   }
4310 }
4311 
4312 /// Dependent variable map for CodeGenDAGPattern variant generation
4313 typedef StringMap<int> DepVarMap;
4314 
4315 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4316   if (N->isLeaf()) {
4317     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4318       DepMap[N->getName()]++;
4319   } else {
4320     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4321       FindDepVarsOf(N->getChild(i), DepMap);
4322   }
4323 }
4324 
4325 /// Find dependent variables within child patterns
4326 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4327   DepVarMap depcounts;
4328   FindDepVarsOf(N, depcounts);
4329   for (const auto &Pair : depcounts) {
4330     if (Pair.getValue() > 1)
4331       DepVars.insert(Pair.getKey());
4332   }
4333 }
4334 
4335 #ifndef NDEBUG
4336 /// Dump the dependent variable set:
4337 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4338   if (DepVars.empty()) {
4339     LLVM_DEBUG(errs() << "<empty set>");
4340   } else {
4341     LLVM_DEBUG(errs() << "[ ");
4342     for (const auto &DepVar : DepVars) {
4343       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4344     }
4345     LLVM_DEBUG(errs() << "]");
4346   }
4347 }
4348 #endif
4349 
4350 
4351 /// CombineChildVariants - Given a bunch of permutations of each child of the
4352 /// 'operator' node, put them together in all possible ways.
4353 static void CombineChildVariants(
4354     TreePatternNodePtr Orig,
4355     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4356     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4357     const MultipleUseVarSet &DepVars) {
4358   // Make sure that each operand has at least one variant to choose from.
4359   for (const auto &Variants : ChildVariants)
4360     if (Variants.empty())
4361       return;
4362 
4363   // The end result is an all-pairs construction of the resultant pattern.
4364   std::vector<unsigned> Idxs;
4365   Idxs.resize(ChildVariants.size());
4366   bool NotDone;
4367   do {
4368 #ifndef NDEBUG
4369     LLVM_DEBUG(if (!Idxs.empty()) {
4370       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4371       for (unsigned Idx : Idxs) {
4372         errs() << Idx << " ";
4373       }
4374       errs() << "]\n";
4375     });
4376 #endif
4377     // Create the variant and add it to the output list.
4378     std::vector<TreePatternNodePtr> NewChildren;
4379     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4380       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4381     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4382         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4383 
4384     // Copy over properties.
4385     R->setName(Orig->getName());
4386     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4387     R->setPredicateCalls(Orig->getPredicateCalls());
4388     R->setTransformFn(Orig->getTransformFn());
4389     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4390       R->setType(i, Orig->getExtType(i));
4391 
4392     // If this pattern cannot match, do not include it as a variant.
4393     std::string ErrString;
4394     // Scan to see if this pattern has already been emitted.  We can get
4395     // duplication due to things like commuting:
4396     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4397     // which are the same pattern.  Ignore the dups.
4398     if (R->canPatternMatch(ErrString, CDP) &&
4399         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4400           return R->isIsomorphicTo(Variant.get(), DepVars);
4401         }))
4402       OutVariants.push_back(R);
4403 
4404     // Increment indices to the next permutation by incrementing the
4405     // indices from last index backward, e.g., generate the sequence
4406     // [0, 0], [0, 1], [1, 0], [1, 1].
4407     int IdxsIdx;
4408     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4409       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4410         Idxs[IdxsIdx] = 0;
4411       else
4412         break;
4413     }
4414     NotDone = (IdxsIdx >= 0);
4415   } while (NotDone);
4416 }
4417 
4418 /// CombineChildVariants - A helper function for binary operators.
4419 ///
4420 static void CombineChildVariants(TreePatternNodePtr Orig,
4421                                  const std::vector<TreePatternNodePtr> &LHS,
4422                                  const std::vector<TreePatternNodePtr> &RHS,
4423                                  std::vector<TreePatternNodePtr> &OutVariants,
4424                                  CodeGenDAGPatterns &CDP,
4425                                  const MultipleUseVarSet &DepVars) {
4426   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4427   ChildVariants.push_back(LHS);
4428   ChildVariants.push_back(RHS);
4429   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4430 }
4431 
4432 static void
4433 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4434                                   std::vector<TreePatternNodePtr> &Children) {
4435   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4436   Record *Operator = N->getOperator();
4437 
4438   // Only permit raw nodes.
4439   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4440       N->getTransformFn()) {
4441     Children.push_back(N);
4442     return;
4443   }
4444 
4445   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4446     Children.push_back(N->getChildShared(0));
4447   else
4448     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4449 
4450   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4451     Children.push_back(N->getChildShared(1));
4452   else
4453     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4454 }
4455 
4456 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4457 /// the (potentially recursive) pattern by using algebraic laws.
4458 ///
4459 static void GenerateVariantsOf(TreePatternNodePtr N,
4460                                std::vector<TreePatternNodePtr> &OutVariants,
4461                                CodeGenDAGPatterns &CDP,
4462                                const MultipleUseVarSet &DepVars) {
4463   // We cannot permute leaves or ComplexPattern uses.
4464   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4465     OutVariants.push_back(N);
4466     return;
4467   }
4468 
4469   // Look up interesting info about the node.
4470   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4471 
4472   // If this node is associative, re-associate.
4473   if (NodeInfo.hasProperty(SDNPAssociative)) {
4474     // Re-associate by pulling together all of the linked operators
4475     std::vector<TreePatternNodePtr> MaximalChildren;
4476     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4477 
4478     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4479     // permutations.
4480     if (MaximalChildren.size() == 3) {
4481       // Find the variants of all of our maximal children.
4482       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4483       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4484       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4485       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4486 
4487       // There are only two ways we can permute the tree:
4488       //   (A op B) op C    and    A op (B op C)
4489       // Within these forms, we can also permute A/B/C.
4490 
4491       // Generate legal pair permutations of A/B/C.
4492       std::vector<TreePatternNodePtr> ABVariants;
4493       std::vector<TreePatternNodePtr> BAVariants;
4494       std::vector<TreePatternNodePtr> ACVariants;
4495       std::vector<TreePatternNodePtr> CAVariants;
4496       std::vector<TreePatternNodePtr> BCVariants;
4497       std::vector<TreePatternNodePtr> CBVariants;
4498       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4499       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4500       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4501       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4502       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4503       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4504 
4505       // Combine those into the result: (x op x) op x
4506       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4507       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4508       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4509       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4510       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4511       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4512 
4513       // Combine those into the result: x op (x op x)
4514       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4515       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4516       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4517       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4518       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4519       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4520       return;
4521     }
4522   }
4523 
4524   // Compute permutations of all children.
4525   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4526   ChildVariants.resize(N->getNumChildren());
4527   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4528     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4529 
4530   // Build all permutations based on how the children were formed.
4531   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4532 
4533   // If this node is commutative, consider the commuted order.
4534   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4535   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4536     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4537            "Commutative but doesn't have 2 children!");
4538     // Don't count children which are actually register references.
4539     unsigned NC = 0;
4540     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4541       TreePatternNode *Child = N->getChild(i);
4542       if (Child->isLeaf())
4543         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4544           Record *RR = DI->getDef();
4545           if (RR->isSubClassOf("Register"))
4546             continue;
4547         }
4548       NC++;
4549     }
4550     // Consider the commuted order.
4551     if (isCommIntrinsic) {
4552       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4553       // operands are the commutative operands, and there might be more operands
4554       // after those.
4555       assert(NC >= 3 &&
4556              "Commutative intrinsic should have at least 3 children!");
4557       std::vector<std::vector<TreePatternNodePtr>> Variants;
4558       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4559       Variants.push_back(std::move(ChildVariants[2]));
4560       Variants.push_back(std::move(ChildVariants[1]));
4561       for (unsigned i = 3; i != NC; ++i)
4562         Variants.push_back(std::move(ChildVariants[i]));
4563       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4564     } else if (NC == N->getNumChildren()) {
4565       std::vector<std::vector<TreePatternNodePtr>> Variants;
4566       Variants.push_back(std::move(ChildVariants[1]));
4567       Variants.push_back(std::move(ChildVariants[0]));
4568       for (unsigned i = 2; i != NC; ++i)
4569         Variants.push_back(std::move(ChildVariants[i]));
4570       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4571     }
4572   }
4573 }
4574 
4575 
4576 // GenerateVariants - Generate variants.  For example, commutative patterns can
4577 // match multiple ways.  Add them to PatternsToMatch as well.
4578 void CodeGenDAGPatterns::GenerateVariants() {
4579   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4580 
4581   // Loop over all of the patterns we've collected, checking to see if we can
4582   // generate variants of the instruction, through the exploitation of
4583   // identities.  This permits the target to provide aggressive matching without
4584   // the .td file having to contain tons of variants of instructions.
4585   //
4586   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4587   // intentionally do not reconsider these.  Any variants of added patterns have
4588   // already been added.
4589   //
4590   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4591   BitVector MatchedPatterns(NumOriginalPatterns);
4592   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4593                                            BitVector(NumOriginalPatterns));
4594 
4595   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4596       DepsAndVariants;
4597   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4598 
4599   // Collect patterns with more than one variant.
4600   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4601     MultipleUseVarSet DepVars;
4602     std::vector<TreePatternNodePtr> Variants;
4603     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4604     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4605     LLVM_DEBUG(DumpDepVars(DepVars));
4606     LLVM_DEBUG(errs() << "\n");
4607     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4608                        *this, DepVars);
4609 
4610     assert(!Variants.empty() && "Must create at least original variant!");
4611     if (Variants.size() == 1) // No additional variants for this pattern.
4612       continue;
4613 
4614     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4615                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4616 
4617     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4618 
4619     // Cache matching predicates.
4620     if (MatchedPatterns[i])
4621       continue;
4622 
4623     const std::vector<Predicate> &Predicates =
4624         PatternsToMatch[i].getPredicates();
4625 
4626     BitVector &Matches = MatchedPredicates[i];
4627     MatchedPatterns.set(i);
4628     Matches.set(i);
4629 
4630     // Don't test patterns that have already been cached - it won't match.
4631     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4632       if (!MatchedPatterns[p])
4633         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4634 
4635     // Copy this to all the matching patterns.
4636     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4637       if (p != (int)i) {
4638         MatchedPatterns.set(p);
4639         MatchedPredicates[p] = Matches;
4640       }
4641   }
4642 
4643   for (auto it : PatternsWithVariants) {
4644     unsigned i = it.first;
4645     const MultipleUseVarSet &DepVars = it.second.first;
4646     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4647 
4648     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4649       TreePatternNodePtr Variant = Variants[v];
4650       BitVector &Matches = MatchedPredicates[i];
4651 
4652       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4653                  errs() << "\n");
4654 
4655       // Scan to see if an instruction or explicit pattern already matches this.
4656       bool AlreadyExists = false;
4657       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4658         // Skip if the top level predicates do not match.
4659         if (!Matches[p])
4660           continue;
4661         // Check to see if this variant already exists.
4662         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4663                                     DepVars)) {
4664           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4665           AlreadyExists = true;
4666           break;
4667         }
4668       }
4669       // If we already have it, ignore the variant.
4670       if (AlreadyExists) continue;
4671 
4672       // Otherwise, add it to the list of patterns we have.
4673       PatternsToMatch.push_back(PatternToMatch(
4674           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4675           Variant, PatternsToMatch[i].getDstPatternShared(),
4676           PatternsToMatch[i].getDstRegs(),
4677           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4678       MatchedPredicates.push_back(Matches);
4679 
4680       // Add a new match the same as this pattern.
4681       for (auto &P : MatchedPredicates)
4682         P.push_back(P[i]);
4683     }
4684 
4685     LLVM_DEBUG(errs() << "\n");
4686   }
4687 }
4688