1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   SmallDenseSet<unsigned, 4> Modes;
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     Modes.insert(M);
117     // Make sure there exists a set for each specific mode from VVT.
118     Changed |= getOrCreate(M).insert(P.second).second;
119     // Cache VVT's default mode.
120     if (DefaultMode == M) {
121       ContainsDefault = true;
122       DT = P.second;
123     }
124   }
125 
126   // If VVT has a default mode, add the corresponding type to all
127   // modes in "this" that do not exist in VVT.
128   if (ContainsDefault)
129     for (auto &I : *this)
130       if (!Modes.count(I.first))
131         Changed |= I.second.insert(DT).second;
132 
133   return Changed;
134 }
135 
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138   bool Changed = false;
139   if (hasDefault()) {
140     for (const auto &I : VTS) {
141       unsigned M = I.first;
142       if (M == DefaultMode || hasMode(M))
143         continue;
144       Map.insert({M, Map.at(DefaultMode)});
145       Changed = true;
146     }
147   }
148 
149   for (auto &I : *this) {
150     unsigned M = I.first;
151     SetType &S = I.second;
152     if (VTS.hasMode(M) || VTS.hasDefault()) {
153       Changed |= intersect(I.second, VTS.get(M));
154     } else if (!S.empty()) {
155       S.clear();
156       Changed = true;
157     }
158   }
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164   bool Changed = false;
165   for (auto &I : *this)
166     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167   return Changed;
168 }
169 
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172   assert(empty());
173   for (const auto &I : VTS) {
174     SetType &S = getOrCreate(I.first);
175     for (auto J : I.second)
176       if (P(J))
177         S.insert(J);
178   }
179   return !empty();
180 }
181 
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183   SmallVector<unsigned, 4> Modes;
184   Modes.reserve(Map.size());
185 
186   for (const auto &I : *this)
187     Modes.push_back(I.first);
188   if (Modes.empty()) {
189     OS << "{}";
190     return;
191   }
192   array_pod_sort(Modes.begin(), Modes.end());
193 
194   OS << '{';
195   for (unsigned M : Modes) {
196     OS << ' ' << getModeName(M) << ':';
197     writeToStream(get(M), OS);
198   }
199   OS << " }";
200 }
201 
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203   SmallVector<MVT, 4> Types(S.begin(), S.end());
204   array_pod_sort(Types.begin(), Types.end());
205 
206   OS << '[';
207   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208     OS << ValueTypeByHwMode::getMVTName(Types[i]);
209     if (i != e-1)
210       OS << ' ';
211   }
212   OS << ']';
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallDenseSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263 }
264 
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267   dbgs() << *this << '\n';
268 }
269 
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273 
274   if (OutP == InP)
275     return berase_if(Out, Int);
276 
277   // Compute the intersection of scalars separately to account for only
278   // one set containing iPTR.
279   // The itersection of iPTR with a set of integer scalar types that does not
280   // include iPTR will result in the most specific scalar type:
281   // - iPTR is more specific than any set with two elements or more
282   // - iPTR is less specific than any single integer scalar type.
283   // For example
284   // { iPTR } * { i32 }     -> { i32 }
285   // { iPTR } * { i32 i64 } -> { iPTR }
286   // and
287   // { iPTR i32 } * { i32 }          -> { i32 }
288   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
289   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290 
291   // Compute the difference between the two sets in such a way that the
292   // iPTR is in the set that is being subtracted. This is to see if there
293   // are any extra scalars in the set without iPTR that are not in the
294   // set containing iPTR. Then the iPTR could be considered a "wildcard"
295   // matching these scalars. If there is only one such scalar, it would
296   // replace the iPTR, if there are more, the iPTR would be retained.
297   SetType Diff;
298   if (InP) {
299     Diff = Out;
300     berase_if(Diff, [&In](MVT T) { return In.count(T); });
301     // Pre-remove these elements and rely only on InP/OutP to determine
302     // whether a change has been made.
303     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304   } else {
305     Diff = In;
306     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307     Out.erase(MVT::iPTR);
308   }
309 
310   // The actual intersection.
311   bool Changed = berase_if(Out, Int);
312   unsigned NumD = Diff.size();
313   if (NumD == 0)
314     return Changed;
315 
316   if (NumD == 1) {
317     Out.insert(*Diff.begin());
318     // This is a change only if Out was the one with iPTR (which is now
319     // being replaced).
320     Changed |= OutP;
321   } else {
322     // Multiple elements from Out are now replaced with iPTR.
323     Out.insert(MVT::iPTR);
324     Changed |= !OutP;
325   }
326   return Changed;
327 }
328 
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331   if (empty())
332     return true;
333   bool AllEmpty = true;
334   for (const auto &I : *this)
335     AllEmpty &= I.second.empty();
336   return !AllEmpty;
337 #endif
338   return true;
339 }
340 
341 // --- TypeInfer
342 
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344                                 const TypeSetByHwMode &In) {
345   ValidateOnExit _1(Out, *this);
346   In.validate();
347   if (In.empty() || Out == In || TP.hasError())
348     return false;
349   if (Out.empty()) {
350     Out = In;
351     return true;
352   }
353 
354   bool Changed = Out.constrain(In);
355   if (Changed && Out.empty())
356     TP.error("Type contradiction");
357 
358   return Changed;
359 }
360 
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362   ValidateOnExit _1(Out, *this);
363   if (TP.hasError())
364     return false;
365   assert(!Out.empty() && "cannot pick from an empty set");
366 
367   bool Changed = false;
368   for (auto &I : Out) {
369     TypeSetByHwMode::SetType &S = I.second;
370     if (S.size() <= 1)
371       continue;
372     MVT T = *S.begin(); // Pick the first element.
373     S.clear();
374     S.insert(T);
375     Changed = true;
376   }
377   return Changed;
378 }
379 
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   if (!Out.empty())
385     return Out.constrain(isIntegerOrPtr);
386 
387   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388 }
389 
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391   ValidateOnExit _1(Out, *this);
392   if (TP.hasError())
393     return false;
394   if (!Out.empty())
395     return Out.constrain(isFloatingPoint);
396 
397   return Out.assign_if(getLegalTypes(), isFloatingPoint);
398 }
399 
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401   ValidateOnExit _1(Out, *this);
402   if (TP.hasError())
403     return false;
404   if (!Out.empty())
405     return Out.constrain(isScalar);
406 
407   return Out.assign_if(getLegalTypes(), isScalar);
408 }
409 
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411   ValidateOnExit _1(Out, *this);
412   if (TP.hasError())
413     return false;
414   if (!Out.empty())
415     return Out.constrain(isVector);
416 
417   return Out.assign_if(getLegalTypes(), isVector);
418 }
419 
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421   ValidateOnExit _1(Out, *this);
422   if (TP.hasError() || !Out.empty())
423     return false;
424 
425   Out = getLegalTypes();
426   return true;
427 }
428 
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431   if (B == E)
432     return E;
433   Iter Min = E;
434   for (Iter I = B; I != E; ++I) {
435     if (!P(*I))
436       continue;
437     if (Min == E || L(*I, *Min))
438       Min = I;
439   }
440   return Min;
441 }
442 
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445   if (B == E)
446     return E;
447   Iter Max = E;
448   for (Iter I = B; I != E; ++I) {
449     if (!P(*I))
450       continue;
451     if (Max == E || L(*Max, *I))
452       Max = I;
453   }
454   return Max;
455 }
456 
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459                                    TypeSetByHwMode &Big) {
460   ValidateOnExit _1(Small, *this), _2(Big, *this);
461   if (TP.hasError())
462     return false;
463   bool Changed = false;
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   std::vector<unsigned> Modes = union_modes(Small, Big);
473 
474   // 1. Only allow integer or floating point types and make sure that
475   //    both sides are both integer or both floating point.
476   // 2. Make sure that either both sides have vector types, or neither
477   //    of them does.
478   for (unsigned M : Modes) {
479     TypeSetByHwMode::SetType &S = Small.get(M);
480     TypeSetByHwMode::SetType &B = Big.get(M);
481 
482     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484       Changed |= berase_if(S, NotInt) |
485                  berase_if(B, NotInt);
486     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488       Changed |= berase_if(S, NotFP) |
489                  berase_if(B, NotFP);
490     } else if (S.empty() || B.empty()) {
491       Changed = !S.empty() || !B.empty();
492       S.clear();
493       B.clear();
494     } else {
495       TP.error("Incompatible types");
496       return Changed;
497     }
498 
499     if (none_of(S, isVector) || none_of(B, isVector)) {
500       Changed |= berase_if(S, isVector) |
501                  berase_if(B, isVector);
502     }
503   }
504 
505   auto LT = [](MVT A, MVT B) -> bool {
506     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508             A.getSizeInBits() < B.getSizeInBits());
509   };
510   auto LE = [&LT](MVT A, MVT B) -> bool {
511     // This function is used when removing elements: when a vector is compared
512     // to a non-vector, it should return false (to avoid removal).
513     if (A.isVector() != B.isVector())
514       return false;
515 
516     return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517                         A.getSizeInBits() == B.getSizeInBits());
518   };
519 
520   for (unsigned M : Modes) {
521     TypeSetByHwMode::SetType &S = Small.get(M);
522     TypeSetByHwMode::SetType &B = Big.get(M);
523     // MinS = min scalar in Small, remove all scalars from Big that are
524     // smaller-or-equal than MinS.
525     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526     if (MinS != S.end())
527       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528 
529     // MaxS = max scalar in Big, remove all scalars from Small that are
530     // larger than MaxS.
531     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532     if (MaxS != B.end())
533       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534 
535     // MinV = min vector in Small, remove all vectors from Big that are
536     // smaller-or-equal than MinV.
537     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538     if (MinV != S.end())
539       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540 
541     // MaxV = max vector in Big, remove all vectors from Small that are
542     // larger than MaxV.
543     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544     if (MaxV != B.end())
545       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546   }
547 
548   return Changed;
549 }
550 
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 ///    for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 ///    type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556                                        TypeSetByHwMode &Elem) {
557   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558   if (TP.hasError())
559     return false;
560   bool Changed = false;
561 
562   if (Vec.empty())
563     Changed |= EnforceVector(Vec);
564   if (Elem.empty())
565     Changed |= EnforceScalar(Elem);
566 
567   for (unsigned M : union_modes(Vec, Elem)) {
568     TypeSetByHwMode::SetType &V = Vec.get(M);
569     TypeSetByHwMode::SetType &E = Elem.get(M);
570 
571     Changed |= berase_if(V, isScalar);  // Scalar = !vector
572     Changed |= berase_if(E, isVector);  // Vector = !scalar
573     assert(!V.empty() && !E.empty());
574 
575     SmallSet<MVT,4> VT, ST;
576     // Collect element types from the "vector" set.
577     for (MVT T : V)
578       VT.insert(T.getVectorElementType());
579     // Collect scalar types from the "element" set.
580     for (MVT T : E)
581       ST.insert(T);
582 
583     // Remove from V all (vector) types whose element type is not in S.
584     Changed |= berase_if(V, [&ST](MVT T) -> bool {
585                               return !ST.count(T.getVectorElementType());
586                             });
587     // Remove from E all (scalar) types, for which there is no corresponding
588     // type in V.
589     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590   }
591 
592   return Changed;
593 }
594 
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596                                        const ValueTypeByHwMode &VVT) {
597   TypeSetByHwMode Tmp(VVT);
598   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599   return EnforceVectorEltTypeIs(Vec, Tmp);
600 }
601 
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606                                              TypeSetByHwMode &Sub) {
607   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608   if (TP.hasError())
609     return false;
610 
611   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612   auto IsSubVec = [](MVT B, MVT P) -> bool {
613     if (!B.isVector() || !P.isVector())
614       return false;
615     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616     // but until there are obvious use-cases for this, keep the
617     // types separate.
618     if (B.isScalableVector() != P.isScalableVector())
619       return false;
620     if (B.getVectorElementType() != P.getVectorElementType())
621       return false;
622     return B.getVectorNumElements() < P.getVectorNumElements();
623   };
624 
625   /// Return true if S has no element (vector type) that T is a sub-vector of,
626   /// i.e. has the same element type as T and more elements.
627   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(T, I))
630         return false;
631     return true;
632   };
633 
634   /// Return true if S has no element (vector type) that T is a super-vector
635   /// of, i.e. has the same element type as T and fewer elements.
636   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637     for (const auto &I : S)
638       if (IsSubVec(I, T))
639         return false;
640     return true;
641   };
642 
643   bool Changed = false;
644 
645   if (Vec.empty())
646     Changed |= EnforceVector(Vec);
647   if (Sub.empty())
648     Changed |= EnforceVector(Sub);
649 
650   for (unsigned M : union_modes(Vec, Sub)) {
651     TypeSetByHwMode::SetType &S = Sub.get(M);
652     TypeSetByHwMode::SetType &V = Vec.get(M);
653 
654     Changed |= berase_if(S, isScalar);
655 
656     // Erase all types from S that are not sub-vectors of a type in V.
657     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658 
659     // Erase all types from V that are not super-vectors of a type in S.
660     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661   }
662 
663   return Changed;
664 }
665 
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 ///    type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 ///    type T in V, such that T and U have the same number of elements
671 ///    (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673   ValidateOnExit _1(V, *this), _2(W, *this);
674   if (TP.hasError())
675     return false;
676 
677   bool Changed = false;
678   if (V.empty())
679     Changed |= EnforceAny(V);
680   if (W.empty())
681     Changed |= EnforceAny(W);
682 
683   // An actual vector type cannot have 0 elements, so we can treat scalars
684   // as zero-length vectors. This way both vectors and scalars can be
685   // processed identically.
686   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688   };
689 
690   for (unsigned M : union_modes(V, W)) {
691     TypeSetByHwMode::SetType &VS = V.get(M);
692     TypeSetByHwMode::SetType &WS = W.get(M);
693 
694     SmallSet<unsigned,2> VN, WN;
695     for (MVT T : VS)
696       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697     for (MVT T : WS)
698       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699 
700     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702   }
703   return Changed;
704 }
705 
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 ///    such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 ///    such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711   ValidateOnExit _1(A, *this), _2(B, *this);
712   if (TP.hasError())
713     return false;
714   bool Changed = false;
715   if (A.empty())
716     Changed |= EnforceAny(A);
717   if (B.empty())
718     Changed |= EnforceAny(B);
719 
720   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721     return !Sizes.count(T.getSizeInBits());
722   };
723 
724   for (unsigned M : union_modes(A, B)) {
725     TypeSetByHwMode::SetType &AS = A.get(M);
726     TypeSetByHwMode::SetType &BS = B.get(M);
727     SmallSet<unsigned,2> AN, BN;
728 
729     for (MVT T : AS)
730       AN.insert(T.getSizeInBits());
731     for (MVT T : BS)
732       BN.insert(T.getSizeInBits());
733 
734     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736   }
737 
738   return Changed;
739 }
740 
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742   ValidateOnExit _1(VTS, *this);
743   const TypeSetByHwMode &Legal = getLegalTypes();
744   assert(Legal.isDefaultOnly() && "Default-mode only expected");
745   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746 
747   for (auto &I : VTS)
748     expandOverloads(I.second, LegalTypes);
749 }
750 
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752                                 const TypeSetByHwMode::SetType &Legal) {
753   std::set<MVT> Ovs;
754   for (MVT T : Out) {
755     if (!T.isOverloaded())
756       continue;
757 
758     Ovs.insert(T);
759     // MachineValueTypeSet allows iteration and erasing.
760     Out.erase(T);
761   }
762 
763   for (MVT Ov : Ovs) {
764     switch (Ov.SimpleTy) {
765       case MVT::iPTRAny:
766         Out.insert(MVT::iPTR);
767         return;
768       case MVT::iAny:
769         for (MVT T : MVT::integer_valuetypes())
770           if (Legal.count(T))
771             Out.insert(T);
772         for (MVT T : MVT::integer_vector_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         return;
776       case MVT::fAny:
777         for (MVT T : MVT::fp_valuetypes())
778           if (Legal.count(T))
779             Out.insert(T);
780         for (MVT T : MVT::fp_vector_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         return;
784       case MVT::vAny:
785         for (MVT T : MVT::vector_valuetypes())
786           if (Legal.count(T))
787             Out.insert(T);
788         return;
789       case MVT::Any:
790         for (MVT T : MVT::all_valuetypes())
791           if (Legal.count(T))
792             Out.insert(T);
793         return;
794       default:
795         break;
796     }
797   }
798 }
799 
800 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
801   if (!LegalTypesCached) {
802     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
803     // Stuff all types from all modes into the default mode.
804     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
805     for (const auto &I : LTS)
806       LegalTypes.insert(I.second);
807     LegalTypesCached = true;
808   }
809   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
810   return LegalCache;
811 }
812 
813 #ifndef NDEBUG
814 TypeInfer::ValidateOnExit::~ValidateOnExit() {
815   if (Infer.Validate && !VTS.validate()) {
816     dbgs() << "Type set is empty for each HW mode:\n"
817               "possible type contradiction in the pattern below "
818               "(use -print-records with llvm-tblgen to see all "
819               "expanded records).\n";
820     Infer.TP.dump();
821     llvm_unreachable(nullptr);
822   }
823 }
824 #endif
825 
826 
827 //===----------------------------------------------------------------------===//
828 // ScopedName Implementation
829 //===----------------------------------------------------------------------===//
830 
831 bool ScopedName::operator==(const ScopedName &o) const {
832   return Scope == o.Scope && Identifier == o.Identifier;
833 }
834 
835 bool ScopedName::operator!=(const ScopedName &o) const {
836   return !(*this == o);
837 }
838 
839 
840 //===----------------------------------------------------------------------===//
841 // TreePredicateFn Implementation
842 //===----------------------------------------------------------------------===//
843 
844 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
845 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
846   assert(
847       (!hasPredCode() || !hasImmCode()) &&
848       ".td file corrupt: can't have a node predicate *and* an imm predicate");
849 }
850 
851 bool TreePredicateFn::hasPredCode() const {
852   return isLoad() || isStore() || isAtomic() ||
853          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
854 }
855 
856 std::string TreePredicateFn::getPredCode() const {
857   std::string Code = "";
858 
859   if (!isLoad() && !isStore() && !isAtomic()) {
860     Record *MemoryVT = getMemoryVT();
861 
862     if (MemoryVT)
863       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864                       "MemoryVT requires IsLoad or IsStore");
865   }
866 
867   if (!isLoad() && !isStore()) {
868     if (isUnindexed())
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsUnindexed requires IsLoad or IsStore");
871 
872     Record *ScalarMemoryVT = getScalarMemoryVT();
873 
874     if (ScalarMemoryVT)
875       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876                       "ScalarMemoryVT requires IsLoad or IsStore");
877   }
878 
879   if (isLoad() + isStore() + isAtomic() > 1)
880     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
882 
883   if (isLoad()) {
884     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
885         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
886         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
887         getMinAlignment() < 1)
888       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
889                       "IsLoad cannot be used by itself");
890   } else {
891     if (isNonExtLoad())
892       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893                       "IsNonExtLoad requires IsLoad");
894     if (isAnyExtLoad())
895       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
896                       "IsAnyExtLoad requires IsLoad");
897     if (isSignExtLoad())
898       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
899                       "IsSignExtLoad requires IsLoad");
900     if (isZeroExtLoad())
901       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
902                       "IsZeroExtLoad requires IsLoad");
903   }
904 
905   if (isStore()) {
906     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
907         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
908         getAddressSpaces() == nullptr && getMinAlignment() < 1)
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsStore cannot be used by itself");
911   } else {
912     if (isNonTruncStore())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsNonTruncStore requires IsStore");
915     if (isTruncStore())
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "IsTruncStore requires IsStore");
918   }
919 
920   if (isAtomic()) {
921     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
922         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
923         !isAtomicOrderingAcquireRelease() &&
924         !isAtomicOrderingSequentiallyConsistent() &&
925         !isAtomicOrderingAcquireOrStronger() &&
926         !isAtomicOrderingReleaseOrStronger() &&
927         !isAtomicOrderingWeakerThanAcquire() &&
928         !isAtomicOrderingWeakerThanRelease())
929       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930                       "IsAtomic cannot be used by itself");
931   } else {
932     if (isAtomicOrderingMonotonic())
933       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                       "IsAtomicOrderingMonotonic requires IsAtomic");
935     if (isAtomicOrderingAcquire())
936       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937                       "IsAtomicOrderingAcquire requires IsAtomic");
938     if (isAtomicOrderingRelease())
939       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
940                       "IsAtomicOrderingRelease requires IsAtomic");
941     if (isAtomicOrderingAcquireRelease())
942       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
944     if (isAtomicOrderingSequentiallyConsistent())
945       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
946                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
947     if (isAtomicOrderingAcquireOrStronger())
948       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
950     if (isAtomicOrderingReleaseOrStronger())
951       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
953     if (isAtomicOrderingWeakerThanAcquire())
954       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
956   }
957 
958   if (isLoad() || isStore() || isAtomic()) {
959     if (ListInit *AddressSpaces = getAddressSpaces()) {
960       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
961         " if (";
962 
963       bool First = true;
964       for (Init *Val : AddressSpaces->getValues()) {
965         if (First)
966           First = false;
967         else
968           Code += " && ";
969 
970         IntInit *IntVal = dyn_cast<IntInit>(Val);
971         if (!IntVal) {
972           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973                           "AddressSpaces element must be integer");
974         }
975 
976         Code += "AddrSpace != " + utostr(IntVal->getValue());
977       }
978 
979       Code += ")\nreturn false;\n";
980     }
981 
982     int64_t MinAlign = getMinAlignment();
983     if (MinAlign > 0) {
984       Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
985       Code += utostr(MinAlign);
986       Code += ")\nreturn false;\n";
987     }
988 
989     Record *MemoryVT = getMemoryVT();
990 
991     if (MemoryVT)
992       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
993                MemoryVT->getName() + ") return false;\n")
994                   .str();
995   }
996 
997   if (isAtomic() && isAtomicOrderingMonotonic())
998     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
999             "AtomicOrdering::Monotonic) return false;\n";
1000   if (isAtomic() && isAtomicOrderingAcquire())
1001     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1002             "AtomicOrdering::Acquire) return false;\n";
1003   if (isAtomic() && isAtomicOrderingRelease())
1004     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1005             "AtomicOrdering::Release) return false;\n";
1006   if (isAtomic() && isAtomicOrderingAcquireRelease())
1007     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1008             "AtomicOrdering::AcquireRelease) return false;\n";
1009   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1010     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1011             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1012 
1013   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1014     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1015             "return false;\n";
1016   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1017     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1018             "return false;\n";
1019 
1020   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1021     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1022             "return false;\n";
1023   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1024     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1025             "return false;\n";
1026 
1027   if (isLoad() || isStore()) {
1028     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1029 
1030     if (isUnindexed())
1031       Code += ("if (cast<" + SDNodeName +
1032                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1033                "return false;\n")
1034                   .str();
1035 
1036     if (isLoad()) {
1037       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1038            isZeroExtLoad()) > 1)
1039         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1040                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1041                         "IsZeroExtLoad are mutually exclusive");
1042       if (isNonExtLoad())
1043         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1044                 "ISD::NON_EXTLOAD) return false;\n";
1045       if (isAnyExtLoad())
1046         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1047                 "return false;\n";
1048       if (isSignExtLoad())
1049         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1050                 "return false;\n";
1051       if (isZeroExtLoad())
1052         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1053                 "return false;\n";
1054     } else {
1055       if ((isNonTruncStore() + isTruncStore()) > 1)
1056         PrintFatalError(
1057             getOrigPatFragRecord()->getRecord()->getLoc(),
1058             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1059       if (isNonTruncStore())
1060         Code +=
1061             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1062       if (isTruncStore())
1063         Code +=
1064             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1065     }
1066 
1067     Record *ScalarMemoryVT = getScalarMemoryVT();
1068 
1069     if (ScalarMemoryVT)
1070       Code += ("if (cast<" + SDNodeName +
1071                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1072                ScalarMemoryVT->getName() + ") return false;\n")
1073                   .str();
1074   }
1075 
1076   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1077 
1078   Code += PredicateCode;
1079 
1080   if (PredicateCode.empty() && !Code.empty())
1081     Code += "return true;\n";
1082 
1083   return Code;
1084 }
1085 
1086 bool TreePredicateFn::hasImmCode() const {
1087   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1088 }
1089 
1090 std::string TreePredicateFn::getImmCode() const {
1091   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1092 }
1093 
1094 bool TreePredicateFn::immCodeUsesAPInt() const {
1095   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1096 }
1097 
1098 bool TreePredicateFn::immCodeUsesAPFloat() const {
1099   bool Unset;
1100   // The return value will be false when IsAPFloat is unset.
1101   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1102                                                                    Unset);
1103 }
1104 
1105 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1106                                                    bool Value) const {
1107   bool Unset;
1108   bool Result =
1109       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1110   if (Unset)
1111     return false;
1112   return Result == Value;
1113 }
1114 bool TreePredicateFn::usesOperands() const {
1115   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1116 }
1117 bool TreePredicateFn::isLoad() const {
1118   return isPredefinedPredicateEqualTo("IsLoad", true);
1119 }
1120 bool TreePredicateFn::isStore() const {
1121   return isPredefinedPredicateEqualTo("IsStore", true);
1122 }
1123 bool TreePredicateFn::isAtomic() const {
1124   return isPredefinedPredicateEqualTo("IsAtomic", true);
1125 }
1126 bool TreePredicateFn::isUnindexed() const {
1127   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1128 }
1129 bool TreePredicateFn::isNonExtLoad() const {
1130   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1131 }
1132 bool TreePredicateFn::isAnyExtLoad() const {
1133   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1134 }
1135 bool TreePredicateFn::isSignExtLoad() const {
1136   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1137 }
1138 bool TreePredicateFn::isZeroExtLoad() const {
1139   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1140 }
1141 bool TreePredicateFn::isNonTruncStore() const {
1142   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1143 }
1144 bool TreePredicateFn::isTruncStore() const {
1145   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1146 }
1147 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1148   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1149 }
1150 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1151   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1152 }
1153 bool TreePredicateFn::isAtomicOrderingRelease() const {
1154   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1155 }
1156 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1157   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1158 }
1159 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1160   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1161                                       true);
1162 }
1163 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1164   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1165 }
1166 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1167   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1168 }
1169 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1170   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1171 }
1172 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1173   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1174 }
1175 Record *TreePredicateFn::getMemoryVT() const {
1176   Record *R = getOrigPatFragRecord()->getRecord();
1177   if (R->isValueUnset("MemoryVT"))
1178     return nullptr;
1179   return R->getValueAsDef("MemoryVT");
1180 }
1181 
1182 ListInit *TreePredicateFn::getAddressSpaces() const {
1183   Record *R = getOrigPatFragRecord()->getRecord();
1184   if (R->isValueUnset("AddressSpaces"))
1185     return nullptr;
1186   return R->getValueAsListInit("AddressSpaces");
1187 }
1188 
1189 int64_t TreePredicateFn::getMinAlignment() const {
1190   Record *R = getOrigPatFragRecord()->getRecord();
1191   if (R->isValueUnset("MinAlignment"))
1192     return 0;
1193   return R->getValueAsInt("MinAlignment");
1194 }
1195 
1196 Record *TreePredicateFn::getScalarMemoryVT() const {
1197   Record *R = getOrigPatFragRecord()->getRecord();
1198   if (R->isValueUnset("ScalarMemoryVT"))
1199     return nullptr;
1200   return R->getValueAsDef("ScalarMemoryVT");
1201 }
1202 bool TreePredicateFn::hasGISelPredicateCode() const {
1203   return !PatFragRec->getRecord()
1204               ->getValueAsString("GISelPredicateCode")
1205               .empty();
1206 }
1207 std::string TreePredicateFn::getGISelPredicateCode() const {
1208   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1209 }
1210 
1211 StringRef TreePredicateFn::getImmType() const {
1212   if (immCodeUsesAPInt())
1213     return "const APInt &";
1214   if (immCodeUsesAPFloat())
1215     return "const APFloat &";
1216   return "int64_t";
1217 }
1218 
1219 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1220   if (immCodeUsesAPInt())
1221     return "APInt";
1222   else if (immCodeUsesAPFloat())
1223     return "APFloat";
1224   return "I64";
1225 }
1226 
1227 /// isAlwaysTrue - Return true if this is a noop predicate.
1228 bool TreePredicateFn::isAlwaysTrue() const {
1229   return !hasPredCode() && !hasImmCode();
1230 }
1231 
1232 /// Return the name to use in the generated code to reference this, this is
1233 /// "Predicate_foo" if from a pattern fragment "foo".
1234 std::string TreePredicateFn::getFnName() const {
1235   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1236 }
1237 
1238 /// getCodeToRunOnSDNode - Return the code for the function body that
1239 /// evaluates this predicate.  The argument is expected to be in "Node",
1240 /// not N.  This handles casting and conversion to a concrete node type as
1241 /// appropriate.
1242 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1243   // Handle immediate predicates first.
1244   std::string ImmCode = getImmCode();
1245   if (!ImmCode.empty()) {
1246     if (isLoad())
1247       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1248                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1249     if (isStore())
1250       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1251                       "IsStore cannot be used with ImmLeaf or its subclasses");
1252     if (isUnindexed())
1253       PrintFatalError(
1254           getOrigPatFragRecord()->getRecord()->getLoc(),
1255           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1256     if (isNonExtLoad())
1257       PrintFatalError(
1258           getOrigPatFragRecord()->getRecord()->getLoc(),
1259           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1260     if (isAnyExtLoad())
1261       PrintFatalError(
1262           getOrigPatFragRecord()->getRecord()->getLoc(),
1263           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1264     if (isSignExtLoad())
1265       PrintFatalError(
1266           getOrigPatFragRecord()->getRecord()->getLoc(),
1267           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1268     if (isZeroExtLoad())
1269       PrintFatalError(
1270           getOrigPatFragRecord()->getRecord()->getLoc(),
1271           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1272     if (isNonTruncStore())
1273       PrintFatalError(
1274           getOrigPatFragRecord()->getRecord()->getLoc(),
1275           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1276     if (isTruncStore())
1277       PrintFatalError(
1278           getOrigPatFragRecord()->getRecord()->getLoc(),
1279           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1280     if (getMemoryVT())
1281       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1282                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1283     if (getScalarMemoryVT())
1284       PrintFatalError(
1285           getOrigPatFragRecord()->getRecord()->getLoc(),
1286           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1287 
1288     std::string Result = ("    " + getImmType() + " Imm = ").str();
1289     if (immCodeUsesAPFloat())
1290       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1291     else if (immCodeUsesAPInt())
1292       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1293     else
1294       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1295     return Result + ImmCode;
1296   }
1297 
1298   // Handle arbitrary node predicates.
1299   assert(hasPredCode() && "Don't have any predicate code!");
1300   StringRef ClassName;
1301   if (PatFragRec->getOnlyTree()->isLeaf())
1302     ClassName = "SDNode";
1303   else {
1304     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1305     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1306   }
1307   std::string Result;
1308   if (ClassName == "SDNode")
1309     Result = "    SDNode *N = Node;\n";
1310   else
1311     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1312 
1313   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1314 }
1315 
1316 //===----------------------------------------------------------------------===//
1317 // PatternToMatch implementation
1318 //
1319 
1320 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1321   if (!P->isLeaf())
1322     return false;
1323   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1324   if (!DI)
1325     return false;
1326 
1327   Record *R = DI->getDef();
1328   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1329 }
1330 
1331 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1332 /// patterns before small ones.  This is used to determine the size of a
1333 /// pattern.
1334 static unsigned getPatternSize(const TreePatternNode *P,
1335                                const CodeGenDAGPatterns &CGP) {
1336   unsigned Size = 3;  // The node itself.
1337   // If the root node is a ConstantSDNode, increases its size.
1338   // e.g. (set R32:$dst, 0).
1339   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1340     Size += 2;
1341 
1342   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1343     Size += AM->getComplexity();
1344     // We don't want to count any children twice, so return early.
1345     return Size;
1346   }
1347 
1348   // If this node has some predicate function that must match, it adds to the
1349   // complexity of this node.
1350   if (!P->getPredicateCalls().empty())
1351     ++Size;
1352 
1353   // Count children in the count if they are also nodes.
1354   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1355     const TreePatternNode *Child = P->getChild(i);
1356     if (!Child->isLeaf() && Child->getNumTypes()) {
1357       const TypeSetByHwMode &T0 = Child->getExtType(0);
1358       // At this point, all variable type sets should be simple, i.e. only
1359       // have a default mode.
1360       if (T0.getMachineValueType() != MVT::Other) {
1361         Size += getPatternSize(Child, CGP);
1362         continue;
1363       }
1364     }
1365     if (Child->isLeaf()) {
1366       if (isa<IntInit>(Child->getLeafValue()))
1367         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1368       else if (Child->getComplexPatternInfo(CGP))
1369         Size += getPatternSize(Child, CGP);
1370       else if (isImmAllOnesAllZerosMatch(Child))
1371         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1372       else if (!Child->getPredicateCalls().empty())
1373         ++Size;
1374     }
1375   }
1376 
1377   return Size;
1378 }
1379 
1380 /// Compute the complexity metric for the input pattern.  This roughly
1381 /// corresponds to the number of nodes that are covered.
1382 int PatternToMatch::
1383 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1384   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1385 }
1386 
1387 /// getPredicateCheck - Return a single string containing all of this
1388 /// pattern's predicates concatenated with "&&" operators.
1389 ///
1390 std::string PatternToMatch::getPredicateCheck() const {
1391   SmallVector<const Predicate*,4> PredList;
1392   for (const Predicate &P : Predicates) {
1393     if (!P.getCondString().empty())
1394       PredList.push_back(&P);
1395   }
1396   llvm::sort(PredList, deref<llvm::less>());
1397 
1398   std::string Check;
1399   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1400     if (i != 0)
1401       Check += " && ";
1402     Check += '(' + PredList[i]->getCondString() + ')';
1403   }
1404   return Check;
1405 }
1406 
1407 //===----------------------------------------------------------------------===//
1408 // SDTypeConstraint implementation
1409 //
1410 
1411 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1412   OperandNo = R->getValueAsInt("OperandNum");
1413 
1414   if (R->isSubClassOf("SDTCisVT")) {
1415     ConstraintType = SDTCisVT;
1416     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1417     for (const auto &P : VVT)
1418       if (P.second == MVT::isVoid)
1419         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1420   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1421     ConstraintType = SDTCisPtrTy;
1422   } else if (R->isSubClassOf("SDTCisInt")) {
1423     ConstraintType = SDTCisInt;
1424   } else if (R->isSubClassOf("SDTCisFP")) {
1425     ConstraintType = SDTCisFP;
1426   } else if (R->isSubClassOf("SDTCisVec")) {
1427     ConstraintType = SDTCisVec;
1428   } else if (R->isSubClassOf("SDTCisSameAs")) {
1429     ConstraintType = SDTCisSameAs;
1430     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1431   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1432     ConstraintType = SDTCisVTSmallerThanOp;
1433     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1434       R->getValueAsInt("OtherOperandNum");
1435   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1436     ConstraintType = SDTCisOpSmallerThanOp;
1437     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1438       R->getValueAsInt("BigOperandNum");
1439   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1440     ConstraintType = SDTCisEltOfVec;
1441     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1442   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1443     ConstraintType = SDTCisSubVecOfVec;
1444     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1445       R->getValueAsInt("OtherOpNum");
1446   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1447     ConstraintType = SDTCVecEltisVT;
1448     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1449     for (const auto &P : VVT) {
1450       MVT T = P.second;
1451       if (T.isVector())
1452         PrintFatalError(R->getLoc(),
1453                         "Cannot use vector type as SDTCVecEltisVT");
1454       if (!T.isInteger() && !T.isFloatingPoint())
1455         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1456                                      "as SDTCVecEltisVT");
1457     }
1458   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1459     ConstraintType = SDTCisSameNumEltsAs;
1460     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1461       R->getValueAsInt("OtherOperandNum");
1462   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1463     ConstraintType = SDTCisSameSizeAs;
1464     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1465       R->getValueAsInt("OtherOperandNum");
1466   } else {
1467     PrintFatalError(R->getLoc(),
1468                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1469   }
1470 }
1471 
1472 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1473 /// N, and the result number in ResNo.
1474 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1475                                       const SDNodeInfo &NodeInfo,
1476                                       unsigned &ResNo) {
1477   unsigned NumResults = NodeInfo.getNumResults();
1478   if (OpNo < NumResults) {
1479     ResNo = OpNo;
1480     return N;
1481   }
1482 
1483   OpNo -= NumResults;
1484 
1485   if (OpNo >= N->getNumChildren()) {
1486     std::string S;
1487     raw_string_ostream OS(S);
1488     OS << "Invalid operand number in type constraint "
1489            << (OpNo+NumResults) << " ";
1490     N->print(OS);
1491     PrintFatalError(OS.str());
1492   }
1493 
1494   return N->getChild(OpNo);
1495 }
1496 
1497 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1498 /// constraint to the nodes operands.  This returns true if it makes a
1499 /// change, false otherwise.  If a type contradiction is found, flag an error.
1500 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1501                                            const SDNodeInfo &NodeInfo,
1502                                            TreePattern &TP) const {
1503   if (TP.hasError())
1504     return false;
1505 
1506   unsigned ResNo = 0; // The result number being referenced.
1507   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1508   TypeInfer &TI = TP.getInfer();
1509 
1510   switch (ConstraintType) {
1511   case SDTCisVT:
1512     // Operand must be a particular type.
1513     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1514   case SDTCisPtrTy:
1515     // Operand must be same as target pointer type.
1516     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1517   case SDTCisInt:
1518     // Require it to be one of the legal integer VTs.
1519      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1520   case SDTCisFP:
1521     // Require it to be one of the legal fp VTs.
1522     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1523   case SDTCisVec:
1524     // Require it to be one of the legal vector VTs.
1525     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1526   case SDTCisSameAs: {
1527     unsigned OResNo = 0;
1528     TreePatternNode *OtherNode =
1529       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1530     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1531            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1532   }
1533   case SDTCisVTSmallerThanOp: {
1534     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1535     // have an integer type that is smaller than the VT.
1536     if (!NodeToApply->isLeaf() ||
1537         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1538         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1539                ->isSubClassOf("ValueType")) {
1540       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1541       return false;
1542     }
1543     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1544     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1545     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1546     TypeSetByHwMode TypeListTmp(VVT);
1547 
1548     unsigned OResNo = 0;
1549     TreePatternNode *OtherNode =
1550       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1551                     OResNo);
1552 
1553     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1554   }
1555   case SDTCisOpSmallerThanOp: {
1556     unsigned BResNo = 0;
1557     TreePatternNode *BigOperand =
1558       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1559                     BResNo);
1560     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1561                                  BigOperand->getExtType(BResNo));
1562   }
1563   case SDTCisEltOfVec: {
1564     unsigned VResNo = 0;
1565     TreePatternNode *VecOperand =
1566       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1567                     VResNo);
1568     // Filter vector types out of VecOperand that don't have the right element
1569     // type.
1570     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1571                                      NodeToApply->getExtType(ResNo));
1572   }
1573   case SDTCisSubVecOfVec: {
1574     unsigned VResNo = 0;
1575     TreePatternNode *BigVecOperand =
1576       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1577                     VResNo);
1578 
1579     // Filter vector types out of BigVecOperand that don't have the
1580     // right subvector type.
1581     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1582                                            NodeToApply->getExtType(ResNo));
1583   }
1584   case SDTCVecEltisVT: {
1585     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1586   }
1587   case SDTCisSameNumEltsAs: {
1588     unsigned OResNo = 0;
1589     TreePatternNode *OtherNode =
1590       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1591                     N, NodeInfo, OResNo);
1592     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1593                                  NodeToApply->getExtType(ResNo));
1594   }
1595   case SDTCisSameSizeAs: {
1596     unsigned OResNo = 0;
1597     TreePatternNode *OtherNode =
1598       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1599                     N, NodeInfo, OResNo);
1600     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1601                               NodeToApply->getExtType(ResNo));
1602   }
1603   }
1604   llvm_unreachable("Invalid ConstraintType!");
1605 }
1606 
1607 // Update the node type to match an instruction operand or result as specified
1608 // in the ins or outs lists on the instruction definition. Return true if the
1609 // type was actually changed.
1610 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1611                                              Record *Operand,
1612                                              TreePattern &TP) {
1613   // The 'unknown' operand indicates that types should be inferred from the
1614   // context.
1615   if (Operand->isSubClassOf("unknown_class"))
1616     return false;
1617 
1618   // The Operand class specifies a type directly.
1619   if (Operand->isSubClassOf("Operand")) {
1620     Record *R = Operand->getValueAsDef("Type");
1621     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1622     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1623   }
1624 
1625   // PointerLikeRegClass has a type that is determined at runtime.
1626   if (Operand->isSubClassOf("PointerLikeRegClass"))
1627     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1628 
1629   // Both RegisterClass and RegisterOperand operands derive their types from a
1630   // register class def.
1631   Record *RC = nullptr;
1632   if (Operand->isSubClassOf("RegisterClass"))
1633     RC = Operand;
1634   else if (Operand->isSubClassOf("RegisterOperand"))
1635     RC = Operand->getValueAsDef("RegClass");
1636 
1637   assert(RC && "Unknown operand type");
1638   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1639   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1640 }
1641 
1642 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1643   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1644     if (!TP.getInfer().isConcrete(Types[i], true))
1645       return true;
1646   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1647     if (getChild(i)->ContainsUnresolvedType(TP))
1648       return true;
1649   return false;
1650 }
1651 
1652 bool TreePatternNode::hasProperTypeByHwMode() const {
1653   for (const TypeSetByHwMode &S : Types)
1654     if (!S.isDefaultOnly())
1655       return true;
1656   for (const TreePatternNodePtr &C : Children)
1657     if (C->hasProperTypeByHwMode())
1658       return true;
1659   return false;
1660 }
1661 
1662 bool TreePatternNode::hasPossibleType() const {
1663   for (const TypeSetByHwMode &S : Types)
1664     if (!S.isPossible())
1665       return false;
1666   for (const TreePatternNodePtr &C : Children)
1667     if (!C->hasPossibleType())
1668       return false;
1669   return true;
1670 }
1671 
1672 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1673   for (TypeSetByHwMode &S : Types) {
1674     S.makeSimple(Mode);
1675     // Check if the selected mode had a type conflict.
1676     if (S.get(DefaultMode).empty())
1677       return false;
1678   }
1679   for (const TreePatternNodePtr &C : Children)
1680     if (!C->setDefaultMode(Mode))
1681       return false;
1682   return true;
1683 }
1684 
1685 //===----------------------------------------------------------------------===//
1686 // SDNodeInfo implementation
1687 //
1688 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1689   EnumName    = R->getValueAsString("Opcode");
1690   SDClassName = R->getValueAsString("SDClass");
1691   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1692   NumResults = TypeProfile->getValueAsInt("NumResults");
1693   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1694 
1695   // Parse the properties.
1696   Properties = parseSDPatternOperatorProperties(R);
1697 
1698   // Parse the type constraints.
1699   std::vector<Record*> ConstraintList =
1700     TypeProfile->getValueAsListOfDefs("Constraints");
1701   for (Record *R : ConstraintList)
1702     TypeConstraints.emplace_back(R, CGH);
1703 }
1704 
1705 /// getKnownType - If the type constraints on this node imply a fixed type
1706 /// (e.g. all stores return void, etc), then return it as an
1707 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1708 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1709   unsigned NumResults = getNumResults();
1710   assert(NumResults <= 1 &&
1711          "We only work with nodes with zero or one result so far!");
1712   assert(ResNo == 0 && "Only handles single result nodes so far");
1713 
1714   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1715     // Make sure that this applies to the correct node result.
1716     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1717       continue;
1718 
1719     switch (Constraint.ConstraintType) {
1720     default: break;
1721     case SDTypeConstraint::SDTCisVT:
1722       if (Constraint.VVT.isSimple())
1723         return Constraint.VVT.getSimple().SimpleTy;
1724       break;
1725     case SDTypeConstraint::SDTCisPtrTy:
1726       return MVT::iPTR;
1727     }
1728   }
1729   return MVT::Other;
1730 }
1731 
1732 //===----------------------------------------------------------------------===//
1733 // TreePatternNode implementation
1734 //
1735 
1736 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1737   if (Operator->getName() == "set" ||
1738       Operator->getName() == "implicit")
1739     return 0;  // All return nothing.
1740 
1741   if (Operator->isSubClassOf("Intrinsic"))
1742     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1743 
1744   if (Operator->isSubClassOf("SDNode"))
1745     return CDP.getSDNodeInfo(Operator).getNumResults();
1746 
1747   if (Operator->isSubClassOf("PatFrags")) {
1748     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1749     // the forward reference case where one pattern fragment references another
1750     // before it is processed.
1751     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1752       // The number of results of a fragment with alternative records is the
1753       // maximum number of results across all alternatives.
1754       unsigned NumResults = 0;
1755       for (auto T : PFRec->getTrees())
1756         NumResults = std::max(NumResults, T->getNumTypes());
1757       return NumResults;
1758     }
1759 
1760     ListInit *LI = Operator->getValueAsListInit("Fragments");
1761     assert(LI && "Invalid Fragment");
1762     unsigned NumResults = 0;
1763     for (Init *I : LI->getValues()) {
1764       Record *Op = nullptr;
1765       if (DagInit *Dag = dyn_cast<DagInit>(I))
1766         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1767           Op = DI->getDef();
1768       assert(Op && "Invalid Fragment");
1769       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1770     }
1771     return NumResults;
1772   }
1773 
1774   if (Operator->isSubClassOf("Instruction")) {
1775     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1776 
1777     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1778 
1779     // Subtract any defaulted outputs.
1780     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1781       Record *OperandNode = InstInfo.Operands[i].Rec;
1782 
1783       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1784           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1785         --NumDefsToAdd;
1786     }
1787 
1788     // Add on one implicit def if it has a resolvable type.
1789     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1790       ++NumDefsToAdd;
1791     return NumDefsToAdd;
1792   }
1793 
1794   if (Operator->isSubClassOf("SDNodeXForm"))
1795     return 1;  // FIXME: Generalize SDNodeXForm
1796 
1797   if (Operator->isSubClassOf("ValueType"))
1798     return 1;  // A type-cast of one result.
1799 
1800   if (Operator->isSubClassOf("ComplexPattern"))
1801     return 1;
1802 
1803   errs() << *Operator;
1804   PrintFatalError("Unhandled node in GetNumNodeResults");
1805 }
1806 
1807 void TreePatternNode::print(raw_ostream &OS) const {
1808   if (isLeaf())
1809     OS << *getLeafValue();
1810   else
1811     OS << '(' << getOperator()->getName();
1812 
1813   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1814     OS << ':';
1815     getExtType(i).writeToStream(OS);
1816   }
1817 
1818   if (!isLeaf()) {
1819     if (getNumChildren() != 0) {
1820       OS << " ";
1821       getChild(0)->print(OS);
1822       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1823         OS << ", ";
1824         getChild(i)->print(OS);
1825       }
1826     }
1827     OS << ")";
1828   }
1829 
1830   for (const TreePredicateCall &Pred : PredicateCalls) {
1831     OS << "<<P:";
1832     if (Pred.Scope)
1833       OS << Pred.Scope << ":";
1834     OS << Pred.Fn.getFnName() << ">>";
1835   }
1836   if (TransformFn)
1837     OS << "<<X:" << TransformFn->getName() << ">>";
1838   if (!getName().empty())
1839     OS << ":$" << getName();
1840 
1841   for (const ScopedName &Name : NamesAsPredicateArg)
1842     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1843 }
1844 void TreePatternNode::dump() const {
1845   print(errs());
1846 }
1847 
1848 /// isIsomorphicTo - Return true if this node is recursively
1849 /// isomorphic to the specified node.  For this comparison, the node's
1850 /// entire state is considered. The assigned name is ignored, since
1851 /// nodes with differing names are considered isomorphic. However, if
1852 /// the assigned name is present in the dependent variable set, then
1853 /// the assigned name is considered significant and the node is
1854 /// isomorphic if the names match.
1855 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1856                                      const MultipleUseVarSet &DepVars) const {
1857   if (N == this) return true;
1858   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1859       getPredicateCalls() != N->getPredicateCalls() ||
1860       getTransformFn() != N->getTransformFn())
1861     return false;
1862 
1863   if (isLeaf()) {
1864     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1865       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1866         return ((DI->getDef() == NDI->getDef())
1867                 && (DepVars.find(getName()) == DepVars.end()
1868                     || getName() == N->getName()));
1869       }
1870     }
1871     return getLeafValue() == N->getLeafValue();
1872   }
1873 
1874   if (N->getOperator() != getOperator() ||
1875       N->getNumChildren() != getNumChildren()) return false;
1876   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1877     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1878       return false;
1879   return true;
1880 }
1881 
1882 /// clone - Make a copy of this tree and all of its children.
1883 ///
1884 TreePatternNodePtr TreePatternNode::clone() const {
1885   TreePatternNodePtr New;
1886   if (isLeaf()) {
1887     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1888   } else {
1889     std::vector<TreePatternNodePtr> CChildren;
1890     CChildren.reserve(Children.size());
1891     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1892       CChildren.push_back(getChild(i)->clone());
1893     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1894                                             getNumTypes());
1895   }
1896   New->setName(getName());
1897   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1898   New->Types = Types;
1899   New->setPredicateCalls(getPredicateCalls());
1900   New->setTransformFn(getTransformFn());
1901   return New;
1902 }
1903 
1904 /// RemoveAllTypes - Recursively strip all the types of this tree.
1905 void TreePatternNode::RemoveAllTypes() {
1906   // Reset to unknown type.
1907   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1908   if (isLeaf()) return;
1909   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1910     getChild(i)->RemoveAllTypes();
1911 }
1912 
1913 
1914 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1915 /// with actual values specified by ArgMap.
1916 void TreePatternNode::SubstituteFormalArguments(
1917     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1918   if (isLeaf()) return;
1919 
1920   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1921     TreePatternNode *Child = getChild(i);
1922     if (Child->isLeaf()) {
1923       Init *Val = Child->getLeafValue();
1924       // Note that, when substituting into an output pattern, Val might be an
1925       // UnsetInit.
1926       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1927           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1928         // We found a use of a formal argument, replace it with its value.
1929         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1930         assert(NewChild && "Couldn't find formal argument!");
1931         assert((Child->getPredicateCalls().empty() ||
1932                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1933                "Non-empty child predicate clobbered!");
1934         setChild(i, std::move(NewChild));
1935       }
1936     } else {
1937       getChild(i)->SubstituteFormalArguments(ArgMap);
1938     }
1939   }
1940 }
1941 
1942 
1943 /// InlinePatternFragments - If this pattern refers to any pattern
1944 /// fragments, return the set of inlined versions (this can be more than
1945 /// one if a PatFrags record has multiple alternatives).
1946 void TreePatternNode::InlinePatternFragments(
1947   TreePatternNodePtr T, TreePattern &TP,
1948   std::vector<TreePatternNodePtr> &OutAlternatives) {
1949 
1950   if (TP.hasError())
1951     return;
1952 
1953   if (isLeaf()) {
1954     OutAlternatives.push_back(T);  // nothing to do.
1955     return;
1956   }
1957 
1958   Record *Op = getOperator();
1959 
1960   if (!Op->isSubClassOf("PatFrags")) {
1961     if (getNumChildren() == 0) {
1962       OutAlternatives.push_back(T);
1963       return;
1964     }
1965 
1966     // Recursively inline children nodes.
1967     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1968     ChildAlternatives.resize(getNumChildren());
1969     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1970       TreePatternNodePtr Child = getChildShared(i);
1971       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1972       // If there are no alternatives for any child, there are no
1973       // alternatives for this expression as whole.
1974       if (ChildAlternatives[i].empty())
1975         return;
1976 
1977       for (auto NewChild : ChildAlternatives[i])
1978         assert((Child->getPredicateCalls().empty() ||
1979                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1980                "Non-empty child predicate clobbered!");
1981     }
1982 
1983     // The end result is an all-pairs construction of the resultant pattern.
1984     std::vector<unsigned> Idxs;
1985     Idxs.resize(ChildAlternatives.size());
1986     bool NotDone;
1987     do {
1988       // Create the variant and add it to the output list.
1989       std::vector<TreePatternNodePtr> NewChildren;
1990       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1991         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1992       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1993           getOperator(), std::move(NewChildren), getNumTypes());
1994 
1995       // Copy over properties.
1996       R->setName(getName());
1997       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1998       R->setPredicateCalls(getPredicateCalls());
1999       R->setTransformFn(getTransformFn());
2000       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2001         R->setType(i, getExtType(i));
2002       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2003         R->setResultIndex(i, getResultIndex(i));
2004 
2005       // Register alternative.
2006       OutAlternatives.push_back(R);
2007 
2008       // Increment indices to the next permutation by incrementing the
2009       // indices from last index backward, e.g., generate the sequence
2010       // [0, 0], [0, 1], [1, 0], [1, 1].
2011       int IdxsIdx;
2012       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2013         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2014           Idxs[IdxsIdx] = 0;
2015         else
2016           break;
2017       }
2018       NotDone = (IdxsIdx >= 0);
2019     } while (NotDone);
2020 
2021     return;
2022   }
2023 
2024   // Otherwise, we found a reference to a fragment.  First, look up its
2025   // TreePattern record.
2026   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2027 
2028   // Verify that we are passing the right number of operands.
2029   if (Frag->getNumArgs() != Children.size()) {
2030     TP.error("'" + Op->getName() + "' fragment requires " +
2031              Twine(Frag->getNumArgs()) + " operands!");
2032     return;
2033   }
2034 
2035   TreePredicateFn PredFn(Frag);
2036   unsigned Scope = 0;
2037   if (TreePredicateFn(Frag).usesOperands())
2038     Scope = TP.getDAGPatterns().allocateScope();
2039 
2040   // Compute the map of formal to actual arguments.
2041   std::map<std::string, TreePatternNodePtr> ArgMap;
2042   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2043     TreePatternNodePtr Child = getChildShared(i);
2044     if (Scope != 0) {
2045       Child = Child->clone();
2046       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2047     }
2048     ArgMap[Frag->getArgName(i)] = Child;
2049   }
2050 
2051   // Loop over all fragment alternatives.
2052   for (auto Alternative : Frag->getTrees()) {
2053     TreePatternNodePtr FragTree = Alternative->clone();
2054 
2055     if (!PredFn.isAlwaysTrue())
2056       FragTree->addPredicateCall(PredFn, Scope);
2057 
2058     // Resolve formal arguments to their actual value.
2059     if (Frag->getNumArgs())
2060       FragTree->SubstituteFormalArguments(ArgMap);
2061 
2062     // Transfer types.  Note that the resolved alternative may have fewer
2063     // (but not more) results than the PatFrags node.
2064     FragTree->setName(getName());
2065     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2066       FragTree->UpdateNodeType(i, getExtType(i), TP);
2067 
2068     // Transfer in the old predicates.
2069     for (const TreePredicateCall &Pred : getPredicateCalls())
2070       FragTree->addPredicateCall(Pred);
2071 
2072     // The fragment we inlined could have recursive inlining that is needed.  See
2073     // if there are any pattern fragments in it and inline them as needed.
2074     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2075   }
2076 }
2077 
2078 /// getImplicitType - Check to see if the specified record has an implicit
2079 /// type which should be applied to it.  This will infer the type of register
2080 /// references from the register file information, for example.
2081 ///
2082 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2083 /// the F8RC register class argument in:
2084 ///
2085 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2086 ///
2087 /// When Unnamed is false, return the type of a named DAG operand such as the
2088 /// GPR:$src operand above.
2089 ///
2090 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2091                                        bool NotRegisters,
2092                                        bool Unnamed,
2093                                        TreePattern &TP) {
2094   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2095 
2096   // Check to see if this is a register operand.
2097   if (R->isSubClassOf("RegisterOperand")) {
2098     assert(ResNo == 0 && "Regoperand ref only has one result!");
2099     if (NotRegisters)
2100       return TypeSetByHwMode(); // Unknown.
2101     Record *RegClass = R->getValueAsDef("RegClass");
2102     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2103     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2104   }
2105 
2106   // Check to see if this is a register or a register class.
2107   if (R->isSubClassOf("RegisterClass")) {
2108     assert(ResNo == 0 && "Regclass ref only has one result!");
2109     // An unnamed register class represents itself as an i32 immediate, for
2110     // example on a COPY_TO_REGCLASS instruction.
2111     if (Unnamed)
2112       return TypeSetByHwMode(MVT::i32);
2113 
2114     // In a named operand, the register class provides the possible set of
2115     // types.
2116     if (NotRegisters)
2117       return TypeSetByHwMode(); // Unknown.
2118     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2119     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2120   }
2121 
2122   if (R->isSubClassOf("PatFrags")) {
2123     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2124     // Pattern fragment types will be resolved when they are inlined.
2125     return TypeSetByHwMode(); // Unknown.
2126   }
2127 
2128   if (R->isSubClassOf("Register")) {
2129     assert(ResNo == 0 && "Registers only produce one result!");
2130     if (NotRegisters)
2131       return TypeSetByHwMode(); // Unknown.
2132     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2133     return TypeSetByHwMode(T.getRegisterVTs(R));
2134   }
2135 
2136   if (R->isSubClassOf("SubRegIndex")) {
2137     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2138     return TypeSetByHwMode(MVT::i32);
2139   }
2140 
2141   if (R->isSubClassOf("ValueType")) {
2142     assert(ResNo == 0 && "This node only has one result!");
2143     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2144     //
2145     //   (sext_inreg GPR:$src, i16)
2146     //                         ~~~
2147     if (Unnamed)
2148       return TypeSetByHwMode(MVT::Other);
2149     // With a name, the ValueType simply provides the type of the named
2150     // variable.
2151     //
2152     //   (sext_inreg i32:$src, i16)
2153     //               ~~~~~~~~
2154     if (NotRegisters)
2155       return TypeSetByHwMode(); // Unknown.
2156     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2157     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2158   }
2159 
2160   if (R->isSubClassOf("CondCode")) {
2161     assert(ResNo == 0 && "This node only has one result!");
2162     // Using a CondCodeSDNode.
2163     return TypeSetByHwMode(MVT::Other);
2164   }
2165 
2166   if (R->isSubClassOf("ComplexPattern")) {
2167     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2168     if (NotRegisters)
2169       return TypeSetByHwMode(); // Unknown.
2170     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2171   }
2172   if (R->isSubClassOf("PointerLikeRegClass")) {
2173     assert(ResNo == 0 && "Regclass can only have one result!");
2174     TypeSetByHwMode VTS(MVT::iPTR);
2175     TP.getInfer().expandOverloads(VTS);
2176     return VTS;
2177   }
2178 
2179   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2180       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2181       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2182     // Placeholder.
2183     return TypeSetByHwMode(); // Unknown.
2184   }
2185 
2186   if (R->isSubClassOf("Operand")) {
2187     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2188     Record *T = R->getValueAsDef("Type");
2189     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2190   }
2191 
2192   TP.error("Unknown node flavor used in pattern: " + R->getName());
2193   return TypeSetByHwMode(MVT::Other);
2194 }
2195 
2196 
2197 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2198 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2199 const CodeGenIntrinsic *TreePatternNode::
2200 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2201   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2202       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2203       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2204     return nullptr;
2205 
2206   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2207   return &CDP.getIntrinsicInfo(IID);
2208 }
2209 
2210 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2211 /// return the ComplexPattern information, otherwise return null.
2212 const ComplexPattern *
2213 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2214   Record *Rec;
2215   if (isLeaf()) {
2216     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2217     if (!DI)
2218       return nullptr;
2219     Rec = DI->getDef();
2220   } else
2221     Rec = getOperator();
2222 
2223   if (!Rec->isSubClassOf("ComplexPattern"))
2224     return nullptr;
2225   return &CGP.getComplexPattern(Rec);
2226 }
2227 
2228 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2229   // A ComplexPattern specifically declares how many results it fills in.
2230   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2231     return CP->getNumOperands();
2232 
2233   // If MIOperandInfo is specified, that gives the count.
2234   if (isLeaf()) {
2235     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2236     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2237       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2238       if (MIOps->getNumArgs())
2239         return MIOps->getNumArgs();
2240     }
2241   }
2242 
2243   // Otherwise there is just one result.
2244   return 1;
2245 }
2246 
2247 /// NodeHasProperty - Return true if this node has the specified property.
2248 bool TreePatternNode::NodeHasProperty(SDNP Property,
2249                                       const CodeGenDAGPatterns &CGP) const {
2250   if (isLeaf()) {
2251     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2252       return CP->hasProperty(Property);
2253 
2254     return false;
2255   }
2256 
2257   if (Property != SDNPHasChain) {
2258     // The chain proprety is already present on the different intrinsic node
2259     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2260     // on the intrinsic. Anything else is specific to the individual intrinsic.
2261     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2262       return Int->hasProperty(Property);
2263   }
2264 
2265   if (!Operator->isSubClassOf("SDPatternOperator"))
2266     return false;
2267 
2268   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2269 }
2270 
2271 
2272 
2273 
2274 /// TreeHasProperty - Return true if any node in this tree has the specified
2275 /// property.
2276 bool TreePatternNode::TreeHasProperty(SDNP Property,
2277                                       const CodeGenDAGPatterns &CGP) const {
2278   if (NodeHasProperty(Property, CGP))
2279     return true;
2280   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2281     if (getChild(i)->TreeHasProperty(Property, CGP))
2282       return true;
2283   return false;
2284 }
2285 
2286 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2287 /// commutative intrinsic.
2288 bool
2289 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2290   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2291     return Int->isCommutative;
2292   return false;
2293 }
2294 
2295 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2296   if (!N->isLeaf())
2297     return N->getOperator()->isSubClassOf(Class);
2298 
2299   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2300   if (DI && DI->getDef()->isSubClassOf(Class))
2301     return true;
2302 
2303   return false;
2304 }
2305 
2306 static void emitTooManyOperandsError(TreePattern &TP,
2307                                      StringRef InstName,
2308                                      unsigned Expected,
2309                                      unsigned Actual) {
2310   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2311            " operands but expected only " + Twine(Expected) + "!");
2312 }
2313 
2314 static void emitTooFewOperandsError(TreePattern &TP,
2315                                     StringRef InstName,
2316                                     unsigned Actual) {
2317   TP.error("Instruction '" + InstName +
2318            "' expects more than the provided " + Twine(Actual) + " operands!");
2319 }
2320 
2321 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2322 /// this node and its children in the tree.  This returns true if it makes a
2323 /// change, false otherwise.  If a type contradiction is found, flag an error.
2324 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2325   if (TP.hasError())
2326     return false;
2327 
2328   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2329   if (isLeaf()) {
2330     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2331       // If it's a regclass or something else known, include the type.
2332       bool MadeChange = false;
2333       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2334         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2335                                                         NotRegisters,
2336                                                         !hasName(), TP), TP);
2337       return MadeChange;
2338     }
2339 
2340     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2341       assert(Types.size() == 1 && "Invalid IntInit");
2342 
2343       // Int inits are always integers. :)
2344       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2345 
2346       if (!TP.getInfer().isConcrete(Types[0], false))
2347         return MadeChange;
2348 
2349       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2350       for (auto &P : VVT) {
2351         MVT::SimpleValueType VT = P.second.SimpleTy;
2352         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2353           continue;
2354         unsigned Size = MVT(VT).getSizeInBits();
2355         // Make sure that the value is representable for this type.
2356         if (Size >= 32)
2357           continue;
2358         // Check that the value doesn't use more bits than we have. It must
2359         // either be a sign- or zero-extended equivalent of the original.
2360         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2361         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2362             SignBitAndAbove == 1)
2363           continue;
2364 
2365         TP.error("Integer value '" + Twine(II->getValue()) +
2366                  "' is out of range for type '" + getEnumName(VT) + "'!");
2367         break;
2368       }
2369       return MadeChange;
2370     }
2371 
2372     return false;
2373   }
2374 
2375   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2376     bool MadeChange = false;
2377 
2378     // Apply the result type to the node.
2379     unsigned NumRetVTs = Int->IS.RetVTs.size();
2380     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2381 
2382     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2383       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2384 
2385     if (getNumChildren() != NumParamVTs + 1) {
2386       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2387                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2388       return false;
2389     }
2390 
2391     // Apply type info to the intrinsic ID.
2392     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2393 
2394     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2395       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2396 
2397       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2398       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2399       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2400     }
2401     return MadeChange;
2402   }
2403 
2404   if (getOperator()->isSubClassOf("SDNode")) {
2405     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2406 
2407     // Check that the number of operands is sane.  Negative operands -> varargs.
2408     if (NI.getNumOperands() >= 0 &&
2409         getNumChildren() != (unsigned)NI.getNumOperands()) {
2410       TP.error(getOperator()->getName() + " node requires exactly " +
2411                Twine(NI.getNumOperands()) + " operands!");
2412       return false;
2413     }
2414 
2415     bool MadeChange = false;
2416     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2417       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2418     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2419     return MadeChange;
2420   }
2421 
2422   if (getOperator()->isSubClassOf("Instruction")) {
2423     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2424     CodeGenInstruction &InstInfo =
2425       CDP.getTargetInfo().getInstruction(getOperator());
2426 
2427     bool MadeChange = false;
2428 
2429     // Apply the result types to the node, these come from the things in the
2430     // (outs) list of the instruction.
2431     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2432                                         Inst.getNumResults());
2433     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2434       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2435 
2436     // If the instruction has implicit defs, we apply the first one as a result.
2437     // FIXME: This sucks, it should apply all implicit defs.
2438     if (!InstInfo.ImplicitDefs.empty()) {
2439       unsigned ResNo = NumResultsToAdd;
2440 
2441       // FIXME: Generalize to multiple possible types and multiple possible
2442       // ImplicitDefs.
2443       MVT::SimpleValueType VT =
2444         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2445 
2446       if (VT != MVT::Other)
2447         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2448     }
2449 
2450     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2451     // be the same.
2452     if (getOperator()->getName() == "INSERT_SUBREG") {
2453       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2454       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2455       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2456     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2457       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2458       // variadic.
2459 
2460       unsigned NChild = getNumChildren();
2461       if (NChild < 3) {
2462         TP.error("REG_SEQUENCE requires at least 3 operands!");
2463         return false;
2464       }
2465 
2466       if (NChild % 2 == 0) {
2467         TP.error("REG_SEQUENCE requires an odd number of operands!");
2468         return false;
2469       }
2470 
2471       if (!isOperandClass(getChild(0), "RegisterClass")) {
2472         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2473         return false;
2474       }
2475 
2476       for (unsigned I = 1; I < NChild; I += 2) {
2477         TreePatternNode *SubIdxChild = getChild(I + 1);
2478         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2479           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2480                    Twine(I + 1) + "!");
2481           return false;
2482         }
2483       }
2484     }
2485 
2486     // If one or more operands with a default value appear at the end of the
2487     // formal operand list for an instruction, we allow them to be overridden
2488     // by optional operands provided in the pattern.
2489     //
2490     // But if an operand B without a default appears at any point after an
2491     // operand A with a default, then we don't allow A to be overridden,
2492     // because there would be no way to specify whether the next operand in
2493     // the pattern was intended to override A or skip it.
2494     unsigned NonOverridableOperands = Inst.getNumOperands();
2495     while (NonOverridableOperands > 0 &&
2496            CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2497       --NonOverridableOperands;
2498 
2499     unsigned ChildNo = 0;
2500     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2501       Record *OperandNode = Inst.getOperand(i);
2502 
2503       // If the operand has a default value, do we use it? We must use the
2504       // default if we've run out of children of the pattern DAG to consume,
2505       // or if the operand is followed by a non-defaulted one.
2506       if (CDP.operandHasDefault(OperandNode) &&
2507           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2508         continue;
2509 
2510       // If we have run out of child nodes and there _isn't_ a default
2511       // value we can use for the next operand, give an error.
2512       if (ChildNo >= getNumChildren()) {
2513         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2514         return false;
2515       }
2516 
2517       TreePatternNode *Child = getChild(ChildNo++);
2518       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2519 
2520       // If the operand has sub-operands, they may be provided by distinct
2521       // child patterns, so attempt to match each sub-operand separately.
2522       if (OperandNode->isSubClassOf("Operand")) {
2523         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2524         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2525           // But don't do that if the whole operand is being provided by
2526           // a single ComplexPattern-related Operand.
2527 
2528           if (Child->getNumMIResults(CDP) < NumArgs) {
2529             // Match first sub-operand against the child we already have.
2530             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2531             MadeChange |=
2532               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2533 
2534             // And the remaining sub-operands against subsequent children.
2535             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2536               if (ChildNo >= getNumChildren()) {
2537                 emitTooFewOperandsError(TP, getOperator()->getName(),
2538                                         getNumChildren());
2539                 return false;
2540               }
2541               Child = getChild(ChildNo++);
2542 
2543               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2544               MadeChange |=
2545                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2546             }
2547             continue;
2548           }
2549         }
2550       }
2551 
2552       // If we didn't match by pieces above, attempt to match the whole
2553       // operand now.
2554       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2555     }
2556 
2557     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2558       emitTooManyOperandsError(TP, getOperator()->getName(),
2559                                ChildNo, getNumChildren());
2560       return false;
2561     }
2562 
2563     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2564       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2565     return MadeChange;
2566   }
2567 
2568   if (getOperator()->isSubClassOf("ComplexPattern")) {
2569     bool MadeChange = false;
2570 
2571     for (unsigned i = 0; i < getNumChildren(); ++i)
2572       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2573 
2574     return MadeChange;
2575   }
2576 
2577   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2578 
2579   // Node transforms always take one operand.
2580   if (getNumChildren() != 1) {
2581     TP.error("Node transform '" + getOperator()->getName() +
2582              "' requires one operand!");
2583     return false;
2584   }
2585 
2586   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2587   return MadeChange;
2588 }
2589 
2590 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2591 /// RHS of a commutative operation, not the on LHS.
2592 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2593   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2594     return true;
2595   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2596     return true;
2597   return false;
2598 }
2599 
2600 
2601 /// canPatternMatch - If it is impossible for this pattern to match on this
2602 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2603 /// used as a sanity check for .td files (to prevent people from writing stuff
2604 /// that can never possibly work), and to prevent the pattern permuter from
2605 /// generating stuff that is useless.
2606 bool TreePatternNode::canPatternMatch(std::string &Reason,
2607                                       const CodeGenDAGPatterns &CDP) {
2608   if (isLeaf()) return true;
2609 
2610   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2611     if (!getChild(i)->canPatternMatch(Reason, CDP))
2612       return false;
2613 
2614   // If this is an intrinsic, handle cases that would make it not match.  For
2615   // example, if an operand is required to be an immediate.
2616   if (getOperator()->isSubClassOf("Intrinsic")) {
2617     // TODO:
2618     return true;
2619   }
2620 
2621   if (getOperator()->isSubClassOf("ComplexPattern"))
2622     return true;
2623 
2624   // If this node is a commutative operator, check that the LHS isn't an
2625   // immediate.
2626   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2627   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2628   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2629     // Scan all of the operands of the node and make sure that only the last one
2630     // is a constant node, unless the RHS also is.
2631     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2632       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2633       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2634         if (OnlyOnRHSOfCommutative(getChild(i))) {
2635           Reason="Immediate value must be on the RHS of commutative operators!";
2636           return false;
2637         }
2638     }
2639   }
2640 
2641   return true;
2642 }
2643 
2644 //===----------------------------------------------------------------------===//
2645 // TreePattern implementation
2646 //
2647 
2648 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2649                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2650                          isInputPattern(isInput), HasError(false),
2651                          Infer(*this) {
2652   for (Init *I : RawPat->getValues())
2653     Trees.push_back(ParseTreePattern(I, ""));
2654 }
2655 
2656 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2657                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2658                          isInputPattern(isInput), HasError(false),
2659                          Infer(*this) {
2660   Trees.push_back(ParseTreePattern(Pat, ""));
2661 }
2662 
2663 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2664                          CodeGenDAGPatterns &cdp)
2665     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2666       Infer(*this) {
2667   Trees.push_back(Pat);
2668 }
2669 
2670 void TreePattern::error(const Twine &Msg) {
2671   if (HasError)
2672     return;
2673   dump();
2674   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2675   HasError = true;
2676 }
2677 
2678 void TreePattern::ComputeNamedNodes() {
2679   for (TreePatternNodePtr &Tree : Trees)
2680     ComputeNamedNodes(Tree.get());
2681 }
2682 
2683 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2684   if (!N->getName().empty())
2685     NamedNodes[N->getName()].push_back(N);
2686 
2687   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2688     ComputeNamedNodes(N->getChild(i));
2689 }
2690 
2691 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2692                                                  StringRef OpName) {
2693   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2694     Record *R = DI->getDef();
2695 
2696     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2697     // TreePatternNode of its own.  For example:
2698     ///   (foo GPR, imm) -> (foo GPR, (imm))
2699     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2700       return ParseTreePattern(
2701         DagInit::get(DI, nullptr,
2702                      std::vector<std::pair<Init*, StringInit*> >()),
2703         OpName);
2704 
2705     // Input argument?
2706     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2707     if (R->getName() == "node" && !OpName.empty()) {
2708       if (OpName.empty())
2709         error("'node' argument requires a name to match with operand list");
2710       Args.push_back(OpName);
2711     }
2712 
2713     Res->setName(OpName);
2714     return Res;
2715   }
2716 
2717   // ?:$name or just $name.
2718   if (isa<UnsetInit>(TheInit)) {
2719     if (OpName.empty())
2720       error("'?' argument requires a name to match with operand list");
2721     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2722     Args.push_back(OpName);
2723     Res->setName(OpName);
2724     return Res;
2725   }
2726 
2727   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2728     if (!OpName.empty())
2729       error("Constant int or bit argument should not have a name!");
2730     if (isa<BitInit>(TheInit))
2731       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2732     return std::make_shared<TreePatternNode>(TheInit, 1);
2733   }
2734 
2735   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2736     // Turn this into an IntInit.
2737     Init *II = BI->convertInitializerTo(IntRecTy::get());
2738     if (!II || !isa<IntInit>(II))
2739       error("Bits value must be constants!");
2740     return ParseTreePattern(II, OpName);
2741   }
2742 
2743   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2744   if (!Dag) {
2745     TheInit->print(errs());
2746     error("Pattern has unexpected init kind!");
2747   }
2748   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2749   if (!OpDef) error("Pattern has unexpected operator type!");
2750   Record *Operator = OpDef->getDef();
2751 
2752   if (Operator->isSubClassOf("ValueType")) {
2753     // If the operator is a ValueType, then this must be "type cast" of a leaf
2754     // node.
2755     if (Dag->getNumArgs() != 1)
2756       error("Type cast only takes one operand!");
2757 
2758     TreePatternNodePtr New =
2759         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2760 
2761     // Apply the type cast.
2762     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2763     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2764     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2765 
2766     if (!OpName.empty())
2767       error("ValueType cast should not have a name!");
2768     return New;
2769   }
2770 
2771   // Verify that this is something that makes sense for an operator.
2772   if (!Operator->isSubClassOf("PatFrags") &&
2773       !Operator->isSubClassOf("SDNode") &&
2774       !Operator->isSubClassOf("Instruction") &&
2775       !Operator->isSubClassOf("SDNodeXForm") &&
2776       !Operator->isSubClassOf("Intrinsic") &&
2777       !Operator->isSubClassOf("ComplexPattern") &&
2778       Operator->getName() != "set" &&
2779       Operator->getName() != "implicit")
2780     error("Unrecognized node '" + Operator->getName() + "'!");
2781 
2782   //  Check to see if this is something that is illegal in an input pattern.
2783   if (isInputPattern) {
2784     if (Operator->isSubClassOf("Instruction") ||
2785         Operator->isSubClassOf("SDNodeXForm"))
2786       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2787   } else {
2788     if (Operator->isSubClassOf("Intrinsic"))
2789       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2790 
2791     if (Operator->isSubClassOf("SDNode") &&
2792         Operator->getName() != "imm" &&
2793         Operator->getName() != "fpimm" &&
2794         Operator->getName() != "tglobaltlsaddr" &&
2795         Operator->getName() != "tconstpool" &&
2796         Operator->getName() != "tjumptable" &&
2797         Operator->getName() != "tframeindex" &&
2798         Operator->getName() != "texternalsym" &&
2799         Operator->getName() != "tblockaddress" &&
2800         Operator->getName() != "tglobaladdr" &&
2801         Operator->getName() != "bb" &&
2802         Operator->getName() != "vt" &&
2803         Operator->getName() != "mcsym")
2804       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2805   }
2806 
2807   std::vector<TreePatternNodePtr> Children;
2808 
2809   // Parse all the operands.
2810   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2811     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2812 
2813   // Get the actual number of results before Operator is converted to an intrinsic
2814   // node (which is hard-coded to have either zero or one result).
2815   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2816 
2817   // If the operator is an intrinsic, then this is just syntactic sugar for
2818   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2819   // convert the intrinsic name to a number.
2820   if (Operator->isSubClassOf("Intrinsic")) {
2821     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2822     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2823 
2824     // If this intrinsic returns void, it must have side-effects and thus a
2825     // chain.
2826     if (Int.IS.RetVTs.empty())
2827       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2828     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2829       // Has side-effects, requires chain.
2830       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2831     else // Otherwise, no chain.
2832       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2833 
2834     Children.insert(Children.begin(),
2835                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2836   }
2837 
2838   if (Operator->isSubClassOf("ComplexPattern")) {
2839     for (unsigned i = 0; i < Children.size(); ++i) {
2840       TreePatternNodePtr Child = Children[i];
2841 
2842       if (Child->getName().empty())
2843         error("All arguments to a ComplexPattern must be named");
2844 
2845       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2846       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2847       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2848       auto OperandId = std::make_pair(Operator, i);
2849       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2850       if (PrevOp != ComplexPatternOperands.end()) {
2851         if (PrevOp->getValue() != OperandId)
2852           error("All ComplexPattern operands must appear consistently: "
2853                 "in the same order in just one ComplexPattern instance.");
2854       } else
2855         ComplexPatternOperands[Child->getName()] = OperandId;
2856     }
2857   }
2858 
2859   TreePatternNodePtr Result =
2860       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2861                                         NumResults);
2862   Result->setName(OpName);
2863 
2864   if (Dag->getName()) {
2865     assert(Result->getName().empty());
2866     Result->setName(Dag->getNameStr());
2867   }
2868   return Result;
2869 }
2870 
2871 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2872 /// will never match in favor of something obvious that will.  This is here
2873 /// strictly as a convenience to target authors because it allows them to write
2874 /// more type generic things and have useless type casts fold away.
2875 ///
2876 /// This returns true if any change is made.
2877 static bool SimplifyTree(TreePatternNodePtr &N) {
2878   if (N->isLeaf())
2879     return false;
2880 
2881   // If we have a bitconvert with a resolved type and if the source and
2882   // destination types are the same, then the bitconvert is useless, remove it.
2883   if (N->getOperator()->getName() == "bitconvert" &&
2884       N->getExtType(0).isValueTypeByHwMode(false) &&
2885       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2886       N->getName().empty()) {
2887     N = N->getChildShared(0);
2888     SimplifyTree(N);
2889     return true;
2890   }
2891 
2892   // Walk all children.
2893   bool MadeChange = false;
2894   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2895     TreePatternNodePtr Child = N->getChildShared(i);
2896     MadeChange |= SimplifyTree(Child);
2897     N->setChild(i, std::move(Child));
2898   }
2899   return MadeChange;
2900 }
2901 
2902 
2903 
2904 /// InferAllTypes - Infer/propagate as many types throughout the expression
2905 /// patterns as possible.  Return true if all types are inferred, false
2906 /// otherwise.  Flags an error if a type contradiction is found.
2907 bool TreePattern::
2908 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2909   if (NamedNodes.empty())
2910     ComputeNamedNodes();
2911 
2912   bool MadeChange = true;
2913   while (MadeChange) {
2914     MadeChange = false;
2915     for (TreePatternNodePtr &Tree : Trees) {
2916       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2917       MadeChange |= SimplifyTree(Tree);
2918     }
2919 
2920     // If there are constraints on our named nodes, apply them.
2921     for (auto &Entry : NamedNodes) {
2922       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2923 
2924       // If we have input named node types, propagate their types to the named
2925       // values here.
2926       if (InNamedTypes) {
2927         if (!InNamedTypes->count(Entry.getKey())) {
2928           error("Node '" + std::string(Entry.getKey()) +
2929                 "' in output pattern but not input pattern");
2930           return true;
2931         }
2932 
2933         const SmallVectorImpl<TreePatternNode*> &InNodes =
2934           InNamedTypes->find(Entry.getKey())->second;
2935 
2936         // The input types should be fully resolved by now.
2937         for (TreePatternNode *Node : Nodes) {
2938           // If this node is a register class, and it is the root of the pattern
2939           // then we're mapping something onto an input register.  We allow
2940           // changing the type of the input register in this case.  This allows
2941           // us to match things like:
2942           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2943           if (Node == Trees[0].get() && Node->isLeaf()) {
2944             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2945             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2946                        DI->getDef()->isSubClassOf("RegisterOperand")))
2947               continue;
2948           }
2949 
2950           assert(Node->getNumTypes() == 1 &&
2951                  InNodes[0]->getNumTypes() == 1 &&
2952                  "FIXME: cannot name multiple result nodes yet");
2953           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2954                                              *this);
2955         }
2956       }
2957 
2958       // If there are multiple nodes with the same name, they must all have the
2959       // same type.
2960       if (Entry.second.size() > 1) {
2961         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2962           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2963           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2964                  "FIXME: cannot name multiple result nodes yet");
2965 
2966           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2967           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2968         }
2969       }
2970     }
2971   }
2972 
2973   bool HasUnresolvedTypes = false;
2974   for (const TreePatternNodePtr &Tree : Trees)
2975     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2976   return !HasUnresolvedTypes;
2977 }
2978 
2979 void TreePattern::print(raw_ostream &OS) const {
2980   OS << getRecord()->getName();
2981   if (!Args.empty()) {
2982     OS << "(" << Args[0];
2983     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2984       OS << ", " << Args[i];
2985     OS << ")";
2986   }
2987   OS << ": ";
2988 
2989   if (Trees.size() > 1)
2990     OS << "[\n";
2991   for (const TreePatternNodePtr &Tree : Trees) {
2992     OS << "\t";
2993     Tree->print(OS);
2994     OS << "\n";
2995   }
2996 
2997   if (Trees.size() > 1)
2998     OS << "]\n";
2999 }
3000 
3001 void TreePattern::dump() const { print(errs()); }
3002 
3003 //===----------------------------------------------------------------------===//
3004 // CodeGenDAGPatterns implementation
3005 //
3006 
3007 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3008                                        PatternRewriterFn PatternRewriter)
3009     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3010       PatternRewriter(PatternRewriter) {
3011 
3012   Intrinsics = CodeGenIntrinsicTable(Records, false);
3013   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
3014   ParseNodeInfo();
3015   ParseNodeTransforms();
3016   ParseComplexPatterns();
3017   ParsePatternFragments();
3018   ParseDefaultOperands();
3019   ParseInstructions();
3020   ParsePatternFragments(/*OutFrags*/true);
3021   ParsePatterns();
3022 
3023   // Break patterns with parameterized types into a series of patterns,
3024   // where each one has a fixed type and is predicated on the conditions
3025   // of the associated HW mode.
3026   ExpandHwModeBasedTypes();
3027 
3028   // Generate variants.  For example, commutative patterns can match
3029   // multiple ways.  Add them to PatternsToMatch as well.
3030   GenerateVariants();
3031 
3032   // Infer instruction flags.  For example, we can detect loads,
3033   // stores, and side effects in many cases by examining an
3034   // instruction's pattern.
3035   InferInstructionFlags();
3036 
3037   // Verify that instruction flags match the patterns.
3038   VerifyInstructionFlags();
3039 }
3040 
3041 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3042   Record *N = Records.getDef(Name);
3043   if (!N || !N->isSubClassOf("SDNode"))
3044     PrintFatalError("Error getting SDNode '" + Name + "'!");
3045 
3046   return N;
3047 }
3048 
3049 // Parse all of the SDNode definitions for the target, populating SDNodes.
3050 void CodeGenDAGPatterns::ParseNodeInfo() {
3051   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3052   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3053 
3054   while (!Nodes.empty()) {
3055     Record *R = Nodes.back();
3056     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3057     Nodes.pop_back();
3058   }
3059 
3060   // Get the builtin intrinsic nodes.
3061   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3062   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3063   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3064 }
3065 
3066 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3067 /// map, and emit them to the file as functions.
3068 void CodeGenDAGPatterns::ParseNodeTransforms() {
3069   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3070   while (!Xforms.empty()) {
3071     Record *XFormNode = Xforms.back();
3072     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3073     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3074     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3075 
3076     Xforms.pop_back();
3077   }
3078 }
3079 
3080 void CodeGenDAGPatterns::ParseComplexPatterns() {
3081   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3082   while (!AMs.empty()) {
3083     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3084     AMs.pop_back();
3085   }
3086 }
3087 
3088 
3089 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3090 /// file, building up the PatternFragments map.  After we've collected them all,
3091 /// inline fragments together as necessary, so that there are no references left
3092 /// inside a pattern fragment to a pattern fragment.
3093 ///
3094 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3095   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3096 
3097   // First step, parse all of the fragments.
3098   for (Record *Frag : Fragments) {
3099     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3100       continue;
3101 
3102     ListInit *LI = Frag->getValueAsListInit("Fragments");
3103     TreePattern *P =
3104         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3105              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3106              *this)).get();
3107 
3108     // Validate the argument list, converting it to set, to discard duplicates.
3109     std::vector<std::string> &Args = P->getArgList();
3110     // Copy the args so we can take StringRefs to them.
3111     auto ArgsCopy = Args;
3112     SmallDenseSet<StringRef, 4> OperandsSet;
3113     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3114 
3115     if (OperandsSet.count(""))
3116       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3117 
3118     // Parse the operands list.
3119     DagInit *OpsList = Frag->getValueAsDag("Operands");
3120     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3121     // Special cases: ops == outs == ins. Different names are used to
3122     // improve readability.
3123     if (!OpsOp ||
3124         (OpsOp->getDef()->getName() != "ops" &&
3125          OpsOp->getDef()->getName() != "outs" &&
3126          OpsOp->getDef()->getName() != "ins"))
3127       P->error("Operands list should start with '(ops ... '!");
3128 
3129     // Copy over the arguments.
3130     Args.clear();
3131     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3132       if (!isa<DefInit>(OpsList->getArg(j)) ||
3133           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3134         P->error("Operands list should all be 'node' values.");
3135       if (!OpsList->getArgName(j))
3136         P->error("Operands list should have names for each operand!");
3137       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3138       if (!OperandsSet.count(ArgNameStr))
3139         P->error("'" + ArgNameStr +
3140                  "' does not occur in pattern or was multiply specified!");
3141       OperandsSet.erase(ArgNameStr);
3142       Args.push_back(ArgNameStr);
3143     }
3144 
3145     if (!OperandsSet.empty())
3146       P->error("Operands list does not contain an entry for operand '" +
3147                *OperandsSet.begin() + "'!");
3148 
3149     // If there is a node transformation corresponding to this, keep track of
3150     // it.
3151     Record *Transform = Frag->getValueAsDef("OperandTransform");
3152     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3153       for (auto T : P->getTrees())
3154         T->setTransformFn(Transform);
3155   }
3156 
3157   // Now that we've parsed all of the tree fragments, do a closure on them so
3158   // that there are not references to PatFrags left inside of them.
3159   for (Record *Frag : Fragments) {
3160     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3161       continue;
3162 
3163     TreePattern &ThePat = *PatternFragments[Frag];
3164     ThePat.InlinePatternFragments();
3165 
3166     // Infer as many types as possible.  Don't worry about it if we don't infer
3167     // all of them, some may depend on the inputs of the pattern.  Also, don't
3168     // validate type sets; validation may cause spurious failures e.g. if a
3169     // fragment needs floating-point types but the current target does not have
3170     // any (this is only an error if that fragment is ever used!).
3171     {
3172       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3173       ThePat.InferAllTypes();
3174       ThePat.resetError();
3175     }
3176 
3177     // If debugging, print out the pattern fragment result.
3178     LLVM_DEBUG(ThePat.dump());
3179   }
3180 }
3181 
3182 void CodeGenDAGPatterns::ParseDefaultOperands() {
3183   std::vector<Record*> DefaultOps;
3184   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3185 
3186   // Find some SDNode.
3187   assert(!SDNodes.empty() && "No SDNodes parsed?");
3188   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3189 
3190   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3191     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3192 
3193     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3194     // SomeSDnode so that we can parse this.
3195     std::vector<std::pair<Init*, StringInit*> > Ops;
3196     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3197       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3198                                    DefaultInfo->getArgName(op)));
3199     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3200 
3201     // Create a TreePattern to parse this.
3202     TreePattern P(DefaultOps[i], DI, false, *this);
3203     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3204 
3205     // Copy the operands over into a DAGDefaultOperand.
3206     DAGDefaultOperand DefaultOpInfo;
3207 
3208     const TreePatternNodePtr &T = P.getTree(0);
3209     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3210       TreePatternNodePtr TPN = T->getChildShared(op);
3211       while (TPN->ApplyTypeConstraints(P, false))
3212         /* Resolve all types */;
3213 
3214       if (TPN->ContainsUnresolvedType(P)) {
3215         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3216                         DefaultOps[i]->getName() +
3217                         "' doesn't have a concrete type!");
3218       }
3219       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3220     }
3221 
3222     // Insert it into the DefaultOperands map so we can find it later.
3223     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3224   }
3225 }
3226 
3227 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3228 /// instruction input.  Return true if this is a real use.
3229 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3230                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3231   // No name -> not interesting.
3232   if (Pat->getName().empty()) {
3233     if (Pat->isLeaf()) {
3234       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3235       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3236                  DI->getDef()->isSubClassOf("RegisterOperand")))
3237         I.error("Input " + DI->getDef()->getName() + " must be named!");
3238     }
3239     return false;
3240   }
3241 
3242   Record *Rec;
3243   if (Pat->isLeaf()) {
3244     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3245     if (!DI)
3246       I.error("Input $" + Pat->getName() + " must be an identifier!");
3247     Rec = DI->getDef();
3248   } else {
3249     Rec = Pat->getOperator();
3250   }
3251 
3252   // SRCVALUE nodes are ignored.
3253   if (Rec->getName() == "srcvalue")
3254     return false;
3255 
3256   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3257   if (!Slot) {
3258     Slot = Pat;
3259     return true;
3260   }
3261   Record *SlotRec;
3262   if (Slot->isLeaf()) {
3263     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3264   } else {
3265     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3266     SlotRec = Slot->getOperator();
3267   }
3268 
3269   // Ensure that the inputs agree if we've already seen this input.
3270   if (Rec != SlotRec)
3271     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3272   // Ensure that the types can agree as well.
3273   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3274   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3275   if (Slot->getExtTypes() != Pat->getExtTypes())
3276     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3277   return true;
3278 }
3279 
3280 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3281 /// part of "I", the instruction), computing the set of inputs and outputs of
3282 /// the pattern.  Report errors if we see anything naughty.
3283 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3284     TreePattern &I, TreePatternNodePtr Pat,
3285     std::map<std::string, TreePatternNodePtr> &InstInputs,
3286     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3287         &InstResults,
3288     std::vector<Record *> &InstImpResults) {
3289 
3290   // The instruction pattern still has unresolved fragments.  For *named*
3291   // nodes we must resolve those here.  This may not result in multiple
3292   // alternatives.
3293   if (!Pat->getName().empty()) {
3294     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3295     SrcPattern.InlinePatternFragments();
3296     SrcPattern.InferAllTypes();
3297     Pat = SrcPattern.getOnlyTree();
3298   }
3299 
3300   if (Pat->isLeaf()) {
3301     bool isUse = HandleUse(I, Pat, InstInputs);
3302     if (!isUse && Pat->getTransformFn())
3303       I.error("Cannot specify a transform function for a non-input value!");
3304     return;
3305   }
3306 
3307   if (Pat->getOperator()->getName() == "implicit") {
3308     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3309       TreePatternNode *Dest = Pat->getChild(i);
3310       if (!Dest->isLeaf())
3311         I.error("implicitly defined value should be a register!");
3312 
3313       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3314       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3315         I.error("implicitly defined value should be a register!");
3316       InstImpResults.push_back(Val->getDef());
3317     }
3318     return;
3319   }
3320 
3321   if (Pat->getOperator()->getName() != "set") {
3322     // If this is not a set, verify that the children nodes are not void typed,
3323     // and recurse.
3324     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3325       if (Pat->getChild(i)->getNumTypes() == 0)
3326         I.error("Cannot have void nodes inside of patterns!");
3327       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3328                                   InstResults, InstImpResults);
3329     }
3330 
3331     // If this is a non-leaf node with no children, treat it basically as if
3332     // it were a leaf.  This handles nodes like (imm).
3333     bool isUse = HandleUse(I, Pat, InstInputs);
3334 
3335     if (!isUse && Pat->getTransformFn())
3336       I.error("Cannot specify a transform function for a non-input value!");
3337     return;
3338   }
3339 
3340   // Otherwise, this is a set, validate and collect instruction results.
3341   if (Pat->getNumChildren() == 0)
3342     I.error("set requires operands!");
3343 
3344   if (Pat->getTransformFn())
3345     I.error("Cannot specify a transform function on a set node!");
3346 
3347   // Check the set destinations.
3348   unsigned NumDests = Pat->getNumChildren()-1;
3349   for (unsigned i = 0; i != NumDests; ++i) {
3350     TreePatternNodePtr Dest = Pat->getChildShared(i);
3351     // For set destinations we also must resolve fragments here.
3352     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3353     DestPattern.InlinePatternFragments();
3354     DestPattern.InferAllTypes();
3355     Dest = DestPattern.getOnlyTree();
3356 
3357     if (!Dest->isLeaf())
3358       I.error("set destination should be a register!");
3359 
3360     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3361     if (!Val) {
3362       I.error("set destination should be a register!");
3363       continue;
3364     }
3365 
3366     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3367         Val->getDef()->isSubClassOf("ValueType") ||
3368         Val->getDef()->isSubClassOf("RegisterOperand") ||
3369         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3370       if (Dest->getName().empty())
3371         I.error("set destination must have a name!");
3372       if (InstResults.count(Dest->getName()))
3373         I.error("cannot set '" + Dest->getName() + "' multiple times");
3374       InstResults[Dest->getName()] = Dest;
3375     } else if (Val->getDef()->isSubClassOf("Register")) {
3376       InstImpResults.push_back(Val->getDef());
3377     } else {
3378       I.error("set destination should be a register!");
3379     }
3380   }
3381 
3382   // Verify and collect info from the computation.
3383   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3384                               InstResults, InstImpResults);
3385 }
3386 
3387 //===----------------------------------------------------------------------===//
3388 // Instruction Analysis
3389 //===----------------------------------------------------------------------===//
3390 
3391 class InstAnalyzer {
3392   const CodeGenDAGPatterns &CDP;
3393 public:
3394   bool hasSideEffects;
3395   bool mayStore;
3396   bool mayLoad;
3397   bool isBitcast;
3398   bool isVariadic;
3399   bool hasChain;
3400 
3401   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3402     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3403       isBitcast(false), isVariadic(false), hasChain(false) {}
3404 
3405   void Analyze(const PatternToMatch &Pat) {
3406     const TreePatternNode *N = Pat.getSrcPattern();
3407     AnalyzeNode(N);
3408     // These properties are detected only on the root node.
3409     isBitcast = IsNodeBitcast(N);
3410   }
3411 
3412 private:
3413   bool IsNodeBitcast(const TreePatternNode *N) const {
3414     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3415       return false;
3416 
3417     if (N->isLeaf())
3418       return false;
3419     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3420       return false;
3421 
3422     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3423     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3424       return false;
3425     return OpInfo.getEnumName() == "ISD::BITCAST";
3426   }
3427 
3428 public:
3429   void AnalyzeNode(const TreePatternNode *N) {
3430     if (N->isLeaf()) {
3431       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3432         Record *LeafRec = DI->getDef();
3433         // Handle ComplexPattern leaves.
3434         if (LeafRec->isSubClassOf("ComplexPattern")) {
3435           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3436           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3437           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3438           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3439         }
3440       }
3441       return;
3442     }
3443 
3444     // Analyze children.
3445     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3446       AnalyzeNode(N->getChild(i));
3447 
3448     // Notice properties of the node.
3449     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3450     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3451     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3452     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3453     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3454 
3455     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3456       // If this is an intrinsic, analyze it.
3457       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3458         mayLoad = true;// These may load memory.
3459 
3460       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3461         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3462 
3463       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3464           IntInfo->hasSideEffects)
3465         // ReadWriteMem intrinsics can have other strange effects.
3466         hasSideEffects = true;
3467     }
3468   }
3469 
3470 };
3471 
3472 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3473                              const InstAnalyzer &PatInfo,
3474                              Record *PatDef) {
3475   bool Error = false;
3476 
3477   // Remember where InstInfo got its flags.
3478   if (InstInfo.hasUndefFlags())
3479       InstInfo.InferredFrom = PatDef;
3480 
3481   // Check explicitly set flags for consistency.
3482   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3483       !InstInfo.hasSideEffects_Unset) {
3484     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3485     // the pattern has no side effects. That could be useful for div/rem
3486     // instructions that may trap.
3487     if (!InstInfo.hasSideEffects) {
3488       Error = true;
3489       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3490                  Twine(InstInfo.hasSideEffects));
3491     }
3492   }
3493 
3494   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3495     Error = true;
3496     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3497                Twine(InstInfo.mayStore));
3498   }
3499 
3500   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3501     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3502     // Some targets translate immediates to loads.
3503     if (!InstInfo.mayLoad) {
3504       Error = true;
3505       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3506                  Twine(InstInfo.mayLoad));
3507     }
3508   }
3509 
3510   // Transfer inferred flags.
3511   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3512   InstInfo.mayStore |= PatInfo.mayStore;
3513   InstInfo.mayLoad |= PatInfo.mayLoad;
3514 
3515   // These flags are silently added without any verification.
3516   // FIXME: To match historical behavior of TableGen, for now add those flags
3517   // only when we're inferring from the primary instruction pattern.
3518   if (PatDef->isSubClassOf("Instruction")) {
3519     InstInfo.isBitcast |= PatInfo.isBitcast;
3520     InstInfo.hasChain |= PatInfo.hasChain;
3521     InstInfo.hasChain_Inferred = true;
3522   }
3523 
3524   // Don't infer isVariadic. This flag means something different on SDNodes and
3525   // instructions. For example, a CALL SDNode is variadic because it has the
3526   // call arguments as operands, but a CALL instruction is not variadic - it
3527   // has argument registers as implicit, not explicit uses.
3528 
3529   return Error;
3530 }
3531 
3532 /// hasNullFragReference - Return true if the DAG has any reference to the
3533 /// null_frag operator.
3534 static bool hasNullFragReference(DagInit *DI) {
3535   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3536   if (!OpDef) return false;
3537   Record *Operator = OpDef->getDef();
3538 
3539   // If this is the null fragment, return true.
3540   if (Operator->getName() == "null_frag") return true;
3541   // If any of the arguments reference the null fragment, return true.
3542   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3543     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3544     if (Arg && hasNullFragReference(Arg))
3545       return true;
3546   }
3547 
3548   return false;
3549 }
3550 
3551 /// hasNullFragReference - Return true if any DAG in the list references
3552 /// the null_frag operator.
3553 static bool hasNullFragReference(ListInit *LI) {
3554   for (Init *I : LI->getValues()) {
3555     DagInit *DI = dyn_cast<DagInit>(I);
3556     assert(DI && "non-dag in an instruction Pattern list?!");
3557     if (hasNullFragReference(DI))
3558       return true;
3559   }
3560   return false;
3561 }
3562 
3563 /// Get all the instructions in a tree.
3564 static void
3565 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3566   if (Tree->isLeaf())
3567     return;
3568   if (Tree->getOperator()->isSubClassOf("Instruction"))
3569     Instrs.push_back(Tree->getOperator());
3570   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3571     getInstructionsInTree(Tree->getChild(i), Instrs);
3572 }
3573 
3574 /// Check the class of a pattern leaf node against the instruction operand it
3575 /// represents.
3576 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3577                               Record *Leaf) {
3578   if (OI.Rec == Leaf)
3579     return true;
3580 
3581   // Allow direct value types to be used in instruction set patterns.
3582   // The type will be checked later.
3583   if (Leaf->isSubClassOf("ValueType"))
3584     return true;
3585 
3586   // Patterns can also be ComplexPattern instances.
3587   if (Leaf->isSubClassOf("ComplexPattern"))
3588     return true;
3589 
3590   return false;
3591 }
3592 
3593 void CodeGenDAGPatterns::parseInstructionPattern(
3594     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3595 
3596   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3597 
3598   // Parse the instruction.
3599   TreePattern I(CGI.TheDef, Pat, true, *this);
3600 
3601   // InstInputs - Keep track of all of the inputs of the instruction, along
3602   // with the record they are declared as.
3603   std::map<std::string, TreePatternNodePtr> InstInputs;
3604 
3605   // InstResults - Keep track of all the virtual registers that are 'set'
3606   // in the instruction, including what reg class they are.
3607   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3608       InstResults;
3609 
3610   std::vector<Record*> InstImpResults;
3611 
3612   // Verify that the top-level forms in the instruction are of void type, and
3613   // fill in the InstResults map.
3614   SmallString<32> TypesString;
3615   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3616     TypesString.clear();
3617     TreePatternNodePtr Pat = I.getTree(j);
3618     if (Pat->getNumTypes() != 0) {
3619       raw_svector_ostream OS(TypesString);
3620       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3621         if (k > 0)
3622           OS << ", ";
3623         Pat->getExtType(k).writeToStream(OS);
3624       }
3625       I.error("Top-level forms in instruction pattern should have"
3626                " void types, has types " +
3627                OS.str());
3628     }
3629 
3630     // Find inputs and outputs, and verify the structure of the uses/defs.
3631     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3632                                 InstImpResults);
3633   }
3634 
3635   // Now that we have inputs and outputs of the pattern, inspect the operands
3636   // list for the instruction.  This determines the order that operands are
3637   // added to the machine instruction the node corresponds to.
3638   unsigned NumResults = InstResults.size();
3639 
3640   // Parse the operands list from the (ops) list, validating it.
3641   assert(I.getArgList().empty() && "Args list should still be empty here!");
3642 
3643   // Check that all of the results occur first in the list.
3644   std::vector<Record*> Results;
3645   std::vector<unsigned> ResultIndices;
3646   SmallVector<TreePatternNodePtr, 2> ResNodes;
3647   for (unsigned i = 0; i != NumResults; ++i) {
3648     if (i == CGI.Operands.size()) {
3649       const std::string &OpName =
3650           std::find_if(InstResults.begin(), InstResults.end(),
3651                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3652                          return P.second;
3653                        })
3654               ->first;
3655 
3656       I.error("'" + OpName + "' set but does not appear in operand list!");
3657     }
3658 
3659     const std::string &OpName = CGI.Operands[i].Name;
3660 
3661     // Check that it exists in InstResults.
3662     auto InstResultIter = InstResults.find(OpName);
3663     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3664       I.error("Operand $" + OpName + " does not exist in operand list!");
3665 
3666     TreePatternNodePtr RNode = InstResultIter->second;
3667     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3668     ResNodes.push_back(std::move(RNode));
3669     if (!R)
3670       I.error("Operand $" + OpName + " should be a set destination: all "
3671                "outputs must occur before inputs in operand list!");
3672 
3673     if (!checkOperandClass(CGI.Operands[i], R))
3674       I.error("Operand $" + OpName + " class mismatch!");
3675 
3676     // Remember the return type.
3677     Results.push_back(CGI.Operands[i].Rec);
3678 
3679     // Remember the result index.
3680     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3681 
3682     // Okay, this one checks out.
3683     InstResultIter->second = nullptr;
3684   }
3685 
3686   // Loop over the inputs next.
3687   std::vector<TreePatternNodePtr> ResultNodeOperands;
3688   std::vector<Record*> Operands;
3689   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3690     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3691     const std::string &OpName = Op.Name;
3692     if (OpName.empty())
3693       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3694 
3695     if (!InstInputs.count(OpName)) {
3696       // If this is an operand with a DefaultOps set filled in, we can ignore
3697       // this.  When we codegen it, we will do so as always executed.
3698       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3699         // Does it have a non-empty DefaultOps field?  If so, ignore this
3700         // operand.
3701         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3702           continue;
3703       }
3704       I.error("Operand $" + OpName +
3705                " does not appear in the instruction pattern");
3706     }
3707     TreePatternNodePtr InVal = InstInputs[OpName];
3708     InstInputs.erase(OpName);   // It occurred, remove from map.
3709 
3710     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3711       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3712       if (!checkOperandClass(Op, InRec))
3713         I.error("Operand $" + OpName + "'s register class disagrees"
3714                  " between the operand and pattern");
3715     }
3716     Operands.push_back(Op.Rec);
3717 
3718     // Construct the result for the dest-pattern operand list.
3719     TreePatternNodePtr OpNode = InVal->clone();
3720 
3721     // No predicate is useful on the result.
3722     OpNode->clearPredicateCalls();
3723 
3724     // Promote the xform function to be an explicit node if set.
3725     if (Record *Xform = OpNode->getTransformFn()) {
3726       OpNode->setTransformFn(nullptr);
3727       std::vector<TreePatternNodePtr> Children;
3728       Children.push_back(OpNode);
3729       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3730                                                  OpNode->getNumTypes());
3731     }
3732 
3733     ResultNodeOperands.push_back(std::move(OpNode));
3734   }
3735 
3736   if (!InstInputs.empty())
3737     I.error("Input operand $" + InstInputs.begin()->first +
3738             " occurs in pattern but not in operands list!");
3739 
3740   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3741       I.getRecord(), std::move(ResultNodeOperands),
3742       GetNumNodeResults(I.getRecord(), *this));
3743   // Copy fully inferred output node types to instruction result pattern.
3744   for (unsigned i = 0; i != NumResults; ++i) {
3745     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3746     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3747     ResultPattern->setResultIndex(i, ResultIndices[i]);
3748   }
3749 
3750   // FIXME: Assume only the first tree is the pattern. The others are clobber
3751   // nodes.
3752   TreePatternNodePtr Pattern = I.getTree(0);
3753   TreePatternNodePtr SrcPattern;
3754   if (Pattern->getOperator()->getName() == "set") {
3755     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3756   } else{
3757     // Not a set (store or something?)
3758     SrcPattern = Pattern;
3759   }
3760 
3761   // Create and insert the instruction.
3762   // FIXME: InstImpResults should not be part of DAGInstruction.
3763   Record *R = I.getRecord();
3764   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3765                    std::forward_as_tuple(Results, Operands, InstImpResults,
3766                                          SrcPattern, ResultPattern));
3767 
3768   LLVM_DEBUG(I.dump());
3769 }
3770 
3771 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3772 /// any fragments involved.  This populates the Instructions list with fully
3773 /// resolved instructions.
3774 void CodeGenDAGPatterns::ParseInstructions() {
3775   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3776 
3777   for (Record *Instr : Instrs) {
3778     ListInit *LI = nullptr;
3779 
3780     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3781       LI = Instr->getValueAsListInit("Pattern");
3782 
3783     // If there is no pattern, only collect minimal information about the
3784     // instruction for its operand list.  We have to assume that there is one
3785     // result, as we have no detailed info. A pattern which references the
3786     // null_frag operator is as-if no pattern were specified. Normally this
3787     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3788     // null_frag.
3789     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3790       std::vector<Record*> Results;
3791       std::vector<Record*> Operands;
3792 
3793       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3794 
3795       if (InstInfo.Operands.size() != 0) {
3796         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3797           Results.push_back(InstInfo.Operands[j].Rec);
3798 
3799         // The rest are inputs.
3800         for (unsigned j = InstInfo.Operands.NumDefs,
3801                e = InstInfo.Operands.size(); j < e; ++j)
3802           Operands.push_back(InstInfo.Operands[j].Rec);
3803       }
3804 
3805       // Create and insert the instruction.
3806       std::vector<Record*> ImpResults;
3807       Instructions.insert(std::make_pair(Instr,
3808                             DAGInstruction(Results, Operands, ImpResults)));
3809       continue;  // no pattern.
3810     }
3811 
3812     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3813     parseInstructionPattern(CGI, LI, Instructions);
3814   }
3815 
3816   // If we can, convert the instructions to be patterns that are matched!
3817   for (auto &Entry : Instructions) {
3818     Record *Instr = Entry.first;
3819     DAGInstruction &TheInst = Entry.second;
3820     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3821     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3822 
3823     if (SrcPattern && ResultPattern) {
3824       TreePattern Pattern(Instr, SrcPattern, true, *this);
3825       TreePattern Result(Instr, ResultPattern, false, *this);
3826       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3827     }
3828   }
3829 }
3830 
3831 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3832 
3833 static void FindNames(TreePatternNode *P,
3834                       std::map<std::string, NameRecord> &Names,
3835                       TreePattern *PatternTop) {
3836   if (!P->getName().empty()) {
3837     NameRecord &Rec = Names[P->getName()];
3838     // If this is the first instance of the name, remember the node.
3839     if (Rec.second++ == 0)
3840       Rec.first = P;
3841     else if (Rec.first->getExtTypes() != P->getExtTypes())
3842       PatternTop->error("repetition of value: $" + P->getName() +
3843                         " where different uses have different types!");
3844   }
3845 
3846   if (!P->isLeaf()) {
3847     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3848       FindNames(P->getChild(i), Names, PatternTop);
3849   }
3850 }
3851 
3852 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3853   std::vector<Predicate> Preds;
3854   for (Init *I : L->getValues()) {
3855     if (DefInit *Pred = dyn_cast<DefInit>(I))
3856       Preds.push_back(Pred->getDef());
3857     else
3858       llvm_unreachable("Non-def on the list");
3859   }
3860 
3861   // Sort so that different orders get canonicalized to the same string.
3862   llvm::sort(Preds);
3863   return Preds;
3864 }
3865 
3866 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3867                                            PatternToMatch &&PTM) {
3868   // Do some sanity checking on the pattern we're about to match.
3869   std::string Reason;
3870   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3871     PrintWarning(Pattern->getRecord()->getLoc(),
3872       Twine("Pattern can never match: ") + Reason);
3873     return;
3874   }
3875 
3876   // If the source pattern's root is a complex pattern, that complex pattern
3877   // must specify the nodes it can potentially match.
3878   if (const ComplexPattern *CP =
3879         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3880     if (CP->getRootNodes().empty())
3881       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3882                      " could match");
3883 
3884 
3885   // Find all of the named values in the input and output, ensure they have the
3886   // same type.
3887   std::map<std::string, NameRecord> SrcNames, DstNames;
3888   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3889   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3890 
3891   // Scan all of the named values in the destination pattern, rejecting them if
3892   // they don't exist in the input pattern.
3893   for (const auto &Entry : DstNames) {
3894     if (SrcNames[Entry.first].first == nullptr)
3895       Pattern->error("Pattern has input without matching name in output: $" +
3896                      Entry.first);
3897   }
3898 
3899   // Scan all of the named values in the source pattern, rejecting them if the
3900   // name isn't used in the dest, and isn't used to tie two values together.
3901   for (const auto &Entry : SrcNames)
3902     if (DstNames[Entry.first].first == nullptr &&
3903         SrcNames[Entry.first].second == 1)
3904       Pattern->error("Pattern has dead named input: $" + Entry.first);
3905 
3906   PatternsToMatch.push_back(PTM);
3907 }
3908 
3909 void CodeGenDAGPatterns::InferInstructionFlags() {
3910   ArrayRef<const CodeGenInstruction*> Instructions =
3911     Target.getInstructionsByEnumValue();
3912 
3913   unsigned Errors = 0;
3914 
3915   // Try to infer flags from all patterns in PatternToMatch.  These include
3916   // both the primary instruction patterns (which always come first) and
3917   // patterns defined outside the instruction.
3918   for (const PatternToMatch &PTM : ptms()) {
3919     // We can only infer from single-instruction patterns, otherwise we won't
3920     // know which instruction should get the flags.
3921     SmallVector<Record*, 8> PatInstrs;
3922     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3923     if (PatInstrs.size() != 1)
3924       continue;
3925 
3926     // Get the single instruction.
3927     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3928 
3929     // Only infer properties from the first pattern. We'll verify the others.
3930     if (InstInfo.InferredFrom)
3931       continue;
3932 
3933     InstAnalyzer PatInfo(*this);
3934     PatInfo.Analyze(PTM);
3935     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3936   }
3937 
3938   if (Errors)
3939     PrintFatalError("pattern conflicts");
3940 
3941   // If requested by the target, guess any undefined properties.
3942   if (Target.guessInstructionProperties()) {
3943     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3944       CodeGenInstruction *InstInfo =
3945         const_cast<CodeGenInstruction *>(Instructions[i]);
3946       if (InstInfo->InferredFrom)
3947         continue;
3948       // The mayLoad and mayStore flags default to false.
3949       // Conservatively assume hasSideEffects if it wasn't explicit.
3950       if (InstInfo->hasSideEffects_Unset)
3951         InstInfo->hasSideEffects = true;
3952     }
3953     return;
3954   }
3955 
3956   // Complain about any flags that are still undefined.
3957   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3958     CodeGenInstruction *InstInfo =
3959       const_cast<CodeGenInstruction *>(Instructions[i]);
3960     if (InstInfo->InferredFrom)
3961       continue;
3962     if (InstInfo->hasSideEffects_Unset)
3963       PrintError(InstInfo->TheDef->getLoc(),
3964                  "Can't infer hasSideEffects from patterns");
3965     if (InstInfo->mayStore_Unset)
3966       PrintError(InstInfo->TheDef->getLoc(),
3967                  "Can't infer mayStore from patterns");
3968     if (InstInfo->mayLoad_Unset)
3969       PrintError(InstInfo->TheDef->getLoc(),
3970                  "Can't infer mayLoad from patterns");
3971   }
3972 }
3973 
3974 
3975 /// Verify instruction flags against pattern node properties.
3976 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3977   unsigned Errors = 0;
3978   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3979     const PatternToMatch &PTM = *I;
3980     SmallVector<Record*, 8> Instrs;
3981     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3982     if (Instrs.empty())
3983       continue;
3984 
3985     // Count the number of instructions with each flag set.
3986     unsigned NumSideEffects = 0;
3987     unsigned NumStores = 0;
3988     unsigned NumLoads = 0;
3989     for (const Record *Instr : Instrs) {
3990       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3991       NumSideEffects += InstInfo.hasSideEffects;
3992       NumStores += InstInfo.mayStore;
3993       NumLoads += InstInfo.mayLoad;
3994     }
3995 
3996     // Analyze the source pattern.
3997     InstAnalyzer PatInfo(*this);
3998     PatInfo.Analyze(PTM);
3999 
4000     // Collect error messages.
4001     SmallVector<std::string, 4> Msgs;
4002 
4003     // Check for missing flags in the output.
4004     // Permit extra flags for now at least.
4005     if (PatInfo.hasSideEffects && !NumSideEffects)
4006       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4007 
4008     // Don't verify store flags on instructions with side effects. At least for
4009     // intrinsics, side effects implies mayStore.
4010     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4011       Msgs.push_back("pattern may store, but mayStore isn't set");
4012 
4013     // Similarly, mayStore implies mayLoad on intrinsics.
4014     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4015       Msgs.push_back("pattern may load, but mayLoad isn't set");
4016 
4017     // Print error messages.
4018     if (Msgs.empty())
4019       continue;
4020     ++Errors;
4021 
4022     for (const std::string &Msg : Msgs)
4023       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4024                  (Instrs.size() == 1 ?
4025                   "instruction" : "output instructions"));
4026     // Provide the location of the relevant instruction definitions.
4027     for (const Record *Instr : Instrs) {
4028       if (Instr != PTM.getSrcRecord())
4029         PrintError(Instr->getLoc(), "defined here");
4030       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4031       if (InstInfo.InferredFrom &&
4032           InstInfo.InferredFrom != InstInfo.TheDef &&
4033           InstInfo.InferredFrom != PTM.getSrcRecord())
4034         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4035     }
4036   }
4037   if (Errors)
4038     PrintFatalError("Errors in DAG patterns");
4039 }
4040 
4041 /// Given a pattern result with an unresolved type, see if we can find one
4042 /// instruction with an unresolved result type.  Force this result type to an
4043 /// arbitrary element if it's possible types to converge results.
4044 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4045   if (N->isLeaf())
4046     return false;
4047 
4048   // Analyze children.
4049   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4050     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4051       return true;
4052 
4053   if (!N->getOperator()->isSubClassOf("Instruction"))
4054     return false;
4055 
4056   // If this type is already concrete or completely unknown we can't do
4057   // anything.
4058   TypeInfer &TI = TP.getInfer();
4059   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4060     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4061       continue;
4062 
4063     // Otherwise, force its type to an arbitrary choice.
4064     if (TI.forceArbitrary(N->getExtType(i)))
4065       return true;
4066   }
4067 
4068   return false;
4069 }
4070 
4071 // Promote xform function to be an explicit node wherever set.
4072 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4073   if (Record *Xform = N->getTransformFn()) {
4074       N->setTransformFn(nullptr);
4075       std::vector<TreePatternNodePtr> Children;
4076       Children.push_back(PromoteXForms(N));
4077       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4078                                                N->getNumTypes());
4079   }
4080 
4081   if (!N->isLeaf())
4082     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4083       TreePatternNodePtr Child = N->getChildShared(i);
4084       N->setChild(i, PromoteXForms(Child));
4085     }
4086   return N;
4087 }
4088 
4089 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4090        TreePattern &Pattern, TreePattern &Result,
4091        const std::vector<Record *> &InstImpResults) {
4092 
4093   // Inline pattern fragments and expand multiple alternatives.
4094   Pattern.InlinePatternFragments();
4095   Result.InlinePatternFragments();
4096 
4097   if (Result.getNumTrees() != 1)
4098     Result.error("Cannot use multi-alternative fragments in result pattern!");
4099 
4100   // Infer types.
4101   bool IterateInference;
4102   bool InferredAllPatternTypes, InferredAllResultTypes;
4103   do {
4104     // Infer as many types as possible.  If we cannot infer all of them, we
4105     // can never do anything with this pattern: report it to the user.
4106     InferredAllPatternTypes =
4107         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4108 
4109     // Infer as many types as possible.  If we cannot infer all of them, we
4110     // can never do anything with this pattern: report it to the user.
4111     InferredAllResultTypes =
4112         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4113 
4114     IterateInference = false;
4115 
4116     // Apply the type of the result to the source pattern.  This helps us
4117     // resolve cases where the input type is known to be a pointer type (which
4118     // is considered resolved), but the result knows it needs to be 32- or
4119     // 64-bits.  Infer the other way for good measure.
4120     for (auto T : Pattern.getTrees())
4121       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4122                                         T->getNumTypes());
4123          i != e; ++i) {
4124         IterateInference |= T->UpdateNodeType(
4125             i, Result.getOnlyTree()->getExtType(i), Result);
4126         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4127             i, T->getExtType(i), Result);
4128       }
4129 
4130     // If our iteration has converged and the input pattern's types are fully
4131     // resolved but the result pattern is not fully resolved, we may have a
4132     // situation where we have two instructions in the result pattern and
4133     // the instructions require a common register class, but don't care about
4134     // what actual MVT is used.  This is actually a bug in our modelling:
4135     // output patterns should have register classes, not MVTs.
4136     //
4137     // In any case, to handle this, we just go through and disambiguate some
4138     // arbitrary types to the result pattern's nodes.
4139     if (!IterateInference && InferredAllPatternTypes &&
4140         !InferredAllResultTypes)
4141       IterateInference =
4142           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4143   } while (IterateInference);
4144 
4145   // Verify that we inferred enough types that we can do something with the
4146   // pattern and result.  If these fire the user has to add type casts.
4147   if (!InferredAllPatternTypes)
4148     Pattern.error("Could not infer all types in pattern!");
4149   if (!InferredAllResultTypes) {
4150     Pattern.dump();
4151     Result.error("Could not infer all types in pattern result!");
4152   }
4153 
4154   // Promote xform function to be an explicit node wherever set.
4155   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4156 
4157   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4158   Temp.InferAllTypes();
4159 
4160   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4161   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4162 
4163   if (PatternRewriter)
4164     PatternRewriter(&Pattern);
4165 
4166   // A pattern may end up with an "impossible" type, i.e. a situation
4167   // where all types have been eliminated for some node in this pattern.
4168   // This could occur for intrinsics that only make sense for a specific
4169   // value type, and use a specific register class. If, for some mode,
4170   // that register class does not accept that type, the type inference
4171   // will lead to a contradiction, which is not an error however, but
4172   // a sign that this pattern will simply never match.
4173   if (Temp.getOnlyTree()->hasPossibleType())
4174     for (auto T : Pattern.getTrees())
4175       if (T->hasPossibleType())
4176         AddPatternToMatch(&Pattern,
4177                           PatternToMatch(TheDef, makePredList(Preds),
4178                                          T, Temp.getOnlyTree(),
4179                                          InstImpResults, Complexity,
4180                                          TheDef->getID()));
4181 }
4182 
4183 void CodeGenDAGPatterns::ParsePatterns() {
4184   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4185 
4186   for (Record *CurPattern : Patterns) {
4187     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4188 
4189     // If the pattern references the null_frag, there's nothing to do.
4190     if (hasNullFragReference(Tree))
4191       continue;
4192 
4193     TreePattern Pattern(CurPattern, Tree, true, *this);
4194 
4195     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4196     if (LI->empty()) continue;  // no pattern.
4197 
4198     // Parse the instruction.
4199     TreePattern Result(CurPattern, LI, false, *this);
4200 
4201     if (Result.getNumTrees() != 1)
4202       Result.error("Cannot handle instructions producing instructions "
4203                    "with temporaries yet!");
4204 
4205     // Validate that the input pattern is correct.
4206     std::map<std::string, TreePatternNodePtr> InstInputs;
4207     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4208         InstResults;
4209     std::vector<Record*> InstImpResults;
4210     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4211       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4212                                   InstResults, InstImpResults);
4213 
4214     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4215   }
4216 }
4217 
4218 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4219   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4220     for (const auto &I : VTS)
4221       Modes.insert(I.first);
4222 
4223   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4224     collectModes(Modes, N->getChild(i));
4225 }
4226 
4227 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4228   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4229   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4230   std::vector<PatternToMatch> Copy = PatternsToMatch;
4231   PatternsToMatch.clear();
4232 
4233   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4234     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4235     TreePatternNodePtr NewDst = P.DstPattern->clone();
4236     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4237       return;
4238     }
4239 
4240     std::vector<Predicate> Preds = P.Predicates;
4241     const std::vector<Predicate> &MC = ModeChecks[Mode];
4242     Preds.insert(Preds.end(), MC.begin(), MC.end());
4243     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4244                                  std::move(NewDst), P.getDstRegs(),
4245                                  P.getAddedComplexity(), Record::getNewUID(),
4246                                  Mode);
4247   };
4248 
4249   for (PatternToMatch &P : Copy) {
4250     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4251     if (P.SrcPattern->hasProperTypeByHwMode())
4252       SrcP = P.SrcPattern;
4253     if (P.DstPattern->hasProperTypeByHwMode())
4254       DstP = P.DstPattern;
4255     if (!SrcP && !DstP) {
4256       PatternsToMatch.push_back(P);
4257       continue;
4258     }
4259 
4260     std::set<unsigned> Modes;
4261     if (SrcP)
4262       collectModes(Modes, SrcP.get());
4263     if (DstP)
4264       collectModes(Modes, DstP.get());
4265 
4266     // The predicate for the default mode needs to be constructed for each
4267     // pattern separately.
4268     // Since not all modes must be present in each pattern, if a mode m is
4269     // absent, then there is no point in constructing a check for m. If such
4270     // a check was created, it would be equivalent to checking the default
4271     // mode, except not all modes' predicates would be a part of the checking
4272     // code. The subsequently generated check for the default mode would then
4273     // have the exact same patterns, but a different predicate code. To avoid
4274     // duplicated patterns with different predicate checks, construct the
4275     // default check as a negation of all predicates that are actually present
4276     // in the source/destination patterns.
4277     std::vector<Predicate> DefaultPred;
4278 
4279     for (unsigned M : Modes) {
4280       if (M == DefaultMode)
4281         continue;
4282       if (ModeChecks.find(M) != ModeChecks.end())
4283         continue;
4284 
4285       // Fill the map entry for this mode.
4286       const HwMode &HM = CGH.getMode(M);
4287       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4288 
4289       // Add negations of the HM's predicates to the default predicate.
4290       DefaultPred.emplace_back(Predicate(HM.Features, false));
4291     }
4292 
4293     for (unsigned M : Modes) {
4294       if (M == DefaultMode)
4295         continue;
4296       AppendPattern(P, M);
4297     }
4298 
4299     bool HasDefault = Modes.count(DefaultMode);
4300     if (HasDefault)
4301       AppendPattern(P, DefaultMode);
4302   }
4303 }
4304 
4305 /// Dependent variable map for CodeGenDAGPattern variant generation
4306 typedef StringMap<int> DepVarMap;
4307 
4308 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4309   if (N->isLeaf()) {
4310     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4311       DepMap[N->getName()]++;
4312   } else {
4313     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4314       FindDepVarsOf(N->getChild(i), DepMap);
4315   }
4316 }
4317 
4318 /// Find dependent variables within child patterns
4319 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4320   DepVarMap depcounts;
4321   FindDepVarsOf(N, depcounts);
4322   for (const auto &Pair : depcounts) {
4323     if (Pair.getValue() > 1)
4324       DepVars.insert(Pair.getKey());
4325   }
4326 }
4327 
4328 #ifndef NDEBUG
4329 /// Dump the dependent variable set:
4330 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4331   if (DepVars.empty()) {
4332     LLVM_DEBUG(errs() << "<empty set>");
4333   } else {
4334     LLVM_DEBUG(errs() << "[ ");
4335     for (const auto &DepVar : DepVars) {
4336       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4337     }
4338     LLVM_DEBUG(errs() << "]");
4339   }
4340 }
4341 #endif
4342 
4343 
4344 /// CombineChildVariants - Given a bunch of permutations of each child of the
4345 /// 'operator' node, put them together in all possible ways.
4346 static void CombineChildVariants(
4347     TreePatternNodePtr Orig,
4348     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4349     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4350     const MultipleUseVarSet &DepVars) {
4351   // Make sure that each operand has at least one variant to choose from.
4352   for (const auto &Variants : ChildVariants)
4353     if (Variants.empty())
4354       return;
4355 
4356   // The end result is an all-pairs construction of the resultant pattern.
4357   std::vector<unsigned> Idxs;
4358   Idxs.resize(ChildVariants.size());
4359   bool NotDone;
4360   do {
4361 #ifndef NDEBUG
4362     LLVM_DEBUG(if (!Idxs.empty()) {
4363       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4364       for (unsigned Idx : Idxs) {
4365         errs() << Idx << " ";
4366       }
4367       errs() << "]\n";
4368     });
4369 #endif
4370     // Create the variant and add it to the output list.
4371     std::vector<TreePatternNodePtr> NewChildren;
4372     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4373       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4374     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4375         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4376 
4377     // Copy over properties.
4378     R->setName(Orig->getName());
4379     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4380     R->setPredicateCalls(Orig->getPredicateCalls());
4381     R->setTransformFn(Orig->getTransformFn());
4382     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4383       R->setType(i, Orig->getExtType(i));
4384 
4385     // If this pattern cannot match, do not include it as a variant.
4386     std::string ErrString;
4387     // Scan to see if this pattern has already been emitted.  We can get
4388     // duplication due to things like commuting:
4389     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4390     // which are the same pattern.  Ignore the dups.
4391     if (R->canPatternMatch(ErrString, CDP) &&
4392         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4393           return R->isIsomorphicTo(Variant.get(), DepVars);
4394         }))
4395       OutVariants.push_back(R);
4396 
4397     // Increment indices to the next permutation by incrementing the
4398     // indices from last index backward, e.g., generate the sequence
4399     // [0, 0], [0, 1], [1, 0], [1, 1].
4400     int IdxsIdx;
4401     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4402       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4403         Idxs[IdxsIdx] = 0;
4404       else
4405         break;
4406     }
4407     NotDone = (IdxsIdx >= 0);
4408   } while (NotDone);
4409 }
4410 
4411 /// CombineChildVariants - A helper function for binary operators.
4412 ///
4413 static void CombineChildVariants(TreePatternNodePtr Orig,
4414                                  const std::vector<TreePatternNodePtr> &LHS,
4415                                  const std::vector<TreePatternNodePtr> &RHS,
4416                                  std::vector<TreePatternNodePtr> &OutVariants,
4417                                  CodeGenDAGPatterns &CDP,
4418                                  const MultipleUseVarSet &DepVars) {
4419   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4420   ChildVariants.push_back(LHS);
4421   ChildVariants.push_back(RHS);
4422   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4423 }
4424 
4425 static void
4426 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4427                                   std::vector<TreePatternNodePtr> &Children) {
4428   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4429   Record *Operator = N->getOperator();
4430 
4431   // Only permit raw nodes.
4432   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4433       N->getTransformFn()) {
4434     Children.push_back(N);
4435     return;
4436   }
4437 
4438   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4439     Children.push_back(N->getChildShared(0));
4440   else
4441     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4442 
4443   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4444     Children.push_back(N->getChildShared(1));
4445   else
4446     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4447 }
4448 
4449 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4450 /// the (potentially recursive) pattern by using algebraic laws.
4451 ///
4452 static void GenerateVariantsOf(TreePatternNodePtr N,
4453                                std::vector<TreePatternNodePtr> &OutVariants,
4454                                CodeGenDAGPatterns &CDP,
4455                                const MultipleUseVarSet &DepVars) {
4456   // We cannot permute leaves or ComplexPattern uses.
4457   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4458     OutVariants.push_back(N);
4459     return;
4460   }
4461 
4462   // Look up interesting info about the node.
4463   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4464 
4465   // If this node is associative, re-associate.
4466   if (NodeInfo.hasProperty(SDNPAssociative)) {
4467     // Re-associate by pulling together all of the linked operators
4468     std::vector<TreePatternNodePtr> MaximalChildren;
4469     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4470 
4471     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4472     // permutations.
4473     if (MaximalChildren.size() == 3) {
4474       // Find the variants of all of our maximal children.
4475       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4476       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4477       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4478       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4479 
4480       // There are only two ways we can permute the tree:
4481       //   (A op B) op C    and    A op (B op C)
4482       // Within these forms, we can also permute A/B/C.
4483 
4484       // Generate legal pair permutations of A/B/C.
4485       std::vector<TreePatternNodePtr> ABVariants;
4486       std::vector<TreePatternNodePtr> BAVariants;
4487       std::vector<TreePatternNodePtr> ACVariants;
4488       std::vector<TreePatternNodePtr> CAVariants;
4489       std::vector<TreePatternNodePtr> BCVariants;
4490       std::vector<TreePatternNodePtr> CBVariants;
4491       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4492       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4493       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4494       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4495       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4496       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4497 
4498       // Combine those into the result: (x op x) op x
4499       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4500       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4501       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4502       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4503       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4504       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4505 
4506       // Combine those into the result: x op (x op x)
4507       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4508       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4509       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4510       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4511       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4512       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4513       return;
4514     }
4515   }
4516 
4517   // Compute permutations of all children.
4518   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4519   ChildVariants.resize(N->getNumChildren());
4520   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4521     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4522 
4523   // Build all permutations based on how the children were formed.
4524   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4525 
4526   // If this node is commutative, consider the commuted order.
4527   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4528   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4529     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4530            "Commutative but doesn't have 2 children!");
4531     // Don't count children which are actually register references.
4532     unsigned NC = 0;
4533     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4534       TreePatternNode *Child = N->getChild(i);
4535       if (Child->isLeaf())
4536         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4537           Record *RR = DI->getDef();
4538           if (RR->isSubClassOf("Register"))
4539             continue;
4540         }
4541       NC++;
4542     }
4543     // Consider the commuted order.
4544     if (isCommIntrinsic) {
4545       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4546       // operands are the commutative operands, and there might be more operands
4547       // after those.
4548       assert(NC >= 3 &&
4549              "Commutative intrinsic should have at least 3 children!");
4550       std::vector<std::vector<TreePatternNodePtr>> Variants;
4551       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4552       Variants.push_back(std::move(ChildVariants[2]));
4553       Variants.push_back(std::move(ChildVariants[1]));
4554       for (unsigned i = 3; i != NC; ++i)
4555         Variants.push_back(std::move(ChildVariants[i]));
4556       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4557     } else if (NC == N->getNumChildren()) {
4558       std::vector<std::vector<TreePatternNodePtr>> Variants;
4559       Variants.push_back(std::move(ChildVariants[1]));
4560       Variants.push_back(std::move(ChildVariants[0]));
4561       for (unsigned i = 2; i != NC; ++i)
4562         Variants.push_back(std::move(ChildVariants[i]));
4563       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4564     }
4565   }
4566 }
4567 
4568 
4569 // GenerateVariants - Generate variants.  For example, commutative patterns can
4570 // match multiple ways.  Add them to PatternsToMatch as well.
4571 void CodeGenDAGPatterns::GenerateVariants() {
4572   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4573 
4574   // Loop over all of the patterns we've collected, checking to see if we can
4575   // generate variants of the instruction, through the exploitation of
4576   // identities.  This permits the target to provide aggressive matching without
4577   // the .td file having to contain tons of variants of instructions.
4578   //
4579   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4580   // intentionally do not reconsider these.  Any variants of added patterns have
4581   // already been added.
4582   //
4583   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4584   BitVector MatchedPatterns(NumOriginalPatterns);
4585   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4586                                            BitVector(NumOriginalPatterns));
4587 
4588   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4589       DepsAndVariants;
4590   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4591 
4592   // Collect patterns with more than one variant.
4593   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4594     MultipleUseVarSet DepVars;
4595     std::vector<TreePatternNodePtr> Variants;
4596     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4597     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4598     LLVM_DEBUG(DumpDepVars(DepVars));
4599     LLVM_DEBUG(errs() << "\n");
4600     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4601                        *this, DepVars);
4602 
4603     assert(!Variants.empty() && "Must create at least original variant!");
4604     if (Variants.size() == 1) // No additional variants for this pattern.
4605       continue;
4606 
4607     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4608                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4609 
4610     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4611 
4612     // Cache matching predicates.
4613     if (MatchedPatterns[i])
4614       continue;
4615 
4616     const std::vector<Predicate> &Predicates =
4617         PatternsToMatch[i].getPredicates();
4618 
4619     BitVector &Matches = MatchedPredicates[i];
4620     MatchedPatterns.set(i);
4621     Matches.set(i);
4622 
4623     // Don't test patterns that have already been cached - it won't match.
4624     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4625       if (!MatchedPatterns[p])
4626         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4627 
4628     // Copy this to all the matching patterns.
4629     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4630       if (p != (int)i) {
4631         MatchedPatterns.set(p);
4632         MatchedPredicates[p] = Matches;
4633       }
4634   }
4635 
4636   for (auto it : PatternsWithVariants) {
4637     unsigned i = it.first;
4638     const MultipleUseVarSet &DepVars = it.second.first;
4639     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4640 
4641     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4642       TreePatternNodePtr Variant = Variants[v];
4643       BitVector &Matches = MatchedPredicates[i];
4644 
4645       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4646                  errs() << "\n");
4647 
4648       // Scan to see if an instruction or explicit pattern already matches this.
4649       bool AlreadyExists = false;
4650       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4651         // Skip if the top level predicates do not match.
4652         if (!Matches[p])
4653           continue;
4654         // Check to see if this variant already exists.
4655         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4656                                     DepVars)) {
4657           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4658           AlreadyExists = true;
4659           break;
4660         }
4661       }
4662       // If we already have it, ignore the variant.
4663       if (AlreadyExists) continue;
4664 
4665       // Otherwise, add it to the list of patterns we have.
4666       PatternsToMatch.push_back(PatternToMatch(
4667           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4668           Variant, PatternsToMatch[i].getDstPatternShared(),
4669           PatternsToMatch[i].getDstRegs(),
4670           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4671       MatchedPredicates.push_back(Matches);
4672 
4673       // Add a new match the same as this pattern.
4674       for (auto &P : MatchedPredicates)
4675         P.push_back(P[i]);
4676     }
4677 
4678     LLVM_DEBUG(errs() << "\n");
4679   }
4680 }
4681