1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Support/Debug.h" 20 #include <set> 21 #include <algorithm> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // EEVT::TypeSet Implementation 26 //===----------------------------------------------------------------------===// 27 28 static inline bool isInteger(MVT::SimpleValueType VT) { 29 return EVT(VT).isInteger(); 30 } 31 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 32 return EVT(VT).isFloatingPoint(); 33 } 34 static inline bool isVector(MVT::SimpleValueType VT) { 35 return EVT(VT).isVector(); 36 } 37 static inline bool isScalar(MVT::SimpleValueType VT) { 38 return !EVT(VT).isVector(); 39 } 40 41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 42 if (VT == MVT::iAny) 43 EnforceInteger(TP); 44 else if (VT == MVT::fAny) 45 EnforceFloatingPoint(TP); 46 else if (VT == MVT::vAny) 47 EnforceVector(TP); 48 else { 49 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 50 VT == MVT::iPTRAny) && "Not a concrete type!"); 51 TypeVec.push_back(VT); 52 } 53 } 54 55 56 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 57 assert(!VTList.empty() && "empty list?"); 58 TypeVec.append(VTList.begin(), VTList.end()); 59 60 if (!VTList.empty()) 61 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 62 VTList[0] != MVT::fAny); 63 64 // Verify no duplicates. 65 array_pod_sort(TypeVec.begin(), TypeVec.end()); 66 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 67 } 68 69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 70 /// on completely unknown type sets. 71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 72 bool (*Pred)(MVT::SimpleValueType), 73 const char *PredicateName) { 74 assert(isCompletelyUnknown()); 75 const std::vector<MVT::SimpleValueType> &LegalTypes = 76 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 77 78 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 79 if (Pred == 0 || Pred(LegalTypes[i])) 80 TypeVec.push_back(LegalTypes[i]); 81 82 // If we have nothing that matches the predicate, bail out. 83 if (TypeVec.empty()) 84 TP.error("Type inference contradiction found, no " + 85 std::string(PredicateName) + " types found"); 86 // No need to sort with one element. 87 if (TypeVec.size() == 1) return true; 88 89 // Remove duplicates. 90 array_pod_sort(TypeVec.begin(), TypeVec.end()); 91 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 92 93 return true; 94 } 95 96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 97 /// integer value type. 98 bool EEVT::TypeSet::hasIntegerTypes() const { 99 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 100 if (isInteger(TypeVec[i])) 101 return true; 102 return false; 103 } 104 105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 106 /// a floating point value type. 107 bool EEVT::TypeSet::hasFloatingPointTypes() const { 108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 109 if (isFloatingPoint(TypeVec[i])) 110 return true; 111 return false; 112 } 113 114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 115 /// value type. 116 bool EEVT::TypeSet::hasVectorTypes() const { 117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 118 if (isVector(TypeVec[i])) 119 return true; 120 return false; 121 } 122 123 124 std::string EEVT::TypeSet::getName() const { 125 if (TypeVec.empty()) return "<empty>"; 126 127 std::string Result; 128 129 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 130 std::string VTName = llvm::getEnumName(TypeVec[i]); 131 // Strip off MVT:: prefix if present. 132 if (VTName.substr(0,5) == "MVT::") 133 VTName = VTName.substr(5); 134 if (i) Result += ':'; 135 Result += VTName; 136 } 137 138 if (TypeVec.size() == 1) 139 return Result; 140 return "{" + Result + "}"; 141 } 142 143 /// MergeInTypeInfo - This merges in type information from the specified 144 /// argument. If 'this' changes, it returns true. If the two types are 145 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 147 if (InVT.isCompletelyUnknown() || *this == InVT) 148 return false; 149 150 if (isCompletelyUnknown()) { 151 *this = InVT; 152 return true; 153 } 154 155 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 156 157 // Handle the abstract cases, seeing if we can resolve them better. 158 switch (TypeVec[0]) { 159 default: break; 160 case MVT::iPTR: 161 case MVT::iPTRAny: 162 if (InVT.hasIntegerTypes()) { 163 EEVT::TypeSet InCopy(InVT); 164 InCopy.EnforceInteger(TP); 165 InCopy.EnforceScalar(TP); 166 167 if (InCopy.isConcrete()) { 168 // If the RHS has one integer type, upgrade iPTR to i32. 169 TypeVec[0] = InVT.TypeVec[0]; 170 return true; 171 } 172 173 // If the input has multiple scalar integers, this doesn't add any info. 174 if (!InCopy.isCompletelyUnknown()) 175 return false; 176 } 177 break; 178 } 179 180 // If the input constraint is iAny/iPTR and this is an integer type list, 181 // remove non-integer types from the list. 182 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 183 hasIntegerTypes()) { 184 bool MadeChange = EnforceInteger(TP); 185 186 // If we're merging in iPTR/iPTRAny and the node currently has a list of 187 // multiple different integer types, replace them with a single iPTR. 188 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 189 TypeVec.size() != 1) { 190 TypeVec.resize(1); 191 TypeVec[0] = InVT.TypeVec[0]; 192 MadeChange = true; 193 } 194 195 return MadeChange; 196 } 197 198 // If this is a type list and the RHS is a typelist as well, eliminate entries 199 // from this list that aren't in the other one. 200 bool MadeChange = false; 201 TypeSet InputSet(*this); 202 203 for (unsigned i = 0; i != TypeVec.size(); ++i) { 204 bool InInVT = false; 205 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 206 if (TypeVec[i] == InVT.TypeVec[j]) { 207 InInVT = true; 208 break; 209 } 210 211 if (InInVT) continue; 212 TypeVec.erase(TypeVec.begin()+i--); 213 MadeChange = true; 214 } 215 216 // If we removed all of our types, we have a type contradiction. 217 if (!TypeVec.empty()) 218 return MadeChange; 219 220 // FIXME: Really want an SMLoc here! 221 TP.error("Type inference contradiction found, merging '" + 222 InVT.getName() + "' into '" + InputSet.getName() + "'"); 223 return true; // unreachable 224 } 225 226 /// EnforceInteger - Remove all non-integer types from this set. 227 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 228 // If we know nothing, then get the full set. 229 if (TypeVec.empty()) 230 return FillWithPossibleTypes(TP, isInteger, "integer"); 231 if (!hasFloatingPointTypes()) 232 return false; 233 234 TypeSet InputSet(*this); 235 236 // Filter out all the fp types. 237 for (unsigned i = 0; i != TypeVec.size(); ++i) 238 if (!isInteger(TypeVec[i])) 239 TypeVec.erase(TypeVec.begin()+i--); 240 241 if (TypeVec.empty()) 242 TP.error("Type inference contradiction found, '" + 243 InputSet.getName() + "' needs to be integer"); 244 return true; 245 } 246 247 /// EnforceFloatingPoint - Remove all integer types from this set. 248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 252 253 if (!hasIntegerTypes()) 254 return false; 255 256 TypeSet InputSet(*this); 257 258 // Filter out all the fp types. 259 for (unsigned i = 0; i != TypeVec.size(); ++i) 260 if (!isFloatingPoint(TypeVec[i])) 261 TypeVec.erase(TypeVec.begin()+i--); 262 263 if (TypeVec.empty()) 264 TP.error("Type inference contradiction found, '" + 265 InputSet.getName() + "' needs to be floating point"); 266 return true; 267 } 268 269 /// EnforceScalar - Remove all vector types from this. 270 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 271 // If we know nothing, then get the full set. 272 if (TypeVec.empty()) 273 return FillWithPossibleTypes(TP, isScalar, "scalar"); 274 275 if (!hasVectorTypes()) 276 return false; 277 278 TypeSet InputSet(*this); 279 280 // Filter out all the vector types. 281 for (unsigned i = 0; i != TypeVec.size(); ++i) 282 if (!isScalar(TypeVec[i])) 283 TypeVec.erase(TypeVec.begin()+i--); 284 285 if (TypeVec.empty()) 286 TP.error("Type inference contradiction found, '" + 287 InputSet.getName() + "' needs to be scalar"); 288 return true; 289 } 290 291 /// EnforceVector - Remove all vector types from this. 292 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 293 // If we know nothing, then get the full set. 294 if (TypeVec.empty()) 295 return FillWithPossibleTypes(TP, isVector, "vector"); 296 297 TypeSet InputSet(*this); 298 bool MadeChange = false; 299 300 // Filter out all the scalar types. 301 for (unsigned i = 0; i != TypeVec.size(); ++i) 302 if (!isVector(TypeVec[i])) { 303 TypeVec.erase(TypeVec.begin()+i--); 304 MadeChange = true; 305 } 306 307 if (TypeVec.empty()) 308 TP.error("Type inference contradiction found, '" + 309 InputSet.getName() + "' needs to be a vector"); 310 return MadeChange; 311 } 312 313 314 315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 316 /// this an other based on this information. 317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 318 // Both operands must be integer or FP, but we don't care which. 319 bool MadeChange = false; 320 321 if (isCompletelyUnknown()) 322 MadeChange = FillWithPossibleTypes(TP); 323 324 if (Other.isCompletelyUnknown()) 325 MadeChange = Other.FillWithPossibleTypes(TP); 326 327 // If one side is known to be integer or known to be FP but the other side has 328 // no information, get at least the type integrality info in there. 329 if (!hasFloatingPointTypes()) 330 MadeChange |= Other.EnforceInteger(TP); 331 else if (!hasIntegerTypes()) 332 MadeChange |= Other.EnforceFloatingPoint(TP); 333 if (!Other.hasFloatingPointTypes()) 334 MadeChange |= EnforceInteger(TP); 335 else if (!Other.hasIntegerTypes()) 336 MadeChange |= EnforceFloatingPoint(TP); 337 338 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 339 "Should have a type list now"); 340 341 // If one contains vectors but the other doesn't pull vectors out. 342 if (!hasVectorTypes()) 343 MadeChange |= Other.EnforceScalar(TP); 344 if (!hasVectorTypes()) 345 MadeChange |= EnforceScalar(TP); 346 347 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 348 // If we are down to concrete types, this code does not currently 349 // handle nodes which have multiple types, where some types are 350 // integer, and some are fp. Assert that this is not the case. 351 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 352 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 353 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 354 355 // Otherwise, if these are both vector types, either this vector 356 // must have a larger bitsize than the other, or this element type 357 // must be larger than the other. 358 EVT Type(TypeVec[0]); 359 EVT OtherType(Other.TypeVec[0]); 360 361 if (hasVectorTypes() && Other.hasVectorTypes()) { 362 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 363 if (Type.getVectorElementType().getSizeInBits() 364 >= OtherType.getVectorElementType().getSizeInBits()) 365 TP.error("Type inference contradiction found, '" + 366 getName() + "' element type not smaller than '" + 367 Other.getName() +"'!"); 368 } 369 else 370 // For scalar types, the bitsize of this type must be larger 371 // than that of the other. 372 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 373 TP.error("Type inference contradiction found, '" + 374 getName() + "' is not smaller than '" + 375 Other.getName() +"'!"); 376 377 } 378 379 380 // Handle int and fp as disjoint sets. This won't work for patterns 381 // that have mixed fp/int types but those are likely rare and would 382 // not have been accepted by this code previously. 383 384 // Okay, find the smallest type from the current set and remove it from the 385 // largest set. 386 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 387 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 388 if (isInteger(TypeVec[i])) { 389 SmallestInt = TypeVec[i]; 390 break; 391 } 392 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 393 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 394 SmallestInt = TypeVec[i]; 395 396 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 397 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 398 if (isFloatingPoint(TypeVec[i])) { 399 SmallestFP = TypeVec[i]; 400 break; 401 } 402 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 403 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 404 SmallestFP = TypeVec[i]; 405 406 int OtherIntSize = 0; 407 int OtherFPSize = 0; 408 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 409 Other.TypeVec.begin(); 410 TVI != Other.TypeVec.end(); 411 /* NULL */) { 412 if (isInteger(*TVI)) { 413 ++OtherIntSize; 414 if (*TVI == SmallestInt) { 415 TVI = Other.TypeVec.erase(TVI); 416 --OtherIntSize; 417 MadeChange = true; 418 continue; 419 } 420 } 421 else if (isFloatingPoint(*TVI)) { 422 ++OtherFPSize; 423 if (*TVI == SmallestFP) { 424 TVI = Other.TypeVec.erase(TVI); 425 --OtherFPSize; 426 MadeChange = true; 427 continue; 428 } 429 } 430 ++TVI; 431 } 432 433 // If this is the only type in the large set, the constraint can never be 434 // satisfied. 435 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 436 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) 437 TP.error("Type inference contradiction found, '" + 438 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 439 440 // Okay, find the largest type in the Other set and remove it from the 441 // current set. 442 MVT::SimpleValueType LargestInt = MVT::Other; 443 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 444 if (isInteger(Other.TypeVec[i])) { 445 LargestInt = Other.TypeVec[i]; 446 break; 447 } 448 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 449 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 450 LargestInt = Other.TypeVec[i]; 451 452 MVT::SimpleValueType LargestFP = MVT::Other; 453 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 454 if (isFloatingPoint(Other.TypeVec[i])) { 455 LargestFP = Other.TypeVec[i]; 456 break; 457 } 458 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 459 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 460 LargestFP = Other.TypeVec[i]; 461 462 int IntSize = 0; 463 int FPSize = 0; 464 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 465 TypeVec.begin(); 466 TVI != TypeVec.end(); 467 /* NULL */) { 468 if (isInteger(*TVI)) { 469 ++IntSize; 470 if (*TVI == LargestInt) { 471 TVI = TypeVec.erase(TVI); 472 --IntSize; 473 MadeChange = true; 474 continue; 475 } 476 } 477 else if (isFloatingPoint(*TVI)) { 478 ++FPSize; 479 if (*TVI == LargestFP) { 480 TVI = TypeVec.erase(TVI); 481 --FPSize; 482 MadeChange = true; 483 continue; 484 } 485 } 486 ++TVI; 487 } 488 489 // If this is the only type in the small set, the constraint can never be 490 // satisfied. 491 if ((hasIntegerTypes() && IntSize == 0) 492 || (hasFloatingPointTypes() && FPSize == 0)) 493 TP.error("Type inference contradiction found, '" + 494 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 495 496 return MadeChange; 497 } 498 499 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 500 /// whose element is specified by VTOperand. 501 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 502 TreePattern &TP) { 503 // "This" must be a vector and "VTOperand" must be a scalar. 504 bool MadeChange = false; 505 MadeChange |= EnforceVector(TP); 506 MadeChange |= VTOperand.EnforceScalar(TP); 507 508 // If we know the vector type, it forces the scalar to agree. 509 if (isConcrete()) { 510 EVT IVT = getConcrete(); 511 IVT = IVT.getVectorElementType(); 512 return MadeChange | 513 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 514 } 515 516 // If the scalar type is known, filter out vector types whose element types 517 // disagree. 518 if (!VTOperand.isConcrete()) 519 return MadeChange; 520 521 MVT::SimpleValueType VT = VTOperand.getConcrete(); 522 523 TypeSet InputSet(*this); 524 525 // Filter out all the types which don't have the right element type. 526 for (unsigned i = 0; i != TypeVec.size(); ++i) { 527 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 528 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 529 TypeVec.erase(TypeVec.begin()+i--); 530 MadeChange = true; 531 } 532 } 533 534 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 535 TP.error("Type inference contradiction found, forcing '" + 536 InputSet.getName() + "' to have a vector element"); 537 return MadeChange; 538 } 539 540 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 541 /// vector type specified by VTOperand. 542 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 543 TreePattern &TP) { 544 // "This" must be a vector and "VTOperand" must be a vector. 545 bool MadeChange = false; 546 MadeChange |= EnforceVector(TP); 547 MadeChange |= VTOperand.EnforceVector(TP); 548 549 // "This" must be larger than "VTOperand." 550 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 551 552 // If we know the vector type, it forces the scalar types to agree. 553 if (isConcrete()) { 554 EVT IVT = getConcrete(); 555 IVT = IVT.getVectorElementType(); 556 557 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 558 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 559 } else if (VTOperand.isConcrete()) { 560 EVT IVT = VTOperand.getConcrete(); 561 IVT = IVT.getVectorElementType(); 562 563 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 564 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 565 } 566 567 return MadeChange; 568 } 569 570 //===----------------------------------------------------------------------===// 571 // Helpers for working with extended types. 572 573 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 574 return LHS->getID() < RHS->getID(); 575 } 576 577 /// Dependent variable map for CodeGenDAGPattern variant generation 578 typedef std::map<std::string, int> DepVarMap; 579 580 /// Const iterator shorthand for DepVarMap 581 typedef DepVarMap::const_iterator DepVarMap_citer; 582 583 namespace { 584 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 585 if (N->isLeaf()) { 586 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 587 DepMap[N->getName()]++; 588 } 589 } else { 590 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 591 FindDepVarsOf(N->getChild(i), DepMap); 592 } 593 } 594 595 //! Find dependent variables within child patterns 596 /*! 597 */ 598 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 599 DepVarMap depcounts; 600 FindDepVarsOf(N, depcounts); 601 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 602 if (i->second > 1) { // std::pair<std::string, int> 603 DepVars.insert(i->first); 604 } 605 } 606 } 607 608 //! Dump the dependent variable set: 609 #ifndef NDEBUG 610 void DumpDepVars(MultipleUseVarSet &DepVars) { 611 if (DepVars.empty()) { 612 DEBUG(errs() << "<empty set>"); 613 } else { 614 DEBUG(errs() << "[ "); 615 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 616 e = DepVars.end(); i != e; ++i) { 617 DEBUG(errs() << (*i) << " "); 618 } 619 DEBUG(errs() << "]"); 620 } 621 } 622 #endif 623 624 } 625 626 //===----------------------------------------------------------------------===// 627 // PatternToMatch implementation 628 // 629 630 631 /// getPatternSize - Return the 'size' of this pattern. We want to match large 632 /// patterns before small ones. This is used to determine the size of a 633 /// pattern. 634 static unsigned getPatternSize(const TreePatternNode *P, 635 const CodeGenDAGPatterns &CGP) { 636 unsigned Size = 3; // The node itself. 637 // If the root node is a ConstantSDNode, increases its size. 638 // e.g. (set R32:$dst, 0). 639 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 640 Size += 2; 641 642 // FIXME: This is a hack to statically increase the priority of patterns 643 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 644 // Later we can allow complexity / cost for each pattern to be (optionally) 645 // specified. To get best possible pattern match we'll need to dynamically 646 // calculate the complexity of all patterns a dag can potentially map to. 647 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 648 if (AM) 649 Size += AM->getNumOperands() * 3; 650 651 // If this node has some predicate function that must match, it adds to the 652 // complexity of this node. 653 if (!P->getPredicateFns().empty()) 654 ++Size; 655 656 // Count children in the count if they are also nodes. 657 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 658 TreePatternNode *Child = P->getChild(i); 659 if (!Child->isLeaf() && Child->getNumTypes() && 660 Child->getType(0) != MVT::Other) 661 Size += getPatternSize(Child, CGP); 662 else if (Child->isLeaf()) { 663 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 664 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 665 else if (Child->getComplexPatternInfo(CGP)) 666 Size += getPatternSize(Child, CGP); 667 else if (!Child->getPredicateFns().empty()) 668 ++Size; 669 } 670 } 671 672 return Size; 673 } 674 675 /// Compute the complexity metric for the input pattern. This roughly 676 /// corresponds to the number of nodes that are covered. 677 unsigned PatternToMatch:: 678 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 679 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 680 } 681 682 683 /// getPredicateCheck - Return a single string containing all of this 684 /// pattern's predicates concatenated with "&&" operators. 685 /// 686 std::string PatternToMatch::getPredicateCheck() const { 687 std::string PredicateCheck; 688 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 689 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 690 Record *Def = Pred->getDef(); 691 if (!Def->isSubClassOf("Predicate")) { 692 #ifndef NDEBUG 693 Def->dump(); 694 #endif 695 assert(0 && "Unknown predicate type!"); 696 } 697 if (!PredicateCheck.empty()) 698 PredicateCheck += " && "; 699 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 700 } 701 } 702 703 return PredicateCheck; 704 } 705 706 //===----------------------------------------------------------------------===// 707 // SDTypeConstraint implementation 708 // 709 710 SDTypeConstraint::SDTypeConstraint(Record *R) { 711 OperandNo = R->getValueAsInt("OperandNum"); 712 713 if (R->isSubClassOf("SDTCisVT")) { 714 ConstraintType = SDTCisVT; 715 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 716 if (x.SDTCisVT_Info.VT == MVT::isVoid) 717 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 718 719 } else if (R->isSubClassOf("SDTCisPtrTy")) { 720 ConstraintType = SDTCisPtrTy; 721 } else if (R->isSubClassOf("SDTCisInt")) { 722 ConstraintType = SDTCisInt; 723 } else if (R->isSubClassOf("SDTCisFP")) { 724 ConstraintType = SDTCisFP; 725 } else if (R->isSubClassOf("SDTCisVec")) { 726 ConstraintType = SDTCisVec; 727 } else if (R->isSubClassOf("SDTCisSameAs")) { 728 ConstraintType = SDTCisSameAs; 729 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 730 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 731 ConstraintType = SDTCisVTSmallerThanOp; 732 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 733 R->getValueAsInt("OtherOperandNum"); 734 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 735 ConstraintType = SDTCisOpSmallerThanOp; 736 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 737 R->getValueAsInt("BigOperandNum"); 738 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 739 ConstraintType = SDTCisEltOfVec; 740 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 741 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 742 ConstraintType = SDTCisSubVecOfVec; 743 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 744 R->getValueAsInt("OtherOpNum"); 745 } else { 746 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 747 exit(1); 748 } 749 } 750 751 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 752 /// N, and the result number in ResNo. 753 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 754 const SDNodeInfo &NodeInfo, 755 unsigned &ResNo) { 756 unsigned NumResults = NodeInfo.getNumResults(); 757 if (OpNo < NumResults) { 758 ResNo = OpNo; 759 return N; 760 } 761 762 OpNo -= NumResults; 763 764 if (OpNo >= N->getNumChildren()) { 765 errs() << "Invalid operand number in type constraint " 766 << (OpNo+NumResults) << " "; 767 N->dump(); 768 errs() << '\n'; 769 exit(1); 770 } 771 772 return N->getChild(OpNo); 773 } 774 775 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 776 /// constraint to the nodes operands. This returns true if it makes a 777 /// change, false otherwise. If a type contradiction is found, throw an 778 /// exception. 779 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 780 const SDNodeInfo &NodeInfo, 781 TreePattern &TP) const { 782 unsigned ResNo = 0; // The result number being referenced. 783 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 784 785 switch (ConstraintType) { 786 default: assert(0 && "Unknown constraint type!"); 787 case SDTCisVT: 788 // Operand must be a particular type. 789 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 790 case SDTCisPtrTy: 791 // Operand must be same as target pointer type. 792 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 793 case SDTCisInt: 794 // Require it to be one of the legal integer VTs. 795 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 796 case SDTCisFP: 797 // Require it to be one of the legal fp VTs. 798 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 799 case SDTCisVec: 800 // Require it to be one of the legal vector VTs. 801 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 802 case SDTCisSameAs: { 803 unsigned OResNo = 0; 804 TreePatternNode *OtherNode = 805 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 806 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 807 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 808 } 809 case SDTCisVTSmallerThanOp: { 810 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 811 // have an integer type that is smaller than the VT. 812 if (!NodeToApply->isLeaf() || 813 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 814 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 815 ->isSubClassOf("ValueType")) 816 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 817 MVT::SimpleValueType VT = 818 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 819 820 EEVT::TypeSet TypeListTmp(VT, TP); 821 822 unsigned OResNo = 0; 823 TreePatternNode *OtherNode = 824 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 825 OResNo); 826 827 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 828 } 829 case SDTCisOpSmallerThanOp: { 830 unsigned BResNo = 0; 831 TreePatternNode *BigOperand = 832 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 833 BResNo); 834 return NodeToApply->getExtType(ResNo). 835 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 836 } 837 case SDTCisEltOfVec: { 838 unsigned VResNo = 0; 839 TreePatternNode *VecOperand = 840 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 841 VResNo); 842 843 // Filter vector types out of VecOperand that don't have the right element 844 // type. 845 return VecOperand->getExtType(VResNo). 846 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 847 } 848 case SDTCisSubVecOfVec: { 849 unsigned VResNo = 0; 850 TreePatternNode *BigVecOperand = 851 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 852 VResNo); 853 854 // Filter vector types out of BigVecOperand that don't have the 855 // right subvector type. 856 return BigVecOperand->getExtType(VResNo). 857 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 858 } 859 } 860 return false; 861 } 862 863 //===----------------------------------------------------------------------===// 864 // SDNodeInfo implementation 865 // 866 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 867 EnumName = R->getValueAsString("Opcode"); 868 SDClassName = R->getValueAsString("SDClass"); 869 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 870 NumResults = TypeProfile->getValueAsInt("NumResults"); 871 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 872 873 // Parse the properties. 874 Properties = 0; 875 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 876 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 877 if (PropList[i]->getName() == "SDNPCommutative") { 878 Properties |= 1 << SDNPCommutative; 879 } else if (PropList[i]->getName() == "SDNPAssociative") { 880 Properties |= 1 << SDNPAssociative; 881 } else if (PropList[i]->getName() == "SDNPHasChain") { 882 Properties |= 1 << SDNPHasChain; 883 } else if (PropList[i]->getName() == "SDNPOutGlue") { 884 Properties |= 1 << SDNPOutGlue; 885 } else if (PropList[i]->getName() == "SDNPInGlue") { 886 Properties |= 1 << SDNPInGlue; 887 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 888 Properties |= 1 << SDNPOptInGlue; 889 } else if (PropList[i]->getName() == "SDNPMayStore") { 890 Properties |= 1 << SDNPMayStore; 891 } else if (PropList[i]->getName() == "SDNPMayLoad") { 892 Properties |= 1 << SDNPMayLoad; 893 } else if (PropList[i]->getName() == "SDNPSideEffect") { 894 Properties |= 1 << SDNPSideEffect; 895 } else if (PropList[i]->getName() == "SDNPMemOperand") { 896 Properties |= 1 << SDNPMemOperand; 897 } else if (PropList[i]->getName() == "SDNPVariadic") { 898 Properties |= 1 << SDNPVariadic; 899 } else { 900 errs() << "Unknown SD Node property '" << PropList[i]->getName() 901 << "' on node '" << R->getName() << "'!\n"; 902 exit(1); 903 } 904 } 905 906 907 // Parse the type constraints. 908 std::vector<Record*> ConstraintList = 909 TypeProfile->getValueAsListOfDefs("Constraints"); 910 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 911 } 912 913 /// getKnownType - If the type constraints on this node imply a fixed type 914 /// (e.g. all stores return void, etc), then return it as an 915 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 916 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 917 unsigned NumResults = getNumResults(); 918 assert(NumResults <= 1 && 919 "We only work with nodes with zero or one result so far!"); 920 assert(ResNo == 0 && "Only handles single result nodes so far"); 921 922 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 923 // Make sure that this applies to the correct node result. 924 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 925 continue; 926 927 switch (TypeConstraints[i].ConstraintType) { 928 default: break; 929 case SDTypeConstraint::SDTCisVT: 930 return TypeConstraints[i].x.SDTCisVT_Info.VT; 931 case SDTypeConstraint::SDTCisPtrTy: 932 return MVT::iPTR; 933 } 934 } 935 return MVT::Other; 936 } 937 938 //===----------------------------------------------------------------------===// 939 // TreePatternNode implementation 940 // 941 942 TreePatternNode::~TreePatternNode() { 943 #if 0 // FIXME: implement refcounted tree nodes! 944 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 945 delete getChild(i); 946 #endif 947 } 948 949 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 950 if (Operator->getName() == "set" || 951 Operator->getName() == "implicit") 952 return 0; // All return nothing. 953 954 if (Operator->isSubClassOf("Intrinsic")) 955 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 956 957 if (Operator->isSubClassOf("SDNode")) 958 return CDP.getSDNodeInfo(Operator).getNumResults(); 959 960 if (Operator->isSubClassOf("PatFrag")) { 961 // If we've already parsed this pattern fragment, get it. Otherwise, handle 962 // the forward reference case where one pattern fragment references another 963 // before it is processed. 964 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 965 return PFRec->getOnlyTree()->getNumTypes(); 966 967 // Get the result tree. 968 DagInit *Tree = Operator->getValueAsDag("Fragment"); 969 Record *Op = 0; 970 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 971 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 972 assert(Op && "Invalid Fragment"); 973 return GetNumNodeResults(Op, CDP); 974 } 975 976 if (Operator->isSubClassOf("Instruction")) { 977 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 978 979 // FIXME: Should allow access to all the results here. 980 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 981 982 // Add on one implicit def if it has a resolvable type. 983 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 984 ++NumDefsToAdd; 985 return NumDefsToAdd; 986 } 987 988 if (Operator->isSubClassOf("SDNodeXForm")) 989 return 1; // FIXME: Generalize SDNodeXForm 990 991 Operator->dump(); 992 errs() << "Unhandled node in GetNumNodeResults\n"; 993 exit(1); 994 } 995 996 void TreePatternNode::print(raw_ostream &OS) const { 997 if (isLeaf()) 998 OS << *getLeafValue(); 999 else 1000 OS << '(' << getOperator()->getName(); 1001 1002 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1003 OS << ':' << getExtType(i).getName(); 1004 1005 if (!isLeaf()) { 1006 if (getNumChildren() != 0) { 1007 OS << " "; 1008 getChild(0)->print(OS); 1009 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1010 OS << ", "; 1011 getChild(i)->print(OS); 1012 } 1013 } 1014 OS << ")"; 1015 } 1016 1017 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1018 OS << "<<P:" << PredicateFns[i] << ">>"; 1019 if (TransformFn) 1020 OS << "<<X:" << TransformFn->getName() << ">>"; 1021 if (!getName().empty()) 1022 OS << ":$" << getName(); 1023 1024 } 1025 void TreePatternNode::dump() const { 1026 print(errs()); 1027 } 1028 1029 /// isIsomorphicTo - Return true if this node is recursively 1030 /// isomorphic to the specified node. For this comparison, the node's 1031 /// entire state is considered. The assigned name is ignored, since 1032 /// nodes with differing names are considered isomorphic. However, if 1033 /// the assigned name is present in the dependent variable set, then 1034 /// the assigned name is considered significant and the node is 1035 /// isomorphic if the names match. 1036 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1037 const MultipleUseVarSet &DepVars) const { 1038 if (N == this) return true; 1039 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1040 getPredicateFns() != N->getPredicateFns() || 1041 getTransformFn() != N->getTransformFn()) 1042 return false; 1043 1044 if (isLeaf()) { 1045 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1046 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1047 return ((DI->getDef() == NDI->getDef()) 1048 && (DepVars.find(getName()) == DepVars.end() 1049 || getName() == N->getName())); 1050 } 1051 } 1052 return getLeafValue() == N->getLeafValue(); 1053 } 1054 1055 if (N->getOperator() != getOperator() || 1056 N->getNumChildren() != getNumChildren()) return false; 1057 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1058 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1059 return false; 1060 return true; 1061 } 1062 1063 /// clone - Make a copy of this tree and all of its children. 1064 /// 1065 TreePatternNode *TreePatternNode::clone() const { 1066 TreePatternNode *New; 1067 if (isLeaf()) { 1068 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1069 } else { 1070 std::vector<TreePatternNode*> CChildren; 1071 CChildren.reserve(Children.size()); 1072 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1073 CChildren.push_back(getChild(i)->clone()); 1074 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1075 } 1076 New->setName(getName()); 1077 New->Types = Types; 1078 New->setPredicateFns(getPredicateFns()); 1079 New->setTransformFn(getTransformFn()); 1080 return New; 1081 } 1082 1083 /// RemoveAllTypes - Recursively strip all the types of this tree. 1084 void TreePatternNode::RemoveAllTypes() { 1085 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1086 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1087 if (isLeaf()) return; 1088 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1089 getChild(i)->RemoveAllTypes(); 1090 } 1091 1092 1093 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1094 /// with actual values specified by ArgMap. 1095 void TreePatternNode:: 1096 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1097 if (isLeaf()) return; 1098 1099 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1100 TreePatternNode *Child = getChild(i); 1101 if (Child->isLeaf()) { 1102 Init *Val = Child->getLeafValue(); 1103 if (dynamic_cast<DefInit*>(Val) && 1104 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 1105 // We found a use of a formal argument, replace it with its value. 1106 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1107 assert(NewChild && "Couldn't find formal argument!"); 1108 assert((Child->getPredicateFns().empty() || 1109 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1110 "Non-empty child predicate clobbered!"); 1111 setChild(i, NewChild); 1112 } 1113 } else { 1114 getChild(i)->SubstituteFormalArguments(ArgMap); 1115 } 1116 } 1117 } 1118 1119 1120 /// InlinePatternFragments - If this pattern refers to any pattern 1121 /// fragments, inline them into place, giving us a pattern without any 1122 /// PatFrag references. 1123 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1124 if (isLeaf()) return this; // nothing to do. 1125 Record *Op = getOperator(); 1126 1127 if (!Op->isSubClassOf("PatFrag")) { 1128 // Just recursively inline children nodes. 1129 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1130 TreePatternNode *Child = getChild(i); 1131 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1132 1133 assert((Child->getPredicateFns().empty() || 1134 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1135 "Non-empty child predicate clobbered!"); 1136 1137 setChild(i, NewChild); 1138 } 1139 return this; 1140 } 1141 1142 // Otherwise, we found a reference to a fragment. First, look up its 1143 // TreePattern record. 1144 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1145 1146 // Verify that we are passing the right number of operands. 1147 if (Frag->getNumArgs() != Children.size()) 1148 TP.error("'" + Op->getName() + "' fragment requires " + 1149 utostr(Frag->getNumArgs()) + " operands!"); 1150 1151 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1152 1153 std::string Code = Op->getValueAsCode("Predicate"); 1154 if (!Code.empty()) 1155 FragTree->addPredicateFn("Predicate_"+Op->getName()); 1156 1157 // Resolve formal arguments to their actual value. 1158 if (Frag->getNumArgs()) { 1159 // Compute the map of formal to actual arguments. 1160 std::map<std::string, TreePatternNode*> ArgMap; 1161 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1162 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1163 1164 FragTree->SubstituteFormalArguments(ArgMap); 1165 } 1166 1167 FragTree->setName(getName()); 1168 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1169 FragTree->UpdateNodeType(i, getExtType(i), TP); 1170 1171 // Transfer in the old predicates. 1172 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1173 FragTree->addPredicateFn(getPredicateFns()[i]); 1174 1175 // Get a new copy of this fragment to stitch into here. 1176 //delete this; // FIXME: implement refcounting! 1177 1178 // The fragment we inlined could have recursive inlining that is needed. See 1179 // if there are any pattern fragments in it and inline them as needed. 1180 return FragTree->InlinePatternFragments(TP); 1181 } 1182 1183 /// getImplicitType - Check to see if the specified record has an implicit 1184 /// type which should be applied to it. This will infer the type of register 1185 /// references from the register file information, for example. 1186 /// 1187 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1188 bool NotRegisters, TreePattern &TP) { 1189 // Check to see if this is a register or a register class. 1190 if (R->isSubClassOf("RegisterClass")) { 1191 assert(ResNo == 0 && "Regclass ref only has one result!"); 1192 if (NotRegisters) 1193 return EEVT::TypeSet(); // Unknown. 1194 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1195 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1196 } 1197 1198 if (R->isSubClassOf("PatFrag")) { 1199 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1200 // Pattern fragment types will be resolved when they are inlined. 1201 return EEVT::TypeSet(); // Unknown. 1202 } 1203 1204 if (R->isSubClassOf("Register")) { 1205 assert(ResNo == 0 && "Registers only produce one result!"); 1206 if (NotRegisters) 1207 return EEVT::TypeSet(); // Unknown. 1208 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1209 return EEVT::TypeSet(T.getRegisterVTs(R)); 1210 } 1211 1212 if (R->isSubClassOf("SubRegIndex")) { 1213 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1214 return EEVT::TypeSet(); 1215 } 1216 1217 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1218 assert(ResNo == 0 && "This node only has one result!"); 1219 // Using a VTSDNode or CondCodeSDNode. 1220 return EEVT::TypeSet(MVT::Other, TP); 1221 } 1222 1223 if (R->isSubClassOf("ComplexPattern")) { 1224 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1225 if (NotRegisters) 1226 return EEVT::TypeSet(); // Unknown. 1227 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1228 TP); 1229 } 1230 if (R->isSubClassOf("PointerLikeRegClass")) { 1231 assert(ResNo == 0 && "Regclass can only have one result!"); 1232 return EEVT::TypeSet(MVT::iPTR, TP); 1233 } 1234 1235 if (R->getName() == "node" || R->getName() == "srcvalue" || 1236 R->getName() == "zero_reg") { 1237 // Placeholder. 1238 return EEVT::TypeSet(); // Unknown. 1239 } 1240 1241 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1242 return EEVT::TypeSet(MVT::Other, TP); 1243 } 1244 1245 1246 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1247 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1248 const CodeGenIntrinsic *TreePatternNode:: 1249 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1250 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1251 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1252 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1253 return 0; 1254 1255 unsigned IID = 1256 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1257 return &CDP.getIntrinsicInfo(IID); 1258 } 1259 1260 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1261 /// return the ComplexPattern information, otherwise return null. 1262 const ComplexPattern * 1263 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1264 if (!isLeaf()) return 0; 1265 1266 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1267 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1268 return &CGP.getComplexPattern(DI->getDef()); 1269 return 0; 1270 } 1271 1272 /// NodeHasProperty - Return true if this node has the specified property. 1273 bool TreePatternNode::NodeHasProperty(SDNP Property, 1274 const CodeGenDAGPatterns &CGP) const { 1275 if (isLeaf()) { 1276 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1277 return CP->hasProperty(Property); 1278 return false; 1279 } 1280 1281 Record *Operator = getOperator(); 1282 if (!Operator->isSubClassOf("SDNode")) return false; 1283 1284 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1285 } 1286 1287 1288 1289 1290 /// TreeHasProperty - Return true if any node in this tree has the specified 1291 /// property. 1292 bool TreePatternNode::TreeHasProperty(SDNP Property, 1293 const CodeGenDAGPatterns &CGP) const { 1294 if (NodeHasProperty(Property, CGP)) 1295 return true; 1296 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1297 if (getChild(i)->TreeHasProperty(Property, CGP)) 1298 return true; 1299 return false; 1300 } 1301 1302 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1303 /// commutative intrinsic. 1304 bool 1305 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1306 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1307 return Int->isCommutative; 1308 return false; 1309 } 1310 1311 1312 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1313 /// this node and its children in the tree. This returns true if it makes a 1314 /// change, false otherwise. If a type contradiction is found, throw an 1315 /// exception. 1316 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1317 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1318 if (isLeaf()) { 1319 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1320 // If it's a regclass or something else known, include the type. 1321 bool MadeChange = false; 1322 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1323 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1324 NotRegisters, TP), TP); 1325 return MadeChange; 1326 } 1327 1328 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1329 assert(Types.size() == 1 && "Invalid IntInit"); 1330 1331 // Int inits are always integers. :) 1332 bool MadeChange = Types[0].EnforceInteger(TP); 1333 1334 if (!Types[0].isConcrete()) 1335 return MadeChange; 1336 1337 MVT::SimpleValueType VT = getType(0); 1338 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1339 return MadeChange; 1340 1341 unsigned Size = EVT(VT).getSizeInBits(); 1342 // Make sure that the value is representable for this type. 1343 if (Size >= 32) return MadeChange; 1344 1345 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1346 if (Val == II->getValue()) return MadeChange; 1347 1348 // If sign-extended doesn't fit, does it fit as unsigned? 1349 unsigned ValueMask; 1350 unsigned UnsignedVal; 1351 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1352 UnsignedVal = unsigned(II->getValue()); 1353 1354 if ((ValueMask & UnsignedVal) == UnsignedVal) 1355 return MadeChange; 1356 1357 TP.error("Integer value '" + itostr(II->getValue())+ 1358 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1359 return MadeChange; 1360 } 1361 return false; 1362 } 1363 1364 // special handling for set, which isn't really an SDNode. 1365 if (getOperator()->getName() == "set") { 1366 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1367 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1368 unsigned NC = getNumChildren(); 1369 1370 TreePatternNode *SetVal = getChild(NC-1); 1371 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1372 1373 for (unsigned i = 0; i < NC-1; ++i) { 1374 TreePatternNode *Child = getChild(i); 1375 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1376 1377 // Types of operands must match. 1378 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1379 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1380 } 1381 return MadeChange; 1382 } 1383 1384 if (getOperator()->getName() == "implicit") { 1385 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1386 1387 bool MadeChange = false; 1388 for (unsigned i = 0; i < getNumChildren(); ++i) 1389 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1390 return MadeChange; 1391 } 1392 1393 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1394 bool MadeChange = false; 1395 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1396 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1397 1398 assert(getChild(0)->getNumTypes() == 1 && 1399 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1400 1401 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1402 // what type it gets, so if it didn't get a concrete type just give it the 1403 // first viable type from the reg class. 1404 if (!getChild(1)->hasTypeSet(0) && 1405 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1406 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1407 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1408 } 1409 return MadeChange; 1410 } 1411 1412 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1413 bool MadeChange = false; 1414 1415 // Apply the result type to the node. 1416 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1417 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1418 1419 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1420 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1421 1422 if (getNumChildren() != NumParamVTs + 1) 1423 TP.error("Intrinsic '" + Int->Name + "' expects " + 1424 utostr(NumParamVTs) + " operands, not " + 1425 utostr(getNumChildren() - 1) + " operands!"); 1426 1427 // Apply type info to the intrinsic ID. 1428 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1429 1430 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1431 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1432 1433 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1434 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1435 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1436 } 1437 return MadeChange; 1438 } 1439 1440 if (getOperator()->isSubClassOf("SDNode")) { 1441 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1442 1443 // Check that the number of operands is sane. Negative operands -> varargs. 1444 if (NI.getNumOperands() >= 0 && 1445 getNumChildren() != (unsigned)NI.getNumOperands()) 1446 TP.error(getOperator()->getName() + " node requires exactly " + 1447 itostr(NI.getNumOperands()) + " operands!"); 1448 1449 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1450 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1451 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1452 return MadeChange; 1453 } 1454 1455 if (getOperator()->isSubClassOf("Instruction")) { 1456 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1457 CodeGenInstruction &InstInfo = 1458 CDP.getTargetInfo().getInstruction(getOperator()); 1459 1460 bool MadeChange = false; 1461 1462 // Apply the result types to the node, these come from the things in the 1463 // (outs) list of the instruction. 1464 // FIXME: Cap at one result so far. 1465 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1466 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1467 Record *ResultNode = Inst.getResult(ResNo); 1468 1469 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1470 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1471 } else if (ResultNode->getName() == "unknown") { 1472 // Nothing to do. 1473 } else { 1474 assert(ResultNode->isSubClassOf("RegisterClass") && 1475 "Operands should be register classes!"); 1476 const CodeGenRegisterClass &RC = 1477 CDP.getTargetInfo().getRegisterClass(ResultNode); 1478 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1479 } 1480 } 1481 1482 // If the instruction has implicit defs, we apply the first one as a result. 1483 // FIXME: This sucks, it should apply all implicit defs. 1484 if (!InstInfo.ImplicitDefs.empty()) { 1485 unsigned ResNo = NumResultsToAdd; 1486 1487 // FIXME: Generalize to multiple possible types and multiple possible 1488 // ImplicitDefs. 1489 MVT::SimpleValueType VT = 1490 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1491 1492 if (VT != MVT::Other) 1493 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1494 } 1495 1496 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1497 // be the same. 1498 if (getOperator()->getName() == "INSERT_SUBREG") { 1499 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1500 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1501 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1502 } 1503 1504 unsigned ChildNo = 0; 1505 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1506 Record *OperandNode = Inst.getOperand(i); 1507 1508 // If the instruction expects a predicate or optional def operand, we 1509 // codegen this by setting the operand to it's default value if it has a 1510 // non-empty DefaultOps field. 1511 if ((OperandNode->isSubClassOf("PredicateOperand") || 1512 OperandNode->isSubClassOf("OptionalDefOperand")) && 1513 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1514 continue; 1515 1516 // Verify that we didn't run out of provided operands. 1517 if (ChildNo >= getNumChildren()) 1518 TP.error("Instruction '" + getOperator()->getName() + 1519 "' expects more operands than were provided."); 1520 1521 MVT::SimpleValueType VT; 1522 TreePatternNode *Child = getChild(ChildNo++); 1523 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1524 1525 if (OperandNode->isSubClassOf("RegisterClass")) { 1526 const CodeGenRegisterClass &RC = 1527 CDP.getTargetInfo().getRegisterClass(OperandNode); 1528 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1529 } else if (OperandNode->isSubClassOf("Operand")) { 1530 VT = getValueType(OperandNode->getValueAsDef("Type")); 1531 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1532 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1533 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1534 } else if (OperandNode->getName() == "unknown") { 1535 // Nothing to do. 1536 } else { 1537 assert(0 && "Unknown operand type!"); 1538 abort(); 1539 } 1540 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1541 } 1542 1543 if (ChildNo != getNumChildren()) 1544 TP.error("Instruction '" + getOperator()->getName() + 1545 "' was provided too many operands!"); 1546 1547 return MadeChange; 1548 } 1549 1550 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1551 1552 // Node transforms always take one operand. 1553 if (getNumChildren() != 1) 1554 TP.error("Node transform '" + getOperator()->getName() + 1555 "' requires one operand!"); 1556 1557 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1558 1559 1560 // If either the output or input of the xform does not have exact 1561 // type info. We assume they must be the same. Otherwise, it is perfectly 1562 // legal to transform from one type to a completely different type. 1563 #if 0 1564 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1565 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1566 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1567 return MadeChange; 1568 } 1569 #endif 1570 return MadeChange; 1571 } 1572 1573 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1574 /// RHS of a commutative operation, not the on LHS. 1575 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1576 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1577 return true; 1578 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1579 return true; 1580 return false; 1581 } 1582 1583 1584 /// canPatternMatch - If it is impossible for this pattern to match on this 1585 /// target, fill in Reason and return false. Otherwise, return true. This is 1586 /// used as a sanity check for .td files (to prevent people from writing stuff 1587 /// that can never possibly work), and to prevent the pattern permuter from 1588 /// generating stuff that is useless. 1589 bool TreePatternNode::canPatternMatch(std::string &Reason, 1590 const CodeGenDAGPatterns &CDP) { 1591 if (isLeaf()) return true; 1592 1593 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1594 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1595 return false; 1596 1597 // If this is an intrinsic, handle cases that would make it not match. For 1598 // example, if an operand is required to be an immediate. 1599 if (getOperator()->isSubClassOf("Intrinsic")) { 1600 // TODO: 1601 return true; 1602 } 1603 1604 // If this node is a commutative operator, check that the LHS isn't an 1605 // immediate. 1606 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1607 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1608 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1609 // Scan all of the operands of the node and make sure that only the last one 1610 // is a constant node, unless the RHS also is. 1611 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1612 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1613 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1614 if (OnlyOnRHSOfCommutative(getChild(i))) { 1615 Reason="Immediate value must be on the RHS of commutative operators!"; 1616 return false; 1617 } 1618 } 1619 } 1620 1621 return true; 1622 } 1623 1624 //===----------------------------------------------------------------------===// 1625 // TreePattern implementation 1626 // 1627 1628 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1629 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1630 isInputPattern = isInput; 1631 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1632 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1633 } 1634 1635 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1636 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1637 isInputPattern = isInput; 1638 Trees.push_back(ParseTreePattern(Pat, "")); 1639 } 1640 1641 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1642 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1643 isInputPattern = isInput; 1644 Trees.push_back(Pat); 1645 } 1646 1647 void TreePattern::error(const std::string &Msg) const { 1648 dump(); 1649 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1650 } 1651 1652 void TreePattern::ComputeNamedNodes() { 1653 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1654 ComputeNamedNodes(Trees[i]); 1655 } 1656 1657 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1658 if (!N->getName().empty()) 1659 NamedNodes[N->getName()].push_back(N); 1660 1661 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1662 ComputeNamedNodes(N->getChild(i)); 1663 } 1664 1665 1666 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1667 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1668 Record *R = DI->getDef(); 1669 1670 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1671 // TreePatternNode if its own. For example: 1672 /// (foo GPR, imm) -> (foo GPR, (imm)) 1673 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1674 return ParseTreePattern(new DagInit(DI, "", 1675 std::vector<std::pair<Init*, std::string> >()), 1676 OpName); 1677 1678 // Input argument? 1679 TreePatternNode *Res = new TreePatternNode(DI, 1); 1680 if (R->getName() == "node" && !OpName.empty()) { 1681 if (OpName.empty()) 1682 error("'node' argument requires a name to match with operand list"); 1683 Args.push_back(OpName); 1684 } 1685 1686 Res->setName(OpName); 1687 return Res; 1688 } 1689 1690 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1691 if (!OpName.empty()) 1692 error("Constant int argument should not have a name!"); 1693 return new TreePatternNode(II, 1); 1694 } 1695 1696 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1697 // Turn this into an IntInit. 1698 Init *II = BI->convertInitializerTo(new IntRecTy()); 1699 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1700 error("Bits value must be constants!"); 1701 return ParseTreePattern(II, OpName); 1702 } 1703 1704 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1705 if (!Dag) { 1706 TheInit->dump(); 1707 error("Pattern has unexpected init kind!"); 1708 } 1709 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1710 if (!OpDef) error("Pattern has unexpected operator type!"); 1711 Record *Operator = OpDef->getDef(); 1712 1713 if (Operator->isSubClassOf("ValueType")) { 1714 // If the operator is a ValueType, then this must be "type cast" of a leaf 1715 // node. 1716 if (Dag->getNumArgs() != 1) 1717 error("Type cast only takes one operand!"); 1718 1719 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1720 1721 // Apply the type cast. 1722 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1723 New->UpdateNodeType(0, getValueType(Operator), *this); 1724 1725 if (!OpName.empty()) 1726 error("ValueType cast should not have a name!"); 1727 return New; 1728 } 1729 1730 // Verify that this is something that makes sense for an operator. 1731 if (!Operator->isSubClassOf("PatFrag") && 1732 !Operator->isSubClassOf("SDNode") && 1733 !Operator->isSubClassOf("Instruction") && 1734 !Operator->isSubClassOf("SDNodeXForm") && 1735 !Operator->isSubClassOf("Intrinsic") && 1736 Operator->getName() != "set" && 1737 Operator->getName() != "implicit") 1738 error("Unrecognized node '" + Operator->getName() + "'!"); 1739 1740 // Check to see if this is something that is illegal in an input pattern. 1741 if (isInputPattern) { 1742 if (Operator->isSubClassOf("Instruction") || 1743 Operator->isSubClassOf("SDNodeXForm")) 1744 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1745 } else { 1746 if (Operator->isSubClassOf("Intrinsic")) 1747 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1748 1749 if (Operator->isSubClassOf("SDNode") && 1750 Operator->getName() != "imm" && 1751 Operator->getName() != "fpimm" && 1752 Operator->getName() != "tglobaltlsaddr" && 1753 Operator->getName() != "tconstpool" && 1754 Operator->getName() != "tjumptable" && 1755 Operator->getName() != "tframeindex" && 1756 Operator->getName() != "texternalsym" && 1757 Operator->getName() != "tblockaddress" && 1758 Operator->getName() != "tglobaladdr" && 1759 Operator->getName() != "bb" && 1760 Operator->getName() != "vt") 1761 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1762 } 1763 1764 std::vector<TreePatternNode*> Children; 1765 1766 // Parse all the operands. 1767 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1768 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1769 1770 // If the operator is an intrinsic, then this is just syntactic sugar for for 1771 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1772 // convert the intrinsic name to a number. 1773 if (Operator->isSubClassOf("Intrinsic")) { 1774 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1775 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1776 1777 // If this intrinsic returns void, it must have side-effects and thus a 1778 // chain. 1779 if (Int.IS.RetVTs.empty()) 1780 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1781 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1782 // Has side-effects, requires chain. 1783 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1784 else // Otherwise, no chain. 1785 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1786 1787 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); 1788 Children.insert(Children.begin(), IIDNode); 1789 } 1790 1791 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1792 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1793 Result->setName(OpName); 1794 1795 if (!Dag->getName().empty()) { 1796 assert(Result->getName().empty()); 1797 Result->setName(Dag->getName()); 1798 } 1799 return Result; 1800 } 1801 1802 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1803 /// will never match in favor of something obvious that will. This is here 1804 /// strictly as a convenience to target authors because it allows them to write 1805 /// more type generic things and have useless type casts fold away. 1806 /// 1807 /// This returns true if any change is made. 1808 static bool SimplifyTree(TreePatternNode *&N) { 1809 if (N->isLeaf()) 1810 return false; 1811 1812 // If we have a bitconvert with a resolved type and if the source and 1813 // destination types are the same, then the bitconvert is useless, remove it. 1814 if (N->getOperator()->getName() == "bitconvert" && 1815 N->getExtType(0).isConcrete() && 1816 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1817 N->getName().empty()) { 1818 N = N->getChild(0); 1819 SimplifyTree(N); 1820 return true; 1821 } 1822 1823 // Walk all children. 1824 bool MadeChange = false; 1825 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1826 TreePatternNode *Child = N->getChild(i); 1827 MadeChange |= SimplifyTree(Child); 1828 N->setChild(i, Child); 1829 } 1830 return MadeChange; 1831 } 1832 1833 1834 1835 /// InferAllTypes - Infer/propagate as many types throughout the expression 1836 /// patterns as possible. Return true if all types are inferred, false 1837 /// otherwise. Throw an exception if a type contradiction is found. 1838 bool TreePattern:: 1839 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1840 if (NamedNodes.empty()) 1841 ComputeNamedNodes(); 1842 1843 bool MadeChange = true; 1844 while (MadeChange) { 1845 MadeChange = false; 1846 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1847 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1848 MadeChange |= SimplifyTree(Trees[i]); 1849 } 1850 1851 // If there are constraints on our named nodes, apply them. 1852 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1853 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1854 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1855 1856 // If we have input named node types, propagate their types to the named 1857 // values here. 1858 if (InNamedTypes) { 1859 // FIXME: Should be error? 1860 assert(InNamedTypes->count(I->getKey()) && 1861 "Named node in output pattern but not input pattern?"); 1862 1863 const SmallVectorImpl<TreePatternNode*> &InNodes = 1864 InNamedTypes->find(I->getKey())->second; 1865 1866 // The input types should be fully resolved by now. 1867 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1868 // If this node is a register class, and it is the root of the pattern 1869 // then we're mapping something onto an input register. We allow 1870 // changing the type of the input register in this case. This allows 1871 // us to match things like: 1872 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1873 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1874 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1875 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1876 continue; 1877 } 1878 1879 assert(Nodes[i]->getNumTypes() == 1 && 1880 InNodes[0]->getNumTypes() == 1 && 1881 "FIXME: cannot name multiple result nodes yet"); 1882 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1883 *this); 1884 } 1885 } 1886 1887 // If there are multiple nodes with the same name, they must all have the 1888 // same type. 1889 if (I->second.size() > 1) { 1890 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1891 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1892 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1893 "FIXME: cannot name multiple result nodes yet"); 1894 1895 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1896 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1897 } 1898 } 1899 } 1900 } 1901 1902 bool HasUnresolvedTypes = false; 1903 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1904 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1905 return !HasUnresolvedTypes; 1906 } 1907 1908 void TreePattern::print(raw_ostream &OS) const { 1909 OS << getRecord()->getName(); 1910 if (!Args.empty()) { 1911 OS << "(" << Args[0]; 1912 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1913 OS << ", " << Args[i]; 1914 OS << ")"; 1915 } 1916 OS << ": "; 1917 1918 if (Trees.size() > 1) 1919 OS << "[\n"; 1920 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1921 OS << "\t"; 1922 Trees[i]->print(OS); 1923 OS << "\n"; 1924 } 1925 1926 if (Trees.size() > 1) 1927 OS << "]\n"; 1928 } 1929 1930 void TreePattern::dump() const { print(errs()); } 1931 1932 //===----------------------------------------------------------------------===// 1933 // CodeGenDAGPatterns implementation 1934 // 1935 1936 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 1937 Records(R), Target(R) { 1938 1939 Intrinsics = LoadIntrinsics(Records, false); 1940 TgtIntrinsics = LoadIntrinsics(Records, true); 1941 ParseNodeInfo(); 1942 ParseNodeTransforms(); 1943 ParseComplexPatterns(); 1944 ParsePatternFragments(); 1945 ParseDefaultOperands(); 1946 ParseInstructions(); 1947 ParsePatterns(); 1948 1949 // Generate variants. For example, commutative patterns can match 1950 // multiple ways. Add them to PatternsToMatch as well. 1951 GenerateVariants(); 1952 1953 // Infer instruction flags. For example, we can detect loads, 1954 // stores, and side effects in many cases by examining an 1955 // instruction's pattern. 1956 InferInstructionFlags(); 1957 } 1958 1959 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1960 for (pf_iterator I = PatternFragments.begin(), 1961 E = PatternFragments.end(); I != E; ++I) 1962 delete I->second; 1963 } 1964 1965 1966 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1967 Record *N = Records.getDef(Name); 1968 if (!N || !N->isSubClassOf("SDNode")) { 1969 errs() << "Error getting SDNode '" << Name << "'!\n"; 1970 exit(1); 1971 } 1972 return N; 1973 } 1974 1975 // Parse all of the SDNode definitions for the target, populating SDNodes. 1976 void CodeGenDAGPatterns::ParseNodeInfo() { 1977 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1978 while (!Nodes.empty()) { 1979 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1980 Nodes.pop_back(); 1981 } 1982 1983 // Get the builtin intrinsic nodes. 1984 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1985 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1986 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1987 } 1988 1989 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1990 /// map, and emit them to the file as functions. 1991 void CodeGenDAGPatterns::ParseNodeTransforms() { 1992 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1993 while (!Xforms.empty()) { 1994 Record *XFormNode = Xforms.back(); 1995 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1996 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1997 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1998 1999 Xforms.pop_back(); 2000 } 2001 } 2002 2003 void CodeGenDAGPatterns::ParseComplexPatterns() { 2004 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2005 while (!AMs.empty()) { 2006 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2007 AMs.pop_back(); 2008 } 2009 } 2010 2011 2012 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2013 /// file, building up the PatternFragments map. After we've collected them all, 2014 /// inline fragments together as necessary, so that there are no references left 2015 /// inside a pattern fragment to a pattern fragment. 2016 /// 2017 void CodeGenDAGPatterns::ParsePatternFragments() { 2018 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2019 2020 // First step, parse all of the fragments. 2021 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2022 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2023 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2024 PatternFragments[Fragments[i]] = P; 2025 2026 // Validate the argument list, converting it to set, to discard duplicates. 2027 std::vector<std::string> &Args = P->getArgList(); 2028 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2029 2030 if (OperandsSet.count("")) 2031 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2032 2033 // Parse the operands list. 2034 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2035 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 2036 // Special cases: ops == outs == ins. Different names are used to 2037 // improve readability. 2038 if (!OpsOp || 2039 (OpsOp->getDef()->getName() != "ops" && 2040 OpsOp->getDef()->getName() != "outs" && 2041 OpsOp->getDef()->getName() != "ins")) 2042 P->error("Operands list should start with '(ops ... '!"); 2043 2044 // Copy over the arguments. 2045 Args.clear(); 2046 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2047 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 2048 static_cast<DefInit*>(OpsList->getArg(j))-> 2049 getDef()->getName() != "node") 2050 P->error("Operands list should all be 'node' values."); 2051 if (OpsList->getArgName(j).empty()) 2052 P->error("Operands list should have names for each operand!"); 2053 if (!OperandsSet.count(OpsList->getArgName(j))) 2054 P->error("'" + OpsList->getArgName(j) + 2055 "' does not occur in pattern or was multiply specified!"); 2056 OperandsSet.erase(OpsList->getArgName(j)); 2057 Args.push_back(OpsList->getArgName(j)); 2058 } 2059 2060 if (!OperandsSet.empty()) 2061 P->error("Operands list does not contain an entry for operand '" + 2062 *OperandsSet.begin() + "'!"); 2063 2064 // If there is a code init for this fragment, keep track of the fact that 2065 // this fragment uses it. 2066 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 2067 if (!Code.empty()) 2068 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 2069 2070 // If there is a node transformation corresponding to this, keep track of 2071 // it. 2072 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2073 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2074 P->getOnlyTree()->setTransformFn(Transform); 2075 } 2076 2077 // Now that we've parsed all of the tree fragments, do a closure on them so 2078 // that there are not references to PatFrags left inside of them. 2079 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2080 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2081 ThePat->InlinePatternFragments(); 2082 2083 // Infer as many types as possible. Don't worry about it if we don't infer 2084 // all of them, some may depend on the inputs of the pattern. 2085 try { 2086 ThePat->InferAllTypes(); 2087 } catch (...) { 2088 // If this pattern fragment is not supported by this target (no types can 2089 // satisfy its constraints), just ignore it. If the bogus pattern is 2090 // actually used by instructions, the type consistency error will be 2091 // reported there. 2092 } 2093 2094 // If debugging, print out the pattern fragment result. 2095 DEBUG(ThePat->dump()); 2096 } 2097 } 2098 2099 void CodeGenDAGPatterns::ParseDefaultOperands() { 2100 std::vector<Record*> DefaultOps[2]; 2101 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 2102 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 2103 2104 // Find some SDNode. 2105 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2106 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 2107 2108 for (unsigned iter = 0; iter != 2; ++iter) { 2109 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 2110 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 2111 2112 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2113 // SomeSDnode so that we can parse this. 2114 std::vector<std::pair<Init*, std::string> > Ops; 2115 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2116 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2117 DefaultInfo->getArgName(op))); 2118 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 2119 2120 // Create a TreePattern to parse this. 2121 TreePattern P(DefaultOps[iter][i], DI, false, *this); 2122 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2123 2124 // Copy the operands over into a DAGDefaultOperand. 2125 DAGDefaultOperand DefaultOpInfo; 2126 2127 TreePatternNode *T = P.getTree(0); 2128 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2129 TreePatternNode *TPN = T->getChild(op); 2130 while (TPN->ApplyTypeConstraints(P, false)) 2131 /* Resolve all types */; 2132 2133 if (TPN->ContainsUnresolvedType()) { 2134 if (iter == 0) 2135 throw "Value #" + utostr(i) + " of PredicateOperand '" + 2136 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2137 else 2138 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 2139 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2140 } 2141 DefaultOpInfo.DefaultOps.push_back(TPN); 2142 } 2143 2144 // Insert it into the DefaultOperands map so we can find it later. 2145 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 2146 } 2147 } 2148 } 2149 2150 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2151 /// instruction input. Return true if this is a real use. 2152 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2153 std::map<std::string, TreePatternNode*> &InstInputs) { 2154 // No name -> not interesting. 2155 if (Pat->getName().empty()) { 2156 if (Pat->isLeaf()) { 2157 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2158 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 2159 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2160 } 2161 return false; 2162 } 2163 2164 Record *Rec; 2165 if (Pat->isLeaf()) { 2166 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2167 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2168 Rec = DI->getDef(); 2169 } else { 2170 Rec = Pat->getOperator(); 2171 } 2172 2173 // SRCVALUE nodes are ignored. 2174 if (Rec->getName() == "srcvalue") 2175 return false; 2176 2177 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2178 if (!Slot) { 2179 Slot = Pat; 2180 return true; 2181 } 2182 Record *SlotRec; 2183 if (Slot->isLeaf()) { 2184 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2185 } else { 2186 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2187 SlotRec = Slot->getOperator(); 2188 } 2189 2190 // Ensure that the inputs agree if we've already seen this input. 2191 if (Rec != SlotRec) 2192 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2193 if (Slot->getExtTypes() != Pat->getExtTypes()) 2194 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2195 return true; 2196 } 2197 2198 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2199 /// part of "I", the instruction), computing the set of inputs and outputs of 2200 /// the pattern. Report errors if we see anything naughty. 2201 void CodeGenDAGPatterns:: 2202 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2203 std::map<std::string, TreePatternNode*> &InstInputs, 2204 std::map<std::string, TreePatternNode*>&InstResults, 2205 std::vector<Record*> &InstImpResults) { 2206 if (Pat->isLeaf()) { 2207 bool isUse = HandleUse(I, Pat, InstInputs); 2208 if (!isUse && Pat->getTransformFn()) 2209 I->error("Cannot specify a transform function for a non-input value!"); 2210 return; 2211 } 2212 2213 if (Pat->getOperator()->getName() == "implicit") { 2214 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2215 TreePatternNode *Dest = Pat->getChild(i); 2216 if (!Dest->isLeaf()) 2217 I->error("implicitly defined value should be a register!"); 2218 2219 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2220 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2221 I->error("implicitly defined value should be a register!"); 2222 InstImpResults.push_back(Val->getDef()); 2223 } 2224 return; 2225 } 2226 2227 if (Pat->getOperator()->getName() != "set") { 2228 // If this is not a set, verify that the children nodes are not void typed, 2229 // and recurse. 2230 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2231 if (Pat->getChild(i)->getNumTypes() == 0) 2232 I->error("Cannot have void nodes inside of patterns!"); 2233 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2234 InstImpResults); 2235 } 2236 2237 // If this is a non-leaf node with no children, treat it basically as if 2238 // it were a leaf. This handles nodes like (imm). 2239 bool isUse = HandleUse(I, Pat, InstInputs); 2240 2241 if (!isUse && Pat->getTransformFn()) 2242 I->error("Cannot specify a transform function for a non-input value!"); 2243 return; 2244 } 2245 2246 // Otherwise, this is a set, validate and collect instruction results. 2247 if (Pat->getNumChildren() == 0) 2248 I->error("set requires operands!"); 2249 2250 if (Pat->getTransformFn()) 2251 I->error("Cannot specify a transform function on a set node!"); 2252 2253 // Check the set destinations. 2254 unsigned NumDests = Pat->getNumChildren()-1; 2255 for (unsigned i = 0; i != NumDests; ++i) { 2256 TreePatternNode *Dest = Pat->getChild(i); 2257 if (!Dest->isLeaf()) 2258 I->error("set destination should be a register!"); 2259 2260 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2261 if (!Val) 2262 I->error("set destination should be a register!"); 2263 2264 if (Val->getDef()->isSubClassOf("RegisterClass") || 2265 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2266 if (Dest->getName().empty()) 2267 I->error("set destination must have a name!"); 2268 if (InstResults.count(Dest->getName())) 2269 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2270 InstResults[Dest->getName()] = Dest; 2271 } else if (Val->getDef()->isSubClassOf("Register")) { 2272 InstImpResults.push_back(Val->getDef()); 2273 } else { 2274 I->error("set destination should be a register!"); 2275 } 2276 } 2277 2278 // Verify and collect info from the computation. 2279 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2280 InstInputs, InstResults, InstImpResults); 2281 } 2282 2283 //===----------------------------------------------------------------------===// 2284 // Instruction Analysis 2285 //===----------------------------------------------------------------------===// 2286 2287 class InstAnalyzer { 2288 const CodeGenDAGPatterns &CDP; 2289 bool &mayStore; 2290 bool &mayLoad; 2291 bool &IsBitcast; 2292 bool &HasSideEffects; 2293 bool &IsVariadic; 2294 public: 2295 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2296 bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv) 2297 : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc), 2298 HasSideEffects(hse), IsVariadic(isv) { 2299 } 2300 2301 /// Analyze - Analyze the specified instruction, returning true if the 2302 /// instruction had a pattern. 2303 bool Analyze(Record *InstRecord) { 2304 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2305 if (Pattern == 0) { 2306 HasSideEffects = 1; 2307 return false; // No pattern. 2308 } 2309 2310 // FIXME: Assume only the first tree is the pattern. The others are clobber 2311 // nodes. 2312 AnalyzeNode(Pattern->getTree(0)); 2313 return true; 2314 } 2315 2316 private: 2317 bool IsNodeBitcast(const TreePatternNode *N) const { 2318 if (HasSideEffects || mayLoad || mayStore || IsVariadic) 2319 return false; 2320 2321 if (N->getNumChildren() != 2) 2322 return false; 2323 2324 const TreePatternNode *N0 = N->getChild(0); 2325 if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) 2326 return false; 2327 2328 const TreePatternNode *N1 = N->getChild(1); 2329 if (N1->isLeaf()) 2330 return false; 2331 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2332 return false; 2333 2334 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2335 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2336 return false; 2337 return OpInfo.getEnumName() == "ISD::BITCAST"; 2338 } 2339 2340 void AnalyzeNode(const TreePatternNode *N) { 2341 if (N->isLeaf()) { 2342 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2343 Record *LeafRec = DI->getDef(); 2344 // Handle ComplexPattern leaves. 2345 if (LeafRec->isSubClassOf("ComplexPattern")) { 2346 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2347 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2348 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2349 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2350 } 2351 } 2352 return; 2353 } 2354 2355 // Analyze children. 2356 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2357 AnalyzeNode(N->getChild(i)); 2358 2359 // Ignore set nodes, which are not SDNodes. 2360 if (N->getOperator()->getName() == "set") { 2361 IsBitcast = IsNodeBitcast(N); 2362 return; 2363 } 2364 2365 // Get information about the SDNode for the operator. 2366 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2367 2368 // Notice properties of the node. 2369 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2370 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2371 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2372 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2373 2374 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2375 // If this is an intrinsic, analyze it. 2376 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2377 mayLoad = true;// These may load memory. 2378 2379 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2380 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2381 2382 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2383 // WriteMem intrinsics can have other strange effects. 2384 HasSideEffects = true; 2385 } 2386 } 2387 2388 }; 2389 2390 static void InferFromPattern(const CodeGenInstruction &Inst, 2391 bool &MayStore, bool &MayLoad, 2392 bool &IsBitcast, 2393 bool &HasSideEffects, bool &IsVariadic, 2394 const CodeGenDAGPatterns &CDP) { 2395 MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false; 2396 2397 bool HadPattern = 2398 InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic) 2399 .Analyze(Inst.TheDef); 2400 2401 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2402 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2403 // If we decided that this is a store from the pattern, then the .td file 2404 // entry is redundant. 2405 if (MayStore) 2406 fprintf(stderr, 2407 "Warning: mayStore flag explicitly set on instruction '%s'" 2408 " but flag already inferred from pattern.\n", 2409 Inst.TheDef->getName().c_str()); 2410 MayStore = true; 2411 } 2412 2413 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2414 // If we decided that this is a load from the pattern, then the .td file 2415 // entry is redundant. 2416 if (MayLoad) 2417 fprintf(stderr, 2418 "Warning: mayLoad flag explicitly set on instruction '%s'" 2419 " but flag already inferred from pattern.\n", 2420 Inst.TheDef->getName().c_str()); 2421 MayLoad = true; 2422 } 2423 2424 if (Inst.neverHasSideEffects) { 2425 if (HadPattern) 2426 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2427 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2428 HasSideEffects = false; 2429 } 2430 2431 if (Inst.hasSideEffects) { 2432 if (HasSideEffects) 2433 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2434 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2435 HasSideEffects = true; 2436 } 2437 2438 if (Inst.Operands.isVariadic) 2439 IsVariadic = true; // Can warn if we want. 2440 } 2441 2442 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2443 /// any fragments involved. This populates the Instructions list with fully 2444 /// resolved instructions. 2445 void CodeGenDAGPatterns::ParseInstructions() { 2446 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2447 2448 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2449 ListInit *LI = 0; 2450 2451 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2452 LI = Instrs[i]->getValueAsListInit("Pattern"); 2453 2454 // If there is no pattern, only collect minimal information about the 2455 // instruction for its operand list. We have to assume that there is one 2456 // result, as we have no detailed info. 2457 if (!LI || LI->getSize() == 0) { 2458 std::vector<Record*> Results; 2459 std::vector<Record*> Operands; 2460 2461 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2462 2463 if (InstInfo.Operands.size() != 0) { 2464 if (InstInfo.Operands.NumDefs == 0) { 2465 // These produce no results 2466 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2467 Operands.push_back(InstInfo.Operands[j].Rec); 2468 } else { 2469 // Assume the first operand is the result. 2470 Results.push_back(InstInfo.Operands[0].Rec); 2471 2472 // The rest are inputs. 2473 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2474 Operands.push_back(InstInfo.Operands[j].Rec); 2475 } 2476 } 2477 2478 // Create and insert the instruction. 2479 std::vector<Record*> ImpResults; 2480 Instructions.insert(std::make_pair(Instrs[i], 2481 DAGInstruction(0, Results, Operands, ImpResults))); 2482 continue; // no pattern. 2483 } 2484 2485 // Parse the instruction. 2486 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2487 // Inline pattern fragments into it. 2488 I->InlinePatternFragments(); 2489 2490 // Infer as many types as possible. If we cannot infer all of them, we can 2491 // never do anything with this instruction pattern: report it to the user. 2492 if (!I->InferAllTypes()) 2493 I->error("Could not infer all types in pattern!"); 2494 2495 // InstInputs - Keep track of all of the inputs of the instruction, along 2496 // with the record they are declared as. 2497 std::map<std::string, TreePatternNode*> InstInputs; 2498 2499 // InstResults - Keep track of all the virtual registers that are 'set' 2500 // in the instruction, including what reg class they are. 2501 std::map<std::string, TreePatternNode*> InstResults; 2502 2503 std::vector<Record*> InstImpResults; 2504 2505 // Verify that the top-level forms in the instruction are of void type, and 2506 // fill in the InstResults map. 2507 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2508 TreePatternNode *Pat = I->getTree(j); 2509 if (Pat->getNumTypes() != 0) 2510 I->error("Top-level forms in instruction pattern should have" 2511 " void types"); 2512 2513 // Find inputs and outputs, and verify the structure of the uses/defs. 2514 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2515 InstImpResults); 2516 } 2517 2518 // Now that we have inputs and outputs of the pattern, inspect the operands 2519 // list for the instruction. This determines the order that operands are 2520 // added to the machine instruction the node corresponds to. 2521 unsigned NumResults = InstResults.size(); 2522 2523 // Parse the operands list from the (ops) list, validating it. 2524 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2525 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2526 2527 // Check that all of the results occur first in the list. 2528 std::vector<Record*> Results; 2529 TreePatternNode *Res0Node = 0; 2530 for (unsigned i = 0; i != NumResults; ++i) { 2531 if (i == CGI.Operands.size()) 2532 I->error("'" + InstResults.begin()->first + 2533 "' set but does not appear in operand list!"); 2534 const std::string &OpName = CGI.Operands[i].Name; 2535 2536 // Check that it exists in InstResults. 2537 TreePatternNode *RNode = InstResults[OpName]; 2538 if (RNode == 0) 2539 I->error("Operand $" + OpName + " does not exist in operand list!"); 2540 2541 if (i == 0) 2542 Res0Node = RNode; 2543 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2544 if (R == 0) 2545 I->error("Operand $" + OpName + " should be a set destination: all " 2546 "outputs must occur before inputs in operand list!"); 2547 2548 if (CGI.Operands[i].Rec != R) 2549 I->error("Operand $" + OpName + " class mismatch!"); 2550 2551 // Remember the return type. 2552 Results.push_back(CGI.Operands[i].Rec); 2553 2554 // Okay, this one checks out. 2555 InstResults.erase(OpName); 2556 } 2557 2558 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2559 // the copy while we're checking the inputs. 2560 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2561 2562 std::vector<TreePatternNode*> ResultNodeOperands; 2563 std::vector<Record*> Operands; 2564 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2565 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2566 const std::string &OpName = Op.Name; 2567 if (OpName.empty()) 2568 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2569 2570 if (!InstInputsCheck.count(OpName)) { 2571 // If this is an predicate operand or optional def operand with an 2572 // DefaultOps set filled in, we can ignore this. When we codegen it, 2573 // we will do so as always executed. 2574 if (Op.Rec->isSubClassOf("PredicateOperand") || 2575 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2576 // Does it have a non-empty DefaultOps field? If so, ignore this 2577 // operand. 2578 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2579 continue; 2580 } 2581 I->error("Operand $" + OpName + 2582 " does not appear in the instruction pattern"); 2583 } 2584 TreePatternNode *InVal = InstInputsCheck[OpName]; 2585 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2586 2587 if (InVal->isLeaf() && 2588 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2589 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2590 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2591 I->error("Operand $" + OpName + "'s register class disagrees" 2592 " between the operand and pattern"); 2593 } 2594 Operands.push_back(Op.Rec); 2595 2596 // Construct the result for the dest-pattern operand list. 2597 TreePatternNode *OpNode = InVal->clone(); 2598 2599 // No predicate is useful on the result. 2600 OpNode->clearPredicateFns(); 2601 2602 // Promote the xform function to be an explicit node if set. 2603 if (Record *Xform = OpNode->getTransformFn()) { 2604 OpNode->setTransformFn(0); 2605 std::vector<TreePatternNode*> Children; 2606 Children.push_back(OpNode); 2607 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2608 } 2609 2610 ResultNodeOperands.push_back(OpNode); 2611 } 2612 2613 if (!InstInputsCheck.empty()) 2614 I->error("Input operand $" + InstInputsCheck.begin()->first + 2615 " occurs in pattern but not in operands list!"); 2616 2617 TreePatternNode *ResultPattern = 2618 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2619 GetNumNodeResults(I->getRecord(), *this)); 2620 // Copy fully inferred output node type to instruction result pattern. 2621 for (unsigned i = 0; i != NumResults; ++i) 2622 ResultPattern->setType(i, Res0Node->getExtType(i)); 2623 2624 // Create and insert the instruction. 2625 // FIXME: InstImpResults should not be part of DAGInstruction. 2626 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2627 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2628 2629 // Use a temporary tree pattern to infer all types and make sure that the 2630 // constructed result is correct. This depends on the instruction already 2631 // being inserted into the Instructions map. 2632 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2633 Temp.InferAllTypes(&I->getNamedNodesMap()); 2634 2635 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2636 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2637 2638 DEBUG(I->dump()); 2639 } 2640 2641 // If we can, convert the instructions to be patterns that are matched! 2642 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2643 Instructions.begin(), 2644 E = Instructions.end(); II != E; ++II) { 2645 DAGInstruction &TheInst = II->second; 2646 const TreePattern *I = TheInst.getPattern(); 2647 if (I == 0) continue; // No pattern. 2648 2649 // FIXME: Assume only the first tree is the pattern. The others are clobber 2650 // nodes. 2651 TreePatternNode *Pattern = I->getTree(0); 2652 TreePatternNode *SrcPattern; 2653 if (Pattern->getOperator()->getName() == "set") { 2654 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2655 } else{ 2656 // Not a set (store or something?) 2657 SrcPattern = Pattern; 2658 } 2659 2660 Record *Instr = II->first; 2661 AddPatternToMatch(I, 2662 PatternToMatch(Instr, 2663 Instr->getValueAsListInit("Predicates"), 2664 SrcPattern, 2665 TheInst.getResultPattern(), 2666 TheInst.getImpResults(), 2667 Instr->getValueAsInt("AddedComplexity"), 2668 Instr->getID())); 2669 } 2670 } 2671 2672 2673 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2674 2675 static void FindNames(const TreePatternNode *P, 2676 std::map<std::string, NameRecord> &Names, 2677 const TreePattern *PatternTop) { 2678 if (!P->getName().empty()) { 2679 NameRecord &Rec = Names[P->getName()]; 2680 // If this is the first instance of the name, remember the node. 2681 if (Rec.second++ == 0) 2682 Rec.first = P; 2683 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2684 PatternTop->error("repetition of value: $" + P->getName() + 2685 " where different uses have different types!"); 2686 } 2687 2688 if (!P->isLeaf()) { 2689 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2690 FindNames(P->getChild(i), Names, PatternTop); 2691 } 2692 } 2693 2694 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2695 const PatternToMatch &PTM) { 2696 // Do some sanity checking on the pattern we're about to match. 2697 std::string Reason; 2698 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2699 Pattern->error("Pattern can never match: " + Reason); 2700 2701 // If the source pattern's root is a complex pattern, that complex pattern 2702 // must specify the nodes it can potentially match. 2703 if (const ComplexPattern *CP = 2704 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2705 if (CP->getRootNodes().empty()) 2706 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2707 " could match"); 2708 2709 2710 // Find all of the named values in the input and output, ensure they have the 2711 // same type. 2712 std::map<std::string, NameRecord> SrcNames, DstNames; 2713 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2714 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2715 2716 // Scan all of the named values in the destination pattern, rejecting them if 2717 // they don't exist in the input pattern. 2718 for (std::map<std::string, NameRecord>::iterator 2719 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2720 if (SrcNames[I->first].first == 0) 2721 Pattern->error("Pattern has input without matching name in output: $" + 2722 I->first); 2723 } 2724 2725 // Scan all of the named values in the source pattern, rejecting them if the 2726 // name isn't used in the dest, and isn't used to tie two values together. 2727 for (std::map<std::string, NameRecord>::iterator 2728 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2729 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2730 Pattern->error("Pattern has dead named input: $" + I->first); 2731 2732 PatternsToMatch.push_back(PTM); 2733 } 2734 2735 2736 2737 void CodeGenDAGPatterns::InferInstructionFlags() { 2738 const std::vector<const CodeGenInstruction*> &Instructions = 2739 Target.getInstructionsByEnumValue(); 2740 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2741 CodeGenInstruction &InstInfo = 2742 const_cast<CodeGenInstruction &>(*Instructions[i]); 2743 // Determine properties of the instruction from its pattern. 2744 bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic; 2745 InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast, 2746 HasSideEffects, IsVariadic, *this); 2747 InstInfo.mayStore = MayStore; 2748 InstInfo.mayLoad = MayLoad; 2749 InstInfo.isBitcast = IsBitcast; 2750 InstInfo.hasSideEffects = HasSideEffects; 2751 InstInfo.Operands.isVariadic = IsVariadic; 2752 } 2753 } 2754 2755 /// Given a pattern result with an unresolved type, see if we can find one 2756 /// instruction with an unresolved result type. Force this result type to an 2757 /// arbitrary element if it's possible types to converge results. 2758 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2759 if (N->isLeaf()) 2760 return false; 2761 2762 // Analyze children. 2763 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2764 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2765 return true; 2766 2767 if (!N->getOperator()->isSubClassOf("Instruction")) 2768 return false; 2769 2770 // If this type is already concrete or completely unknown we can't do 2771 // anything. 2772 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2773 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2774 continue; 2775 2776 // Otherwise, force its type to the first possibility (an arbitrary choice). 2777 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2778 return true; 2779 } 2780 2781 return false; 2782 } 2783 2784 void CodeGenDAGPatterns::ParsePatterns() { 2785 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2786 2787 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2788 Record *CurPattern = Patterns[i]; 2789 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2790 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2791 2792 // Inline pattern fragments into it. 2793 Pattern->InlinePatternFragments(); 2794 2795 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2796 if (LI->getSize() == 0) continue; // no pattern. 2797 2798 // Parse the instruction. 2799 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2800 2801 // Inline pattern fragments into it. 2802 Result->InlinePatternFragments(); 2803 2804 if (Result->getNumTrees() != 1) 2805 Result->error("Cannot handle instructions producing instructions " 2806 "with temporaries yet!"); 2807 2808 bool IterateInference; 2809 bool InferredAllPatternTypes, InferredAllResultTypes; 2810 do { 2811 // Infer as many types as possible. If we cannot infer all of them, we 2812 // can never do anything with this pattern: report it to the user. 2813 InferredAllPatternTypes = 2814 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2815 2816 // Infer as many types as possible. If we cannot infer all of them, we 2817 // can never do anything with this pattern: report it to the user. 2818 InferredAllResultTypes = 2819 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2820 2821 IterateInference = false; 2822 2823 // Apply the type of the result to the source pattern. This helps us 2824 // resolve cases where the input type is known to be a pointer type (which 2825 // is considered resolved), but the result knows it needs to be 32- or 2826 // 64-bits. Infer the other way for good measure. 2827 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2828 Pattern->getTree(0)->getNumTypes()); 2829 i != e; ++i) { 2830 IterateInference = Pattern->getTree(0)-> 2831 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2832 IterateInference |= Result->getTree(0)-> 2833 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2834 } 2835 2836 // If our iteration has converged and the input pattern's types are fully 2837 // resolved but the result pattern is not fully resolved, we may have a 2838 // situation where we have two instructions in the result pattern and 2839 // the instructions require a common register class, but don't care about 2840 // what actual MVT is used. This is actually a bug in our modelling: 2841 // output patterns should have register classes, not MVTs. 2842 // 2843 // In any case, to handle this, we just go through and disambiguate some 2844 // arbitrary types to the result pattern's nodes. 2845 if (!IterateInference && InferredAllPatternTypes && 2846 !InferredAllResultTypes) 2847 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2848 *Result); 2849 } while (IterateInference); 2850 2851 // Verify that we inferred enough types that we can do something with the 2852 // pattern and result. If these fire the user has to add type casts. 2853 if (!InferredAllPatternTypes) 2854 Pattern->error("Could not infer all types in pattern!"); 2855 if (!InferredAllResultTypes) { 2856 Pattern->dump(); 2857 Result->error("Could not infer all types in pattern result!"); 2858 } 2859 2860 // Validate that the input pattern is correct. 2861 std::map<std::string, TreePatternNode*> InstInputs; 2862 std::map<std::string, TreePatternNode*> InstResults; 2863 std::vector<Record*> InstImpResults; 2864 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2865 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2866 InstInputs, InstResults, 2867 InstImpResults); 2868 2869 // Promote the xform function to be an explicit node if set. 2870 TreePatternNode *DstPattern = Result->getOnlyTree(); 2871 std::vector<TreePatternNode*> ResultNodeOperands; 2872 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2873 TreePatternNode *OpNode = DstPattern->getChild(ii); 2874 if (Record *Xform = OpNode->getTransformFn()) { 2875 OpNode->setTransformFn(0); 2876 std::vector<TreePatternNode*> Children; 2877 Children.push_back(OpNode); 2878 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2879 } 2880 ResultNodeOperands.push_back(OpNode); 2881 } 2882 DstPattern = Result->getOnlyTree(); 2883 if (!DstPattern->isLeaf()) 2884 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2885 ResultNodeOperands, 2886 DstPattern->getNumTypes()); 2887 2888 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2889 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2890 2891 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2892 Temp.InferAllTypes(); 2893 2894 2895 AddPatternToMatch(Pattern, 2896 PatternToMatch(CurPattern, 2897 CurPattern->getValueAsListInit("Predicates"), 2898 Pattern->getTree(0), 2899 Temp.getOnlyTree(), InstImpResults, 2900 CurPattern->getValueAsInt("AddedComplexity"), 2901 CurPattern->getID())); 2902 } 2903 } 2904 2905 /// CombineChildVariants - Given a bunch of permutations of each child of the 2906 /// 'operator' node, put them together in all possible ways. 2907 static void CombineChildVariants(TreePatternNode *Orig, 2908 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2909 std::vector<TreePatternNode*> &OutVariants, 2910 CodeGenDAGPatterns &CDP, 2911 const MultipleUseVarSet &DepVars) { 2912 // Make sure that each operand has at least one variant to choose from. 2913 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2914 if (ChildVariants[i].empty()) 2915 return; 2916 2917 // The end result is an all-pairs construction of the resultant pattern. 2918 std::vector<unsigned> Idxs; 2919 Idxs.resize(ChildVariants.size()); 2920 bool NotDone; 2921 do { 2922 #ifndef NDEBUG 2923 DEBUG(if (!Idxs.empty()) { 2924 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2925 for (unsigned i = 0; i < Idxs.size(); ++i) { 2926 errs() << Idxs[i] << " "; 2927 } 2928 errs() << "]\n"; 2929 }); 2930 #endif 2931 // Create the variant and add it to the output list. 2932 std::vector<TreePatternNode*> NewChildren; 2933 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2934 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2935 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 2936 Orig->getNumTypes()); 2937 2938 // Copy over properties. 2939 R->setName(Orig->getName()); 2940 R->setPredicateFns(Orig->getPredicateFns()); 2941 R->setTransformFn(Orig->getTransformFn()); 2942 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 2943 R->setType(i, Orig->getExtType(i)); 2944 2945 // If this pattern cannot match, do not include it as a variant. 2946 std::string ErrString; 2947 if (!R->canPatternMatch(ErrString, CDP)) { 2948 delete R; 2949 } else { 2950 bool AlreadyExists = false; 2951 2952 // Scan to see if this pattern has already been emitted. We can get 2953 // duplication due to things like commuting: 2954 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2955 // which are the same pattern. Ignore the dups. 2956 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2957 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2958 AlreadyExists = true; 2959 break; 2960 } 2961 2962 if (AlreadyExists) 2963 delete R; 2964 else 2965 OutVariants.push_back(R); 2966 } 2967 2968 // Increment indices to the next permutation by incrementing the 2969 // indicies from last index backward, e.g., generate the sequence 2970 // [0, 0], [0, 1], [1, 0], [1, 1]. 2971 int IdxsIdx; 2972 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2973 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2974 Idxs[IdxsIdx] = 0; 2975 else 2976 break; 2977 } 2978 NotDone = (IdxsIdx >= 0); 2979 } while (NotDone); 2980 } 2981 2982 /// CombineChildVariants - A helper function for binary operators. 2983 /// 2984 static void CombineChildVariants(TreePatternNode *Orig, 2985 const std::vector<TreePatternNode*> &LHS, 2986 const std::vector<TreePatternNode*> &RHS, 2987 std::vector<TreePatternNode*> &OutVariants, 2988 CodeGenDAGPatterns &CDP, 2989 const MultipleUseVarSet &DepVars) { 2990 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2991 ChildVariants.push_back(LHS); 2992 ChildVariants.push_back(RHS); 2993 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2994 } 2995 2996 2997 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2998 std::vector<TreePatternNode *> &Children) { 2999 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3000 Record *Operator = N->getOperator(); 3001 3002 // Only permit raw nodes. 3003 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3004 N->getTransformFn()) { 3005 Children.push_back(N); 3006 return; 3007 } 3008 3009 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3010 Children.push_back(N->getChild(0)); 3011 else 3012 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3013 3014 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3015 Children.push_back(N->getChild(1)); 3016 else 3017 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3018 } 3019 3020 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3021 /// the (potentially recursive) pattern by using algebraic laws. 3022 /// 3023 static void GenerateVariantsOf(TreePatternNode *N, 3024 std::vector<TreePatternNode*> &OutVariants, 3025 CodeGenDAGPatterns &CDP, 3026 const MultipleUseVarSet &DepVars) { 3027 // We cannot permute leaves. 3028 if (N->isLeaf()) { 3029 OutVariants.push_back(N); 3030 return; 3031 } 3032 3033 // Look up interesting info about the node. 3034 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3035 3036 // If this node is associative, re-associate. 3037 if (NodeInfo.hasProperty(SDNPAssociative)) { 3038 // Re-associate by pulling together all of the linked operators 3039 std::vector<TreePatternNode*> MaximalChildren; 3040 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3041 3042 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3043 // permutations. 3044 if (MaximalChildren.size() == 3) { 3045 // Find the variants of all of our maximal children. 3046 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3047 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3048 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3049 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3050 3051 // There are only two ways we can permute the tree: 3052 // (A op B) op C and A op (B op C) 3053 // Within these forms, we can also permute A/B/C. 3054 3055 // Generate legal pair permutations of A/B/C. 3056 std::vector<TreePatternNode*> ABVariants; 3057 std::vector<TreePatternNode*> BAVariants; 3058 std::vector<TreePatternNode*> ACVariants; 3059 std::vector<TreePatternNode*> CAVariants; 3060 std::vector<TreePatternNode*> BCVariants; 3061 std::vector<TreePatternNode*> CBVariants; 3062 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3063 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3064 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3065 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3066 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3067 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3068 3069 // Combine those into the result: (x op x) op x 3070 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3071 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3072 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3073 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3074 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3075 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3076 3077 // Combine those into the result: x op (x op x) 3078 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3079 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3080 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3081 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3082 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3083 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3084 return; 3085 } 3086 } 3087 3088 // Compute permutations of all children. 3089 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3090 ChildVariants.resize(N->getNumChildren()); 3091 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3092 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3093 3094 // Build all permutations based on how the children were formed. 3095 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3096 3097 // If this node is commutative, consider the commuted order. 3098 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3099 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3100 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3101 "Commutative but doesn't have 2 children!"); 3102 // Don't count children which are actually register references. 3103 unsigned NC = 0; 3104 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3105 TreePatternNode *Child = N->getChild(i); 3106 if (Child->isLeaf()) 3107 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 3108 Record *RR = DI->getDef(); 3109 if (RR->isSubClassOf("Register")) 3110 continue; 3111 } 3112 NC++; 3113 } 3114 // Consider the commuted order. 3115 if (isCommIntrinsic) { 3116 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3117 // operands are the commutative operands, and there might be more operands 3118 // after those. 3119 assert(NC >= 3 && 3120 "Commutative intrinsic should have at least 3 childrean!"); 3121 std::vector<std::vector<TreePatternNode*> > Variants; 3122 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3123 Variants.push_back(ChildVariants[2]); 3124 Variants.push_back(ChildVariants[1]); 3125 for (unsigned i = 3; i != NC; ++i) 3126 Variants.push_back(ChildVariants[i]); 3127 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3128 } else if (NC == 2) 3129 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3130 OutVariants, CDP, DepVars); 3131 } 3132 } 3133 3134 3135 // GenerateVariants - Generate variants. For example, commutative patterns can 3136 // match multiple ways. Add them to PatternsToMatch as well. 3137 void CodeGenDAGPatterns::GenerateVariants() { 3138 DEBUG(errs() << "Generating instruction variants.\n"); 3139 3140 // Loop over all of the patterns we've collected, checking to see if we can 3141 // generate variants of the instruction, through the exploitation of 3142 // identities. This permits the target to provide aggressive matching without 3143 // the .td file having to contain tons of variants of instructions. 3144 // 3145 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3146 // intentionally do not reconsider these. Any variants of added patterns have 3147 // already been added. 3148 // 3149 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3150 MultipleUseVarSet DepVars; 3151 std::vector<TreePatternNode*> Variants; 3152 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3153 DEBUG(errs() << "Dependent/multiply used variables: "); 3154 DEBUG(DumpDepVars(DepVars)); 3155 DEBUG(errs() << "\n"); 3156 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3157 DepVars); 3158 3159 assert(!Variants.empty() && "Must create at least original variant!"); 3160 Variants.erase(Variants.begin()); // Remove the original pattern. 3161 3162 if (Variants.empty()) // No variants for this pattern. 3163 continue; 3164 3165 DEBUG(errs() << "FOUND VARIANTS OF: "; 3166 PatternsToMatch[i].getSrcPattern()->dump(); 3167 errs() << "\n"); 3168 3169 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3170 TreePatternNode *Variant = Variants[v]; 3171 3172 DEBUG(errs() << " VAR#" << v << ": "; 3173 Variant->dump(); 3174 errs() << "\n"); 3175 3176 // Scan to see if an instruction or explicit pattern already matches this. 3177 bool AlreadyExists = false; 3178 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3179 // Skip if the top level predicates do not match. 3180 if (PatternsToMatch[i].getPredicates() != 3181 PatternsToMatch[p].getPredicates()) 3182 continue; 3183 // Check to see if this variant already exists. 3184 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3185 DepVars)) { 3186 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3187 AlreadyExists = true; 3188 break; 3189 } 3190 } 3191 // If we already have it, ignore the variant. 3192 if (AlreadyExists) continue; 3193 3194 // Otherwise, add it to the list of patterns we have. 3195 PatternsToMatch. 3196 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3197 PatternsToMatch[i].getPredicates(), 3198 Variant, PatternsToMatch[i].getDstPattern(), 3199 PatternsToMatch[i].getDstRegs(), 3200 PatternsToMatch[i].getAddedComplexity(), 3201 Record::getNewUID())); 3202 } 3203 3204 DEBUG(errs() << "\n"); 3205 } 3206 } 3207 3208