1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109 
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120 
121 // Constrain the type set to be the intersection with VTS.
122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133 
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146 
147 template <typename Predicate>
148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154 
155 template <typename Predicate>
156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166 
167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170 
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178 
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186 
187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190 
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199 
200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204 
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210 
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216 
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237 
238   return true;
239 }
240 
241 namespace llvm {
242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247 
248 LLVM_DUMP_METHOD
249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252 
253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256 
257   if (OutP == InP)
258     return berase_if(Out, Int);
259 
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273 
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292 
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298 
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311 
312 void TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   assert(!AllEmpty &&
320           "type set is empty for each HW mode: type contradiction?");
321 #endif
322 }
323 
324 // --- TypeInfer
325 
326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336 
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340 
341   return Changed;
342 }
343 
344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349 
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362 
363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369 
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372 
373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379 
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382 
383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389 
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392 
393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399 
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402 
403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out);
405   if (TP.hasError() || !Out.empty())
406     return false;
407 
408   Out = getLegalTypes();
409   return true;
410 }
411 
412 template <typename Iter, typename Pred, typename Less>
413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439 
440 /// Make sure that for each type in Small, there exists a larger type in Big.
441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small), _2(Big);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447 
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452 
453   assert(Small.hasDefault() && Big.hasDefault());
454 
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456 
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464 
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481 
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487 
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498 
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510 
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end()) {
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519       if (B.empty()) {
520         TP.error("Type contradiction in " +
521                  Twine(__func__) + ":" + Twine(__LINE__));
522         return Changed;
523       }
524     }
525     // MaxS = max scalar in Big, remove all scalars from Small that are
526     // larger than MaxS.
527     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
528     if (MaxS != B.end()) {
529       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
530       if (B.empty()) {
531         TP.error("Type contradiction in " +
532                  Twine(__func__) + ":" + Twine(__LINE__));
533         return Changed;
534       }
535     }
536 
537     // MinV = min vector in Small, remove all vectors from Big that are
538     // smaller-or-equal than MinV.
539     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
540     if (MinV != S.end()) {
541       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
542       if (B.empty()) {
543         TP.error("Type contradiction in " +
544                  Twine(__func__) + ":" + Twine(__LINE__));
545         return Changed;
546       }
547     }
548     // MaxV = max vector in Big, remove all vectors from Small that are
549     // larger than MaxV.
550     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
551     if (MaxV != B.end()) {
552       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
553       if (B.empty()) {
554         TP.error("Type contradiction in " +
555                  Twine(__func__) + ":" + Twine(__LINE__));
556         return Changed;
557       }
558     }
559   }
560 
561   return Changed;
562 }
563 
564 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
565 ///    for each type U in Elem, U is a scalar type.
566 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
567 ///    type T in Vec, such that U is the element type of T.
568 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
569                                        TypeSetByHwMode &Elem) {
570   ValidateOnExit _1(Vec), _2(Elem);
571   if (TP.hasError())
572     return false;
573   bool Changed = false;
574 
575   if (Vec.empty())
576     Changed |= EnforceVector(Vec);
577   if (Elem.empty())
578     Changed |= EnforceScalar(Elem);
579 
580   for (unsigned M : union_modes(Vec, Elem)) {
581     TypeSetByHwMode::SetType &V = Vec.get(M);
582     TypeSetByHwMode::SetType &E = Elem.get(M);
583 
584     Changed |= berase_if(V, isScalar);  // Scalar = !vector
585     Changed |= berase_if(E, isVector);  // Vector = !scalar
586     assert(!V.empty() && !E.empty());
587 
588     SmallSet<MVT,4> VT, ST;
589     // Collect element types from the "vector" set.
590     for (MVT T : V)
591       VT.insert(T.getVectorElementType());
592     // Collect scalar types from the "element" set.
593     for (MVT T : E)
594       ST.insert(T);
595 
596     // Remove from V all (vector) types whose element type is not in S.
597     Changed |= berase_if(V, [&ST](MVT T) -> bool {
598                               return !ST.count(T.getVectorElementType());
599                             });
600     // Remove from E all (scalar) types, for which there is no corresponding
601     // type in V.
602     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
603 
604     if (V.empty() || E.empty()) {
605       TP.error("Type contradiction in " +
606                Twine(__func__) + ":" + Twine(__LINE__));
607       return Changed;
608     }
609   }
610 
611   return Changed;
612 }
613 
614 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
615                                        const ValueTypeByHwMode &VVT) {
616   TypeSetByHwMode Tmp(VVT);
617   ValidateOnExit _1(Vec), _2(Tmp);
618   return EnforceVectorEltTypeIs(Vec, Tmp);
619 }
620 
621 /// Ensure that for each type T in Sub, T is a vector type, and there
622 /// exists a type U in Vec such that U is a vector type with the same
623 /// element type as T and at least as many elements as T.
624 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
625                                              TypeSetByHwMode &Sub) {
626   ValidateOnExit _1(Vec), _2(Sub);
627   if (TP.hasError())
628     return false;
629 
630   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
631   auto IsSubVec = [](MVT B, MVT P) -> bool {
632     if (!B.isVector() || !P.isVector())
633       return false;
634     if (B.getVectorElementType() != P.getVectorElementType())
635       return false;
636     return B.getVectorNumElements() < P.getVectorNumElements();
637   };
638 
639   /// Return true if S has no element (vector type) that T is a sub-vector of,
640   /// i.e. has the same element type as T and more elements.
641   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
642     for (const auto &I : S)
643       if (IsSubVec(T, I))
644         return false;
645     return true;
646   };
647 
648   /// Return true if S has no element (vector type) that T is a super-vector
649   /// of, i.e. has the same element type as T and fewer elements.
650   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
651     for (const auto &I : S)
652       if (IsSubVec(I, T))
653         return false;
654     return true;
655   };
656 
657   bool Changed = false;
658 
659   if (Vec.empty())
660     Changed |= EnforceVector(Vec);
661   if (Sub.empty())
662     Changed |= EnforceVector(Sub);
663 
664   for (unsigned M : union_modes(Vec, Sub)) {
665     TypeSetByHwMode::SetType &S = Sub.get(M);
666     TypeSetByHwMode::SetType &V = Vec.get(M);
667 
668     Changed |= berase_if(S, isScalar);
669     if (S.empty()) {
670       TP.error("Type contradiction in " +
671                Twine(__func__) + ":" + Twine(__LINE__));
672       return Changed;
673     }
674 
675     // Erase all types from S that are not sub-vectors of a type in V.
676     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
677     if (S.empty()) {
678       TP.error("Type contradiction in " +
679                Twine(__func__) + ":" + Twine(__LINE__));
680       return Changed;
681     }
682 
683     // Erase all types from V that are not super-vectors of a type in S.
684     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
685     if (V.empty()) {
686       TP.error("Type contradiction in " +
687                Twine(__func__) + ":" + Twine(__LINE__));
688       return Changed;
689     }
690   }
691 
692   return Changed;
693 }
694 
695 /// 1. Ensure that V has a scalar type iff W has a scalar type.
696 /// 2. Ensure that for each vector type T in V, there exists a vector
697 ///    type U in W, such that T and U have the same number of elements.
698 /// 3. Ensure that for each vector type U in W, there exists a vector
699 ///    type T in V, such that T and U have the same number of elements
700 ///    (reverse of 2).
701 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
702   ValidateOnExit _1(V), _2(W);
703   if (TP.hasError())
704     return false;
705 
706   bool Changed = false;
707   if (V.empty())
708     Changed |= EnforceAny(V);
709   if (W.empty())
710     Changed |= EnforceAny(W);
711 
712   // An actual vector type cannot have 0 elements, so we can treat scalars
713   // as zero-length vectors. This way both vectors and scalars can be
714   // processed identically.
715   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
716     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
717   };
718 
719   for (unsigned M : union_modes(V, W)) {
720     TypeSetByHwMode::SetType &VS = V.get(M);
721     TypeSetByHwMode::SetType &WS = W.get(M);
722 
723     SmallSet<unsigned,2> VN, WN;
724     for (MVT T : VS)
725       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
726     for (MVT T : WS)
727       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
728 
729     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
730     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
731   }
732   return Changed;
733 }
734 
735 /// 1. Ensure that for each type T in A, there exists a type U in B,
736 ///    such that T and U have equal size in bits.
737 /// 2. Ensure that for each type U in B, there exists a type T in A
738 ///    such that T and U have equal size in bits (reverse of 1).
739 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
740   ValidateOnExit _1(A), _2(B);
741   if (TP.hasError())
742     return false;
743   bool Changed = false;
744   if (A.empty())
745     Changed |= EnforceAny(A);
746   if (B.empty())
747     Changed |= EnforceAny(B);
748 
749   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
750     return !Sizes.count(T.getSizeInBits());
751   };
752 
753   for (unsigned M : union_modes(A, B)) {
754     TypeSetByHwMode::SetType &AS = A.get(M);
755     TypeSetByHwMode::SetType &BS = B.get(M);
756     SmallSet<unsigned,2> AN, BN;
757 
758     for (MVT T : AS)
759       AN.insert(T.getSizeInBits());
760     for (MVT T : BS)
761       BN.insert(T.getSizeInBits());
762 
763     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
764     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
765   }
766 
767   return Changed;
768 }
769 
770 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
771   ValidateOnExit _1(VTS);
772   TypeSetByHwMode Legal = getLegalTypes();
773   bool HaveLegalDef = Legal.hasDefault();
774 
775   for (auto &I : VTS) {
776     unsigned M = I.first;
777     if (!Legal.hasMode(M) && !HaveLegalDef) {
778       TP.error("Invalid mode " + Twine(M));
779       return;
780     }
781     expandOverloads(I.second, Legal.get(M));
782   }
783 }
784 
785 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
786                                 const TypeSetByHwMode::SetType &Legal) {
787   std::set<MVT> Ovs;
788   for (MVT T : Out) {
789     if (!T.isOverloaded())
790       continue;
791 
792     Ovs.insert(T);
793     // MachineValueTypeSet allows iteration and erasing.
794     Out.erase(T);
795   }
796 
797   for (MVT Ov : Ovs) {
798     switch (Ov.SimpleTy) {
799       case MVT::iPTRAny:
800         Out.insert(MVT::iPTR);
801         return;
802       case MVT::iAny:
803         for (MVT T : MVT::integer_valuetypes())
804           if (Legal.count(T))
805             Out.insert(T);
806         for (MVT T : MVT::integer_vector_valuetypes())
807           if (Legal.count(T))
808             Out.insert(T);
809         return;
810       case MVT::fAny:
811         for (MVT T : MVT::fp_valuetypes())
812           if (Legal.count(T))
813             Out.insert(T);
814         for (MVT T : MVT::fp_vector_valuetypes())
815           if (Legal.count(T))
816             Out.insert(T);
817         return;
818       case MVT::vAny:
819         for (MVT T : MVT::vector_valuetypes())
820           if (Legal.count(T))
821             Out.insert(T);
822         return;
823       case MVT::Any:
824         for (MVT T : MVT::all_valuetypes())
825           if (Legal.count(T))
826             Out.insert(T);
827         return;
828       default:
829         break;
830     }
831   }
832 }
833 
834 TypeSetByHwMode TypeInfer::getLegalTypes() {
835   if (!LegalTypesCached) {
836     // Stuff all types from all modes into the default mode.
837     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
838     for (const auto &I : LTS)
839       LegalCache.insert(I.second);
840     LegalTypesCached = true;
841   }
842   TypeSetByHwMode VTS;
843   VTS.getOrCreate(DefaultMode) = LegalCache;
844   return VTS;
845 }
846 
847 //===----------------------------------------------------------------------===//
848 // TreePredicateFn Implementation
849 //===----------------------------------------------------------------------===//
850 
851 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
852 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
853   assert((getPredCode().empty() || getImmCode().empty()) &&
854         ".td file corrupt: can't have a node predicate *and* an imm predicate");
855 }
856 
857 std::string TreePredicateFn::getPredCode() const {
858   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
859 }
860 
861 std::string TreePredicateFn::getImmCode() const {
862   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
863 }
864 
865 
866 /// isAlwaysTrue - Return true if this is a noop predicate.
867 bool TreePredicateFn::isAlwaysTrue() const {
868   return getPredCode().empty() && getImmCode().empty();
869 }
870 
871 /// Return the name to use in the generated code to reference this, this is
872 /// "Predicate_foo" if from a pattern fragment "foo".
873 std::string TreePredicateFn::getFnName() const {
874   return "Predicate_" + PatFragRec->getRecord()->getName().str();
875 }
876 
877 /// getCodeToRunOnSDNode - Return the code for the function body that
878 /// evaluates this predicate.  The argument is expected to be in "Node",
879 /// not N.  This handles casting and conversion to a concrete node type as
880 /// appropriate.
881 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
882   // Handle immediate predicates first.
883   std::string ImmCode = getImmCode();
884   if (!ImmCode.empty()) {
885     std::string Result =
886       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
887     return Result + ImmCode;
888   }
889 
890   // Handle arbitrary node predicates.
891   assert(!getPredCode().empty() && "Don't have any predicate code!");
892   std::string ClassName;
893   if (PatFragRec->getOnlyTree()->isLeaf())
894     ClassName = "SDNode";
895   else {
896     Record *Op = PatFragRec->getOnlyTree()->getOperator();
897     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
898   }
899   std::string Result;
900   if (ClassName == "SDNode")
901     Result = "    SDNode *N = Node;\n";
902   else
903     Result = "    auto *N = cast<" + ClassName + ">(Node);\n";
904 
905   return Result + getPredCode();
906 }
907 
908 //===----------------------------------------------------------------------===//
909 // PatternToMatch implementation
910 //
911 
912 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
913 /// patterns before small ones.  This is used to determine the size of a
914 /// pattern.
915 static unsigned getPatternSize(const TreePatternNode *P,
916                                const CodeGenDAGPatterns &CGP) {
917   unsigned Size = 3;  // The node itself.
918   // If the root node is a ConstantSDNode, increases its size.
919   // e.g. (set R32:$dst, 0).
920   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
921     Size += 2;
922 
923   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
924     Size += AM->getComplexity();
925     // We don't want to count any children twice, so return early.
926     return Size;
927   }
928 
929   // If this node has some predicate function that must match, it adds to the
930   // complexity of this node.
931   if (!P->getPredicateFns().empty())
932     ++Size;
933 
934   // Count children in the count if they are also nodes.
935   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
936     const TreePatternNode *Child = P->getChild(i);
937     if (!Child->isLeaf() && Child->getNumTypes()) {
938       const TypeSetByHwMode &T0 = Child->getType(0);
939       // At this point, all variable type sets should be simple, i.e. only
940       // have a default mode.
941       if (T0.getMachineValueType() != MVT::Other) {
942         Size += getPatternSize(Child, CGP);
943         continue;
944       }
945     }
946     if (Child->isLeaf()) {
947       if (isa<IntInit>(Child->getLeafValue()))
948         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
949       else if (Child->getComplexPatternInfo(CGP))
950         Size += getPatternSize(Child, CGP);
951       else if (!Child->getPredicateFns().empty())
952         ++Size;
953     }
954   }
955 
956   return Size;
957 }
958 
959 /// Compute the complexity metric for the input pattern.  This roughly
960 /// corresponds to the number of nodes that are covered.
961 int PatternToMatch::
962 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
963   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
964 }
965 
966 /// getPredicateCheck - Return a single string containing all of this
967 /// pattern's predicates concatenated with "&&" operators.
968 ///
969 std::string PatternToMatch::getPredicateCheck() const {
970   SmallVector<const Predicate*,4> PredList;
971   for (const Predicate &P : Predicates)
972     PredList.push_back(&P);
973   std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
974 
975   std::string Check;
976   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
977     if (i != 0)
978       Check += " && ";
979     Check += '(' + PredList[i]->getCondString() + ')';
980   }
981   return Check;
982 }
983 
984 //===----------------------------------------------------------------------===//
985 // SDTypeConstraint implementation
986 //
987 
988 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
989   OperandNo = R->getValueAsInt("OperandNum");
990 
991   if (R->isSubClassOf("SDTCisVT")) {
992     ConstraintType = SDTCisVT;
993     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
994     for (const auto &P : VVT)
995       if (P.second == MVT::isVoid)
996         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
997   } else if (R->isSubClassOf("SDTCisPtrTy")) {
998     ConstraintType = SDTCisPtrTy;
999   } else if (R->isSubClassOf("SDTCisInt")) {
1000     ConstraintType = SDTCisInt;
1001   } else if (R->isSubClassOf("SDTCisFP")) {
1002     ConstraintType = SDTCisFP;
1003   } else if (R->isSubClassOf("SDTCisVec")) {
1004     ConstraintType = SDTCisVec;
1005   } else if (R->isSubClassOf("SDTCisSameAs")) {
1006     ConstraintType = SDTCisSameAs;
1007     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1008   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1009     ConstraintType = SDTCisVTSmallerThanOp;
1010     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1011       R->getValueAsInt("OtherOperandNum");
1012   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1013     ConstraintType = SDTCisOpSmallerThanOp;
1014     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1015       R->getValueAsInt("BigOperandNum");
1016   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1017     ConstraintType = SDTCisEltOfVec;
1018     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1019   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1020     ConstraintType = SDTCisSubVecOfVec;
1021     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1022       R->getValueAsInt("OtherOpNum");
1023   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1024     ConstraintType = SDTCVecEltisVT;
1025     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1026     for (const auto &P : VVT) {
1027       MVT T = P.second;
1028       if (T.isVector())
1029         PrintFatalError(R->getLoc(),
1030                         "Cannot use vector type as SDTCVecEltisVT");
1031       if (!T.isInteger() && !T.isFloatingPoint())
1032         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1033                                      "as SDTCVecEltisVT");
1034     }
1035   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1036     ConstraintType = SDTCisSameNumEltsAs;
1037     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1038       R->getValueAsInt("OtherOperandNum");
1039   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1040     ConstraintType = SDTCisSameSizeAs;
1041     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1042       R->getValueAsInt("OtherOperandNum");
1043   } else {
1044     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1045   }
1046 }
1047 
1048 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1049 /// N, and the result number in ResNo.
1050 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1051                                       const SDNodeInfo &NodeInfo,
1052                                       unsigned &ResNo) {
1053   unsigned NumResults = NodeInfo.getNumResults();
1054   if (OpNo < NumResults) {
1055     ResNo = OpNo;
1056     return N;
1057   }
1058 
1059   OpNo -= NumResults;
1060 
1061   if (OpNo >= N->getNumChildren()) {
1062     std::string S;
1063     raw_string_ostream OS(S);
1064     OS << "Invalid operand number in type constraint "
1065            << (OpNo+NumResults) << " ";
1066     N->print(OS);
1067     PrintFatalError(OS.str());
1068   }
1069 
1070   return N->getChild(OpNo);
1071 }
1072 
1073 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1074 /// constraint to the nodes operands.  This returns true if it makes a
1075 /// change, false otherwise.  If a type contradiction is found, flag an error.
1076 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1077                                            const SDNodeInfo &NodeInfo,
1078                                            TreePattern &TP) const {
1079   if (TP.hasError())
1080     return false;
1081 
1082   unsigned ResNo = 0; // The result number being referenced.
1083   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1084   TypeInfer &TI = TP.getInfer();
1085 
1086   switch (ConstraintType) {
1087   case SDTCisVT:
1088     // Operand must be a particular type.
1089     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1090   case SDTCisPtrTy:
1091     // Operand must be same as target pointer type.
1092     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1093   case SDTCisInt:
1094     // Require it to be one of the legal integer VTs.
1095      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1096   case SDTCisFP:
1097     // Require it to be one of the legal fp VTs.
1098     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1099   case SDTCisVec:
1100     // Require it to be one of the legal vector VTs.
1101     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1102   case SDTCisSameAs: {
1103     unsigned OResNo = 0;
1104     TreePatternNode *OtherNode =
1105       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1106     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1107            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1108   }
1109   case SDTCisVTSmallerThanOp: {
1110     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1111     // have an integer type that is smaller than the VT.
1112     if (!NodeToApply->isLeaf() ||
1113         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1114         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1115                ->isSubClassOf("ValueType")) {
1116       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1117       return false;
1118     }
1119     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1120     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1121     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1122     TypeSetByHwMode TypeListTmp(VVT);
1123 
1124     unsigned OResNo = 0;
1125     TreePatternNode *OtherNode =
1126       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1127                     OResNo);
1128 
1129     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1130   }
1131   case SDTCisOpSmallerThanOp: {
1132     unsigned BResNo = 0;
1133     TreePatternNode *BigOperand =
1134       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1135                     BResNo);
1136     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1137                                  BigOperand->getExtType(BResNo));
1138   }
1139   case SDTCisEltOfVec: {
1140     unsigned VResNo = 0;
1141     TreePatternNode *VecOperand =
1142       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1143                     VResNo);
1144     // Filter vector types out of VecOperand that don't have the right element
1145     // type.
1146     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1147                                      NodeToApply->getExtType(ResNo));
1148   }
1149   case SDTCisSubVecOfVec: {
1150     unsigned VResNo = 0;
1151     TreePatternNode *BigVecOperand =
1152       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1153                     VResNo);
1154 
1155     // Filter vector types out of BigVecOperand that don't have the
1156     // right subvector type.
1157     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1158                                            NodeToApply->getExtType(ResNo));
1159   }
1160   case SDTCVecEltisVT: {
1161     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1162   }
1163   case SDTCisSameNumEltsAs: {
1164     unsigned OResNo = 0;
1165     TreePatternNode *OtherNode =
1166       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1167                     N, NodeInfo, OResNo);
1168     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1169                                  NodeToApply->getExtType(ResNo));
1170   }
1171   case SDTCisSameSizeAs: {
1172     unsigned OResNo = 0;
1173     TreePatternNode *OtherNode =
1174       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1175                     N, NodeInfo, OResNo);
1176     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1177                               NodeToApply->getExtType(ResNo));
1178   }
1179   }
1180   llvm_unreachable("Invalid ConstraintType!");
1181 }
1182 
1183 // Update the node type to match an instruction operand or result as specified
1184 // in the ins or outs lists on the instruction definition. Return true if the
1185 // type was actually changed.
1186 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1187                                              Record *Operand,
1188                                              TreePattern &TP) {
1189   // The 'unknown' operand indicates that types should be inferred from the
1190   // context.
1191   if (Operand->isSubClassOf("unknown_class"))
1192     return false;
1193 
1194   // The Operand class specifies a type directly.
1195   if (Operand->isSubClassOf("Operand")) {
1196     Record *R = Operand->getValueAsDef("Type");
1197     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1198     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1199   }
1200 
1201   // PointerLikeRegClass has a type that is determined at runtime.
1202   if (Operand->isSubClassOf("PointerLikeRegClass"))
1203     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1204 
1205   // Both RegisterClass and RegisterOperand operands derive their types from a
1206   // register class def.
1207   Record *RC = nullptr;
1208   if (Operand->isSubClassOf("RegisterClass"))
1209     RC = Operand;
1210   else if (Operand->isSubClassOf("RegisterOperand"))
1211     RC = Operand->getValueAsDef("RegClass");
1212 
1213   assert(RC && "Unknown operand type");
1214   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1215   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1216 }
1217 
1218 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1219   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1220     if (!TP.getInfer().isConcrete(Types[i], true))
1221       return true;
1222   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1223     if (getChild(i)->ContainsUnresolvedType(TP))
1224       return true;
1225   return false;
1226 }
1227 
1228 bool TreePatternNode::hasProperTypeByHwMode() const {
1229   for (const TypeSetByHwMode &S : Types)
1230     if (!S.isDefaultOnly())
1231       return true;
1232   for (TreePatternNode *C : Children)
1233     if (C->hasProperTypeByHwMode())
1234       return true;
1235   return false;
1236 }
1237 
1238 bool TreePatternNode::hasPossibleType() const {
1239   for (const TypeSetByHwMode &S : Types)
1240     if (!S.isPossible())
1241       return false;
1242   for (TreePatternNode *C : Children)
1243     if (!C->hasPossibleType())
1244       return false;
1245   return true;
1246 }
1247 
1248 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1249   for (TypeSetByHwMode &S : Types) {
1250     S.makeSimple(Mode);
1251     // Check if the selected mode had a type conflict.
1252     if (S.get(DefaultMode).empty())
1253       return false;
1254   }
1255   for (TreePatternNode *C : Children)
1256     if (!C->setDefaultMode(Mode))
1257       return false;
1258   return true;
1259 }
1260 
1261 //===----------------------------------------------------------------------===//
1262 // SDNodeInfo implementation
1263 //
1264 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1265   EnumName    = R->getValueAsString("Opcode");
1266   SDClassName = R->getValueAsString("SDClass");
1267   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1268   NumResults = TypeProfile->getValueAsInt("NumResults");
1269   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1270 
1271   // Parse the properties.
1272   Properties = 0;
1273   for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1274     if (Property->getName() == "SDNPCommutative") {
1275       Properties |= 1 << SDNPCommutative;
1276     } else if (Property->getName() == "SDNPAssociative") {
1277       Properties |= 1 << SDNPAssociative;
1278     } else if (Property->getName() == "SDNPHasChain") {
1279       Properties |= 1 << SDNPHasChain;
1280     } else if (Property->getName() == "SDNPOutGlue") {
1281       Properties |= 1 << SDNPOutGlue;
1282     } else if (Property->getName() == "SDNPInGlue") {
1283       Properties |= 1 << SDNPInGlue;
1284     } else if (Property->getName() == "SDNPOptInGlue") {
1285       Properties |= 1 << SDNPOptInGlue;
1286     } else if (Property->getName() == "SDNPMayStore") {
1287       Properties |= 1 << SDNPMayStore;
1288     } else if (Property->getName() == "SDNPMayLoad") {
1289       Properties |= 1 << SDNPMayLoad;
1290     } else if (Property->getName() == "SDNPSideEffect") {
1291       Properties |= 1 << SDNPSideEffect;
1292     } else if (Property->getName() == "SDNPMemOperand") {
1293       Properties |= 1 << SDNPMemOperand;
1294     } else if (Property->getName() == "SDNPVariadic") {
1295       Properties |= 1 << SDNPVariadic;
1296     } else {
1297       PrintFatalError("Unknown SD Node property '" +
1298                       Property->getName() + "' on node '" +
1299                       R->getName() + "'!");
1300     }
1301   }
1302 
1303 
1304   // Parse the type constraints.
1305   std::vector<Record*> ConstraintList =
1306     TypeProfile->getValueAsListOfDefs("Constraints");
1307   for (Record *R : ConstraintList)
1308     TypeConstraints.emplace_back(R, CGH);
1309 }
1310 
1311 /// getKnownType - If the type constraints on this node imply a fixed type
1312 /// (e.g. all stores return void, etc), then return it as an
1313 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1314 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1315   unsigned NumResults = getNumResults();
1316   assert(NumResults <= 1 &&
1317          "We only work with nodes with zero or one result so far!");
1318   assert(ResNo == 0 && "Only handles single result nodes so far");
1319 
1320   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1321     // Make sure that this applies to the correct node result.
1322     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1323       continue;
1324 
1325     switch (Constraint.ConstraintType) {
1326     default: break;
1327     case SDTypeConstraint::SDTCisVT:
1328       if (Constraint.VVT.isSimple())
1329         return Constraint.VVT.getSimple().SimpleTy;
1330       break;
1331     case SDTypeConstraint::SDTCisPtrTy:
1332       return MVT::iPTR;
1333     }
1334   }
1335   return MVT::Other;
1336 }
1337 
1338 //===----------------------------------------------------------------------===//
1339 // TreePatternNode implementation
1340 //
1341 
1342 TreePatternNode::~TreePatternNode() {
1343 #if 0 // FIXME: implement refcounted tree nodes!
1344   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1345     delete getChild(i);
1346 #endif
1347 }
1348 
1349 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1350   if (Operator->getName() == "set" ||
1351       Operator->getName() == "implicit")
1352     return 0;  // All return nothing.
1353 
1354   if (Operator->isSubClassOf("Intrinsic"))
1355     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1356 
1357   if (Operator->isSubClassOf("SDNode"))
1358     return CDP.getSDNodeInfo(Operator).getNumResults();
1359 
1360   if (Operator->isSubClassOf("PatFrag")) {
1361     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1362     // the forward reference case where one pattern fragment references another
1363     // before it is processed.
1364     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1365       return PFRec->getOnlyTree()->getNumTypes();
1366 
1367     // Get the result tree.
1368     DagInit *Tree = Operator->getValueAsDag("Fragment");
1369     Record *Op = nullptr;
1370     if (Tree)
1371       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1372         Op = DI->getDef();
1373     assert(Op && "Invalid Fragment");
1374     return GetNumNodeResults(Op, CDP);
1375   }
1376 
1377   if (Operator->isSubClassOf("Instruction")) {
1378     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1379 
1380     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1381 
1382     // Subtract any defaulted outputs.
1383     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1384       Record *OperandNode = InstInfo.Operands[i].Rec;
1385 
1386       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1387           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1388         --NumDefsToAdd;
1389     }
1390 
1391     // Add on one implicit def if it has a resolvable type.
1392     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1393       ++NumDefsToAdd;
1394     return NumDefsToAdd;
1395   }
1396 
1397   if (Operator->isSubClassOf("SDNodeXForm"))
1398     return 1;  // FIXME: Generalize SDNodeXForm
1399 
1400   if (Operator->isSubClassOf("ValueType"))
1401     return 1;  // A type-cast of one result.
1402 
1403   if (Operator->isSubClassOf("ComplexPattern"))
1404     return 1;
1405 
1406   errs() << *Operator;
1407   PrintFatalError("Unhandled node in GetNumNodeResults");
1408 }
1409 
1410 void TreePatternNode::print(raw_ostream &OS) const {
1411   if (isLeaf())
1412     OS << *getLeafValue();
1413   else
1414     OS << '(' << getOperator()->getName();
1415 
1416   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1417     OS << ':';
1418     getExtType(i).writeToStream(OS);
1419   }
1420 
1421   if (!isLeaf()) {
1422     if (getNumChildren() != 0) {
1423       OS << " ";
1424       getChild(0)->print(OS);
1425       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1426         OS << ", ";
1427         getChild(i)->print(OS);
1428       }
1429     }
1430     OS << ")";
1431   }
1432 
1433   for (const TreePredicateFn &Pred : PredicateFns)
1434     OS << "<<P:" << Pred.getFnName() << ">>";
1435   if (TransformFn)
1436     OS << "<<X:" << TransformFn->getName() << ">>";
1437   if (!getName().empty())
1438     OS << ":$" << getName();
1439 
1440 }
1441 void TreePatternNode::dump() const {
1442   print(errs());
1443 }
1444 
1445 /// isIsomorphicTo - Return true if this node is recursively
1446 /// isomorphic to the specified node.  For this comparison, the node's
1447 /// entire state is considered. The assigned name is ignored, since
1448 /// nodes with differing names are considered isomorphic. However, if
1449 /// the assigned name is present in the dependent variable set, then
1450 /// the assigned name is considered significant and the node is
1451 /// isomorphic if the names match.
1452 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1453                                      const MultipleUseVarSet &DepVars) const {
1454   if (N == this) return true;
1455   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1456       getPredicateFns() != N->getPredicateFns() ||
1457       getTransformFn() != N->getTransformFn())
1458     return false;
1459 
1460   if (isLeaf()) {
1461     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1462       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1463         return ((DI->getDef() == NDI->getDef())
1464                 && (DepVars.find(getName()) == DepVars.end()
1465                     || getName() == N->getName()));
1466       }
1467     }
1468     return getLeafValue() == N->getLeafValue();
1469   }
1470 
1471   if (N->getOperator() != getOperator() ||
1472       N->getNumChildren() != getNumChildren()) return false;
1473   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1474     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1475       return false;
1476   return true;
1477 }
1478 
1479 /// clone - Make a copy of this tree and all of its children.
1480 ///
1481 TreePatternNode *TreePatternNode::clone() const {
1482   TreePatternNode *New;
1483   if (isLeaf()) {
1484     New = new TreePatternNode(getLeafValue(), getNumTypes());
1485   } else {
1486     std::vector<TreePatternNode*> CChildren;
1487     CChildren.reserve(Children.size());
1488     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1489       CChildren.push_back(getChild(i)->clone());
1490     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1491   }
1492   New->setName(getName());
1493   New->Types = Types;
1494   New->setPredicateFns(getPredicateFns());
1495   New->setTransformFn(getTransformFn());
1496   return New;
1497 }
1498 
1499 /// RemoveAllTypes - Recursively strip all the types of this tree.
1500 void TreePatternNode::RemoveAllTypes() {
1501   // Reset to unknown type.
1502   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1503   if (isLeaf()) return;
1504   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1505     getChild(i)->RemoveAllTypes();
1506 }
1507 
1508 
1509 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1510 /// with actual values specified by ArgMap.
1511 void TreePatternNode::
1512 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1513   if (isLeaf()) return;
1514 
1515   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1516     TreePatternNode *Child = getChild(i);
1517     if (Child->isLeaf()) {
1518       Init *Val = Child->getLeafValue();
1519       // Note that, when substituting into an output pattern, Val might be an
1520       // UnsetInit.
1521       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1522           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1523         // We found a use of a formal argument, replace it with its value.
1524         TreePatternNode *NewChild = ArgMap[Child->getName()];
1525         assert(NewChild && "Couldn't find formal argument!");
1526         assert((Child->getPredicateFns().empty() ||
1527                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1528                "Non-empty child predicate clobbered!");
1529         setChild(i, NewChild);
1530       }
1531     } else {
1532       getChild(i)->SubstituteFormalArguments(ArgMap);
1533     }
1534   }
1535 }
1536 
1537 
1538 /// InlinePatternFragments - If this pattern refers to any pattern
1539 /// fragments, inline them into place, giving us a pattern without any
1540 /// PatFrag references.
1541 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1542   if (TP.hasError())
1543     return nullptr;
1544 
1545   if (isLeaf())
1546      return this;  // nothing to do.
1547   Record *Op = getOperator();
1548 
1549   if (!Op->isSubClassOf("PatFrag")) {
1550     // Just recursively inline children nodes.
1551     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1552       TreePatternNode *Child = getChild(i);
1553       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1554 
1555       assert((Child->getPredicateFns().empty() ||
1556               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1557              "Non-empty child predicate clobbered!");
1558 
1559       setChild(i, NewChild);
1560     }
1561     return this;
1562   }
1563 
1564   // Otherwise, we found a reference to a fragment.  First, look up its
1565   // TreePattern record.
1566   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1567 
1568   // Verify that we are passing the right number of operands.
1569   if (Frag->getNumArgs() != Children.size()) {
1570     TP.error("'" + Op->getName() + "' fragment requires " +
1571              utostr(Frag->getNumArgs()) + " operands!");
1572     return nullptr;
1573   }
1574 
1575   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1576 
1577   TreePredicateFn PredFn(Frag);
1578   if (!PredFn.isAlwaysTrue())
1579     FragTree->addPredicateFn(PredFn);
1580 
1581   // Resolve formal arguments to their actual value.
1582   if (Frag->getNumArgs()) {
1583     // Compute the map of formal to actual arguments.
1584     std::map<std::string, TreePatternNode*> ArgMap;
1585     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1586       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1587 
1588     FragTree->SubstituteFormalArguments(ArgMap);
1589   }
1590 
1591   FragTree->setName(getName());
1592   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1593     FragTree->UpdateNodeType(i, getExtType(i), TP);
1594 
1595   // Transfer in the old predicates.
1596   for (const TreePredicateFn &Pred : getPredicateFns())
1597     FragTree->addPredicateFn(Pred);
1598 
1599   // Get a new copy of this fragment to stitch into here.
1600   //delete this;    // FIXME: implement refcounting!
1601 
1602   // The fragment we inlined could have recursive inlining that is needed.  See
1603   // if there are any pattern fragments in it and inline them as needed.
1604   return FragTree->InlinePatternFragments(TP);
1605 }
1606 
1607 /// getImplicitType - Check to see if the specified record has an implicit
1608 /// type which should be applied to it.  This will infer the type of register
1609 /// references from the register file information, for example.
1610 ///
1611 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1612 /// the F8RC register class argument in:
1613 ///
1614 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1615 ///
1616 /// When Unnamed is false, return the type of a named DAG operand such as the
1617 /// GPR:$src operand above.
1618 ///
1619 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1620                                        bool NotRegisters,
1621                                        bool Unnamed,
1622                                        TreePattern &TP) {
1623   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1624 
1625   // Check to see if this is a register operand.
1626   if (R->isSubClassOf("RegisterOperand")) {
1627     assert(ResNo == 0 && "Regoperand ref only has one result!");
1628     if (NotRegisters)
1629       return TypeSetByHwMode(); // Unknown.
1630     Record *RegClass = R->getValueAsDef("RegClass");
1631     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1632     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1633   }
1634 
1635   // Check to see if this is a register or a register class.
1636   if (R->isSubClassOf("RegisterClass")) {
1637     assert(ResNo == 0 && "Regclass ref only has one result!");
1638     // An unnamed register class represents itself as an i32 immediate, for
1639     // example on a COPY_TO_REGCLASS instruction.
1640     if (Unnamed)
1641       return TypeSetByHwMode(MVT::i32);
1642 
1643     // In a named operand, the register class provides the possible set of
1644     // types.
1645     if (NotRegisters)
1646       return TypeSetByHwMode(); // Unknown.
1647     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1648     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1649   }
1650 
1651   if (R->isSubClassOf("PatFrag")) {
1652     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1653     // Pattern fragment types will be resolved when they are inlined.
1654     return TypeSetByHwMode(); // Unknown.
1655   }
1656 
1657   if (R->isSubClassOf("Register")) {
1658     assert(ResNo == 0 && "Registers only produce one result!");
1659     if (NotRegisters)
1660       return TypeSetByHwMode(); // Unknown.
1661     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1662     return TypeSetByHwMode(T.getRegisterVTs(R));
1663   }
1664 
1665   if (R->isSubClassOf("SubRegIndex")) {
1666     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1667     return TypeSetByHwMode(MVT::i32);
1668   }
1669 
1670   if (R->isSubClassOf("ValueType")) {
1671     assert(ResNo == 0 && "This node only has one result!");
1672     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1673     //
1674     //   (sext_inreg GPR:$src, i16)
1675     //                         ~~~
1676     if (Unnamed)
1677       return TypeSetByHwMode(MVT::Other);
1678     // With a name, the ValueType simply provides the type of the named
1679     // variable.
1680     //
1681     //   (sext_inreg i32:$src, i16)
1682     //               ~~~~~~~~
1683     if (NotRegisters)
1684       return TypeSetByHwMode(); // Unknown.
1685     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1686     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
1687   }
1688 
1689   if (R->isSubClassOf("CondCode")) {
1690     assert(ResNo == 0 && "This node only has one result!");
1691     // Using a CondCodeSDNode.
1692     return TypeSetByHwMode(MVT::Other);
1693   }
1694 
1695   if (R->isSubClassOf("ComplexPattern")) {
1696     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1697     if (NotRegisters)
1698       return TypeSetByHwMode(); // Unknown.
1699     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
1700   }
1701   if (R->isSubClassOf("PointerLikeRegClass")) {
1702     assert(ResNo == 0 && "Regclass can only have one result!");
1703     TypeSetByHwMode VTS(MVT::iPTR);
1704     TP.getInfer().expandOverloads(VTS);
1705     return VTS;
1706   }
1707 
1708   if (R->getName() == "node" || R->getName() == "srcvalue" ||
1709       R->getName() == "zero_reg") {
1710     // Placeholder.
1711     return TypeSetByHwMode(); // Unknown.
1712   }
1713 
1714   if (R->isSubClassOf("Operand")) {
1715     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1716     Record *T = R->getValueAsDef("Type");
1717     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
1718   }
1719 
1720   TP.error("Unknown node flavor used in pattern: " + R->getName());
1721   return TypeSetByHwMode(MVT::Other);
1722 }
1723 
1724 
1725 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1726 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1727 const CodeGenIntrinsic *TreePatternNode::
1728 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1729   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1730       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1731       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1732     return nullptr;
1733 
1734   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1735   return &CDP.getIntrinsicInfo(IID);
1736 }
1737 
1738 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1739 /// return the ComplexPattern information, otherwise return null.
1740 const ComplexPattern *
1741 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1742   Record *Rec;
1743   if (isLeaf()) {
1744     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1745     if (!DI)
1746       return nullptr;
1747     Rec = DI->getDef();
1748   } else
1749     Rec = getOperator();
1750 
1751   if (!Rec->isSubClassOf("ComplexPattern"))
1752     return nullptr;
1753   return &CGP.getComplexPattern(Rec);
1754 }
1755 
1756 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1757   // A ComplexPattern specifically declares how many results it fills in.
1758   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1759     return CP->getNumOperands();
1760 
1761   // If MIOperandInfo is specified, that gives the count.
1762   if (isLeaf()) {
1763     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1764     if (DI && DI->getDef()->isSubClassOf("Operand")) {
1765       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1766       if (MIOps->getNumArgs())
1767         return MIOps->getNumArgs();
1768     }
1769   }
1770 
1771   // Otherwise there is just one result.
1772   return 1;
1773 }
1774 
1775 /// NodeHasProperty - Return true if this node has the specified property.
1776 bool TreePatternNode::NodeHasProperty(SDNP Property,
1777                                       const CodeGenDAGPatterns &CGP) const {
1778   if (isLeaf()) {
1779     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1780       return CP->hasProperty(Property);
1781     return false;
1782   }
1783 
1784   Record *Operator = getOperator();
1785   if (!Operator->isSubClassOf("SDNode")) return false;
1786 
1787   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1788 }
1789 
1790 
1791 
1792 
1793 /// TreeHasProperty - Return true if any node in this tree has the specified
1794 /// property.
1795 bool TreePatternNode::TreeHasProperty(SDNP Property,
1796                                       const CodeGenDAGPatterns &CGP) const {
1797   if (NodeHasProperty(Property, CGP))
1798     return true;
1799   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1800     if (getChild(i)->TreeHasProperty(Property, CGP))
1801       return true;
1802   return false;
1803 }
1804 
1805 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1806 /// commutative intrinsic.
1807 bool
1808 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1809   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1810     return Int->isCommutative;
1811   return false;
1812 }
1813 
1814 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1815   if (!N->isLeaf())
1816     return N->getOperator()->isSubClassOf(Class);
1817 
1818   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1819   if (DI && DI->getDef()->isSubClassOf(Class))
1820     return true;
1821 
1822   return false;
1823 }
1824 
1825 static void emitTooManyOperandsError(TreePattern &TP,
1826                                      StringRef InstName,
1827                                      unsigned Expected,
1828                                      unsigned Actual) {
1829   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1830            " operands but expected only " + Twine(Expected) + "!");
1831 }
1832 
1833 static void emitTooFewOperandsError(TreePattern &TP,
1834                                     StringRef InstName,
1835                                     unsigned Actual) {
1836   TP.error("Instruction '" + InstName +
1837            "' expects more than the provided " + Twine(Actual) + " operands!");
1838 }
1839 
1840 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1841 /// this node and its children in the tree.  This returns true if it makes a
1842 /// change, false otherwise.  If a type contradiction is found, flag an error.
1843 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1844   if (TP.hasError())
1845     return false;
1846 
1847   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1848   if (isLeaf()) {
1849     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1850       // If it's a regclass or something else known, include the type.
1851       bool MadeChange = false;
1852       for (unsigned i = 0, e = Types.size(); i != e; ++i)
1853         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1854                                                         NotRegisters,
1855                                                         !hasName(), TP), TP);
1856       return MadeChange;
1857     }
1858 
1859     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1860       assert(Types.size() == 1 && "Invalid IntInit");
1861 
1862       // Int inits are always integers. :)
1863       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
1864 
1865       if (!TP.getInfer().isConcrete(Types[0], false))
1866         return MadeChange;
1867 
1868       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
1869       for (auto &P : VVT) {
1870         MVT::SimpleValueType VT = P.second.SimpleTy;
1871         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1872           continue;
1873         unsigned Size = MVT(VT).getSizeInBits();
1874         // Make sure that the value is representable for this type.
1875         if (Size >= 32)
1876           continue;
1877         // Check that the value doesn't use more bits than we have. It must
1878         // either be a sign- or zero-extended equivalent of the original.
1879         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1880         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
1881             SignBitAndAbove == 1)
1882           continue;
1883 
1884         TP.error("Integer value '" + itostr(II->getValue()) +
1885                  "' is out of range for type '" + getEnumName(VT) + "'!");
1886         break;
1887       }
1888       return MadeChange;
1889     }
1890 
1891     return false;
1892   }
1893 
1894   // special handling for set, which isn't really an SDNode.
1895   if (getOperator()->getName() == "set") {
1896     assert(getNumTypes() == 0 && "Set doesn't produce a value");
1897     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1898     unsigned NC = getNumChildren();
1899 
1900     TreePatternNode *SetVal = getChild(NC-1);
1901     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1902 
1903     for (unsigned i = 0; i < NC-1; ++i) {
1904       TreePatternNode *Child = getChild(i);
1905       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1906 
1907       // Types of operands must match.
1908       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1909       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1910     }
1911     return MadeChange;
1912   }
1913 
1914   if (getOperator()->getName() == "implicit") {
1915     assert(getNumTypes() == 0 && "Node doesn't produce a value");
1916 
1917     bool MadeChange = false;
1918     for (unsigned i = 0; i < getNumChildren(); ++i)
1919       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1920     return MadeChange;
1921   }
1922 
1923   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1924     bool MadeChange = false;
1925 
1926     // Apply the result type to the node.
1927     unsigned NumRetVTs = Int->IS.RetVTs.size();
1928     unsigned NumParamVTs = Int->IS.ParamVTs.size();
1929 
1930     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1931       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1932 
1933     if (getNumChildren() != NumParamVTs + 1) {
1934       TP.error("Intrinsic '" + Int->Name + "' expects " +
1935                utostr(NumParamVTs) + " operands, not " +
1936                utostr(getNumChildren() - 1) + " operands!");
1937       return false;
1938     }
1939 
1940     // Apply type info to the intrinsic ID.
1941     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1942 
1943     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1944       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1945 
1946       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1947       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1948       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1949     }
1950     return MadeChange;
1951   }
1952 
1953   if (getOperator()->isSubClassOf("SDNode")) {
1954     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1955 
1956     // Check that the number of operands is sane.  Negative operands -> varargs.
1957     if (NI.getNumOperands() >= 0 &&
1958         getNumChildren() != (unsigned)NI.getNumOperands()) {
1959       TP.error(getOperator()->getName() + " node requires exactly " +
1960                itostr(NI.getNumOperands()) + " operands!");
1961       return false;
1962     }
1963 
1964     bool MadeChange = false;
1965     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1966       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1967     MadeChange |= NI.ApplyTypeConstraints(this, TP);
1968     return MadeChange;
1969   }
1970 
1971   if (getOperator()->isSubClassOf("Instruction")) {
1972     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1973     CodeGenInstruction &InstInfo =
1974       CDP.getTargetInfo().getInstruction(getOperator());
1975 
1976     bool MadeChange = false;
1977 
1978     // Apply the result types to the node, these come from the things in the
1979     // (outs) list of the instruction.
1980     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1981                                         Inst.getNumResults());
1982     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1983       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1984 
1985     // If the instruction has implicit defs, we apply the first one as a result.
1986     // FIXME: This sucks, it should apply all implicit defs.
1987     if (!InstInfo.ImplicitDefs.empty()) {
1988       unsigned ResNo = NumResultsToAdd;
1989 
1990       // FIXME: Generalize to multiple possible types and multiple possible
1991       // ImplicitDefs.
1992       MVT::SimpleValueType VT =
1993         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1994 
1995       if (VT != MVT::Other)
1996         MadeChange |= UpdateNodeType(ResNo, VT, TP);
1997     }
1998 
1999     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2000     // be the same.
2001     if (getOperator()->getName() == "INSERT_SUBREG") {
2002       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2003       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2004       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2005     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2006       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2007       // variadic.
2008 
2009       unsigned NChild = getNumChildren();
2010       if (NChild < 3) {
2011         TP.error("REG_SEQUENCE requires at least 3 operands!");
2012         return false;
2013       }
2014 
2015       if (NChild % 2 == 0) {
2016         TP.error("REG_SEQUENCE requires an odd number of operands!");
2017         return false;
2018       }
2019 
2020       if (!isOperandClass(getChild(0), "RegisterClass")) {
2021         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2022         return false;
2023       }
2024 
2025       for (unsigned I = 1; I < NChild; I += 2) {
2026         TreePatternNode *SubIdxChild = getChild(I + 1);
2027         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2028           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2029                    itostr(I + 1) + "!");
2030           return false;
2031         }
2032       }
2033     }
2034 
2035     unsigned ChildNo = 0;
2036     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2037       Record *OperandNode = Inst.getOperand(i);
2038 
2039       // If the instruction expects a predicate or optional def operand, we
2040       // codegen this by setting the operand to it's default value if it has a
2041       // non-empty DefaultOps field.
2042       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2043           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2044         continue;
2045 
2046       // Verify that we didn't run out of provided operands.
2047       if (ChildNo >= getNumChildren()) {
2048         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2049         return false;
2050       }
2051 
2052       TreePatternNode *Child = getChild(ChildNo++);
2053       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2054 
2055       // If the operand has sub-operands, they may be provided by distinct
2056       // child patterns, so attempt to match each sub-operand separately.
2057       if (OperandNode->isSubClassOf("Operand")) {
2058         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2059         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2060           // But don't do that if the whole operand is being provided by
2061           // a single ComplexPattern-related Operand.
2062 
2063           if (Child->getNumMIResults(CDP) < NumArgs) {
2064             // Match first sub-operand against the child we already have.
2065             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2066             MadeChange |=
2067               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2068 
2069             // And the remaining sub-operands against subsequent children.
2070             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2071               if (ChildNo >= getNumChildren()) {
2072                 emitTooFewOperandsError(TP, getOperator()->getName(),
2073                                         getNumChildren());
2074                 return false;
2075               }
2076               Child = getChild(ChildNo++);
2077 
2078               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2079               MadeChange |=
2080                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2081             }
2082             continue;
2083           }
2084         }
2085       }
2086 
2087       // If we didn't match by pieces above, attempt to match the whole
2088       // operand now.
2089       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2090     }
2091 
2092     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2093       emitTooManyOperandsError(TP, getOperator()->getName(),
2094                                ChildNo, getNumChildren());
2095       return false;
2096     }
2097 
2098     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2099       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2100     return MadeChange;
2101   }
2102 
2103   if (getOperator()->isSubClassOf("ComplexPattern")) {
2104     bool MadeChange = false;
2105 
2106     for (unsigned i = 0; i < getNumChildren(); ++i)
2107       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2108 
2109     return MadeChange;
2110   }
2111 
2112   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2113 
2114   // Node transforms always take one operand.
2115   if (getNumChildren() != 1) {
2116     TP.error("Node transform '" + getOperator()->getName() +
2117              "' requires one operand!");
2118     return false;
2119   }
2120 
2121   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2122   return MadeChange;
2123 }
2124 
2125 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2126 /// RHS of a commutative operation, not the on LHS.
2127 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2128   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2129     return true;
2130   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2131     return true;
2132   return false;
2133 }
2134 
2135 
2136 /// canPatternMatch - If it is impossible for this pattern to match on this
2137 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2138 /// used as a sanity check for .td files (to prevent people from writing stuff
2139 /// that can never possibly work), and to prevent the pattern permuter from
2140 /// generating stuff that is useless.
2141 bool TreePatternNode::canPatternMatch(std::string &Reason,
2142                                       const CodeGenDAGPatterns &CDP) {
2143   if (isLeaf()) return true;
2144 
2145   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2146     if (!getChild(i)->canPatternMatch(Reason, CDP))
2147       return false;
2148 
2149   // If this is an intrinsic, handle cases that would make it not match.  For
2150   // example, if an operand is required to be an immediate.
2151   if (getOperator()->isSubClassOf("Intrinsic")) {
2152     // TODO:
2153     return true;
2154   }
2155 
2156   if (getOperator()->isSubClassOf("ComplexPattern"))
2157     return true;
2158 
2159   // If this node is a commutative operator, check that the LHS isn't an
2160   // immediate.
2161   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2162   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2163   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2164     // Scan all of the operands of the node and make sure that only the last one
2165     // is a constant node, unless the RHS also is.
2166     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2167       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2168       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2169         if (OnlyOnRHSOfCommutative(getChild(i))) {
2170           Reason="Immediate value must be on the RHS of commutative operators!";
2171           return false;
2172         }
2173     }
2174   }
2175 
2176   return true;
2177 }
2178 
2179 //===----------------------------------------------------------------------===//
2180 // TreePattern implementation
2181 //
2182 
2183 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2184                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2185                          isInputPattern(isInput), HasError(false),
2186                          Infer(*this) {
2187   for (Init *I : RawPat->getValues())
2188     Trees.push_back(ParseTreePattern(I, ""));
2189 }
2190 
2191 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2192                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2193                          isInputPattern(isInput), HasError(false),
2194                          Infer(*this) {
2195   Trees.push_back(ParseTreePattern(Pat, ""));
2196 }
2197 
2198 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2199                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2200                          isInputPattern(isInput), HasError(false),
2201                          Infer(*this) {
2202   Trees.push_back(Pat);
2203 }
2204 
2205 void TreePattern::error(const Twine &Msg) {
2206   if (HasError)
2207     return;
2208   dump();
2209   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2210   HasError = true;
2211 }
2212 
2213 void TreePattern::ComputeNamedNodes() {
2214   for (TreePatternNode *Tree : Trees)
2215     ComputeNamedNodes(Tree);
2216 }
2217 
2218 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2219   if (!N->getName().empty())
2220     NamedNodes[N->getName()].push_back(N);
2221 
2222   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2223     ComputeNamedNodes(N->getChild(i));
2224 }
2225 
2226 
2227 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2228   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2229     Record *R = DI->getDef();
2230 
2231     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2232     // TreePatternNode of its own.  For example:
2233     ///   (foo GPR, imm) -> (foo GPR, (imm))
2234     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2235       return ParseTreePattern(
2236         DagInit::get(DI, nullptr,
2237                      std::vector<std::pair<Init*, StringInit*> >()),
2238         OpName);
2239 
2240     // Input argument?
2241     TreePatternNode *Res = new TreePatternNode(DI, 1);
2242     if (R->getName() == "node" && !OpName.empty()) {
2243       if (OpName.empty())
2244         error("'node' argument requires a name to match with operand list");
2245       Args.push_back(OpName);
2246     }
2247 
2248     Res->setName(OpName);
2249     return Res;
2250   }
2251 
2252   // ?:$name or just $name.
2253   if (isa<UnsetInit>(TheInit)) {
2254     if (OpName.empty())
2255       error("'?' argument requires a name to match with operand list");
2256     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2257     Args.push_back(OpName);
2258     Res->setName(OpName);
2259     return Res;
2260   }
2261 
2262   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2263     if (!OpName.empty())
2264       error("Constant int argument should not have a name!");
2265     return new TreePatternNode(II, 1);
2266   }
2267 
2268   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2269     // Turn this into an IntInit.
2270     Init *II = BI->convertInitializerTo(IntRecTy::get());
2271     if (!II || !isa<IntInit>(II))
2272       error("Bits value must be constants!");
2273     return ParseTreePattern(II, OpName);
2274   }
2275 
2276   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2277   if (!Dag) {
2278     TheInit->print(errs());
2279     error("Pattern has unexpected init kind!");
2280   }
2281   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2282   if (!OpDef) error("Pattern has unexpected operator type!");
2283   Record *Operator = OpDef->getDef();
2284 
2285   if (Operator->isSubClassOf("ValueType")) {
2286     // If the operator is a ValueType, then this must be "type cast" of a leaf
2287     // node.
2288     if (Dag->getNumArgs() != 1)
2289       error("Type cast only takes one operand!");
2290 
2291     TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2292                                             Dag->getArgNameStr(0));
2293 
2294     // Apply the type cast.
2295     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2296     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2297     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2298 
2299     if (!OpName.empty())
2300       error("ValueType cast should not have a name!");
2301     return New;
2302   }
2303 
2304   // Verify that this is something that makes sense for an operator.
2305   if (!Operator->isSubClassOf("PatFrag") &&
2306       !Operator->isSubClassOf("SDNode") &&
2307       !Operator->isSubClassOf("Instruction") &&
2308       !Operator->isSubClassOf("SDNodeXForm") &&
2309       !Operator->isSubClassOf("Intrinsic") &&
2310       !Operator->isSubClassOf("ComplexPattern") &&
2311       Operator->getName() != "set" &&
2312       Operator->getName() != "implicit")
2313     error("Unrecognized node '" + Operator->getName() + "'!");
2314 
2315   //  Check to see if this is something that is illegal in an input pattern.
2316   if (isInputPattern) {
2317     if (Operator->isSubClassOf("Instruction") ||
2318         Operator->isSubClassOf("SDNodeXForm"))
2319       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2320   } else {
2321     if (Operator->isSubClassOf("Intrinsic"))
2322       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2323 
2324     if (Operator->isSubClassOf("SDNode") &&
2325         Operator->getName() != "imm" &&
2326         Operator->getName() != "fpimm" &&
2327         Operator->getName() != "tglobaltlsaddr" &&
2328         Operator->getName() != "tconstpool" &&
2329         Operator->getName() != "tjumptable" &&
2330         Operator->getName() != "tframeindex" &&
2331         Operator->getName() != "texternalsym" &&
2332         Operator->getName() != "tblockaddress" &&
2333         Operator->getName() != "tglobaladdr" &&
2334         Operator->getName() != "bb" &&
2335         Operator->getName() != "vt" &&
2336         Operator->getName() != "mcsym")
2337       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2338   }
2339 
2340   std::vector<TreePatternNode*> Children;
2341 
2342   // Parse all the operands.
2343   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2344     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2345 
2346   // If the operator is an intrinsic, then this is just syntactic sugar for for
2347   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2348   // convert the intrinsic name to a number.
2349   if (Operator->isSubClassOf("Intrinsic")) {
2350     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2351     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2352 
2353     // If this intrinsic returns void, it must have side-effects and thus a
2354     // chain.
2355     if (Int.IS.RetVTs.empty())
2356       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2357     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2358       // Has side-effects, requires chain.
2359       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2360     else // Otherwise, no chain.
2361       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2362 
2363     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2364     Children.insert(Children.begin(), IIDNode);
2365   }
2366 
2367   if (Operator->isSubClassOf("ComplexPattern")) {
2368     for (unsigned i = 0; i < Children.size(); ++i) {
2369       TreePatternNode *Child = Children[i];
2370 
2371       if (Child->getName().empty())
2372         error("All arguments to a ComplexPattern must be named");
2373 
2374       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2375       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2376       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2377       auto OperandId = std::make_pair(Operator, i);
2378       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2379       if (PrevOp != ComplexPatternOperands.end()) {
2380         if (PrevOp->getValue() != OperandId)
2381           error("All ComplexPattern operands must appear consistently: "
2382                 "in the same order in just one ComplexPattern instance.");
2383       } else
2384         ComplexPatternOperands[Child->getName()] = OperandId;
2385     }
2386   }
2387 
2388   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2389   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2390   Result->setName(OpName);
2391 
2392   if (Dag->getName()) {
2393     assert(Result->getName().empty());
2394     Result->setName(Dag->getNameStr());
2395   }
2396   return Result;
2397 }
2398 
2399 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2400 /// will never match in favor of something obvious that will.  This is here
2401 /// strictly as a convenience to target authors because it allows them to write
2402 /// more type generic things and have useless type casts fold away.
2403 ///
2404 /// This returns true if any change is made.
2405 static bool SimplifyTree(TreePatternNode *&N) {
2406   if (N->isLeaf())
2407     return false;
2408 
2409   // If we have a bitconvert with a resolved type and if the source and
2410   // destination types are the same, then the bitconvert is useless, remove it.
2411   if (N->getOperator()->getName() == "bitconvert" &&
2412       N->getExtType(0).isValueTypeByHwMode(false) &&
2413       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2414       N->getName().empty()) {
2415     N = N->getChild(0);
2416     SimplifyTree(N);
2417     return true;
2418   }
2419 
2420   // Walk all children.
2421   bool MadeChange = false;
2422   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2423     TreePatternNode *Child = N->getChild(i);
2424     MadeChange |= SimplifyTree(Child);
2425     N->setChild(i, Child);
2426   }
2427   return MadeChange;
2428 }
2429 
2430 
2431 
2432 /// InferAllTypes - Infer/propagate as many types throughout the expression
2433 /// patterns as possible.  Return true if all types are inferred, false
2434 /// otherwise.  Flags an error if a type contradiction is found.
2435 bool TreePattern::
2436 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2437   if (NamedNodes.empty())
2438     ComputeNamedNodes();
2439 
2440   bool MadeChange = true;
2441   while (MadeChange) {
2442     MadeChange = false;
2443     for (TreePatternNode *&Tree : Trees) {
2444       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2445       MadeChange |= SimplifyTree(Tree);
2446     }
2447 
2448     // If there are constraints on our named nodes, apply them.
2449     for (auto &Entry : NamedNodes) {
2450       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2451 
2452       // If we have input named node types, propagate their types to the named
2453       // values here.
2454       if (InNamedTypes) {
2455         if (!InNamedTypes->count(Entry.getKey())) {
2456           error("Node '" + std::string(Entry.getKey()) +
2457                 "' in output pattern but not input pattern");
2458           return true;
2459         }
2460 
2461         const SmallVectorImpl<TreePatternNode*> &InNodes =
2462           InNamedTypes->find(Entry.getKey())->second;
2463 
2464         // The input types should be fully resolved by now.
2465         for (TreePatternNode *Node : Nodes) {
2466           // If this node is a register class, and it is the root of the pattern
2467           // then we're mapping something onto an input register.  We allow
2468           // changing the type of the input register in this case.  This allows
2469           // us to match things like:
2470           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2471           if (Node == Trees[0] && Node->isLeaf()) {
2472             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2473             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2474                        DI->getDef()->isSubClassOf("RegisterOperand")))
2475               continue;
2476           }
2477 
2478           assert(Node->getNumTypes() == 1 &&
2479                  InNodes[0]->getNumTypes() == 1 &&
2480                  "FIXME: cannot name multiple result nodes yet");
2481           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2482                                              *this);
2483         }
2484       }
2485 
2486       // If there are multiple nodes with the same name, they must all have the
2487       // same type.
2488       if (Entry.second.size() > 1) {
2489         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2490           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2491           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2492                  "FIXME: cannot name multiple result nodes yet");
2493 
2494           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2495           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2496         }
2497       }
2498     }
2499   }
2500 
2501   bool HasUnresolvedTypes = false;
2502   for (const TreePatternNode *Tree : Trees)
2503     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2504   return !HasUnresolvedTypes;
2505 }
2506 
2507 void TreePattern::print(raw_ostream &OS) const {
2508   OS << getRecord()->getName();
2509   if (!Args.empty()) {
2510     OS << "(" << Args[0];
2511     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2512       OS << ", " << Args[i];
2513     OS << ")";
2514   }
2515   OS << ": ";
2516 
2517   if (Trees.size() > 1)
2518     OS << "[\n";
2519   for (const TreePatternNode *Tree : Trees) {
2520     OS << "\t";
2521     Tree->print(OS);
2522     OS << "\n";
2523   }
2524 
2525   if (Trees.size() > 1)
2526     OS << "]\n";
2527 }
2528 
2529 void TreePattern::dump() const { print(errs()); }
2530 
2531 //===----------------------------------------------------------------------===//
2532 // CodeGenDAGPatterns implementation
2533 //
2534 
2535 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2536   Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()) {
2537 
2538   Intrinsics = CodeGenIntrinsicTable(Records, false);
2539   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2540   ParseNodeInfo();
2541   ParseNodeTransforms();
2542   ParseComplexPatterns();
2543   ParsePatternFragments();
2544   ParseDefaultOperands();
2545   ParseInstructions();
2546   ParsePatternFragments(/*OutFrags*/true);
2547   ParsePatterns();
2548 
2549   // Break patterns with parameterized types into a series of patterns,
2550   // where each one has a fixed type and is predicated on the conditions
2551   // of the associated HW mode.
2552   ExpandHwModeBasedTypes();
2553 
2554   // Generate variants.  For example, commutative patterns can match
2555   // multiple ways.  Add them to PatternsToMatch as well.
2556   GenerateVariants();
2557 
2558   // Infer instruction flags.  For example, we can detect loads,
2559   // stores, and side effects in many cases by examining an
2560   // instruction's pattern.
2561   InferInstructionFlags();
2562 
2563   // Verify that instruction flags match the patterns.
2564   VerifyInstructionFlags();
2565 }
2566 
2567 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2568   Record *N = Records.getDef(Name);
2569   if (!N || !N->isSubClassOf("SDNode"))
2570     PrintFatalError("Error getting SDNode '" + Name + "'!");
2571 
2572   return N;
2573 }
2574 
2575 // Parse all of the SDNode definitions for the target, populating SDNodes.
2576 void CodeGenDAGPatterns::ParseNodeInfo() {
2577   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2578   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2579 
2580   while (!Nodes.empty()) {
2581     Record *R = Nodes.back();
2582     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2583     Nodes.pop_back();
2584   }
2585 
2586   // Get the builtin intrinsic nodes.
2587   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2588   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2589   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2590 }
2591 
2592 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2593 /// map, and emit them to the file as functions.
2594 void CodeGenDAGPatterns::ParseNodeTransforms() {
2595   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2596   while (!Xforms.empty()) {
2597     Record *XFormNode = Xforms.back();
2598     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2599     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2600     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2601 
2602     Xforms.pop_back();
2603   }
2604 }
2605 
2606 void CodeGenDAGPatterns::ParseComplexPatterns() {
2607   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2608   while (!AMs.empty()) {
2609     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2610     AMs.pop_back();
2611   }
2612 }
2613 
2614 
2615 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2616 /// file, building up the PatternFragments map.  After we've collected them all,
2617 /// inline fragments together as necessary, so that there are no references left
2618 /// inside a pattern fragment to a pattern fragment.
2619 ///
2620 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2621   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2622 
2623   // First step, parse all of the fragments.
2624   for (Record *Frag : Fragments) {
2625     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2626       continue;
2627 
2628     DagInit *Tree = Frag->getValueAsDag("Fragment");
2629     TreePattern *P =
2630         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2631              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2632              *this)).get();
2633 
2634     // Validate the argument list, converting it to set, to discard duplicates.
2635     std::vector<std::string> &Args = P->getArgList();
2636     // Copy the args so we can take StringRefs to them.
2637     auto ArgsCopy = Args;
2638     SmallDenseSet<StringRef, 4> OperandsSet;
2639     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2640 
2641     if (OperandsSet.count(""))
2642       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2643 
2644     // Parse the operands list.
2645     DagInit *OpsList = Frag->getValueAsDag("Operands");
2646     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2647     // Special cases: ops == outs == ins. Different names are used to
2648     // improve readability.
2649     if (!OpsOp ||
2650         (OpsOp->getDef()->getName() != "ops" &&
2651          OpsOp->getDef()->getName() != "outs" &&
2652          OpsOp->getDef()->getName() != "ins"))
2653       P->error("Operands list should start with '(ops ... '!");
2654 
2655     // Copy over the arguments.
2656     Args.clear();
2657     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2658       if (!isa<DefInit>(OpsList->getArg(j)) ||
2659           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2660         P->error("Operands list should all be 'node' values.");
2661       if (!OpsList->getArgName(j))
2662         P->error("Operands list should have names for each operand!");
2663       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2664       if (!OperandsSet.count(ArgNameStr))
2665         P->error("'" + ArgNameStr +
2666                  "' does not occur in pattern or was multiply specified!");
2667       OperandsSet.erase(ArgNameStr);
2668       Args.push_back(ArgNameStr);
2669     }
2670 
2671     if (!OperandsSet.empty())
2672       P->error("Operands list does not contain an entry for operand '" +
2673                *OperandsSet.begin() + "'!");
2674 
2675     // If there is a code init for this fragment, keep track of the fact that
2676     // this fragment uses it.
2677     TreePredicateFn PredFn(P);
2678     if (!PredFn.isAlwaysTrue())
2679       P->getOnlyTree()->addPredicateFn(PredFn);
2680 
2681     // If there is a node transformation corresponding to this, keep track of
2682     // it.
2683     Record *Transform = Frag->getValueAsDef("OperandTransform");
2684     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2685       P->getOnlyTree()->setTransformFn(Transform);
2686   }
2687 
2688   // Now that we've parsed all of the tree fragments, do a closure on them so
2689   // that there are not references to PatFrags left inside of them.
2690   for (Record *Frag : Fragments) {
2691     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2692       continue;
2693 
2694     TreePattern &ThePat = *PatternFragments[Frag];
2695     ThePat.InlinePatternFragments();
2696 
2697     // Infer as many types as possible.  Don't worry about it if we don't infer
2698     // all of them, some may depend on the inputs of the pattern.
2699     ThePat.InferAllTypes();
2700     ThePat.resetError();
2701 
2702     // If debugging, print out the pattern fragment result.
2703     DEBUG(ThePat.dump());
2704   }
2705 }
2706 
2707 void CodeGenDAGPatterns::ParseDefaultOperands() {
2708   std::vector<Record*> DefaultOps;
2709   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2710 
2711   // Find some SDNode.
2712   assert(!SDNodes.empty() && "No SDNodes parsed?");
2713   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2714 
2715   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2716     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2717 
2718     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2719     // SomeSDnode so that we can parse this.
2720     std::vector<std::pair<Init*, StringInit*> > Ops;
2721     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2722       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2723                                    DefaultInfo->getArgName(op)));
2724     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
2725 
2726     // Create a TreePattern to parse this.
2727     TreePattern P(DefaultOps[i], DI, false, *this);
2728     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2729 
2730     // Copy the operands over into a DAGDefaultOperand.
2731     DAGDefaultOperand DefaultOpInfo;
2732 
2733     TreePatternNode *T = P.getTree(0);
2734     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2735       TreePatternNode *TPN = T->getChild(op);
2736       while (TPN->ApplyTypeConstraints(P, false))
2737         /* Resolve all types */;
2738 
2739       if (TPN->ContainsUnresolvedType(P)) {
2740         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2741                         DefaultOps[i]->getName() +
2742                         "' doesn't have a concrete type!");
2743       }
2744       DefaultOpInfo.DefaultOps.push_back(TPN);
2745     }
2746 
2747     // Insert it into the DefaultOperands map so we can find it later.
2748     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2749   }
2750 }
2751 
2752 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2753 /// instruction input.  Return true if this is a real use.
2754 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2755                       std::map<std::string, TreePatternNode*> &InstInputs) {
2756   // No name -> not interesting.
2757   if (Pat->getName().empty()) {
2758     if (Pat->isLeaf()) {
2759       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2760       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2761                  DI->getDef()->isSubClassOf("RegisterOperand")))
2762         I->error("Input " + DI->getDef()->getName() + " must be named!");
2763     }
2764     return false;
2765   }
2766 
2767   Record *Rec;
2768   if (Pat->isLeaf()) {
2769     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2770     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2771     Rec = DI->getDef();
2772   } else {
2773     Rec = Pat->getOperator();
2774   }
2775 
2776   // SRCVALUE nodes are ignored.
2777   if (Rec->getName() == "srcvalue")
2778     return false;
2779 
2780   TreePatternNode *&Slot = InstInputs[Pat->getName()];
2781   if (!Slot) {
2782     Slot = Pat;
2783     return true;
2784   }
2785   Record *SlotRec;
2786   if (Slot->isLeaf()) {
2787     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2788   } else {
2789     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2790     SlotRec = Slot->getOperator();
2791   }
2792 
2793   // Ensure that the inputs agree if we've already seen this input.
2794   if (Rec != SlotRec)
2795     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2796   if (Slot->getExtTypes() != Pat->getExtTypes())
2797     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2798   return true;
2799 }
2800 
2801 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2802 /// part of "I", the instruction), computing the set of inputs and outputs of
2803 /// the pattern.  Report errors if we see anything naughty.
2804 void CodeGenDAGPatterns::
2805 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2806                             std::map<std::string, TreePatternNode*> &InstInputs,
2807                             std::map<std::string, TreePatternNode*>&InstResults,
2808                             std::vector<Record*> &InstImpResults) {
2809   if (Pat->isLeaf()) {
2810     bool isUse = HandleUse(I, Pat, InstInputs);
2811     if (!isUse && Pat->getTransformFn())
2812       I->error("Cannot specify a transform function for a non-input value!");
2813     return;
2814   }
2815 
2816   if (Pat->getOperator()->getName() == "implicit") {
2817     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2818       TreePatternNode *Dest = Pat->getChild(i);
2819       if (!Dest->isLeaf())
2820         I->error("implicitly defined value should be a register!");
2821 
2822       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2823       if (!Val || !Val->getDef()->isSubClassOf("Register"))
2824         I->error("implicitly defined value should be a register!");
2825       InstImpResults.push_back(Val->getDef());
2826     }
2827     return;
2828   }
2829 
2830   if (Pat->getOperator()->getName() != "set") {
2831     // If this is not a set, verify that the children nodes are not void typed,
2832     // and recurse.
2833     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2834       if (Pat->getChild(i)->getNumTypes() == 0)
2835         I->error("Cannot have void nodes inside of patterns!");
2836       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2837                                   InstImpResults);
2838     }
2839 
2840     // If this is a non-leaf node with no children, treat it basically as if
2841     // it were a leaf.  This handles nodes like (imm).
2842     bool isUse = HandleUse(I, Pat, InstInputs);
2843 
2844     if (!isUse && Pat->getTransformFn())
2845       I->error("Cannot specify a transform function for a non-input value!");
2846     return;
2847   }
2848 
2849   // Otherwise, this is a set, validate and collect instruction results.
2850   if (Pat->getNumChildren() == 0)
2851     I->error("set requires operands!");
2852 
2853   if (Pat->getTransformFn())
2854     I->error("Cannot specify a transform function on a set node!");
2855 
2856   // Check the set destinations.
2857   unsigned NumDests = Pat->getNumChildren()-1;
2858   for (unsigned i = 0; i != NumDests; ++i) {
2859     TreePatternNode *Dest = Pat->getChild(i);
2860     if (!Dest->isLeaf())
2861       I->error("set destination should be a register!");
2862 
2863     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2864     if (!Val) {
2865       I->error("set destination should be a register!");
2866       continue;
2867     }
2868 
2869     if (Val->getDef()->isSubClassOf("RegisterClass") ||
2870         Val->getDef()->isSubClassOf("ValueType") ||
2871         Val->getDef()->isSubClassOf("RegisterOperand") ||
2872         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2873       if (Dest->getName().empty())
2874         I->error("set destination must have a name!");
2875       if (InstResults.count(Dest->getName()))
2876         I->error("cannot set '" + Dest->getName() +"' multiple times");
2877       InstResults[Dest->getName()] = Dest;
2878     } else if (Val->getDef()->isSubClassOf("Register")) {
2879       InstImpResults.push_back(Val->getDef());
2880     } else {
2881       I->error("set destination should be a register!");
2882     }
2883   }
2884 
2885   // Verify and collect info from the computation.
2886   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2887                               InstInputs, InstResults, InstImpResults);
2888 }
2889 
2890 //===----------------------------------------------------------------------===//
2891 // Instruction Analysis
2892 //===----------------------------------------------------------------------===//
2893 
2894 class InstAnalyzer {
2895   const CodeGenDAGPatterns &CDP;
2896 public:
2897   bool hasSideEffects;
2898   bool mayStore;
2899   bool mayLoad;
2900   bool isBitcast;
2901   bool isVariadic;
2902 
2903   InstAnalyzer(const CodeGenDAGPatterns &cdp)
2904     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2905       isBitcast(false), isVariadic(false) {}
2906 
2907   void Analyze(const TreePattern *Pat) {
2908     // Assume only the first tree is the pattern. The others are clobber nodes.
2909     AnalyzeNode(Pat->getTree(0));
2910   }
2911 
2912   void Analyze(const PatternToMatch &Pat) {
2913     AnalyzeNode(Pat.getSrcPattern());
2914   }
2915 
2916 private:
2917   bool IsNodeBitcast(const TreePatternNode *N) const {
2918     if (hasSideEffects || mayLoad || mayStore || isVariadic)
2919       return false;
2920 
2921     if (N->getNumChildren() != 2)
2922       return false;
2923 
2924     const TreePatternNode *N0 = N->getChild(0);
2925     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2926       return false;
2927 
2928     const TreePatternNode *N1 = N->getChild(1);
2929     if (N1->isLeaf())
2930       return false;
2931     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2932       return false;
2933 
2934     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2935     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2936       return false;
2937     return OpInfo.getEnumName() == "ISD::BITCAST";
2938   }
2939 
2940 public:
2941   void AnalyzeNode(const TreePatternNode *N) {
2942     if (N->isLeaf()) {
2943       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2944         Record *LeafRec = DI->getDef();
2945         // Handle ComplexPattern leaves.
2946         if (LeafRec->isSubClassOf("ComplexPattern")) {
2947           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2948           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2949           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2950           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2951         }
2952       }
2953       return;
2954     }
2955 
2956     // Analyze children.
2957     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2958       AnalyzeNode(N->getChild(i));
2959 
2960     // Ignore set nodes, which are not SDNodes.
2961     if (N->getOperator()->getName() == "set") {
2962       isBitcast = IsNodeBitcast(N);
2963       return;
2964     }
2965 
2966     // Notice properties of the node.
2967     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2968     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2969     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2970     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2971 
2972     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2973       // If this is an intrinsic, analyze it.
2974       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
2975         mayLoad = true;// These may load memory.
2976 
2977       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
2978         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2979 
2980       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
2981           IntInfo->hasSideEffects)
2982         // ReadWriteMem intrinsics can have other strange effects.
2983         hasSideEffects = true;
2984     }
2985   }
2986 
2987 };
2988 
2989 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2990                              const InstAnalyzer &PatInfo,
2991                              Record *PatDef) {
2992   bool Error = false;
2993 
2994   // Remember where InstInfo got its flags.
2995   if (InstInfo.hasUndefFlags())
2996       InstInfo.InferredFrom = PatDef;
2997 
2998   // Check explicitly set flags for consistency.
2999   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3000       !InstInfo.hasSideEffects_Unset) {
3001     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3002     // the pattern has no side effects. That could be useful for div/rem
3003     // instructions that may trap.
3004     if (!InstInfo.hasSideEffects) {
3005       Error = true;
3006       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3007                  Twine(InstInfo.hasSideEffects));
3008     }
3009   }
3010 
3011   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3012     Error = true;
3013     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3014                Twine(InstInfo.mayStore));
3015   }
3016 
3017   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3018     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3019     // Some targets translate immediates to loads.
3020     if (!InstInfo.mayLoad) {
3021       Error = true;
3022       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3023                  Twine(InstInfo.mayLoad));
3024     }
3025   }
3026 
3027   // Transfer inferred flags.
3028   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3029   InstInfo.mayStore |= PatInfo.mayStore;
3030   InstInfo.mayLoad |= PatInfo.mayLoad;
3031 
3032   // These flags are silently added without any verification.
3033   InstInfo.isBitcast |= PatInfo.isBitcast;
3034 
3035   // Don't infer isVariadic. This flag means something different on SDNodes and
3036   // instructions. For example, a CALL SDNode is variadic because it has the
3037   // call arguments as operands, but a CALL instruction is not variadic - it
3038   // has argument registers as implicit, not explicit uses.
3039 
3040   return Error;
3041 }
3042 
3043 /// hasNullFragReference - Return true if the DAG has any reference to the
3044 /// null_frag operator.
3045 static bool hasNullFragReference(DagInit *DI) {
3046   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3047   if (!OpDef) return false;
3048   Record *Operator = OpDef->getDef();
3049 
3050   // If this is the null fragment, return true.
3051   if (Operator->getName() == "null_frag") return true;
3052   // If any of the arguments reference the null fragment, return true.
3053   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3054     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3055     if (Arg && hasNullFragReference(Arg))
3056       return true;
3057   }
3058 
3059   return false;
3060 }
3061 
3062 /// hasNullFragReference - Return true if any DAG in the list references
3063 /// the null_frag operator.
3064 static bool hasNullFragReference(ListInit *LI) {
3065   for (Init *I : LI->getValues()) {
3066     DagInit *DI = dyn_cast<DagInit>(I);
3067     assert(DI && "non-dag in an instruction Pattern list?!");
3068     if (hasNullFragReference(DI))
3069       return true;
3070   }
3071   return false;
3072 }
3073 
3074 /// Get all the instructions in a tree.
3075 static void
3076 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3077   if (Tree->isLeaf())
3078     return;
3079   if (Tree->getOperator()->isSubClassOf("Instruction"))
3080     Instrs.push_back(Tree->getOperator());
3081   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3082     getInstructionsInTree(Tree->getChild(i), Instrs);
3083 }
3084 
3085 /// Check the class of a pattern leaf node against the instruction operand it
3086 /// represents.
3087 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3088                               Record *Leaf) {
3089   if (OI.Rec == Leaf)
3090     return true;
3091 
3092   // Allow direct value types to be used in instruction set patterns.
3093   // The type will be checked later.
3094   if (Leaf->isSubClassOf("ValueType"))
3095     return true;
3096 
3097   // Patterns can also be ComplexPattern instances.
3098   if (Leaf->isSubClassOf("ComplexPattern"))
3099     return true;
3100 
3101   return false;
3102 }
3103 
3104 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3105     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3106 
3107   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3108 
3109   // Parse the instruction.
3110   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
3111   // Inline pattern fragments into it.
3112   I->InlinePatternFragments();
3113 
3114   // Infer as many types as possible.  If we cannot infer all of them, we can
3115   // never do anything with this instruction pattern: report it to the user.
3116   if (!I->InferAllTypes())
3117     I->error("Could not infer all types in pattern!");
3118 
3119   // InstInputs - Keep track of all of the inputs of the instruction, along
3120   // with the record they are declared as.
3121   std::map<std::string, TreePatternNode*> InstInputs;
3122 
3123   // InstResults - Keep track of all the virtual registers that are 'set'
3124   // in the instruction, including what reg class they are.
3125   std::map<std::string, TreePatternNode*> InstResults;
3126 
3127   std::vector<Record*> InstImpResults;
3128 
3129   // Verify that the top-level forms in the instruction are of void type, and
3130   // fill in the InstResults map.
3131   SmallString<32> TypesString;
3132   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3133     TypesString.clear();
3134     TreePatternNode *Pat = I->getTree(j);
3135     if (Pat->getNumTypes() != 0) {
3136       raw_svector_ostream OS(TypesString);
3137       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3138         if (k > 0)
3139           OS << ", ";
3140         Pat->getExtType(k).writeToStream(OS);
3141       }
3142       I->error("Top-level forms in instruction pattern should have"
3143                " void types, has types " +
3144                OS.str());
3145     }
3146 
3147     // Find inputs and outputs, and verify the structure of the uses/defs.
3148     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3149                                 InstImpResults);
3150   }
3151 
3152   // Now that we have inputs and outputs of the pattern, inspect the operands
3153   // list for the instruction.  This determines the order that operands are
3154   // added to the machine instruction the node corresponds to.
3155   unsigned NumResults = InstResults.size();
3156 
3157   // Parse the operands list from the (ops) list, validating it.
3158   assert(I->getArgList().empty() && "Args list should still be empty here!");
3159 
3160   // Check that all of the results occur first in the list.
3161   std::vector<Record*> Results;
3162   SmallVector<TreePatternNode *, 2> ResNodes;
3163   for (unsigned i = 0; i != NumResults; ++i) {
3164     if (i == CGI.Operands.size())
3165       I->error("'" + InstResults.begin()->first +
3166                "' set but does not appear in operand list!");
3167     const std::string &OpName = CGI.Operands[i].Name;
3168 
3169     // Check that it exists in InstResults.
3170     TreePatternNode *RNode = InstResults[OpName];
3171     if (!RNode)
3172       I->error("Operand $" + OpName + " does not exist in operand list!");
3173 
3174     ResNodes.push_back(RNode);
3175 
3176     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3177     if (!R)
3178       I->error("Operand $" + OpName + " should be a set destination: all "
3179                "outputs must occur before inputs in operand list!");
3180 
3181     if (!checkOperandClass(CGI.Operands[i], R))
3182       I->error("Operand $" + OpName + " class mismatch!");
3183 
3184     // Remember the return type.
3185     Results.push_back(CGI.Operands[i].Rec);
3186 
3187     // Okay, this one checks out.
3188     InstResults.erase(OpName);
3189   }
3190 
3191   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3192   // the copy while we're checking the inputs.
3193   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3194 
3195   std::vector<TreePatternNode*> ResultNodeOperands;
3196   std::vector<Record*> Operands;
3197   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3198     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3199     const std::string &OpName = Op.Name;
3200     if (OpName.empty())
3201       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3202 
3203     if (!InstInputsCheck.count(OpName)) {
3204       // If this is an operand with a DefaultOps set filled in, we can ignore
3205       // this.  When we codegen it, we will do so as always executed.
3206       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3207         // Does it have a non-empty DefaultOps field?  If so, ignore this
3208         // operand.
3209         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3210           continue;
3211       }
3212       I->error("Operand $" + OpName +
3213                " does not appear in the instruction pattern");
3214     }
3215     TreePatternNode *InVal = InstInputsCheck[OpName];
3216     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3217 
3218     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3219       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3220       if (!checkOperandClass(Op, InRec))
3221         I->error("Operand $" + OpName + "'s register class disagrees"
3222                  " between the operand and pattern");
3223     }
3224     Operands.push_back(Op.Rec);
3225 
3226     // Construct the result for the dest-pattern operand list.
3227     TreePatternNode *OpNode = InVal->clone();
3228 
3229     // No predicate is useful on the result.
3230     OpNode->clearPredicateFns();
3231 
3232     // Promote the xform function to be an explicit node if set.
3233     if (Record *Xform = OpNode->getTransformFn()) {
3234       OpNode->setTransformFn(nullptr);
3235       std::vector<TreePatternNode*> Children;
3236       Children.push_back(OpNode);
3237       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3238     }
3239 
3240     ResultNodeOperands.push_back(OpNode);
3241   }
3242 
3243   if (!InstInputsCheck.empty())
3244     I->error("Input operand $" + InstInputsCheck.begin()->first +
3245              " occurs in pattern but not in operands list!");
3246 
3247   TreePatternNode *ResultPattern =
3248     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3249                         GetNumNodeResults(I->getRecord(), *this));
3250   // Copy fully inferred output node types to instruction result pattern.
3251   for (unsigned i = 0; i != NumResults; ++i) {
3252     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3253     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3254   }
3255 
3256   // Create and insert the instruction.
3257   // FIXME: InstImpResults should not be part of DAGInstruction.
3258   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3259   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3260 
3261   // Use a temporary tree pattern to infer all types and make sure that the
3262   // constructed result is correct.  This depends on the instruction already
3263   // being inserted into the DAGInsts map.
3264   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3265   Temp.InferAllTypes(&I->getNamedNodesMap());
3266 
3267   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3268   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3269 
3270   return TheInsertedInst;
3271 }
3272 
3273 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3274 /// any fragments involved.  This populates the Instructions list with fully
3275 /// resolved instructions.
3276 void CodeGenDAGPatterns::ParseInstructions() {
3277   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3278 
3279   for (Record *Instr : Instrs) {
3280     ListInit *LI = nullptr;
3281 
3282     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3283       LI = Instr->getValueAsListInit("Pattern");
3284 
3285     // If there is no pattern, only collect minimal information about the
3286     // instruction for its operand list.  We have to assume that there is one
3287     // result, as we have no detailed info. A pattern which references the
3288     // null_frag operator is as-if no pattern were specified. Normally this
3289     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3290     // null_frag.
3291     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3292       std::vector<Record*> Results;
3293       std::vector<Record*> Operands;
3294 
3295       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3296 
3297       if (InstInfo.Operands.size() != 0) {
3298         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3299           Results.push_back(InstInfo.Operands[j].Rec);
3300 
3301         // The rest are inputs.
3302         for (unsigned j = InstInfo.Operands.NumDefs,
3303                e = InstInfo.Operands.size(); j < e; ++j)
3304           Operands.push_back(InstInfo.Operands[j].Rec);
3305       }
3306 
3307       // Create and insert the instruction.
3308       std::vector<Record*> ImpResults;
3309       Instructions.insert(std::make_pair(Instr,
3310                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3311       continue;  // no pattern.
3312     }
3313 
3314     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3315     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3316 
3317     (void)DI;
3318     DEBUG(DI.getPattern()->dump());
3319   }
3320 
3321   // If we can, convert the instructions to be patterns that are matched!
3322   for (auto &Entry : Instructions) {
3323     DAGInstruction &TheInst = Entry.second;
3324     TreePattern *I = TheInst.getPattern();
3325     if (!I) continue;  // No pattern.
3326 
3327     // FIXME: Assume only the first tree is the pattern. The others are clobber
3328     // nodes.
3329     TreePatternNode *Pattern = I->getTree(0);
3330     TreePatternNode *SrcPattern;
3331     if (Pattern->getOperator()->getName() == "set") {
3332       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3333     } else{
3334       // Not a set (store or something?)
3335       SrcPattern = Pattern;
3336     }
3337 
3338     Record *Instr = Entry.first;
3339     ListInit *Preds = Instr->getValueAsListInit("Predicates");
3340     int Complexity = Instr->getValueAsInt("AddedComplexity");
3341     AddPatternToMatch(
3342         I,
3343         PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3344                        TheInst.getResultPattern(), TheInst.getImpResults(),
3345                        Complexity, Instr->getID()));
3346   }
3347 }
3348 
3349 
3350 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3351 
3352 static void FindNames(const TreePatternNode *P,
3353                       std::map<std::string, NameRecord> &Names,
3354                       TreePattern *PatternTop) {
3355   if (!P->getName().empty()) {
3356     NameRecord &Rec = Names[P->getName()];
3357     // If this is the first instance of the name, remember the node.
3358     if (Rec.second++ == 0)
3359       Rec.first = P;
3360     else if (Rec.first->getExtTypes() != P->getExtTypes())
3361       PatternTop->error("repetition of value: $" + P->getName() +
3362                         " where different uses have different types!");
3363   }
3364 
3365   if (!P->isLeaf()) {
3366     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3367       FindNames(P->getChild(i), Names, PatternTop);
3368   }
3369 }
3370 
3371 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3372   std::vector<Predicate> Preds;
3373   for (Init *I : L->getValues()) {
3374     if (DefInit *Pred = dyn_cast<DefInit>(I))
3375       Preds.push_back(Pred->getDef());
3376     else
3377       llvm_unreachable("Non-def on the list");
3378   }
3379 
3380   // Sort so that different orders get canonicalized to the same string.
3381   std::sort(Preds.begin(), Preds.end());
3382   return Preds;
3383 }
3384 
3385 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3386                                            PatternToMatch &&PTM) {
3387   // Do some sanity checking on the pattern we're about to match.
3388   std::string Reason;
3389   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3390     PrintWarning(Pattern->getRecord()->getLoc(),
3391       Twine("Pattern can never match: ") + Reason);
3392     return;
3393   }
3394 
3395   // If the source pattern's root is a complex pattern, that complex pattern
3396   // must specify the nodes it can potentially match.
3397   if (const ComplexPattern *CP =
3398         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3399     if (CP->getRootNodes().empty())
3400       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3401                      " could match");
3402 
3403 
3404   // Find all of the named values in the input and output, ensure they have the
3405   // same type.
3406   std::map<std::string, NameRecord> SrcNames, DstNames;
3407   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3408   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3409 
3410   // Scan all of the named values in the destination pattern, rejecting them if
3411   // they don't exist in the input pattern.
3412   for (const auto &Entry : DstNames) {
3413     if (SrcNames[Entry.first].first == nullptr)
3414       Pattern->error("Pattern has input without matching name in output: $" +
3415                      Entry.first);
3416   }
3417 
3418   // Scan all of the named values in the source pattern, rejecting them if the
3419   // name isn't used in the dest, and isn't used to tie two values together.
3420   for (const auto &Entry : SrcNames)
3421     if (DstNames[Entry.first].first == nullptr &&
3422         SrcNames[Entry.first].second == 1)
3423       Pattern->error("Pattern has dead named input: $" + Entry.first);
3424 
3425   PatternsToMatch.push_back(std::move(PTM));
3426 }
3427 
3428 void CodeGenDAGPatterns::InferInstructionFlags() {
3429   ArrayRef<const CodeGenInstruction*> Instructions =
3430     Target.getInstructionsByEnumValue();
3431 
3432   // First try to infer flags from the primary instruction pattern, if any.
3433   SmallVector<CodeGenInstruction*, 8> Revisit;
3434   unsigned Errors = 0;
3435   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3436     CodeGenInstruction &InstInfo =
3437       const_cast<CodeGenInstruction &>(*Instructions[i]);
3438 
3439     // Get the primary instruction pattern.
3440     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3441     if (!Pattern) {
3442       if (InstInfo.hasUndefFlags())
3443         Revisit.push_back(&InstInfo);
3444       continue;
3445     }
3446     InstAnalyzer PatInfo(*this);
3447     PatInfo.Analyze(Pattern);
3448     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3449   }
3450 
3451   // Second, look for single-instruction patterns defined outside the
3452   // instruction.
3453   for (const PatternToMatch &PTM : ptms()) {
3454     // We can only infer from single-instruction patterns, otherwise we won't
3455     // know which instruction should get the flags.
3456     SmallVector<Record*, 8> PatInstrs;
3457     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3458     if (PatInstrs.size() != 1)
3459       continue;
3460 
3461     // Get the single instruction.
3462     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3463 
3464     // Only infer properties from the first pattern. We'll verify the others.
3465     if (InstInfo.InferredFrom)
3466       continue;
3467 
3468     InstAnalyzer PatInfo(*this);
3469     PatInfo.Analyze(PTM);
3470     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3471   }
3472 
3473   if (Errors)
3474     PrintFatalError("pattern conflicts");
3475 
3476   // Revisit instructions with undefined flags and no pattern.
3477   if (Target.guessInstructionProperties()) {
3478     for (CodeGenInstruction *InstInfo : Revisit) {
3479       if (InstInfo->InferredFrom)
3480         continue;
3481       // The mayLoad and mayStore flags default to false.
3482       // Conservatively assume hasSideEffects if it wasn't explicit.
3483       if (InstInfo->hasSideEffects_Unset)
3484         InstInfo->hasSideEffects = true;
3485     }
3486     return;
3487   }
3488 
3489   // Complain about any flags that are still undefined.
3490   for (CodeGenInstruction *InstInfo : Revisit) {
3491     if (InstInfo->InferredFrom)
3492       continue;
3493     if (InstInfo->hasSideEffects_Unset)
3494       PrintError(InstInfo->TheDef->getLoc(),
3495                  "Can't infer hasSideEffects from patterns");
3496     if (InstInfo->mayStore_Unset)
3497       PrintError(InstInfo->TheDef->getLoc(),
3498                  "Can't infer mayStore from patterns");
3499     if (InstInfo->mayLoad_Unset)
3500       PrintError(InstInfo->TheDef->getLoc(),
3501                  "Can't infer mayLoad from patterns");
3502   }
3503 }
3504 
3505 
3506 /// Verify instruction flags against pattern node properties.
3507 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3508   unsigned Errors = 0;
3509   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3510     const PatternToMatch &PTM = *I;
3511     SmallVector<Record*, 8> Instrs;
3512     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3513     if (Instrs.empty())
3514       continue;
3515 
3516     // Count the number of instructions with each flag set.
3517     unsigned NumSideEffects = 0;
3518     unsigned NumStores = 0;
3519     unsigned NumLoads = 0;
3520     for (const Record *Instr : Instrs) {
3521       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3522       NumSideEffects += InstInfo.hasSideEffects;
3523       NumStores += InstInfo.mayStore;
3524       NumLoads += InstInfo.mayLoad;
3525     }
3526 
3527     // Analyze the source pattern.
3528     InstAnalyzer PatInfo(*this);
3529     PatInfo.Analyze(PTM);
3530 
3531     // Collect error messages.
3532     SmallVector<std::string, 4> Msgs;
3533 
3534     // Check for missing flags in the output.
3535     // Permit extra flags for now at least.
3536     if (PatInfo.hasSideEffects && !NumSideEffects)
3537       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3538 
3539     // Don't verify store flags on instructions with side effects. At least for
3540     // intrinsics, side effects implies mayStore.
3541     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3542       Msgs.push_back("pattern may store, but mayStore isn't set");
3543 
3544     // Similarly, mayStore implies mayLoad on intrinsics.
3545     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3546       Msgs.push_back("pattern may load, but mayLoad isn't set");
3547 
3548     // Print error messages.
3549     if (Msgs.empty())
3550       continue;
3551     ++Errors;
3552 
3553     for (const std::string &Msg : Msgs)
3554       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3555                  (Instrs.size() == 1 ?
3556                   "instruction" : "output instructions"));
3557     // Provide the location of the relevant instruction definitions.
3558     for (const Record *Instr : Instrs) {
3559       if (Instr != PTM.getSrcRecord())
3560         PrintError(Instr->getLoc(), "defined here");
3561       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3562       if (InstInfo.InferredFrom &&
3563           InstInfo.InferredFrom != InstInfo.TheDef &&
3564           InstInfo.InferredFrom != PTM.getSrcRecord())
3565         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3566     }
3567   }
3568   if (Errors)
3569     PrintFatalError("Errors in DAG patterns");
3570 }
3571 
3572 /// Given a pattern result with an unresolved type, see if we can find one
3573 /// instruction with an unresolved result type.  Force this result type to an
3574 /// arbitrary element if it's possible types to converge results.
3575 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3576   if (N->isLeaf())
3577     return false;
3578 
3579   // Analyze children.
3580   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3581     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3582       return true;
3583 
3584   if (!N->getOperator()->isSubClassOf("Instruction"))
3585     return false;
3586 
3587   // If this type is already concrete or completely unknown we can't do
3588   // anything.
3589   TypeInfer &TI = TP.getInfer();
3590   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3591     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3592       continue;
3593 
3594     // Otherwise, force its type to an arbitrary choice.
3595     if (TI.forceArbitrary(N->getExtType(i)))
3596       return true;
3597   }
3598 
3599   return false;
3600 }
3601 
3602 void CodeGenDAGPatterns::ParsePatterns() {
3603   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3604 
3605   for (Record *CurPattern : Patterns) {
3606     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3607 
3608     // If the pattern references the null_frag, there's nothing to do.
3609     if (hasNullFragReference(Tree))
3610       continue;
3611 
3612     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3613 
3614     // Inline pattern fragments into it.
3615     Pattern->InlinePatternFragments();
3616 
3617     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3618     if (LI->empty()) continue;  // no pattern.
3619 
3620     // Parse the instruction.
3621     TreePattern Result(CurPattern, LI, false, *this);
3622 
3623     // Inline pattern fragments into it.
3624     Result.InlinePatternFragments();
3625 
3626     if (Result.getNumTrees() != 1)
3627       Result.error("Cannot handle instructions producing instructions "
3628                    "with temporaries yet!");
3629 
3630     bool IterateInference;
3631     bool InferredAllPatternTypes, InferredAllResultTypes;
3632     do {
3633       // Infer as many types as possible.  If we cannot infer all of them, we
3634       // can never do anything with this pattern: report it to the user.
3635       InferredAllPatternTypes =
3636         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3637 
3638       // Infer as many types as possible.  If we cannot infer all of them, we
3639       // can never do anything with this pattern: report it to the user.
3640       InferredAllResultTypes =
3641           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3642 
3643       IterateInference = false;
3644 
3645       // Apply the type of the result to the source pattern.  This helps us
3646       // resolve cases where the input type is known to be a pointer type (which
3647       // is considered resolved), but the result knows it needs to be 32- or
3648       // 64-bits.  Infer the other way for good measure.
3649       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3650                                         Pattern->getTree(0)->getNumTypes());
3651            i != e; ++i) {
3652         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3653             i, Result.getTree(0)->getExtType(i), Result);
3654         IterateInference |= Result.getTree(0)->UpdateNodeType(
3655             i, Pattern->getTree(0)->getExtType(i), Result);
3656       }
3657 
3658       // If our iteration has converged and the input pattern's types are fully
3659       // resolved but the result pattern is not fully resolved, we may have a
3660       // situation where we have two instructions in the result pattern and
3661       // the instructions require a common register class, but don't care about
3662       // what actual MVT is used.  This is actually a bug in our modelling:
3663       // output patterns should have register classes, not MVTs.
3664       //
3665       // In any case, to handle this, we just go through and disambiguate some
3666       // arbitrary types to the result pattern's nodes.
3667       if (!IterateInference && InferredAllPatternTypes &&
3668           !InferredAllResultTypes)
3669         IterateInference =
3670             ForceArbitraryInstResultType(Result.getTree(0), Result);
3671     } while (IterateInference);
3672 
3673     // Verify that we inferred enough types that we can do something with the
3674     // pattern and result.  If these fire the user has to add type casts.
3675     if (!InferredAllPatternTypes)
3676       Pattern->error("Could not infer all types in pattern!");
3677     if (!InferredAllResultTypes) {
3678       Pattern->dump();
3679       Result.error("Could not infer all types in pattern result!");
3680     }
3681 
3682     // Validate that the input pattern is correct.
3683     std::map<std::string, TreePatternNode*> InstInputs;
3684     std::map<std::string, TreePatternNode*> InstResults;
3685     std::vector<Record*> InstImpResults;
3686     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3687       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3688                                   InstInputs, InstResults,
3689                                   InstImpResults);
3690 
3691     // Promote the xform function to be an explicit node if set.
3692     TreePatternNode *DstPattern = Result.getOnlyTree();
3693     std::vector<TreePatternNode*> ResultNodeOperands;
3694     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3695       TreePatternNode *OpNode = DstPattern->getChild(ii);
3696       if (Record *Xform = OpNode->getTransformFn()) {
3697         OpNode->setTransformFn(nullptr);
3698         std::vector<TreePatternNode*> Children;
3699         Children.push_back(OpNode);
3700         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3701       }
3702       ResultNodeOperands.push_back(OpNode);
3703     }
3704     DstPattern = Result.getOnlyTree();
3705     if (!DstPattern->isLeaf())
3706       DstPattern = new TreePatternNode(DstPattern->getOperator(),
3707                                        ResultNodeOperands,
3708                                        DstPattern->getNumTypes());
3709 
3710     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3711       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3712 
3713     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3714     Temp.InferAllTypes();
3715 
3716     // A pattern may end up with an "impossible" type, i.e. a situation
3717     // where all types have been eliminated for some node in this pattern.
3718     // This could occur for intrinsics that only make sense for a specific
3719     // value type, and use a specific register class. If, for some mode,
3720     // that register class does not accept that type, the type inference
3721     // will lead to a contradiction, which is not an error however, but
3722     // a sign that this pattern will simply never match.
3723     if (Pattern->getTree(0)->hasPossibleType() &&
3724         Temp.getOnlyTree()->hasPossibleType()) {
3725       ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
3726       int Complexity = CurPattern->getValueAsInt("AddedComplexity");
3727       AddPatternToMatch(
3728           Pattern,
3729           PatternToMatch(
3730               CurPattern, makePredList(Preds), Pattern->getTree(0),
3731               Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
3732               CurPattern->getID()));
3733     }
3734   }
3735 }
3736 
3737 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
3738   for (const TypeSetByHwMode &VTS : N->getExtTypes())
3739     for (const auto &I : VTS)
3740       Modes.insert(I.first);
3741 
3742   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3743     collectModes(Modes, N->getChild(i));
3744 }
3745 
3746 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
3747   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3748   std::map<unsigned,std::vector<Predicate>> ModeChecks;
3749   std::vector<PatternToMatch> Copy = PatternsToMatch;
3750   PatternsToMatch.clear();
3751 
3752   auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
3753     TreePatternNode *NewSrc = P.SrcPattern->clone();
3754     TreePatternNode *NewDst = P.DstPattern->clone();
3755     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
3756       delete NewSrc;
3757       delete NewDst;
3758       return;
3759     }
3760 
3761     std::vector<Predicate> Preds = P.Predicates;
3762     const std::vector<Predicate> &MC = ModeChecks[Mode];
3763     Preds.insert(Preds.end(), MC.begin(), MC.end());
3764     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
3765                                  P.getDstRegs(), P.getAddedComplexity(),
3766                                  Record::getNewUID(), Mode);
3767   };
3768 
3769   for (PatternToMatch &P : Copy) {
3770     TreePatternNode *SrcP = nullptr, *DstP = nullptr;
3771     if (P.SrcPattern->hasProperTypeByHwMode())
3772       SrcP = P.SrcPattern;
3773     if (P.DstPattern->hasProperTypeByHwMode())
3774       DstP = P.DstPattern;
3775     if (!SrcP && !DstP) {
3776       PatternsToMatch.push_back(P);
3777       continue;
3778     }
3779 
3780     std::set<unsigned> Modes;
3781     if (SrcP)
3782       collectModes(Modes, SrcP);
3783     if (DstP)
3784       collectModes(Modes, DstP);
3785 
3786     // The predicate for the default mode needs to be constructed for each
3787     // pattern separately.
3788     // Since not all modes must be present in each pattern, if a mode m is
3789     // absent, then there is no point in constructing a check for m. If such
3790     // a check was created, it would be equivalent to checking the default
3791     // mode, except not all modes' predicates would be a part of the checking
3792     // code. The subsequently generated check for the default mode would then
3793     // have the exact same patterns, but a different predicate code. To avoid
3794     // duplicated patterns with different predicate checks, construct the
3795     // default check as a negation of all predicates that are actually present
3796     // in the source/destination patterns.
3797     std::vector<Predicate> DefaultPred;
3798 
3799     for (unsigned M : Modes) {
3800       if (M == DefaultMode)
3801         continue;
3802       if (ModeChecks.find(M) != ModeChecks.end())
3803         continue;
3804 
3805       // Fill the map entry for this mode.
3806       const HwMode &HM = CGH.getMode(M);
3807       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
3808 
3809       // Add negations of the HM's predicates to the default predicate.
3810       DefaultPred.emplace_back(Predicate(HM.Features, false));
3811     }
3812 
3813     for (unsigned M : Modes) {
3814       if (M == DefaultMode)
3815         continue;
3816       AppendPattern(P, M);
3817     }
3818 
3819     bool HasDefault = Modes.count(DefaultMode);
3820     if (HasDefault)
3821       AppendPattern(P, DefaultMode);
3822   }
3823 }
3824 
3825 /// Dependent variable map for CodeGenDAGPattern variant generation
3826 typedef StringMap<int> DepVarMap;
3827 
3828 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
3829   if (N->isLeaf()) {
3830     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
3831       DepMap[N->getName()]++;
3832   } else {
3833     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
3834       FindDepVarsOf(N->getChild(i), DepMap);
3835   }
3836 }
3837 
3838 /// Find dependent variables within child patterns
3839 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
3840   DepVarMap depcounts;
3841   FindDepVarsOf(N, depcounts);
3842   for (const auto &Pair : depcounts) {
3843     if (Pair.getValue() > 1)
3844       DepVars.insert(Pair.getKey());
3845   }
3846 }
3847 
3848 #ifndef NDEBUG
3849 /// Dump the dependent variable set:
3850 static void DumpDepVars(MultipleUseVarSet &DepVars) {
3851   if (DepVars.empty()) {
3852     DEBUG(errs() << "<empty set>");
3853   } else {
3854     DEBUG(errs() << "[ ");
3855     for (const auto &DepVar : DepVars) {
3856       DEBUG(errs() << DepVar.getKey() << " ");
3857     }
3858     DEBUG(errs() << "]");
3859   }
3860 }
3861 #endif
3862 
3863 
3864 /// CombineChildVariants - Given a bunch of permutations of each child of the
3865 /// 'operator' node, put them together in all possible ways.
3866 static void CombineChildVariants(TreePatternNode *Orig,
3867                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3868                                  std::vector<TreePatternNode*> &OutVariants,
3869                                  CodeGenDAGPatterns &CDP,
3870                                  const MultipleUseVarSet &DepVars) {
3871   // Make sure that each operand has at least one variant to choose from.
3872   for (const auto &Variants : ChildVariants)
3873     if (Variants.empty())
3874       return;
3875 
3876   // The end result is an all-pairs construction of the resultant pattern.
3877   std::vector<unsigned> Idxs;
3878   Idxs.resize(ChildVariants.size());
3879   bool NotDone;
3880   do {
3881 #ifndef NDEBUG
3882     DEBUG(if (!Idxs.empty()) {
3883             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3884               for (unsigned Idx : Idxs) {
3885                 errs() << Idx << " ";
3886             }
3887             errs() << "]\n";
3888           });
3889 #endif
3890     // Create the variant and add it to the output list.
3891     std::vector<TreePatternNode*> NewChildren;
3892     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3893       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3894     auto R = llvm::make_unique<TreePatternNode>(
3895         Orig->getOperator(), NewChildren, Orig->getNumTypes());
3896 
3897     // Copy over properties.
3898     R->setName(Orig->getName());
3899     R->setPredicateFns(Orig->getPredicateFns());
3900     R->setTransformFn(Orig->getTransformFn());
3901     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3902       R->setType(i, Orig->getExtType(i));
3903 
3904     // If this pattern cannot match, do not include it as a variant.
3905     std::string ErrString;
3906     // Scan to see if this pattern has already been emitted.  We can get
3907     // duplication due to things like commuting:
3908     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3909     // which are the same pattern.  Ignore the dups.
3910     if (R->canPatternMatch(ErrString, CDP) &&
3911         none_of(OutVariants, [&](TreePatternNode *Variant) {
3912           return R->isIsomorphicTo(Variant, DepVars);
3913         }))
3914       OutVariants.push_back(R.release());
3915 
3916     // Increment indices to the next permutation by incrementing the
3917     // indices from last index backward, e.g., generate the sequence
3918     // [0, 0], [0, 1], [1, 0], [1, 1].
3919     int IdxsIdx;
3920     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3921       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3922         Idxs[IdxsIdx] = 0;
3923       else
3924         break;
3925     }
3926     NotDone = (IdxsIdx >= 0);
3927   } while (NotDone);
3928 }
3929 
3930 /// CombineChildVariants - A helper function for binary operators.
3931 ///
3932 static void CombineChildVariants(TreePatternNode *Orig,
3933                                  const std::vector<TreePatternNode*> &LHS,
3934                                  const std::vector<TreePatternNode*> &RHS,
3935                                  std::vector<TreePatternNode*> &OutVariants,
3936                                  CodeGenDAGPatterns &CDP,
3937                                  const MultipleUseVarSet &DepVars) {
3938   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3939   ChildVariants.push_back(LHS);
3940   ChildVariants.push_back(RHS);
3941   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3942 }
3943 
3944 
3945 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3946                                      std::vector<TreePatternNode *> &Children) {
3947   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3948   Record *Operator = N->getOperator();
3949 
3950   // Only permit raw nodes.
3951   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3952       N->getTransformFn()) {
3953     Children.push_back(N);
3954     return;
3955   }
3956 
3957   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3958     Children.push_back(N->getChild(0));
3959   else
3960     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3961 
3962   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3963     Children.push_back(N->getChild(1));
3964   else
3965     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3966 }
3967 
3968 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3969 /// the (potentially recursive) pattern by using algebraic laws.
3970 ///
3971 static void GenerateVariantsOf(TreePatternNode *N,
3972                                std::vector<TreePatternNode*> &OutVariants,
3973                                CodeGenDAGPatterns &CDP,
3974                                const MultipleUseVarSet &DepVars) {
3975   // We cannot permute leaves or ComplexPattern uses.
3976   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3977     OutVariants.push_back(N);
3978     return;
3979   }
3980 
3981   // Look up interesting info about the node.
3982   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3983 
3984   // If this node is associative, re-associate.
3985   if (NodeInfo.hasProperty(SDNPAssociative)) {
3986     // Re-associate by pulling together all of the linked operators
3987     std::vector<TreePatternNode*> MaximalChildren;
3988     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3989 
3990     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3991     // permutations.
3992     if (MaximalChildren.size() == 3) {
3993       // Find the variants of all of our maximal children.
3994       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3995       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3996       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3997       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3998 
3999       // There are only two ways we can permute the tree:
4000       //   (A op B) op C    and    A op (B op C)
4001       // Within these forms, we can also permute A/B/C.
4002 
4003       // Generate legal pair permutations of A/B/C.
4004       std::vector<TreePatternNode*> ABVariants;
4005       std::vector<TreePatternNode*> BAVariants;
4006       std::vector<TreePatternNode*> ACVariants;
4007       std::vector<TreePatternNode*> CAVariants;
4008       std::vector<TreePatternNode*> BCVariants;
4009       std::vector<TreePatternNode*> CBVariants;
4010       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4011       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4012       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4013       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4014       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4015       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4016 
4017       // Combine those into the result: (x op x) op x
4018       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4019       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4020       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4021       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4022       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4023       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4024 
4025       // Combine those into the result: x op (x op x)
4026       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4027       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4028       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4029       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4030       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4031       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4032       return;
4033     }
4034   }
4035 
4036   // Compute permutations of all children.
4037   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4038   ChildVariants.resize(N->getNumChildren());
4039   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4040     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
4041 
4042   // Build all permutations based on how the children were formed.
4043   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4044 
4045   // If this node is commutative, consider the commuted order.
4046   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4047   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4048     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4049            "Commutative but doesn't have 2 children!");
4050     // Don't count children which are actually register references.
4051     unsigned NC = 0;
4052     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4053       TreePatternNode *Child = N->getChild(i);
4054       if (Child->isLeaf())
4055         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4056           Record *RR = DI->getDef();
4057           if (RR->isSubClassOf("Register"))
4058             continue;
4059         }
4060       NC++;
4061     }
4062     // Consider the commuted order.
4063     if (isCommIntrinsic) {
4064       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4065       // operands are the commutative operands, and there might be more operands
4066       // after those.
4067       assert(NC >= 3 &&
4068              "Commutative intrinsic should have at least 3 children!");
4069       std::vector<std::vector<TreePatternNode*> > Variants;
4070       Variants.push_back(ChildVariants[0]); // Intrinsic id.
4071       Variants.push_back(ChildVariants[2]);
4072       Variants.push_back(ChildVariants[1]);
4073       for (unsigned i = 3; i != NC; ++i)
4074         Variants.push_back(ChildVariants[i]);
4075       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4076     } else if (NC == N->getNumChildren()) {
4077       std::vector<std::vector<TreePatternNode*> > Variants;
4078       Variants.push_back(ChildVariants[1]);
4079       Variants.push_back(ChildVariants[0]);
4080       for (unsigned i = 2; i != NC; ++i)
4081         Variants.push_back(ChildVariants[i]);
4082       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4083     }
4084   }
4085 }
4086 
4087 
4088 // GenerateVariants - Generate variants.  For example, commutative patterns can
4089 // match multiple ways.  Add them to PatternsToMatch as well.
4090 void CodeGenDAGPatterns::GenerateVariants() {
4091   DEBUG(errs() << "Generating instruction variants.\n");
4092 
4093   // Loop over all of the patterns we've collected, checking to see if we can
4094   // generate variants of the instruction, through the exploitation of
4095   // identities.  This permits the target to provide aggressive matching without
4096   // the .td file having to contain tons of variants of instructions.
4097   //
4098   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4099   // intentionally do not reconsider these.  Any variants of added patterns have
4100   // already been added.
4101   //
4102   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4103     MultipleUseVarSet             DepVars;
4104     std::vector<TreePatternNode*> Variants;
4105     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4106     DEBUG(errs() << "Dependent/multiply used variables: ");
4107     DEBUG(DumpDepVars(DepVars));
4108     DEBUG(errs() << "\n");
4109     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
4110                        DepVars);
4111 
4112     assert(!Variants.empty() && "Must create at least original variant!");
4113     if (Variants.size() == 1)  // No additional variants for this pattern.
4114       continue;
4115 
4116     DEBUG(errs() << "FOUND VARIANTS OF: ";
4117           PatternsToMatch[i].getSrcPattern()->dump();
4118           errs() << "\n");
4119 
4120     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4121       TreePatternNode *Variant = Variants[v];
4122 
4123       DEBUG(errs() << "  VAR#" << v <<  ": ";
4124             Variant->dump();
4125             errs() << "\n");
4126 
4127       // Scan to see if an instruction or explicit pattern already matches this.
4128       bool AlreadyExists = false;
4129       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4130         // Skip if the top level predicates do not match.
4131         if (PatternsToMatch[i].getPredicates() !=
4132             PatternsToMatch[p].getPredicates())
4133           continue;
4134         // Check to see if this variant already exists.
4135         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4136                                     DepVars)) {
4137           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4138           AlreadyExists = true;
4139           break;
4140         }
4141       }
4142       // If we already have it, ignore the variant.
4143       if (AlreadyExists) continue;
4144 
4145       // Otherwise, add it to the list of patterns we have.
4146       PatternsToMatch.push_back(PatternToMatch(
4147           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4148           Variant, PatternsToMatch[i].getDstPattern(),
4149           PatternsToMatch[i].getDstRegs(),
4150           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4151     }
4152 
4153     DEBUG(errs() << "\n");
4154   }
4155 }
4156