1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/TableGen/Error.h" 17 #include "llvm/TableGen/Record.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include <algorithm> 24 #include <cstdio> 25 #include <set> 26 using namespace llvm; 27 28 //===----------------------------------------------------------------------===// 29 // EEVT::TypeSet Implementation 30 //===----------------------------------------------------------------------===// 31 32 static inline bool isInteger(MVT::SimpleValueType VT) { 33 return EVT(VT).isInteger(); 34 } 35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 36 return EVT(VT).isFloatingPoint(); 37 } 38 static inline bool isVector(MVT::SimpleValueType VT) { 39 return EVT(VT).isVector(); 40 } 41 static inline bool isScalar(MVT::SimpleValueType VT) { 42 return !EVT(VT).isVector(); 43 } 44 45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 46 if (VT == MVT::iAny) 47 EnforceInteger(TP); 48 else if (VT == MVT::fAny) 49 EnforceFloatingPoint(TP); 50 else if (VT == MVT::vAny) 51 EnforceVector(TP); 52 else { 53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 54 VT == MVT::iPTRAny) && "Not a concrete type!"); 55 TypeVec.push_back(VT); 56 } 57 } 58 59 60 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 61 assert(!VTList.empty() && "empty list?"); 62 TypeVec.append(VTList.begin(), VTList.end()); 63 64 if (!VTList.empty()) 65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 66 VTList[0] != MVT::fAny); 67 68 // Verify no duplicates. 69 array_pod_sort(TypeVec.begin(), TypeVec.end()); 70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 71 } 72 73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 74 /// on completely unknown type sets. 75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 76 bool (*Pred)(MVT::SimpleValueType), 77 const char *PredicateName) { 78 assert(isCompletelyUnknown()); 79 const std::vector<MVT::SimpleValueType> &LegalTypes = 80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 81 82 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 83 if (Pred == 0 || Pred(LegalTypes[i])) 84 TypeVec.push_back(LegalTypes[i]); 85 86 // If we have nothing that matches the predicate, bail out. 87 if (TypeVec.empty()) 88 TP.error("Type inference contradiction found, no " + 89 std::string(PredicateName) + " types found"); 90 // No need to sort with one element. 91 if (TypeVec.size() == 1) return true; 92 93 // Remove duplicates. 94 array_pod_sort(TypeVec.begin(), TypeVec.end()); 95 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 96 97 return true; 98 } 99 100 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 101 /// integer value type. 102 bool EEVT::TypeSet::hasIntegerTypes() const { 103 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 104 if (isInteger(TypeVec[i])) 105 return true; 106 return false; 107 } 108 109 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 110 /// a floating point value type. 111 bool EEVT::TypeSet::hasFloatingPointTypes() const { 112 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 113 if (isFloatingPoint(TypeVec[i])) 114 return true; 115 return false; 116 } 117 118 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 119 /// value type. 120 bool EEVT::TypeSet::hasVectorTypes() const { 121 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 122 if (isVector(TypeVec[i])) 123 return true; 124 return false; 125 } 126 127 128 std::string EEVT::TypeSet::getName() const { 129 if (TypeVec.empty()) return "<empty>"; 130 131 std::string Result; 132 133 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 134 std::string VTName = llvm::getEnumName(TypeVec[i]); 135 // Strip off MVT:: prefix if present. 136 if (VTName.substr(0,5) == "MVT::") 137 VTName = VTName.substr(5); 138 if (i) Result += ':'; 139 Result += VTName; 140 } 141 142 if (TypeVec.size() == 1) 143 return Result; 144 return "{" + Result + "}"; 145 } 146 147 /// MergeInTypeInfo - This merges in type information from the specified 148 /// argument. If 'this' changes, it returns true. If the two types are 149 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 150 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 151 if (InVT.isCompletelyUnknown() || *this == InVT) 152 return false; 153 154 if (isCompletelyUnknown()) { 155 *this = InVT; 156 return true; 157 } 158 159 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 160 161 // Handle the abstract cases, seeing if we can resolve them better. 162 switch (TypeVec[0]) { 163 default: break; 164 case MVT::iPTR: 165 case MVT::iPTRAny: 166 if (InVT.hasIntegerTypes()) { 167 EEVT::TypeSet InCopy(InVT); 168 InCopy.EnforceInteger(TP); 169 InCopy.EnforceScalar(TP); 170 171 if (InCopy.isConcrete()) { 172 // If the RHS has one integer type, upgrade iPTR to i32. 173 TypeVec[0] = InVT.TypeVec[0]; 174 return true; 175 } 176 177 // If the input has multiple scalar integers, this doesn't add any info. 178 if (!InCopy.isCompletelyUnknown()) 179 return false; 180 } 181 break; 182 } 183 184 // If the input constraint is iAny/iPTR and this is an integer type list, 185 // remove non-integer types from the list. 186 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 187 hasIntegerTypes()) { 188 bool MadeChange = EnforceInteger(TP); 189 190 // If we're merging in iPTR/iPTRAny and the node currently has a list of 191 // multiple different integer types, replace them with a single iPTR. 192 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 193 TypeVec.size() != 1) { 194 TypeVec.resize(1); 195 TypeVec[0] = InVT.TypeVec[0]; 196 MadeChange = true; 197 } 198 199 return MadeChange; 200 } 201 202 // If this is a type list and the RHS is a typelist as well, eliminate entries 203 // from this list that aren't in the other one. 204 bool MadeChange = false; 205 TypeSet InputSet(*this); 206 207 for (unsigned i = 0; i != TypeVec.size(); ++i) { 208 bool InInVT = false; 209 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 210 if (TypeVec[i] == InVT.TypeVec[j]) { 211 InInVT = true; 212 break; 213 } 214 215 if (InInVT) continue; 216 TypeVec.erase(TypeVec.begin()+i--); 217 MadeChange = true; 218 } 219 220 // If we removed all of our types, we have a type contradiction. 221 if (!TypeVec.empty()) 222 return MadeChange; 223 224 // FIXME: Really want an SMLoc here! 225 TP.error("Type inference contradiction found, merging '" + 226 InVT.getName() + "' into '" + InputSet.getName() + "'"); 227 return true; // unreachable 228 } 229 230 /// EnforceInteger - Remove all non-integer types from this set. 231 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 232 // If we know nothing, then get the full set. 233 if (TypeVec.empty()) 234 return FillWithPossibleTypes(TP, isInteger, "integer"); 235 if (!hasFloatingPointTypes()) 236 return false; 237 238 TypeSet InputSet(*this); 239 240 // Filter out all the fp types. 241 for (unsigned i = 0; i != TypeVec.size(); ++i) 242 if (!isInteger(TypeVec[i])) 243 TypeVec.erase(TypeVec.begin()+i--); 244 245 if (TypeVec.empty()) 246 TP.error("Type inference contradiction found, '" + 247 InputSet.getName() + "' needs to be integer"); 248 return true; 249 } 250 251 /// EnforceFloatingPoint - Remove all integer types from this set. 252 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 253 // If we know nothing, then get the full set. 254 if (TypeVec.empty()) 255 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 256 257 if (!hasIntegerTypes()) 258 return false; 259 260 TypeSet InputSet(*this); 261 262 // Filter out all the fp types. 263 for (unsigned i = 0; i != TypeVec.size(); ++i) 264 if (!isFloatingPoint(TypeVec[i])) 265 TypeVec.erase(TypeVec.begin()+i--); 266 267 if (TypeVec.empty()) 268 TP.error("Type inference contradiction found, '" + 269 InputSet.getName() + "' needs to be floating point"); 270 return true; 271 } 272 273 /// EnforceScalar - Remove all vector types from this. 274 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 275 // If we know nothing, then get the full set. 276 if (TypeVec.empty()) 277 return FillWithPossibleTypes(TP, isScalar, "scalar"); 278 279 if (!hasVectorTypes()) 280 return false; 281 282 TypeSet InputSet(*this); 283 284 // Filter out all the vector types. 285 for (unsigned i = 0; i != TypeVec.size(); ++i) 286 if (!isScalar(TypeVec[i])) 287 TypeVec.erase(TypeVec.begin()+i--); 288 289 if (TypeVec.empty()) 290 TP.error("Type inference contradiction found, '" + 291 InputSet.getName() + "' needs to be scalar"); 292 return true; 293 } 294 295 /// EnforceVector - Remove all vector types from this. 296 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 297 // If we know nothing, then get the full set. 298 if (TypeVec.empty()) 299 return FillWithPossibleTypes(TP, isVector, "vector"); 300 301 TypeSet InputSet(*this); 302 bool MadeChange = false; 303 304 // Filter out all the scalar types. 305 for (unsigned i = 0; i != TypeVec.size(); ++i) 306 if (!isVector(TypeVec[i])) { 307 TypeVec.erase(TypeVec.begin()+i--); 308 MadeChange = true; 309 } 310 311 if (TypeVec.empty()) 312 TP.error("Type inference contradiction found, '" + 313 InputSet.getName() + "' needs to be a vector"); 314 return MadeChange; 315 } 316 317 318 319 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 320 /// this an other based on this information. 321 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 322 // Both operands must be integer or FP, but we don't care which. 323 bool MadeChange = false; 324 325 if (isCompletelyUnknown()) 326 MadeChange = FillWithPossibleTypes(TP); 327 328 if (Other.isCompletelyUnknown()) 329 MadeChange = Other.FillWithPossibleTypes(TP); 330 331 // If one side is known to be integer or known to be FP but the other side has 332 // no information, get at least the type integrality info in there. 333 if (!hasFloatingPointTypes()) 334 MadeChange |= Other.EnforceInteger(TP); 335 else if (!hasIntegerTypes()) 336 MadeChange |= Other.EnforceFloatingPoint(TP); 337 if (!Other.hasFloatingPointTypes()) 338 MadeChange |= EnforceInteger(TP); 339 else if (!Other.hasIntegerTypes()) 340 MadeChange |= EnforceFloatingPoint(TP); 341 342 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 343 "Should have a type list now"); 344 345 // If one contains vectors but the other doesn't pull vectors out. 346 if (!hasVectorTypes()) 347 MadeChange |= Other.EnforceScalar(TP); 348 if (!hasVectorTypes()) 349 MadeChange |= EnforceScalar(TP); 350 351 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 352 // If we are down to concrete types, this code does not currently 353 // handle nodes which have multiple types, where some types are 354 // integer, and some are fp. Assert that this is not the case. 355 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 356 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 357 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 358 359 // Otherwise, if these are both vector types, either this vector 360 // must have a larger bitsize than the other, or this element type 361 // must be larger than the other. 362 EVT Type(TypeVec[0]); 363 EVT OtherType(Other.TypeVec[0]); 364 365 if (hasVectorTypes() && Other.hasVectorTypes()) { 366 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 367 if (Type.getVectorElementType().getSizeInBits() 368 >= OtherType.getVectorElementType().getSizeInBits()) 369 TP.error("Type inference contradiction found, '" + 370 getName() + "' element type not smaller than '" + 371 Other.getName() +"'!"); 372 } 373 else 374 // For scalar types, the bitsize of this type must be larger 375 // than that of the other. 376 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 377 TP.error("Type inference contradiction found, '" + 378 getName() + "' is not smaller than '" + 379 Other.getName() +"'!"); 380 381 } 382 383 384 // Handle int and fp as disjoint sets. This won't work for patterns 385 // that have mixed fp/int types but those are likely rare and would 386 // not have been accepted by this code previously. 387 388 // Okay, find the smallest type from the current set and remove it from the 389 // largest set. 390 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 391 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 392 if (isInteger(TypeVec[i])) { 393 SmallestInt = TypeVec[i]; 394 break; 395 } 396 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 397 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 398 SmallestInt = TypeVec[i]; 399 400 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 401 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 402 if (isFloatingPoint(TypeVec[i])) { 403 SmallestFP = TypeVec[i]; 404 break; 405 } 406 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 407 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 408 SmallestFP = TypeVec[i]; 409 410 int OtherIntSize = 0; 411 int OtherFPSize = 0; 412 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 413 Other.TypeVec.begin(); 414 TVI != Other.TypeVec.end(); 415 /* NULL */) { 416 if (isInteger(*TVI)) { 417 ++OtherIntSize; 418 if (*TVI == SmallestInt) { 419 TVI = Other.TypeVec.erase(TVI); 420 --OtherIntSize; 421 MadeChange = true; 422 continue; 423 } 424 } 425 else if (isFloatingPoint(*TVI)) { 426 ++OtherFPSize; 427 if (*TVI == SmallestFP) { 428 TVI = Other.TypeVec.erase(TVI); 429 --OtherFPSize; 430 MadeChange = true; 431 continue; 432 } 433 } 434 ++TVI; 435 } 436 437 // If this is the only type in the large set, the constraint can never be 438 // satisfied. 439 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 440 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) 441 TP.error("Type inference contradiction found, '" + 442 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 443 444 // Okay, find the largest type in the Other set and remove it from the 445 // current set. 446 MVT::SimpleValueType LargestInt = MVT::Other; 447 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 448 if (isInteger(Other.TypeVec[i])) { 449 LargestInt = Other.TypeVec[i]; 450 break; 451 } 452 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 453 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 454 LargestInt = Other.TypeVec[i]; 455 456 MVT::SimpleValueType LargestFP = MVT::Other; 457 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 458 if (isFloatingPoint(Other.TypeVec[i])) { 459 LargestFP = Other.TypeVec[i]; 460 break; 461 } 462 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 463 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 464 LargestFP = Other.TypeVec[i]; 465 466 int IntSize = 0; 467 int FPSize = 0; 468 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 469 TypeVec.begin(); 470 TVI != TypeVec.end(); 471 /* NULL */) { 472 if (isInteger(*TVI)) { 473 ++IntSize; 474 if (*TVI == LargestInt) { 475 TVI = TypeVec.erase(TVI); 476 --IntSize; 477 MadeChange = true; 478 continue; 479 } 480 } 481 else if (isFloatingPoint(*TVI)) { 482 ++FPSize; 483 if (*TVI == LargestFP) { 484 TVI = TypeVec.erase(TVI); 485 --FPSize; 486 MadeChange = true; 487 continue; 488 } 489 } 490 ++TVI; 491 } 492 493 // If this is the only type in the small set, the constraint can never be 494 // satisfied. 495 if ((hasIntegerTypes() && IntSize == 0) 496 || (hasFloatingPointTypes() && FPSize == 0)) 497 TP.error("Type inference contradiction found, '" + 498 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 499 500 return MadeChange; 501 } 502 503 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 504 /// whose element is specified by VTOperand. 505 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 506 TreePattern &TP) { 507 // "This" must be a vector and "VTOperand" must be a scalar. 508 bool MadeChange = false; 509 MadeChange |= EnforceVector(TP); 510 MadeChange |= VTOperand.EnforceScalar(TP); 511 512 // If we know the vector type, it forces the scalar to agree. 513 if (isConcrete()) { 514 EVT IVT = getConcrete(); 515 IVT = IVT.getVectorElementType(); 516 return MadeChange | 517 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 518 } 519 520 // If the scalar type is known, filter out vector types whose element types 521 // disagree. 522 if (!VTOperand.isConcrete()) 523 return MadeChange; 524 525 MVT::SimpleValueType VT = VTOperand.getConcrete(); 526 527 TypeSet InputSet(*this); 528 529 // Filter out all the types which don't have the right element type. 530 for (unsigned i = 0; i != TypeVec.size(); ++i) { 531 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 532 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 533 TypeVec.erase(TypeVec.begin()+i--); 534 MadeChange = true; 535 } 536 } 537 538 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 539 TP.error("Type inference contradiction found, forcing '" + 540 InputSet.getName() + "' to have a vector element"); 541 return MadeChange; 542 } 543 544 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 545 /// vector type specified by VTOperand. 546 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 547 TreePattern &TP) { 548 // "This" must be a vector and "VTOperand" must be a vector. 549 bool MadeChange = false; 550 MadeChange |= EnforceVector(TP); 551 MadeChange |= VTOperand.EnforceVector(TP); 552 553 // "This" must be larger than "VTOperand." 554 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 555 556 // If we know the vector type, it forces the scalar types to agree. 557 if (isConcrete()) { 558 EVT IVT = getConcrete(); 559 IVT = IVT.getVectorElementType(); 560 561 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 562 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 563 } else if (VTOperand.isConcrete()) { 564 EVT IVT = VTOperand.getConcrete(); 565 IVT = IVT.getVectorElementType(); 566 567 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 568 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 569 } 570 571 return MadeChange; 572 } 573 574 //===----------------------------------------------------------------------===// 575 // Helpers for working with extended types. 576 577 /// Dependent variable map for CodeGenDAGPattern variant generation 578 typedef std::map<std::string, int> DepVarMap; 579 580 /// Const iterator shorthand for DepVarMap 581 typedef DepVarMap::const_iterator DepVarMap_citer; 582 583 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 584 if (N->isLeaf()) { 585 if (isa<DefInit>(N->getLeafValue())) 586 DepMap[N->getName()]++; 587 } else { 588 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 589 FindDepVarsOf(N->getChild(i), DepMap); 590 } 591 } 592 593 /// Find dependent variables within child patterns 594 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 595 DepVarMap depcounts; 596 FindDepVarsOf(N, depcounts); 597 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 598 if (i->second > 1) // std::pair<std::string, int> 599 DepVars.insert(i->first); 600 } 601 } 602 603 #ifndef NDEBUG 604 /// Dump the dependent variable set: 605 static void DumpDepVars(MultipleUseVarSet &DepVars) { 606 if (DepVars.empty()) { 607 DEBUG(errs() << "<empty set>"); 608 } else { 609 DEBUG(errs() << "[ "); 610 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 611 e = DepVars.end(); i != e; ++i) { 612 DEBUG(errs() << (*i) << " "); 613 } 614 DEBUG(errs() << "]"); 615 } 616 } 617 #endif 618 619 620 //===----------------------------------------------------------------------===// 621 // TreePredicateFn Implementation 622 //===----------------------------------------------------------------------===// 623 624 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 625 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 626 assert((getPredCode().empty() || getImmCode().empty()) && 627 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 628 } 629 630 std::string TreePredicateFn::getPredCode() const { 631 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 632 } 633 634 std::string TreePredicateFn::getImmCode() const { 635 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 636 } 637 638 639 /// isAlwaysTrue - Return true if this is a noop predicate. 640 bool TreePredicateFn::isAlwaysTrue() const { 641 return getPredCode().empty() && getImmCode().empty(); 642 } 643 644 /// Return the name to use in the generated code to reference this, this is 645 /// "Predicate_foo" if from a pattern fragment "foo". 646 std::string TreePredicateFn::getFnName() const { 647 return "Predicate_" + PatFragRec->getRecord()->getName(); 648 } 649 650 /// getCodeToRunOnSDNode - Return the code for the function body that 651 /// evaluates this predicate. The argument is expected to be in "Node", 652 /// not N. This handles casting and conversion to a concrete node type as 653 /// appropriate. 654 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 655 // Handle immediate predicates first. 656 std::string ImmCode = getImmCode(); 657 if (!ImmCode.empty()) { 658 std::string Result = 659 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 660 return Result + ImmCode; 661 } 662 663 // Handle arbitrary node predicates. 664 assert(!getPredCode().empty() && "Don't have any predicate code!"); 665 std::string ClassName; 666 if (PatFragRec->getOnlyTree()->isLeaf()) 667 ClassName = "SDNode"; 668 else { 669 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 670 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 671 } 672 std::string Result; 673 if (ClassName == "SDNode") 674 Result = " SDNode *N = Node;\n"; 675 else 676 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 677 678 return Result + getPredCode(); 679 } 680 681 //===----------------------------------------------------------------------===// 682 // PatternToMatch implementation 683 // 684 685 686 /// getPatternSize - Return the 'size' of this pattern. We want to match large 687 /// patterns before small ones. This is used to determine the size of a 688 /// pattern. 689 static unsigned getPatternSize(const TreePatternNode *P, 690 const CodeGenDAGPatterns &CGP) { 691 unsigned Size = 3; // The node itself. 692 // If the root node is a ConstantSDNode, increases its size. 693 // e.g. (set R32:$dst, 0). 694 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 695 Size += 2; 696 697 // FIXME: This is a hack to statically increase the priority of patterns 698 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 699 // Later we can allow complexity / cost for each pattern to be (optionally) 700 // specified. To get best possible pattern match we'll need to dynamically 701 // calculate the complexity of all patterns a dag can potentially map to. 702 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 703 if (AM) 704 Size += AM->getNumOperands() * 3; 705 706 // If this node has some predicate function that must match, it adds to the 707 // complexity of this node. 708 if (!P->getPredicateFns().empty()) 709 ++Size; 710 711 // Count children in the count if they are also nodes. 712 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 713 TreePatternNode *Child = P->getChild(i); 714 if (!Child->isLeaf() && Child->getNumTypes() && 715 Child->getType(0) != MVT::Other) 716 Size += getPatternSize(Child, CGP); 717 else if (Child->isLeaf()) { 718 if (isa<IntInit>(Child->getLeafValue())) 719 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 720 else if (Child->getComplexPatternInfo(CGP)) 721 Size += getPatternSize(Child, CGP); 722 else if (!Child->getPredicateFns().empty()) 723 ++Size; 724 } 725 } 726 727 return Size; 728 } 729 730 /// Compute the complexity metric for the input pattern. This roughly 731 /// corresponds to the number of nodes that are covered. 732 unsigned PatternToMatch:: 733 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 734 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 735 } 736 737 738 /// getPredicateCheck - Return a single string containing all of this 739 /// pattern's predicates concatenated with "&&" operators. 740 /// 741 std::string PatternToMatch::getPredicateCheck() const { 742 std::string PredicateCheck; 743 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 744 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) { 745 Record *Def = Pred->getDef(); 746 if (!Def->isSubClassOf("Predicate")) { 747 #ifndef NDEBUG 748 Def->dump(); 749 #endif 750 llvm_unreachable("Unknown predicate type!"); 751 } 752 if (!PredicateCheck.empty()) 753 PredicateCheck += " && "; 754 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 755 } 756 } 757 758 return PredicateCheck; 759 } 760 761 //===----------------------------------------------------------------------===// 762 // SDTypeConstraint implementation 763 // 764 765 SDTypeConstraint::SDTypeConstraint(Record *R) { 766 OperandNo = R->getValueAsInt("OperandNum"); 767 768 if (R->isSubClassOf("SDTCisVT")) { 769 ConstraintType = SDTCisVT; 770 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 771 if (x.SDTCisVT_Info.VT == MVT::isVoid) 772 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 773 774 } else if (R->isSubClassOf("SDTCisPtrTy")) { 775 ConstraintType = SDTCisPtrTy; 776 } else if (R->isSubClassOf("SDTCisInt")) { 777 ConstraintType = SDTCisInt; 778 } else if (R->isSubClassOf("SDTCisFP")) { 779 ConstraintType = SDTCisFP; 780 } else if (R->isSubClassOf("SDTCisVec")) { 781 ConstraintType = SDTCisVec; 782 } else if (R->isSubClassOf("SDTCisSameAs")) { 783 ConstraintType = SDTCisSameAs; 784 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 785 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 786 ConstraintType = SDTCisVTSmallerThanOp; 787 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 788 R->getValueAsInt("OtherOperandNum"); 789 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 790 ConstraintType = SDTCisOpSmallerThanOp; 791 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 792 R->getValueAsInt("BigOperandNum"); 793 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 794 ConstraintType = SDTCisEltOfVec; 795 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 796 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 797 ConstraintType = SDTCisSubVecOfVec; 798 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 799 R->getValueAsInt("OtherOpNum"); 800 } else { 801 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 802 exit(1); 803 } 804 } 805 806 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 807 /// N, and the result number in ResNo. 808 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 809 const SDNodeInfo &NodeInfo, 810 unsigned &ResNo) { 811 unsigned NumResults = NodeInfo.getNumResults(); 812 if (OpNo < NumResults) { 813 ResNo = OpNo; 814 return N; 815 } 816 817 OpNo -= NumResults; 818 819 if (OpNo >= N->getNumChildren()) { 820 errs() << "Invalid operand number in type constraint " 821 << (OpNo+NumResults) << " "; 822 N->dump(); 823 errs() << '\n'; 824 exit(1); 825 } 826 827 return N->getChild(OpNo); 828 } 829 830 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 831 /// constraint to the nodes operands. This returns true if it makes a 832 /// change, false otherwise. If a type contradiction is found, throw an 833 /// exception. 834 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 835 const SDNodeInfo &NodeInfo, 836 TreePattern &TP) const { 837 unsigned ResNo = 0; // The result number being referenced. 838 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 839 840 switch (ConstraintType) { 841 case SDTCisVT: 842 // Operand must be a particular type. 843 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 844 case SDTCisPtrTy: 845 // Operand must be same as target pointer type. 846 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 847 case SDTCisInt: 848 // Require it to be one of the legal integer VTs. 849 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 850 case SDTCisFP: 851 // Require it to be one of the legal fp VTs. 852 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 853 case SDTCisVec: 854 // Require it to be one of the legal vector VTs. 855 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 856 case SDTCisSameAs: { 857 unsigned OResNo = 0; 858 TreePatternNode *OtherNode = 859 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 860 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 861 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 862 } 863 case SDTCisVTSmallerThanOp: { 864 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 865 // have an integer type that is smaller than the VT. 866 if (!NodeToApply->isLeaf() || 867 !isa<DefInit>(NodeToApply->getLeafValue()) || 868 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 869 ->isSubClassOf("ValueType")) 870 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 871 MVT::SimpleValueType VT = 872 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 873 874 EEVT::TypeSet TypeListTmp(VT, TP); 875 876 unsigned OResNo = 0; 877 TreePatternNode *OtherNode = 878 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 879 OResNo); 880 881 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 882 } 883 case SDTCisOpSmallerThanOp: { 884 unsigned BResNo = 0; 885 TreePatternNode *BigOperand = 886 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 887 BResNo); 888 return NodeToApply->getExtType(ResNo). 889 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 890 } 891 case SDTCisEltOfVec: { 892 unsigned VResNo = 0; 893 TreePatternNode *VecOperand = 894 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 895 VResNo); 896 897 // Filter vector types out of VecOperand that don't have the right element 898 // type. 899 return VecOperand->getExtType(VResNo). 900 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 901 } 902 case SDTCisSubVecOfVec: { 903 unsigned VResNo = 0; 904 TreePatternNode *BigVecOperand = 905 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 906 VResNo); 907 908 // Filter vector types out of BigVecOperand that don't have the 909 // right subvector type. 910 return BigVecOperand->getExtType(VResNo). 911 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 912 } 913 } 914 llvm_unreachable("Invalid ConstraintType!"); 915 } 916 917 //===----------------------------------------------------------------------===// 918 // SDNodeInfo implementation 919 // 920 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 921 EnumName = R->getValueAsString("Opcode"); 922 SDClassName = R->getValueAsString("SDClass"); 923 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 924 NumResults = TypeProfile->getValueAsInt("NumResults"); 925 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 926 927 // Parse the properties. 928 Properties = 0; 929 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 930 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 931 if (PropList[i]->getName() == "SDNPCommutative") { 932 Properties |= 1 << SDNPCommutative; 933 } else if (PropList[i]->getName() == "SDNPAssociative") { 934 Properties |= 1 << SDNPAssociative; 935 } else if (PropList[i]->getName() == "SDNPHasChain") { 936 Properties |= 1 << SDNPHasChain; 937 } else if (PropList[i]->getName() == "SDNPOutGlue") { 938 Properties |= 1 << SDNPOutGlue; 939 } else if (PropList[i]->getName() == "SDNPInGlue") { 940 Properties |= 1 << SDNPInGlue; 941 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 942 Properties |= 1 << SDNPOptInGlue; 943 } else if (PropList[i]->getName() == "SDNPMayStore") { 944 Properties |= 1 << SDNPMayStore; 945 } else if (PropList[i]->getName() == "SDNPMayLoad") { 946 Properties |= 1 << SDNPMayLoad; 947 } else if (PropList[i]->getName() == "SDNPSideEffect") { 948 Properties |= 1 << SDNPSideEffect; 949 } else if (PropList[i]->getName() == "SDNPMemOperand") { 950 Properties |= 1 << SDNPMemOperand; 951 } else if (PropList[i]->getName() == "SDNPVariadic") { 952 Properties |= 1 << SDNPVariadic; 953 } else { 954 errs() << "Unknown SD Node property '" << PropList[i]->getName() 955 << "' on node '" << R->getName() << "'!\n"; 956 exit(1); 957 } 958 } 959 960 961 // Parse the type constraints. 962 std::vector<Record*> ConstraintList = 963 TypeProfile->getValueAsListOfDefs("Constraints"); 964 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 965 } 966 967 /// getKnownType - If the type constraints on this node imply a fixed type 968 /// (e.g. all stores return void, etc), then return it as an 969 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 970 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 971 unsigned NumResults = getNumResults(); 972 assert(NumResults <= 1 && 973 "We only work with nodes with zero or one result so far!"); 974 assert(ResNo == 0 && "Only handles single result nodes so far"); 975 976 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 977 // Make sure that this applies to the correct node result. 978 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 979 continue; 980 981 switch (TypeConstraints[i].ConstraintType) { 982 default: break; 983 case SDTypeConstraint::SDTCisVT: 984 return TypeConstraints[i].x.SDTCisVT_Info.VT; 985 case SDTypeConstraint::SDTCisPtrTy: 986 return MVT::iPTR; 987 } 988 } 989 return MVT::Other; 990 } 991 992 //===----------------------------------------------------------------------===// 993 // TreePatternNode implementation 994 // 995 996 TreePatternNode::~TreePatternNode() { 997 #if 0 // FIXME: implement refcounted tree nodes! 998 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 999 delete getChild(i); 1000 #endif 1001 } 1002 1003 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1004 if (Operator->getName() == "set" || 1005 Operator->getName() == "implicit") 1006 return 0; // All return nothing. 1007 1008 if (Operator->isSubClassOf("Intrinsic")) 1009 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1010 1011 if (Operator->isSubClassOf("SDNode")) 1012 return CDP.getSDNodeInfo(Operator).getNumResults(); 1013 1014 if (Operator->isSubClassOf("PatFrag")) { 1015 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1016 // the forward reference case where one pattern fragment references another 1017 // before it is processed. 1018 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1019 return PFRec->getOnlyTree()->getNumTypes(); 1020 1021 // Get the result tree. 1022 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1023 Record *Op = 0; 1024 if (Tree) 1025 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1026 Op = DI->getDef(); 1027 assert(Op && "Invalid Fragment"); 1028 return GetNumNodeResults(Op, CDP); 1029 } 1030 1031 if (Operator->isSubClassOf("Instruction")) { 1032 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1033 1034 // FIXME: Should allow access to all the results here. 1035 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1036 1037 // Add on one implicit def if it has a resolvable type. 1038 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1039 ++NumDefsToAdd; 1040 return NumDefsToAdd; 1041 } 1042 1043 if (Operator->isSubClassOf("SDNodeXForm")) 1044 return 1; // FIXME: Generalize SDNodeXForm 1045 1046 Operator->dump(); 1047 errs() << "Unhandled node in GetNumNodeResults\n"; 1048 exit(1); 1049 } 1050 1051 void TreePatternNode::print(raw_ostream &OS) const { 1052 if (isLeaf()) 1053 OS << *getLeafValue(); 1054 else 1055 OS << '(' << getOperator()->getName(); 1056 1057 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1058 OS << ':' << getExtType(i).getName(); 1059 1060 if (!isLeaf()) { 1061 if (getNumChildren() != 0) { 1062 OS << " "; 1063 getChild(0)->print(OS); 1064 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1065 OS << ", "; 1066 getChild(i)->print(OS); 1067 } 1068 } 1069 OS << ")"; 1070 } 1071 1072 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1073 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1074 if (TransformFn) 1075 OS << "<<X:" << TransformFn->getName() << ">>"; 1076 if (!getName().empty()) 1077 OS << ":$" << getName(); 1078 1079 } 1080 void TreePatternNode::dump() const { 1081 print(errs()); 1082 } 1083 1084 /// isIsomorphicTo - Return true if this node is recursively 1085 /// isomorphic to the specified node. For this comparison, the node's 1086 /// entire state is considered. The assigned name is ignored, since 1087 /// nodes with differing names are considered isomorphic. However, if 1088 /// the assigned name is present in the dependent variable set, then 1089 /// the assigned name is considered significant and the node is 1090 /// isomorphic if the names match. 1091 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1092 const MultipleUseVarSet &DepVars) const { 1093 if (N == this) return true; 1094 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1095 getPredicateFns() != N->getPredicateFns() || 1096 getTransformFn() != N->getTransformFn()) 1097 return false; 1098 1099 if (isLeaf()) { 1100 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1101 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1102 return ((DI->getDef() == NDI->getDef()) 1103 && (DepVars.find(getName()) == DepVars.end() 1104 || getName() == N->getName())); 1105 } 1106 } 1107 return getLeafValue() == N->getLeafValue(); 1108 } 1109 1110 if (N->getOperator() != getOperator() || 1111 N->getNumChildren() != getNumChildren()) return false; 1112 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1113 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1114 return false; 1115 return true; 1116 } 1117 1118 /// clone - Make a copy of this tree and all of its children. 1119 /// 1120 TreePatternNode *TreePatternNode::clone() const { 1121 TreePatternNode *New; 1122 if (isLeaf()) { 1123 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1124 } else { 1125 std::vector<TreePatternNode*> CChildren; 1126 CChildren.reserve(Children.size()); 1127 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1128 CChildren.push_back(getChild(i)->clone()); 1129 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1130 } 1131 New->setName(getName()); 1132 New->Types = Types; 1133 New->setPredicateFns(getPredicateFns()); 1134 New->setTransformFn(getTransformFn()); 1135 return New; 1136 } 1137 1138 /// RemoveAllTypes - Recursively strip all the types of this tree. 1139 void TreePatternNode::RemoveAllTypes() { 1140 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1141 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1142 if (isLeaf()) return; 1143 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1144 getChild(i)->RemoveAllTypes(); 1145 } 1146 1147 1148 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1149 /// with actual values specified by ArgMap. 1150 void TreePatternNode:: 1151 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1152 if (isLeaf()) return; 1153 1154 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1155 TreePatternNode *Child = getChild(i); 1156 if (Child->isLeaf()) { 1157 Init *Val = Child->getLeafValue(); 1158 if (isa<DefInit>(Val) && 1159 cast<DefInit>(Val)->getDef()->getName() == "node") { 1160 // We found a use of a formal argument, replace it with its value. 1161 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1162 assert(NewChild && "Couldn't find formal argument!"); 1163 assert((Child->getPredicateFns().empty() || 1164 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1165 "Non-empty child predicate clobbered!"); 1166 setChild(i, NewChild); 1167 } 1168 } else { 1169 getChild(i)->SubstituteFormalArguments(ArgMap); 1170 } 1171 } 1172 } 1173 1174 1175 /// InlinePatternFragments - If this pattern refers to any pattern 1176 /// fragments, inline them into place, giving us a pattern without any 1177 /// PatFrag references. 1178 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1179 if (isLeaf()) return this; // nothing to do. 1180 Record *Op = getOperator(); 1181 1182 if (!Op->isSubClassOf("PatFrag")) { 1183 // Just recursively inline children nodes. 1184 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1185 TreePatternNode *Child = getChild(i); 1186 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1187 1188 assert((Child->getPredicateFns().empty() || 1189 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1190 "Non-empty child predicate clobbered!"); 1191 1192 setChild(i, NewChild); 1193 } 1194 return this; 1195 } 1196 1197 // Otherwise, we found a reference to a fragment. First, look up its 1198 // TreePattern record. 1199 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1200 1201 // Verify that we are passing the right number of operands. 1202 if (Frag->getNumArgs() != Children.size()) 1203 TP.error("'" + Op->getName() + "' fragment requires " + 1204 utostr(Frag->getNumArgs()) + " operands!"); 1205 1206 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1207 1208 TreePredicateFn PredFn(Frag); 1209 if (!PredFn.isAlwaysTrue()) 1210 FragTree->addPredicateFn(PredFn); 1211 1212 // Resolve formal arguments to their actual value. 1213 if (Frag->getNumArgs()) { 1214 // Compute the map of formal to actual arguments. 1215 std::map<std::string, TreePatternNode*> ArgMap; 1216 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1217 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1218 1219 FragTree->SubstituteFormalArguments(ArgMap); 1220 } 1221 1222 FragTree->setName(getName()); 1223 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1224 FragTree->UpdateNodeType(i, getExtType(i), TP); 1225 1226 // Transfer in the old predicates. 1227 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1228 FragTree->addPredicateFn(getPredicateFns()[i]); 1229 1230 // Get a new copy of this fragment to stitch into here. 1231 //delete this; // FIXME: implement refcounting! 1232 1233 // The fragment we inlined could have recursive inlining that is needed. See 1234 // if there are any pattern fragments in it and inline them as needed. 1235 return FragTree->InlinePatternFragments(TP); 1236 } 1237 1238 /// getImplicitType - Check to see if the specified record has an implicit 1239 /// type which should be applied to it. This will infer the type of register 1240 /// references from the register file information, for example. 1241 /// 1242 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1243 bool NotRegisters, TreePattern &TP) { 1244 // Check to see if this is a register operand. 1245 if (R->isSubClassOf("RegisterOperand")) { 1246 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1247 if (NotRegisters) 1248 return EEVT::TypeSet(); // Unknown. 1249 Record *RegClass = R->getValueAsDef("RegClass"); 1250 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1251 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1252 } 1253 1254 // Check to see if this is a register or a register class. 1255 if (R->isSubClassOf("RegisterClass")) { 1256 assert(ResNo == 0 && "Regclass ref only has one result!"); 1257 if (NotRegisters) 1258 return EEVT::TypeSet(); // Unknown. 1259 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1260 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1261 } 1262 1263 if (R->isSubClassOf("PatFrag")) { 1264 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1265 // Pattern fragment types will be resolved when they are inlined. 1266 return EEVT::TypeSet(); // Unknown. 1267 } 1268 1269 if (R->isSubClassOf("Register")) { 1270 assert(ResNo == 0 && "Registers only produce one result!"); 1271 if (NotRegisters) 1272 return EEVT::TypeSet(); // Unknown. 1273 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1274 return EEVT::TypeSet(T.getRegisterVTs(R)); 1275 } 1276 1277 if (R->isSubClassOf("SubRegIndex")) { 1278 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1279 return EEVT::TypeSet(); 1280 } 1281 1282 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1283 assert(ResNo == 0 && "This node only has one result!"); 1284 // Using a VTSDNode or CondCodeSDNode. 1285 return EEVT::TypeSet(MVT::Other, TP); 1286 } 1287 1288 if (R->isSubClassOf("ComplexPattern")) { 1289 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1290 if (NotRegisters) 1291 return EEVT::TypeSet(); // Unknown. 1292 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1293 TP); 1294 } 1295 if (R->isSubClassOf("PointerLikeRegClass")) { 1296 assert(ResNo == 0 && "Regclass can only have one result!"); 1297 return EEVT::TypeSet(MVT::iPTR, TP); 1298 } 1299 1300 if (R->getName() == "node" || R->getName() == "srcvalue" || 1301 R->getName() == "zero_reg") { 1302 // Placeholder. 1303 return EEVT::TypeSet(); // Unknown. 1304 } 1305 1306 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1307 return EEVT::TypeSet(MVT::Other, TP); 1308 } 1309 1310 1311 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1312 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1313 const CodeGenIntrinsic *TreePatternNode:: 1314 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1315 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1316 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1317 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1318 return 0; 1319 1320 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1321 return &CDP.getIntrinsicInfo(IID); 1322 } 1323 1324 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1325 /// return the ComplexPattern information, otherwise return null. 1326 const ComplexPattern * 1327 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1328 if (!isLeaf()) return 0; 1329 1330 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1331 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1332 return &CGP.getComplexPattern(DI->getDef()); 1333 return 0; 1334 } 1335 1336 /// NodeHasProperty - Return true if this node has the specified property. 1337 bool TreePatternNode::NodeHasProperty(SDNP Property, 1338 const CodeGenDAGPatterns &CGP) const { 1339 if (isLeaf()) { 1340 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1341 return CP->hasProperty(Property); 1342 return false; 1343 } 1344 1345 Record *Operator = getOperator(); 1346 if (!Operator->isSubClassOf("SDNode")) return false; 1347 1348 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1349 } 1350 1351 1352 1353 1354 /// TreeHasProperty - Return true if any node in this tree has the specified 1355 /// property. 1356 bool TreePatternNode::TreeHasProperty(SDNP Property, 1357 const CodeGenDAGPatterns &CGP) const { 1358 if (NodeHasProperty(Property, CGP)) 1359 return true; 1360 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1361 if (getChild(i)->TreeHasProperty(Property, CGP)) 1362 return true; 1363 return false; 1364 } 1365 1366 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1367 /// commutative intrinsic. 1368 bool 1369 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1370 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1371 return Int->isCommutative; 1372 return false; 1373 } 1374 1375 1376 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1377 /// this node and its children in the tree. This returns true if it makes a 1378 /// change, false otherwise. If a type contradiction is found, throw an 1379 /// exception. 1380 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1381 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1382 if (isLeaf()) { 1383 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1384 // If it's a regclass or something else known, include the type. 1385 bool MadeChange = false; 1386 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1387 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1388 NotRegisters, TP), TP); 1389 return MadeChange; 1390 } 1391 1392 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1393 assert(Types.size() == 1 && "Invalid IntInit"); 1394 1395 // Int inits are always integers. :) 1396 bool MadeChange = Types[0].EnforceInteger(TP); 1397 1398 if (!Types[0].isConcrete()) 1399 return MadeChange; 1400 1401 MVT::SimpleValueType VT = getType(0); 1402 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1403 return MadeChange; 1404 1405 unsigned Size = EVT(VT).getSizeInBits(); 1406 // Make sure that the value is representable for this type. 1407 if (Size >= 32) return MadeChange; 1408 1409 // Check that the value doesn't use more bits than we have. It must either 1410 // be a sign- or zero-extended equivalent of the original. 1411 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1412 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1413 return MadeChange; 1414 1415 TP.error("Integer value '" + itostr(II->getValue()) + 1416 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1417 return MadeChange; 1418 } 1419 return false; 1420 } 1421 1422 // special handling for set, which isn't really an SDNode. 1423 if (getOperator()->getName() == "set") { 1424 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1425 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1426 unsigned NC = getNumChildren(); 1427 1428 TreePatternNode *SetVal = getChild(NC-1); 1429 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1430 1431 for (unsigned i = 0; i < NC-1; ++i) { 1432 TreePatternNode *Child = getChild(i); 1433 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1434 1435 // Types of operands must match. 1436 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1437 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1438 } 1439 return MadeChange; 1440 } 1441 1442 if (getOperator()->getName() == "implicit") { 1443 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1444 1445 bool MadeChange = false; 1446 for (unsigned i = 0; i < getNumChildren(); ++i) 1447 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1448 return MadeChange; 1449 } 1450 1451 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1452 bool MadeChange = false; 1453 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1454 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1455 1456 assert(getChild(0)->getNumTypes() == 1 && 1457 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1458 1459 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1460 // what type it gets, so if it didn't get a concrete type just give it the 1461 // first viable type from the reg class. 1462 if (!getChild(1)->hasTypeSet(0) && 1463 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1464 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1465 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1466 } 1467 return MadeChange; 1468 } 1469 1470 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1471 bool MadeChange = false; 1472 1473 // Apply the result type to the node. 1474 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1475 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1476 1477 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1478 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1479 1480 if (getNumChildren() != NumParamVTs + 1) 1481 TP.error("Intrinsic '" + Int->Name + "' expects " + 1482 utostr(NumParamVTs) + " operands, not " + 1483 utostr(getNumChildren() - 1) + " operands!"); 1484 1485 // Apply type info to the intrinsic ID. 1486 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1487 1488 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1489 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1490 1491 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1492 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1493 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1494 } 1495 return MadeChange; 1496 } 1497 1498 if (getOperator()->isSubClassOf("SDNode")) { 1499 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1500 1501 // Check that the number of operands is sane. Negative operands -> varargs. 1502 if (NI.getNumOperands() >= 0 && 1503 getNumChildren() != (unsigned)NI.getNumOperands()) 1504 TP.error(getOperator()->getName() + " node requires exactly " + 1505 itostr(NI.getNumOperands()) + " operands!"); 1506 1507 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1508 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1509 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1510 return MadeChange; 1511 } 1512 1513 if (getOperator()->isSubClassOf("Instruction")) { 1514 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1515 CodeGenInstruction &InstInfo = 1516 CDP.getTargetInfo().getInstruction(getOperator()); 1517 1518 bool MadeChange = false; 1519 1520 // Apply the result types to the node, these come from the things in the 1521 // (outs) list of the instruction. 1522 // FIXME: Cap at one result so far. 1523 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1524 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1525 Record *ResultNode = Inst.getResult(ResNo); 1526 1527 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1528 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1529 } else if (ResultNode->isSubClassOf("RegisterOperand")) { 1530 Record *RegClass = ResultNode->getValueAsDef("RegClass"); 1531 const CodeGenRegisterClass &RC = 1532 CDP.getTargetInfo().getRegisterClass(RegClass); 1533 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1534 } else if (ResultNode->isSubClassOf("unknown_class")) { 1535 // Nothing to do. 1536 } else { 1537 assert(ResultNode->isSubClassOf("RegisterClass") && 1538 "Operands should be register classes!"); 1539 const CodeGenRegisterClass &RC = 1540 CDP.getTargetInfo().getRegisterClass(ResultNode); 1541 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1542 } 1543 } 1544 1545 // If the instruction has implicit defs, we apply the first one as a result. 1546 // FIXME: This sucks, it should apply all implicit defs. 1547 if (!InstInfo.ImplicitDefs.empty()) { 1548 unsigned ResNo = NumResultsToAdd; 1549 1550 // FIXME: Generalize to multiple possible types and multiple possible 1551 // ImplicitDefs. 1552 MVT::SimpleValueType VT = 1553 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1554 1555 if (VT != MVT::Other) 1556 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1557 } 1558 1559 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1560 // be the same. 1561 if (getOperator()->getName() == "INSERT_SUBREG") { 1562 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1563 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1564 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1565 } 1566 1567 unsigned ChildNo = 0; 1568 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1569 Record *OperandNode = Inst.getOperand(i); 1570 1571 // If the instruction expects a predicate or optional def operand, we 1572 // codegen this by setting the operand to it's default value if it has a 1573 // non-empty DefaultOps field. 1574 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1575 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1576 continue; 1577 1578 // Verify that we didn't run out of provided operands. 1579 if (ChildNo >= getNumChildren()) 1580 TP.error("Instruction '" + getOperator()->getName() + 1581 "' expects more operands than were provided."); 1582 1583 MVT::SimpleValueType VT; 1584 TreePatternNode *Child = getChild(ChildNo++); 1585 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1586 1587 if (OperandNode->isSubClassOf("RegisterClass")) { 1588 const CodeGenRegisterClass &RC = 1589 CDP.getTargetInfo().getRegisterClass(OperandNode); 1590 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1591 } else if (OperandNode->isSubClassOf("RegisterOperand")) { 1592 Record *RegClass = OperandNode->getValueAsDef("RegClass"); 1593 const CodeGenRegisterClass &RC = 1594 CDP.getTargetInfo().getRegisterClass(RegClass); 1595 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1596 } else if (OperandNode->isSubClassOf("Operand")) { 1597 VT = getValueType(OperandNode->getValueAsDef("Type")); 1598 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1599 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1600 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1601 } else if (OperandNode->isSubClassOf("unknown_class")) { 1602 // Nothing to do. 1603 } else 1604 llvm_unreachable("Unknown operand type!"); 1605 1606 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1607 } 1608 1609 if (ChildNo != getNumChildren()) 1610 TP.error("Instruction '" + getOperator()->getName() + 1611 "' was provided too many operands!"); 1612 1613 return MadeChange; 1614 } 1615 1616 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1617 1618 // Node transforms always take one operand. 1619 if (getNumChildren() != 1) 1620 TP.error("Node transform '" + getOperator()->getName() + 1621 "' requires one operand!"); 1622 1623 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1624 1625 1626 // If either the output or input of the xform does not have exact 1627 // type info. We assume they must be the same. Otherwise, it is perfectly 1628 // legal to transform from one type to a completely different type. 1629 #if 0 1630 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1631 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1632 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1633 return MadeChange; 1634 } 1635 #endif 1636 return MadeChange; 1637 } 1638 1639 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1640 /// RHS of a commutative operation, not the on LHS. 1641 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1642 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1643 return true; 1644 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1645 return true; 1646 return false; 1647 } 1648 1649 1650 /// canPatternMatch - If it is impossible for this pattern to match on this 1651 /// target, fill in Reason and return false. Otherwise, return true. This is 1652 /// used as a sanity check for .td files (to prevent people from writing stuff 1653 /// that can never possibly work), and to prevent the pattern permuter from 1654 /// generating stuff that is useless. 1655 bool TreePatternNode::canPatternMatch(std::string &Reason, 1656 const CodeGenDAGPatterns &CDP) { 1657 if (isLeaf()) return true; 1658 1659 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1660 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1661 return false; 1662 1663 // If this is an intrinsic, handle cases that would make it not match. For 1664 // example, if an operand is required to be an immediate. 1665 if (getOperator()->isSubClassOf("Intrinsic")) { 1666 // TODO: 1667 return true; 1668 } 1669 1670 // If this node is a commutative operator, check that the LHS isn't an 1671 // immediate. 1672 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1673 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1674 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1675 // Scan all of the operands of the node and make sure that only the last one 1676 // is a constant node, unless the RHS also is. 1677 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1678 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1679 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1680 if (OnlyOnRHSOfCommutative(getChild(i))) { 1681 Reason="Immediate value must be on the RHS of commutative operators!"; 1682 return false; 1683 } 1684 } 1685 } 1686 1687 return true; 1688 } 1689 1690 //===----------------------------------------------------------------------===// 1691 // TreePattern implementation 1692 // 1693 1694 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1695 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1696 isInputPattern = isInput; 1697 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1698 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1699 } 1700 1701 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1702 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1703 isInputPattern = isInput; 1704 Trees.push_back(ParseTreePattern(Pat, "")); 1705 } 1706 1707 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1708 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1709 isInputPattern = isInput; 1710 Trees.push_back(Pat); 1711 } 1712 1713 void TreePattern::error(const std::string &Msg) const { 1714 dump(); 1715 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1716 } 1717 1718 void TreePattern::ComputeNamedNodes() { 1719 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1720 ComputeNamedNodes(Trees[i]); 1721 } 1722 1723 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1724 if (!N->getName().empty()) 1725 NamedNodes[N->getName()].push_back(N); 1726 1727 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1728 ComputeNamedNodes(N->getChild(i)); 1729 } 1730 1731 1732 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1733 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 1734 Record *R = DI->getDef(); 1735 1736 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1737 // TreePatternNode of its own. For example: 1738 /// (foo GPR, imm) -> (foo GPR, (imm)) 1739 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1740 return ParseTreePattern( 1741 DagInit::get(DI, "", 1742 std::vector<std::pair<Init*, std::string> >()), 1743 OpName); 1744 1745 // Input argument? 1746 TreePatternNode *Res = new TreePatternNode(DI, 1); 1747 if (R->getName() == "node" && !OpName.empty()) { 1748 if (OpName.empty()) 1749 error("'node' argument requires a name to match with operand list"); 1750 Args.push_back(OpName); 1751 } 1752 1753 Res->setName(OpName); 1754 return Res; 1755 } 1756 1757 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 1758 if (!OpName.empty()) 1759 error("Constant int argument should not have a name!"); 1760 return new TreePatternNode(II, 1); 1761 } 1762 1763 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 1764 // Turn this into an IntInit. 1765 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1766 if (II == 0 || !isa<IntInit>(II)) 1767 error("Bits value must be constants!"); 1768 return ParseTreePattern(II, OpName); 1769 } 1770 1771 DagInit *Dag = dyn_cast<DagInit>(TheInit); 1772 if (!Dag) { 1773 TheInit->dump(); 1774 error("Pattern has unexpected init kind!"); 1775 } 1776 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 1777 if (!OpDef) error("Pattern has unexpected operator type!"); 1778 Record *Operator = OpDef->getDef(); 1779 1780 if (Operator->isSubClassOf("ValueType")) { 1781 // If the operator is a ValueType, then this must be "type cast" of a leaf 1782 // node. 1783 if (Dag->getNumArgs() != 1) 1784 error("Type cast only takes one operand!"); 1785 1786 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1787 1788 // Apply the type cast. 1789 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1790 New->UpdateNodeType(0, getValueType(Operator), *this); 1791 1792 if (!OpName.empty()) 1793 error("ValueType cast should not have a name!"); 1794 return New; 1795 } 1796 1797 // Verify that this is something that makes sense for an operator. 1798 if (!Operator->isSubClassOf("PatFrag") && 1799 !Operator->isSubClassOf("SDNode") && 1800 !Operator->isSubClassOf("Instruction") && 1801 !Operator->isSubClassOf("SDNodeXForm") && 1802 !Operator->isSubClassOf("Intrinsic") && 1803 Operator->getName() != "set" && 1804 Operator->getName() != "implicit") 1805 error("Unrecognized node '" + Operator->getName() + "'!"); 1806 1807 // Check to see if this is something that is illegal in an input pattern. 1808 if (isInputPattern) { 1809 if (Operator->isSubClassOf("Instruction") || 1810 Operator->isSubClassOf("SDNodeXForm")) 1811 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1812 } else { 1813 if (Operator->isSubClassOf("Intrinsic")) 1814 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1815 1816 if (Operator->isSubClassOf("SDNode") && 1817 Operator->getName() != "imm" && 1818 Operator->getName() != "fpimm" && 1819 Operator->getName() != "tglobaltlsaddr" && 1820 Operator->getName() != "tconstpool" && 1821 Operator->getName() != "tjumptable" && 1822 Operator->getName() != "tframeindex" && 1823 Operator->getName() != "texternalsym" && 1824 Operator->getName() != "tblockaddress" && 1825 Operator->getName() != "tglobaladdr" && 1826 Operator->getName() != "bb" && 1827 Operator->getName() != "vt") 1828 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1829 } 1830 1831 std::vector<TreePatternNode*> Children; 1832 1833 // Parse all the operands. 1834 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1835 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1836 1837 // If the operator is an intrinsic, then this is just syntactic sugar for for 1838 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1839 // convert the intrinsic name to a number. 1840 if (Operator->isSubClassOf("Intrinsic")) { 1841 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1842 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1843 1844 // If this intrinsic returns void, it must have side-effects and thus a 1845 // chain. 1846 if (Int.IS.RetVTs.empty()) 1847 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1848 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1849 // Has side-effects, requires chain. 1850 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1851 else // Otherwise, no chain. 1852 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1853 1854 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 1855 Children.insert(Children.begin(), IIDNode); 1856 } 1857 1858 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1859 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1860 Result->setName(OpName); 1861 1862 if (!Dag->getName().empty()) { 1863 assert(Result->getName().empty()); 1864 Result->setName(Dag->getName()); 1865 } 1866 return Result; 1867 } 1868 1869 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1870 /// will never match in favor of something obvious that will. This is here 1871 /// strictly as a convenience to target authors because it allows them to write 1872 /// more type generic things and have useless type casts fold away. 1873 /// 1874 /// This returns true if any change is made. 1875 static bool SimplifyTree(TreePatternNode *&N) { 1876 if (N->isLeaf()) 1877 return false; 1878 1879 // If we have a bitconvert with a resolved type and if the source and 1880 // destination types are the same, then the bitconvert is useless, remove it. 1881 if (N->getOperator()->getName() == "bitconvert" && 1882 N->getExtType(0).isConcrete() && 1883 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1884 N->getName().empty()) { 1885 N = N->getChild(0); 1886 SimplifyTree(N); 1887 return true; 1888 } 1889 1890 // Walk all children. 1891 bool MadeChange = false; 1892 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1893 TreePatternNode *Child = N->getChild(i); 1894 MadeChange |= SimplifyTree(Child); 1895 N->setChild(i, Child); 1896 } 1897 return MadeChange; 1898 } 1899 1900 1901 1902 /// InferAllTypes - Infer/propagate as many types throughout the expression 1903 /// patterns as possible. Return true if all types are inferred, false 1904 /// otherwise. Throw an exception if a type contradiction is found. 1905 bool TreePattern:: 1906 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1907 if (NamedNodes.empty()) 1908 ComputeNamedNodes(); 1909 1910 bool MadeChange = true; 1911 while (MadeChange) { 1912 MadeChange = false; 1913 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1914 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1915 MadeChange |= SimplifyTree(Trees[i]); 1916 } 1917 1918 // If there are constraints on our named nodes, apply them. 1919 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1920 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1921 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1922 1923 // If we have input named node types, propagate their types to the named 1924 // values here. 1925 if (InNamedTypes) { 1926 // FIXME: Should be error? 1927 assert(InNamedTypes->count(I->getKey()) && 1928 "Named node in output pattern but not input pattern?"); 1929 1930 const SmallVectorImpl<TreePatternNode*> &InNodes = 1931 InNamedTypes->find(I->getKey())->second; 1932 1933 // The input types should be fully resolved by now. 1934 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1935 // If this node is a register class, and it is the root of the pattern 1936 // then we're mapping something onto an input register. We allow 1937 // changing the type of the input register in this case. This allows 1938 // us to match things like: 1939 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1940 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1941 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue()); 1942 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 1943 DI->getDef()->isSubClassOf("RegisterOperand"))) 1944 continue; 1945 } 1946 1947 assert(Nodes[i]->getNumTypes() == 1 && 1948 InNodes[0]->getNumTypes() == 1 && 1949 "FIXME: cannot name multiple result nodes yet"); 1950 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1951 *this); 1952 } 1953 } 1954 1955 // If there are multiple nodes with the same name, they must all have the 1956 // same type. 1957 if (I->second.size() > 1) { 1958 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1959 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1960 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1961 "FIXME: cannot name multiple result nodes yet"); 1962 1963 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1964 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1965 } 1966 } 1967 } 1968 } 1969 1970 bool HasUnresolvedTypes = false; 1971 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1972 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1973 return !HasUnresolvedTypes; 1974 } 1975 1976 void TreePattern::print(raw_ostream &OS) const { 1977 OS << getRecord()->getName(); 1978 if (!Args.empty()) { 1979 OS << "(" << Args[0]; 1980 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1981 OS << ", " << Args[i]; 1982 OS << ")"; 1983 } 1984 OS << ": "; 1985 1986 if (Trees.size() > 1) 1987 OS << "[\n"; 1988 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1989 OS << "\t"; 1990 Trees[i]->print(OS); 1991 OS << "\n"; 1992 } 1993 1994 if (Trees.size() > 1) 1995 OS << "]\n"; 1996 } 1997 1998 void TreePattern::dump() const { print(errs()); } 1999 2000 //===----------------------------------------------------------------------===// 2001 // CodeGenDAGPatterns implementation 2002 // 2003 2004 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2005 Records(R), Target(R) { 2006 2007 Intrinsics = LoadIntrinsics(Records, false); 2008 TgtIntrinsics = LoadIntrinsics(Records, true); 2009 ParseNodeInfo(); 2010 ParseNodeTransforms(); 2011 ParseComplexPatterns(); 2012 ParsePatternFragments(); 2013 ParseDefaultOperands(); 2014 ParseInstructions(); 2015 ParsePatterns(); 2016 2017 // Generate variants. For example, commutative patterns can match 2018 // multiple ways. Add them to PatternsToMatch as well. 2019 GenerateVariants(); 2020 2021 // Infer instruction flags. For example, we can detect loads, 2022 // stores, and side effects in many cases by examining an 2023 // instruction's pattern. 2024 InferInstructionFlags(); 2025 2026 // Verify that instruction flags match the patterns. 2027 VerifyInstructionFlags(); 2028 } 2029 2030 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2031 for (pf_iterator I = PatternFragments.begin(), 2032 E = PatternFragments.end(); I != E; ++I) 2033 delete I->second; 2034 } 2035 2036 2037 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2038 Record *N = Records.getDef(Name); 2039 if (!N || !N->isSubClassOf("SDNode")) { 2040 errs() << "Error getting SDNode '" << Name << "'!\n"; 2041 exit(1); 2042 } 2043 return N; 2044 } 2045 2046 // Parse all of the SDNode definitions for the target, populating SDNodes. 2047 void CodeGenDAGPatterns::ParseNodeInfo() { 2048 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2049 while (!Nodes.empty()) { 2050 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2051 Nodes.pop_back(); 2052 } 2053 2054 // Get the builtin intrinsic nodes. 2055 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2056 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2057 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2058 } 2059 2060 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2061 /// map, and emit them to the file as functions. 2062 void CodeGenDAGPatterns::ParseNodeTransforms() { 2063 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2064 while (!Xforms.empty()) { 2065 Record *XFormNode = Xforms.back(); 2066 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2067 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2068 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2069 2070 Xforms.pop_back(); 2071 } 2072 } 2073 2074 void CodeGenDAGPatterns::ParseComplexPatterns() { 2075 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2076 while (!AMs.empty()) { 2077 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2078 AMs.pop_back(); 2079 } 2080 } 2081 2082 2083 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2084 /// file, building up the PatternFragments map. After we've collected them all, 2085 /// inline fragments together as necessary, so that there are no references left 2086 /// inside a pattern fragment to a pattern fragment. 2087 /// 2088 void CodeGenDAGPatterns::ParsePatternFragments() { 2089 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2090 2091 // First step, parse all of the fragments. 2092 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2093 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2094 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2095 PatternFragments[Fragments[i]] = P; 2096 2097 // Validate the argument list, converting it to set, to discard duplicates. 2098 std::vector<std::string> &Args = P->getArgList(); 2099 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2100 2101 if (OperandsSet.count("")) 2102 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2103 2104 // Parse the operands list. 2105 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2106 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2107 // Special cases: ops == outs == ins. Different names are used to 2108 // improve readability. 2109 if (!OpsOp || 2110 (OpsOp->getDef()->getName() != "ops" && 2111 OpsOp->getDef()->getName() != "outs" && 2112 OpsOp->getDef()->getName() != "ins")) 2113 P->error("Operands list should start with '(ops ... '!"); 2114 2115 // Copy over the arguments. 2116 Args.clear(); 2117 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2118 if (!isa<DefInit>(OpsList->getArg(j)) || 2119 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2120 P->error("Operands list should all be 'node' values."); 2121 if (OpsList->getArgName(j).empty()) 2122 P->error("Operands list should have names for each operand!"); 2123 if (!OperandsSet.count(OpsList->getArgName(j))) 2124 P->error("'" + OpsList->getArgName(j) + 2125 "' does not occur in pattern or was multiply specified!"); 2126 OperandsSet.erase(OpsList->getArgName(j)); 2127 Args.push_back(OpsList->getArgName(j)); 2128 } 2129 2130 if (!OperandsSet.empty()) 2131 P->error("Operands list does not contain an entry for operand '" + 2132 *OperandsSet.begin() + "'!"); 2133 2134 // If there is a code init for this fragment, keep track of the fact that 2135 // this fragment uses it. 2136 TreePredicateFn PredFn(P); 2137 if (!PredFn.isAlwaysTrue()) 2138 P->getOnlyTree()->addPredicateFn(PredFn); 2139 2140 // If there is a node transformation corresponding to this, keep track of 2141 // it. 2142 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2143 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2144 P->getOnlyTree()->setTransformFn(Transform); 2145 } 2146 2147 // Now that we've parsed all of the tree fragments, do a closure on them so 2148 // that there are not references to PatFrags left inside of them. 2149 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2150 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2151 ThePat->InlinePatternFragments(); 2152 2153 // Infer as many types as possible. Don't worry about it if we don't infer 2154 // all of them, some may depend on the inputs of the pattern. 2155 try { 2156 ThePat->InferAllTypes(); 2157 } catch (...) { 2158 // If this pattern fragment is not supported by this target (no types can 2159 // satisfy its constraints), just ignore it. If the bogus pattern is 2160 // actually used by instructions, the type consistency error will be 2161 // reported there. 2162 } 2163 2164 // If debugging, print out the pattern fragment result. 2165 DEBUG(ThePat->dump()); 2166 } 2167 } 2168 2169 void CodeGenDAGPatterns::ParseDefaultOperands() { 2170 std::vector<Record*> DefaultOps; 2171 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2172 2173 // Find some SDNode. 2174 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2175 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2176 2177 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2178 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2179 2180 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2181 // SomeSDnode so that we can parse this. 2182 std::vector<std::pair<Init*, std::string> > Ops; 2183 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2184 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2185 DefaultInfo->getArgName(op))); 2186 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2187 2188 // Create a TreePattern to parse this. 2189 TreePattern P(DefaultOps[i], DI, false, *this); 2190 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2191 2192 // Copy the operands over into a DAGDefaultOperand. 2193 DAGDefaultOperand DefaultOpInfo; 2194 2195 TreePatternNode *T = P.getTree(0); 2196 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2197 TreePatternNode *TPN = T->getChild(op); 2198 while (TPN->ApplyTypeConstraints(P, false)) 2199 /* Resolve all types */; 2200 2201 if (TPN->ContainsUnresolvedType()) { 2202 throw "Value #" + utostr(i) + " of OperandWithDefaultOps '" + 2203 DefaultOps[i]->getName() +"' doesn't have a concrete type!"; 2204 } 2205 DefaultOpInfo.DefaultOps.push_back(TPN); 2206 } 2207 2208 // Insert it into the DefaultOperands map so we can find it later. 2209 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2210 } 2211 } 2212 2213 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2214 /// instruction input. Return true if this is a real use. 2215 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2216 std::map<std::string, TreePatternNode*> &InstInputs) { 2217 // No name -> not interesting. 2218 if (Pat->getName().empty()) { 2219 if (Pat->isLeaf()) { 2220 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2221 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2222 DI->getDef()->isSubClassOf("RegisterOperand"))) 2223 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2224 } 2225 return false; 2226 } 2227 2228 Record *Rec; 2229 if (Pat->isLeaf()) { 2230 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2231 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2232 Rec = DI->getDef(); 2233 } else { 2234 Rec = Pat->getOperator(); 2235 } 2236 2237 // SRCVALUE nodes are ignored. 2238 if (Rec->getName() == "srcvalue") 2239 return false; 2240 2241 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2242 if (!Slot) { 2243 Slot = Pat; 2244 return true; 2245 } 2246 Record *SlotRec; 2247 if (Slot->isLeaf()) { 2248 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2249 } else { 2250 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2251 SlotRec = Slot->getOperator(); 2252 } 2253 2254 // Ensure that the inputs agree if we've already seen this input. 2255 if (Rec != SlotRec) 2256 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2257 if (Slot->getExtTypes() != Pat->getExtTypes()) 2258 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2259 return true; 2260 } 2261 2262 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2263 /// part of "I", the instruction), computing the set of inputs and outputs of 2264 /// the pattern. Report errors if we see anything naughty. 2265 void CodeGenDAGPatterns:: 2266 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2267 std::map<std::string, TreePatternNode*> &InstInputs, 2268 std::map<std::string, TreePatternNode*>&InstResults, 2269 std::vector<Record*> &InstImpResults) { 2270 if (Pat->isLeaf()) { 2271 bool isUse = HandleUse(I, Pat, InstInputs); 2272 if (!isUse && Pat->getTransformFn()) 2273 I->error("Cannot specify a transform function for a non-input value!"); 2274 return; 2275 } 2276 2277 if (Pat->getOperator()->getName() == "implicit") { 2278 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2279 TreePatternNode *Dest = Pat->getChild(i); 2280 if (!Dest->isLeaf()) 2281 I->error("implicitly defined value should be a register!"); 2282 2283 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2284 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2285 I->error("implicitly defined value should be a register!"); 2286 InstImpResults.push_back(Val->getDef()); 2287 } 2288 return; 2289 } 2290 2291 if (Pat->getOperator()->getName() != "set") { 2292 // If this is not a set, verify that the children nodes are not void typed, 2293 // and recurse. 2294 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2295 if (Pat->getChild(i)->getNumTypes() == 0) 2296 I->error("Cannot have void nodes inside of patterns!"); 2297 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2298 InstImpResults); 2299 } 2300 2301 // If this is a non-leaf node with no children, treat it basically as if 2302 // it were a leaf. This handles nodes like (imm). 2303 bool isUse = HandleUse(I, Pat, InstInputs); 2304 2305 if (!isUse && Pat->getTransformFn()) 2306 I->error("Cannot specify a transform function for a non-input value!"); 2307 return; 2308 } 2309 2310 // Otherwise, this is a set, validate and collect instruction results. 2311 if (Pat->getNumChildren() == 0) 2312 I->error("set requires operands!"); 2313 2314 if (Pat->getTransformFn()) 2315 I->error("Cannot specify a transform function on a set node!"); 2316 2317 // Check the set destinations. 2318 unsigned NumDests = Pat->getNumChildren()-1; 2319 for (unsigned i = 0; i != NumDests; ++i) { 2320 TreePatternNode *Dest = Pat->getChild(i); 2321 if (!Dest->isLeaf()) 2322 I->error("set destination should be a register!"); 2323 2324 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2325 if (!Val) 2326 I->error("set destination should be a register!"); 2327 2328 if (Val->getDef()->isSubClassOf("RegisterClass") || 2329 Val->getDef()->isSubClassOf("RegisterOperand") || 2330 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2331 if (Dest->getName().empty()) 2332 I->error("set destination must have a name!"); 2333 if (InstResults.count(Dest->getName())) 2334 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2335 InstResults[Dest->getName()] = Dest; 2336 } else if (Val->getDef()->isSubClassOf("Register")) { 2337 InstImpResults.push_back(Val->getDef()); 2338 } else { 2339 I->error("set destination should be a register!"); 2340 } 2341 } 2342 2343 // Verify and collect info from the computation. 2344 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2345 InstInputs, InstResults, InstImpResults); 2346 } 2347 2348 //===----------------------------------------------------------------------===// 2349 // Instruction Analysis 2350 //===----------------------------------------------------------------------===// 2351 2352 class InstAnalyzer { 2353 const CodeGenDAGPatterns &CDP; 2354 public: 2355 bool hasSideEffects; 2356 bool mayStore; 2357 bool mayLoad; 2358 bool isBitcast; 2359 bool isVariadic; 2360 2361 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2362 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2363 isBitcast(false), isVariadic(false) {} 2364 2365 void Analyze(const TreePattern *Pat) { 2366 // Assume only the first tree is the pattern. The others are clobber nodes. 2367 AnalyzeNode(Pat->getTree(0)); 2368 } 2369 2370 void Analyze(const PatternToMatch *Pat) { 2371 AnalyzeNode(Pat->getSrcPattern()); 2372 } 2373 2374 private: 2375 bool IsNodeBitcast(const TreePatternNode *N) const { 2376 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2377 return false; 2378 2379 if (N->getNumChildren() != 2) 2380 return false; 2381 2382 const TreePatternNode *N0 = N->getChild(0); 2383 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2384 return false; 2385 2386 const TreePatternNode *N1 = N->getChild(1); 2387 if (N1->isLeaf()) 2388 return false; 2389 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2390 return false; 2391 2392 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2393 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2394 return false; 2395 return OpInfo.getEnumName() == "ISD::BITCAST"; 2396 } 2397 2398 public: 2399 void AnalyzeNode(const TreePatternNode *N) { 2400 if (N->isLeaf()) { 2401 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2402 Record *LeafRec = DI->getDef(); 2403 // Handle ComplexPattern leaves. 2404 if (LeafRec->isSubClassOf("ComplexPattern")) { 2405 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2406 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2407 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2408 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2409 } 2410 } 2411 return; 2412 } 2413 2414 // Analyze children. 2415 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2416 AnalyzeNode(N->getChild(i)); 2417 2418 // Ignore set nodes, which are not SDNodes. 2419 if (N->getOperator()->getName() == "set") { 2420 isBitcast = IsNodeBitcast(N); 2421 return; 2422 } 2423 2424 // Get information about the SDNode for the operator. 2425 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2426 2427 // Notice properties of the node. 2428 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2429 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2430 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2431 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true; 2432 2433 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2434 // If this is an intrinsic, analyze it. 2435 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2436 mayLoad = true;// These may load memory. 2437 2438 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2439 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2440 2441 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2442 // WriteMem intrinsics can have other strange effects. 2443 hasSideEffects = true; 2444 } 2445 } 2446 2447 }; 2448 2449 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2450 const InstAnalyzer &PatInfo, 2451 Record *PatDef) { 2452 bool Error = false; 2453 2454 // Remember where InstInfo got its flags. 2455 if (InstInfo.hasUndefFlags()) 2456 InstInfo.InferredFrom = PatDef; 2457 2458 // Check explicitly set flags for consistency. 2459 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2460 !InstInfo.hasSideEffects_Unset) { 2461 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2462 // the pattern has no side effects. That could be useful for div/rem 2463 // instructions that may trap. 2464 if (!InstInfo.hasSideEffects) { 2465 Error = true; 2466 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2467 Twine(InstInfo.hasSideEffects)); 2468 } 2469 } 2470 2471 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2472 Error = true; 2473 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2474 Twine(InstInfo.mayStore)); 2475 } 2476 2477 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2478 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2479 // Some targets translate imediates to loads. 2480 if (!InstInfo.mayLoad) { 2481 Error = true; 2482 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2483 Twine(InstInfo.mayLoad)); 2484 } 2485 } 2486 2487 // Transfer inferred flags. 2488 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2489 InstInfo.mayStore |= PatInfo.mayStore; 2490 InstInfo.mayLoad |= PatInfo.mayLoad; 2491 2492 // These flags are silently added without any verification. 2493 InstInfo.isBitcast |= PatInfo.isBitcast; 2494 2495 // Don't infer isVariadic. This flag means something different on SDNodes and 2496 // instructions. For example, a CALL SDNode is variadic because it has the 2497 // call arguments as operands, but a CALL instruction is not variadic - it 2498 // has argument registers as implicit, not explicit uses. 2499 2500 return Error; 2501 } 2502 2503 /// hasNullFragReference - Return true if the DAG has any reference to the 2504 /// null_frag operator. 2505 static bool hasNullFragReference(DagInit *DI) { 2506 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2507 if (!OpDef) return false; 2508 Record *Operator = OpDef->getDef(); 2509 2510 // If this is the null fragment, return true. 2511 if (Operator->getName() == "null_frag") return true; 2512 // If any of the arguments reference the null fragment, return true. 2513 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2514 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2515 if (Arg && hasNullFragReference(Arg)) 2516 return true; 2517 } 2518 2519 return false; 2520 } 2521 2522 /// hasNullFragReference - Return true if any DAG in the list references 2523 /// the null_frag operator. 2524 static bool hasNullFragReference(ListInit *LI) { 2525 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { 2526 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i)); 2527 assert(DI && "non-dag in an instruction Pattern list?!"); 2528 if (hasNullFragReference(DI)) 2529 return true; 2530 } 2531 return false; 2532 } 2533 2534 /// Get all the instructions in a tree. 2535 static void 2536 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2537 if (Tree->isLeaf()) 2538 return; 2539 if (Tree->getOperator()->isSubClassOf("Instruction")) 2540 Instrs.push_back(Tree->getOperator()); 2541 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2542 getInstructionsInTree(Tree->getChild(i), Instrs); 2543 } 2544 2545 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2546 /// any fragments involved. This populates the Instructions list with fully 2547 /// resolved instructions. 2548 void CodeGenDAGPatterns::ParseInstructions() { 2549 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2550 2551 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2552 ListInit *LI = 0; 2553 2554 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern"))) 2555 LI = Instrs[i]->getValueAsListInit("Pattern"); 2556 2557 // If there is no pattern, only collect minimal information about the 2558 // instruction for its operand list. We have to assume that there is one 2559 // result, as we have no detailed info. A pattern which references the 2560 // null_frag operator is as-if no pattern were specified. Normally this 2561 // is from a multiclass expansion w/ a SDPatternOperator passed in as 2562 // null_frag. 2563 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) { 2564 std::vector<Record*> Results; 2565 std::vector<Record*> Operands; 2566 2567 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2568 2569 if (InstInfo.Operands.size() != 0) { 2570 if (InstInfo.Operands.NumDefs == 0) { 2571 // These produce no results 2572 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2573 Operands.push_back(InstInfo.Operands[j].Rec); 2574 } else { 2575 // Assume the first operand is the result. 2576 Results.push_back(InstInfo.Operands[0].Rec); 2577 2578 // The rest are inputs. 2579 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2580 Operands.push_back(InstInfo.Operands[j].Rec); 2581 } 2582 } 2583 2584 // Create and insert the instruction. 2585 std::vector<Record*> ImpResults; 2586 Instructions.insert(std::make_pair(Instrs[i], 2587 DAGInstruction(0, Results, Operands, ImpResults))); 2588 continue; // no pattern. 2589 } 2590 2591 // Parse the instruction. 2592 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2593 // Inline pattern fragments into it. 2594 I->InlinePatternFragments(); 2595 2596 // Infer as many types as possible. If we cannot infer all of them, we can 2597 // never do anything with this instruction pattern: report it to the user. 2598 if (!I->InferAllTypes()) 2599 I->error("Could not infer all types in pattern!"); 2600 2601 // InstInputs - Keep track of all of the inputs of the instruction, along 2602 // with the record they are declared as. 2603 std::map<std::string, TreePatternNode*> InstInputs; 2604 2605 // InstResults - Keep track of all the virtual registers that are 'set' 2606 // in the instruction, including what reg class they are. 2607 std::map<std::string, TreePatternNode*> InstResults; 2608 2609 std::vector<Record*> InstImpResults; 2610 2611 // Verify that the top-level forms in the instruction are of void type, and 2612 // fill in the InstResults map. 2613 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2614 TreePatternNode *Pat = I->getTree(j); 2615 if (Pat->getNumTypes() != 0) 2616 I->error("Top-level forms in instruction pattern should have" 2617 " void types"); 2618 2619 // Find inputs and outputs, and verify the structure of the uses/defs. 2620 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2621 InstImpResults); 2622 } 2623 2624 // Now that we have inputs and outputs of the pattern, inspect the operands 2625 // list for the instruction. This determines the order that operands are 2626 // added to the machine instruction the node corresponds to. 2627 unsigned NumResults = InstResults.size(); 2628 2629 // Parse the operands list from the (ops) list, validating it. 2630 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2631 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2632 2633 // Check that all of the results occur first in the list. 2634 std::vector<Record*> Results; 2635 TreePatternNode *Res0Node = 0; 2636 for (unsigned i = 0; i != NumResults; ++i) { 2637 if (i == CGI.Operands.size()) 2638 I->error("'" + InstResults.begin()->first + 2639 "' set but does not appear in operand list!"); 2640 const std::string &OpName = CGI.Operands[i].Name; 2641 2642 // Check that it exists in InstResults. 2643 TreePatternNode *RNode = InstResults[OpName]; 2644 if (RNode == 0) 2645 I->error("Operand $" + OpName + " does not exist in operand list!"); 2646 2647 if (i == 0) 2648 Res0Node = RNode; 2649 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 2650 if (R == 0) 2651 I->error("Operand $" + OpName + " should be a set destination: all " 2652 "outputs must occur before inputs in operand list!"); 2653 2654 if (CGI.Operands[i].Rec != R) 2655 I->error("Operand $" + OpName + " class mismatch!"); 2656 2657 // Remember the return type. 2658 Results.push_back(CGI.Operands[i].Rec); 2659 2660 // Okay, this one checks out. 2661 InstResults.erase(OpName); 2662 } 2663 2664 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2665 // the copy while we're checking the inputs. 2666 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2667 2668 std::vector<TreePatternNode*> ResultNodeOperands; 2669 std::vector<Record*> Operands; 2670 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2671 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2672 const std::string &OpName = Op.Name; 2673 if (OpName.empty()) 2674 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2675 2676 if (!InstInputsCheck.count(OpName)) { 2677 // If this is an operand with a DefaultOps set filled in, we can ignore 2678 // this. When we codegen it, we will do so as always executed. 2679 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 2680 // Does it have a non-empty DefaultOps field? If so, ignore this 2681 // operand. 2682 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2683 continue; 2684 } 2685 I->error("Operand $" + OpName + 2686 " does not appear in the instruction pattern"); 2687 } 2688 TreePatternNode *InVal = InstInputsCheck[OpName]; 2689 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2690 2691 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 2692 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2693 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2694 I->error("Operand $" + OpName + "'s register class disagrees" 2695 " between the operand and pattern"); 2696 } 2697 Operands.push_back(Op.Rec); 2698 2699 // Construct the result for the dest-pattern operand list. 2700 TreePatternNode *OpNode = InVal->clone(); 2701 2702 // No predicate is useful on the result. 2703 OpNode->clearPredicateFns(); 2704 2705 // Promote the xform function to be an explicit node if set. 2706 if (Record *Xform = OpNode->getTransformFn()) { 2707 OpNode->setTransformFn(0); 2708 std::vector<TreePatternNode*> Children; 2709 Children.push_back(OpNode); 2710 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2711 } 2712 2713 ResultNodeOperands.push_back(OpNode); 2714 } 2715 2716 if (!InstInputsCheck.empty()) 2717 I->error("Input operand $" + InstInputsCheck.begin()->first + 2718 " occurs in pattern but not in operands list!"); 2719 2720 TreePatternNode *ResultPattern = 2721 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2722 GetNumNodeResults(I->getRecord(), *this)); 2723 // Copy fully inferred output node type to instruction result pattern. 2724 for (unsigned i = 0; i != NumResults; ++i) 2725 ResultPattern->setType(i, Res0Node->getExtType(i)); 2726 2727 // Create and insert the instruction. 2728 // FIXME: InstImpResults should not be part of DAGInstruction. 2729 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2730 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2731 2732 // Use a temporary tree pattern to infer all types and make sure that the 2733 // constructed result is correct. This depends on the instruction already 2734 // being inserted into the Instructions map. 2735 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2736 Temp.InferAllTypes(&I->getNamedNodesMap()); 2737 2738 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2739 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2740 2741 DEBUG(I->dump()); 2742 } 2743 2744 // If we can, convert the instructions to be patterns that are matched! 2745 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II = 2746 Instructions.begin(), 2747 E = Instructions.end(); II != E; ++II) { 2748 DAGInstruction &TheInst = II->second; 2749 const TreePattern *I = TheInst.getPattern(); 2750 if (I == 0) continue; // No pattern. 2751 2752 // FIXME: Assume only the first tree is the pattern. The others are clobber 2753 // nodes. 2754 TreePatternNode *Pattern = I->getTree(0); 2755 TreePatternNode *SrcPattern; 2756 if (Pattern->getOperator()->getName() == "set") { 2757 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2758 } else{ 2759 // Not a set (store or something?) 2760 SrcPattern = Pattern; 2761 } 2762 2763 Record *Instr = II->first; 2764 AddPatternToMatch(I, 2765 PatternToMatch(Instr, 2766 Instr->getValueAsListInit("Predicates"), 2767 SrcPattern, 2768 TheInst.getResultPattern(), 2769 TheInst.getImpResults(), 2770 Instr->getValueAsInt("AddedComplexity"), 2771 Instr->getID())); 2772 } 2773 } 2774 2775 2776 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2777 2778 static void FindNames(const TreePatternNode *P, 2779 std::map<std::string, NameRecord> &Names, 2780 const TreePattern *PatternTop) { 2781 if (!P->getName().empty()) { 2782 NameRecord &Rec = Names[P->getName()]; 2783 // If this is the first instance of the name, remember the node. 2784 if (Rec.second++ == 0) 2785 Rec.first = P; 2786 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2787 PatternTop->error("repetition of value: $" + P->getName() + 2788 " where different uses have different types!"); 2789 } 2790 2791 if (!P->isLeaf()) { 2792 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2793 FindNames(P->getChild(i), Names, PatternTop); 2794 } 2795 } 2796 2797 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2798 const PatternToMatch &PTM) { 2799 // Do some sanity checking on the pattern we're about to match. 2800 std::string Reason; 2801 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 2802 PrintWarning(Pattern->getRecord()->getLoc(), 2803 Twine("Pattern can never match: ") + Reason); 2804 return; 2805 } 2806 2807 // If the source pattern's root is a complex pattern, that complex pattern 2808 // must specify the nodes it can potentially match. 2809 if (const ComplexPattern *CP = 2810 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2811 if (CP->getRootNodes().empty()) 2812 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2813 " could match"); 2814 2815 2816 // Find all of the named values in the input and output, ensure they have the 2817 // same type. 2818 std::map<std::string, NameRecord> SrcNames, DstNames; 2819 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2820 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2821 2822 // Scan all of the named values in the destination pattern, rejecting them if 2823 // they don't exist in the input pattern. 2824 for (std::map<std::string, NameRecord>::iterator 2825 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2826 if (SrcNames[I->first].first == 0) 2827 Pattern->error("Pattern has input without matching name in output: $" + 2828 I->first); 2829 } 2830 2831 // Scan all of the named values in the source pattern, rejecting them if the 2832 // name isn't used in the dest, and isn't used to tie two values together. 2833 for (std::map<std::string, NameRecord>::iterator 2834 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2835 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2836 Pattern->error("Pattern has dead named input: $" + I->first); 2837 2838 PatternsToMatch.push_back(PTM); 2839 } 2840 2841 2842 2843 void CodeGenDAGPatterns::InferInstructionFlags() { 2844 const std::vector<const CodeGenInstruction*> &Instructions = 2845 Target.getInstructionsByEnumValue(); 2846 2847 // First try to infer flags from the primary instruction pattern, if any. 2848 SmallVector<CodeGenInstruction*, 8> Revisit; 2849 unsigned Errors = 0; 2850 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2851 CodeGenInstruction &InstInfo = 2852 const_cast<CodeGenInstruction &>(*Instructions[i]); 2853 2854 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0. 2855 // This flag is obsolete and will be removed. 2856 if (InstInfo.neverHasSideEffects) { 2857 assert(!InstInfo.hasSideEffects); 2858 InstInfo.hasSideEffects_Unset = false; 2859 } 2860 2861 // Get the primary instruction pattern. 2862 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 2863 if (!Pattern) { 2864 if (InstInfo.hasUndefFlags()) 2865 Revisit.push_back(&InstInfo); 2866 continue; 2867 } 2868 InstAnalyzer PatInfo(*this); 2869 PatInfo.Analyze(Pattern); 2870 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 2871 } 2872 2873 // Second, look for single-instruction patterns defined outside the 2874 // instruction. 2875 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 2876 const PatternToMatch &PTM = *I; 2877 2878 // We can only infer from single-instruction patterns, otherwise we won't 2879 // know which instruction should get the flags. 2880 SmallVector<Record*, 8> PatInstrs; 2881 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 2882 if (PatInstrs.size() != 1) 2883 continue; 2884 2885 // Get the single instruction. 2886 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 2887 2888 // Only infer properties from the first pattern. We'll verify the others. 2889 if (InstInfo.InferredFrom) 2890 continue; 2891 2892 InstAnalyzer PatInfo(*this); 2893 PatInfo.Analyze(&PTM); 2894 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 2895 } 2896 2897 if (Errors) 2898 throw "pattern conflicts"; 2899 2900 // Revisit instructions with undefined flags and no pattern. 2901 if (Target.guessInstructionProperties()) { 2902 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 2903 CodeGenInstruction &InstInfo = *Revisit[i]; 2904 if (InstInfo.InferredFrom) 2905 continue; 2906 // The mayLoad and mayStore flags default to false. 2907 // Conservatively assume hasSideEffects if it wasn't explicit. 2908 if (InstInfo.hasSideEffects_Unset) 2909 InstInfo.hasSideEffects = true; 2910 } 2911 return; 2912 } 2913 2914 // Complain about any flags that are still undefined. 2915 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 2916 CodeGenInstruction &InstInfo = *Revisit[i]; 2917 if (InstInfo.InferredFrom) 2918 continue; 2919 if (InstInfo.hasSideEffects_Unset) 2920 PrintError(InstInfo.TheDef->getLoc(), 2921 "Can't infer hasSideEffects from patterns"); 2922 if (InstInfo.mayStore_Unset) 2923 PrintError(InstInfo.TheDef->getLoc(), 2924 "Can't infer mayStore from patterns"); 2925 if (InstInfo.mayLoad_Unset) 2926 PrintError(InstInfo.TheDef->getLoc(), 2927 "Can't infer mayLoad from patterns"); 2928 } 2929 } 2930 2931 2932 /// Verify instruction flags against pattern node properties. 2933 void CodeGenDAGPatterns::VerifyInstructionFlags() { 2934 unsigned Errors = 0; 2935 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 2936 const PatternToMatch &PTM = *I; 2937 SmallVector<Record*, 8> Instrs; 2938 getInstructionsInTree(PTM.getDstPattern(), Instrs); 2939 if (Instrs.empty()) 2940 continue; 2941 2942 // Count the number of instructions with each flag set. 2943 unsigned NumSideEffects = 0; 2944 unsigned NumStores = 0; 2945 unsigned NumLoads = 0; 2946 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2947 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2948 NumSideEffects += InstInfo.hasSideEffects; 2949 NumStores += InstInfo.mayStore; 2950 NumLoads += InstInfo.mayLoad; 2951 } 2952 2953 // Analyze the source pattern. 2954 InstAnalyzer PatInfo(*this); 2955 PatInfo.Analyze(&PTM); 2956 2957 // Collect error messages. 2958 SmallVector<std::string, 4> Msgs; 2959 2960 // Check for missing flags in the output. 2961 // Permit extra flags for now at least. 2962 if (PatInfo.hasSideEffects && !NumSideEffects) 2963 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 2964 2965 // Don't verify store flags on instructions with side effects. At least for 2966 // intrinsics, side effects implies mayStore. 2967 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 2968 Msgs.push_back("pattern may store, but mayStore isn't set"); 2969 2970 // Similarly, mayStore implies mayLoad on intrinsics. 2971 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 2972 Msgs.push_back("pattern may load, but mayLoad isn't set"); 2973 2974 // Print error messages. 2975 if (Msgs.empty()) 2976 continue; 2977 ++Errors; 2978 2979 for (unsigned i = 0, e = Msgs.size(); i != e; ++i) 2980 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + 2981 (Instrs.size() == 1 ? 2982 "instruction" : "output instructions")); 2983 // Provide the location of the relevant instruction definitions. 2984 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2985 if (Instrs[i] != PTM.getSrcRecord()) 2986 PrintError(Instrs[i]->getLoc(), "defined here"); 2987 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2988 if (InstInfo.InferredFrom && 2989 InstInfo.InferredFrom != InstInfo.TheDef && 2990 InstInfo.InferredFrom != PTM.getSrcRecord()) 2991 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); 2992 } 2993 } 2994 if (Errors) 2995 throw "Errors in DAG patterns"; 2996 } 2997 2998 /// Given a pattern result with an unresolved type, see if we can find one 2999 /// instruction with an unresolved result type. Force this result type to an 3000 /// arbitrary element if it's possible types to converge results. 3001 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3002 if (N->isLeaf()) 3003 return false; 3004 3005 // Analyze children. 3006 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3007 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3008 return true; 3009 3010 if (!N->getOperator()->isSubClassOf("Instruction")) 3011 return false; 3012 3013 // If this type is already concrete or completely unknown we can't do 3014 // anything. 3015 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3016 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3017 continue; 3018 3019 // Otherwise, force its type to the first possibility (an arbitrary choice). 3020 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3021 return true; 3022 } 3023 3024 return false; 3025 } 3026 3027 void CodeGenDAGPatterns::ParsePatterns() { 3028 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3029 3030 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 3031 Record *CurPattern = Patterns[i]; 3032 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3033 3034 // If the pattern references the null_frag, there's nothing to do. 3035 if (hasNullFragReference(Tree)) 3036 continue; 3037 3038 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3039 3040 // Inline pattern fragments into it. 3041 Pattern->InlinePatternFragments(); 3042 3043 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3044 if (LI->getSize() == 0) continue; // no pattern. 3045 3046 // Parse the instruction. 3047 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 3048 3049 // Inline pattern fragments into it. 3050 Result->InlinePatternFragments(); 3051 3052 if (Result->getNumTrees() != 1) 3053 Result->error("Cannot handle instructions producing instructions " 3054 "with temporaries yet!"); 3055 3056 bool IterateInference; 3057 bool InferredAllPatternTypes, InferredAllResultTypes; 3058 do { 3059 // Infer as many types as possible. If we cannot infer all of them, we 3060 // can never do anything with this pattern: report it to the user. 3061 InferredAllPatternTypes = 3062 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3063 3064 // Infer as many types as possible. If we cannot infer all of them, we 3065 // can never do anything with this pattern: report it to the user. 3066 InferredAllResultTypes = 3067 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 3068 3069 IterateInference = false; 3070 3071 // Apply the type of the result to the source pattern. This helps us 3072 // resolve cases where the input type is known to be a pointer type (which 3073 // is considered resolved), but the result knows it needs to be 32- or 3074 // 64-bits. Infer the other way for good measure. 3075 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 3076 Pattern->getTree(0)->getNumTypes()); 3077 i != e; ++i) { 3078 IterateInference = Pattern->getTree(0)-> 3079 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 3080 IterateInference |= Result->getTree(0)-> 3081 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 3082 } 3083 3084 // If our iteration has converged and the input pattern's types are fully 3085 // resolved but the result pattern is not fully resolved, we may have a 3086 // situation where we have two instructions in the result pattern and 3087 // the instructions require a common register class, but don't care about 3088 // what actual MVT is used. This is actually a bug in our modelling: 3089 // output patterns should have register classes, not MVTs. 3090 // 3091 // In any case, to handle this, we just go through and disambiguate some 3092 // arbitrary types to the result pattern's nodes. 3093 if (!IterateInference && InferredAllPatternTypes && 3094 !InferredAllResultTypes) 3095 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 3096 *Result); 3097 } while (IterateInference); 3098 3099 // Verify that we inferred enough types that we can do something with the 3100 // pattern and result. If these fire the user has to add type casts. 3101 if (!InferredAllPatternTypes) 3102 Pattern->error("Could not infer all types in pattern!"); 3103 if (!InferredAllResultTypes) { 3104 Pattern->dump(); 3105 Result->error("Could not infer all types in pattern result!"); 3106 } 3107 3108 // Validate that the input pattern is correct. 3109 std::map<std::string, TreePatternNode*> InstInputs; 3110 std::map<std::string, TreePatternNode*> InstResults; 3111 std::vector<Record*> InstImpResults; 3112 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3113 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3114 InstInputs, InstResults, 3115 InstImpResults); 3116 3117 // Promote the xform function to be an explicit node if set. 3118 TreePatternNode *DstPattern = Result->getOnlyTree(); 3119 std::vector<TreePatternNode*> ResultNodeOperands; 3120 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3121 TreePatternNode *OpNode = DstPattern->getChild(ii); 3122 if (Record *Xform = OpNode->getTransformFn()) { 3123 OpNode->setTransformFn(0); 3124 std::vector<TreePatternNode*> Children; 3125 Children.push_back(OpNode); 3126 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3127 } 3128 ResultNodeOperands.push_back(OpNode); 3129 } 3130 DstPattern = Result->getOnlyTree(); 3131 if (!DstPattern->isLeaf()) 3132 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3133 ResultNodeOperands, 3134 DstPattern->getNumTypes()); 3135 3136 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 3137 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 3138 3139 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 3140 Temp.InferAllTypes(); 3141 3142 3143 AddPatternToMatch(Pattern, 3144 PatternToMatch(CurPattern, 3145 CurPattern->getValueAsListInit("Predicates"), 3146 Pattern->getTree(0), 3147 Temp.getOnlyTree(), InstImpResults, 3148 CurPattern->getValueAsInt("AddedComplexity"), 3149 CurPattern->getID())); 3150 } 3151 } 3152 3153 /// CombineChildVariants - Given a bunch of permutations of each child of the 3154 /// 'operator' node, put them together in all possible ways. 3155 static void CombineChildVariants(TreePatternNode *Orig, 3156 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3157 std::vector<TreePatternNode*> &OutVariants, 3158 CodeGenDAGPatterns &CDP, 3159 const MultipleUseVarSet &DepVars) { 3160 // Make sure that each operand has at least one variant to choose from. 3161 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3162 if (ChildVariants[i].empty()) 3163 return; 3164 3165 // The end result is an all-pairs construction of the resultant pattern. 3166 std::vector<unsigned> Idxs; 3167 Idxs.resize(ChildVariants.size()); 3168 bool NotDone; 3169 do { 3170 #ifndef NDEBUG 3171 DEBUG(if (!Idxs.empty()) { 3172 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3173 for (unsigned i = 0; i < Idxs.size(); ++i) { 3174 errs() << Idxs[i] << " "; 3175 } 3176 errs() << "]\n"; 3177 }); 3178 #endif 3179 // Create the variant and add it to the output list. 3180 std::vector<TreePatternNode*> NewChildren; 3181 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3182 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3183 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3184 Orig->getNumTypes()); 3185 3186 // Copy over properties. 3187 R->setName(Orig->getName()); 3188 R->setPredicateFns(Orig->getPredicateFns()); 3189 R->setTransformFn(Orig->getTransformFn()); 3190 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3191 R->setType(i, Orig->getExtType(i)); 3192 3193 // If this pattern cannot match, do not include it as a variant. 3194 std::string ErrString; 3195 if (!R->canPatternMatch(ErrString, CDP)) { 3196 delete R; 3197 } else { 3198 bool AlreadyExists = false; 3199 3200 // Scan to see if this pattern has already been emitted. We can get 3201 // duplication due to things like commuting: 3202 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3203 // which are the same pattern. Ignore the dups. 3204 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3205 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3206 AlreadyExists = true; 3207 break; 3208 } 3209 3210 if (AlreadyExists) 3211 delete R; 3212 else 3213 OutVariants.push_back(R); 3214 } 3215 3216 // Increment indices to the next permutation by incrementing the 3217 // indicies from last index backward, e.g., generate the sequence 3218 // [0, 0], [0, 1], [1, 0], [1, 1]. 3219 int IdxsIdx; 3220 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3221 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3222 Idxs[IdxsIdx] = 0; 3223 else 3224 break; 3225 } 3226 NotDone = (IdxsIdx >= 0); 3227 } while (NotDone); 3228 } 3229 3230 /// CombineChildVariants - A helper function for binary operators. 3231 /// 3232 static void CombineChildVariants(TreePatternNode *Orig, 3233 const std::vector<TreePatternNode*> &LHS, 3234 const std::vector<TreePatternNode*> &RHS, 3235 std::vector<TreePatternNode*> &OutVariants, 3236 CodeGenDAGPatterns &CDP, 3237 const MultipleUseVarSet &DepVars) { 3238 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3239 ChildVariants.push_back(LHS); 3240 ChildVariants.push_back(RHS); 3241 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3242 } 3243 3244 3245 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3246 std::vector<TreePatternNode *> &Children) { 3247 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3248 Record *Operator = N->getOperator(); 3249 3250 // Only permit raw nodes. 3251 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3252 N->getTransformFn()) { 3253 Children.push_back(N); 3254 return; 3255 } 3256 3257 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3258 Children.push_back(N->getChild(0)); 3259 else 3260 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3261 3262 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3263 Children.push_back(N->getChild(1)); 3264 else 3265 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3266 } 3267 3268 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3269 /// the (potentially recursive) pattern by using algebraic laws. 3270 /// 3271 static void GenerateVariantsOf(TreePatternNode *N, 3272 std::vector<TreePatternNode*> &OutVariants, 3273 CodeGenDAGPatterns &CDP, 3274 const MultipleUseVarSet &DepVars) { 3275 // We cannot permute leaves. 3276 if (N->isLeaf()) { 3277 OutVariants.push_back(N); 3278 return; 3279 } 3280 3281 // Look up interesting info about the node. 3282 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3283 3284 // If this node is associative, re-associate. 3285 if (NodeInfo.hasProperty(SDNPAssociative)) { 3286 // Re-associate by pulling together all of the linked operators 3287 std::vector<TreePatternNode*> MaximalChildren; 3288 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3289 3290 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3291 // permutations. 3292 if (MaximalChildren.size() == 3) { 3293 // Find the variants of all of our maximal children. 3294 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3295 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3296 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3297 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3298 3299 // There are only two ways we can permute the tree: 3300 // (A op B) op C and A op (B op C) 3301 // Within these forms, we can also permute A/B/C. 3302 3303 // Generate legal pair permutations of A/B/C. 3304 std::vector<TreePatternNode*> ABVariants; 3305 std::vector<TreePatternNode*> BAVariants; 3306 std::vector<TreePatternNode*> ACVariants; 3307 std::vector<TreePatternNode*> CAVariants; 3308 std::vector<TreePatternNode*> BCVariants; 3309 std::vector<TreePatternNode*> CBVariants; 3310 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3311 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3312 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3313 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3314 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3315 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3316 3317 // Combine those into the result: (x op x) op x 3318 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3319 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3320 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3321 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3322 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3323 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3324 3325 // Combine those into the result: x op (x op x) 3326 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3327 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3328 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3329 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3330 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3331 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3332 return; 3333 } 3334 } 3335 3336 // Compute permutations of all children. 3337 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3338 ChildVariants.resize(N->getNumChildren()); 3339 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3340 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3341 3342 // Build all permutations based on how the children were formed. 3343 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3344 3345 // If this node is commutative, consider the commuted order. 3346 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3347 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3348 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3349 "Commutative but doesn't have 2 children!"); 3350 // Don't count children which are actually register references. 3351 unsigned NC = 0; 3352 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3353 TreePatternNode *Child = N->getChild(i); 3354 if (Child->isLeaf()) 3355 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3356 Record *RR = DI->getDef(); 3357 if (RR->isSubClassOf("Register")) 3358 continue; 3359 } 3360 NC++; 3361 } 3362 // Consider the commuted order. 3363 if (isCommIntrinsic) { 3364 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3365 // operands are the commutative operands, and there might be more operands 3366 // after those. 3367 assert(NC >= 3 && 3368 "Commutative intrinsic should have at least 3 childrean!"); 3369 std::vector<std::vector<TreePatternNode*> > Variants; 3370 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3371 Variants.push_back(ChildVariants[2]); 3372 Variants.push_back(ChildVariants[1]); 3373 for (unsigned i = 3; i != NC; ++i) 3374 Variants.push_back(ChildVariants[i]); 3375 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3376 } else if (NC == 2) 3377 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3378 OutVariants, CDP, DepVars); 3379 } 3380 } 3381 3382 3383 // GenerateVariants - Generate variants. For example, commutative patterns can 3384 // match multiple ways. Add them to PatternsToMatch as well. 3385 void CodeGenDAGPatterns::GenerateVariants() { 3386 DEBUG(errs() << "Generating instruction variants.\n"); 3387 3388 // Loop over all of the patterns we've collected, checking to see if we can 3389 // generate variants of the instruction, through the exploitation of 3390 // identities. This permits the target to provide aggressive matching without 3391 // the .td file having to contain tons of variants of instructions. 3392 // 3393 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3394 // intentionally do not reconsider these. Any variants of added patterns have 3395 // already been added. 3396 // 3397 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3398 MultipleUseVarSet DepVars; 3399 std::vector<TreePatternNode*> Variants; 3400 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3401 DEBUG(errs() << "Dependent/multiply used variables: "); 3402 DEBUG(DumpDepVars(DepVars)); 3403 DEBUG(errs() << "\n"); 3404 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3405 DepVars); 3406 3407 assert(!Variants.empty() && "Must create at least original variant!"); 3408 Variants.erase(Variants.begin()); // Remove the original pattern. 3409 3410 if (Variants.empty()) // No variants for this pattern. 3411 continue; 3412 3413 DEBUG(errs() << "FOUND VARIANTS OF: "; 3414 PatternsToMatch[i].getSrcPattern()->dump(); 3415 errs() << "\n"); 3416 3417 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3418 TreePatternNode *Variant = Variants[v]; 3419 3420 DEBUG(errs() << " VAR#" << v << ": "; 3421 Variant->dump(); 3422 errs() << "\n"); 3423 3424 // Scan to see if an instruction or explicit pattern already matches this. 3425 bool AlreadyExists = false; 3426 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3427 // Skip if the top level predicates do not match. 3428 if (PatternsToMatch[i].getPredicates() != 3429 PatternsToMatch[p].getPredicates()) 3430 continue; 3431 // Check to see if this variant already exists. 3432 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3433 DepVars)) { 3434 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3435 AlreadyExists = true; 3436 break; 3437 } 3438 } 3439 // If we already have it, ignore the variant. 3440 if (AlreadyExists) continue; 3441 3442 // Otherwise, add it to the list of patterns we have. 3443 PatternsToMatch. 3444 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3445 PatternsToMatch[i].getPredicates(), 3446 Variant, PatternsToMatch[i].getDstPattern(), 3447 PatternsToMatch[i].getDstRegs(), 3448 PatternsToMatch[i].getAddedComplexity(), 3449 Record::getNewUID())); 3450 } 3451 3452 DEBUG(errs() << "\n"); 3453 } 3454 } 3455