1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/TypeSize.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <iterator> 31 #include <set> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "dag-patterns" 35 36 static inline bool isIntegerOrPtr(MVT VT) { 37 return VT.isInteger() || VT == MVT::iPTR; 38 } 39 static inline bool isFloatingPoint(MVT VT) { 40 return VT.isFloatingPoint(); 41 } 42 static inline bool isVector(MVT VT) { 43 return VT.isVector(); 44 } 45 static inline bool isScalar(MVT VT) { 46 return !VT.isVector(); 47 } 48 49 template <typename Predicate> 50 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 51 bool Erased = false; 52 // It is ok to iterate over MachineValueTypeSet and remove elements from it 53 // at the same time. 54 for (MVT T : S) { 55 if (!P(T)) 56 continue; 57 Erased = true; 58 S.erase(T); 59 } 60 return Erased; 61 } 62 63 // --- TypeSetByHwMode 64 65 // This is a parameterized type-set class. For each mode there is a list 66 // of types that are currently possible for a given tree node. Type 67 // inference will apply to each mode separately. 68 69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 70 for (const ValueTypeByHwMode &VVT : VTList) { 71 insert(VVT); 72 AddrSpaces.push_back(VVT.PtrAddrSpace); 73 } 74 } 75 76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 77 for (const auto &I : *this) { 78 if (I.second.size() > 1) 79 return false; 80 if (!AllowEmpty && I.second.empty()) 81 return false; 82 } 83 return true; 84 } 85 86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 87 assert(isValueTypeByHwMode(true) && 88 "The type set has multiple types for at least one HW mode"); 89 ValueTypeByHwMode VVT; 90 auto ASI = AddrSpaces.begin(); 91 92 for (const auto &I : *this) { 93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 94 VVT.getOrCreateTypeForMode(I.first, T); 95 if (ASI != AddrSpaces.end()) 96 VVT.PtrAddrSpace = *ASI++; 97 } 98 return VVT; 99 } 100 101 bool TypeSetByHwMode::isPossible() const { 102 for (const auto &I : *this) 103 if (!I.second.empty()) 104 return true; 105 return false; 106 } 107 108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 109 bool Changed = false; 110 bool ContainsDefault = false; 111 MVT DT = MVT::Other; 112 113 for (const auto &P : VVT) { 114 unsigned M = P.first; 115 // Make sure there exists a set for each specific mode from VVT. 116 Changed |= getOrCreate(M).insert(P.second).second; 117 // Cache VVT's default mode. 118 if (DefaultMode == M) { 119 ContainsDefault = true; 120 DT = P.second; 121 } 122 } 123 124 // If VVT has a default mode, add the corresponding type to all 125 // modes in "this" that do not exist in VVT. 126 if (ContainsDefault) 127 for (auto &I : *this) 128 if (!VVT.hasMode(I.first)) 129 Changed |= I.second.insert(DT).second; 130 131 return Changed; 132 } 133 134 // Constrain the type set to be the intersection with VTS. 135 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 136 bool Changed = false; 137 if (hasDefault()) { 138 for (const auto &I : VTS) { 139 unsigned M = I.first; 140 if (M == DefaultMode || hasMode(M)) 141 continue; 142 Map.insert({M, Map.at(DefaultMode)}); 143 Changed = true; 144 } 145 } 146 147 for (auto &I : *this) { 148 unsigned M = I.first; 149 SetType &S = I.second; 150 if (VTS.hasMode(M) || VTS.hasDefault()) { 151 Changed |= intersect(I.second, VTS.get(M)); 152 } else if (!S.empty()) { 153 S.clear(); 154 Changed = true; 155 } 156 } 157 return Changed; 158 } 159 160 template <typename Predicate> 161 bool TypeSetByHwMode::constrain(Predicate P) { 162 bool Changed = false; 163 for (auto &I : *this) 164 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 165 return Changed; 166 } 167 168 template <typename Predicate> 169 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 170 assert(empty()); 171 for (const auto &I : VTS) { 172 SetType &S = getOrCreate(I.first); 173 for (auto J : I.second) 174 if (P(J)) 175 S.insert(J); 176 } 177 return !empty(); 178 } 179 180 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 181 SmallVector<unsigned, 4> Modes; 182 Modes.reserve(Map.size()); 183 184 for (const auto &I : *this) 185 Modes.push_back(I.first); 186 if (Modes.empty()) { 187 OS << "{}"; 188 return; 189 } 190 array_pod_sort(Modes.begin(), Modes.end()); 191 192 OS << '{'; 193 for (unsigned M : Modes) { 194 OS << ' ' << getModeName(M) << ':'; 195 writeToStream(get(M), OS); 196 } 197 OS << " }"; 198 } 199 200 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 201 SmallVector<MVT, 4> Types(S.begin(), S.end()); 202 array_pod_sort(Types.begin(), Types.end()); 203 204 OS << '['; 205 ListSeparator LS(" "); 206 for (const MVT &T : Types) 207 OS << LS << ValueTypeByHwMode::getMVTName(T); 208 OS << ']'; 209 } 210 211 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 212 // The isSimple call is much quicker than hasDefault - check this first. 213 bool IsSimple = isSimple(); 214 bool VTSIsSimple = VTS.isSimple(); 215 if (IsSimple && VTSIsSimple) 216 return *begin() == *VTS.begin(); 217 218 // Speedup: We have a default if the set is simple. 219 bool HaveDefault = IsSimple || hasDefault(); 220 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 221 if (HaveDefault != VTSHaveDefault) 222 return false; 223 224 SmallSet<unsigned, 4> Modes; 225 for (auto &I : *this) 226 Modes.insert(I.first); 227 for (const auto &I : VTS) 228 Modes.insert(I.first); 229 230 if (HaveDefault) { 231 // Both sets have default mode. 232 for (unsigned M : Modes) { 233 if (get(M) != VTS.get(M)) 234 return false; 235 } 236 } else { 237 // Neither set has default mode. 238 for (unsigned M : Modes) { 239 // If there is no default mode, an empty set is equivalent to not having 240 // the corresponding mode. 241 bool NoModeThis = !hasMode(M) || get(M).empty(); 242 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 243 if (NoModeThis != NoModeVTS) 244 return false; 245 if (!NoModeThis) 246 if (get(M) != VTS.get(M)) 247 return false; 248 } 249 } 250 251 return true; 252 } 253 254 namespace llvm { 255 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 256 T.writeToStream(OS); 257 return OS; 258 } 259 } 260 261 LLVM_DUMP_METHOD 262 void TypeSetByHwMode::dump() const { 263 dbgs() << *this << '\n'; 264 } 265 266 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 267 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 268 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 269 270 if (OutP == InP) 271 return berase_if(Out, Int); 272 273 // Compute the intersection of scalars separately to account for only 274 // one set containing iPTR. 275 // The intersection of iPTR with a set of integer scalar types that does not 276 // include iPTR will result in the most specific scalar type: 277 // - iPTR is more specific than any set with two elements or more 278 // - iPTR is less specific than any single integer scalar type. 279 // For example 280 // { iPTR } * { i32 } -> { i32 } 281 // { iPTR } * { i32 i64 } -> { iPTR } 282 // and 283 // { iPTR i32 } * { i32 } -> { i32 } 284 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 285 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 286 287 // Compute the difference between the two sets in such a way that the 288 // iPTR is in the set that is being subtracted. This is to see if there 289 // are any extra scalars in the set without iPTR that are not in the 290 // set containing iPTR. Then the iPTR could be considered a "wildcard" 291 // matching these scalars. If there is only one such scalar, it would 292 // replace the iPTR, if there are more, the iPTR would be retained. 293 SetType Diff; 294 if (InP) { 295 Diff = Out; 296 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 297 // Pre-remove these elements and rely only on InP/OutP to determine 298 // whether a change has been made. 299 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 300 } else { 301 Diff = In; 302 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 303 Out.erase(MVT::iPTR); 304 } 305 306 // The actual intersection. 307 bool Changed = berase_if(Out, Int); 308 unsigned NumD = Diff.size(); 309 if (NumD == 0) 310 return Changed; 311 312 if (NumD == 1) { 313 Out.insert(*Diff.begin()); 314 // This is a change only if Out was the one with iPTR (which is now 315 // being replaced). 316 Changed |= OutP; 317 } else { 318 // Multiple elements from Out are now replaced with iPTR. 319 Out.insert(MVT::iPTR); 320 Changed |= !OutP; 321 } 322 return Changed; 323 } 324 325 bool TypeSetByHwMode::validate() const { 326 #ifndef NDEBUG 327 if (empty()) 328 return true; 329 bool AllEmpty = true; 330 for (const auto &I : *this) 331 AllEmpty &= I.second.empty(); 332 return !AllEmpty; 333 #endif 334 return true; 335 } 336 337 // --- TypeInfer 338 339 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 340 const TypeSetByHwMode &In) { 341 ValidateOnExit _1(Out, *this); 342 In.validate(); 343 if (In.empty() || Out == In || TP.hasError()) 344 return false; 345 if (Out.empty()) { 346 Out = In; 347 return true; 348 } 349 350 bool Changed = Out.constrain(In); 351 if (Changed && Out.empty()) 352 TP.error("Type contradiction"); 353 354 return Changed; 355 } 356 357 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 358 ValidateOnExit _1(Out, *this); 359 if (TP.hasError()) 360 return false; 361 assert(!Out.empty() && "cannot pick from an empty set"); 362 363 bool Changed = false; 364 for (auto &I : Out) { 365 TypeSetByHwMode::SetType &S = I.second; 366 if (S.size() <= 1) 367 continue; 368 MVT T = *S.begin(); // Pick the first element. 369 S.clear(); 370 S.insert(T); 371 Changed = true; 372 } 373 return Changed; 374 } 375 376 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 377 ValidateOnExit _1(Out, *this); 378 if (TP.hasError()) 379 return false; 380 if (!Out.empty()) 381 return Out.constrain(isIntegerOrPtr); 382 383 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 384 } 385 386 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 387 ValidateOnExit _1(Out, *this); 388 if (TP.hasError()) 389 return false; 390 if (!Out.empty()) 391 return Out.constrain(isFloatingPoint); 392 393 return Out.assign_if(getLegalTypes(), isFloatingPoint); 394 } 395 396 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 397 ValidateOnExit _1(Out, *this); 398 if (TP.hasError()) 399 return false; 400 if (!Out.empty()) 401 return Out.constrain(isScalar); 402 403 return Out.assign_if(getLegalTypes(), isScalar); 404 } 405 406 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 407 ValidateOnExit _1(Out, *this); 408 if (TP.hasError()) 409 return false; 410 if (!Out.empty()) 411 return Out.constrain(isVector); 412 413 return Out.assign_if(getLegalTypes(), isVector); 414 } 415 416 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 417 ValidateOnExit _1(Out, *this); 418 if (TP.hasError() || !Out.empty()) 419 return false; 420 421 Out = getLegalTypes(); 422 return true; 423 } 424 425 template <typename Iter, typename Pred, typename Less> 426 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 427 if (B == E) 428 return E; 429 Iter Min = E; 430 for (Iter I = B; I != E; ++I) { 431 if (!P(*I)) 432 continue; 433 if (Min == E || L(*I, *Min)) 434 Min = I; 435 } 436 return Min; 437 } 438 439 template <typename Iter, typename Pred, typename Less> 440 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 441 if (B == E) 442 return E; 443 Iter Max = E; 444 for (Iter I = B; I != E; ++I) { 445 if (!P(*I)) 446 continue; 447 if (Max == E || L(*Max, *I)) 448 Max = I; 449 } 450 return Max; 451 } 452 453 /// Make sure that for each type in Small, there exists a larger type in Big. 454 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 455 bool SmallIsVT) { 456 ValidateOnExit _1(Small, *this), _2(Big, *this); 457 if (TP.hasError()) 458 return false; 459 bool Changed = false; 460 461 assert((!SmallIsVT || !Small.empty()) && 462 "Small should not be empty for SDTCisVTSmallerThanOp"); 463 464 if (Small.empty()) 465 Changed |= EnforceAny(Small); 466 if (Big.empty()) 467 Changed |= EnforceAny(Big); 468 469 assert(Small.hasDefault() && Big.hasDefault()); 470 471 SmallVector<unsigned, 4> Modes; 472 union_modes(Small, Big, Modes); 473 474 // 1. Only allow integer or floating point types and make sure that 475 // both sides are both integer or both floating point. 476 // 2. Make sure that either both sides have vector types, or neither 477 // of them does. 478 for (unsigned M : Modes) { 479 TypeSetByHwMode::SetType &S = Small.get(M); 480 TypeSetByHwMode::SetType &B = Big.get(M); 481 482 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 483 484 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 485 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 486 Changed |= berase_if(S, NotInt); 487 Changed |= berase_if(B, NotInt); 488 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 489 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 490 Changed |= berase_if(S, NotFP); 491 Changed |= berase_if(B, NotFP); 492 } else if (SmallIsVT && B.empty()) { 493 // B is empty and since S is a specific VT, it will never be empty. Don't 494 // report this as a change, just clear S and continue. This prevents an 495 // infinite loop. 496 S.clear(); 497 } else if (S.empty() || B.empty()) { 498 Changed = !S.empty() || !B.empty(); 499 S.clear(); 500 B.clear(); 501 } else { 502 TP.error("Incompatible types"); 503 return Changed; 504 } 505 506 if (none_of(S, isVector) || none_of(B, isVector)) { 507 Changed |= berase_if(S, isVector); 508 Changed |= berase_if(B, isVector); 509 } 510 } 511 512 auto LT = [](MVT A, MVT B) -> bool { 513 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 514 // purposes of ordering. 515 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 516 A.getSizeInBits().getKnownMinSize()); 517 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 518 B.getSizeInBits().getKnownMinSize()); 519 return ASize < BSize; 520 }; 521 auto SameKindLE = [](MVT A, MVT B) -> bool { 522 // This function is used when removing elements: when a vector is compared 523 // to a non-vector or a scalable vector to any non-scalable MVT, it should 524 // return false (to avoid removal). 525 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 526 std::make_tuple(B.isVector(), B.isScalableVector())) 527 return false; 528 529 return std::make_tuple(A.getScalarSizeInBits(), 530 A.getSizeInBits().getKnownMinSize()) <= 531 std::make_tuple(B.getScalarSizeInBits(), 532 B.getSizeInBits().getKnownMinSize()); 533 }; 534 535 for (unsigned M : Modes) { 536 TypeSetByHwMode::SetType &S = Small.get(M); 537 TypeSetByHwMode::SetType &B = Big.get(M); 538 // MinS = min scalar in Small, remove all scalars from Big that are 539 // smaller-or-equal than MinS. 540 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 541 if (MinS != S.end()) 542 Changed |= berase_if(B, std::bind(SameKindLE, 543 std::placeholders::_1, *MinS)); 544 545 // MaxS = max scalar in Big, remove all scalars from Small that are 546 // larger than MaxS. 547 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 548 if (MaxS != B.end()) 549 Changed |= berase_if(S, std::bind(SameKindLE, 550 *MaxS, std::placeholders::_1)); 551 552 // MinV = min vector in Small, remove all vectors from Big that are 553 // smaller-or-equal than MinV. 554 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 555 if (MinV != S.end()) 556 Changed |= berase_if(B, std::bind(SameKindLE, 557 std::placeholders::_1, *MinV)); 558 559 // MaxV = max vector in Big, remove all vectors from Small that are 560 // larger than MaxV. 561 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 562 if (MaxV != B.end()) 563 Changed |= berase_if(S, std::bind(SameKindLE, 564 *MaxV, std::placeholders::_1)); 565 } 566 567 return Changed; 568 } 569 570 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 571 /// for each type U in Elem, U is a scalar type. 572 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 573 /// type T in Vec, such that U is the element type of T. 574 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 575 TypeSetByHwMode &Elem) { 576 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 577 if (TP.hasError()) 578 return false; 579 bool Changed = false; 580 581 if (Vec.empty()) 582 Changed |= EnforceVector(Vec); 583 if (Elem.empty()) 584 Changed |= EnforceScalar(Elem); 585 586 SmallVector<unsigned, 4> Modes; 587 union_modes(Vec, Elem, Modes); 588 for (unsigned M : Modes) { 589 TypeSetByHwMode::SetType &V = Vec.get(M); 590 TypeSetByHwMode::SetType &E = Elem.get(M); 591 592 Changed |= berase_if(V, isScalar); // Scalar = !vector 593 Changed |= berase_if(E, isVector); // Vector = !scalar 594 assert(!V.empty() && !E.empty()); 595 596 MachineValueTypeSet VT, ST; 597 // Collect element types from the "vector" set. 598 for (MVT T : V) 599 VT.insert(T.getVectorElementType()); 600 // Collect scalar types from the "element" set. 601 for (MVT T : E) 602 ST.insert(T); 603 604 // Remove from V all (vector) types whose element type is not in S. 605 Changed |= berase_if(V, [&ST](MVT T) -> bool { 606 return !ST.count(T.getVectorElementType()); 607 }); 608 // Remove from E all (scalar) types, for which there is no corresponding 609 // type in V. 610 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 611 } 612 613 return Changed; 614 } 615 616 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 617 const ValueTypeByHwMode &VVT) { 618 TypeSetByHwMode Tmp(VVT); 619 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 620 return EnforceVectorEltTypeIs(Vec, Tmp); 621 } 622 623 /// Ensure that for each type T in Sub, T is a vector type, and there 624 /// exists a type U in Vec such that U is a vector type with the same 625 /// element type as T and at least as many elements as T. 626 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 627 TypeSetByHwMode &Sub) { 628 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 629 if (TP.hasError()) 630 return false; 631 632 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 633 auto IsSubVec = [](MVT B, MVT P) -> bool { 634 if (!B.isVector() || !P.isVector()) 635 return false; 636 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 637 // but until there are obvious use-cases for this, keep the 638 // types separate. 639 if (B.isScalableVector() != P.isScalableVector()) 640 return false; 641 if (B.getVectorElementType() != P.getVectorElementType()) 642 return false; 643 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 644 }; 645 646 /// Return true if S has no element (vector type) that T is a sub-vector of, 647 /// i.e. has the same element type as T and more elements. 648 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 649 for (auto I : S) 650 if (IsSubVec(T, I)) 651 return false; 652 return true; 653 }; 654 655 /// Return true if S has no element (vector type) that T is a super-vector 656 /// of, i.e. has the same element type as T and fewer elements. 657 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 658 for (auto I : S) 659 if (IsSubVec(I, T)) 660 return false; 661 return true; 662 }; 663 664 bool Changed = false; 665 666 if (Vec.empty()) 667 Changed |= EnforceVector(Vec); 668 if (Sub.empty()) 669 Changed |= EnforceVector(Sub); 670 671 SmallVector<unsigned, 4> Modes; 672 union_modes(Vec, Sub, Modes); 673 for (unsigned M : Modes) { 674 TypeSetByHwMode::SetType &S = Sub.get(M); 675 TypeSetByHwMode::SetType &V = Vec.get(M); 676 677 Changed |= berase_if(S, isScalar); 678 679 // Erase all types from S that are not sub-vectors of a type in V. 680 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 681 682 // Erase all types from V that are not super-vectors of a type in S. 683 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 684 } 685 686 return Changed; 687 } 688 689 /// 1. Ensure that V has a scalar type iff W has a scalar type. 690 /// 2. Ensure that for each vector type T in V, there exists a vector 691 /// type U in W, such that T and U have the same number of elements. 692 /// 3. Ensure that for each vector type U in W, there exists a vector 693 /// type T in V, such that T and U have the same number of elements 694 /// (reverse of 2). 695 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 696 ValidateOnExit _1(V, *this), _2(W, *this); 697 if (TP.hasError()) 698 return false; 699 700 bool Changed = false; 701 if (V.empty()) 702 Changed |= EnforceAny(V); 703 if (W.empty()) 704 Changed |= EnforceAny(W); 705 706 // An actual vector type cannot have 0 elements, so we can treat scalars 707 // as zero-length vectors. This way both vectors and scalars can be 708 // processed identically. 709 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 710 MVT T) -> bool { 711 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 712 : ElementCount::getNull()); 713 }; 714 715 SmallVector<unsigned, 4> Modes; 716 union_modes(V, W, Modes); 717 for (unsigned M : Modes) { 718 TypeSetByHwMode::SetType &VS = V.get(M); 719 TypeSetByHwMode::SetType &WS = W.get(M); 720 721 SmallDenseSet<ElementCount> VN, WN; 722 for (MVT T : VS) 723 VN.insert(T.isVector() ? T.getVectorElementCount() 724 : ElementCount::getNull()); 725 for (MVT T : WS) 726 WN.insert(T.isVector() ? T.getVectorElementCount() 727 : ElementCount::getNull()); 728 729 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 730 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 731 } 732 return Changed; 733 } 734 735 namespace { 736 struct TypeSizeComparator { 737 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 738 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 739 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 740 } 741 }; 742 } // end anonymous namespace 743 744 /// 1. Ensure that for each type T in A, there exists a type U in B, 745 /// such that T and U have equal size in bits. 746 /// 2. Ensure that for each type U in B, there exists a type T in A 747 /// such that T and U have equal size in bits (reverse of 1). 748 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 749 ValidateOnExit _1(A, *this), _2(B, *this); 750 if (TP.hasError()) 751 return false; 752 bool Changed = false; 753 if (A.empty()) 754 Changed |= EnforceAny(A); 755 if (B.empty()) 756 Changed |= EnforceAny(B); 757 758 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 759 760 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 761 return !Sizes.count(T.getSizeInBits()); 762 }; 763 764 SmallVector<unsigned, 4> Modes; 765 union_modes(A, B, Modes); 766 for (unsigned M : Modes) { 767 TypeSetByHwMode::SetType &AS = A.get(M); 768 TypeSetByHwMode::SetType &BS = B.get(M); 769 TypeSizeSet AN, BN; 770 771 for (MVT T : AS) 772 AN.insert(T.getSizeInBits()); 773 for (MVT T : BS) 774 BN.insert(T.getSizeInBits()); 775 776 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 777 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 778 } 779 780 return Changed; 781 } 782 783 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 784 ValidateOnExit _1(VTS, *this); 785 const TypeSetByHwMode &Legal = getLegalTypes(); 786 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 787 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 788 789 for (auto &I : VTS) 790 expandOverloads(I.second, LegalTypes); 791 } 792 793 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 794 const TypeSetByHwMode::SetType &Legal) { 795 std::set<MVT> Ovs; 796 for (MVT T : Out) { 797 if (!T.isOverloaded()) 798 continue; 799 800 Ovs.insert(T); 801 // MachineValueTypeSet allows iteration and erasing. 802 Out.erase(T); 803 } 804 805 for (MVT Ov : Ovs) { 806 switch (Ov.SimpleTy) { 807 case MVT::iPTRAny: 808 Out.insert(MVT::iPTR); 809 return; 810 case MVT::iAny: 811 for (MVT T : MVT::integer_valuetypes()) 812 if (Legal.count(T)) 813 Out.insert(T); 814 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 815 if (Legal.count(T)) 816 Out.insert(T); 817 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 818 if (Legal.count(T)) 819 Out.insert(T); 820 return; 821 case MVT::fAny: 822 for (MVT T : MVT::fp_valuetypes()) 823 if (Legal.count(T)) 824 Out.insert(T); 825 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 826 if (Legal.count(T)) 827 Out.insert(T); 828 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 829 if (Legal.count(T)) 830 Out.insert(T); 831 return; 832 case MVT::vAny: 833 for (MVT T : MVT::vector_valuetypes()) 834 if (Legal.count(T)) 835 Out.insert(T); 836 return; 837 case MVT::Any: 838 for (MVT T : MVT::all_valuetypes()) 839 if (Legal.count(T)) 840 Out.insert(T); 841 return; 842 default: 843 break; 844 } 845 } 846 } 847 848 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 849 if (!LegalTypesCached) { 850 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 851 // Stuff all types from all modes into the default mode. 852 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 853 for (const auto &I : LTS) 854 LegalTypes.insert(I.second); 855 LegalTypesCached = true; 856 } 857 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 858 return LegalCache; 859 } 860 861 #ifndef NDEBUG 862 TypeInfer::ValidateOnExit::~ValidateOnExit() { 863 if (Infer.Validate && !VTS.validate()) { 864 dbgs() << "Type set is empty for each HW mode:\n" 865 "possible type contradiction in the pattern below " 866 "(use -print-records with llvm-tblgen to see all " 867 "expanded records).\n"; 868 Infer.TP.dump(); 869 dbgs() << "Generated from record:\n"; 870 Infer.TP.getRecord()->dump(); 871 PrintFatalError(Infer.TP.getRecord()->getLoc(), 872 "Type set is empty for each HW mode in '" + 873 Infer.TP.getRecord()->getName() + "'"); 874 } 875 } 876 #endif 877 878 879 //===----------------------------------------------------------------------===// 880 // ScopedName Implementation 881 //===----------------------------------------------------------------------===// 882 883 bool ScopedName::operator==(const ScopedName &o) const { 884 return Scope == o.Scope && Identifier == o.Identifier; 885 } 886 887 bool ScopedName::operator!=(const ScopedName &o) const { 888 return !(*this == o); 889 } 890 891 892 //===----------------------------------------------------------------------===// 893 // TreePredicateFn Implementation 894 //===----------------------------------------------------------------------===// 895 896 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 897 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 898 assert( 899 (!hasPredCode() || !hasImmCode()) && 900 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 901 } 902 903 bool TreePredicateFn::hasPredCode() const { 904 return isLoad() || isStore() || isAtomic() || 905 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 906 } 907 908 std::string TreePredicateFn::getPredCode() const { 909 std::string Code; 910 911 if (!isLoad() && !isStore() && !isAtomic()) { 912 Record *MemoryVT = getMemoryVT(); 913 914 if (MemoryVT) 915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 916 "MemoryVT requires IsLoad or IsStore"); 917 } 918 919 if (!isLoad() && !isStore()) { 920 if (isUnindexed()) 921 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 922 "IsUnindexed requires IsLoad or IsStore"); 923 924 Record *ScalarMemoryVT = getScalarMemoryVT(); 925 926 if (ScalarMemoryVT) 927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 928 "ScalarMemoryVT requires IsLoad or IsStore"); 929 } 930 931 if (isLoad() + isStore() + isAtomic() > 1) 932 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 933 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 934 935 if (isLoad()) { 936 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 937 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 938 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 939 getMinAlignment() < 1) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsLoad cannot be used by itself"); 942 } else { 943 if (isNonExtLoad()) 944 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 945 "IsNonExtLoad requires IsLoad"); 946 if (isAnyExtLoad()) 947 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 948 "IsAnyExtLoad requires IsLoad"); 949 if (isSignExtLoad()) 950 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 951 "IsSignExtLoad requires IsLoad"); 952 if (isZeroExtLoad()) 953 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 954 "IsZeroExtLoad requires IsLoad"); 955 } 956 957 if (isStore()) { 958 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 959 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 960 getAddressSpaces() == nullptr && getMinAlignment() < 1) 961 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 962 "IsStore cannot be used by itself"); 963 } else { 964 if (isNonTruncStore()) 965 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 966 "IsNonTruncStore requires IsStore"); 967 if (isTruncStore()) 968 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 969 "IsTruncStore requires IsStore"); 970 } 971 972 if (isAtomic()) { 973 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 974 getAddressSpaces() == nullptr && 975 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 976 !isAtomicOrderingAcquireRelease() && 977 !isAtomicOrderingSequentiallyConsistent() && 978 !isAtomicOrderingAcquireOrStronger() && 979 !isAtomicOrderingReleaseOrStronger() && 980 !isAtomicOrderingWeakerThanAcquire() && 981 !isAtomicOrderingWeakerThanRelease()) 982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 983 "IsAtomic cannot be used by itself"); 984 } else { 985 if (isAtomicOrderingMonotonic()) 986 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 987 "IsAtomicOrderingMonotonic requires IsAtomic"); 988 if (isAtomicOrderingAcquire()) 989 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 990 "IsAtomicOrderingAcquire requires IsAtomic"); 991 if (isAtomicOrderingRelease()) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsAtomicOrderingRelease requires IsAtomic"); 994 if (isAtomicOrderingAcquireRelease()) 995 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 996 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 997 if (isAtomicOrderingSequentiallyConsistent()) 998 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 999 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1000 if (isAtomicOrderingAcquireOrStronger()) 1001 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1002 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1003 if (isAtomicOrderingReleaseOrStronger()) 1004 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1005 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1006 if (isAtomicOrderingWeakerThanAcquire()) 1007 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1008 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1009 } 1010 1011 if (isLoad() || isStore() || isAtomic()) { 1012 if (ListInit *AddressSpaces = getAddressSpaces()) { 1013 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1014 " if ("; 1015 1016 ListSeparator LS(" && "); 1017 for (Init *Val : AddressSpaces->getValues()) { 1018 Code += LS; 1019 1020 IntInit *IntVal = dyn_cast<IntInit>(Val); 1021 if (!IntVal) { 1022 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1023 "AddressSpaces element must be integer"); 1024 } 1025 1026 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1027 } 1028 1029 Code += ")\nreturn false;\n"; 1030 } 1031 1032 int64_t MinAlign = getMinAlignment(); 1033 if (MinAlign > 0) { 1034 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1035 Code += utostr(MinAlign); 1036 Code += "))\nreturn false;\n"; 1037 } 1038 1039 Record *MemoryVT = getMemoryVT(); 1040 1041 if (MemoryVT) 1042 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1043 MemoryVT->getName() + ") return false;\n") 1044 .str(); 1045 } 1046 1047 if (isAtomic() && isAtomicOrderingMonotonic()) 1048 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1049 "AtomicOrdering::Monotonic) return false;\n"; 1050 if (isAtomic() && isAtomicOrderingAcquire()) 1051 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1052 "AtomicOrdering::Acquire) return false;\n"; 1053 if (isAtomic() && isAtomicOrderingRelease()) 1054 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1055 "AtomicOrdering::Release) return false;\n"; 1056 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1057 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1058 "AtomicOrdering::AcquireRelease) return false;\n"; 1059 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1060 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1061 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1062 1063 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1064 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1065 "return false;\n"; 1066 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1067 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1068 "return false;\n"; 1069 1070 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1071 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1072 "return false;\n"; 1073 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1074 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1075 "return false;\n"; 1076 1077 if (isLoad() || isStore()) { 1078 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1079 1080 if (isUnindexed()) 1081 Code += ("if (cast<" + SDNodeName + 1082 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1083 "return false;\n") 1084 .str(); 1085 1086 if (isLoad()) { 1087 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1088 isZeroExtLoad()) > 1) 1089 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1090 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1091 "IsZeroExtLoad are mutually exclusive"); 1092 if (isNonExtLoad()) 1093 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1094 "ISD::NON_EXTLOAD) return false;\n"; 1095 if (isAnyExtLoad()) 1096 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1097 "return false;\n"; 1098 if (isSignExtLoad()) 1099 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1100 "return false;\n"; 1101 if (isZeroExtLoad()) 1102 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1103 "return false;\n"; 1104 } else { 1105 if ((isNonTruncStore() + isTruncStore()) > 1) 1106 PrintFatalError( 1107 getOrigPatFragRecord()->getRecord()->getLoc(), 1108 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1109 if (isNonTruncStore()) 1110 Code += 1111 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1112 if (isTruncStore()) 1113 Code += 1114 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1115 } 1116 1117 Record *ScalarMemoryVT = getScalarMemoryVT(); 1118 1119 if (ScalarMemoryVT) 1120 Code += ("if (cast<" + SDNodeName + 1121 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1122 ScalarMemoryVT->getName() + ") return false;\n") 1123 .str(); 1124 } 1125 1126 std::string PredicateCode = 1127 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1128 1129 Code += PredicateCode; 1130 1131 if (PredicateCode.empty() && !Code.empty()) 1132 Code += "return true;\n"; 1133 1134 return Code; 1135 } 1136 1137 bool TreePredicateFn::hasImmCode() const { 1138 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1139 } 1140 1141 std::string TreePredicateFn::getImmCode() const { 1142 return std::string( 1143 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1144 } 1145 1146 bool TreePredicateFn::immCodeUsesAPInt() const { 1147 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1148 } 1149 1150 bool TreePredicateFn::immCodeUsesAPFloat() const { 1151 bool Unset; 1152 // The return value will be false when IsAPFloat is unset. 1153 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1154 Unset); 1155 } 1156 1157 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1158 bool Value) const { 1159 bool Unset; 1160 bool Result = 1161 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1162 if (Unset) 1163 return false; 1164 return Result == Value; 1165 } 1166 bool TreePredicateFn::usesOperands() const { 1167 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1168 } 1169 bool TreePredicateFn::isLoad() const { 1170 return isPredefinedPredicateEqualTo("IsLoad", true); 1171 } 1172 bool TreePredicateFn::isStore() const { 1173 return isPredefinedPredicateEqualTo("IsStore", true); 1174 } 1175 bool TreePredicateFn::isAtomic() const { 1176 return isPredefinedPredicateEqualTo("IsAtomic", true); 1177 } 1178 bool TreePredicateFn::isUnindexed() const { 1179 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1180 } 1181 bool TreePredicateFn::isNonExtLoad() const { 1182 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1183 } 1184 bool TreePredicateFn::isAnyExtLoad() const { 1185 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1186 } 1187 bool TreePredicateFn::isSignExtLoad() const { 1188 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1189 } 1190 bool TreePredicateFn::isZeroExtLoad() const { 1191 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1192 } 1193 bool TreePredicateFn::isNonTruncStore() const { 1194 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1195 } 1196 bool TreePredicateFn::isTruncStore() const { 1197 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1198 } 1199 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1200 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1201 } 1202 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1203 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1204 } 1205 bool TreePredicateFn::isAtomicOrderingRelease() const { 1206 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1207 } 1208 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1209 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1210 } 1211 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1212 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1213 true); 1214 } 1215 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1216 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1217 } 1218 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1219 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1220 } 1221 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1222 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1223 } 1224 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1225 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1226 } 1227 Record *TreePredicateFn::getMemoryVT() const { 1228 Record *R = getOrigPatFragRecord()->getRecord(); 1229 if (R->isValueUnset("MemoryVT")) 1230 return nullptr; 1231 return R->getValueAsDef("MemoryVT"); 1232 } 1233 1234 ListInit *TreePredicateFn::getAddressSpaces() const { 1235 Record *R = getOrigPatFragRecord()->getRecord(); 1236 if (R->isValueUnset("AddressSpaces")) 1237 return nullptr; 1238 return R->getValueAsListInit("AddressSpaces"); 1239 } 1240 1241 int64_t TreePredicateFn::getMinAlignment() const { 1242 Record *R = getOrigPatFragRecord()->getRecord(); 1243 if (R->isValueUnset("MinAlignment")) 1244 return 0; 1245 return R->getValueAsInt("MinAlignment"); 1246 } 1247 1248 Record *TreePredicateFn::getScalarMemoryVT() const { 1249 Record *R = getOrigPatFragRecord()->getRecord(); 1250 if (R->isValueUnset("ScalarMemoryVT")) 1251 return nullptr; 1252 return R->getValueAsDef("ScalarMemoryVT"); 1253 } 1254 bool TreePredicateFn::hasGISelPredicateCode() const { 1255 return !PatFragRec->getRecord() 1256 ->getValueAsString("GISelPredicateCode") 1257 .empty(); 1258 } 1259 std::string TreePredicateFn::getGISelPredicateCode() const { 1260 return std::string( 1261 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1262 } 1263 1264 StringRef TreePredicateFn::getImmType() const { 1265 if (immCodeUsesAPInt()) 1266 return "const APInt &"; 1267 if (immCodeUsesAPFloat()) 1268 return "const APFloat &"; 1269 return "int64_t"; 1270 } 1271 1272 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1273 if (immCodeUsesAPInt()) 1274 return "APInt"; 1275 if (immCodeUsesAPFloat()) 1276 return "APFloat"; 1277 return "I64"; 1278 } 1279 1280 /// isAlwaysTrue - Return true if this is a noop predicate. 1281 bool TreePredicateFn::isAlwaysTrue() const { 1282 return !hasPredCode() && !hasImmCode(); 1283 } 1284 1285 /// Return the name to use in the generated code to reference this, this is 1286 /// "Predicate_foo" if from a pattern fragment "foo". 1287 std::string TreePredicateFn::getFnName() const { 1288 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1289 } 1290 1291 /// getCodeToRunOnSDNode - Return the code for the function body that 1292 /// evaluates this predicate. The argument is expected to be in "Node", 1293 /// not N. This handles casting and conversion to a concrete node type as 1294 /// appropriate. 1295 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1296 // Handle immediate predicates first. 1297 std::string ImmCode = getImmCode(); 1298 if (!ImmCode.empty()) { 1299 if (isLoad()) 1300 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1301 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1302 if (isStore()) 1303 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1304 "IsStore cannot be used with ImmLeaf or its subclasses"); 1305 if (isUnindexed()) 1306 PrintFatalError( 1307 getOrigPatFragRecord()->getRecord()->getLoc(), 1308 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1309 if (isNonExtLoad()) 1310 PrintFatalError( 1311 getOrigPatFragRecord()->getRecord()->getLoc(), 1312 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1313 if (isAnyExtLoad()) 1314 PrintFatalError( 1315 getOrigPatFragRecord()->getRecord()->getLoc(), 1316 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1317 if (isSignExtLoad()) 1318 PrintFatalError( 1319 getOrigPatFragRecord()->getRecord()->getLoc(), 1320 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1321 if (isZeroExtLoad()) 1322 PrintFatalError( 1323 getOrigPatFragRecord()->getRecord()->getLoc(), 1324 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1325 if (isNonTruncStore()) 1326 PrintFatalError( 1327 getOrigPatFragRecord()->getRecord()->getLoc(), 1328 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1329 if (isTruncStore()) 1330 PrintFatalError( 1331 getOrigPatFragRecord()->getRecord()->getLoc(), 1332 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1333 if (getMemoryVT()) 1334 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1335 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1336 if (getScalarMemoryVT()) 1337 PrintFatalError( 1338 getOrigPatFragRecord()->getRecord()->getLoc(), 1339 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1340 1341 std::string Result = (" " + getImmType() + " Imm = ").str(); 1342 if (immCodeUsesAPFloat()) 1343 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1344 else if (immCodeUsesAPInt()) 1345 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1346 else 1347 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1348 return Result + ImmCode; 1349 } 1350 1351 // Handle arbitrary node predicates. 1352 assert(hasPredCode() && "Don't have any predicate code!"); 1353 1354 // If this is using PatFrags, there are multiple trees to search. They should 1355 // all have the same class. FIXME: Is there a way to find a common 1356 // superclass? 1357 StringRef ClassName; 1358 for (const auto &Tree : PatFragRec->getTrees()) { 1359 StringRef TreeClassName; 1360 if (Tree->isLeaf()) 1361 TreeClassName = "SDNode"; 1362 else { 1363 Record *Op = Tree->getOperator(); 1364 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1365 TreeClassName = Info.getSDClassName(); 1366 } 1367 1368 if (ClassName.empty()) 1369 ClassName = TreeClassName; 1370 else if (ClassName != TreeClassName) { 1371 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1372 "PatFrags trees do not have consistent class"); 1373 } 1374 } 1375 1376 std::string Result; 1377 if (ClassName == "SDNode") 1378 Result = " SDNode *N = Node;\n"; 1379 else 1380 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1381 1382 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1383 } 1384 1385 //===----------------------------------------------------------------------===// 1386 // PatternToMatch implementation 1387 // 1388 1389 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1390 if (!P->isLeaf()) 1391 return false; 1392 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1393 if (!DI) 1394 return false; 1395 1396 Record *R = DI->getDef(); 1397 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1398 } 1399 1400 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1401 /// patterns before small ones. This is used to determine the size of a 1402 /// pattern. 1403 static unsigned getPatternSize(const TreePatternNode *P, 1404 const CodeGenDAGPatterns &CGP) { 1405 unsigned Size = 3; // The node itself. 1406 // If the root node is a ConstantSDNode, increases its size. 1407 // e.g. (set R32:$dst, 0). 1408 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1409 Size += 2; 1410 1411 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1412 Size += AM->getComplexity(); 1413 // We don't want to count any children twice, so return early. 1414 return Size; 1415 } 1416 1417 // If this node has some predicate function that must match, it adds to the 1418 // complexity of this node. 1419 if (!P->getPredicateCalls().empty()) 1420 ++Size; 1421 1422 // Count children in the count if they are also nodes. 1423 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1424 const TreePatternNode *Child = P->getChild(i); 1425 if (!Child->isLeaf() && Child->getNumTypes()) { 1426 const TypeSetByHwMode &T0 = Child->getExtType(0); 1427 // At this point, all variable type sets should be simple, i.e. only 1428 // have a default mode. 1429 if (T0.getMachineValueType() != MVT::Other) { 1430 Size += getPatternSize(Child, CGP); 1431 continue; 1432 } 1433 } 1434 if (Child->isLeaf()) { 1435 if (isa<IntInit>(Child->getLeafValue())) 1436 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1437 else if (Child->getComplexPatternInfo(CGP)) 1438 Size += getPatternSize(Child, CGP); 1439 else if (isImmAllOnesAllZerosMatch(Child)) 1440 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1441 else if (!Child->getPredicateCalls().empty()) 1442 ++Size; 1443 } 1444 } 1445 1446 return Size; 1447 } 1448 1449 /// Compute the complexity metric for the input pattern. This roughly 1450 /// corresponds to the number of nodes that are covered. 1451 int PatternToMatch:: 1452 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1453 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1454 } 1455 1456 void PatternToMatch::getPredicateRecords( 1457 SmallVectorImpl<Record *> &PredicateRecs) const { 1458 for (Init *I : Predicates->getValues()) { 1459 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1460 Record *Def = Pred->getDef(); 1461 if (!Def->isSubClassOf("Predicate")) { 1462 #ifndef NDEBUG 1463 Def->dump(); 1464 #endif 1465 llvm_unreachable("Unknown predicate type!"); 1466 } 1467 PredicateRecs.push_back(Def); 1468 } 1469 } 1470 // Sort so that different orders get canonicalized to the same string. 1471 llvm::sort(PredicateRecs, LessRecord()); 1472 } 1473 1474 /// getPredicateCheck - Return a single string containing all of this 1475 /// pattern's predicates concatenated with "&&" operators. 1476 /// 1477 std::string PatternToMatch::getPredicateCheck() const { 1478 SmallVector<Record *, 4> PredicateRecs; 1479 getPredicateRecords(PredicateRecs); 1480 1481 SmallString<128> PredicateCheck; 1482 for (Record *Pred : PredicateRecs) { 1483 StringRef CondString = Pred->getValueAsString("CondString"); 1484 if (CondString.empty()) 1485 continue; 1486 if (!PredicateCheck.empty()) 1487 PredicateCheck += " && "; 1488 PredicateCheck += "("; 1489 PredicateCheck += CondString; 1490 PredicateCheck += ")"; 1491 } 1492 1493 if (!HwModeFeatures.empty()) { 1494 if (!PredicateCheck.empty()) 1495 PredicateCheck += " && "; 1496 PredicateCheck += HwModeFeatures; 1497 } 1498 1499 return std::string(PredicateCheck); 1500 } 1501 1502 //===----------------------------------------------------------------------===// 1503 // SDTypeConstraint implementation 1504 // 1505 1506 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1507 OperandNo = R->getValueAsInt("OperandNum"); 1508 1509 if (R->isSubClassOf("SDTCisVT")) { 1510 ConstraintType = SDTCisVT; 1511 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1512 for (const auto &P : VVT) 1513 if (P.second == MVT::isVoid) 1514 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1515 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1516 ConstraintType = SDTCisPtrTy; 1517 } else if (R->isSubClassOf("SDTCisInt")) { 1518 ConstraintType = SDTCisInt; 1519 } else if (R->isSubClassOf("SDTCisFP")) { 1520 ConstraintType = SDTCisFP; 1521 } else if (R->isSubClassOf("SDTCisVec")) { 1522 ConstraintType = SDTCisVec; 1523 } else if (R->isSubClassOf("SDTCisSameAs")) { 1524 ConstraintType = SDTCisSameAs; 1525 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1526 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1527 ConstraintType = SDTCisVTSmallerThanOp; 1528 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1529 R->getValueAsInt("OtherOperandNum"); 1530 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1531 ConstraintType = SDTCisOpSmallerThanOp; 1532 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1533 R->getValueAsInt("BigOperandNum"); 1534 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1535 ConstraintType = SDTCisEltOfVec; 1536 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1537 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1538 ConstraintType = SDTCisSubVecOfVec; 1539 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1540 R->getValueAsInt("OtherOpNum"); 1541 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1542 ConstraintType = SDTCVecEltisVT; 1543 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1544 for (const auto &P : VVT) { 1545 MVT T = P.second; 1546 if (T.isVector()) 1547 PrintFatalError(R->getLoc(), 1548 "Cannot use vector type as SDTCVecEltisVT"); 1549 if (!T.isInteger() && !T.isFloatingPoint()) 1550 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1551 "as SDTCVecEltisVT"); 1552 } 1553 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1554 ConstraintType = SDTCisSameNumEltsAs; 1555 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1556 R->getValueAsInt("OtherOperandNum"); 1557 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1558 ConstraintType = SDTCisSameSizeAs; 1559 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1560 R->getValueAsInt("OtherOperandNum"); 1561 } else { 1562 PrintFatalError(R->getLoc(), 1563 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1564 } 1565 } 1566 1567 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1568 /// N, and the result number in ResNo. 1569 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1570 const SDNodeInfo &NodeInfo, 1571 unsigned &ResNo) { 1572 unsigned NumResults = NodeInfo.getNumResults(); 1573 if (OpNo < NumResults) { 1574 ResNo = OpNo; 1575 return N; 1576 } 1577 1578 OpNo -= NumResults; 1579 1580 if (OpNo >= N->getNumChildren()) { 1581 std::string S; 1582 raw_string_ostream OS(S); 1583 OS << "Invalid operand number in type constraint " 1584 << (OpNo+NumResults) << " "; 1585 N->print(OS); 1586 PrintFatalError(OS.str()); 1587 } 1588 1589 return N->getChild(OpNo); 1590 } 1591 1592 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1593 /// constraint to the nodes operands. This returns true if it makes a 1594 /// change, false otherwise. If a type contradiction is found, flag an error. 1595 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1596 const SDNodeInfo &NodeInfo, 1597 TreePattern &TP) const { 1598 if (TP.hasError()) 1599 return false; 1600 1601 unsigned ResNo = 0; // The result number being referenced. 1602 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1603 TypeInfer &TI = TP.getInfer(); 1604 1605 switch (ConstraintType) { 1606 case SDTCisVT: 1607 // Operand must be a particular type. 1608 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1609 case SDTCisPtrTy: 1610 // Operand must be same as target pointer type. 1611 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1612 case SDTCisInt: 1613 // Require it to be one of the legal integer VTs. 1614 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1615 case SDTCisFP: 1616 // Require it to be one of the legal fp VTs. 1617 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1618 case SDTCisVec: 1619 // Require it to be one of the legal vector VTs. 1620 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1621 case SDTCisSameAs: { 1622 unsigned OResNo = 0; 1623 TreePatternNode *OtherNode = 1624 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1625 return (int)NodeToApply->UpdateNodeType(ResNo, 1626 OtherNode->getExtType(OResNo), TP) | 1627 (int)OtherNode->UpdateNodeType(OResNo, 1628 NodeToApply->getExtType(ResNo), TP); 1629 } 1630 case SDTCisVTSmallerThanOp: { 1631 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1632 // have an integer type that is smaller than the VT. 1633 if (!NodeToApply->isLeaf() || 1634 !isa<DefInit>(NodeToApply->getLeafValue()) || 1635 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1636 ->isSubClassOf("ValueType")) { 1637 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1638 return false; 1639 } 1640 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1641 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1642 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1643 TypeSetByHwMode TypeListTmp(VVT); 1644 1645 unsigned OResNo = 0; 1646 TreePatternNode *OtherNode = 1647 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1648 OResNo); 1649 1650 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo), 1651 /*SmallIsVT*/ true); 1652 } 1653 case SDTCisOpSmallerThanOp: { 1654 unsigned BResNo = 0; 1655 TreePatternNode *BigOperand = 1656 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1657 BResNo); 1658 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1659 BigOperand->getExtType(BResNo)); 1660 } 1661 case SDTCisEltOfVec: { 1662 unsigned VResNo = 0; 1663 TreePatternNode *VecOperand = 1664 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1665 VResNo); 1666 // Filter vector types out of VecOperand that don't have the right element 1667 // type. 1668 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1669 NodeToApply->getExtType(ResNo)); 1670 } 1671 case SDTCisSubVecOfVec: { 1672 unsigned VResNo = 0; 1673 TreePatternNode *BigVecOperand = 1674 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1675 VResNo); 1676 1677 // Filter vector types out of BigVecOperand that don't have the 1678 // right subvector type. 1679 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1680 NodeToApply->getExtType(ResNo)); 1681 } 1682 case SDTCVecEltisVT: { 1683 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1684 } 1685 case SDTCisSameNumEltsAs: { 1686 unsigned OResNo = 0; 1687 TreePatternNode *OtherNode = 1688 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1689 N, NodeInfo, OResNo); 1690 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1691 NodeToApply->getExtType(ResNo)); 1692 } 1693 case SDTCisSameSizeAs: { 1694 unsigned OResNo = 0; 1695 TreePatternNode *OtherNode = 1696 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1697 N, NodeInfo, OResNo); 1698 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1699 NodeToApply->getExtType(ResNo)); 1700 } 1701 } 1702 llvm_unreachable("Invalid ConstraintType!"); 1703 } 1704 1705 // Update the node type to match an instruction operand or result as specified 1706 // in the ins or outs lists on the instruction definition. Return true if the 1707 // type was actually changed. 1708 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1709 Record *Operand, 1710 TreePattern &TP) { 1711 // The 'unknown' operand indicates that types should be inferred from the 1712 // context. 1713 if (Operand->isSubClassOf("unknown_class")) 1714 return false; 1715 1716 // The Operand class specifies a type directly. 1717 if (Operand->isSubClassOf("Operand")) { 1718 Record *R = Operand->getValueAsDef("Type"); 1719 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1720 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1721 } 1722 1723 // PointerLikeRegClass has a type that is determined at runtime. 1724 if (Operand->isSubClassOf("PointerLikeRegClass")) 1725 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1726 1727 // Both RegisterClass and RegisterOperand operands derive their types from a 1728 // register class def. 1729 Record *RC = nullptr; 1730 if (Operand->isSubClassOf("RegisterClass")) 1731 RC = Operand; 1732 else if (Operand->isSubClassOf("RegisterOperand")) 1733 RC = Operand->getValueAsDef("RegClass"); 1734 1735 assert(RC && "Unknown operand type"); 1736 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1737 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1738 } 1739 1740 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1741 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1742 if (!TP.getInfer().isConcrete(Types[i], true)) 1743 return true; 1744 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1745 if (getChild(i)->ContainsUnresolvedType(TP)) 1746 return true; 1747 return false; 1748 } 1749 1750 bool TreePatternNode::hasProperTypeByHwMode() const { 1751 for (const TypeSetByHwMode &S : Types) 1752 if (!S.isDefaultOnly()) 1753 return true; 1754 for (const TreePatternNodePtr &C : Children) 1755 if (C->hasProperTypeByHwMode()) 1756 return true; 1757 return false; 1758 } 1759 1760 bool TreePatternNode::hasPossibleType() const { 1761 for (const TypeSetByHwMode &S : Types) 1762 if (!S.isPossible()) 1763 return false; 1764 for (const TreePatternNodePtr &C : Children) 1765 if (!C->hasPossibleType()) 1766 return false; 1767 return true; 1768 } 1769 1770 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1771 for (TypeSetByHwMode &S : Types) { 1772 S.makeSimple(Mode); 1773 // Check if the selected mode had a type conflict. 1774 if (S.get(DefaultMode).empty()) 1775 return false; 1776 } 1777 for (const TreePatternNodePtr &C : Children) 1778 if (!C->setDefaultMode(Mode)) 1779 return false; 1780 return true; 1781 } 1782 1783 //===----------------------------------------------------------------------===// 1784 // SDNodeInfo implementation 1785 // 1786 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1787 EnumName = R->getValueAsString("Opcode"); 1788 SDClassName = R->getValueAsString("SDClass"); 1789 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1790 NumResults = TypeProfile->getValueAsInt("NumResults"); 1791 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1792 1793 // Parse the properties. 1794 Properties = parseSDPatternOperatorProperties(R); 1795 1796 // Parse the type constraints. 1797 std::vector<Record*> ConstraintList = 1798 TypeProfile->getValueAsListOfDefs("Constraints"); 1799 for (Record *R : ConstraintList) 1800 TypeConstraints.emplace_back(R, CGH); 1801 } 1802 1803 /// getKnownType - If the type constraints on this node imply a fixed type 1804 /// (e.g. all stores return void, etc), then return it as an 1805 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1806 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1807 unsigned NumResults = getNumResults(); 1808 assert(NumResults <= 1 && 1809 "We only work with nodes with zero or one result so far!"); 1810 assert(ResNo == 0 && "Only handles single result nodes so far"); 1811 1812 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1813 // Make sure that this applies to the correct node result. 1814 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1815 continue; 1816 1817 switch (Constraint.ConstraintType) { 1818 default: break; 1819 case SDTypeConstraint::SDTCisVT: 1820 if (Constraint.VVT.isSimple()) 1821 return Constraint.VVT.getSimple().SimpleTy; 1822 break; 1823 case SDTypeConstraint::SDTCisPtrTy: 1824 return MVT::iPTR; 1825 } 1826 } 1827 return MVT::Other; 1828 } 1829 1830 //===----------------------------------------------------------------------===// 1831 // TreePatternNode implementation 1832 // 1833 1834 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1835 if (Operator->getName() == "set" || 1836 Operator->getName() == "implicit") 1837 return 0; // All return nothing. 1838 1839 if (Operator->isSubClassOf("Intrinsic")) 1840 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1841 1842 if (Operator->isSubClassOf("SDNode")) 1843 return CDP.getSDNodeInfo(Operator).getNumResults(); 1844 1845 if (Operator->isSubClassOf("PatFrags")) { 1846 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1847 // the forward reference case where one pattern fragment references another 1848 // before it is processed. 1849 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1850 // The number of results of a fragment with alternative records is the 1851 // maximum number of results across all alternatives. 1852 unsigned NumResults = 0; 1853 for (const auto &T : PFRec->getTrees()) 1854 NumResults = std::max(NumResults, T->getNumTypes()); 1855 return NumResults; 1856 } 1857 1858 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1859 assert(LI && "Invalid Fragment"); 1860 unsigned NumResults = 0; 1861 for (Init *I : LI->getValues()) { 1862 Record *Op = nullptr; 1863 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1864 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1865 Op = DI->getDef(); 1866 assert(Op && "Invalid Fragment"); 1867 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1868 } 1869 return NumResults; 1870 } 1871 1872 if (Operator->isSubClassOf("Instruction")) { 1873 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1874 1875 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1876 1877 // Subtract any defaulted outputs. 1878 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1879 Record *OperandNode = InstInfo.Operands[i].Rec; 1880 1881 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1882 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1883 --NumDefsToAdd; 1884 } 1885 1886 // Add on one implicit def if it has a resolvable type. 1887 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1888 ++NumDefsToAdd; 1889 return NumDefsToAdd; 1890 } 1891 1892 if (Operator->isSubClassOf("SDNodeXForm")) 1893 return 1; // FIXME: Generalize SDNodeXForm 1894 1895 if (Operator->isSubClassOf("ValueType")) 1896 return 1; // A type-cast of one result. 1897 1898 if (Operator->isSubClassOf("ComplexPattern")) 1899 return 1; 1900 1901 errs() << *Operator; 1902 PrintFatalError("Unhandled node in GetNumNodeResults"); 1903 } 1904 1905 void TreePatternNode::print(raw_ostream &OS) const { 1906 if (isLeaf()) 1907 OS << *getLeafValue(); 1908 else 1909 OS << '(' << getOperator()->getName(); 1910 1911 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1912 OS << ':'; 1913 getExtType(i).writeToStream(OS); 1914 } 1915 1916 if (!isLeaf()) { 1917 if (getNumChildren() != 0) { 1918 OS << " "; 1919 ListSeparator LS; 1920 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1921 OS << LS; 1922 getChild(i)->print(OS); 1923 } 1924 } 1925 OS << ")"; 1926 } 1927 1928 for (const TreePredicateCall &Pred : PredicateCalls) { 1929 OS << "<<P:"; 1930 if (Pred.Scope) 1931 OS << Pred.Scope << ":"; 1932 OS << Pred.Fn.getFnName() << ">>"; 1933 } 1934 if (TransformFn) 1935 OS << "<<X:" << TransformFn->getName() << ">>"; 1936 if (!getName().empty()) 1937 OS << ":$" << getName(); 1938 1939 for (const ScopedName &Name : NamesAsPredicateArg) 1940 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1941 } 1942 void TreePatternNode::dump() const { 1943 print(errs()); 1944 } 1945 1946 /// isIsomorphicTo - Return true if this node is recursively 1947 /// isomorphic to the specified node. For this comparison, the node's 1948 /// entire state is considered. The assigned name is ignored, since 1949 /// nodes with differing names are considered isomorphic. However, if 1950 /// the assigned name is present in the dependent variable set, then 1951 /// the assigned name is considered significant and the node is 1952 /// isomorphic if the names match. 1953 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1954 const MultipleUseVarSet &DepVars) const { 1955 if (N == this) return true; 1956 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1957 getPredicateCalls() != N->getPredicateCalls() || 1958 getTransformFn() != N->getTransformFn()) 1959 return false; 1960 1961 if (isLeaf()) { 1962 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1963 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1964 return ((DI->getDef() == NDI->getDef()) 1965 && (DepVars.find(getName()) == DepVars.end() 1966 || getName() == N->getName())); 1967 } 1968 } 1969 return getLeafValue() == N->getLeafValue(); 1970 } 1971 1972 if (N->getOperator() != getOperator() || 1973 N->getNumChildren() != getNumChildren()) return false; 1974 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1975 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1976 return false; 1977 return true; 1978 } 1979 1980 /// clone - Make a copy of this tree and all of its children. 1981 /// 1982 TreePatternNodePtr TreePatternNode::clone() const { 1983 TreePatternNodePtr New; 1984 if (isLeaf()) { 1985 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1986 } else { 1987 std::vector<TreePatternNodePtr> CChildren; 1988 CChildren.reserve(Children.size()); 1989 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1990 CChildren.push_back(getChild(i)->clone()); 1991 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1992 getNumTypes()); 1993 } 1994 New->setName(getName()); 1995 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1996 New->Types = Types; 1997 New->setPredicateCalls(getPredicateCalls()); 1998 New->setTransformFn(getTransformFn()); 1999 return New; 2000 } 2001 2002 /// RemoveAllTypes - Recursively strip all the types of this tree. 2003 void TreePatternNode::RemoveAllTypes() { 2004 // Reset to unknown type. 2005 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2006 if (isLeaf()) return; 2007 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2008 getChild(i)->RemoveAllTypes(); 2009 } 2010 2011 2012 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2013 /// with actual values specified by ArgMap. 2014 void TreePatternNode::SubstituteFormalArguments( 2015 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2016 if (isLeaf()) return; 2017 2018 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2019 TreePatternNode *Child = getChild(i); 2020 if (Child->isLeaf()) { 2021 Init *Val = Child->getLeafValue(); 2022 // Note that, when substituting into an output pattern, Val might be an 2023 // UnsetInit. 2024 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 2025 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2026 // We found a use of a formal argument, replace it with its value. 2027 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 2028 assert(NewChild && "Couldn't find formal argument!"); 2029 assert((Child->getPredicateCalls().empty() || 2030 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 2031 "Non-empty child predicate clobbered!"); 2032 setChild(i, std::move(NewChild)); 2033 } 2034 } else { 2035 getChild(i)->SubstituteFormalArguments(ArgMap); 2036 } 2037 } 2038 } 2039 2040 2041 /// InlinePatternFragments - If this pattern refers to any pattern 2042 /// fragments, return the set of inlined versions (this can be more than 2043 /// one if a PatFrags record has multiple alternatives). 2044 void TreePatternNode::InlinePatternFragments( 2045 TreePatternNodePtr T, TreePattern &TP, 2046 std::vector<TreePatternNodePtr> &OutAlternatives) { 2047 2048 if (TP.hasError()) 2049 return; 2050 2051 if (isLeaf()) { 2052 OutAlternatives.push_back(T); // nothing to do. 2053 return; 2054 } 2055 2056 Record *Op = getOperator(); 2057 2058 if (!Op->isSubClassOf("PatFrags")) { 2059 if (getNumChildren() == 0) { 2060 OutAlternatives.push_back(T); 2061 return; 2062 } 2063 2064 // Recursively inline children nodes. 2065 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2066 ChildAlternatives.resize(getNumChildren()); 2067 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2068 TreePatternNodePtr Child = getChildShared(i); 2069 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2070 // If there are no alternatives for any child, there are no 2071 // alternatives for this expression as whole. 2072 if (ChildAlternatives[i].empty()) 2073 return; 2074 2075 assert((Child->getPredicateCalls().empty() || 2076 llvm::all_of(ChildAlternatives[i], 2077 [&](const TreePatternNodePtr &NewChild) { 2078 return NewChild->getPredicateCalls() == 2079 Child->getPredicateCalls(); 2080 })) && 2081 "Non-empty child predicate clobbered!"); 2082 } 2083 2084 // The end result is an all-pairs construction of the resultant pattern. 2085 std::vector<unsigned> Idxs; 2086 Idxs.resize(ChildAlternatives.size()); 2087 bool NotDone; 2088 do { 2089 // Create the variant and add it to the output list. 2090 std::vector<TreePatternNodePtr> NewChildren; 2091 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2092 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2093 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2094 getOperator(), std::move(NewChildren), getNumTypes()); 2095 2096 // Copy over properties. 2097 R->setName(getName()); 2098 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2099 R->setPredicateCalls(getPredicateCalls()); 2100 R->setTransformFn(getTransformFn()); 2101 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2102 R->setType(i, getExtType(i)); 2103 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2104 R->setResultIndex(i, getResultIndex(i)); 2105 2106 // Register alternative. 2107 OutAlternatives.push_back(R); 2108 2109 // Increment indices to the next permutation by incrementing the 2110 // indices from last index backward, e.g., generate the sequence 2111 // [0, 0], [0, 1], [1, 0], [1, 1]. 2112 int IdxsIdx; 2113 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2114 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2115 Idxs[IdxsIdx] = 0; 2116 else 2117 break; 2118 } 2119 NotDone = (IdxsIdx >= 0); 2120 } while (NotDone); 2121 2122 return; 2123 } 2124 2125 // Otherwise, we found a reference to a fragment. First, look up its 2126 // TreePattern record. 2127 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2128 2129 // Verify that we are passing the right number of operands. 2130 if (Frag->getNumArgs() != Children.size()) { 2131 TP.error("'" + Op->getName() + "' fragment requires " + 2132 Twine(Frag->getNumArgs()) + " operands!"); 2133 return; 2134 } 2135 2136 TreePredicateFn PredFn(Frag); 2137 unsigned Scope = 0; 2138 if (TreePredicateFn(Frag).usesOperands()) 2139 Scope = TP.getDAGPatterns().allocateScope(); 2140 2141 // Compute the map of formal to actual arguments. 2142 std::map<std::string, TreePatternNodePtr> ArgMap; 2143 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2144 TreePatternNodePtr Child = getChildShared(i); 2145 if (Scope != 0) { 2146 Child = Child->clone(); 2147 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2148 } 2149 ArgMap[Frag->getArgName(i)] = Child; 2150 } 2151 2152 // Loop over all fragment alternatives. 2153 for (const auto &Alternative : Frag->getTrees()) { 2154 TreePatternNodePtr FragTree = Alternative->clone(); 2155 2156 if (!PredFn.isAlwaysTrue()) 2157 FragTree->addPredicateCall(PredFn, Scope); 2158 2159 // Resolve formal arguments to their actual value. 2160 if (Frag->getNumArgs()) 2161 FragTree->SubstituteFormalArguments(ArgMap); 2162 2163 // Transfer types. Note that the resolved alternative may have fewer 2164 // (but not more) results than the PatFrags node. 2165 FragTree->setName(getName()); 2166 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2167 FragTree->UpdateNodeType(i, getExtType(i), TP); 2168 2169 // Transfer in the old predicates. 2170 for (const TreePredicateCall &Pred : getPredicateCalls()) 2171 FragTree->addPredicateCall(Pred); 2172 2173 // The fragment we inlined could have recursive inlining that is needed. See 2174 // if there are any pattern fragments in it and inline them as needed. 2175 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2176 } 2177 } 2178 2179 /// getImplicitType - Check to see if the specified record has an implicit 2180 /// type which should be applied to it. This will infer the type of register 2181 /// references from the register file information, for example. 2182 /// 2183 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2184 /// the F8RC register class argument in: 2185 /// 2186 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2187 /// 2188 /// When Unnamed is false, return the type of a named DAG operand such as the 2189 /// GPR:$src operand above. 2190 /// 2191 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2192 bool NotRegisters, 2193 bool Unnamed, 2194 TreePattern &TP) { 2195 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2196 2197 // Check to see if this is a register operand. 2198 if (R->isSubClassOf("RegisterOperand")) { 2199 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2200 if (NotRegisters) 2201 return TypeSetByHwMode(); // Unknown. 2202 Record *RegClass = R->getValueAsDef("RegClass"); 2203 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2204 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2205 } 2206 2207 // Check to see if this is a register or a register class. 2208 if (R->isSubClassOf("RegisterClass")) { 2209 assert(ResNo == 0 && "Regclass ref only has one result!"); 2210 // An unnamed register class represents itself as an i32 immediate, for 2211 // example on a COPY_TO_REGCLASS instruction. 2212 if (Unnamed) 2213 return TypeSetByHwMode(MVT::i32); 2214 2215 // In a named operand, the register class provides the possible set of 2216 // types. 2217 if (NotRegisters) 2218 return TypeSetByHwMode(); // Unknown. 2219 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2220 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2221 } 2222 2223 if (R->isSubClassOf("PatFrags")) { 2224 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2225 // Pattern fragment types will be resolved when they are inlined. 2226 return TypeSetByHwMode(); // Unknown. 2227 } 2228 2229 if (R->isSubClassOf("Register")) { 2230 assert(ResNo == 0 && "Registers only produce one result!"); 2231 if (NotRegisters) 2232 return TypeSetByHwMode(); // Unknown. 2233 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2234 return TypeSetByHwMode(T.getRegisterVTs(R)); 2235 } 2236 2237 if (R->isSubClassOf("SubRegIndex")) { 2238 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2239 return TypeSetByHwMode(MVT::i32); 2240 } 2241 2242 if (R->isSubClassOf("ValueType")) { 2243 assert(ResNo == 0 && "This node only has one result!"); 2244 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2245 // 2246 // (sext_inreg GPR:$src, i16) 2247 // ~~~ 2248 if (Unnamed) 2249 return TypeSetByHwMode(MVT::Other); 2250 // With a name, the ValueType simply provides the type of the named 2251 // variable. 2252 // 2253 // (sext_inreg i32:$src, i16) 2254 // ~~~~~~~~ 2255 if (NotRegisters) 2256 return TypeSetByHwMode(); // Unknown. 2257 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2258 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2259 } 2260 2261 if (R->isSubClassOf("CondCode")) { 2262 assert(ResNo == 0 && "This node only has one result!"); 2263 // Using a CondCodeSDNode. 2264 return TypeSetByHwMode(MVT::Other); 2265 } 2266 2267 if (R->isSubClassOf("ComplexPattern")) { 2268 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2269 if (NotRegisters) 2270 return TypeSetByHwMode(); // Unknown. 2271 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2272 } 2273 if (R->isSubClassOf("PointerLikeRegClass")) { 2274 assert(ResNo == 0 && "Regclass can only have one result!"); 2275 TypeSetByHwMode VTS(MVT::iPTR); 2276 TP.getInfer().expandOverloads(VTS); 2277 return VTS; 2278 } 2279 2280 if (R->getName() == "node" || R->getName() == "srcvalue" || 2281 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2282 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2283 // Placeholder. 2284 return TypeSetByHwMode(); // Unknown. 2285 } 2286 2287 if (R->isSubClassOf("Operand")) { 2288 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2289 Record *T = R->getValueAsDef("Type"); 2290 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2291 } 2292 2293 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2294 return TypeSetByHwMode(MVT::Other); 2295 } 2296 2297 2298 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2299 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2300 const CodeGenIntrinsic *TreePatternNode:: 2301 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2302 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2303 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2304 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2305 return nullptr; 2306 2307 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2308 return &CDP.getIntrinsicInfo(IID); 2309 } 2310 2311 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2312 /// return the ComplexPattern information, otherwise return null. 2313 const ComplexPattern * 2314 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2315 Record *Rec; 2316 if (isLeaf()) { 2317 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2318 if (!DI) 2319 return nullptr; 2320 Rec = DI->getDef(); 2321 } else 2322 Rec = getOperator(); 2323 2324 if (!Rec->isSubClassOf("ComplexPattern")) 2325 return nullptr; 2326 return &CGP.getComplexPattern(Rec); 2327 } 2328 2329 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2330 // A ComplexPattern specifically declares how many results it fills in. 2331 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2332 return CP->getNumOperands(); 2333 2334 // If MIOperandInfo is specified, that gives the count. 2335 if (isLeaf()) { 2336 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2337 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2338 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2339 if (MIOps->getNumArgs()) 2340 return MIOps->getNumArgs(); 2341 } 2342 } 2343 2344 // Otherwise there is just one result. 2345 return 1; 2346 } 2347 2348 /// NodeHasProperty - Return true if this node has the specified property. 2349 bool TreePatternNode::NodeHasProperty(SDNP Property, 2350 const CodeGenDAGPatterns &CGP) const { 2351 if (isLeaf()) { 2352 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2353 return CP->hasProperty(Property); 2354 2355 return false; 2356 } 2357 2358 if (Property != SDNPHasChain) { 2359 // The chain proprety is already present on the different intrinsic node 2360 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2361 // on the intrinsic. Anything else is specific to the individual intrinsic. 2362 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2363 return Int->hasProperty(Property); 2364 } 2365 2366 if (!Operator->isSubClassOf("SDPatternOperator")) 2367 return false; 2368 2369 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2370 } 2371 2372 2373 2374 2375 /// TreeHasProperty - Return true if any node in this tree has the specified 2376 /// property. 2377 bool TreePatternNode::TreeHasProperty(SDNP Property, 2378 const CodeGenDAGPatterns &CGP) const { 2379 if (NodeHasProperty(Property, CGP)) 2380 return true; 2381 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2382 if (getChild(i)->TreeHasProperty(Property, CGP)) 2383 return true; 2384 return false; 2385 } 2386 2387 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2388 /// commutative intrinsic. 2389 bool 2390 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2391 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2392 return Int->isCommutative; 2393 return false; 2394 } 2395 2396 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2397 if (!N->isLeaf()) 2398 return N->getOperator()->isSubClassOf(Class); 2399 2400 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2401 if (DI && DI->getDef()->isSubClassOf(Class)) 2402 return true; 2403 2404 return false; 2405 } 2406 2407 static void emitTooManyOperandsError(TreePattern &TP, 2408 StringRef InstName, 2409 unsigned Expected, 2410 unsigned Actual) { 2411 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2412 " operands but expected only " + Twine(Expected) + "!"); 2413 } 2414 2415 static void emitTooFewOperandsError(TreePattern &TP, 2416 StringRef InstName, 2417 unsigned Actual) { 2418 TP.error("Instruction '" + InstName + 2419 "' expects more than the provided " + Twine(Actual) + " operands!"); 2420 } 2421 2422 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2423 /// this node and its children in the tree. This returns true if it makes a 2424 /// change, false otherwise. If a type contradiction is found, flag an error. 2425 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2426 if (TP.hasError()) 2427 return false; 2428 2429 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2430 if (isLeaf()) { 2431 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2432 // If it's a regclass or something else known, include the type. 2433 bool MadeChange = false; 2434 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2435 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2436 NotRegisters, 2437 !hasName(), TP), TP); 2438 return MadeChange; 2439 } 2440 2441 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2442 assert(Types.size() == 1 && "Invalid IntInit"); 2443 2444 // Int inits are always integers. :) 2445 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2446 2447 if (!TP.getInfer().isConcrete(Types[0], false)) 2448 return MadeChange; 2449 2450 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2451 for (auto &P : VVT) { 2452 MVT::SimpleValueType VT = P.second.SimpleTy; 2453 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2454 continue; 2455 unsigned Size = MVT(VT).getFixedSizeInBits(); 2456 // Make sure that the value is representable for this type. 2457 if (Size >= 32) 2458 continue; 2459 // Check that the value doesn't use more bits than we have. It must 2460 // either be a sign- or zero-extended equivalent of the original. 2461 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2462 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2463 SignBitAndAbove == 1) 2464 continue; 2465 2466 TP.error("Integer value '" + Twine(II->getValue()) + 2467 "' is out of range for type '" + getEnumName(VT) + "'!"); 2468 break; 2469 } 2470 return MadeChange; 2471 } 2472 2473 return false; 2474 } 2475 2476 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2477 bool MadeChange = false; 2478 2479 // Apply the result type to the node. 2480 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2481 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2482 2483 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2484 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2485 2486 if (getNumChildren() != NumParamVTs + 1) { 2487 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2488 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2489 return false; 2490 } 2491 2492 // Apply type info to the intrinsic ID. 2493 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2494 2495 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2496 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2497 2498 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2499 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2500 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2501 } 2502 return MadeChange; 2503 } 2504 2505 if (getOperator()->isSubClassOf("SDNode")) { 2506 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2507 2508 // Check that the number of operands is sane. Negative operands -> varargs. 2509 if (NI.getNumOperands() >= 0 && 2510 getNumChildren() != (unsigned)NI.getNumOperands()) { 2511 TP.error(getOperator()->getName() + " node requires exactly " + 2512 Twine(NI.getNumOperands()) + " operands!"); 2513 return false; 2514 } 2515 2516 bool MadeChange = false; 2517 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2518 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2519 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2520 return MadeChange; 2521 } 2522 2523 if (getOperator()->isSubClassOf("Instruction")) { 2524 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2525 CodeGenInstruction &InstInfo = 2526 CDP.getTargetInfo().getInstruction(getOperator()); 2527 2528 bool MadeChange = false; 2529 2530 // Apply the result types to the node, these come from the things in the 2531 // (outs) list of the instruction. 2532 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2533 Inst.getNumResults()); 2534 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2535 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2536 2537 // If the instruction has implicit defs, we apply the first one as a result. 2538 // FIXME: This sucks, it should apply all implicit defs. 2539 if (!InstInfo.ImplicitDefs.empty()) { 2540 unsigned ResNo = NumResultsToAdd; 2541 2542 // FIXME: Generalize to multiple possible types and multiple possible 2543 // ImplicitDefs. 2544 MVT::SimpleValueType VT = 2545 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2546 2547 if (VT != MVT::Other) 2548 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2549 } 2550 2551 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2552 // be the same. 2553 if (getOperator()->getName() == "INSERT_SUBREG") { 2554 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2555 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2556 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2557 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2558 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2559 // variadic. 2560 2561 unsigned NChild = getNumChildren(); 2562 if (NChild < 3) { 2563 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2564 return false; 2565 } 2566 2567 if (NChild % 2 == 0) { 2568 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2569 return false; 2570 } 2571 2572 if (!isOperandClass(getChild(0), "RegisterClass")) { 2573 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2574 return false; 2575 } 2576 2577 for (unsigned I = 1; I < NChild; I += 2) { 2578 TreePatternNode *SubIdxChild = getChild(I + 1); 2579 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2580 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2581 Twine(I + 1) + "!"); 2582 return false; 2583 } 2584 } 2585 } 2586 2587 unsigned NumResults = Inst.getNumResults(); 2588 unsigned NumFixedOperands = InstInfo.Operands.size(); 2589 2590 // If one or more operands with a default value appear at the end of the 2591 // formal operand list for an instruction, we allow them to be overridden 2592 // by optional operands provided in the pattern. 2593 // 2594 // But if an operand B without a default appears at any point after an 2595 // operand A with a default, then we don't allow A to be overridden, 2596 // because there would be no way to specify whether the next operand in 2597 // the pattern was intended to override A or skip it. 2598 unsigned NonOverridableOperands = NumFixedOperands; 2599 while (NonOverridableOperands > NumResults && 2600 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2601 --NonOverridableOperands; 2602 2603 unsigned ChildNo = 0; 2604 assert(NumResults <= NumFixedOperands); 2605 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2606 Record *OperandNode = InstInfo.Operands[i].Rec; 2607 2608 // If the operand has a default value, do we use it? We must use the 2609 // default if we've run out of children of the pattern DAG to consume, 2610 // or if the operand is followed by a non-defaulted one. 2611 if (CDP.operandHasDefault(OperandNode) && 2612 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2613 continue; 2614 2615 // If we have run out of child nodes and there _isn't_ a default 2616 // value we can use for the next operand, give an error. 2617 if (ChildNo >= getNumChildren()) { 2618 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2619 return false; 2620 } 2621 2622 TreePatternNode *Child = getChild(ChildNo++); 2623 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2624 2625 // If the operand has sub-operands, they may be provided by distinct 2626 // child patterns, so attempt to match each sub-operand separately. 2627 if (OperandNode->isSubClassOf("Operand")) { 2628 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2629 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2630 // But don't do that if the whole operand is being provided by 2631 // a single ComplexPattern-related Operand. 2632 2633 if (Child->getNumMIResults(CDP) < NumArgs) { 2634 // Match first sub-operand against the child we already have. 2635 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2636 MadeChange |= 2637 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2638 2639 // And the remaining sub-operands against subsequent children. 2640 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2641 if (ChildNo >= getNumChildren()) { 2642 emitTooFewOperandsError(TP, getOperator()->getName(), 2643 getNumChildren()); 2644 return false; 2645 } 2646 Child = getChild(ChildNo++); 2647 2648 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2649 MadeChange |= 2650 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2651 } 2652 continue; 2653 } 2654 } 2655 } 2656 2657 // If we didn't match by pieces above, attempt to match the whole 2658 // operand now. 2659 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2660 } 2661 2662 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2663 emitTooManyOperandsError(TP, getOperator()->getName(), 2664 ChildNo, getNumChildren()); 2665 return false; 2666 } 2667 2668 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2669 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2670 return MadeChange; 2671 } 2672 2673 if (getOperator()->isSubClassOf("ComplexPattern")) { 2674 bool MadeChange = false; 2675 2676 for (unsigned i = 0; i < getNumChildren(); ++i) 2677 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2678 2679 return MadeChange; 2680 } 2681 2682 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2683 2684 // Node transforms always take one operand. 2685 if (getNumChildren() != 1) { 2686 TP.error("Node transform '" + getOperator()->getName() + 2687 "' requires one operand!"); 2688 return false; 2689 } 2690 2691 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2692 return MadeChange; 2693 } 2694 2695 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2696 /// RHS of a commutative operation, not the on LHS. 2697 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2698 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2699 return true; 2700 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2701 return true; 2702 if (isImmAllOnesAllZerosMatch(N)) 2703 return true; 2704 return false; 2705 } 2706 2707 2708 /// canPatternMatch - If it is impossible for this pattern to match on this 2709 /// target, fill in Reason and return false. Otherwise, return true. This is 2710 /// used as a sanity check for .td files (to prevent people from writing stuff 2711 /// that can never possibly work), and to prevent the pattern permuter from 2712 /// generating stuff that is useless. 2713 bool TreePatternNode::canPatternMatch(std::string &Reason, 2714 const CodeGenDAGPatterns &CDP) { 2715 if (isLeaf()) return true; 2716 2717 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2718 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2719 return false; 2720 2721 // If this is an intrinsic, handle cases that would make it not match. For 2722 // example, if an operand is required to be an immediate. 2723 if (getOperator()->isSubClassOf("Intrinsic")) { 2724 // TODO: 2725 return true; 2726 } 2727 2728 if (getOperator()->isSubClassOf("ComplexPattern")) 2729 return true; 2730 2731 // If this node is a commutative operator, check that the LHS isn't an 2732 // immediate. 2733 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2734 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2735 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2736 // Scan all of the operands of the node and make sure that only the last one 2737 // is a constant node, unless the RHS also is. 2738 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2739 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2740 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2741 if (OnlyOnRHSOfCommutative(getChild(i))) { 2742 Reason="Immediate value must be on the RHS of commutative operators!"; 2743 return false; 2744 } 2745 } 2746 } 2747 2748 return true; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // TreePattern implementation 2753 // 2754 2755 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2756 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2757 isInputPattern(isInput), HasError(false), 2758 Infer(*this) { 2759 for (Init *I : RawPat->getValues()) 2760 Trees.push_back(ParseTreePattern(I, "")); 2761 } 2762 2763 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2764 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2765 isInputPattern(isInput), HasError(false), 2766 Infer(*this) { 2767 Trees.push_back(ParseTreePattern(Pat, "")); 2768 } 2769 2770 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2771 CodeGenDAGPatterns &cdp) 2772 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2773 Infer(*this) { 2774 Trees.push_back(Pat); 2775 } 2776 2777 void TreePattern::error(const Twine &Msg) { 2778 if (HasError) 2779 return; 2780 dump(); 2781 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2782 HasError = true; 2783 } 2784 2785 void TreePattern::ComputeNamedNodes() { 2786 for (TreePatternNodePtr &Tree : Trees) 2787 ComputeNamedNodes(Tree.get()); 2788 } 2789 2790 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2791 if (!N->getName().empty()) 2792 NamedNodes[N->getName()].push_back(N); 2793 2794 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2795 ComputeNamedNodes(N->getChild(i)); 2796 } 2797 2798 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2799 StringRef OpName) { 2800 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2801 Record *R = DI->getDef(); 2802 2803 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2804 // TreePatternNode of its own. For example: 2805 /// (foo GPR, imm) -> (foo GPR, (imm)) 2806 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2807 return ParseTreePattern( 2808 DagInit::get(DI, nullptr, 2809 std::vector<std::pair<Init*, StringInit*> >()), 2810 OpName); 2811 2812 // Input argument? 2813 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2814 if (R->getName() == "node" && !OpName.empty()) { 2815 if (OpName.empty()) 2816 error("'node' argument requires a name to match with operand list"); 2817 Args.push_back(std::string(OpName)); 2818 } 2819 2820 Res->setName(OpName); 2821 return Res; 2822 } 2823 2824 // ?:$name or just $name. 2825 if (isa<UnsetInit>(TheInit)) { 2826 if (OpName.empty()) 2827 error("'?' argument requires a name to match with operand list"); 2828 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2829 Args.push_back(std::string(OpName)); 2830 Res->setName(OpName); 2831 return Res; 2832 } 2833 2834 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2835 if (!OpName.empty()) 2836 error("Constant int or bit argument should not have a name!"); 2837 if (isa<BitInit>(TheInit)) 2838 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2839 return std::make_shared<TreePatternNode>(TheInit, 1); 2840 } 2841 2842 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2843 // Turn this into an IntInit. 2844 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2845 if (!II || !isa<IntInit>(II)) 2846 error("Bits value must be constants!"); 2847 return ParseTreePattern(II, OpName); 2848 } 2849 2850 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2851 if (!Dag) { 2852 TheInit->print(errs()); 2853 error("Pattern has unexpected init kind!"); 2854 } 2855 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2856 if (!OpDef) error("Pattern has unexpected operator type!"); 2857 Record *Operator = OpDef->getDef(); 2858 2859 if (Operator->isSubClassOf("ValueType")) { 2860 // If the operator is a ValueType, then this must be "type cast" of a leaf 2861 // node. 2862 if (Dag->getNumArgs() != 1) 2863 error("Type cast only takes one operand!"); 2864 2865 TreePatternNodePtr New = 2866 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2867 2868 // Apply the type cast. 2869 if (New->getNumTypes() != 1) 2870 error("Type cast can only have one type!"); 2871 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2872 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2873 2874 if (!OpName.empty()) 2875 error("ValueType cast should not have a name!"); 2876 return New; 2877 } 2878 2879 // Verify that this is something that makes sense for an operator. 2880 if (!Operator->isSubClassOf("PatFrags") && 2881 !Operator->isSubClassOf("SDNode") && 2882 !Operator->isSubClassOf("Instruction") && 2883 !Operator->isSubClassOf("SDNodeXForm") && 2884 !Operator->isSubClassOf("Intrinsic") && 2885 !Operator->isSubClassOf("ComplexPattern") && 2886 Operator->getName() != "set" && 2887 Operator->getName() != "implicit") 2888 error("Unrecognized node '" + Operator->getName() + "'!"); 2889 2890 // Check to see if this is something that is illegal in an input pattern. 2891 if (isInputPattern) { 2892 if (Operator->isSubClassOf("Instruction") || 2893 Operator->isSubClassOf("SDNodeXForm")) 2894 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2895 } else { 2896 if (Operator->isSubClassOf("Intrinsic")) 2897 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2898 2899 if (Operator->isSubClassOf("SDNode") && 2900 Operator->getName() != "imm" && 2901 Operator->getName() != "timm" && 2902 Operator->getName() != "fpimm" && 2903 Operator->getName() != "tglobaltlsaddr" && 2904 Operator->getName() != "tconstpool" && 2905 Operator->getName() != "tjumptable" && 2906 Operator->getName() != "tframeindex" && 2907 Operator->getName() != "texternalsym" && 2908 Operator->getName() != "tblockaddress" && 2909 Operator->getName() != "tglobaladdr" && 2910 Operator->getName() != "bb" && 2911 Operator->getName() != "vt" && 2912 Operator->getName() != "mcsym") 2913 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2914 } 2915 2916 std::vector<TreePatternNodePtr> Children; 2917 2918 // Parse all the operands. 2919 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2920 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2921 2922 // Get the actual number of results before Operator is converted to an intrinsic 2923 // node (which is hard-coded to have either zero or one result). 2924 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2925 2926 // If the operator is an intrinsic, then this is just syntactic sugar for 2927 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2928 // convert the intrinsic name to a number. 2929 if (Operator->isSubClassOf("Intrinsic")) { 2930 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2931 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2932 2933 // If this intrinsic returns void, it must have side-effects and thus a 2934 // chain. 2935 if (Int.IS.RetVTs.empty()) 2936 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2937 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2938 // Has side-effects, requires chain. 2939 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2940 else // Otherwise, no chain. 2941 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2942 2943 Children.insert(Children.begin(), 2944 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2945 } 2946 2947 if (Operator->isSubClassOf("ComplexPattern")) { 2948 for (unsigned i = 0; i < Children.size(); ++i) { 2949 TreePatternNodePtr Child = Children[i]; 2950 2951 if (Child->getName().empty()) 2952 error("All arguments to a ComplexPattern must be named"); 2953 2954 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2955 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2956 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2957 auto OperandId = std::make_pair(Operator, i); 2958 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2959 if (PrevOp != ComplexPatternOperands.end()) { 2960 if (PrevOp->getValue() != OperandId) 2961 error("All ComplexPattern operands must appear consistently: " 2962 "in the same order in just one ComplexPattern instance."); 2963 } else 2964 ComplexPatternOperands[Child->getName()] = OperandId; 2965 } 2966 } 2967 2968 TreePatternNodePtr Result = 2969 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2970 NumResults); 2971 Result->setName(OpName); 2972 2973 if (Dag->getName()) { 2974 assert(Result->getName().empty()); 2975 Result->setName(Dag->getNameStr()); 2976 } 2977 return Result; 2978 } 2979 2980 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2981 /// will never match in favor of something obvious that will. This is here 2982 /// strictly as a convenience to target authors because it allows them to write 2983 /// more type generic things and have useless type casts fold away. 2984 /// 2985 /// This returns true if any change is made. 2986 static bool SimplifyTree(TreePatternNodePtr &N) { 2987 if (N->isLeaf()) 2988 return false; 2989 2990 // If we have a bitconvert with a resolved type and if the source and 2991 // destination types are the same, then the bitconvert is useless, remove it. 2992 // 2993 // We make an exception if the types are completely empty. This can come up 2994 // when the pattern being simplified is in the Fragments list of a PatFrags, 2995 // so that the operand is just an untyped "node". In that situation we leave 2996 // bitconverts unsimplified, and simplify them later once the fragment is 2997 // expanded into its true context. 2998 if (N->getOperator()->getName() == "bitconvert" && 2999 N->getExtType(0).isValueTypeByHwMode(false) && 3000 !N->getExtType(0).empty() && 3001 N->getExtType(0) == N->getChild(0)->getExtType(0) && 3002 N->getName().empty()) { 3003 N = N->getChildShared(0); 3004 SimplifyTree(N); 3005 return true; 3006 } 3007 3008 // Walk all children. 3009 bool MadeChange = false; 3010 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3011 TreePatternNodePtr Child = N->getChildShared(i); 3012 MadeChange |= SimplifyTree(Child); 3013 N->setChild(i, std::move(Child)); 3014 } 3015 return MadeChange; 3016 } 3017 3018 3019 3020 /// InferAllTypes - Infer/propagate as many types throughout the expression 3021 /// patterns as possible. Return true if all types are inferred, false 3022 /// otherwise. Flags an error if a type contradiction is found. 3023 bool TreePattern:: 3024 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 3025 if (NamedNodes.empty()) 3026 ComputeNamedNodes(); 3027 3028 bool MadeChange = true; 3029 while (MadeChange) { 3030 MadeChange = false; 3031 for (TreePatternNodePtr &Tree : Trees) { 3032 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3033 MadeChange |= SimplifyTree(Tree); 3034 } 3035 3036 // If there are constraints on our named nodes, apply them. 3037 for (auto &Entry : NamedNodes) { 3038 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 3039 3040 // If we have input named node types, propagate their types to the named 3041 // values here. 3042 if (InNamedTypes) { 3043 if (!InNamedTypes->count(Entry.getKey())) { 3044 error("Node '" + std::string(Entry.getKey()) + 3045 "' in output pattern but not input pattern"); 3046 return true; 3047 } 3048 3049 const SmallVectorImpl<TreePatternNode*> &InNodes = 3050 InNamedTypes->find(Entry.getKey())->second; 3051 3052 // The input types should be fully resolved by now. 3053 for (TreePatternNode *Node : Nodes) { 3054 // If this node is a register class, and it is the root of the pattern 3055 // then we're mapping something onto an input register. We allow 3056 // changing the type of the input register in this case. This allows 3057 // us to match things like: 3058 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3059 if (Node == Trees[0].get() && Node->isLeaf()) { 3060 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3061 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3062 DI->getDef()->isSubClassOf("RegisterOperand"))) 3063 continue; 3064 } 3065 3066 assert(Node->getNumTypes() == 1 && 3067 InNodes[0]->getNumTypes() == 1 && 3068 "FIXME: cannot name multiple result nodes yet"); 3069 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3070 *this); 3071 } 3072 } 3073 3074 // If there are multiple nodes with the same name, they must all have the 3075 // same type. 3076 if (Entry.second.size() > 1) { 3077 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3078 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3079 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3080 "FIXME: cannot name multiple result nodes yet"); 3081 3082 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3083 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3084 } 3085 } 3086 } 3087 } 3088 3089 bool HasUnresolvedTypes = false; 3090 for (const TreePatternNodePtr &Tree : Trees) 3091 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3092 return !HasUnresolvedTypes; 3093 } 3094 3095 void TreePattern::print(raw_ostream &OS) const { 3096 OS << getRecord()->getName(); 3097 if (!Args.empty()) { 3098 OS << "("; 3099 ListSeparator LS; 3100 for (const std::string &Arg : Args) 3101 OS << LS << Arg; 3102 OS << ")"; 3103 } 3104 OS << ": "; 3105 3106 if (Trees.size() > 1) 3107 OS << "[\n"; 3108 for (const TreePatternNodePtr &Tree : Trees) { 3109 OS << "\t"; 3110 Tree->print(OS); 3111 OS << "\n"; 3112 } 3113 3114 if (Trees.size() > 1) 3115 OS << "]\n"; 3116 } 3117 3118 void TreePattern::dump() const { print(errs()); } 3119 3120 //===----------------------------------------------------------------------===// 3121 // CodeGenDAGPatterns implementation 3122 // 3123 3124 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3125 PatternRewriterFn PatternRewriter) 3126 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3127 PatternRewriter(PatternRewriter) { 3128 3129 Intrinsics = CodeGenIntrinsicTable(Records); 3130 ParseNodeInfo(); 3131 ParseNodeTransforms(); 3132 ParseComplexPatterns(); 3133 ParsePatternFragments(); 3134 ParseDefaultOperands(); 3135 ParseInstructions(); 3136 ParsePatternFragments(/*OutFrags*/true); 3137 ParsePatterns(); 3138 3139 // Generate variants. For example, commutative patterns can match 3140 // multiple ways. Add them to PatternsToMatch as well. 3141 GenerateVariants(); 3142 3143 // Break patterns with parameterized types into a series of patterns, 3144 // where each one has a fixed type and is predicated on the conditions 3145 // of the associated HW mode. 3146 ExpandHwModeBasedTypes(); 3147 3148 // Infer instruction flags. For example, we can detect loads, 3149 // stores, and side effects in many cases by examining an 3150 // instruction's pattern. 3151 InferInstructionFlags(); 3152 3153 // Verify that instruction flags match the patterns. 3154 VerifyInstructionFlags(); 3155 } 3156 3157 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3158 Record *N = Records.getDef(Name); 3159 if (!N || !N->isSubClassOf("SDNode")) 3160 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3161 3162 return N; 3163 } 3164 3165 // Parse all of the SDNode definitions for the target, populating SDNodes. 3166 void CodeGenDAGPatterns::ParseNodeInfo() { 3167 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3168 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3169 3170 while (!Nodes.empty()) { 3171 Record *R = Nodes.back(); 3172 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3173 Nodes.pop_back(); 3174 } 3175 3176 // Get the builtin intrinsic nodes. 3177 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3178 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3179 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3180 } 3181 3182 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3183 /// map, and emit them to the file as functions. 3184 void CodeGenDAGPatterns::ParseNodeTransforms() { 3185 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3186 while (!Xforms.empty()) { 3187 Record *XFormNode = Xforms.back(); 3188 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3189 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3190 SDNodeXForms.insert( 3191 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3192 3193 Xforms.pop_back(); 3194 } 3195 } 3196 3197 void CodeGenDAGPatterns::ParseComplexPatterns() { 3198 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3199 while (!AMs.empty()) { 3200 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3201 AMs.pop_back(); 3202 } 3203 } 3204 3205 3206 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3207 /// file, building up the PatternFragments map. After we've collected them all, 3208 /// inline fragments together as necessary, so that there are no references left 3209 /// inside a pattern fragment to a pattern fragment. 3210 /// 3211 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3212 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3213 3214 // First step, parse all of the fragments. 3215 for (Record *Frag : Fragments) { 3216 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3217 continue; 3218 3219 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3220 TreePattern *P = 3221 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3222 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3223 *this)).get(); 3224 3225 // Validate the argument list, converting it to set, to discard duplicates. 3226 std::vector<std::string> &Args = P->getArgList(); 3227 // Copy the args so we can take StringRefs to them. 3228 auto ArgsCopy = Args; 3229 SmallDenseSet<StringRef, 4> OperandsSet; 3230 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3231 3232 if (OperandsSet.count("")) 3233 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3234 3235 // Parse the operands list. 3236 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3237 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3238 // Special cases: ops == outs == ins. Different names are used to 3239 // improve readability. 3240 if (!OpsOp || 3241 (OpsOp->getDef()->getName() != "ops" && 3242 OpsOp->getDef()->getName() != "outs" && 3243 OpsOp->getDef()->getName() != "ins")) 3244 P->error("Operands list should start with '(ops ... '!"); 3245 3246 // Copy over the arguments. 3247 Args.clear(); 3248 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3249 if (!isa<DefInit>(OpsList->getArg(j)) || 3250 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3251 P->error("Operands list should all be 'node' values."); 3252 if (!OpsList->getArgName(j)) 3253 P->error("Operands list should have names for each operand!"); 3254 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3255 if (!OperandsSet.count(ArgNameStr)) 3256 P->error("'" + ArgNameStr + 3257 "' does not occur in pattern or was multiply specified!"); 3258 OperandsSet.erase(ArgNameStr); 3259 Args.push_back(std::string(ArgNameStr)); 3260 } 3261 3262 if (!OperandsSet.empty()) 3263 P->error("Operands list does not contain an entry for operand '" + 3264 *OperandsSet.begin() + "'!"); 3265 3266 // If there is a node transformation corresponding to this, keep track of 3267 // it. 3268 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3269 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3270 for (const auto &T : P->getTrees()) 3271 T->setTransformFn(Transform); 3272 } 3273 3274 // Now that we've parsed all of the tree fragments, do a closure on them so 3275 // that there are not references to PatFrags left inside of them. 3276 for (Record *Frag : Fragments) { 3277 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3278 continue; 3279 3280 TreePattern &ThePat = *PatternFragments[Frag]; 3281 ThePat.InlinePatternFragments(); 3282 3283 // Infer as many types as possible. Don't worry about it if we don't infer 3284 // all of them, some may depend on the inputs of the pattern. Also, don't 3285 // validate type sets; validation may cause spurious failures e.g. if a 3286 // fragment needs floating-point types but the current target does not have 3287 // any (this is only an error if that fragment is ever used!). 3288 { 3289 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3290 ThePat.InferAllTypes(); 3291 ThePat.resetError(); 3292 } 3293 3294 // If debugging, print out the pattern fragment result. 3295 LLVM_DEBUG(ThePat.dump()); 3296 } 3297 } 3298 3299 void CodeGenDAGPatterns::ParseDefaultOperands() { 3300 std::vector<Record*> DefaultOps; 3301 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3302 3303 // Find some SDNode. 3304 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3305 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3306 3307 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3308 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3309 3310 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3311 // SomeSDnode so that we can parse this. 3312 std::vector<std::pair<Init*, StringInit*> > Ops; 3313 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3314 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3315 DefaultInfo->getArgName(op))); 3316 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3317 3318 // Create a TreePattern to parse this. 3319 TreePattern P(DefaultOps[i], DI, false, *this); 3320 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3321 3322 // Copy the operands over into a DAGDefaultOperand. 3323 DAGDefaultOperand DefaultOpInfo; 3324 3325 const TreePatternNodePtr &T = P.getTree(0); 3326 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3327 TreePatternNodePtr TPN = T->getChildShared(op); 3328 while (TPN->ApplyTypeConstraints(P, false)) 3329 /* Resolve all types */; 3330 3331 if (TPN->ContainsUnresolvedType(P)) { 3332 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3333 DefaultOps[i]->getName() + 3334 "' doesn't have a concrete type!"); 3335 } 3336 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3337 } 3338 3339 // Insert it into the DefaultOperands map so we can find it later. 3340 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3341 } 3342 } 3343 3344 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3345 /// instruction input. Return true if this is a real use. 3346 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3347 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3348 // No name -> not interesting. 3349 if (Pat->getName().empty()) { 3350 if (Pat->isLeaf()) { 3351 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3352 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3353 DI->getDef()->isSubClassOf("RegisterOperand"))) 3354 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3355 } 3356 return false; 3357 } 3358 3359 Record *Rec; 3360 if (Pat->isLeaf()) { 3361 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3362 if (!DI) 3363 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3364 Rec = DI->getDef(); 3365 } else { 3366 Rec = Pat->getOperator(); 3367 } 3368 3369 // SRCVALUE nodes are ignored. 3370 if (Rec->getName() == "srcvalue") 3371 return false; 3372 3373 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3374 if (!Slot) { 3375 Slot = Pat; 3376 return true; 3377 } 3378 Record *SlotRec; 3379 if (Slot->isLeaf()) { 3380 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3381 } else { 3382 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3383 SlotRec = Slot->getOperator(); 3384 } 3385 3386 // Ensure that the inputs agree if we've already seen this input. 3387 if (Rec != SlotRec) 3388 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3389 // Ensure that the types can agree as well. 3390 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3391 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3392 if (Slot->getExtTypes() != Pat->getExtTypes()) 3393 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3394 return true; 3395 } 3396 3397 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3398 /// part of "I", the instruction), computing the set of inputs and outputs of 3399 /// the pattern. Report errors if we see anything naughty. 3400 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3401 TreePattern &I, TreePatternNodePtr Pat, 3402 std::map<std::string, TreePatternNodePtr> &InstInputs, 3403 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3404 &InstResults, 3405 std::vector<Record *> &InstImpResults) { 3406 3407 // The instruction pattern still has unresolved fragments. For *named* 3408 // nodes we must resolve those here. This may not result in multiple 3409 // alternatives. 3410 if (!Pat->getName().empty()) { 3411 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3412 SrcPattern.InlinePatternFragments(); 3413 SrcPattern.InferAllTypes(); 3414 Pat = SrcPattern.getOnlyTree(); 3415 } 3416 3417 if (Pat->isLeaf()) { 3418 bool isUse = HandleUse(I, Pat, InstInputs); 3419 if (!isUse && Pat->getTransformFn()) 3420 I.error("Cannot specify a transform function for a non-input value!"); 3421 return; 3422 } 3423 3424 if (Pat->getOperator()->getName() == "implicit") { 3425 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3426 TreePatternNode *Dest = Pat->getChild(i); 3427 if (!Dest->isLeaf()) 3428 I.error("implicitly defined value should be a register!"); 3429 3430 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3431 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3432 I.error("implicitly defined value should be a register!"); 3433 InstImpResults.push_back(Val->getDef()); 3434 } 3435 return; 3436 } 3437 3438 if (Pat->getOperator()->getName() != "set") { 3439 // If this is not a set, verify that the children nodes are not void typed, 3440 // and recurse. 3441 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3442 if (Pat->getChild(i)->getNumTypes() == 0) 3443 I.error("Cannot have void nodes inside of patterns!"); 3444 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3445 InstResults, InstImpResults); 3446 } 3447 3448 // If this is a non-leaf node with no children, treat it basically as if 3449 // it were a leaf. This handles nodes like (imm). 3450 bool isUse = HandleUse(I, Pat, InstInputs); 3451 3452 if (!isUse && Pat->getTransformFn()) 3453 I.error("Cannot specify a transform function for a non-input value!"); 3454 return; 3455 } 3456 3457 // Otherwise, this is a set, validate and collect instruction results. 3458 if (Pat->getNumChildren() == 0) 3459 I.error("set requires operands!"); 3460 3461 if (Pat->getTransformFn()) 3462 I.error("Cannot specify a transform function on a set node!"); 3463 3464 // Check the set destinations. 3465 unsigned NumDests = Pat->getNumChildren()-1; 3466 for (unsigned i = 0; i != NumDests; ++i) { 3467 TreePatternNodePtr Dest = Pat->getChildShared(i); 3468 // For set destinations we also must resolve fragments here. 3469 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3470 DestPattern.InlinePatternFragments(); 3471 DestPattern.InferAllTypes(); 3472 Dest = DestPattern.getOnlyTree(); 3473 3474 if (!Dest->isLeaf()) 3475 I.error("set destination should be a register!"); 3476 3477 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3478 if (!Val) { 3479 I.error("set destination should be a register!"); 3480 continue; 3481 } 3482 3483 if (Val->getDef()->isSubClassOf("RegisterClass") || 3484 Val->getDef()->isSubClassOf("ValueType") || 3485 Val->getDef()->isSubClassOf("RegisterOperand") || 3486 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3487 if (Dest->getName().empty()) 3488 I.error("set destination must have a name!"); 3489 if (InstResults.count(Dest->getName())) 3490 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3491 InstResults[Dest->getName()] = Dest; 3492 } else if (Val->getDef()->isSubClassOf("Register")) { 3493 InstImpResults.push_back(Val->getDef()); 3494 } else { 3495 I.error("set destination should be a register!"); 3496 } 3497 } 3498 3499 // Verify and collect info from the computation. 3500 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3501 InstResults, InstImpResults); 3502 } 3503 3504 //===----------------------------------------------------------------------===// 3505 // Instruction Analysis 3506 //===----------------------------------------------------------------------===// 3507 3508 class InstAnalyzer { 3509 const CodeGenDAGPatterns &CDP; 3510 public: 3511 bool hasSideEffects; 3512 bool mayStore; 3513 bool mayLoad; 3514 bool isBitcast; 3515 bool isVariadic; 3516 bool hasChain; 3517 3518 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3519 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3520 isBitcast(false), isVariadic(false), hasChain(false) {} 3521 3522 void Analyze(const PatternToMatch &Pat) { 3523 const TreePatternNode *N = Pat.getSrcPattern(); 3524 AnalyzeNode(N); 3525 // These properties are detected only on the root node. 3526 isBitcast = IsNodeBitcast(N); 3527 } 3528 3529 private: 3530 bool IsNodeBitcast(const TreePatternNode *N) const { 3531 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3532 return false; 3533 3534 if (N->isLeaf()) 3535 return false; 3536 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3537 return false; 3538 3539 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3540 return false; 3541 3542 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3543 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3544 return false; 3545 return OpInfo.getEnumName() == "ISD::BITCAST"; 3546 } 3547 3548 public: 3549 void AnalyzeNode(const TreePatternNode *N) { 3550 if (N->isLeaf()) { 3551 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3552 Record *LeafRec = DI->getDef(); 3553 // Handle ComplexPattern leaves. 3554 if (LeafRec->isSubClassOf("ComplexPattern")) { 3555 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3556 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3557 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3558 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3559 } 3560 } 3561 return; 3562 } 3563 3564 // Analyze children. 3565 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3566 AnalyzeNode(N->getChild(i)); 3567 3568 // Notice properties of the node. 3569 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3570 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3571 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3572 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3573 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3574 3575 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3576 // If this is an intrinsic, analyze it. 3577 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3578 mayLoad = true;// These may load memory. 3579 3580 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3581 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3582 3583 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3584 IntInfo->hasSideEffects) 3585 // ReadWriteMem intrinsics can have other strange effects. 3586 hasSideEffects = true; 3587 } 3588 } 3589 3590 }; 3591 3592 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3593 const InstAnalyzer &PatInfo, 3594 Record *PatDef) { 3595 bool Error = false; 3596 3597 // Remember where InstInfo got its flags. 3598 if (InstInfo.hasUndefFlags()) 3599 InstInfo.InferredFrom = PatDef; 3600 3601 // Check explicitly set flags for consistency. 3602 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3603 !InstInfo.hasSideEffects_Unset) { 3604 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3605 // the pattern has no side effects. That could be useful for div/rem 3606 // instructions that may trap. 3607 if (!InstInfo.hasSideEffects) { 3608 Error = true; 3609 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3610 Twine(InstInfo.hasSideEffects)); 3611 } 3612 } 3613 3614 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3615 Error = true; 3616 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3617 Twine(InstInfo.mayStore)); 3618 } 3619 3620 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3621 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3622 // Some targets translate immediates to loads. 3623 if (!InstInfo.mayLoad) { 3624 Error = true; 3625 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3626 Twine(InstInfo.mayLoad)); 3627 } 3628 } 3629 3630 // Transfer inferred flags. 3631 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3632 InstInfo.mayStore |= PatInfo.mayStore; 3633 InstInfo.mayLoad |= PatInfo.mayLoad; 3634 3635 // These flags are silently added without any verification. 3636 // FIXME: To match historical behavior of TableGen, for now add those flags 3637 // only when we're inferring from the primary instruction pattern. 3638 if (PatDef->isSubClassOf("Instruction")) { 3639 InstInfo.isBitcast |= PatInfo.isBitcast; 3640 InstInfo.hasChain |= PatInfo.hasChain; 3641 InstInfo.hasChain_Inferred = true; 3642 } 3643 3644 // Don't infer isVariadic. This flag means something different on SDNodes and 3645 // instructions. For example, a CALL SDNode is variadic because it has the 3646 // call arguments as operands, but a CALL instruction is not variadic - it 3647 // has argument registers as implicit, not explicit uses. 3648 3649 return Error; 3650 } 3651 3652 /// hasNullFragReference - Return true if the DAG has any reference to the 3653 /// null_frag operator. 3654 static bool hasNullFragReference(DagInit *DI) { 3655 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3656 if (!OpDef) return false; 3657 Record *Operator = OpDef->getDef(); 3658 3659 // If this is the null fragment, return true. 3660 if (Operator->getName() == "null_frag") return true; 3661 // If any of the arguments reference the null fragment, return true. 3662 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3663 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3664 if (Arg->getDef()->getName() == "null_frag") 3665 return true; 3666 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3667 if (Arg && hasNullFragReference(Arg)) 3668 return true; 3669 } 3670 3671 return false; 3672 } 3673 3674 /// hasNullFragReference - Return true if any DAG in the list references 3675 /// the null_frag operator. 3676 static bool hasNullFragReference(ListInit *LI) { 3677 for (Init *I : LI->getValues()) { 3678 DagInit *DI = dyn_cast<DagInit>(I); 3679 assert(DI && "non-dag in an instruction Pattern list?!"); 3680 if (hasNullFragReference(DI)) 3681 return true; 3682 } 3683 return false; 3684 } 3685 3686 /// Get all the instructions in a tree. 3687 static void 3688 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3689 if (Tree->isLeaf()) 3690 return; 3691 if (Tree->getOperator()->isSubClassOf("Instruction")) 3692 Instrs.push_back(Tree->getOperator()); 3693 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3694 getInstructionsInTree(Tree->getChild(i), Instrs); 3695 } 3696 3697 /// Check the class of a pattern leaf node against the instruction operand it 3698 /// represents. 3699 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3700 Record *Leaf) { 3701 if (OI.Rec == Leaf) 3702 return true; 3703 3704 // Allow direct value types to be used in instruction set patterns. 3705 // The type will be checked later. 3706 if (Leaf->isSubClassOf("ValueType")) 3707 return true; 3708 3709 // Patterns can also be ComplexPattern instances. 3710 if (Leaf->isSubClassOf("ComplexPattern")) 3711 return true; 3712 3713 return false; 3714 } 3715 3716 void CodeGenDAGPatterns::parseInstructionPattern( 3717 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3718 3719 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3720 3721 // Parse the instruction. 3722 TreePattern I(CGI.TheDef, Pat, true, *this); 3723 3724 // InstInputs - Keep track of all of the inputs of the instruction, along 3725 // with the record they are declared as. 3726 std::map<std::string, TreePatternNodePtr> InstInputs; 3727 3728 // InstResults - Keep track of all the virtual registers that are 'set' 3729 // in the instruction, including what reg class they are. 3730 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3731 InstResults; 3732 3733 std::vector<Record*> InstImpResults; 3734 3735 // Verify that the top-level forms in the instruction are of void type, and 3736 // fill in the InstResults map. 3737 SmallString<32> TypesString; 3738 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3739 TypesString.clear(); 3740 TreePatternNodePtr Pat = I.getTree(j); 3741 if (Pat->getNumTypes() != 0) { 3742 raw_svector_ostream OS(TypesString); 3743 ListSeparator LS; 3744 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3745 OS << LS; 3746 Pat->getExtType(k).writeToStream(OS); 3747 } 3748 I.error("Top-level forms in instruction pattern should have" 3749 " void types, has types " + 3750 OS.str()); 3751 } 3752 3753 // Find inputs and outputs, and verify the structure of the uses/defs. 3754 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3755 InstImpResults); 3756 } 3757 3758 // Now that we have inputs and outputs of the pattern, inspect the operands 3759 // list for the instruction. This determines the order that operands are 3760 // added to the machine instruction the node corresponds to. 3761 unsigned NumResults = InstResults.size(); 3762 3763 // Parse the operands list from the (ops) list, validating it. 3764 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3765 3766 // Check that all of the results occur first in the list. 3767 std::vector<Record*> Results; 3768 std::vector<unsigned> ResultIndices; 3769 SmallVector<TreePatternNodePtr, 2> ResNodes; 3770 for (unsigned i = 0; i != NumResults; ++i) { 3771 if (i == CGI.Operands.size()) { 3772 const std::string &OpName = 3773 llvm::find_if( 3774 InstResults, 3775 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3776 return P.second; 3777 }) 3778 ->first; 3779 3780 I.error("'" + OpName + "' set but does not appear in operand list!"); 3781 } 3782 3783 const std::string &OpName = CGI.Operands[i].Name; 3784 3785 // Check that it exists in InstResults. 3786 auto InstResultIter = InstResults.find(OpName); 3787 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3788 I.error("Operand $" + OpName + " does not exist in operand list!"); 3789 3790 TreePatternNodePtr RNode = InstResultIter->second; 3791 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3792 ResNodes.push_back(std::move(RNode)); 3793 if (!R) 3794 I.error("Operand $" + OpName + " should be a set destination: all " 3795 "outputs must occur before inputs in operand list!"); 3796 3797 if (!checkOperandClass(CGI.Operands[i], R)) 3798 I.error("Operand $" + OpName + " class mismatch!"); 3799 3800 // Remember the return type. 3801 Results.push_back(CGI.Operands[i].Rec); 3802 3803 // Remember the result index. 3804 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3805 3806 // Okay, this one checks out. 3807 InstResultIter->second = nullptr; 3808 } 3809 3810 // Loop over the inputs next. 3811 std::vector<TreePatternNodePtr> ResultNodeOperands; 3812 std::vector<Record*> Operands; 3813 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3814 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3815 const std::string &OpName = Op.Name; 3816 if (OpName.empty()) 3817 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3818 3819 if (!InstInputs.count(OpName)) { 3820 // If this is an operand with a DefaultOps set filled in, we can ignore 3821 // this. When we codegen it, we will do so as always executed. 3822 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3823 // Does it have a non-empty DefaultOps field? If so, ignore this 3824 // operand. 3825 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3826 continue; 3827 } 3828 I.error("Operand $" + OpName + 3829 " does not appear in the instruction pattern"); 3830 } 3831 TreePatternNodePtr InVal = InstInputs[OpName]; 3832 InstInputs.erase(OpName); // It occurred, remove from map. 3833 3834 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3835 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3836 if (!checkOperandClass(Op, InRec)) 3837 I.error("Operand $" + OpName + "'s register class disagrees" 3838 " between the operand and pattern"); 3839 } 3840 Operands.push_back(Op.Rec); 3841 3842 // Construct the result for the dest-pattern operand list. 3843 TreePatternNodePtr OpNode = InVal->clone(); 3844 3845 // No predicate is useful on the result. 3846 OpNode->clearPredicateCalls(); 3847 3848 // Promote the xform function to be an explicit node if set. 3849 if (Record *Xform = OpNode->getTransformFn()) { 3850 OpNode->setTransformFn(nullptr); 3851 std::vector<TreePatternNodePtr> Children; 3852 Children.push_back(OpNode); 3853 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3854 OpNode->getNumTypes()); 3855 } 3856 3857 ResultNodeOperands.push_back(std::move(OpNode)); 3858 } 3859 3860 if (!InstInputs.empty()) 3861 I.error("Input operand $" + InstInputs.begin()->first + 3862 " occurs in pattern but not in operands list!"); 3863 3864 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3865 I.getRecord(), std::move(ResultNodeOperands), 3866 GetNumNodeResults(I.getRecord(), *this)); 3867 // Copy fully inferred output node types to instruction result pattern. 3868 for (unsigned i = 0; i != NumResults; ++i) { 3869 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3870 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3871 ResultPattern->setResultIndex(i, ResultIndices[i]); 3872 } 3873 3874 // FIXME: Assume only the first tree is the pattern. The others are clobber 3875 // nodes. 3876 TreePatternNodePtr Pattern = I.getTree(0); 3877 TreePatternNodePtr SrcPattern; 3878 if (Pattern->getOperator()->getName() == "set") { 3879 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3880 } else{ 3881 // Not a set (store or something?) 3882 SrcPattern = Pattern; 3883 } 3884 3885 // Create and insert the instruction. 3886 // FIXME: InstImpResults should not be part of DAGInstruction. 3887 Record *R = I.getRecord(); 3888 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3889 std::forward_as_tuple(Results, Operands, InstImpResults, 3890 SrcPattern, ResultPattern)); 3891 3892 LLVM_DEBUG(I.dump()); 3893 } 3894 3895 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3896 /// any fragments involved. This populates the Instructions list with fully 3897 /// resolved instructions. 3898 void CodeGenDAGPatterns::ParseInstructions() { 3899 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3900 3901 for (Record *Instr : Instrs) { 3902 ListInit *LI = nullptr; 3903 3904 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3905 LI = Instr->getValueAsListInit("Pattern"); 3906 3907 // If there is no pattern, only collect minimal information about the 3908 // instruction for its operand list. We have to assume that there is one 3909 // result, as we have no detailed info. A pattern which references the 3910 // null_frag operator is as-if no pattern were specified. Normally this 3911 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3912 // null_frag. 3913 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3914 std::vector<Record*> Results; 3915 std::vector<Record*> Operands; 3916 3917 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3918 3919 if (InstInfo.Operands.size() != 0) { 3920 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3921 Results.push_back(InstInfo.Operands[j].Rec); 3922 3923 // The rest are inputs. 3924 for (unsigned j = InstInfo.Operands.NumDefs, 3925 e = InstInfo.Operands.size(); j < e; ++j) 3926 Operands.push_back(InstInfo.Operands[j].Rec); 3927 } 3928 3929 // Create and insert the instruction. 3930 std::vector<Record*> ImpResults; 3931 Instructions.insert(std::make_pair(Instr, 3932 DAGInstruction(Results, Operands, ImpResults))); 3933 continue; // no pattern. 3934 } 3935 3936 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3937 parseInstructionPattern(CGI, LI, Instructions); 3938 } 3939 3940 // If we can, convert the instructions to be patterns that are matched! 3941 for (auto &Entry : Instructions) { 3942 Record *Instr = Entry.first; 3943 DAGInstruction &TheInst = Entry.second; 3944 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3945 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3946 3947 if (SrcPattern && ResultPattern) { 3948 TreePattern Pattern(Instr, SrcPattern, true, *this); 3949 TreePattern Result(Instr, ResultPattern, false, *this); 3950 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3951 } 3952 } 3953 } 3954 3955 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3956 3957 static void FindNames(TreePatternNode *P, 3958 std::map<std::string, NameRecord> &Names, 3959 TreePattern *PatternTop) { 3960 if (!P->getName().empty()) { 3961 NameRecord &Rec = Names[P->getName()]; 3962 // If this is the first instance of the name, remember the node. 3963 if (Rec.second++ == 0) 3964 Rec.first = P; 3965 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3966 PatternTop->error("repetition of value: $" + P->getName() + 3967 " where different uses have different types!"); 3968 } 3969 3970 if (!P->isLeaf()) { 3971 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3972 FindNames(P->getChild(i), Names, PatternTop); 3973 } 3974 } 3975 3976 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3977 PatternToMatch &&PTM) { 3978 // Do some sanity checking on the pattern we're about to match. 3979 std::string Reason; 3980 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3981 PrintWarning(Pattern->getRecord()->getLoc(), 3982 Twine("Pattern can never match: ") + Reason); 3983 return; 3984 } 3985 3986 // If the source pattern's root is a complex pattern, that complex pattern 3987 // must specify the nodes it can potentially match. 3988 if (const ComplexPattern *CP = 3989 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3990 if (CP->getRootNodes().empty()) 3991 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3992 " could match"); 3993 3994 3995 // Find all of the named values in the input and output, ensure they have the 3996 // same type. 3997 std::map<std::string, NameRecord> SrcNames, DstNames; 3998 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3999 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4000 4001 // Scan all of the named values in the destination pattern, rejecting them if 4002 // they don't exist in the input pattern. 4003 for (const auto &Entry : DstNames) { 4004 if (SrcNames[Entry.first].first == nullptr) 4005 Pattern->error("Pattern has input without matching name in output: $" + 4006 Entry.first); 4007 } 4008 4009 // Scan all of the named values in the source pattern, rejecting them if the 4010 // name isn't used in the dest, and isn't used to tie two values together. 4011 for (const auto &Entry : SrcNames) 4012 if (DstNames[Entry.first].first == nullptr && 4013 SrcNames[Entry.first].second == 1) 4014 Pattern->error("Pattern has dead named input: $" + Entry.first); 4015 4016 PatternsToMatch.push_back(std::move(PTM)); 4017 } 4018 4019 void CodeGenDAGPatterns::InferInstructionFlags() { 4020 ArrayRef<const CodeGenInstruction*> Instructions = 4021 Target.getInstructionsByEnumValue(); 4022 4023 unsigned Errors = 0; 4024 4025 // Try to infer flags from all patterns in PatternToMatch. These include 4026 // both the primary instruction patterns (which always come first) and 4027 // patterns defined outside the instruction. 4028 for (const PatternToMatch &PTM : ptms()) { 4029 // We can only infer from single-instruction patterns, otherwise we won't 4030 // know which instruction should get the flags. 4031 SmallVector<Record*, 8> PatInstrs; 4032 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4033 if (PatInstrs.size() != 1) 4034 continue; 4035 4036 // Get the single instruction. 4037 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4038 4039 // Only infer properties from the first pattern. We'll verify the others. 4040 if (InstInfo.InferredFrom) 4041 continue; 4042 4043 InstAnalyzer PatInfo(*this); 4044 PatInfo.Analyze(PTM); 4045 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4046 } 4047 4048 if (Errors) 4049 PrintFatalError("pattern conflicts"); 4050 4051 // If requested by the target, guess any undefined properties. 4052 if (Target.guessInstructionProperties()) { 4053 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4054 CodeGenInstruction *InstInfo = 4055 const_cast<CodeGenInstruction *>(Instructions[i]); 4056 if (InstInfo->InferredFrom) 4057 continue; 4058 // The mayLoad and mayStore flags default to false. 4059 // Conservatively assume hasSideEffects if it wasn't explicit. 4060 if (InstInfo->hasSideEffects_Unset) 4061 InstInfo->hasSideEffects = true; 4062 } 4063 return; 4064 } 4065 4066 // Complain about any flags that are still undefined. 4067 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4068 CodeGenInstruction *InstInfo = 4069 const_cast<CodeGenInstruction *>(Instructions[i]); 4070 if (InstInfo->InferredFrom) 4071 continue; 4072 if (InstInfo->hasSideEffects_Unset) 4073 PrintError(InstInfo->TheDef->getLoc(), 4074 "Can't infer hasSideEffects from patterns"); 4075 if (InstInfo->mayStore_Unset) 4076 PrintError(InstInfo->TheDef->getLoc(), 4077 "Can't infer mayStore from patterns"); 4078 if (InstInfo->mayLoad_Unset) 4079 PrintError(InstInfo->TheDef->getLoc(), 4080 "Can't infer mayLoad from patterns"); 4081 } 4082 } 4083 4084 4085 /// Verify instruction flags against pattern node properties. 4086 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4087 unsigned Errors = 0; 4088 for (const PatternToMatch &PTM : ptms()) { 4089 SmallVector<Record*, 8> Instrs; 4090 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4091 if (Instrs.empty()) 4092 continue; 4093 4094 // Count the number of instructions with each flag set. 4095 unsigned NumSideEffects = 0; 4096 unsigned NumStores = 0; 4097 unsigned NumLoads = 0; 4098 for (const Record *Instr : Instrs) { 4099 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4100 NumSideEffects += InstInfo.hasSideEffects; 4101 NumStores += InstInfo.mayStore; 4102 NumLoads += InstInfo.mayLoad; 4103 } 4104 4105 // Analyze the source pattern. 4106 InstAnalyzer PatInfo(*this); 4107 PatInfo.Analyze(PTM); 4108 4109 // Collect error messages. 4110 SmallVector<std::string, 4> Msgs; 4111 4112 // Check for missing flags in the output. 4113 // Permit extra flags for now at least. 4114 if (PatInfo.hasSideEffects && !NumSideEffects) 4115 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4116 4117 // Don't verify store flags on instructions with side effects. At least for 4118 // intrinsics, side effects implies mayStore. 4119 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4120 Msgs.push_back("pattern may store, but mayStore isn't set"); 4121 4122 // Similarly, mayStore implies mayLoad on intrinsics. 4123 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4124 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4125 4126 // Print error messages. 4127 if (Msgs.empty()) 4128 continue; 4129 ++Errors; 4130 4131 for (const std::string &Msg : Msgs) 4132 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4133 (Instrs.size() == 1 ? 4134 "instruction" : "output instructions")); 4135 // Provide the location of the relevant instruction definitions. 4136 for (const Record *Instr : Instrs) { 4137 if (Instr != PTM.getSrcRecord()) 4138 PrintError(Instr->getLoc(), "defined here"); 4139 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4140 if (InstInfo.InferredFrom && 4141 InstInfo.InferredFrom != InstInfo.TheDef && 4142 InstInfo.InferredFrom != PTM.getSrcRecord()) 4143 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4144 } 4145 } 4146 if (Errors) 4147 PrintFatalError("Errors in DAG patterns"); 4148 } 4149 4150 /// Given a pattern result with an unresolved type, see if we can find one 4151 /// instruction with an unresolved result type. Force this result type to an 4152 /// arbitrary element if it's possible types to converge results. 4153 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4154 if (N->isLeaf()) 4155 return false; 4156 4157 // Analyze children. 4158 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4159 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4160 return true; 4161 4162 if (!N->getOperator()->isSubClassOf("Instruction")) 4163 return false; 4164 4165 // If this type is already concrete or completely unknown we can't do 4166 // anything. 4167 TypeInfer &TI = TP.getInfer(); 4168 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4169 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4170 continue; 4171 4172 // Otherwise, force its type to an arbitrary choice. 4173 if (TI.forceArbitrary(N->getExtType(i))) 4174 return true; 4175 } 4176 4177 return false; 4178 } 4179 4180 // Promote xform function to be an explicit node wherever set. 4181 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4182 if (Record *Xform = N->getTransformFn()) { 4183 N->setTransformFn(nullptr); 4184 std::vector<TreePatternNodePtr> Children; 4185 Children.push_back(PromoteXForms(N)); 4186 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4187 N->getNumTypes()); 4188 } 4189 4190 if (!N->isLeaf()) 4191 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4192 TreePatternNodePtr Child = N->getChildShared(i); 4193 N->setChild(i, PromoteXForms(Child)); 4194 } 4195 return N; 4196 } 4197 4198 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4199 TreePattern &Pattern, TreePattern &Result, 4200 const std::vector<Record *> &InstImpResults) { 4201 4202 // Inline pattern fragments and expand multiple alternatives. 4203 Pattern.InlinePatternFragments(); 4204 Result.InlinePatternFragments(); 4205 4206 if (Result.getNumTrees() != 1) 4207 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4208 4209 // Infer types. 4210 bool IterateInference; 4211 bool InferredAllPatternTypes, InferredAllResultTypes; 4212 do { 4213 // Infer as many types as possible. If we cannot infer all of them, we 4214 // can never do anything with this pattern: report it to the user. 4215 InferredAllPatternTypes = 4216 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4217 4218 // Infer as many types as possible. If we cannot infer all of them, we 4219 // can never do anything with this pattern: report it to the user. 4220 InferredAllResultTypes = 4221 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4222 4223 IterateInference = false; 4224 4225 // Apply the type of the result to the source pattern. This helps us 4226 // resolve cases where the input type is known to be a pointer type (which 4227 // is considered resolved), but the result knows it needs to be 32- or 4228 // 64-bits. Infer the other way for good measure. 4229 for (const auto &T : Pattern.getTrees()) 4230 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4231 T->getNumTypes()); 4232 i != e; ++i) { 4233 IterateInference |= T->UpdateNodeType( 4234 i, Result.getOnlyTree()->getExtType(i), Result); 4235 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4236 i, T->getExtType(i), Result); 4237 } 4238 4239 // If our iteration has converged and the input pattern's types are fully 4240 // resolved but the result pattern is not fully resolved, we may have a 4241 // situation where we have two instructions in the result pattern and 4242 // the instructions require a common register class, but don't care about 4243 // what actual MVT is used. This is actually a bug in our modelling: 4244 // output patterns should have register classes, not MVTs. 4245 // 4246 // In any case, to handle this, we just go through and disambiguate some 4247 // arbitrary types to the result pattern's nodes. 4248 if (!IterateInference && InferredAllPatternTypes && 4249 !InferredAllResultTypes) 4250 IterateInference = 4251 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4252 } while (IterateInference); 4253 4254 // Verify that we inferred enough types that we can do something with the 4255 // pattern and result. If these fire the user has to add type casts. 4256 if (!InferredAllPatternTypes) 4257 Pattern.error("Could not infer all types in pattern!"); 4258 if (!InferredAllResultTypes) { 4259 Pattern.dump(); 4260 Result.error("Could not infer all types in pattern result!"); 4261 } 4262 4263 // Promote xform function to be an explicit node wherever set. 4264 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4265 4266 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4267 Temp.InferAllTypes(); 4268 4269 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4270 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4271 4272 if (PatternRewriter) 4273 PatternRewriter(&Pattern); 4274 4275 // A pattern may end up with an "impossible" type, i.e. a situation 4276 // where all types have been eliminated for some node in this pattern. 4277 // This could occur for intrinsics that only make sense for a specific 4278 // value type, and use a specific register class. If, for some mode, 4279 // that register class does not accept that type, the type inference 4280 // will lead to a contradiction, which is not an error however, but 4281 // a sign that this pattern will simply never match. 4282 if (Temp.getOnlyTree()->hasPossibleType()) 4283 for (const auto &T : Pattern.getTrees()) 4284 if (T->hasPossibleType()) 4285 AddPatternToMatch(&Pattern, 4286 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4287 InstImpResults, Complexity, 4288 TheDef->getID())); 4289 } 4290 4291 void CodeGenDAGPatterns::ParsePatterns() { 4292 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4293 4294 for (Record *CurPattern : Patterns) { 4295 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4296 4297 // If the pattern references the null_frag, there's nothing to do. 4298 if (hasNullFragReference(Tree)) 4299 continue; 4300 4301 TreePattern Pattern(CurPattern, Tree, true, *this); 4302 4303 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4304 if (LI->empty()) continue; // no pattern. 4305 4306 // Parse the instruction. 4307 TreePattern Result(CurPattern, LI, false, *this); 4308 4309 if (Result.getNumTrees() != 1) 4310 Result.error("Cannot handle instructions producing instructions " 4311 "with temporaries yet!"); 4312 4313 // Validate that the input pattern is correct. 4314 std::map<std::string, TreePatternNodePtr> InstInputs; 4315 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4316 InstResults; 4317 std::vector<Record*> InstImpResults; 4318 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4319 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4320 InstResults, InstImpResults); 4321 4322 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4323 } 4324 } 4325 4326 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4327 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4328 for (const auto &I : VTS) 4329 Modes.insert(I.first); 4330 4331 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4332 collectModes(Modes, N->getChild(i)); 4333 } 4334 4335 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4336 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4337 std::vector<PatternToMatch> Copy; 4338 PatternsToMatch.swap(Copy); 4339 4340 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4341 StringRef Check) { 4342 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4343 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4344 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4345 return; 4346 } 4347 4348 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4349 std::move(NewSrc), std::move(NewDst), 4350 P.getDstRegs(), P.getAddedComplexity(), 4351 Record::getNewUID(), Mode, Check); 4352 }; 4353 4354 for (PatternToMatch &P : Copy) { 4355 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4356 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4357 SrcP = P.getSrcPatternShared(); 4358 if (P.getDstPattern()->hasProperTypeByHwMode()) 4359 DstP = P.getDstPatternShared(); 4360 if (!SrcP && !DstP) { 4361 PatternsToMatch.push_back(P); 4362 continue; 4363 } 4364 4365 std::set<unsigned> Modes; 4366 if (SrcP) 4367 collectModes(Modes, SrcP.get()); 4368 if (DstP) 4369 collectModes(Modes, DstP.get()); 4370 4371 // The predicate for the default mode needs to be constructed for each 4372 // pattern separately. 4373 // Since not all modes must be present in each pattern, if a mode m is 4374 // absent, then there is no point in constructing a check for m. If such 4375 // a check was created, it would be equivalent to checking the default 4376 // mode, except not all modes' predicates would be a part of the checking 4377 // code. The subsequently generated check for the default mode would then 4378 // have the exact same patterns, but a different predicate code. To avoid 4379 // duplicated patterns with different predicate checks, construct the 4380 // default check as a negation of all predicates that are actually present 4381 // in the source/destination patterns. 4382 SmallString<128> DefaultCheck; 4383 4384 for (unsigned M : Modes) { 4385 if (M == DefaultMode) 4386 continue; 4387 4388 // Fill the map entry for this mode. 4389 const HwMode &HM = CGH.getMode(M); 4390 AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))"); 4391 4392 // Add negations of the HM's predicates to the default predicate. 4393 if (!DefaultCheck.empty()) 4394 DefaultCheck += " && "; 4395 DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\""; 4396 DefaultCheck += HM.Features; 4397 DefaultCheck += "\")))"; 4398 } 4399 4400 bool HasDefault = Modes.count(DefaultMode); 4401 if (HasDefault) 4402 AppendPattern(P, DefaultMode, DefaultCheck); 4403 } 4404 } 4405 4406 /// Dependent variable map for CodeGenDAGPattern variant generation 4407 typedef StringMap<int> DepVarMap; 4408 4409 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4410 if (N->isLeaf()) { 4411 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4412 DepMap[N->getName()]++; 4413 } else { 4414 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4415 FindDepVarsOf(N->getChild(i), DepMap); 4416 } 4417 } 4418 4419 /// Find dependent variables within child patterns 4420 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4421 DepVarMap depcounts; 4422 FindDepVarsOf(N, depcounts); 4423 for (const auto &Pair : depcounts) { 4424 if (Pair.getValue() > 1) 4425 DepVars.insert(Pair.getKey()); 4426 } 4427 } 4428 4429 #ifndef NDEBUG 4430 /// Dump the dependent variable set: 4431 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4432 if (DepVars.empty()) { 4433 LLVM_DEBUG(errs() << "<empty set>"); 4434 } else { 4435 LLVM_DEBUG(errs() << "[ "); 4436 for (const auto &DepVar : DepVars) { 4437 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4438 } 4439 LLVM_DEBUG(errs() << "]"); 4440 } 4441 } 4442 #endif 4443 4444 4445 /// CombineChildVariants - Given a bunch of permutations of each child of the 4446 /// 'operator' node, put them together in all possible ways. 4447 static void CombineChildVariants( 4448 TreePatternNodePtr Orig, 4449 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4450 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4451 const MultipleUseVarSet &DepVars) { 4452 // Make sure that each operand has at least one variant to choose from. 4453 for (const auto &Variants : ChildVariants) 4454 if (Variants.empty()) 4455 return; 4456 4457 // The end result is an all-pairs construction of the resultant pattern. 4458 std::vector<unsigned> Idxs; 4459 Idxs.resize(ChildVariants.size()); 4460 bool NotDone; 4461 do { 4462 #ifndef NDEBUG 4463 LLVM_DEBUG(if (!Idxs.empty()) { 4464 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4465 for (unsigned Idx : Idxs) { 4466 errs() << Idx << " "; 4467 } 4468 errs() << "]\n"; 4469 }); 4470 #endif 4471 // Create the variant and add it to the output list. 4472 std::vector<TreePatternNodePtr> NewChildren; 4473 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4474 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4475 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4476 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4477 4478 // Copy over properties. 4479 R->setName(Orig->getName()); 4480 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4481 R->setPredicateCalls(Orig->getPredicateCalls()); 4482 R->setTransformFn(Orig->getTransformFn()); 4483 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4484 R->setType(i, Orig->getExtType(i)); 4485 4486 // If this pattern cannot match, do not include it as a variant. 4487 std::string ErrString; 4488 // Scan to see if this pattern has already been emitted. We can get 4489 // duplication due to things like commuting: 4490 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4491 // which are the same pattern. Ignore the dups. 4492 if (R->canPatternMatch(ErrString, CDP) && 4493 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4494 return R->isIsomorphicTo(Variant.get(), DepVars); 4495 })) 4496 OutVariants.push_back(R); 4497 4498 // Increment indices to the next permutation by incrementing the 4499 // indices from last index backward, e.g., generate the sequence 4500 // [0, 0], [0, 1], [1, 0], [1, 1]. 4501 int IdxsIdx; 4502 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4503 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4504 Idxs[IdxsIdx] = 0; 4505 else 4506 break; 4507 } 4508 NotDone = (IdxsIdx >= 0); 4509 } while (NotDone); 4510 } 4511 4512 /// CombineChildVariants - A helper function for binary operators. 4513 /// 4514 static void CombineChildVariants(TreePatternNodePtr Orig, 4515 const std::vector<TreePatternNodePtr> &LHS, 4516 const std::vector<TreePatternNodePtr> &RHS, 4517 std::vector<TreePatternNodePtr> &OutVariants, 4518 CodeGenDAGPatterns &CDP, 4519 const MultipleUseVarSet &DepVars) { 4520 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4521 ChildVariants.push_back(LHS); 4522 ChildVariants.push_back(RHS); 4523 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4524 } 4525 4526 static void 4527 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4528 std::vector<TreePatternNodePtr> &Children) { 4529 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4530 Record *Operator = N->getOperator(); 4531 4532 // Only permit raw nodes. 4533 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4534 N->getTransformFn()) { 4535 Children.push_back(N); 4536 return; 4537 } 4538 4539 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4540 Children.push_back(N->getChildShared(0)); 4541 else 4542 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4543 4544 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4545 Children.push_back(N->getChildShared(1)); 4546 else 4547 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4548 } 4549 4550 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4551 /// the (potentially recursive) pattern by using algebraic laws. 4552 /// 4553 static void GenerateVariantsOf(TreePatternNodePtr N, 4554 std::vector<TreePatternNodePtr> &OutVariants, 4555 CodeGenDAGPatterns &CDP, 4556 const MultipleUseVarSet &DepVars) { 4557 // We cannot permute leaves or ComplexPattern uses. 4558 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4559 OutVariants.push_back(N); 4560 return; 4561 } 4562 4563 // Look up interesting info about the node. 4564 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4565 4566 // If this node is associative, re-associate. 4567 if (NodeInfo.hasProperty(SDNPAssociative)) { 4568 // Re-associate by pulling together all of the linked operators 4569 std::vector<TreePatternNodePtr> MaximalChildren; 4570 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4571 4572 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4573 // permutations. 4574 if (MaximalChildren.size() == 3) { 4575 // Find the variants of all of our maximal children. 4576 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4577 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4578 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4579 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4580 4581 // There are only two ways we can permute the tree: 4582 // (A op B) op C and A op (B op C) 4583 // Within these forms, we can also permute A/B/C. 4584 4585 // Generate legal pair permutations of A/B/C. 4586 std::vector<TreePatternNodePtr> ABVariants; 4587 std::vector<TreePatternNodePtr> BAVariants; 4588 std::vector<TreePatternNodePtr> ACVariants; 4589 std::vector<TreePatternNodePtr> CAVariants; 4590 std::vector<TreePatternNodePtr> BCVariants; 4591 std::vector<TreePatternNodePtr> CBVariants; 4592 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4593 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4594 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4595 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4596 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4597 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4598 4599 // Combine those into the result: (x op x) op x 4600 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4601 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4602 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4603 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4604 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4605 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4606 4607 // Combine those into the result: x op (x op x) 4608 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4609 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4610 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4611 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4612 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4613 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4614 return; 4615 } 4616 } 4617 4618 // Compute permutations of all children. 4619 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4620 ChildVariants.resize(N->getNumChildren()); 4621 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4622 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4623 4624 // Build all permutations based on how the children were formed. 4625 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4626 4627 // If this node is commutative, consider the commuted order. 4628 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4629 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4630 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4631 "Commutative but doesn't have 2 children!"); 4632 // Don't count children which are actually register references. 4633 unsigned NC = 0; 4634 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4635 TreePatternNode *Child = N->getChild(i); 4636 if (Child->isLeaf()) 4637 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4638 Record *RR = DI->getDef(); 4639 if (RR->isSubClassOf("Register")) 4640 continue; 4641 } 4642 NC++; 4643 } 4644 // Consider the commuted order. 4645 if (isCommIntrinsic) { 4646 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4647 // operands are the commutative operands, and there might be more operands 4648 // after those. 4649 assert(NC >= 3 && 4650 "Commutative intrinsic should have at least 3 children!"); 4651 std::vector<std::vector<TreePatternNodePtr>> Variants; 4652 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4653 Variants.push_back(std::move(ChildVariants[2])); 4654 Variants.push_back(std::move(ChildVariants[1])); 4655 for (unsigned i = 3; i != NC; ++i) 4656 Variants.push_back(std::move(ChildVariants[i])); 4657 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4658 } else if (NC == N->getNumChildren()) { 4659 std::vector<std::vector<TreePatternNodePtr>> Variants; 4660 Variants.push_back(std::move(ChildVariants[1])); 4661 Variants.push_back(std::move(ChildVariants[0])); 4662 for (unsigned i = 2; i != NC; ++i) 4663 Variants.push_back(std::move(ChildVariants[i])); 4664 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4665 } 4666 } 4667 } 4668 4669 4670 // GenerateVariants - Generate variants. For example, commutative patterns can 4671 // match multiple ways. Add them to PatternsToMatch as well. 4672 void CodeGenDAGPatterns::GenerateVariants() { 4673 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4674 4675 // Loop over all of the patterns we've collected, checking to see if we can 4676 // generate variants of the instruction, through the exploitation of 4677 // identities. This permits the target to provide aggressive matching without 4678 // the .td file having to contain tons of variants of instructions. 4679 // 4680 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4681 // intentionally do not reconsider these. Any variants of added patterns have 4682 // already been added. 4683 // 4684 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4685 MultipleUseVarSet DepVars; 4686 std::vector<TreePatternNodePtr> Variants; 4687 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4688 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4689 LLVM_DEBUG(DumpDepVars(DepVars)); 4690 LLVM_DEBUG(errs() << "\n"); 4691 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4692 *this, DepVars); 4693 4694 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4695 "HwModes should not have been expanded yet!"); 4696 4697 assert(!Variants.empty() && "Must create at least original variant!"); 4698 if (Variants.size() == 1) // No additional variants for this pattern. 4699 continue; 4700 4701 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4702 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4703 4704 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4705 TreePatternNodePtr Variant = Variants[v]; 4706 4707 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4708 errs() << "\n"); 4709 4710 // Scan to see if an instruction or explicit pattern already matches this. 4711 bool AlreadyExists = false; 4712 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4713 // Skip if the top level predicates do not match. 4714 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4715 PatternsToMatch[p].getPredicates())) 4716 continue; 4717 // Check to see if this variant already exists. 4718 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4719 DepVars)) { 4720 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4721 AlreadyExists = true; 4722 break; 4723 } 4724 } 4725 // If we already have it, ignore the variant. 4726 if (AlreadyExists) continue; 4727 4728 // Otherwise, add it to the list of patterns we have. 4729 PatternsToMatch.emplace_back( 4730 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4731 Variant, PatternsToMatch[i].getDstPatternShared(), 4732 PatternsToMatch[i].getDstRegs(), 4733 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(), 4734 PatternsToMatch[i].getForceMode(), 4735 PatternsToMatch[i].getHwModeFeatures()); 4736 } 4737 4738 LLVM_DEBUG(errs() << "\n"); 4739 } 4740 } 4741