1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 50 template <typename Predicate> 51 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 52 bool Erased = false; 53 // It is ok to iterate over MachineValueTypeSet and remove elements from it 54 // at the same time. 55 for (MVT T : S) { 56 if (!P(T)) 57 continue; 58 Erased = true; 59 S.erase(T); 60 } 61 return Erased; 62 } 63 64 // --- TypeSetByHwMode 65 66 // This is a parameterized type-set class. For each mode there is a list 67 // of types that are currently possible for a given tree node. Type 68 // inference will apply to each mode separately. 69 70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 71 for (const ValueTypeByHwMode &VVT : VTList) { 72 insert(VVT); 73 AddrSpaces.push_back(VVT.PtrAddrSpace); 74 } 75 } 76 77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 78 for (const auto &I : *this) { 79 if (I.second.size() > 1) 80 return false; 81 if (!AllowEmpty && I.second.empty()) 82 return false; 83 } 84 return true; 85 } 86 87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 88 assert(isValueTypeByHwMode(true) && 89 "The type set has multiple types for at least one HW mode"); 90 ValueTypeByHwMode VVT; 91 auto ASI = AddrSpaces.begin(); 92 93 for (const auto &I : *this) { 94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 95 VVT.getOrCreateTypeForMode(I.first, T); 96 if (ASI != AddrSpaces.end()) 97 VVT.PtrAddrSpace = *ASI++; 98 } 99 return VVT; 100 } 101 102 bool TypeSetByHwMode::isPossible() const { 103 for (const auto &I : *this) 104 if (!I.second.empty()) 105 return true; 106 return false; 107 } 108 109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 110 bool Changed = false; 111 bool ContainsDefault = false; 112 MVT DT = MVT::Other; 113 114 SmallDenseSet<unsigned, 4> Modes; 115 for (const auto &P : VVT) { 116 unsigned M = P.first; 117 Modes.insert(M); 118 // Make sure there exists a set for each specific mode from VVT. 119 Changed |= getOrCreate(M).insert(P.second).second; 120 // Cache VVT's default mode. 121 if (DefaultMode == M) { 122 ContainsDefault = true; 123 DT = P.second; 124 } 125 } 126 127 // If VVT has a default mode, add the corresponding type to all 128 // modes in "this" that do not exist in VVT. 129 if (ContainsDefault) 130 for (auto &I : *this) 131 if (!Modes.count(I.first)) 132 Changed |= I.second.insert(DT).second; 133 134 return Changed; 135 } 136 137 // Constrain the type set to be the intersection with VTS. 138 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 139 bool Changed = false; 140 if (hasDefault()) { 141 for (const auto &I : VTS) { 142 unsigned M = I.first; 143 if (M == DefaultMode || hasMode(M)) 144 continue; 145 Map.insert({M, Map.at(DefaultMode)}); 146 Changed = true; 147 } 148 } 149 150 for (auto &I : *this) { 151 unsigned M = I.first; 152 SetType &S = I.second; 153 if (VTS.hasMode(M) || VTS.hasDefault()) { 154 Changed |= intersect(I.second, VTS.get(M)); 155 } else if (!S.empty()) { 156 S.clear(); 157 Changed = true; 158 } 159 } 160 return Changed; 161 } 162 163 template <typename Predicate> 164 bool TypeSetByHwMode::constrain(Predicate P) { 165 bool Changed = false; 166 for (auto &I : *this) 167 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 168 return Changed; 169 } 170 171 template <typename Predicate> 172 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 173 assert(empty()); 174 for (const auto &I : VTS) { 175 SetType &S = getOrCreate(I.first); 176 for (auto J : I.second) 177 if (P(J)) 178 S.insert(J); 179 } 180 return !empty(); 181 } 182 183 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 184 SmallVector<unsigned, 4> Modes; 185 Modes.reserve(Map.size()); 186 187 for (const auto &I : *this) 188 Modes.push_back(I.first); 189 if (Modes.empty()) { 190 OS << "{}"; 191 return; 192 } 193 array_pod_sort(Modes.begin(), Modes.end()); 194 195 OS << '{'; 196 for (unsigned M : Modes) { 197 OS << ' ' << getModeName(M) << ':'; 198 writeToStream(get(M), OS); 199 } 200 OS << " }"; 201 } 202 203 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 204 SmallVector<MVT, 4> Types(S.begin(), S.end()); 205 array_pod_sort(Types.begin(), Types.end()); 206 207 OS << '['; 208 ListSeparator LS(" "); 209 for (const MVT &T : Types) 210 OS << LS << ValueTypeByHwMode::getMVTName(T); 211 OS << ']'; 212 } 213 214 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 215 // The isSimple call is much quicker than hasDefault - check this first. 216 bool IsSimple = isSimple(); 217 bool VTSIsSimple = VTS.isSimple(); 218 if (IsSimple && VTSIsSimple) 219 return *begin() == *VTS.begin(); 220 221 // Speedup: We have a default if the set is simple. 222 bool HaveDefault = IsSimple || hasDefault(); 223 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 224 if (HaveDefault != VTSHaveDefault) 225 return false; 226 227 SmallDenseSet<unsigned, 4> Modes; 228 for (auto &I : *this) 229 Modes.insert(I.first); 230 for (const auto &I : VTS) 231 Modes.insert(I.first); 232 233 if (HaveDefault) { 234 // Both sets have default mode. 235 for (unsigned M : Modes) { 236 if (get(M) != VTS.get(M)) 237 return false; 238 } 239 } else { 240 // Neither set has default mode. 241 for (unsigned M : Modes) { 242 // If there is no default mode, an empty set is equivalent to not having 243 // the corresponding mode. 244 bool NoModeThis = !hasMode(M) || get(M).empty(); 245 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 246 if (NoModeThis != NoModeVTS) 247 return false; 248 if (!NoModeThis) 249 if (get(M) != VTS.get(M)) 250 return false; 251 } 252 } 253 254 return true; 255 } 256 257 namespace llvm { 258 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 259 T.writeToStream(OS); 260 return OS; 261 } 262 } 263 264 LLVM_DUMP_METHOD 265 void TypeSetByHwMode::dump() const { 266 dbgs() << *this << '\n'; 267 } 268 269 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 270 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 271 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 272 273 if (OutP == InP) 274 return berase_if(Out, Int); 275 276 // Compute the intersection of scalars separately to account for only 277 // one set containing iPTR. 278 // The intersection of iPTR with a set of integer scalar types that does not 279 // include iPTR will result in the most specific scalar type: 280 // - iPTR is more specific than any set with two elements or more 281 // - iPTR is less specific than any single integer scalar type. 282 // For example 283 // { iPTR } * { i32 } -> { i32 } 284 // { iPTR } * { i32 i64 } -> { iPTR } 285 // and 286 // { iPTR i32 } * { i32 } -> { i32 } 287 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 288 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 289 290 // Compute the difference between the two sets in such a way that the 291 // iPTR is in the set that is being subtracted. This is to see if there 292 // are any extra scalars in the set without iPTR that are not in the 293 // set containing iPTR. Then the iPTR could be considered a "wildcard" 294 // matching these scalars. If there is only one such scalar, it would 295 // replace the iPTR, if there are more, the iPTR would be retained. 296 SetType Diff; 297 if (InP) { 298 Diff = Out; 299 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 300 // Pre-remove these elements and rely only on InP/OutP to determine 301 // whether a change has been made. 302 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 303 } else { 304 Diff = In; 305 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 306 Out.erase(MVT::iPTR); 307 } 308 309 // The actual intersection. 310 bool Changed = berase_if(Out, Int); 311 unsigned NumD = Diff.size(); 312 if (NumD == 0) 313 return Changed; 314 315 if (NumD == 1) { 316 Out.insert(*Diff.begin()); 317 // This is a change only if Out was the one with iPTR (which is now 318 // being replaced). 319 Changed |= OutP; 320 } else { 321 // Multiple elements from Out are now replaced with iPTR. 322 Out.insert(MVT::iPTR); 323 Changed |= !OutP; 324 } 325 return Changed; 326 } 327 328 bool TypeSetByHwMode::validate() const { 329 #ifndef NDEBUG 330 if (empty()) 331 return true; 332 bool AllEmpty = true; 333 for (const auto &I : *this) 334 AllEmpty &= I.second.empty(); 335 return !AllEmpty; 336 #endif 337 return true; 338 } 339 340 // --- TypeInfer 341 342 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 343 const TypeSetByHwMode &In) { 344 ValidateOnExit _1(Out, *this); 345 In.validate(); 346 if (In.empty() || Out == In || TP.hasError()) 347 return false; 348 if (Out.empty()) { 349 Out = In; 350 return true; 351 } 352 353 bool Changed = Out.constrain(In); 354 if (Changed && Out.empty()) 355 TP.error("Type contradiction"); 356 357 return Changed; 358 } 359 360 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 361 ValidateOnExit _1(Out, *this); 362 if (TP.hasError()) 363 return false; 364 assert(!Out.empty() && "cannot pick from an empty set"); 365 366 bool Changed = false; 367 for (auto &I : Out) { 368 TypeSetByHwMode::SetType &S = I.second; 369 if (S.size() <= 1) 370 continue; 371 MVT T = *S.begin(); // Pick the first element. 372 S.clear(); 373 S.insert(T); 374 Changed = true; 375 } 376 return Changed; 377 } 378 379 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 380 ValidateOnExit _1(Out, *this); 381 if (TP.hasError()) 382 return false; 383 if (!Out.empty()) 384 return Out.constrain(isIntegerOrPtr); 385 386 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 387 } 388 389 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 390 ValidateOnExit _1(Out, *this); 391 if (TP.hasError()) 392 return false; 393 if (!Out.empty()) 394 return Out.constrain(isFloatingPoint); 395 396 return Out.assign_if(getLegalTypes(), isFloatingPoint); 397 } 398 399 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 400 ValidateOnExit _1(Out, *this); 401 if (TP.hasError()) 402 return false; 403 if (!Out.empty()) 404 return Out.constrain(isScalar); 405 406 return Out.assign_if(getLegalTypes(), isScalar); 407 } 408 409 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 410 ValidateOnExit _1(Out, *this); 411 if (TP.hasError()) 412 return false; 413 if (!Out.empty()) 414 return Out.constrain(isVector); 415 416 return Out.assign_if(getLegalTypes(), isVector); 417 } 418 419 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 420 ValidateOnExit _1(Out, *this); 421 if (TP.hasError() || !Out.empty()) 422 return false; 423 424 Out = getLegalTypes(); 425 return true; 426 } 427 428 template <typename Iter, typename Pred, typename Less> 429 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 430 if (B == E) 431 return E; 432 Iter Min = E; 433 for (Iter I = B; I != E; ++I) { 434 if (!P(*I)) 435 continue; 436 if (Min == E || L(*I, *Min)) 437 Min = I; 438 } 439 return Min; 440 } 441 442 template <typename Iter, typename Pred, typename Less> 443 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 444 if (B == E) 445 return E; 446 Iter Max = E; 447 for (Iter I = B; I != E; ++I) { 448 if (!P(*I)) 449 continue; 450 if (Max == E || L(*Max, *I)) 451 Max = I; 452 } 453 return Max; 454 } 455 456 /// Make sure that for each type in Small, there exists a larger type in Big. 457 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 458 TypeSetByHwMode &Big) { 459 ValidateOnExit _1(Small, *this), _2(Big, *this); 460 if (TP.hasError()) 461 return false; 462 bool Changed = false; 463 464 if (Small.empty()) 465 Changed |= EnforceAny(Small); 466 if (Big.empty()) 467 Changed |= EnforceAny(Big); 468 469 assert(Small.hasDefault() && Big.hasDefault()); 470 471 std::vector<unsigned> Modes = union_modes(Small, Big); 472 473 // 1. Only allow integer or floating point types and make sure that 474 // both sides are both integer or both floating point. 475 // 2. Make sure that either both sides have vector types, or neither 476 // of them does. 477 for (unsigned M : Modes) { 478 TypeSetByHwMode::SetType &S = Small.get(M); 479 TypeSetByHwMode::SetType &B = Big.get(M); 480 481 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 482 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 483 Changed |= berase_if(S, NotInt); 484 Changed |= berase_if(B, NotInt); 485 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 486 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 487 Changed |= berase_if(S, NotFP); 488 Changed |= berase_if(B, NotFP); 489 } else if (S.empty() || B.empty()) { 490 Changed = !S.empty() || !B.empty(); 491 S.clear(); 492 B.clear(); 493 } else { 494 TP.error("Incompatible types"); 495 return Changed; 496 } 497 498 if (none_of(S, isVector) || none_of(B, isVector)) { 499 Changed |= berase_if(S, isVector); 500 Changed |= berase_if(B, isVector); 501 } 502 } 503 504 auto LT = [](MVT A, MVT B) -> bool { 505 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 506 // purposes of ordering. 507 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 508 A.getSizeInBits().getKnownMinSize()); 509 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 510 B.getSizeInBits().getKnownMinSize()); 511 return ASize < BSize; 512 }; 513 auto SameKindLE = [](MVT A, MVT B) -> bool { 514 // This function is used when removing elements: when a vector is compared 515 // to a non-vector or a scalable vector to any non-scalable MVT, it should 516 // return false (to avoid removal). 517 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 518 std::make_tuple(B.isVector(), B.isScalableVector())) 519 return false; 520 521 return std::make_tuple(A.getScalarSizeInBits(), 522 A.getSizeInBits().getKnownMinSize()) <= 523 std::make_tuple(B.getScalarSizeInBits(), 524 B.getSizeInBits().getKnownMinSize()); 525 }; 526 527 for (unsigned M : Modes) { 528 TypeSetByHwMode::SetType &S = Small.get(M); 529 TypeSetByHwMode::SetType &B = Big.get(M); 530 // MinS = min scalar in Small, remove all scalars from Big that are 531 // smaller-or-equal than MinS. 532 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 533 if (MinS != S.end()) 534 Changed |= berase_if(B, std::bind(SameKindLE, 535 std::placeholders::_1, *MinS)); 536 537 // MaxS = max scalar in Big, remove all scalars from Small that are 538 // larger than MaxS. 539 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 540 if (MaxS != B.end()) 541 Changed |= berase_if(S, std::bind(SameKindLE, 542 *MaxS, std::placeholders::_1)); 543 544 // MinV = min vector in Small, remove all vectors from Big that are 545 // smaller-or-equal than MinV. 546 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 547 if (MinV != S.end()) 548 Changed |= berase_if(B, std::bind(SameKindLE, 549 std::placeholders::_1, *MinV)); 550 551 // MaxV = max vector in Big, remove all vectors from Small that are 552 // larger than MaxV. 553 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 554 if (MaxV != B.end()) 555 Changed |= berase_if(S, std::bind(SameKindLE, 556 *MaxV, std::placeholders::_1)); 557 } 558 559 return Changed; 560 } 561 562 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 563 /// for each type U in Elem, U is a scalar type. 564 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 565 /// type T in Vec, such that U is the element type of T. 566 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 567 TypeSetByHwMode &Elem) { 568 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 569 if (TP.hasError()) 570 return false; 571 bool Changed = false; 572 573 if (Vec.empty()) 574 Changed |= EnforceVector(Vec); 575 if (Elem.empty()) 576 Changed |= EnforceScalar(Elem); 577 578 for (unsigned M : union_modes(Vec, Elem)) { 579 TypeSetByHwMode::SetType &V = Vec.get(M); 580 TypeSetByHwMode::SetType &E = Elem.get(M); 581 582 Changed |= berase_if(V, isScalar); // Scalar = !vector 583 Changed |= berase_if(E, isVector); // Vector = !scalar 584 assert(!V.empty() && !E.empty()); 585 586 SmallSet<MVT,4> VT, ST; 587 // Collect element types from the "vector" set. 588 for (MVT T : V) 589 VT.insert(T.getVectorElementType()); 590 // Collect scalar types from the "element" set. 591 for (MVT T : E) 592 ST.insert(T); 593 594 // Remove from V all (vector) types whose element type is not in S. 595 Changed |= berase_if(V, [&ST](MVT T) -> bool { 596 return !ST.count(T.getVectorElementType()); 597 }); 598 // Remove from E all (scalar) types, for which there is no corresponding 599 // type in V. 600 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 601 } 602 603 return Changed; 604 } 605 606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 607 const ValueTypeByHwMode &VVT) { 608 TypeSetByHwMode Tmp(VVT); 609 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 610 return EnforceVectorEltTypeIs(Vec, Tmp); 611 } 612 613 /// Ensure that for each type T in Sub, T is a vector type, and there 614 /// exists a type U in Vec such that U is a vector type with the same 615 /// element type as T and at least as many elements as T. 616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 617 TypeSetByHwMode &Sub) { 618 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 619 if (TP.hasError()) 620 return false; 621 622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 623 auto IsSubVec = [](MVT B, MVT P) -> bool { 624 if (!B.isVector() || !P.isVector()) 625 return false; 626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 627 // but until there are obvious use-cases for this, keep the 628 // types separate. 629 if (B.isScalableVector() != P.isScalableVector()) 630 return false; 631 if (B.getVectorElementType() != P.getVectorElementType()) 632 return false; 633 return B.getVectorNumElements() < P.getVectorNumElements(); 634 }; 635 636 /// Return true if S has no element (vector type) that T is a sub-vector of, 637 /// i.e. has the same element type as T and more elements. 638 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 639 for (auto I : S) 640 if (IsSubVec(T, I)) 641 return false; 642 return true; 643 }; 644 645 /// Return true if S has no element (vector type) that T is a super-vector 646 /// of, i.e. has the same element type as T and fewer elements. 647 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 648 for (auto I : S) 649 if (IsSubVec(I, T)) 650 return false; 651 return true; 652 }; 653 654 bool Changed = false; 655 656 if (Vec.empty()) 657 Changed |= EnforceVector(Vec); 658 if (Sub.empty()) 659 Changed |= EnforceVector(Sub); 660 661 for (unsigned M : union_modes(Vec, Sub)) { 662 TypeSetByHwMode::SetType &S = Sub.get(M); 663 TypeSetByHwMode::SetType &V = Vec.get(M); 664 665 Changed |= berase_if(S, isScalar); 666 667 // Erase all types from S that are not sub-vectors of a type in V. 668 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 669 670 // Erase all types from V that are not super-vectors of a type in S. 671 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 672 } 673 674 return Changed; 675 } 676 677 /// 1. Ensure that V has a scalar type iff W has a scalar type. 678 /// 2. Ensure that for each vector type T in V, there exists a vector 679 /// type U in W, such that T and U have the same number of elements. 680 /// 3. Ensure that for each vector type U in W, there exists a vector 681 /// type T in V, such that T and U have the same number of elements 682 /// (reverse of 2). 683 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 684 ValidateOnExit _1(V, *this), _2(W, *this); 685 if (TP.hasError()) 686 return false; 687 688 bool Changed = false; 689 if (V.empty()) 690 Changed |= EnforceAny(V); 691 if (W.empty()) 692 Changed |= EnforceAny(W); 693 694 // An actual vector type cannot have 0 elements, so we can treat scalars 695 // as zero-length vectors. This way both vectors and scalars can be 696 // processed identically. 697 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 698 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 699 }; 700 701 for (unsigned M : union_modes(V, W)) { 702 TypeSetByHwMode::SetType &VS = V.get(M); 703 TypeSetByHwMode::SetType &WS = W.get(M); 704 705 SmallSet<unsigned,2> VN, WN; 706 for (MVT T : VS) 707 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 708 for (MVT T : WS) 709 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 710 711 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 712 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 713 } 714 return Changed; 715 } 716 717 namespace { 718 struct TypeSizeComparator { 719 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 720 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 721 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 722 } 723 }; 724 } // end anonymous namespace 725 726 /// 1. Ensure that for each type T in A, there exists a type U in B, 727 /// such that T and U have equal size in bits. 728 /// 2. Ensure that for each type U in B, there exists a type T in A 729 /// such that T and U have equal size in bits (reverse of 1). 730 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 731 ValidateOnExit _1(A, *this), _2(B, *this); 732 if (TP.hasError()) 733 return false; 734 bool Changed = false; 735 if (A.empty()) 736 Changed |= EnforceAny(A); 737 if (B.empty()) 738 Changed |= EnforceAny(B); 739 740 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 741 742 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 743 return !Sizes.count(T.getSizeInBits()); 744 }; 745 746 for (unsigned M : union_modes(A, B)) { 747 TypeSetByHwMode::SetType &AS = A.get(M); 748 TypeSetByHwMode::SetType &BS = B.get(M); 749 TypeSizeSet AN, BN; 750 751 for (MVT T : AS) 752 AN.insert(T.getSizeInBits()); 753 for (MVT T : BS) 754 BN.insert(T.getSizeInBits()); 755 756 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 757 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 758 } 759 760 return Changed; 761 } 762 763 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 764 ValidateOnExit _1(VTS, *this); 765 const TypeSetByHwMode &Legal = getLegalTypes(); 766 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 767 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 768 769 for (auto &I : VTS) 770 expandOverloads(I.second, LegalTypes); 771 } 772 773 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 774 const TypeSetByHwMode::SetType &Legal) { 775 std::set<MVT> Ovs; 776 for (MVT T : Out) { 777 if (!T.isOverloaded()) 778 continue; 779 780 Ovs.insert(T); 781 // MachineValueTypeSet allows iteration and erasing. 782 Out.erase(T); 783 } 784 785 for (MVT Ov : Ovs) { 786 switch (Ov.SimpleTy) { 787 case MVT::iPTRAny: 788 Out.insert(MVT::iPTR); 789 return; 790 case MVT::iAny: 791 for (MVT T : MVT::integer_valuetypes()) 792 if (Legal.count(T)) 793 Out.insert(T); 794 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 795 if (Legal.count(T)) 796 Out.insert(T); 797 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 798 if (Legal.count(T)) 799 Out.insert(T); 800 return; 801 case MVT::fAny: 802 for (MVT T : MVT::fp_valuetypes()) 803 if (Legal.count(T)) 804 Out.insert(T); 805 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 806 if (Legal.count(T)) 807 Out.insert(T); 808 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 809 if (Legal.count(T)) 810 Out.insert(T); 811 return; 812 case MVT::vAny: 813 for (MVT T : MVT::vector_valuetypes()) 814 if (Legal.count(T)) 815 Out.insert(T); 816 return; 817 case MVT::Any: 818 for (MVT T : MVT::all_valuetypes()) 819 if (Legal.count(T)) 820 Out.insert(T); 821 return; 822 default: 823 break; 824 } 825 } 826 } 827 828 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 829 if (!LegalTypesCached) { 830 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 831 // Stuff all types from all modes into the default mode. 832 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 833 for (const auto &I : LTS) 834 LegalTypes.insert(I.second); 835 LegalTypesCached = true; 836 } 837 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 838 return LegalCache; 839 } 840 841 #ifndef NDEBUG 842 TypeInfer::ValidateOnExit::~ValidateOnExit() { 843 if (Infer.Validate && !VTS.validate()) { 844 dbgs() << "Type set is empty for each HW mode:\n" 845 "possible type contradiction in the pattern below " 846 "(use -print-records with llvm-tblgen to see all " 847 "expanded records).\n"; 848 Infer.TP.dump(); 849 llvm_unreachable(nullptr); 850 } 851 } 852 #endif 853 854 855 //===----------------------------------------------------------------------===// 856 // ScopedName Implementation 857 //===----------------------------------------------------------------------===// 858 859 bool ScopedName::operator==(const ScopedName &o) const { 860 return Scope == o.Scope && Identifier == o.Identifier; 861 } 862 863 bool ScopedName::operator!=(const ScopedName &o) const { 864 return !(*this == o); 865 } 866 867 868 //===----------------------------------------------------------------------===// 869 // TreePredicateFn Implementation 870 //===----------------------------------------------------------------------===// 871 872 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 873 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 874 assert( 875 (!hasPredCode() || !hasImmCode()) && 876 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 877 } 878 879 bool TreePredicateFn::hasPredCode() const { 880 return isLoad() || isStore() || isAtomic() || 881 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 882 } 883 884 std::string TreePredicateFn::getPredCode() const { 885 std::string Code; 886 887 if (!isLoad() && !isStore() && !isAtomic()) { 888 Record *MemoryVT = getMemoryVT(); 889 890 if (MemoryVT) 891 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 892 "MemoryVT requires IsLoad or IsStore"); 893 } 894 895 if (!isLoad() && !isStore()) { 896 if (isUnindexed()) 897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 898 "IsUnindexed requires IsLoad or IsStore"); 899 900 Record *ScalarMemoryVT = getScalarMemoryVT(); 901 902 if (ScalarMemoryVT) 903 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 904 "ScalarMemoryVT requires IsLoad or IsStore"); 905 } 906 907 if (isLoad() + isStore() + isAtomic() > 1) 908 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 909 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 910 911 if (isLoad()) { 912 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 913 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 914 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 915 getMinAlignment() < 1) 916 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 917 "IsLoad cannot be used by itself"); 918 } else { 919 if (isNonExtLoad()) 920 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 921 "IsNonExtLoad requires IsLoad"); 922 if (isAnyExtLoad()) 923 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 924 "IsAnyExtLoad requires IsLoad"); 925 if (isSignExtLoad()) 926 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 927 "IsSignExtLoad requires IsLoad"); 928 if (isZeroExtLoad()) 929 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 930 "IsZeroExtLoad requires IsLoad"); 931 } 932 933 if (isStore()) { 934 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 935 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 936 getAddressSpaces() == nullptr && getMinAlignment() < 1) 937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 938 "IsStore cannot be used by itself"); 939 } else { 940 if (isNonTruncStore()) 941 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 942 "IsNonTruncStore requires IsStore"); 943 if (isTruncStore()) 944 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 945 "IsTruncStore requires IsStore"); 946 } 947 948 if (isAtomic()) { 949 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 950 getAddressSpaces() == nullptr && 951 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 952 !isAtomicOrderingAcquireRelease() && 953 !isAtomicOrderingSequentiallyConsistent() && 954 !isAtomicOrderingAcquireOrStronger() && 955 !isAtomicOrderingReleaseOrStronger() && 956 !isAtomicOrderingWeakerThanAcquire() && 957 !isAtomicOrderingWeakerThanRelease()) 958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 959 "IsAtomic cannot be used by itself"); 960 } else { 961 if (isAtomicOrderingMonotonic()) 962 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 963 "IsAtomicOrderingMonotonic requires IsAtomic"); 964 if (isAtomicOrderingAcquire()) 965 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 966 "IsAtomicOrderingAcquire requires IsAtomic"); 967 if (isAtomicOrderingRelease()) 968 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 969 "IsAtomicOrderingRelease requires IsAtomic"); 970 if (isAtomicOrderingAcquireRelease()) 971 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 972 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 973 if (isAtomicOrderingSequentiallyConsistent()) 974 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 975 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 976 if (isAtomicOrderingAcquireOrStronger()) 977 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 978 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 979 if (isAtomicOrderingReleaseOrStronger()) 980 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 981 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 982 if (isAtomicOrderingWeakerThanAcquire()) 983 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 984 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 985 } 986 987 if (isLoad() || isStore() || isAtomic()) { 988 if (ListInit *AddressSpaces = getAddressSpaces()) { 989 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 990 " if ("; 991 992 ListSeparator LS(" && "); 993 for (Init *Val : AddressSpaces->getValues()) { 994 Code += LS; 995 996 IntInit *IntVal = dyn_cast<IntInit>(Val); 997 if (!IntVal) { 998 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 999 "AddressSpaces element must be integer"); 1000 } 1001 1002 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1003 } 1004 1005 Code += ")\nreturn false;\n"; 1006 } 1007 1008 int64_t MinAlign = getMinAlignment(); 1009 if (MinAlign > 0) { 1010 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1011 Code += utostr(MinAlign); 1012 Code += "))\nreturn false;\n"; 1013 } 1014 1015 Record *MemoryVT = getMemoryVT(); 1016 1017 if (MemoryVT) 1018 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1019 MemoryVT->getName() + ") return false;\n") 1020 .str(); 1021 } 1022 1023 if (isAtomic() && isAtomicOrderingMonotonic()) 1024 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1025 "AtomicOrdering::Monotonic) return false;\n"; 1026 if (isAtomic() && isAtomicOrderingAcquire()) 1027 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1028 "AtomicOrdering::Acquire) return false;\n"; 1029 if (isAtomic() && isAtomicOrderingRelease()) 1030 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1031 "AtomicOrdering::Release) return false;\n"; 1032 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1033 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1034 "AtomicOrdering::AcquireRelease) return false;\n"; 1035 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1036 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1037 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1038 1039 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1040 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1041 "return false;\n"; 1042 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1043 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1044 "return false;\n"; 1045 1046 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1047 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1048 "return false;\n"; 1049 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1050 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1051 "return false;\n"; 1052 1053 if (isLoad() || isStore()) { 1054 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1055 1056 if (isUnindexed()) 1057 Code += ("if (cast<" + SDNodeName + 1058 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1059 "return false;\n") 1060 .str(); 1061 1062 if (isLoad()) { 1063 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1064 isZeroExtLoad()) > 1) 1065 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1066 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1067 "IsZeroExtLoad are mutually exclusive"); 1068 if (isNonExtLoad()) 1069 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1070 "ISD::NON_EXTLOAD) return false;\n"; 1071 if (isAnyExtLoad()) 1072 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1073 "return false;\n"; 1074 if (isSignExtLoad()) 1075 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1076 "return false;\n"; 1077 if (isZeroExtLoad()) 1078 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1079 "return false;\n"; 1080 } else { 1081 if ((isNonTruncStore() + isTruncStore()) > 1) 1082 PrintFatalError( 1083 getOrigPatFragRecord()->getRecord()->getLoc(), 1084 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1085 if (isNonTruncStore()) 1086 Code += 1087 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1088 if (isTruncStore()) 1089 Code += 1090 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1091 } 1092 1093 Record *ScalarMemoryVT = getScalarMemoryVT(); 1094 1095 if (ScalarMemoryVT) 1096 Code += ("if (cast<" + SDNodeName + 1097 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1098 ScalarMemoryVT->getName() + ") return false;\n") 1099 .str(); 1100 } 1101 1102 std::string PredicateCode = 1103 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1104 1105 Code += PredicateCode; 1106 1107 if (PredicateCode.empty() && !Code.empty()) 1108 Code += "return true;\n"; 1109 1110 return Code; 1111 } 1112 1113 bool TreePredicateFn::hasImmCode() const { 1114 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1115 } 1116 1117 std::string TreePredicateFn::getImmCode() const { 1118 return std::string( 1119 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1120 } 1121 1122 bool TreePredicateFn::immCodeUsesAPInt() const { 1123 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1124 } 1125 1126 bool TreePredicateFn::immCodeUsesAPFloat() const { 1127 bool Unset; 1128 // The return value will be false when IsAPFloat is unset. 1129 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1130 Unset); 1131 } 1132 1133 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1134 bool Value) const { 1135 bool Unset; 1136 bool Result = 1137 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1138 if (Unset) 1139 return false; 1140 return Result == Value; 1141 } 1142 bool TreePredicateFn::usesOperands() const { 1143 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1144 } 1145 bool TreePredicateFn::isLoad() const { 1146 return isPredefinedPredicateEqualTo("IsLoad", true); 1147 } 1148 bool TreePredicateFn::isStore() const { 1149 return isPredefinedPredicateEqualTo("IsStore", true); 1150 } 1151 bool TreePredicateFn::isAtomic() const { 1152 return isPredefinedPredicateEqualTo("IsAtomic", true); 1153 } 1154 bool TreePredicateFn::isUnindexed() const { 1155 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1156 } 1157 bool TreePredicateFn::isNonExtLoad() const { 1158 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1159 } 1160 bool TreePredicateFn::isAnyExtLoad() const { 1161 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1162 } 1163 bool TreePredicateFn::isSignExtLoad() const { 1164 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1165 } 1166 bool TreePredicateFn::isZeroExtLoad() const { 1167 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1168 } 1169 bool TreePredicateFn::isNonTruncStore() const { 1170 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1171 } 1172 bool TreePredicateFn::isTruncStore() const { 1173 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1174 } 1175 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1176 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1177 } 1178 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1179 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1180 } 1181 bool TreePredicateFn::isAtomicOrderingRelease() const { 1182 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1183 } 1184 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1185 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1186 } 1187 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1188 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1189 true); 1190 } 1191 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1192 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1193 } 1194 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1195 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1196 } 1197 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1198 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1199 } 1200 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1201 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1202 } 1203 Record *TreePredicateFn::getMemoryVT() const { 1204 Record *R = getOrigPatFragRecord()->getRecord(); 1205 if (R->isValueUnset("MemoryVT")) 1206 return nullptr; 1207 return R->getValueAsDef("MemoryVT"); 1208 } 1209 1210 ListInit *TreePredicateFn::getAddressSpaces() const { 1211 Record *R = getOrigPatFragRecord()->getRecord(); 1212 if (R->isValueUnset("AddressSpaces")) 1213 return nullptr; 1214 return R->getValueAsListInit("AddressSpaces"); 1215 } 1216 1217 int64_t TreePredicateFn::getMinAlignment() const { 1218 Record *R = getOrigPatFragRecord()->getRecord(); 1219 if (R->isValueUnset("MinAlignment")) 1220 return 0; 1221 return R->getValueAsInt("MinAlignment"); 1222 } 1223 1224 Record *TreePredicateFn::getScalarMemoryVT() const { 1225 Record *R = getOrigPatFragRecord()->getRecord(); 1226 if (R->isValueUnset("ScalarMemoryVT")) 1227 return nullptr; 1228 return R->getValueAsDef("ScalarMemoryVT"); 1229 } 1230 bool TreePredicateFn::hasGISelPredicateCode() const { 1231 return !PatFragRec->getRecord() 1232 ->getValueAsString("GISelPredicateCode") 1233 .empty(); 1234 } 1235 std::string TreePredicateFn::getGISelPredicateCode() const { 1236 return std::string( 1237 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1238 } 1239 1240 StringRef TreePredicateFn::getImmType() const { 1241 if (immCodeUsesAPInt()) 1242 return "const APInt &"; 1243 if (immCodeUsesAPFloat()) 1244 return "const APFloat &"; 1245 return "int64_t"; 1246 } 1247 1248 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1249 if (immCodeUsesAPInt()) 1250 return "APInt"; 1251 else if (immCodeUsesAPFloat()) 1252 return "APFloat"; 1253 return "I64"; 1254 } 1255 1256 /// isAlwaysTrue - Return true if this is a noop predicate. 1257 bool TreePredicateFn::isAlwaysTrue() const { 1258 return !hasPredCode() && !hasImmCode(); 1259 } 1260 1261 /// Return the name to use in the generated code to reference this, this is 1262 /// "Predicate_foo" if from a pattern fragment "foo". 1263 std::string TreePredicateFn::getFnName() const { 1264 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1265 } 1266 1267 /// getCodeToRunOnSDNode - Return the code for the function body that 1268 /// evaluates this predicate. The argument is expected to be in "Node", 1269 /// not N. This handles casting and conversion to a concrete node type as 1270 /// appropriate. 1271 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1272 // Handle immediate predicates first. 1273 std::string ImmCode = getImmCode(); 1274 if (!ImmCode.empty()) { 1275 if (isLoad()) 1276 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1277 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1278 if (isStore()) 1279 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1280 "IsStore cannot be used with ImmLeaf or its subclasses"); 1281 if (isUnindexed()) 1282 PrintFatalError( 1283 getOrigPatFragRecord()->getRecord()->getLoc(), 1284 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1285 if (isNonExtLoad()) 1286 PrintFatalError( 1287 getOrigPatFragRecord()->getRecord()->getLoc(), 1288 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1289 if (isAnyExtLoad()) 1290 PrintFatalError( 1291 getOrigPatFragRecord()->getRecord()->getLoc(), 1292 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1293 if (isSignExtLoad()) 1294 PrintFatalError( 1295 getOrigPatFragRecord()->getRecord()->getLoc(), 1296 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1297 if (isZeroExtLoad()) 1298 PrintFatalError( 1299 getOrigPatFragRecord()->getRecord()->getLoc(), 1300 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1301 if (isNonTruncStore()) 1302 PrintFatalError( 1303 getOrigPatFragRecord()->getRecord()->getLoc(), 1304 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1305 if (isTruncStore()) 1306 PrintFatalError( 1307 getOrigPatFragRecord()->getRecord()->getLoc(), 1308 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1309 if (getMemoryVT()) 1310 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1311 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1312 if (getScalarMemoryVT()) 1313 PrintFatalError( 1314 getOrigPatFragRecord()->getRecord()->getLoc(), 1315 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1316 1317 std::string Result = (" " + getImmType() + " Imm = ").str(); 1318 if (immCodeUsesAPFloat()) 1319 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1320 else if (immCodeUsesAPInt()) 1321 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1322 else 1323 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1324 return Result + ImmCode; 1325 } 1326 1327 // Handle arbitrary node predicates. 1328 assert(hasPredCode() && "Don't have any predicate code!"); 1329 1330 // If this is using PatFrags, there are multiple trees to search. They should 1331 // all have the same class. FIXME: Is there a way to find a common 1332 // superclass? 1333 StringRef ClassName; 1334 for (const auto &Tree : PatFragRec->getTrees()) { 1335 StringRef TreeClassName; 1336 if (Tree->isLeaf()) 1337 TreeClassName = "SDNode"; 1338 else { 1339 Record *Op = Tree->getOperator(); 1340 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1341 TreeClassName = Info.getSDClassName(); 1342 } 1343 1344 if (ClassName.empty()) 1345 ClassName = TreeClassName; 1346 else if (ClassName != TreeClassName) { 1347 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1348 "PatFrags trees do not have consistent class"); 1349 } 1350 } 1351 1352 std::string Result; 1353 if (ClassName == "SDNode") 1354 Result = " SDNode *N = Node;\n"; 1355 else 1356 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1357 1358 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1359 } 1360 1361 //===----------------------------------------------------------------------===// 1362 // PatternToMatch implementation 1363 // 1364 1365 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1366 if (!P->isLeaf()) 1367 return false; 1368 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1369 if (!DI) 1370 return false; 1371 1372 Record *R = DI->getDef(); 1373 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1374 } 1375 1376 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1377 /// patterns before small ones. This is used to determine the size of a 1378 /// pattern. 1379 static unsigned getPatternSize(const TreePatternNode *P, 1380 const CodeGenDAGPatterns &CGP) { 1381 unsigned Size = 3; // The node itself. 1382 // If the root node is a ConstantSDNode, increases its size. 1383 // e.g. (set R32:$dst, 0). 1384 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1385 Size += 2; 1386 1387 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1388 Size += AM->getComplexity(); 1389 // We don't want to count any children twice, so return early. 1390 return Size; 1391 } 1392 1393 // If this node has some predicate function that must match, it adds to the 1394 // complexity of this node. 1395 if (!P->getPredicateCalls().empty()) 1396 ++Size; 1397 1398 // Count children in the count if they are also nodes. 1399 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1400 const TreePatternNode *Child = P->getChild(i); 1401 if (!Child->isLeaf() && Child->getNumTypes()) { 1402 const TypeSetByHwMode &T0 = Child->getExtType(0); 1403 // At this point, all variable type sets should be simple, i.e. only 1404 // have a default mode. 1405 if (T0.getMachineValueType() != MVT::Other) { 1406 Size += getPatternSize(Child, CGP); 1407 continue; 1408 } 1409 } 1410 if (Child->isLeaf()) { 1411 if (isa<IntInit>(Child->getLeafValue())) 1412 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1413 else if (Child->getComplexPatternInfo(CGP)) 1414 Size += getPatternSize(Child, CGP); 1415 else if (isImmAllOnesAllZerosMatch(Child)) 1416 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1417 else if (!Child->getPredicateCalls().empty()) 1418 ++Size; 1419 } 1420 } 1421 1422 return Size; 1423 } 1424 1425 /// Compute the complexity metric for the input pattern. This roughly 1426 /// corresponds to the number of nodes that are covered. 1427 int PatternToMatch:: 1428 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1429 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1430 } 1431 1432 /// getPredicateCheck - Return a single string containing all of this 1433 /// pattern's predicates concatenated with "&&" operators. 1434 /// 1435 std::string PatternToMatch::getPredicateCheck() const { 1436 SmallVector<const Predicate*,4> PredList; 1437 for (const Predicate &P : Predicates) { 1438 if (!P.getCondString().empty()) 1439 PredList.push_back(&P); 1440 } 1441 llvm::sort(PredList, deref<std::less<>>()); 1442 1443 std::string Check; 1444 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1445 if (i != 0) 1446 Check += " && "; 1447 Check += '(' + PredList[i]->getCondString() + ')'; 1448 } 1449 return Check; 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // SDTypeConstraint implementation 1454 // 1455 1456 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1457 OperandNo = R->getValueAsInt("OperandNum"); 1458 1459 if (R->isSubClassOf("SDTCisVT")) { 1460 ConstraintType = SDTCisVT; 1461 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1462 for (const auto &P : VVT) 1463 if (P.second == MVT::isVoid) 1464 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1465 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1466 ConstraintType = SDTCisPtrTy; 1467 } else if (R->isSubClassOf("SDTCisInt")) { 1468 ConstraintType = SDTCisInt; 1469 } else if (R->isSubClassOf("SDTCisFP")) { 1470 ConstraintType = SDTCisFP; 1471 } else if (R->isSubClassOf("SDTCisVec")) { 1472 ConstraintType = SDTCisVec; 1473 } else if (R->isSubClassOf("SDTCisSameAs")) { 1474 ConstraintType = SDTCisSameAs; 1475 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1476 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1477 ConstraintType = SDTCisVTSmallerThanOp; 1478 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1479 R->getValueAsInt("OtherOperandNum"); 1480 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1481 ConstraintType = SDTCisOpSmallerThanOp; 1482 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1483 R->getValueAsInt("BigOperandNum"); 1484 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1485 ConstraintType = SDTCisEltOfVec; 1486 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1487 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1488 ConstraintType = SDTCisSubVecOfVec; 1489 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1490 R->getValueAsInt("OtherOpNum"); 1491 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1492 ConstraintType = SDTCVecEltisVT; 1493 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1494 for (const auto &P : VVT) { 1495 MVT T = P.second; 1496 if (T.isVector()) 1497 PrintFatalError(R->getLoc(), 1498 "Cannot use vector type as SDTCVecEltisVT"); 1499 if (!T.isInteger() && !T.isFloatingPoint()) 1500 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1501 "as SDTCVecEltisVT"); 1502 } 1503 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1504 ConstraintType = SDTCisSameNumEltsAs; 1505 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1506 R->getValueAsInt("OtherOperandNum"); 1507 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1508 ConstraintType = SDTCisSameSizeAs; 1509 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1510 R->getValueAsInt("OtherOperandNum"); 1511 } else { 1512 PrintFatalError(R->getLoc(), 1513 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1514 } 1515 } 1516 1517 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1518 /// N, and the result number in ResNo. 1519 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1520 const SDNodeInfo &NodeInfo, 1521 unsigned &ResNo) { 1522 unsigned NumResults = NodeInfo.getNumResults(); 1523 if (OpNo < NumResults) { 1524 ResNo = OpNo; 1525 return N; 1526 } 1527 1528 OpNo -= NumResults; 1529 1530 if (OpNo >= N->getNumChildren()) { 1531 std::string S; 1532 raw_string_ostream OS(S); 1533 OS << "Invalid operand number in type constraint " 1534 << (OpNo+NumResults) << " "; 1535 N->print(OS); 1536 PrintFatalError(OS.str()); 1537 } 1538 1539 return N->getChild(OpNo); 1540 } 1541 1542 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1543 /// constraint to the nodes operands. This returns true if it makes a 1544 /// change, false otherwise. If a type contradiction is found, flag an error. 1545 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1546 const SDNodeInfo &NodeInfo, 1547 TreePattern &TP) const { 1548 if (TP.hasError()) 1549 return false; 1550 1551 unsigned ResNo = 0; // The result number being referenced. 1552 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1553 TypeInfer &TI = TP.getInfer(); 1554 1555 switch (ConstraintType) { 1556 case SDTCisVT: 1557 // Operand must be a particular type. 1558 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1559 case SDTCisPtrTy: 1560 // Operand must be same as target pointer type. 1561 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1562 case SDTCisInt: 1563 // Require it to be one of the legal integer VTs. 1564 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1565 case SDTCisFP: 1566 // Require it to be one of the legal fp VTs. 1567 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1568 case SDTCisVec: 1569 // Require it to be one of the legal vector VTs. 1570 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1571 case SDTCisSameAs: { 1572 unsigned OResNo = 0; 1573 TreePatternNode *OtherNode = 1574 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1575 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1576 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1577 } 1578 case SDTCisVTSmallerThanOp: { 1579 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1580 // have an integer type that is smaller than the VT. 1581 if (!NodeToApply->isLeaf() || 1582 !isa<DefInit>(NodeToApply->getLeafValue()) || 1583 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1584 ->isSubClassOf("ValueType")) { 1585 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1586 return false; 1587 } 1588 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1589 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1590 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1591 TypeSetByHwMode TypeListTmp(VVT); 1592 1593 unsigned OResNo = 0; 1594 TreePatternNode *OtherNode = 1595 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1596 OResNo); 1597 1598 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1599 } 1600 case SDTCisOpSmallerThanOp: { 1601 unsigned BResNo = 0; 1602 TreePatternNode *BigOperand = 1603 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1604 BResNo); 1605 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1606 BigOperand->getExtType(BResNo)); 1607 } 1608 case SDTCisEltOfVec: { 1609 unsigned VResNo = 0; 1610 TreePatternNode *VecOperand = 1611 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1612 VResNo); 1613 // Filter vector types out of VecOperand that don't have the right element 1614 // type. 1615 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1616 NodeToApply->getExtType(ResNo)); 1617 } 1618 case SDTCisSubVecOfVec: { 1619 unsigned VResNo = 0; 1620 TreePatternNode *BigVecOperand = 1621 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1622 VResNo); 1623 1624 // Filter vector types out of BigVecOperand that don't have the 1625 // right subvector type. 1626 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1627 NodeToApply->getExtType(ResNo)); 1628 } 1629 case SDTCVecEltisVT: { 1630 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1631 } 1632 case SDTCisSameNumEltsAs: { 1633 unsigned OResNo = 0; 1634 TreePatternNode *OtherNode = 1635 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1636 N, NodeInfo, OResNo); 1637 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1638 NodeToApply->getExtType(ResNo)); 1639 } 1640 case SDTCisSameSizeAs: { 1641 unsigned OResNo = 0; 1642 TreePatternNode *OtherNode = 1643 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1644 N, NodeInfo, OResNo); 1645 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1646 NodeToApply->getExtType(ResNo)); 1647 } 1648 } 1649 llvm_unreachable("Invalid ConstraintType!"); 1650 } 1651 1652 // Update the node type to match an instruction operand or result as specified 1653 // in the ins or outs lists on the instruction definition. Return true if the 1654 // type was actually changed. 1655 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1656 Record *Operand, 1657 TreePattern &TP) { 1658 // The 'unknown' operand indicates that types should be inferred from the 1659 // context. 1660 if (Operand->isSubClassOf("unknown_class")) 1661 return false; 1662 1663 // The Operand class specifies a type directly. 1664 if (Operand->isSubClassOf("Operand")) { 1665 Record *R = Operand->getValueAsDef("Type"); 1666 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1667 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1668 } 1669 1670 // PointerLikeRegClass has a type that is determined at runtime. 1671 if (Operand->isSubClassOf("PointerLikeRegClass")) 1672 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1673 1674 // Both RegisterClass and RegisterOperand operands derive their types from a 1675 // register class def. 1676 Record *RC = nullptr; 1677 if (Operand->isSubClassOf("RegisterClass")) 1678 RC = Operand; 1679 else if (Operand->isSubClassOf("RegisterOperand")) 1680 RC = Operand->getValueAsDef("RegClass"); 1681 1682 assert(RC && "Unknown operand type"); 1683 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1684 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1685 } 1686 1687 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1688 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1689 if (!TP.getInfer().isConcrete(Types[i], true)) 1690 return true; 1691 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1692 if (getChild(i)->ContainsUnresolvedType(TP)) 1693 return true; 1694 return false; 1695 } 1696 1697 bool TreePatternNode::hasProperTypeByHwMode() const { 1698 for (const TypeSetByHwMode &S : Types) 1699 if (!S.isDefaultOnly()) 1700 return true; 1701 for (const TreePatternNodePtr &C : Children) 1702 if (C->hasProperTypeByHwMode()) 1703 return true; 1704 return false; 1705 } 1706 1707 bool TreePatternNode::hasPossibleType() const { 1708 for (const TypeSetByHwMode &S : Types) 1709 if (!S.isPossible()) 1710 return false; 1711 for (const TreePatternNodePtr &C : Children) 1712 if (!C->hasPossibleType()) 1713 return false; 1714 return true; 1715 } 1716 1717 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1718 for (TypeSetByHwMode &S : Types) { 1719 S.makeSimple(Mode); 1720 // Check if the selected mode had a type conflict. 1721 if (S.get(DefaultMode).empty()) 1722 return false; 1723 } 1724 for (const TreePatternNodePtr &C : Children) 1725 if (!C->setDefaultMode(Mode)) 1726 return false; 1727 return true; 1728 } 1729 1730 //===----------------------------------------------------------------------===// 1731 // SDNodeInfo implementation 1732 // 1733 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1734 EnumName = R->getValueAsString("Opcode"); 1735 SDClassName = R->getValueAsString("SDClass"); 1736 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1737 NumResults = TypeProfile->getValueAsInt("NumResults"); 1738 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1739 1740 // Parse the properties. 1741 Properties = parseSDPatternOperatorProperties(R); 1742 1743 // Parse the type constraints. 1744 std::vector<Record*> ConstraintList = 1745 TypeProfile->getValueAsListOfDefs("Constraints"); 1746 for (Record *R : ConstraintList) 1747 TypeConstraints.emplace_back(R, CGH); 1748 } 1749 1750 /// getKnownType - If the type constraints on this node imply a fixed type 1751 /// (e.g. all stores return void, etc), then return it as an 1752 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1753 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1754 unsigned NumResults = getNumResults(); 1755 assert(NumResults <= 1 && 1756 "We only work with nodes with zero or one result so far!"); 1757 assert(ResNo == 0 && "Only handles single result nodes so far"); 1758 1759 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1760 // Make sure that this applies to the correct node result. 1761 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1762 continue; 1763 1764 switch (Constraint.ConstraintType) { 1765 default: break; 1766 case SDTypeConstraint::SDTCisVT: 1767 if (Constraint.VVT.isSimple()) 1768 return Constraint.VVT.getSimple().SimpleTy; 1769 break; 1770 case SDTypeConstraint::SDTCisPtrTy: 1771 return MVT::iPTR; 1772 } 1773 } 1774 return MVT::Other; 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // TreePatternNode implementation 1779 // 1780 1781 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1782 if (Operator->getName() == "set" || 1783 Operator->getName() == "implicit") 1784 return 0; // All return nothing. 1785 1786 if (Operator->isSubClassOf("Intrinsic")) 1787 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1788 1789 if (Operator->isSubClassOf("SDNode")) 1790 return CDP.getSDNodeInfo(Operator).getNumResults(); 1791 1792 if (Operator->isSubClassOf("PatFrags")) { 1793 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1794 // the forward reference case where one pattern fragment references another 1795 // before it is processed. 1796 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1797 // The number of results of a fragment with alternative records is the 1798 // maximum number of results across all alternatives. 1799 unsigned NumResults = 0; 1800 for (auto T : PFRec->getTrees()) 1801 NumResults = std::max(NumResults, T->getNumTypes()); 1802 return NumResults; 1803 } 1804 1805 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1806 assert(LI && "Invalid Fragment"); 1807 unsigned NumResults = 0; 1808 for (Init *I : LI->getValues()) { 1809 Record *Op = nullptr; 1810 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1811 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1812 Op = DI->getDef(); 1813 assert(Op && "Invalid Fragment"); 1814 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1815 } 1816 return NumResults; 1817 } 1818 1819 if (Operator->isSubClassOf("Instruction")) { 1820 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1821 1822 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1823 1824 // Subtract any defaulted outputs. 1825 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1826 Record *OperandNode = InstInfo.Operands[i].Rec; 1827 1828 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1829 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1830 --NumDefsToAdd; 1831 } 1832 1833 // Add on one implicit def if it has a resolvable type. 1834 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1835 ++NumDefsToAdd; 1836 return NumDefsToAdd; 1837 } 1838 1839 if (Operator->isSubClassOf("SDNodeXForm")) 1840 return 1; // FIXME: Generalize SDNodeXForm 1841 1842 if (Operator->isSubClassOf("ValueType")) 1843 return 1; // A type-cast of one result. 1844 1845 if (Operator->isSubClassOf("ComplexPattern")) 1846 return 1; 1847 1848 errs() << *Operator; 1849 PrintFatalError("Unhandled node in GetNumNodeResults"); 1850 } 1851 1852 void TreePatternNode::print(raw_ostream &OS) const { 1853 if (isLeaf()) 1854 OS << *getLeafValue(); 1855 else 1856 OS << '(' << getOperator()->getName(); 1857 1858 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1859 OS << ':'; 1860 getExtType(i).writeToStream(OS); 1861 } 1862 1863 if (!isLeaf()) { 1864 if (getNumChildren() != 0) { 1865 OS << " "; 1866 ListSeparator LS; 1867 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1868 OS << LS; 1869 getChild(i)->print(OS); 1870 } 1871 } 1872 OS << ")"; 1873 } 1874 1875 for (const TreePredicateCall &Pred : PredicateCalls) { 1876 OS << "<<P:"; 1877 if (Pred.Scope) 1878 OS << Pred.Scope << ":"; 1879 OS << Pred.Fn.getFnName() << ">>"; 1880 } 1881 if (TransformFn) 1882 OS << "<<X:" << TransformFn->getName() << ">>"; 1883 if (!getName().empty()) 1884 OS << ":$" << getName(); 1885 1886 for (const ScopedName &Name : NamesAsPredicateArg) 1887 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1888 } 1889 void TreePatternNode::dump() const { 1890 print(errs()); 1891 } 1892 1893 /// isIsomorphicTo - Return true if this node is recursively 1894 /// isomorphic to the specified node. For this comparison, the node's 1895 /// entire state is considered. The assigned name is ignored, since 1896 /// nodes with differing names are considered isomorphic. However, if 1897 /// the assigned name is present in the dependent variable set, then 1898 /// the assigned name is considered significant and the node is 1899 /// isomorphic if the names match. 1900 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1901 const MultipleUseVarSet &DepVars) const { 1902 if (N == this) return true; 1903 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1904 getPredicateCalls() != N->getPredicateCalls() || 1905 getTransformFn() != N->getTransformFn()) 1906 return false; 1907 1908 if (isLeaf()) { 1909 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1910 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1911 return ((DI->getDef() == NDI->getDef()) 1912 && (DepVars.find(getName()) == DepVars.end() 1913 || getName() == N->getName())); 1914 } 1915 } 1916 return getLeafValue() == N->getLeafValue(); 1917 } 1918 1919 if (N->getOperator() != getOperator() || 1920 N->getNumChildren() != getNumChildren()) return false; 1921 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1922 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1923 return false; 1924 return true; 1925 } 1926 1927 /// clone - Make a copy of this tree and all of its children. 1928 /// 1929 TreePatternNodePtr TreePatternNode::clone() const { 1930 TreePatternNodePtr New; 1931 if (isLeaf()) { 1932 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1933 } else { 1934 std::vector<TreePatternNodePtr> CChildren; 1935 CChildren.reserve(Children.size()); 1936 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1937 CChildren.push_back(getChild(i)->clone()); 1938 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1939 getNumTypes()); 1940 } 1941 New->setName(getName()); 1942 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1943 New->Types = Types; 1944 New->setPredicateCalls(getPredicateCalls()); 1945 New->setTransformFn(getTransformFn()); 1946 return New; 1947 } 1948 1949 /// RemoveAllTypes - Recursively strip all the types of this tree. 1950 void TreePatternNode::RemoveAllTypes() { 1951 // Reset to unknown type. 1952 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1953 if (isLeaf()) return; 1954 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1955 getChild(i)->RemoveAllTypes(); 1956 } 1957 1958 1959 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1960 /// with actual values specified by ArgMap. 1961 void TreePatternNode::SubstituteFormalArguments( 1962 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1963 if (isLeaf()) return; 1964 1965 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1966 TreePatternNode *Child = getChild(i); 1967 if (Child->isLeaf()) { 1968 Init *Val = Child->getLeafValue(); 1969 // Note that, when substituting into an output pattern, Val might be an 1970 // UnsetInit. 1971 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1972 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1973 // We found a use of a formal argument, replace it with its value. 1974 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1975 assert(NewChild && "Couldn't find formal argument!"); 1976 assert((Child->getPredicateCalls().empty() || 1977 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1978 "Non-empty child predicate clobbered!"); 1979 setChild(i, std::move(NewChild)); 1980 } 1981 } else { 1982 getChild(i)->SubstituteFormalArguments(ArgMap); 1983 } 1984 } 1985 } 1986 1987 1988 /// InlinePatternFragments - If this pattern refers to any pattern 1989 /// fragments, return the set of inlined versions (this can be more than 1990 /// one if a PatFrags record has multiple alternatives). 1991 void TreePatternNode::InlinePatternFragments( 1992 TreePatternNodePtr T, TreePattern &TP, 1993 std::vector<TreePatternNodePtr> &OutAlternatives) { 1994 1995 if (TP.hasError()) 1996 return; 1997 1998 if (isLeaf()) { 1999 OutAlternatives.push_back(T); // nothing to do. 2000 return; 2001 } 2002 2003 Record *Op = getOperator(); 2004 2005 if (!Op->isSubClassOf("PatFrags")) { 2006 if (getNumChildren() == 0) { 2007 OutAlternatives.push_back(T); 2008 return; 2009 } 2010 2011 // Recursively inline children nodes. 2012 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2013 ChildAlternatives.resize(getNumChildren()); 2014 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2015 TreePatternNodePtr Child = getChildShared(i); 2016 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2017 // If there are no alternatives for any child, there are no 2018 // alternatives for this expression as whole. 2019 if (ChildAlternatives[i].empty()) 2020 return; 2021 2022 for (auto NewChild : ChildAlternatives[i]) 2023 assert((Child->getPredicateCalls().empty() || 2024 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 2025 "Non-empty child predicate clobbered!"); 2026 } 2027 2028 // The end result is an all-pairs construction of the resultant pattern. 2029 std::vector<unsigned> Idxs; 2030 Idxs.resize(ChildAlternatives.size()); 2031 bool NotDone; 2032 do { 2033 // Create the variant and add it to the output list. 2034 std::vector<TreePatternNodePtr> NewChildren; 2035 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2036 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2037 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2038 getOperator(), std::move(NewChildren), getNumTypes()); 2039 2040 // Copy over properties. 2041 R->setName(getName()); 2042 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2043 R->setPredicateCalls(getPredicateCalls()); 2044 R->setTransformFn(getTransformFn()); 2045 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2046 R->setType(i, getExtType(i)); 2047 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2048 R->setResultIndex(i, getResultIndex(i)); 2049 2050 // Register alternative. 2051 OutAlternatives.push_back(R); 2052 2053 // Increment indices to the next permutation by incrementing the 2054 // indices from last index backward, e.g., generate the sequence 2055 // [0, 0], [0, 1], [1, 0], [1, 1]. 2056 int IdxsIdx; 2057 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2058 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2059 Idxs[IdxsIdx] = 0; 2060 else 2061 break; 2062 } 2063 NotDone = (IdxsIdx >= 0); 2064 } while (NotDone); 2065 2066 return; 2067 } 2068 2069 // Otherwise, we found a reference to a fragment. First, look up its 2070 // TreePattern record. 2071 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2072 2073 // Verify that we are passing the right number of operands. 2074 if (Frag->getNumArgs() != Children.size()) { 2075 TP.error("'" + Op->getName() + "' fragment requires " + 2076 Twine(Frag->getNumArgs()) + " operands!"); 2077 return; 2078 } 2079 2080 TreePredicateFn PredFn(Frag); 2081 unsigned Scope = 0; 2082 if (TreePredicateFn(Frag).usesOperands()) 2083 Scope = TP.getDAGPatterns().allocateScope(); 2084 2085 // Compute the map of formal to actual arguments. 2086 std::map<std::string, TreePatternNodePtr> ArgMap; 2087 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2088 TreePatternNodePtr Child = getChildShared(i); 2089 if (Scope != 0) { 2090 Child = Child->clone(); 2091 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2092 } 2093 ArgMap[Frag->getArgName(i)] = Child; 2094 } 2095 2096 // Loop over all fragment alternatives. 2097 for (auto Alternative : Frag->getTrees()) { 2098 TreePatternNodePtr FragTree = Alternative->clone(); 2099 2100 if (!PredFn.isAlwaysTrue()) 2101 FragTree->addPredicateCall(PredFn, Scope); 2102 2103 // Resolve formal arguments to their actual value. 2104 if (Frag->getNumArgs()) 2105 FragTree->SubstituteFormalArguments(ArgMap); 2106 2107 // Transfer types. Note that the resolved alternative may have fewer 2108 // (but not more) results than the PatFrags node. 2109 FragTree->setName(getName()); 2110 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2111 FragTree->UpdateNodeType(i, getExtType(i), TP); 2112 2113 // Transfer in the old predicates. 2114 for (const TreePredicateCall &Pred : getPredicateCalls()) 2115 FragTree->addPredicateCall(Pred); 2116 2117 // The fragment we inlined could have recursive inlining that is needed. See 2118 // if there are any pattern fragments in it and inline them as needed. 2119 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2120 } 2121 } 2122 2123 /// getImplicitType - Check to see if the specified record has an implicit 2124 /// type which should be applied to it. This will infer the type of register 2125 /// references from the register file information, for example. 2126 /// 2127 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2128 /// the F8RC register class argument in: 2129 /// 2130 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2131 /// 2132 /// When Unnamed is false, return the type of a named DAG operand such as the 2133 /// GPR:$src operand above. 2134 /// 2135 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2136 bool NotRegisters, 2137 bool Unnamed, 2138 TreePattern &TP) { 2139 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2140 2141 // Check to see if this is a register operand. 2142 if (R->isSubClassOf("RegisterOperand")) { 2143 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2144 if (NotRegisters) 2145 return TypeSetByHwMode(); // Unknown. 2146 Record *RegClass = R->getValueAsDef("RegClass"); 2147 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2148 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2149 } 2150 2151 // Check to see if this is a register or a register class. 2152 if (R->isSubClassOf("RegisterClass")) { 2153 assert(ResNo == 0 && "Regclass ref only has one result!"); 2154 // An unnamed register class represents itself as an i32 immediate, for 2155 // example on a COPY_TO_REGCLASS instruction. 2156 if (Unnamed) 2157 return TypeSetByHwMode(MVT::i32); 2158 2159 // In a named operand, the register class provides the possible set of 2160 // types. 2161 if (NotRegisters) 2162 return TypeSetByHwMode(); // Unknown. 2163 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2164 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2165 } 2166 2167 if (R->isSubClassOf("PatFrags")) { 2168 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2169 // Pattern fragment types will be resolved when they are inlined. 2170 return TypeSetByHwMode(); // Unknown. 2171 } 2172 2173 if (R->isSubClassOf("Register")) { 2174 assert(ResNo == 0 && "Registers only produce one result!"); 2175 if (NotRegisters) 2176 return TypeSetByHwMode(); // Unknown. 2177 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2178 return TypeSetByHwMode(T.getRegisterVTs(R)); 2179 } 2180 2181 if (R->isSubClassOf("SubRegIndex")) { 2182 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2183 return TypeSetByHwMode(MVT::i32); 2184 } 2185 2186 if (R->isSubClassOf("ValueType")) { 2187 assert(ResNo == 0 && "This node only has one result!"); 2188 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2189 // 2190 // (sext_inreg GPR:$src, i16) 2191 // ~~~ 2192 if (Unnamed) 2193 return TypeSetByHwMode(MVT::Other); 2194 // With a name, the ValueType simply provides the type of the named 2195 // variable. 2196 // 2197 // (sext_inreg i32:$src, i16) 2198 // ~~~~~~~~ 2199 if (NotRegisters) 2200 return TypeSetByHwMode(); // Unknown. 2201 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2202 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2203 } 2204 2205 if (R->isSubClassOf("CondCode")) { 2206 assert(ResNo == 0 && "This node only has one result!"); 2207 // Using a CondCodeSDNode. 2208 return TypeSetByHwMode(MVT::Other); 2209 } 2210 2211 if (R->isSubClassOf("ComplexPattern")) { 2212 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2213 if (NotRegisters) 2214 return TypeSetByHwMode(); // Unknown. 2215 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2216 } 2217 if (R->isSubClassOf("PointerLikeRegClass")) { 2218 assert(ResNo == 0 && "Regclass can only have one result!"); 2219 TypeSetByHwMode VTS(MVT::iPTR); 2220 TP.getInfer().expandOverloads(VTS); 2221 return VTS; 2222 } 2223 2224 if (R->getName() == "node" || R->getName() == "srcvalue" || 2225 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2226 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2227 // Placeholder. 2228 return TypeSetByHwMode(); // Unknown. 2229 } 2230 2231 if (R->isSubClassOf("Operand")) { 2232 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2233 Record *T = R->getValueAsDef("Type"); 2234 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2235 } 2236 2237 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2238 return TypeSetByHwMode(MVT::Other); 2239 } 2240 2241 2242 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2243 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2244 const CodeGenIntrinsic *TreePatternNode:: 2245 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2246 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2247 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2248 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2249 return nullptr; 2250 2251 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2252 return &CDP.getIntrinsicInfo(IID); 2253 } 2254 2255 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2256 /// return the ComplexPattern information, otherwise return null. 2257 const ComplexPattern * 2258 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2259 Record *Rec; 2260 if (isLeaf()) { 2261 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2262 if (!DI) 2263 return nullptr; 2264 Rec = DI->getDef(); 2265 } else 2266 Rec = getOperator(); 2267 2268 if (!Rec->isSubClassOf("ComplexPattern")) 2269 return nullptr; 2270 return &CGP.getComplexPattern(Rec); 2271 } 2272 2273 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2274 // A ComplexPattern specifically declares how many results it fills in. 2275 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2276 return CP->getNumOperands(); 2277 2278 // If MIOperandInfo is specified, that gives the count. 2279 if (isLeaf()) { 2280 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2281 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2282 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2283 if (MIOps->getNumArgs()) 2284 return MIOps->getNumArgs(); 2285 } 2286 } 2287 2288 // Otherwise there is just one result. 2289 return 1; 2290 } 2291 2292 /// NodeHasProperty - Return true if this node has the specified property. 2293 bool TreePatternNode::NodeHasProperty(SDNP Property, 2294 const CodeGenDAGPatterns &CGP) const { 2295 if (isLeaf()) { 2296 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2297 return CP->hasProperty(Property); 2298 2299 return false; 2300 } 2301 2302 if (Property != SDNPHasChain) { 2303 // The chain proprety is already present on the different intrinsic node 2304 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2305 // on the intrinsic. Anything else is specific to the individual intrinsic. 2306 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2307 return Int->hasProperty(Property); 2308 } 2309 2310 if (!Operator->isSubClassOf("SDPatternOperator")) 2311 return false; 2312 2313 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2314 } 2315 2316 2317 2318 2319 /// TreeHasProperty - Return true if any node in this tree has the specified 2320 /// property. 2321 bool TreePatternNode::TreeHasProperty(SDNP Property, 2322 const CodeGenDAGPatterns &CGP) const { 2323 if (NodeHasProperty(Property, CGP)) 2324 return true; 2325 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2326 if (getChild(i)->TreeHasProperty(Property, CGP)) 2327 return true; 2328 return false; 2329 } 2330 2331 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2332 /// commutative intrinsic. 2333 bool 2334 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2335 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2336 return Int->isCommutative; 2337 return false; 2338 } 2339 2340 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2341 if (!N->isLeaf()) 2342 return N->getOperator()->isSubClassOf(Class); 2343 2344 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2345 if (DI && DI->getDef()->isSubClassOf(Class)) 2346 return true; 2347 2348 return false; 2349 } 2350 2351 static void emitTooManyOperandsError(TreePattern &TP, 2352 StringRef InstName, 2353 unsigned Expected, 2354 unsigned Actual) { 2355 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2356 " operands but expected only " + Twine(Expected) + "!"); 2357 } 2358 2359 static void emitTooFewOperandsError(TreePattern &TP, 2360 StringRef InstName, 2361 unsigned Actual) { 2362 TP.error("Instruction '" + InstName + 2363 "' expects more than the provided " + Twine(Actual) + " operands!"); 2364 } 2365 2366 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2367 /// this node and its children in the tree. This returns true if it makes a 2368 /// change, false otherwise. If a type contradiction is found, flag an error. 2369 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2370 if (TP.hasError()) 2371 return false; 2372 2373 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2374 if (isLeaf()) { 2375 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2376 // If it's a regclass or something else known, include the type. 2377 bool MadeChange = false; 2378 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2379 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2380 NotRegisters, 2381 !hasName(), TP), TP); 2382 return MadeChange; 2383 } 2384 2385 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2386 assert(Types.size() == 1 && "Invalid IntInit"); 2387 2388 // Int inits are always integers. :) 2389 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2390 2391 if (!TP.getInfer().isConcrete(Types[0], false)) 2392 return MadeChange; 2393 2394 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2395 for (auto &P : VVT) { 2396 MVT::SimpleValueType VT = P.second.SimpleTy; 2397 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2398 continue; 2399 unsigned Size = MVT(VT).getFixedSizeInBits(); 2400 // Make sure that the value is representable for this type. 2401 if (Size >= 32) 2402 continue; 2403 // Check that the value doesn't use more bits than we have. It must 2404 // either be a sign- or zero-extended equivalent of the original. 2405 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2406 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2407 SignBitAndAbove == 1) 2408 continue; 2409 2410 TP.error("Integer value '" + Twine(II->getValue()) + 2411 "' is out of range for type '" + getEnumName(VT) + "'!"); 2412 break; 2413 } 2414 return MadeChange; 2415 } 2416 2417 return false; 2418 } 2419 2420 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2421 bool MadeChange = false; 2422 2423 // Apply the result type to the node. 2424 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2425 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2426 2427 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2428 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2429 2430 if (getNumChildren() != NumParamVTs + 1) { 2431 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2432 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2433 return false; 2434 } 2435 2436 // Apply type info to the intrinsic ID. 2437 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2438 2439 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2440 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2441 2442 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2443 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2444 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2445 } 2446 return MadeChange; 2447 } 2448 2449 if (getOperator()->isSubClassOf("SDNode")) { 2450 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2451 2452 // Check that the number of operands is sane. Negative operands -> varargs. 2453 if (NI.getNumOperands() >= 0 && 2454 getNumChildren() != (unsigned)NI.getNumOperands()) { 2455 TP.error(getOperator()->getName() + " node requires exactly " + 2456 Twine(NI.getNumOperands()) + " operands!"); 2457 return false; 2458 } 2459 2460 bool MadeChange = false; 2461 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2462 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2463 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2464 return MadeChange; 2465 } 2466 2467 if (getOperator()->isSubClassOf("Instruction")) { 2468 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2469 CodeGenInstruction &InstInfo = 2470 CDP.getTargetInfo().getInstruction(getOperator()); 2471 2472 bool MadeChange = false; 2473 2474 // Apply the result types to the node, these come from the things in the 2475 // (outs) list of the instruction. 2476 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2477 Inst.getNumResults()); 2478 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2479 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2480 2481 // If the instruction has implicit defs, we apply the first one as a result. 2482 // FIXME: This sucks, it should apply all implicit defs. 2483 if (!InstInfo.ImplicitDefs.empty()) { 2484 unsigned ResNo = NumResultsToAdd; 2485 2486 // FIXME: Generalize to multiple possible types and multiple possible 2487 // ImplicitDefs. 2488 MVT::SimpleValueType VT = 2489 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2490 2491 if (VT != MVT::Other) 2492 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2493 } 2494 2495 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2496 // be the same. 2497 if (getOperator()->getName() == "INSERT_SUBREG") { 2498 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2499 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2500 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2501 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2502 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2503 // variadic. 2504 2505 unsigned NChild = getNumChildren(); 2506 if (NChild < 3) { 2507 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2508 return false; 2509 } 2510 2511 if (NChild % 2 == 0) { 2512 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2513 return false; 2514 } 2515 2516 if (!isOperandClass(getChild(0), "RegisterClass")) { 2517 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2518 return false; 2519 } 2520 2521 for (unsigned I = 1; I < NChild; I += 2) { 2522 TreePatternNode *SubIdxChild = getChild(I + 1); 2523 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2524 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2525 Twine(I + 1) + "!"); 2526 return false; 2527 } 2528 } 2529 } 2530 2531 unsigned NumResults = Inst.getNumResults(); 2532 unsigned NumFixedOperands = InstInfo.Operands.size(); 2533 2534 // If one or more operands with a default value appear at the end of the 2535 // formal operand list for an instruction, we allow them to be overridden 2536 // by optional operands provided in the pattern. 2537 // 2538 // But if an operand B without a default appears at any point after an 2539 // operand A with a default, then we don't allow A to be overridden, 2540 // because there would be no way to specify whether the next operand in 2541 // the pattern was intended to override A or skip it. 2542 unsigned NonOverridableOperands = NumFixedOperands; 2543 while (NonOverridableOperands > NumResults && 2544 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2545 --NonOverridableOperands; 2546 2547 unsigned ChildNo = 0; 2548 assert(NumResults <= NumFixedOperands); 2549 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2550 Record *OperandNode = InstInfo.Operands[i].Rec; 2551 2552 // If the operand has a default value, do we use it? We must use the 2553 // default if we've run out of children of the pattern DAG to consume, 2554 // or if the operand is followed by a non-defaulted one. 2555 if (CDP.operandHasDefault(OperandNode) && 2556 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2557 continue; 2558 2559 // If we have run out of child nodes and there _isn't_ a default 2560 // value we can use for the next operand, give an error. 2561 if (ChildNo >= getNumChildren()) { 2562 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2563 return false; 2564 } 2565 2566 TreePatternNode *Child = getChild(ChildNo++); 2567 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2568 2569 // If the operand has sub-operands, they may be provided by distinct 2570 // child patterns, so attempt to match each sub-operand separately. 2571 if (OperandNode->isSubClassOf("Operand")) { 2572 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2573 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2574 // But don't do that if the whole operand is being provided by 2575 // a single ComplexPattern-related Operand. 2576 2577 if (Child->getNumMIResults(CDP) < NumArgs) { 2578 // Match first sub-operand against the child we already have. 2579 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2580 MadeChange |= 2581 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2582 2583 // And the remaining sub-operands against subsequent children. 2584 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2585 if (ChildNo >= getNumChildren()) { 2586 emitTooFewOperandsError(TP, getOperator()->getName(), 2587 getNumChildren()); 2588 return false; 2589 } 2590 Child = getChild(ChildNo++); 2591 2592 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2593 MadeChange |= 2594 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2595 } 2596 continue; 2597 } 2598 } 2599 } 2600 2601 // If we didn't match by pieces above, attempt to match the whole 2602 // operand now. 2603 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2604 } 2605 2606 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2607 emitTooManyOperandsError(TP, getOperator()->getName(), 2608 ChildNo, getNumChildren()); 2609 return false; 2610 } 2611 2612 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2613 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2614 return MadeChange; 2615 } 2616 2617 if (getOperator()->isSubClassOf("ComplexPattern")) { 2618 bool MadeChange = false; 2619 2620 for (unsigned i = 0; i < getNumChildren(); ++i) 2621 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2622 2623 return MadeChange; 2624 } 2625 2626 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2627 2628 // Node transforms always take one operand. 2629 if (getNumChildren() != 1) { 2630 TP.error("Node transform '" + getOperator()->getName() + 2631 "' requires one operand!"); 2632 return false; 2633 } 2634 2635 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2636 return MadeChange; 2637 } 2638 2639 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2640 /// RHS of a commutative operation, not the on LHS. 2641 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2642 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2643 return true; 2644 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2645 return true; 2646 if (isImmAllOnesAllZerosMatch(N)) 2647 return true; 2648 return false; 2649 } 2650 2651 2652 /// canPatternMatch - If it is impossible for this pattern to match on this 2653 /// target, fill in Reason and return false. Otherwise, return true. This is 2654 /// used as a sanity check for .td files (to prevent people from writing stuff 2655 /// that can never possibly work), and to prevent the pattern permuter from 2656 /// generating stuff that is useless. 2657 bool TreePatternNode::canPatternMatch(std::string &Reason, 2658 const CodeGenDAGPatterns &CDP) { 2659 if (isLeaf()) return true; 2660 2661 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2662 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2663 return false; 2664 2665 // If this is an intrinsic, handle cases that would make it not match. For 2666 // example, if an operand is required to be an immediate. 2667 if (getOperator()->isSubClassOf("Intrinsic")) { 2668 // TODO: 2669 return true; 2670 } 2671 2672 if (getOperator()->isSubClassOf("ComplexPattern")) 2673 return true; 2674 2675 // If this node is a commutative operator, check that the LHS isn't an 2676 // immediate. 2677 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2678 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2679 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2680 // Scan all of the operands of the node and make sure that only the last one 2681 // is a constant node, unless the RHS also is. 2682 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2683 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2684 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2685 if (OnlyOnRHSOfCommutative(getChild(i))) { 2686 Reason="Immediate value must be on the RHS of commutative operators!"; 2687 return false; 2688 } 2689 } 2690 } 2691 2692 return true; 2693 } 2694 2695 //===----------------------------------------------------------------------===// 2696 // TreePattern implementation 2697 // 2698 2699 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2700 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2701 isInputPattern(isInput), HasError(false), 2702 Infer(*this) { 2703 for (Init *I : RawPat->getValues()) 2704 Trees.push_back(ParseTreePattern(I, "")); 2705 } 2706 2707 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2708 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2709 isInputPattern(isInput), HasError(false), 2710 Infer(*this) { 2711 Trees.push_back(ParseTreePattern(Pat, "")); 2712 } 2713 2714 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2715 CodeGenDAGPatterns &cdp) 2716 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2717 Infer(*this) { 2718 Trees.push_back(Pat); 2719 } 2720 2721 void TreePattern::error(const Twine &Msg) { 2722 if (HasError) 2723 return; 2724 dump(); 2725 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2726 HasError = true; 2727 } 2728 2729 void TreePattern::ComputeNamedNodes() { 2730 for (TreePatternNodePtr &Tree : Trees) 2731 ComputeNamedNodes(Tree.get()); 2732 } 2733 2734 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2735 if (!N->getName().empty()) 2736 NamedNodes[N->getName()].push_back(N); 2737 2738 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2739 ComputeNamedNodes(N->getChild(i)); 2740 } 2741 2742 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2743 StringRef OpName) { 2744 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2745 Record *R = DI->getDef(); 2746 2747 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2748 // TreePatternNode of its own. For example: 2749 /// (foo GPR, imm) -> (foo GPR, (imm)) 2750 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2751 return ParseTreePattern( 2752 DagInit::get(DI, nullptr, 2753 std::vector<std::pair<Init*, StringInit*> >()), 2754 OpName); 2755 2756 // Input argument? 2757 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2758 if (R->getName() == "node" && !OpName.empty()) { 2759 if (OpName.empty()) 2760 error("'node' argument requires a name to match with operand list"); 2761 Args.push_back(std::string(OpName)); 2762 } 2763 2764 Res->setName(OpName); 2765 return Res; 2766 } 2767 2768 // ?:$name or just $name. 2769 if (isa<UnsetInit>(TheInit)) { 2770 if (OpName.empty()) 2771 error("'?' argument requires a name to match with operand list"); 2772 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2773 Args.push_back(std::string(OpName)); 2774 Res->setName(OpName); 2775 return Res; 2776 } 2777 2778 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2779 if (!OpName.empty()) 2780 error("Constant int or bit argument should not have a name!"); 2781 if (isa<BitInit>(TheInit)) 2782 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2783 return std::make_shared<TreePatternNode>(TheInit, 1); 2784 } 2785 2786 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2787 // Turn this into an IntInit. 2788 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2789 if (!II || !isa<IntInit>(II)) 2790 error("Bits value must be constants!"); 2791 return ParseTreePattern(II, OpName); 2792 } 2793 2794 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2795 if (!Dag) { 2796 TheInit->print(errs()); 2797 error("Pattern has unexpected init kind!"); 2798 } 2799 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2800 if (!OpDef) error("Pattern has unexpected operator type!"); 2801 Record *Operator = OpDef->getDef(); 2802 2803 if (Operator->isSubClassOf("ValueType")) { 2804 // If the operator is a ValueType, then this must be "type cast" of a leaf 2805 // node. 2806 if (Dag->getNumArgs() != 1) 2807 error("Type cast only takes one operand!"); 2808 2809 TreePatternNodePtr New = 2810 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2811 2812 // Apply the type cast. 2813 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2814 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2815 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2816 2817 if (!OpName.empty()) 2818 error("ValueType cast should not have a name!"); 2819 return New; 2820 } 2821 2822 // Verify that this is something that makes sense for an operator. 2823 if (!Operator->isSubClassOf("PatFrags") && 2824 !Operator->isSubClassOf("SDNode") && 2825 !Operator->isSubClassOf("Instruction") && 2826 !Operator->isSubClassOf("SDNodeXForm") && 2827 !Operator->isSubClassOf("Intrinsic") && 2828 !Operator->isSubClassOf("ComplexPattern") && 2829 Operator->getName() != "set" && 2830 Operator->getName() != "implicit") 2831 error("Unrecognized node '" + Operator->getName() + "'!"); 2832 2833 // Check to see if this is something that is illegal in an input pattern. 2834 if (isInputPattern) { 2835 if (Operator->isSubClassOf("Instruction") || 2836 Operator->isSubClassOf("SDNodeXForm")) 2837 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2838 } else { 2839 if (Operator->isSubClassOf("Intrinsic")) 2840 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2841 2842 if (Operator->isSubClassOf("SDNode") && 2843 Operator->getName() != "imm" && 2844 Operator->getName() != "timm" && 2845 Operator->getName() != "fpimm" && 2846 Operator->getName() != "tglobaltlsaddr" && 2847 Operator->getName() != "tconstpool" && 2848 Operator->getName() != "tjumptable" && 2849 Operator->getName() != "tframeindex" && 2850 Operator->getName() != "texternalsym" && 2851 Operator->getName() != "tblockaddress" && 2852 Operator->getName() != "tglobaladdr" && 2853 Operator->getName() != "bb" && 2854 Operator->getName() != "vt" && 2855 Operator->getName() != "mcsym") 2856 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2857 } 2858 2859 std::vector<TreePatternNodePtr> Children; 2860 2861 // Parse all the operands. 2862 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2863 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2864 2865 // Get the actual number of results before Operator is converted to an intrinsic 2866 // node (which is hard-coded to have either zero or one result). 2867 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2868 2869 // If the operator is an intrinsic, then this is just syntactic sugar for 2870 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2871 // convert the intrinsic name to a number. 2872 if (Operator->isSubClassOf("Intrinsic")) { 2873 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2874 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2875 2876 // If this intrinsic returns void, it must have side-effects and thus a 2877 // chain. 2878 if (Int.IS.RetVTs.empty()) 2879 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2880 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2881 // Has side-effects, requires chain. 2882 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2883 else // Otherwise, no chain. 2884 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2885 2886 Children.insert(Children.begin(), 2887 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2888 } 2889 2890 if (Operator->isSubClassOf("ComplexPattern")) { 2891 for (unsigned i = 0; i < Children.size(); ++i) { 2892 TreePatternNodePtr Child = Children[i]; 2893 2894 if (Child->getName().empty()) 2895 error("All arguments to a ComplexPattern must be named"); 2896 2897 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2898 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2899 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2900 auto OperandId = std::make_pair(Operator, i); 2901 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2902 if (PrevOp != ComplexPatternOperands.end()) { 2903 if (PrevOp->getValue() != OperandId) 2904 error("All ComplexPattern operands must appear consistently: " 2905 "in the same order in just one ComplexPattern instance."); 2906 } else 2907 ComplexPatternOperands[Child->getName()] = OperandId; 2908 } 2909 } 2910 2911 TreePatternNodePtr Result = 2912 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2913 NumResults); 2914 Result->setName(OpName); 2915 2916 if (Dag->getName()) { 2917 assert(Result->getName().empty()); 2918 Result->setName(Dag->getNameStr()); 2919 } 2920 return Result; 2921 } 2922 2923 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2924 /// will never match in favor of something obvious that will. This is here 2925 /// strictly as a convenience to target authors because it allows them to write 2926 /// more type generic things and have useless type casts fold away. 2927 /// 2928 /// This returns true if any change is made. 2929 static bool SimplifyTree(TreePatternNodePtr &N) { 2930 if (N->isLeaf()) 2931 return false; 2932 2933 // If we have a bitconvert with a resolved type and if the source and 2934 // destination types are the same, then the bitconvert is useless, remove it. 2935 // 2936 // We make an exception if the types are completely empty. This can come up 2937 // when the pattern being simplified is in the Fragments list of a PatFrags, 2938 // so that the operand is just an untyped "node". In that situation we leave 2939 // bitconverts unsimplified, and simplify them later once the fragment is 2940 // expanded into its true context. 2941 if (N->getOperator()->getName() == "bitconvert" && 2942 N->getExtType(0).isValueTypeByHwMode(false) && 2943 !N->getExtType(0).empty() && 2944 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2945 N->getName().empty()) { 2946 N = N->getChildShared(0); 2947 SimplifyTree(N); 2948 return true; 2949 } 2950 2951 // Walk all children. 2952 bool MadeChange = false; 2953 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2954 TreePatternNodePtr Child = N->getChildShared(i); 2955 MadeChange |= SimplifyTree(Child); 2956 N->setChild(i, std::move(Child)); 2957 } 2958 return MadeChange; 2959 } 2960 2961 2962 2963 /// InferAllTypes - Infer/propagate as many types throughout the expression 2964 /// patterns as possible. Return true if all types are inferred, false 2965 /// otherwise. Flags an error if a type contradiction is found. 2966 bool TreePattern:: 2967 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2968 if (NamedNodes.empty()) 2969 ComputeNamedNodes(); 2970 2971 bool MadeChange = true; 2972 while (MadeChange) { 2973 MadeChange = false; 2974 for (TreePatternNodePtr &Tree : Trees) { 2975 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2976 MadeChange |= SimplifyTree(Tree); 2977 } 2978 2979 // If there are constraints on our named nodes, apply them. 2980 for (auto &Entry : NamedNodes) { 2981 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2982 2983 // If we have input named node types, propagate their types to the named 2984 // values here. 2985 if (InNamedTypes) { 2986 if (!InNamedTypes->count(Entry.getKey())) { 2987 error("Node '" + std::string(Entry.getKey()) + 2988 "' in output pattern but not input pattern"); 2989 return true; 2990 } 2991 2992 const SmallVectorImpl<TreePatternNode*> &InNodes = 2993 InNamedTypes->find(Entry.getKey())->second; 2994 2995 // The input types should be fully resolved by now. 2996 for (TreePatternNode *Node : Nodes) { 2997 // If this node is a register class, and it is the root of the pattern 2998 // then we're mapping something onto an input register. We allow 2999 // changing the type of the input register in this case. This allows 3000 // us to match things like: 3001 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3002 if (Node == Trees[0].get() && Node->isLeaf()) { 3003 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3004 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3005 DI->getDef()->isSubClassOf("RegisterOperand"))) 3006 continue; 3007 } 3008 3009 assert(Node->getNumTypes() == 1 && 3010 InNodes[0]->getNumTypes() == 1 && 3011 "FIXME: cannot name multiple result nodes yet"); 3012 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3013 *this); 3014 } 3015 } 3016 3017 // If there are multiple nodes with the same name, they must all have the 3018 // same type. 3019 if (Entry.second.size() > 1) { 3020 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3021 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3022 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3023 "FIXME: cannot name multiple result nodes yet"); 3024 3025 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3026 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3027 } 3028 } 3029 } 3030 } 3031 3032 bool HasUnresolvedTypes = false; 3033 for (const TreePatternNodePtr &Tree : Trees) 3034 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3035 return !HasUnresolvedTypes; 3036 } 3037 3038 void TreePattern::print(raw_ostream &OS) const { 3039 OS << getRecord()->getName(); 3040 if (!Args.empty()) { 3041 OS << "("; 3042 ListSeparator LS; 3043 for (const std::string &Arg : Args) 3044 OS << LS << Arg; 3045 OS << ")"; 3046 } 3047 OS << ": "; 3048 3049 if (Trees.size() > 1) 3050 OS << "[\n"; 3051 for (const TreePatternNodePtr &Tree : Trees) { 3052 OS << "\t"; 3053 Tree->print(OS); 3054 OS << "\n"; 3055 } 3056 3057 if (Trees.size() > 1) 3058 OS << "]\n"; 3059 } 3060 3061 void TreePattern::dump() const { print(errs()); } 3062 3063 //===----------------------------------------------------------------------===// 3064 // CodeGenDAGPatterns implementation 3065 // 3066 3067 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3068 PatternRewriterFn PatternRewriter) 3069 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3070 PatternRewriter(PatternRewriter) { 3071 3072 Intrinsics = CodeGenIntrinsicTable(Records); 3073 ParseNodeInfo(); 3074 ParseNodeTransforms(); 3075 ParseComplexPatterns(); 3076 ParsePatternFragments(); 3077 ParseDefaultOperands(); 3078 ParseInstructions(); 3079 ParsePatternFragments(/*OutFrags*/true); 3080 ParsePatterns(); 3081 3082 // Break patterns with parameterized types into a series of patterns, 3083 // where each one has a fixed type and is predicated on the conditions 3084 // of the associated HW mode. 3085 ExpandHwModeBasedTypes(); 3086 3087 // Generate variants. For example, commutative patterns can match 3088 // multiple ways. Add them to PatternsToMatch as well. 3089 GenerateVariants(); 3090 3091 // Infer instruction flags. For example, we can detect loads, 3092 // stores, and side effects in many cases by examining an 3093 // instruction's pattern. 3094 InferInstructionFlags(); 3095 3096 // Verify that instruction flags match the patterns. 3097 VerifyInstructionFlags(); 3098 } 3099 3100 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3101 Record *N = Records.getDef(Name); 3102 if (!N || !N->isSubClassOf("SDNode")) 3103 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3104 3105 return N; 3106 } 3107 3108 // Parse all of the SDNode definitions for the target, populating SDNodes. 3109 void CodeGenDAGPatterns::ParseNodeInfo() { 3110 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3111 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3112 3113 while (!Nodes.empty()) { 3114 Record *R = Nodes.back(); 3115 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3116 Nodes.pop_back(); 3117 } 3118 3119 // Get the builtin intrinsic nodes. 3120 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3121 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3122 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3123 } 3124 3125 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3126 /// map, and emit them to the file as functions. 3127 void CodeGenDAGPatterns::ParseNodeTransforms() { 3128 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3129 while (!Xforms.empty()) { 3130 Record *XFormNode = Xforms.back(); 3131 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3132 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3133 SDNodeXForms.insert( 3134 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3135 3136 Xforms.pop_back(); 3137 } 3138 } 3139 3140 void CodeGenDAGPatterns::ParseComplexPatterns() { 3141 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3142 while (!AMs.empty()) { 3143 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3144 AMs.pop_back(); 3145 } 3146 } 3147 3148 3149 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3150 /// file, building up the PatternFragments map. After we've collected them all, 3151 /// inline fragments together as necessary, so that there are no references left 3152 /// inside a pattern fragment to a pattern fragment. 3153 /// 3154 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3155 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3156 3157 // First step, parse all of the fragments. 3158 for (Record *Frag : Fragments) { 3159 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3160 continue; 3161 3162 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3163 TreePattern *P = 3164 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3165 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3166 *this)).get(); 3167 3168 // Validate the argument list, converting it to set, to discard duplicates. 3169 std::vector<std::string> &Args = P->getArgList(); 3170 // Copy the args so we can take StringRefs to them. 3171 auto ArgsCopy = Args; 3172 SmallDenseSet<StringRef, 4> OperandsSet; 3173 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3174 3175 if (OperandsSet.count("")) 3176 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3177 3178 // Parse the operands list. 3179 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3180 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3181 // Special cases: ops == outs == ins. Different names are used to 3182 // improve readability. 3183 if (!OpsOp || 3184 (OpsOp->getDef()->getName() != "ops" && 3185 OpsOp->getDef()->getName() != "outs" && 3186 OpsOp->getDef()->getName() != "ins")) 3187 P->error("Operands list should start with '(ops ... '!"); 3188 3189 // Copy over the arguments. 3190 Args.clear(); 3191 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3192 if (!isa<DefInit>(OpsList->getArg(j)) || 3193 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3194 P->error("Operands list should all be 'node' values."); 3195 if (!OpsList->getArgName(j)) 3196 P->error("Operands list should have names for each operand!"); 3197 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3198 if (!OperandsSet.count(ArgNameStr)) 3199 P->error("'" + ArgNameStr + 3200 "' does not occur in pattern or was multiply specified!"); 3201 OperandsSet.erase(ArgNameStr); 3202 Args.push_back(std::string(ArgNameStr)); 3203 } 3204 3205 if (!OperandsSet.empty()) 3206 P->error("Operands list does not contain an entry for operand '" + 3207 *OperandsSet.begin() + "'!"); 3208 3209 // If there is a node transformation corresponding to this, keep track of 3210 // it. 3211 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3212 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3213 for (auto T : P->getTrees()) 3214 T->setTransformFn(Transform); 3215 } 3216 3217 // Now that we've parsed all of the tree fragments, do a closure on them so 3218 // that there are not references to PatFrags left inside of them. 3219 for (Record *Frag : Fragments) { 3220 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3221 continue; 3222 3223 TreePattern &ThePat = *PatternFragments[Frag]; 3224 ThePat.InlinePatternFragments(); 3225 3226 // Infer as many types as possible. Don't worry about it if we don't infer 3227 // all of them, some may depend on the inputs of the pattern. Also, don't 3228 // validate type sets; validation may cause spurious failures e.g. if a 3229 // fragment needs floating-point types but the current target does not have 3230 // any (this is only an error if that fragment is ever used!). 3231 { 3232 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3233 ThePat.InferAllTypes(); 3234 ThePat.resetError(); 3235 } 3236 3237 // If debugging, print out the pattern fragment result. 3238 LLVM_DEBUG(ThePat.dump()); 3239 } 3240 } 3241 3242 void CodeGenDAGPatterns::ParseDefaultOperands() { 3243 std::vector<Record*> DefaultOps; 3244 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3245 3246 // Find some SDNode. 3247 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3248 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3249 3250 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3251 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3252 3253 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3254 // SomeSDnode so that we can parse this. 3255 std::vector<std::pair<Init*, StringInit*> > Ops; 3256 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3257 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3258 DefaultInfo->getArgName(op))); 3259 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3260 3261 // Create a TreePattern to parse this. 3262 TreePattern P(DefaultOps[i], DI, false, *this); 3263 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3264 3265 // Copy the operands over into a DAGDefaultOperand. 3266 DAGDefaultOperand DefaultOpInfo; 3267 3268 const TreePatternNodePtr &T = P.getTree(0); 3269 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3270 TreePatternNodePtr TPN = T->getChildShared(op); 3271 while (TPN->ApplyTypeConstraints(P, false)) 3272 /* Resolve all types */; 3273 3274 if (TPN->ContainsUnresolvedType(P)) { 3275 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3276 DefaultOps[i]->getName() + 3277 "' doesn't have a concrete type!"); 3278 } 3279 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3280 } 3281 3282 // Insert it into the DefaultOperands map so we can find it later. 3283 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3284 } 3285 } 3286 3287 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3288 /// instruction input. Return true if this is a real use. 3289 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3290 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3291 // No name -> not interesting. 3292 if (Pat->getName().empty()) { 3293 if (Pat->isLeaf()) { 3294 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3295 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3296 DI->getDef()->isSubClassOf("RegisterOperand"))) 3297 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3298 } 3299 return false; 3300 } 3301 3302 Record *Rec; 3303 if (Pat->isLeaf()) { 3304 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3305 if (!DI) 3306 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3307 Rec = DI->getDef(); 3308 } else { 3309 Rec = Pat->getOperator(); 3310 } 3311 3312 // SRCVALUE nodes are ignored. 3313 if (Rec->getName() == "srcvalue") 3314 return false; 3315 3316 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3317 if (!Slot) { 3318 Slot = Pat; 3319 return true; 3320 } 3321 Record *SlotRec; 3322 if (Slot->isLeaf()) { 3323 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3324 } else { 3325 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3326 SlotRec = Slot->getOperator(); 3327 } 3328 3329 // Ensure that the inputs agree if we've already seen this input. 3330 if (Rec != SlotRec) 3331 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3332 // Ensure that the types can agree as well. 3333 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3334 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3335 if (Slot->getExtTypes() != Pat->getExtTypes()) 3336 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3337 return true; 3338 } 3339 3340 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3341 /// part of "I", the instruction), computing the set of inputs and outputs of 3342 /// the pattern. Report errors if we see anything naughty. 3343 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3344 TreePattern &I, TreePatternNodePtr Pat, 3345 std::map<std::string, TreePatternNodePtr> &InstInputs, 3346 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3347 &InstResults, 3348 std::vector<Record *> &InstImpResults) { 3349 3350 // The instruction pattern still has unresolved fragments. For *named* 3351 // nodes we must resolve those here. This may not result in multiple 3352 // alternatives. 3353 if (!Pat->getName().empty()) { 3354 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3355 SrcPattern.InlinePatternFragments(); 3356 SrcPattern.InferAllTypes(); 3357 Pat = SrcPattern.getOnlyTree(); 3358 } 3359 3360 if (Pat->isLeaf()) { 3361 bool isUse = HandleUse(I, Pat, InstInputs); 3362 if (!isUse && Pat->getTransformFn()) 3363 I.error("Cannot specify a transform function for a non-input value!"); 3364 return; 3365 } 3366 3367 if (Pat->getOperator()->getName() == "implicit") { 3368 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3369 TreePatternNode *Dest = Pat->getChild(i); 3370 if (!Dest->isLeaf()) 3371 I.error("implicitly defined value should be a register!"); 3372 3373 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3374 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3375 I.error("implicitly defined value should be a register!"); 3376 InstImpResults.push_back(Val->getDef()); 3377 } 3378 return; 3379 } 3380 3381 if (Pat->getOperator()->getName() != "set") { 3382 // If this is not a set, verify that the children nodes are not void typed, 3383 // and recurse. 3384 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3385 if (Pat->getChild(i)->getNumTypes() == 0) 3386 I.error("Cannot have void nodes inside of patterns!"); 3387 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3388 InstResults, InstImpResults); 3389 } 3390 3391 // If this is a non-leaf node with no children, treat it basically as if 3392 // it were a leaf. This handles nodes like (imm). 3393 bool isUse = HandleUse(I, Pat, InstInputs); 3394 3395 if (!isUse && Pat->getTransformFn()) 3396 I.error("Cannot specify a transform function for a non-input value!"); 3397 return; 3398 } 3399 3400 // Otherwise, this is a set, validate and collect instruction results. 3401 if (Pat->getNumChildren() == 0) 3402 I.error("set requires operands!"); 3403 3404 if (Pat->getTransformFn()) 3405 I.error("Cannot specify a transform function on a set node!"); 3406 3407 // Check the set destinations. 3408 unsigned NumDests = Pat->getNumChildren()-1; 3409 for (unsigned i = 0; i != NumDests; ++i) { 3410 TreePatternNodePtr Dest = Pat->getChildShared(i); 3411 // For set destinations we also must resolve fragments here. 3412 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3413 DestPattern.InlinePatternFragments(); 3414 DestPattern.InferAllTypes(); 3415 Dest = DestPattern.getOnlyTree(); 3416 3417 if (!Dest->isLeaf()) 3418 I.error("set destination should be a register!"); 3419 3420 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3421 if (!Val) { 3422 I.error("set destination should be a register!"); 3423 continue; 3424 } 3425 3426 if (Val->getDef()->isSubClassOf("RegisterClass") || 3427 Val->getDef()->isSubClassOf("ValueType") || 3428 Val->getDef()->isSubClassOf("RegisterOperand") || 3429 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3430 if (Dest->getName().empty()) 3431 I.error("set destination must have a name!"); 3432 if (InstResults.count(Dest->getName())) 3433 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3434 InstResults[Dest->getName()] = Dest; 3435 } else if (Val->getDef()->isSubClassOf("Register")) { 3436 InstImpResults.push_back(Val->getDef()); 3437 } else { 3438 I.error("set destination should be a register!"); 3439 } 3440 } 3441 3442 // Verify and collect info from the computation. 3443 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3444 InstResults, InstImpResults); 3445 } 3446 3447 //===----------------------------------------------------------------------===// 3448 // Instruction Analysis 3449 //===----------------------------------------------------------------------===// 3450 3451 class InstAnalyzer { 3452 const CodeGenDAGPatterns &CDP; 3453 public: 3454 bool hasSideEffects; 3455 bool mayStore; 3456 bool mayLoad; 3457 bool isBitcast; 3458 bool isVariadic; 3459 bool hasChain; 3460 3461 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3462 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3463 isBitcast(false), isVariadic(false), hasChain(false) {} 3464 3465 void Analyze(const PatternToMatch &Pat) { 3466 const TreePatternNode *N = Pat.getSrcPattern(); 3467 AnalyzeNode(N); 3468 // These properties are detected only on the root node. 3469 isBitcast = IsNodeBitcast(N); 3470 } 3471 3472 private: 3473 bool IsNodeBitcast(const TreePatternNode *N) const { 3474 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3475 return false; 3476 3477 if (N->isLeaf()) 3478 return false; 3479 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3480 return false; 3481 3482 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3483 return false; 3484 3485 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3486 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3487 return false; 3488 return OpInfo.getEnumName() == "ISD::BITCAST"; 3489 } 3490 3491 public: 3492 void AnalyzeNode(const TreePatternNode *N) { 3493 if (N->isLeaf()) { 3494 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3495 Record *LeafRec = DI->getDef(); 3496 // Handle ComplexPattern leaves. 3497 if (LeafRec->isSubClassOf("ComplexPattern")) { 3498 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3499 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3500 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3501 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3502 } 3503 } 3504 return; 3505 } 3506 3507 // Analyze children. 3508 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3509 AnalyzeNode(N->getChild(i)); 3510 3511 // Notice properties of the node. 3512 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3513 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3514 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3515 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3516 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3517 3518 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3519 // If this is an intrinsic, analyze it. 3520 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3521 mayLoad = true;// These may load memory. 3522 3523 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3524 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3525 3526 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3527 IntInfo->hasSideEffects) 3528 // ReadWriteMem intrinsics can have other strange effects. 3529 hasSideEffects = true; 3530 } 3531 } 3532 3533 }; 3534 3535 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3536 const InstAnalyzer &PatInfo, 3537 Record *PatDef) { 3538 bool Error = false; 3539 3540 // Remember where InstInfo got its flags. 3541 if (InstInfo.hasUndefFlags()) 3542 InstInfo.InferredFrom = PatDef; 3543 3544 // Check explicitly set flags for consistency. 3545 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3546 !InstInfo.hasSideEffects_Unset) { 3547 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3548 // the pattern has no side effects. That could be useful for div/rem 3549 // instructions that may trap. 3550 if (!InstInfo.hasSideEffects) { 3551 Error = true; 3552 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3553 Twine(InstInfo.hasSideEffects)); 3554 } 3555 } 3556 3557 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3558 Error = true; 3559 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3560 Twine(InstInfo.mayStore)); 3561 } 3562 3563 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3564 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3565 // Some targets translate immediates to loads. 3566 if (!InstInfo.mayLoad) { 3567 Error = true; 3568 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3569 Twine(InstInfo.mayLoad)); 3570 } 3571 } 3572 3573 // Transfer inferred flags. 3574 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3575 InstInfo.mayStore |= PatInfo.mayStore; 3576 InstInfo.mayLoad |= PatInfo.mayLoad; 3577 3578 // These flags are silently added without any verification. 3579 // FIXME: To match historical behavior of TableGen, for now add those flags 3580 // only when we're inferring from the primary instruction pattern. 3581 if (PatDef->isSubClassOf("Instruction")) { 3582 InstInfo.isBitcast |= PatInfo.isBitcast; 3583 InstInfo.hasChain |= PatInfo.hasChain; 3584 InstInfo.hasChain_Inferred = true; 3585 } 3586 3587 // Don't infer isVariadic. This flag means something different on SDNodes and 3588 // instructions. For example, a CALL SDNode is variadic because it has the 3589 // call arguments as operands, but a CALL instruction is not variadic - it 3590 // has argument registers as implicit, not explicit uses. 3591 3592 return Error; 3593 } 3594 3595 /// hasNullFragReference - Return true if the DAG has any reference to the 3596 /// null_frag operator. 3597 static bool hasNullFragReference(DagInit *DI) { 3598 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3599 if (!OpDef) return false; 3600 Record *Operator = OpDef->getDef(); 3601 3602 // If this is the null fragment, return true. 3603 if (Operator->getName() == "null_frag") return true; 3604 // If any of the arguments reference the null fragment, return true. 3605 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3606 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3607 if (Arg->getDef()->getName() == "null_frag") 3608 return true; 3609 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3610 if (Arg && hasNullFragReference(Arg)) 3611 return true; 3612 } 3613 3614 return false; 3615 } 3616 3617 /// hasNullFragReference - Return true if any DAG in the list references 3618 /// the null_frag operator. 3619 static bool hasNullFragReference(ListInit *LI) { 3620 for (Init *I : LI->getValues()) { 3621 DagInit *DI = dyn_cast<DagInit>(I); 3622 assert(DI && "non-dag in an instruction Pattern list?!"); 3623 if (hasNullFragReference(DI)) 3624 return true; 3625 } 3626 return false; 3627 } 3628 3629 /// Get all the instructions in a tree. 3630 static void 3631 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3632 if (Tree->isLeaf()) 3633 return; 3634 if (Tree->getOperator()->isSubClassOf("Instruction")) 3635 Instrs.push_back(Tree->getOperator()); 3636 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3637 getInstructionsInTree(Tree->getChild(i), Instrs); 3638 } 3639 3640 /// Check the class of a pattern leaf node against the instruction operand it 3641 /// represents. 3642 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3643 Record *Leaf) { 3644 if (OI.Rec == Leaf) 3645 return true; 3646 3647 // Allow direct value types to be used in instruction set patterns. 3648 // The type will be checked later. 3649 if (Leaf->isSubClassOf("ValueType")) 3650 return true; 3651 3652 // Patterns can also be ComplexPattern instances. 3653 if (Leaf->isSubClassOf("ComplexPattern")) 3654 return true; 3655 3656 return false; 3657 } 3658 3659 void CodeGenDAGPatterns::parseInstructionPattern( 3660 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3661 3662 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3663 3664 // Parse the instruction. 3665 TreePattern I(CGI.TheDef, Pat, true, *this); 3666 3667 // InstInputs - Keep track of all of the inputs of the instruction, along 3668 // with the record they are declared as. 3669 std::map<std::string, TreePatternNodePtr> InstInputs; 3670 3671 // InstResults - Keep track of all the virtual registers that are 'set' 3672 // in the instruction, including what reg class they are. 3673 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3674 InstResults; 3675 3676 std::vector<Record*> InstImpResults; 3677 3678 // Verify that the top-level forms in the instruction are of void type, and 3679 // fill in the InstResults map. 3680 SmallString<32> TypesString; 3681 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3682 TypesString.clear(); 3683 TreePatternNodePtr Pat = I.getTree(j); 3684 if (Pat->getNumTypes() != 0) { 3685 raw_svector_ostream OS(TypesString); 3686 ListSeparator LS; 3687 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3688 OS << LS; 3689 Pat->getExtType(k).writeToStream(OS); 3690 } 3691 I.error("Top-level forms in instruction pattern should have" 3692 " void types, has types " + 3693 OS.str()); 3694 } 3695 3696 // Find inputs and outputs, and verify the structure of the uses/defs. 3697 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3698 InstImpResults); 3699 } 3700 3701 // Now that we have inputs and outputs of the pattern, inspect the operands 3702 // list for the instruction. This determines the order that operands are 3703 // added to the machine instruction the node corresponds to. 3704 unsigned NumResults = InstResults.size(); 3705 3706 // Parse the operands list from the (ops) list, validating it. 3707 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3708 3709 // Check that all of the results occur first in the list. 3710 std::vector<Record*> Results; 3711 std::vector<unsigned> ResultIndices; 3712 SmallVector<TreePatternNodePtr, 2> ResNodes; 3713 for (unsigned i = 0; i != NumResults; ++i) { 3714 if (i == CGI.Operands.size()) { 3715 const std::string &OpName = 3716 llvm::find_if( 3717 InstResults, 3718 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3719 return P.second; 3720 }) 3721 ->first; 3722 3723 I.error("'" + OpName + "' set but does not appear in operand list!"); 3724 } 3725 3726 const std::string &OpName = CGI.Operands[i].Name; 3727 3728 // Check that it exists in InstResults. 3729 auto InstResultIter = InstResults.find(OpName); 3730 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3731 I.error("Operand $" + OpName + " does not exist in operand list!"); 3732 3733 TreePatternNodePtr RNode = InstResultIter->second; 3734 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3735 ResNodes.push_back(std::move(RNode)); 3736 if (!R) 3737 I.error("Operand $" + OpName + " should be a set destination: all " 3738 "outputs must occur before inputs in operand list!"); 3739 3740 if (!checkOperandClass(CGI.Operands[i], R)) 3741 I.error("Operand $" + OpName + " class mismatch!"); 3742 3743 // Remember the return type. 3744 Results.push_back(CGI.Operands[i].Rec); 3745 3746 // Remember the result index. 3747 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3748 3749 // Okay, this one checks out. 3750 InstResultIter->second = nullptr; 3751 } 3752 3753 // Loop over the inputs next. 3754 std::vector<TreePatternNodePtr> ResultNodeOperands; 3755 std::vector<Record*> Operands; 3756 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3757 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3758 const std::string &OpName = Op.Name; 3759 if (OpName.empty()) 3760 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3761 3762 if (!InstInputs.count(OpName)) { 3763 // If this is an operand with a DefaultOps set filled in, we can ignore 3764 // this. When we codegen it, we will do so as always executed. 3765 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3766 // Does it have a non-empty DefaultOps field? If so, ignore this 3767 // operand. 3768 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3769 continue; 3770 } 3771 I.error("Operand $" + OpName + 3772 " does not appear in the instruction pattern"); 3773 } 3774 TreePatternNodePtr InVal = InstInputs[OpName]; 3775 InstInputs.erase(OpName); // It occurred, remove from map. 3776 3777 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3778 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3779 if (!checkOperandClass(Op, InRec)) 3780 I.error("Operand $" + OpName + "'s register class disagrees" 3781 " between the operand and pattern"); 3782 } 3783 Operands.push_back(Op.Rec); 3784 3785 // Construct the result for the dest-pattern operand list. 3786 TreePatternNodePtr OpNode = InVal->clone(); 3787 3788 // No predicate is useful on the result. 3789 OpNode->clearPredicateCalls(); 3790 3791 // Promote the xform function to be an explicit node if set. 3792 if (Record *Xform = OpNode->getTransformFn()) { 3793 OpNode->setTransformFn(nullptr); 3794 std::vector<TreePatternNodePtr> Children; 3795 Children.push_back(OpNode); 3796 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3797 OpNode->getNumTypes()); 3798 } 3799 3800 ResultNodeOperands.push_back(std::move(OpNode)); 3801 } 3802 3803 if (!InstInputs.empty()) 3804 I.error("Input operand $" + InstInputs.begin()->first + 3805 " occurs in pattern but not in operands list!"); 3806 3807 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3808 I.getRecord(), std::move(ResultNodeOperands), 3809 GetNumNodeResults(I.getRecord(), *this)); 3810 // Copy fully inferred output node types to instruction result pattern. 3811 for (unsigned i = 0; i != NumResults; ++i) { 3812 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3813 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3814 ResultPattern->setResultIndex(i, ResultIndices[i]); 3815 } 3816 3817 // FIXME: Assume only the first tree is the pattern. The others are clobber 3818 // nodes. 3819 TreePatternNodePtr Pattern = I.getTree(0); 3820 TreePatternNodePtr SrcPattern; 3821 if (Pattern->getOperator()->getName() == "set") { 3822 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3823 } else{ 3824 // Not a set (store or something?) 3825 SrcPattern = Pattern; 3826 } 3827 3828 // Create and insert the instruction. 3829 // FIXME: InstImpResults should not be part of DAGInstruction. 3830 Record *R = I.getRecord(); 3831 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3832 std::forward_as_tuple(Results, Operands, InstImpResults, 3833 SrcPattern, ResultPattern)); 3834 3835 LLVM_DEBUG(I.dump()); 3836 } 3837 3838 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3839 /// any fragments involved. This populates the Instructions list with fully 3840 /// resolved instructions. 3841 void CodeGenDAGPatterns::ParseInstructions() { 3842 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3843 3844 for (Record *Instr : Instrs) { 3845 ListInit *LI = nullptr; 3846 3847 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3848 LI = Instr->getValueAsListInit("Pattern"); 3849 3850 // If there is no pattern, only collect minimal information about the 3851 // instruction for its operand list. We have to assume that there is one 3852 // result, as we have no detailed info. A pattern which references the 3853 // null_frag operator is as-if no pattern were specified. Normally this 3854 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3855 // null_frag. 3856 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3857 std::vector<Record*> Results; 3858 std::vector<Record*> Operands; 3859 3860 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3861 3862 if (InstInfo.Operands.size() != 0) { 3863 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3864 Results.push_back(InstInfo.Operands[j].Rec); 3865 3866 // The rest are inputs. 3867 for (unsigned j = InstInfo.Operands.NumDefs, 3868 e = InstInfo.Operands.size(); j < e; ++j) 3869 Operands.push_back(InstInfo.Operands[j].Rec); 3870 } 3871 3872 // Create and insert the instruction. 3873 std::vector<Record*> ImpResults; 3874 Instructions.insert(std::make_pair(Instr, 3875 DAGInstruction(Results, Operands, ImpResults))); 3876 continue; // no pattern. 3877 } 3878 3879 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3880 parseInstructionPattern(CGI, LI, Instructions); 3881 } 3882 3883 // If we can, convert the instructions to be patterns that are matched! 3884 for (auto &Entry : Instructions) { 3885 Record *Instr = Entry.first; 3886 DAGInstruction &TheInst = Entry.second; 3887 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3888 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3889 3890 if (SrcPattern && ResultPattern) { 3891 TreePattern Pattern(Instr, SrcPattern, true, *this); 3892 TreePattern Result(Instr, ResultPattern, false, *this); 3893 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3894 } 3895 } 3896 } 3897 3898 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3899 3900 static void FindNames(TreePatternNode *P, 3901 std::map<std::string, NameRecord> &Names, 3902 TreePattern *PatternTop) { 3903 if (!P->getName().empty()) { 3904 NameRecord &Rec = Names[P->getName()]; 3905 // If this is the first instance of the name, remember the node. 3906 if (Rec.second++ == 0) 3907 Rec.first = P; 3908 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3909 PatternTop->error("repetition of value: $" + P->getName() + 3910 " where different uses have different types!"); 3911 } 3912 3913 if (!P->isLeaf()) { 3914 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3915 FindNames(P->getChild(i), Names, PatternTop); 3916 } 3917 } 3918 3919 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3920 std::vector<Predicate> Preds; 3921 for (Init *I : L->getValues()) { 3922 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3923 Preds.push_back(Pred->getDef()); 3924 else 3925 llvm_unreachable("Non-def on the list"); 3926 } 3927 3928 // Sort so that different orders get canonicalized to the same string. 3929 llvm::sort(Preds); 3930 return Preds; 3931 } 3932 3933 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3934 PatternToMatch &&PTM) { 3935 // Do some sanity checking on the pattern we're about to match. 3936 std::string Reason; 3937 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3938 PrintWarning(Pattern->getRecord()->getLoc(), 3939 Twine("Pattern can never match: ") + Reason); 3940 return; 3941 } 3942 3943 // If the source pattern's root is a complex pattern, that complex pattern 3944 // must specify the nodes it can potentially match. 3945 if (const ComplexPattern *CP = 3946 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3947 if (CP->getRootNodes().empty()) 3948 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3949 " could match"); 3950 3951 3952 // Find all of the named values in the input and output, ensure they have the 3953 // same type. 3954 std::map<std::string, NameRecord> SrcNames, DstNames; 3955 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3956 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3957 3958 // Scan all of the named values in the destination pattern, rejecting them if 3959 // they don't exist in the input pattern. 3960 for (const auto &Entry : DstNames) { 3961 if (SrcNames[Entry.first].first == nullptr) 3962 Pattern->error("Pattern has input without matching name in output: $" + 3963 Entry.first); 3964 } 3965 3966 // Scan all of the named values in the source pattern, rejecting them if the 3967 // name isn't used in the dest, and isn't used to tie two values together. 3968 for (const auto &Entry : SrcNames) 3969 if (DstNames[Entry.first].first == nullptr && 3970 SrcNames[Entry.first].second == 1) 3971 Pattern->error("Pattern has dead named input: $" + Entry.first); 3972 3973 PatternsToMatch.push_back(std::move(PTM)); 3974 } 3975 3976 void CodeGenDAGPatterns::InferInstructionFlags() { 3977 ArrayRef<const CodeGenInstruction*> Instructions = 3978 Target.getInstructionsByEnumValue(); 3979 3980 unsigned Errors = 0; 3981 3982 // Try to infer flags from all patterns in PatternToMatch. These include 3983 // both the primary instruction patterns (which always come first) and 3984 // patterns defined outside the instruction. 3985 for (const PatternToMatch &PTM : ptms()) { 3986 // We can only infer from single-instruction patterns, otherwise we won't 3987 // know which instruction should get the flags. 3988 SmallVector<Record*, 8> PatInstrs; 3989 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3990 if (PatInstrs.size() != 1) 3991 continue; 3992 3993 // Get the single instruction. 3994 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3995 3996 // Only infer properties from the first pattern. We'll verify the others. 3997 if (InstInfo.InferredFrom) 3998 continue; 3999 4000 InstAnalyzer PatInfo(*this); 4001 PatInfo.Analyze(PTM); 4002 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4003 } 4004 4005 if (Errors) 4006 PrintFatalError("pattern conflicts"); 4007 4008 // If requested by the target, guess any undefined properties. 4009 if (Target.guessInstructionProperties()) { 4010 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4011 CodeGenInstruction *InstInfo = 4012 const_cast<CodeGenInstruction *>(Instructions[i]); 4013 if (InstInfo->InferredFrom) 4014 continue; 4015 // The mayLoad and mayStore flags default to false. 4016 // Conservatively assume hasSideEffects if it wasn't explicit. 4017 if (InstInfo->hasSideEffects_Unset) 4018 InstInfo->hasSideEffects = true; 4019 } 4020 return; 4021 } 4022 4023 // Complain about any flags that are still undefined. 4024 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4025 CodeGenInstruction *InstInfo = 4026 const_cast<CodeGenInstruction *>(Instructions[i]); 4027 if (InstInfo->InferredFrom) 4028 continue; 4029 if (InstInfo->hasSideEffects_Unset) 4030 PrintError(InstInfo->TheDef->getLoc(), 4031 "Can't infer hasSideEffects from patterns"); 4032 if (InstInfo->mayStore_Unset) 4033 PrintError(InstInfo->TheDef->getLoc(), 4034 "Can't infer mayStore from patterns"); 4035 if (InstInfo->mayLoad_Unset) 4036 PrintError(InstInfo->TheDef->getLoc(), 4037 "Can't infer mayLoad from patterns"); 4038 } 4039 } 4040 4041 4042 /// Verify instruction flags against pattern node properties. 4043 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4044 unsigned Errors = 0; 4045 for (const PatternToMatch &PTM : ptms()) { 4046 SmallVector<Record*, 8> Instrs; 4047 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4048 if (Instrs.empty()) 4049 continue; 4050 4051 // Count the number of instructions with each flag set. 4052 unsigned NumSideEffects = 0; 4053 unsigned NumStores = 0; 4054 unsigned NumLoads = 0; 4055 for (const Record *Instr : Instrs) { 4056 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4057 NumSideEffects += InstInfo.hasSideEffects; 4058 NumStores += InstInfo.mayStore; 4059 NumLoads += InstInfo.mayLoad; 4060 } 4061 4062 // Analyze the source pattern. 4063 InstAnalyzer PatInfo(*this); 4064 PatInfo.Analyze(PTM); 4065 4066 // Collect error messages. 4067 SmallVector<std::string, 4> Msgs; 4068 4069 // Check for missing flags in the output. 4070 // Permit extra flags for now at least. 4071 if (PatInfo.hasSideEffects && !NumSideEffects) 4072 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4073 4074 // Don't verify store flags on instructions with side effects. At least for 4075 // intrinsics, side effects implies mayStore. 4076 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4077 Msgs.push_back("pattern may store, but mayStore isn't set"); 4078 4079 // Similarly, mayStore implies mayLoad on intrinsics. 4080 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4081 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4082 4083 // Print error messages. 4084 if (Msgs.empty()) 4085 continue; 4086 ++Errors; 4087 4088 for (const std::string &Msg : Msgs) 4089 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4090 (Instrs.size() == 1 ? 4091 "instruction" : "output instructions")); 4092 // Provide the location of the relevant instruction definitions. 4093 for (const Record *Instr : Instrs) { 4094 if (Instr != PTM.getSrcRecord()) 4095 PrintError(Instr->getLoc(), "defined here"); 4096 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4097 if (InstInfo.InferredFrom && 4098 InstInfo.InferredFrom != InstInfo.TheDef && 4099 InstInfo.InferredFrom != PTM.getSrcRecord()) 4100 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4101 } 4102 } 4103 if (Errors) 4104 PrintFatalError("Errors in DAG patterns"); 4105 } 4106 4107 /// Given a pattern result with an unresolved type, see if we can find one 4108 /// instruction with an unresolved result type. Force this result type to an 4109 /// arbitrary element if it's possible types to converge results. 4110 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4111 if (N->isLeaf()) 4112 return false; 4113 4114 // Analyze children. 4115 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4116 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4117 return true; 4118 4119 if (!N->getOperator()->isSubClassOf("Instruction")) 4120 return false; 4121 4122 // If this type is already concrete or completely unknown we can't do 4123 // anything. 4124 TypeInfer &TI = TP.getInfer(); 4125 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4126 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4127 continue; 4128 4129 // Otherwise, force its type to an arbitrary choice. 4130 if (TI.forceArbitrary(N->getExtType(i))) 4131 return true; 4132 } 4133 4134 return false; 4135 } 4136 4137 // Promote xform function to be an explicit node wherever set. 4138 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4139 if (Record *Xform = N->getTransformFn()) { 4140 N->setTransformFn(nullptr); 4141 std::vector<TreePatternNodePtr> Children; 4142 Children.push_back(PromoteXForms(N)); 4143 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4144 N->getNumTypes()); 4145 } 4146 4147 if (!N->isLeaf()) 4148 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4149 TreePatternNodePtr Child = N->getChildShared(i); 4150 N->setChild(i, PromoteXForms(Child)); 4151 } 4152 return N; 4153 } 4154 4155 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4156 TreePattern &Pattern, TreePattern &Result, 4157 const std::vector<Record *> &InstImpResults) { 4158 4159 // Inline pattern fragments and expand multiple alternatives. 4160 Pattern.InlinePatternFragments(); 4161 Result.InlinePatternFragments(); 4162 4163 if (Result.getNumTrees() != 1) 4164 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4165 4166 // Infer types. 4167 bool IterateInference; 4168 bool InferredAllPatternTypes, InferredAllResultTypes; 4169 do { 4170 // Infer as many types as possible. If we cannot infer all of them, we 4171 // can never do anything with this pattern: report it to the user. 4172 InferredAllPatternTypes = 4173 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4174 4175 // Infer as many types as possible. If we cannot infer all of them, we 4176 // can never do anything with this pattern: report it to the user. 4177 InferredAllResultTypes = 4178 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4179 4180 IterateInference = false; 4181 4182 // Apply the type of the result to the source pattern. This helps us 4183 // resolve cases where the input type is known to be a pointer type (which 4184 // is considered resolved), but the result knows it needs to be 32- or 4185 // 64-bits. Infer the other way for good measure. 4186 for (auto T : Pattern.getTrees()) 4187 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4188 T->getNumTypes()); 4189 i != e; ++i) { 4190 IterateInference |= T->UpdateNodeType( 4191 i, Result.getOnlyTree()->getExtType(i), Result); 4192 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4193 i, T->getExtType(i), Result); 4194 } 4195 4196 // If our iteration has converged and the input pattern's types are fully 4197 // resolved but the result pattern is not fully resolved, we may have a 4198 // situation where we have two instructions in the result pattern and 4199 // the instructions require a common register class, but don't care about 4200 // what actual MVT is used. This is actually a bug in our modelling: 4201 // output patterns should have register classes, not MVTs. 4202 // 4203 // In any case, to handle this, we just go through and disambiguate some 4204 // arbitrary types to the result pattern's nodes. 4205 if (!IterateInference && InferredAllPatternTypes && 4206 !InferredAllResultTypes) 4207 IterateInference = 4208 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4209 } while (IterateInference); 4210 4211 // Verify that we inferred enough types that we can do something with the 4212 // pattern and result. If these fire the user has to add type casts. 4213 if (!InferredAllPatternTypes) 4214 Pattern.error("Could not infer all types in pattern!"); 4215 if (!InferredAllResultTypes) { 4216 Pattern.dump(); 4217 Result.error("Could not infer all types in pattern result!"); 4218 } 4219 4220 // Promote xform function to be an explicit node wherever set. 4221 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4222 4223 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4224 Temp.InferAllTypes(); 4225 4226 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4227 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4228 4229 if (PatternRewriter) 4230 PatternRewriter(&Pattern); 4231 4232 // A pattern may end up with an "impossible" type, i.e. a situation 4233 // where all types have been eliminated for some node in this pattern. 4234 // This could occur for intrinsics that only make sense for a specific 4235 // value type, and use a specific register class. If, for some mode, 4236 // that register class does not accept that type, the type inference 4237 // will lead to a contradiction, which is not an error however, but 4238 // a sign that this pattern will simply never match. 4239 if (Temp.getOnlyTree()->hasPossibleType()) 4240 for (auto T : Pattern.getTrees()) 4241 if (T->hasPossibleType()) 4242 AddPatternToMatch(&Pattern, 4243 PatternToMatch(TheDef, makePredList(Preds), 4244 T, Temp.getOnlyTree(), 4245 InstImpResults, Complexity, 4246 TheDef->getID())); 4247 } 4248 4249 void CodeGenDAGPatterns::ParsePatterns() { 4250 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4251 4252 for (Record *CurPattern : Patterns) { 4253 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4254 4255 // If the pattern references the null_frag, there's nothing to do. 4256 if (hasNullFragReference(Tree)) 4257 continue; 4258 4259 TreePattern Pattern(CurPattern, Tree, true, *this); 4260 4261 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4262 if (LI->empty()) continue; // no pattern. 4263 4264 // Parse the instruction. 4265 TreePattern Result(CurPattern, LI, false, *this); 4266 4267 if (Result.getNumTrees() != 1) 4268 Result.error("Cannot handle instructions producing instructions " 4269 "with temporaries yet!"); 4270 4271 // Validate that the input pattern is correct. 4272 std::map<std::string, TreePatternNodePtr> InstInputs; 4273 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4274 InstResults; 4275 std::vector<Record*> InstImpResults; 4276 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4277 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4278 InstResults, InstImpResults); 4279 4280 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4281 } 4282 } 4283 4284 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4285 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4286 for (const auto &I : VTS) 4287 Modes.insert(I.first); 4288 4289 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4290 collectModes(Modes, N->getChild(i)); 4291 } 4292 4293 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4294 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4295 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4296 std::vector<PatternToMatch> Copy; 4297 PatternsToMatch.swap(Copy); 4298 4299 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4300 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4301 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4302 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4303 return; 4304 } 4305 4306 std::vector<Predicate> Preds = P.getPredicates(); 4307 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4308 llvm::append_range(Preds, MC); 4309 PatternsToMatch.emplace_back(P.getSrcRecord(), std::move(Preds), 4310 std::move(NewSrc), std::move(NewDst), 4311 P.getDstRegs(), 4312 P.getAddedComplexity(), Record::getNewUID(), 4313 Mode); 4314 }; 4315 4316 for (PatternToMatch &P : Copy) { 4317 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4318 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4319 SrcP = P.getSrcPatternShared(); 4320 if (P.getDstPattern()->hasProperTypeByHwMode()) 4321 DstP = P.getDstPatternShared(); 4322 if (!SrcP && !DstP) { 4323 PatternsToMatch.push_back(P); 4324 continue; 4325 } 4326 4327 std::set<unsigned> Modes; 4328 if (SrcP) 4329 collectModes(Modes, SrcP.get()); 4330 if (DstP) 4331 collectModes(Modes, DstP.get()); 4332 4333 // The predicate for the default mode needs to be constructed for each 4334 // pattern separately. 4335 // Since not all modes must be present in each pattern, if a mode m is 4336 // absent, then there is no point in constructing a check for m. If such 4337 // a check was created, it would be equivalent to checking the default 4338 // mode, except not all modes' predicates would be a part of the checking 4339 // code. The subsequently generated check for the default mode would then 4340 // have the exact same patterns, but a different predicate code. To avoid 4341 // duplicated patterns with different predicate checks, construct the 4342 // default check as a negation of all predicates that are actually present 4343 // in the source/destination patterns. 4344 std::vector<Predicate> DefaultPred; 4345 4346 for (unsigned M : Modes) { 4347 if (M == DefaultMode) 4348 continue; 4349 if (ModeChecks.find(M) != ModeChecks.end()) 4350 continue; 4351 4352 // Fill the map entry for this mode. 4353 const HwMode &HM = CGH.getMode(M); 4354 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4355 4356 // Add negations of the HM's predicates to the default predicate. 4357 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4358 } 4359 4360 for (unsigned M : Modes) { 4361 if (M == DefaultMode) 4362 continue; 4363 AppendPattern(P, M); 4364 } 4365 4366 bool HasDefault = Modes.count(DefaultMode); 4367 if (HasDefault) 4368 AppendPattern(P, DefaultMode); 4369 } 4370 } 4371 4372 /// Dependent variable map for CodeGenDAGPattern variant generation 4373 typedef StringMap<int> DepVarMap; 4374 4375 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4376 if (N->isLeaf()) { 4377 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4378 DepMap[N->getName()]++; 4379 } else { 4380 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4381 FindDepVarsOf(N->getChild(i), DepMap); 4382 } 4383 } 4384 4385 /// Find dependent variables within child patterns 4386 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4387 DepVarMap depcounts; 4388 FindDepVarsOf(N, depcounts); 4389 for (const auto &Pair : depcounts) { 4390 if (Pair.getValue() > 1) 4391 DepVars.insert(Pair.getKey()); 4392 } 4393 } 4394 4395 #ifndef NDEBUG 4396 /// Dump the dependent variable set: 4397 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4398 if (DepVars.empty()) { 4399 LLVM_DEBUG(errs() << "<empty set>"); 4400 } else { 4401 LLVM_DEBUG(errs() << "[ "); 4402 for (const auto &DepVar : DepVars) { 4403 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4404 } 4405 LLVM_DEBUG(errs() << "]"); 4406 } 4407 } 4408 #endif 4409 4410 4411 /// CombineChildVariants - Given a bunch of permutations of each child of the 4412 /// 'operator' node, put them together in all possible ways. 4413 static void CombineChildVariants( 4414 TreePatternNodePtr Orig, 4415 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4416 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4417 const MultipleUseVarSet &DepVars) { 4418 // Make sure that each operand has at least one variant to choose from. 4419 for (const auto &Variants : ChildVariants) 4420 if (Variants.empty()) 4421 return; 4422 4423 // The end result is an all-pairs construction of the resultant pattern. 4424 std::vector<unsigned> Idxs; 4425 Idxs.resize(ChildVariants.size()); 4426 bool NotDone; 4427 do { 4428 #ifndef NDEBUG 4429 LLVM_DEBUG(if (!Idxs.empty()) { 4430 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4431 for (unsigned Idx : Idxs) { 4432 errs() << Idx << " "; 4433 } 4434 errs() << "]\n"; 4435 }); 4436 #endif 4437 // Create the variant and add it to the output list. 4438 std::vector<TreePatternNodePtr> NewChildren; 4439 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4440 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4441 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4442 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4443 4444 // Copy over properties. 4445 R->setName(Orig->getName()); 4446 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4447 R->setPredicateCalls(Orig->getPredicateCalls()); 4448 R->setTransformFn(Orig->getTransformFn()); 4449 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4450 R->setType(i, Orig->getExtType(i)); 4451 4452 // If this pattern cannot match, do not include it as a variant. 4453 std::string ErrString; 4454 // Scan to see if this pattern has already been emitted. We can get 4455 // duplication due to things like commuting: 4456 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4457 // which are the same pattern. Ignore the dups. 4458 if (R->canPatternMatch(ErrString, CDP) && 4459 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4460 return R->isIsomorphicTo(Variant.get(), DepVars); 4461 })) 4462 OutVariants.push_back(R); 4463 4464 // Increment indices to the next permutation by incrementing the 4465 // indices from last index backward, e.g., generate the sequence 4466 // [0, 0], [0, 1], [1, 0], [1, 1]. 4467 int IdxsIdx; 4468 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4469 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4470 Idxs[IdxsIdx] = 0; 4471 else 4472 break; 4473 } 4474 NotDone = (IdxsIdx >= 0); 4475 } while (NotDone); 4476 } 4477 4478 /// CombineChildVariants - A helper function for binary operators. 4479 /// 4480 static void CombineChildVariants(TreePatternNodePtr Orig, 4481 const std::vector<TreePatternNodePtr> &LHS, 4482 const std::vector<TreePatternNodePtr> &RHS, 4483 std::vector<TreePatternNodePtr> &OutVariants, 4484 CodeGenDAGPatterns &CDP, 4485 const MultipleUseVarSet &DepVars) { 4486 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4487 ChildVariants.push_back(LHS); 4488 ChildVariants.push_back(RHS); 4489 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4490 } 4491 4492 static void 4493 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4494 std::vector<TreePatternNodePtr> &Children) { 4495 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4496 Record *Operator = N->getOperator(); 4497 4498 // Only permit raw nodes. 4499 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4500 N->getTransformFn()) { 4501 Children.push_back(N); 4502 return; 4503 } 4504 4505 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4506 Children.push_back(N->getChildShared(0)); 4507 else 4508 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4509 4510 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4511 Children.push_back(N->getChildShared(1)); 4512 else 4513 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4514 } 4515 4516 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4517 /// the (potentially recursive) pattern by using algebraic laws. 4518 /// 4519 static void GenerateVariantsOf(TreePatternNodePtr N, 4520 std::vector<TreePatternNodePtr> &OutVariants, 4521 CodeGenDAGPatterns &CDP, 4522 const MultipleUseVarSet &DepVars) { 4523 // We cannot permute leaves or ComplexPattern uses. 4524 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4525 OutVariants.push_back(N); 4526 return; 4527 } 4528 4529 // Look up interesting info about the node. 4530 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4531 4532 // If this node is associative, re-associate. 4533 if (NodeInfo.hasProperty(SDNPAssociative)) { 4534 // Re-associate by pulling together all of the linked operators 4535 std::vector<TreePatternNodePtr> MaximalChildren; 4536 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4537 4538 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4539 // permutations. 4540 if (MaximalChildren.size() == 3) { 4541 // Find the variants of all of our maximal children. 4542 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4543 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4544 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4545 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4546 4547 // There are only two ways we can permute the tree: 4548 // (A op B) op C and A op (B op C) 4549 // Within these forms, we can also permute A/B/C. 4550 4551 // Generate legal pair permutations of A/B/C. 4552 std::vector<TreePatternNodePtr> ABVariants; 4553 std::vector<TreePatternNodePtr> BAVariants; 4554 std::vector<TreePatternNodePtr> ACVariants; 4555 std::vector<TreePatternNodePtr> CAVariants; 4556 std::vector<TreePatternNodePtr> BCVariants; 4557 std::vector<TreePatternNodePtr> CBVariants; 4558 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4559 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4560 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4561 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4562 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4563 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4564 4565 // Combine those into the result: (x op x) op x 4566 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4567 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4568 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4569 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4570 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4571 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4572 4573 // Combine those into the result: x op (x op x) 4574 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4575 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4576 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4577 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4578 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4579 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4580 return; 4581 } 4582 } 4583 4584 // Compute permutations of all children. 4585 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4586 ChildVariants.resize(N->getNumChildren()); 4587 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4588 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4589 4590 // Build all permutations based on how the children were formed. 4591 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4592 4593 // If this node is commutative, consider the commuted order. 4594 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4595 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4596 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4597 "Commutative but doesn't have 2 children!"); 4598 // Don't count children which are actually register references. 4599 unsigned NC = 0; 4600 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4601 TreePatternNode *Child = N->getChild(i); 4602 if (Child->isLeaf()) 4603 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4604 Record *RR = DI->getDef(); 4605 if (RR->isSubClassOf("Register")) 4606 continue; 4607 } 4608 NC++; 4609 } 4610 // Consider the commuted order. 4611 if (isCommIntrinsic) { 4612 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4613 // operands are the commutative operands, and there might be more operands 4614 // after those. 4615 assert(NC >= 3 && 4616 "Commutative intrinsic should have at least 3 children!"); 4617 std::vector<std::vector<TreePatternNodePtr>> Variants; 4618 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4619 Variants.push_back(std::move(ChildVariants[2])); 4620 Variants.push_back(std::move(ChildVariants[1])); 4621 for (unsigned i = 3; i != NC; ++i) 4622 Variants.push_back(std::move(ChildVariants[i])); 4623 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4624 } else if (NC == N->getNumChildren()) { 4625 std::vector<std::vector<TreePatternNodePtr>> Variants; 4626 Variants.push_back(std::move(ChildVariants[1])); 4627 Variants.push_back(std::move(ChildVariants[0])); 4628 for (unsigned i = 2; i != NC; ++i) 4629 Variants.push_back(std::move(ChildVariants[i])); 4630 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4631 } 4632 } 4633 } 4634 4635 4636 // GenerateVariants - Generate variants. For example, commutative patterns can 4637 // match multiple ways. Add them to PatternsToMatch as well. 4638 void CodeGenDAGPatterns::GenerateVariants() { 4639 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4640 4641 // Loop over all of the patterns we've collected, checking to see if we can 4642 // generate variants of the instruction, through the exploitation of 4643 // identities. This permits the target to provide aggressive matching without 4644 // the .td file having to contain tons of variants of instructions. 4645 // 4646 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4647 // intentionally do not reconsider these. Any variants of added patterns have 4648 // already been added. 4649 // 4650 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4651 BitVector MatchedPatterns(NumOriginalPatterns); 4652 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4653 BitVector(NumOriginalPatterns)); 4654 4655 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4656 DepsAndVariants; 4657 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4658 4659 // Collect patterns with more than one variant. 4660 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4661 MultipleUseVarSet DepVars; 4662 std::vector<TreePatternNodePtr> Variants; 4663 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4664 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4665 LLVM_DEBUG(DumpDepVars(DepVars)); 4666 LLVM_DEBUG(errs() << "\n"); 4667 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4668 *this, DepVars); 4669 4670 assert(!Variants.empty() && "Must create at least original variant!"); 4671 if (Variants.size() == 1) // No additional variants for this pattern. 4672 continue; 4673 4674 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4675 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4676 4677 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4678 4679 // Cache matching predicates. 4680 if (MatchedPatterns[i]) 4681 continue; 4682 4683 const std::vector<Predicate> &Predicates = 4684 PatternsToMatch[i].getPredicates(); 4685 4686 BitVector &Matches = MatchedPredicates[i]; 4687 MatchedPatterns.set(i); 4688 Matches.set(i); 4689 4690 // Don't test patterns that have already been cached - it won't match. 4691 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4692 if (!MatchedPatterns[p]) 4693 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4694 4695 // Copy this to all the matching patterns. 4696 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4697 if (p != (int)i) { 4698 MatchedPatterns.set(p); 4699 MatchedPredicates[p] = Matches; 4700 } 4701 } 4702 4703 for (auto it : PatternsWithVariants) { 4704 unsigned i = it.first; 4705 const MultipleUseVarSet &DepVars = it.second.first; 4706 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4707 4708 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4709 TreePatternNodePtr Variant = Variants[v]; 4710 BitVector &Matches = MatchedPredicates[i]; 4711 4712 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4713 errs() << "\n"); 4714 4715 // Scan to see if an instruction or explicit pattern already matches this. 4716 bool AlreadyExists = false; 4717 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4718 // Skip if the top level predicates do not match. 4719 if (!Matches[p]) 4720 continue; 4721 // Check to see if this variant already exists. 4722 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4723 DepVars)) { 4724 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4725 AlreadyExists = true; 4726 break; 4727 } 4728 } 4729 // If we already have it, ignore the variant. 4730 if (AlreadyExists) continue; 4731 4732 // Otherwise, add it to the list of patterns we have. 4733 PatternsToMatch.emplace_back( 4734 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4735 Variant, PatternsToMatch[i].getDstPatternShared(), 4736 PatternsToMatch[i].getDstRegs(), 4737 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 4738 MatchedPredicates.push_back(Matches); 4739 4740 // Add a new match the same as this pattern. 4741 for (auto &P : MatchedPredicates) 4742 P.push_back(P[i]); 4743 } 4744 4745 LLVM_DEBUG(errs() << "\n"); 4746 } 4747 } 4748