1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 static inline bool isScalarInteger(MVT VT) { 50 return VT.isScalarInteger(); 51 } 52 53 template <typename Predicate> 54 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 55 bool Erased = false; 56 // It is ok to iterate over MachineValueTypeSet and remove elements from it 57 // at the same time. 58 for (MVT T : S) { 59 if (!P(T)) 60 continue; 61 Erased = true; 62 S.erase(T); 63 } 64 return Erased; 65 } 66 67 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 68 SmallVector<MVT, 4> Types(begin(), end()); 69 array_pod_sort(Types.begin(), Types.end()); 70 71 OS << '['; 72 ListSeparator LS(" "); 73 for (const MVT &T : Types) 74 OS << LS << ValueTypeByHwMode::getMVTName(T); 75 OS << ']'; 76 } 77 78 // --- TypeSetByHwMode 79 80 // This is a parameterized type-set class. For each mode there is a list 81 // of types that are currently possible for a given tree node. Type 82 // inference will apply to each mode separately. 83 84 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 85 for (const ValueTypeByHwMode &VVT : VTList) { 86 insert(VVT); 87 AddrSpaces.push_back(VVT.PtrAddrSpace); 88 } 89 } 90 91 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 92 for (const auto &I : *this) { 93 if (I.second.size() > 1) 94 return false; 95 if (!AllowEmpty && I.second.empty()) 96 return false; 97 } 98 return true; 99 } 100 101 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 102 assert(isValueTypeByHwMode(true) && 103 "The type set has multiple types for at least one HW mode"); 104 ValueTypeByHwMode VVT; 105 auto ASI = AddrSpaces.begin(); 106 107 for (const auto &I : *this) { 108 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 109 VVT.getOrCreateTypeForMode(I.first, T); 110 if (ASI != AddrSpaces.end()) 111 VVT.PtrAddrSpace = *ASI++; 112 } 113 return VVT; 114 } 115 116 bool TypeSetByHwMode::isPossible() const { 117 for (const auto &I : *this) 118 if (!I.second.empty()) 119 return true; 120 return false; 121 } 122 123 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 124 bool Changed = false; 125 bool ContainsDefault = false; 126 MVT DT = MVT::Other; 127 128 for (const auto &P : VVT) { 129 unsigned M = P.first; 130 // Make sure there exists a set for each specific mode from VVT. 131 Changed |= getOrCreate(M).insert(P.second).second; 132 // Cache VVT's default mode. 133 if (DefaultMode == M) { 134 ContainsDefault = true; 135 DT = P.second; 136 } 137 } 138 139 // If VVT has a default mode, add the corresponding type to all 140 // modes in "this" that do not exist in VVT. 141 if (ContainsDefault) 142 for (auto &I : *this) 143 if (!VVT.hasMode(I.first)) 144 Changed |= I.second.insert(DT).second; 145 146 return Changed; 147 } 148 149 // Constrain the type set to be the intersection with VTS. 150 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 151 bool Changed = false; 152 if (hasDefault()) { 153 for (const auto &I : VTS) { 154 unsigned M = I.first; 155 if (M == DefaultMode || hasMode(M)) 156 continue; 157 Map.insert({M, Map.at(DefaultMode)}); 158 Changed = true; 159 } 160 } 161 162 for (auto &I : *this) { 163 unsigned M = I.first; 164 SetType &S = I.second; 165 if (VTS.hasMode(M) || VTS.hasDefault()) { 166 Changed |= intersect(I.second, VTS.get(M)); 167 } else if (!S.empty()) { 168 S.clear(); 169 Changed = true; 170 } 171 } 172 return Changed; 173 } 174 175 template <typename Predicate> 176 bool TypeSetByHwMode::constrain(Predicate P) { 177 bool Changed = false; 178 for (auto &I : *this) 179 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 180 return Changed; 181 } 182 183 template <typename Predicate> 184 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 185 assert(empty()); 186 for (const auto &I : VTS) { 187 SetType &S = getOrCreate(I.first); 188 for (auto J : I.second) 189 if (P(J)) 190 S.insert(J); 191 } 192 return !empty(); 193 } 194 195 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 196 SmallVector<unsigned, 4> Modes; 197 Modes.reserve(Map.size()); 198 199 for (const auto &I : *this) 200 Modes.push_back(I.first); 201 if (Modes.empty()) { 202 OS << "{}"; 203 return; 204 } 205 array_pod_sort(Modes.begin(), Modes.end()); 206 207 OS << '{'; 208 for (unsigned M : Modes) { 209 OS << ' ' << getModeName(M) << ':'; 210 get(M).writeToStream(OS); 211 } 212 OS << " }"; 213 } 214 215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 216 // The isSimple call is much quicker than hasDefault - check this first. 217 bool IsSimple = isSimple(); 218 bool VTSIsSimple = VTS.isSimple(); 219 if (IsSimple && VTSIsSimple) 220 return *begin() == *VTS.begin(); 221 222 // Speedup: We have a default if the set is simple. 223 bool HaveDefault = IsSimple || hasDefault(); 224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 225 if (HaveDefault != VTSHaveDefault) 226 return false; 227 228 SmallSet<unsigned, 4> Modes; 229 for (auto &I : *this) 230 Modes.insert(I.first); 231 for (const auto &I : VTS) 232 Modes.insert(I.first); 233 234 if (HaveDefault) { 235 // Both sets have default mode. 236 for (unsigned M : Modes) { 237 if (get(M) != VTS.get(M)) 238 return false; 239 } 240 } else { 241 // Neither set has default mode. 242 for (unsigned M : Modes) { 243 // If there is no default mode, an empty set is equivalent to not having 244 // the corresponding mode. 245 bool NoModeThis = !hasMode(M) || get(M).empty(); 246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 247 if (NoModeThis != NoModeVTS) 248 return false; 249 if (!NoModeThis) 250 if (get(M) != VTS.get(M)) 251 return false; 252 } 253 } 254 255 return true; 256 } 257 258 namespace llvm { 259 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 260 T.writeToStream(OS); 261 return OS; 262 } 263 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 264 T.writeToStream(OS); 265 return OS; 266 } 267 } 268 269 LLVM_DUMP_METHOD 270 void TypeSetByHwMode::dump() const { 271 dbgs() << *this << '\n'; 272 } 273 274 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 275 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 276 // Complement of In. 277 auto CompIn = [&In](MVT T) -> bool { return !In.count(T); }; 278 279 if (OutP == InP) 280 return berase_if(Out, CompIn); 281 282 // Compute the intersection of scalars separately to account for only 283 // one set containing iPTR. 284 // The intersection of iPTR with a set of integer scalar types that does not 285 // include iPTR will result in the most specific scalar type: 286 // - iPTR is more specific than any set with two elements or more 287 // - iPTR is less specific than any single integer scalar type. 288 // For example 289 // { iPTR } * { i32 } -> { i32 } 290 // { iPTR } * { i32 i64 } -> { iPTR } 291 // and 292 // { iPTR i32 } * { i32 } -> { i32 } 293 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 294 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 295 296 // Let In' = elements only in In, Out' = elements only in Out, and 297 // IO = elements common to both. Normally IO would be returned as the result 298 // of the intersection, but we need to account for iPTR being a "wildcard" of 299 // sorts. Since elements in IO are those that match both sets exactly, they 300 // will all belong to the output. If any of the "leftovers" (i.e. In' or 301 // Out') contain iPTR, it means that the other set doesn't have it, but it 302 // could have (1) a more specific type, or (2) a set of types that is less 303 // specific. The "leftovers" from the other set is what we want to examine 304 // more closely. 305 306 auto subtract = [](const SetType &A, const SetType &B) { 307 SetType Diff = A; 308 berase_if(Diff, [&B](MVT T) { return B.count(T); }); 309 return Diff; 310 }; 311 312 if (InP) { 313 SetType OutOnly = subtract(Out, In); 314 if (OutOnly.empty()) { 315 // This means that Out \subset In, so no change to Out. 316 return false; 317 } 318 unsigned NumI = llvm::count_if(OutOnly, isScalarInteger); 319 if (NumI == 1 && OutOnly.size() == 1) { 320 // There is only one element in Out', and it happens to be a scalar 321 // integer that should be kept as a match for iPTR in In. 322 return false; 323 } 324 berase_if(Out, CompIn); 325 if (NumI == 1) { 326 // Replace the iPTR with the leftover scalar integer. 327 Out.insert(*llvm::find_if(OutOnly, isScalarInteger)); 328 } else if (NumI > 1) { 329 Out.insert(MVT::iPTR); 330 } 331 return true; 332 } 333 334 // OutP == true 335 SetType InOnly = subtract(In, Out); 336 unsigned SizeOut = Out.size(); 337 berase_if(Out, CompIn); // This will remove at least the iPTR. 338 unsigned NumI = llvm::count_if(InOnly, isScalarInteger); 339 if (NumI == 0) { 340 // iPTR deleted from Out. 341 return true; 342 } 343 if (NumI == 1) { 344 // Replace the iPTR with the leftover scalar integer. 345 Out.insert(*llvm::find_if(InOnly, isScalarInteger)); 346 return true; 347 } 348 349 // NumI > 1: Keep the iPTR in Out. 350 Out.insert(MVT::iPTR); 351 // If iPTR was the only element initially removed from Out, then Out 352 // has not changed. 353 return SizeOut != Out.size(); 354 } 355 356 bool TypeSetByHwMode::validate() const { 357 #ifndef NDEBUG 358 if (empty()) 359 return true; 360 bool AllEmpty = true; 361 for (const auto &I : *this) 362 AllEmpty &= I.second.empty(); 363 return !AllEmpty; 364 #endif 365 return true; 366 } 367 368 // --- TypeInfer 369 370 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 371 const TypeSetByHwMode &In) { 372 ValidateOnExit _1(Out, *this); 373 In.validate(); 374 if (In.empty() || Out == In || TP.hasError()) 375 return false; 376 if (Out.empty()) { 377 Out = In; 378 return true; 379 } 380 381 bool Changed = Out.constrain(In); 382 if (Changed && Out.empty()) 383 TP.error("Type contradiction"); 384 385 return Changed; 386 } 387 388 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 389 ValidateOnExit _1(Out, *this); 390 if (TP.hasError()) 391 return false; 392 assert(!Out.empty() && "cannot pick from an empty set"); 393 394 bool Changed = false; 395 for (auto &I : Out) { 396 TypeSetByHwMode::SetType &S = I.second; 397 if (S.size() <= 1) 398 continue; 399 MVT T = *S.begin(); // Pick the first element. 400 S.clear(); 401 S.insert(T); 402 Changed = true; 403 } 404 return Changed; 405 } 406 407 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 408 ValidateOnExit _1(Out, *this); 409 if (TP.hasError()) 410 return false; 411 if (!Out.empty()) 412 return Out.constrain(isIntegerOrPtr); 413 414 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 415 } 416 417 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 418 ValidateOnExit _1(Out, *this); 419 if (TP.hasError()) 420 return false; 421 if (!Out.empty()) 422 return Out.constrain(isFloatingPoint); 423 424 return Out.assign_if(getLegalTypes(), isFloatingPoint); 425 } 426 427 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 428 ValidateOnExit _1(Out, *this); 429 if (TP.hasError()) 430 return false; 431 if (!Out.empty()) 432 return Out.constrain(isScalar); 433 434 return Out.assign_if(getLegalTypes(), isScalar); 435 } 436 437 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 438 ValidateOnExit _1(Out, *this); 439 if (TP.hasError()) 440 return false; 441 if (!Out.empty()) 442 return Out.constrain(isVector); 443 444 return Out.assign_if(getLegalTypes(), isVector); 445 } 446 447 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 448 ValidateOnExit _1(Out, *this); 449 if (TP.hasError() || !Out.empty()) 450 return false; 451 452 Out = getLegalTypes(); 453 return true; 454 } 455 456 template <typename Iter, typename Pred, typename Less> 457 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 458 if (B == E) 459 return E; 460 Iter Min = E; 461 for (Iter I = B; I != E; ++I) { 462 if (!P(*I)) 463 continue; 464 if (Min == E || L(*I, *Min)) 465 Min = I; 466 } 467 return Min; 468 } 469 470 template <typename Iter, typename Pred, typename Less> 471 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 472 if (B == E) 473 return E; 474 Iter Max = E; 475 for (Iter I = B; I != E; ++I) { 476 if (!P(*I)) 477 continue; 478 if (Max == E || L(*Max, *I)) 479 Max = I; 480 } 481 return Max; 482 } 483 484 /// Make sure that for each type in Small, there exists a larger type in Big. 485 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 486 bool SmallIsVT) { 487 ValidateOnExit _1(Small, *this), _2(Big, *this); 488 if (TP.hasError()) 489 return false; 490 bool Changed = false; 491 492 assert((!SmallIsVT || !Small.empty()) && 493 "Small should not be empty for SDTCisVTSmallerThanOp"); 494 495 if (Small.empty()) 496 Changed |= EnforceAny(Small); 497 if (Big.empty()) 498 Changed |= EnforceAny(Big); 499 500 assert(Small.hasDefault() && Big.hasDefault()); 501 502 SmallVector<unsigned, 4> Modes; 503 union_modes(Small, Big, Modes); 504 505 // 1. Only allow integer or floating point types and make sure that 506 // both sides are both integer or both floating point. 507 // 2. Make sure that either both sides have vector types, or neither 508 // of them does. 509 for (unsigned M : Modes) { 510 TypeSetByHwMode::SetType &S = Small.get(M); 511 TypeSetByHwMode::SetType &B = Big.get(M); 512 513 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 514 515 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 516 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 517 Changed |= berase_if(S, NotInt); 518 Changed |= berase_if(B, NotInt); 519 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 520 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 521 Changed |= berase_if(S, NotFP); 522 Changed |= berase_if(B, NotFP); 523 } else if (SmallIsVT && B.empty()) { 524 // B is empty and since S is a specific VT, it will never be empty. Don't 525 // report this as a change, just clear S and continue. This prevents an 526 // infinite loop. 527 S.clear(); 528 } else if (S.empty() || B.empty()) { 529 Changed = !S.empty() || !B.empty(); 530 S.clear(); 531 B.clear(); 532 } else { 533 TP.error("Incompatible types"); 534 return Changed; 535 } 536 537 if (none_of(S, isVector) || none_of(B, isVector)) { 538 Changed |= berase_if(S, isVector); 539 Changed |= berase_if(B, isVector); 540 } 541 } 542 543 auto LT = [](MVT A, MVT B) -> bool { 544 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 545 // purposes of ordering. 546 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 547 A.getSizeInBits().getKnownMinSize()); 548 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 549 B.getSizeInBits().getKnownMinSize()); 550 return ASize < BSize; 551 }; 552 auto SameKindLE = [](MVT A, MVT B) -> bool { 553 // This function is used when removing elements: when a vector is compared 554 // to a non-vector or a scalable vector to any non-scalable MVT, it should 555 // return false (to avoid removal). 556 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 557 std::make_tuple(B.isVector(), B.isScalableVector())) 558 return false; 559 560 return std::make_tuple(A.getScalarSizeInBits(), 561 A.getSizeInBits().getKnownMinSize()) <= 562 std::make_tuple(B.getScalarSizeInBits(), 563 B.getSizeInBits().getKnownMinSize()); 564 }; 565 566 for (unsigned M : Modes) { 567 TypeSetByHwMode::SetType &S = Small.get(M); 568 TypeSetByHwMode::SetType &B = Big.get(M); 569 // MinS = min scalar in Small, remove all scalars from Big that are 570 // smaller-or-equal than MinS. 571 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 572 if (MinS != S.end()) 573 Changed |= berase_if(B, std::bind(SameKindLE, 574 std::placeholders::_1, *MinS)); 575 576 // MaxS = max scalar in Big, remove all scalars from Small that are 577 // larger than MaxS. 578 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 579 if (MaxS != B.end()) 580 Changed |= berase_if(S, std::bind(SameKindLE, 581 *MaxS, std::placeholders::_1)); 582 583 // MinV = min vector in Small, remove all vectors from Big that are 584 // smaller-or-equal than MinV. 585 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 586 if (MinV != S.end()) 587 Changed |= berase_if(B, std::bind(SameKindLE, 588 std::placeholders::_1, *MinV)); 589 590 // MaxV = max vector in Big, remove all vectors from Small that are 591 // larger than MaxV. 592 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 593 if (MaxV != B.end()) 594 Changed |= berase_if(S, std::bind(SameKindLE, 595 *MaxV, std::placeholders::_1)); 596 } 597 598 return Changed; 599 } 600 601 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 602 /// for each type U in Elem, U is a scalar type. 603 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 604 /// type T in Vec, such that U is the element type of T. 605 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 606 TypeSetByHwMode &Elem) { 607 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 608 if (TP.hasError()) 609 return false; 610 bool Changed = false; 611 612 if (Vec.empty()) 613 Changed |= EnforceVector(Vec); 614 if (Elem.empty()) 615 Changed |= EnforceScalar(Elem); 616 617 SmallVector<unsigned, 4> Modes; 618 union_modes(Vec, Elem, Modes); 619 for (unsigned M : Modes) { 620 TypeSetByHwMode::SetType &V = Vec.get(M); 621 TypeSetByHwMode::SetType &E = Elem.get(M); 622 623 Changed |= berase_if(V, isScalar); // Scalar = !vector 624 Changed |= berase_if(E, isVector); // Vector = !scalar 625 assert(!V.empty() && !E.empty()); 626 627 MachineValueTypeSet VT, ST; 628 // Collect element types from the "vector" set. 629 for (MVT T : V) 630 VT.insert(T.getVectorElementType()); 631 // Collect scalar types from the "element" set. 632 for (MVT T : E) 633 ST.insert(T); 634 635 // Remove from V all (vector) types whose element type is not in S. 636 Changed |= berase_if(V, [&ST](MVT T) -> bool { 637 return !ST.count(T.getVectorElementType()); 638 }); 639 // Remove from E all (scalar) types, for which there is no corresponding 640 // type in V. 641 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 642 } 643 644 return Changed; 645 } 646 647 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 648 const ValueTypeByHwMode &VVT) { 649 TypeSetByHwMode Tmp(VVT); 650 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 651 return EnforceVectorEltTypeIs(Vec, Tmp); 652 } 653 654 /// Ensure that for each type T in Sub, T is a vector type, and there 655 /// exists a type U in Vec such that U is a vector type with the same 656 /// element type as T and at least as many elements as T. 657 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 658 TypeSetByHwMode &Sub) { 659 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 660 if (TP.hasError()) 661 return false; 662 663 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 664 auto IsSubVec = [](MVT B, MVT P) -> bool { 665 if (!B.isVector() || !P.isVector()) 666 return false; 667 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 668 // but until there are obvious use-cases for this, keep the 669 // types separate. 670 if (B.isScalableVector() != P.isScalableVector()) 671 return false; 672 if (B.getVectorElementType() != P.getVectorElementType()) 673 return false; 674 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 675 }; 676 677 /// Return true if S has no element (vector type) that T is a sub-vector of, 678 /// i.e. has the same element type as T and more elements. 679 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 680 for (auto I : S) 681 if (IsSubVec(T, I)) 682 return false; 683 return true; 684 }; 685 686 /// Return true if S has no element (vector type) that T is a super-vector 687 /// of, i.e. has the same element type as T and fewer elements. 688 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 689 for (auto I : S) 690 if (IsSubVec(I, T)) 691 return false; 692 return true; 693 }; 694 695 bool Changed = false; 696 697 if (Vec.empty()) 698 Changed |= EnforceVector(Vec); 699 if (Sub.empty()) 700 Changed |= EnforceVector(Sub); 701 702 SmallVector<unsigned, 4> Modes; 703 union_modes(Vec, Sub, Modes); 704 for (unsigned M : Modes) { 705 TypeSetByHwMode::SetType &S = Sub.get(M); 706 TypeSetByHwMode::SetType &V = Vec.get(M); 707 708 Changed |= berase_if(S, isScalar); 709 710 // Erase all types from S that are not sub-vectors of a type in V. 711 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 712 713 // Erase all types from V that are not super-vectors of a type in S. 714 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 715 } 716 717 return Changed; 718 } 719 720 /// 1. Ensure that V has a scalar type iff W has a scalar type. 721 /// 2. Ensure that for each vector type T in V, there exists a vector 722 /// type U in W, such that T and U have the same number of elements. 723 /// 3. Ensure that for each vector type U in W, there exists a vector 724 /// type T in V, such that T and U have the same number of elements 725 /// (reverse of 2). 726 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 727 ValidateOnExit _1(V, *this), _2(W, *this); 728 if (TP.hasError()) 729 return false; 730 731 bool Changed = false; 732 if (V.empty()) 733 Changed |= EnforceAny(V); 734 if (W.empty()) 735 Changed |= EnforceAny(W); 736 737 // An actual vector type cannot have 0 elements, so we can treat scalars 738 // as zero-length vectors. This way both vectors and scalars can be 739 // processed identically. 740 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 741 MVT T) -> bool { 742 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 743 : ElementCount::getNull()); 744 }; 745 746 SmallVector<unsigned, 4> Modes; 747 union_modes(V, W, Modes); 748 for (unsigned M : Modes) { 749 TypeSetByHwMode::SetType &VS = V.get(M); 750 TypeSetByHwMode::SetType &WS = W.get(M); 751 752 SmallDenseSet<ElementCount> VN, WN; 753 for (MVT T : VS) 754 VN.insert(T.isVector() ? T.getVectorElementCount() 755 : ElementCount::getNull()); 756 for (MVT T : WS) 757 WN.insert(T.isVector() ? T.getVectorElementCount() 758 : ElementCount::getNull()); 759 760 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 761 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 762 } 763 return Changed; 764 } 765 766 namespace { 767 struct TypeSizeComparator { 768 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 769 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 770 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 771 } 772 }; 773 } // end anonymous namespace 774 775 /// 1. Ensure that for each type T in A, there exists a type U in B, 776 /// such that T and U have equal size in bits. 777 /// 2. Ensure that for each type U in B, there exists a type T in A 778 /// such that T and U have equal size in bits (reverse of 1). 779 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 780 ValidateOnExit _1(A, *this), _2(B, *this); 781 if (TP.hasError()) 782 return false; 783 bool Changed = false; 784 if (A.empty()) 785 Changed |= EnforceAny(A); 786 if (B.empty()) 787 Changed |= EnforceAny(B); 788 789 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 790 791 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 792 return !Sizes.count(T.getSizeInBits()); 793 }; 794 795 SmallVector<unsigned, 4> Modes; 796 union_modes(A, B, Modes); 797 for (unsigned M : Modes) { 798 TypeSetByHwMode::SetType &AS = A.get(M); 799 TypeSetByHwMode::SetType &BS = B.get(M); 800 TypeSizeSet AN, BN; 801 802 for (MVT T : AS) 803 AN.insert(T.getSizeInBits()); 804 for (MVT T : BS) 805 BN.insert(T.getSizeInBits()); 806 807 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 808 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 809 } 810 811 return Changed; 812 } 813 814 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 815 ValidateOnExit _1(VTS, *this); 816 const TypeSetByHwMode &Legal = getLegalTypes(); 817 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 818 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 819 820 for (auto &I : VTS) 821 expandOverloads(I.second, LegalTypes); 822 } 823 824 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 825 const TypeSetByHwMode::SetType &Legal) { 826 std::set<MVT> Ovs; 827 for (MVT T : Out) { 828 if (!T.isOverloaded()) 829 continue; 830 831 Ovs.insert(T); 832 // MachineValueTypeSet allows iteration and erasing. 833 Out.erase(T); 834 } 835 836 for (MVT Ov : Ovs) { 837 switch (Ov.SimpleTy) { 838 case MVT::iPTRAny: 839 Out.insert(MVT::iPTR); 840 return; 841 case MVT::iAny: 842 for (MVT T : MVT::integer_valuetypes()) 843 if (Legal.count(T)) 844 Out.insert(T); 845 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 846 if (Legal.count(T)) 847 Out.insert(T); 848 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 849 if (Legal.count(T)) 850 Out.insert(T); 851 return; 852 case MVT::fAny: 853 for (MVT T : MVT::fp_valuetypes()) 854 if (Legal.count(T)) 855 Out.insert(T); 856 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 857 if (Legal.count(T)) 858 Out.insert(T); 859 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 860 if (Legal.count(T)) 861 Out.insert(T); 862 return; 863 case MVT::vAny: 864 for (MVT T : MVT::vector_valuetypes()) 865 if (Legal.count(T)) 866 Out.insert(T); 867 return; 868 case MVT::Any: 869 for (MVT T : MVT::all_valuetypes()) 870 if (Legal.count(T)) 871 Out.insert(T); 872 return; 873 default: 874 break; 875 } 876 } 877 } 878 879 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 880 if (!LegalTypesCached) { 881 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 882 // Stuff all types from all modes into the default mode. 883 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 884 for (const auto &I : LTS) 885 LegalTypes.insert(I.second); 886 LegalTypesCached = true; 887 } 888 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 889 return LegalCache; 890 } 891 892 #ifndef NDEBUG 893 TypeInfer::ValidateOnExit::~ValidateOnExit() { 894 if (Infer.Validate && !VTS.validate()) { 895 dbgs() << "Type set is empty for each HW mode:\n" 896 "possible type contradiction in the pattern below " 897 "(use -print-records with llvm-tblgen to see all " 898 "expanded records).\n"; 899 Infer.TP.dump(); 900 dbgs() << "Generated from record:\n"; 901 Infer.TP.getRecord()->dump(); 902 PrintFatalError(Infer.TP.getRecord()->getLoc(), 903 "Type set is empty for each HW mode in '" + 904 Infer.TP.getRecord()->getName() + "'"); 905 } 906 } 907 #endif 908 909 910 //===----------------------------------------------------------------------===// 911 // ScopedName Implementation 912 //===----------------------------------------------------------------------===// 913 914 bool ScopedName::operator==(const ScopedName &o) const { 915 return Scope == o.Scope && Identifier == o.Identifier; 916 } 917 918 bool ScopedName::operator!=(const ScopedName &o) const { 919 return !(*this == o); 920 } 921 922 923 //===----------------------------------------------------------------------===// 924 // TreePredicateFn Implementation 925 //===----------------------------------------------------------------------===// 926 927 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 928 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 929 assert( 930 (!hasPredCode() || !hasImmCode()) && 931 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 932 } 933 934 bool TreePredicateFn::hasPredCode() const { 935 return isLoad() || isStore() || isAtomic() || hasNoUse() || 936 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 937 } 938 939 std::string TreePredicateFn::getPredCode() const { 940 std::string Code; 941 942 if (!isLoad() && !isStore() && !isAtomic()) { 943 Record *MemoryVT = getMemoryVT(); 944 945 if (MemoryVT) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "MemoryVT requires IsLoad or IsStore"); 948 } 949 950 if (!isLoad() && !isStore()) { 951 if (isUnindexed()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsUnindexed requires IsLoad or IsStore"); 954 955 Record *ScalarMemoryVT = getScalarMemoryVT(); 956 957 if (ScalarMemoryVT) 958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 959 "ScalarMemoryVT requires IsLoad or IsStore"); 960 } 961 962 if (isLoad() + isStore() + isAtomic() > 1) 963 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 964 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 965 966 if (isLoad()) { 967 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 968 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 969 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 970 getMinAlignment() < 1) 971 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 972 "IsLoad cannot be used by itself"); 973 } else { 974 if (isNonExtLoad()) 975 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 976 "IsNonExtLoad requires IsLoad"); 977 if (isAnyExtLoad()) 978 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 979 "IsAnyExtLoad requires IsLoad"); 980 if (isSignExtLoad()) 981 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 982 "IsSignExtLoad requires IsLoad"); 983 if (isZeroExtLoad()) 984 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 985 "IsZeroExtLoad requires IsLoad"); 986 } 987 988 if (isStore()) { 989 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 990 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 991 getAddressSpaces() == nullptr && getMinAlignment() < 1) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsStore cannot be used by itself"); 994 } else { 995 if (isNonTruncStore()) 996 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 997 "IsNonTruncStore requires IsStore"); 998 if (isTruncStore()) 999 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1000 "IsTruncStore requires IsStore"); 1001 } 1002 1003 if (isAtomic()) { 1004 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 1005 getAddressSpaces() == nullptr && 1006 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 1007 !isAtomicOrderingAcquireRelease() && 1008 !isAtomicOrderingSequentiallyConsistent() && 1009 !isAtomicOrderingAcquireOrStronger() && 1010 !isAtomicOrderingReleaseOrStronger() && 1011 !isAtomicOrderingWeakerThanAcquire() && 1012 !isAtomicOrderingWeakerThanRelease()) 1013 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1014 "IsAtomic cannot be used by itself"); 1015 } else { 1016 if (isAtomicOrderingMonotonic()) 1017 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1018 "IsAtomicOrderingMonotonic requires IsAtomic"); 1019 if (isAtomicOrderingAcquire()) 1020 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1021 "IsAtomicOrderingAcquire requires IsAtomic"); 1022 if (isAtomicOrderingRelease()) 1023 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1024 "IsAtomicOrderingRelease requires IsAtomic"); 1025 if (isAtomicOrderingAcquireRelease()) 1026 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1027 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 1028 if (isAtomicOrderingSequentiallyConsistent()) 1029 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1030 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1031 if (isAtomicOrderingAcquireOrStronger()) 1032 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1033 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1034 if (isAtomicOrderingReleaseOrStronger()) 1035 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1036 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1037 if (isAtomicOrderingWeakerThanAcquire()) 1038 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1039 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1040 } 1041 1042 if (isLoad() || isStore() || isAtomic()) { 1043 if (ListInit *AddressSpaces = getAddressSpaces()) { 1044 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1045 " if ("; 1046 1047 ListSeparator LS(" && "); 1048 for (Init *Val : AddressSpaces->getValues()) { 1049 Code += LS; 1050 1051 IntInit *IntVal = dyn_cast<IntInit>(Val); 1052 if (!IntVal) { 1053 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1054 "AddressSpaces element must be integer"); 1055 } 1056 1057 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1058 } 1059 1060 Code += ")\nreturn false;\n"; 1061 } 1062 1063 int64_t MinAlign = getMinAlignment(); 1064 if (MinAlign > 0) { 1065 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1066 Code += utostr(MinAlign); 1067 Code += "))\nreturn false;\n"; 1068 } 1069 1070 Record *MemoryVT = getMemoryVT(); 1071 1072 if (MemoryVT) 1073 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1074 MemoryVT->getName() + ") return false;\n") 1075 .str(); 1076 } 1077 1078 if (isAtomic() && isAtomicOrderingMonotonic()) 1079 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1080 "AtomicOrdering::Monotonic) return false;\n"; 1081 if (isAtomic() && isAtomicOrderingAcquire()) 1082 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1083 "AtomicOrdering::Acquire) return false;\n"; 1084 if (isAtomic() && isAtomicOrderingRelease()) 1085 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1086 "AtomicOrdering::Release) return false;\n"; 1087 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1088 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1089 "AtomicOrdering::AcquireRelease) return false;\n"; 1090 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1091 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1092 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1093 1094 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1095 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1096 "return false;\n"; 1097 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1098 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1099 "return false;\n"; 1100 1101 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1102 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1103 "return false;\n"; 1104 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1105 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1106 "return false;\n"; 1107 1108 if (isLoad() || isStore()) { 1109 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1110 1111 if (isUnindexed()) 1112 Code += ("if (cast<" + SDNodeName + 1113 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1114 "return false;\n") 1115 .str(); 1116 1117 if (isLoad()) { 1118 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1119 isZeroExtLoad()) > 1) 1120 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1121 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1122 "IsZeroExtLoad are mutually exclusive"); 1123 if (isNonExtLoad()) 1124 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1125 "ISD::NON_EXTLOAD) return false;\n"; 1126 if (isAnyExtLoad()) 1127 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1128 "return false;\n"; 1129 if (isSignExtLoad()) 1130 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1131 "return false;\n"; 1132 if (isZeroExtLoad()) 1133 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1134 "return false;\n"; 1135 } else { 1136 if ((isNonTruncStore() + isTruncStore()) > 1) 1137 PrintFatalError( 1138 getOrigPatFragRecord()->getRecord()->getLoc(), 1139 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1140 if (isNonTruncStore()) 1141 Code += 1142 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1143 if (isTruncStore()) 1144 Code += 1145 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1146 } 1147 1148 Record *ScalarMemoryVT = getScalarMemoryVT(); 1149 1150 if (ScalarMemoryVT) 1151 Code += ("if (cast<" + SDNodeName + 1152 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1153 ScalarMemoryVT->getName() + ") return false;\n") 1154 .str(); 1155 } 1156 1157 if (hasNoUse()) 1158 Code += "if (!SDValue(N, 0).use_empty()) return false;\n"; 1159 1160 std::string PredicateCode = 1161 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1162 1163 Code += PredicateCode; 1164 1165 if (PredicateCode.empty() && !Code.empty()) 1166 Code += "return true;\n"; 1167 1168 return Code; 1169 } 1170 1171 bool TreePredicateFn::hasImmCode() const { 1172 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1173 } 1174 1175 std::string TreePredicateFn::getImmCode() const { 1176 return std::string( 1177 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1178 } 1179 1180 bool TreePredicateFn::immCodeUsesAPInt() const { 1181 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1182 } 1183 1184 bool TreePredicateFn::immCodeUsesAPFloat() const { 1185 bool Unset; 1186 // The return value will be false when IsAPFloat is unset. 1187 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1188 Unset); 1189 } 1190 1191 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1192 bool Value) const { 1193 bool Unset; 1194 bool Result = 1195 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1196 if (Unset) 1197 return false; 1198 return Result == Value; 1199 } 1200 bool TreePredicateFn::usesOperands() const { 1201 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1202 } 1203 bool TreePredicateFn::hasNoUse() const { 1204 return isPredefinedPredicateEqualTo("HasNoUse", true); 1205 } 1206 bool TreePredicateFn::isLoad() const { 1207 return isPredefinedPredicateEqualTo("IsLoad", true); 1208 } 1209 bool TreePredicateFn::isStore() const { 1210 return isPredefinedPredicateEqualTo("IsStore", true); 1211 } 1212 bool TreePredicateFn::isAtomic() const { 1213 return isPredefinedPredicateEqualTo("IsAtomic", true); 1214 } 1215 bool TreePredicateFn::isUnindexed() const { 1216 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1217 } 1218 bool TreePredicateFn::isNonExtLoad() const { 1219 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1220 } 1221 bool TreePredicateFn::isAnyExtLoad() const { 1222 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1223 } 1224 bool TreePredicateFn::isSignExtLoad() const { 1225 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1226 } 1227 bool TreePredicateFn::isZeroExtLoad() const { 1228 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1229 } 1230 bool TreePredicateFn::isNonTruncStore() const { 1231 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1232 } 1233 bool TreePredicateFn::isTruncStore() const { 1234 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1235 } 1236 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1237 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1238 } 1239 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1240 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1241 } 1242 bool TreePredicateFn::isAtomicOrderingRelease() const { 1243 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1244 } 1245 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1246 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1247 } 1248 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1249 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1250 true); 1251 } 1252 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1253 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1254 } 1255 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1256 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1257 } 1258 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1259 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1260 } 1261 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1262 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1263 } 1264 Record *TreePredicateFn::getMemoryVT() const { 1265 Record *R = getOrigPatFragRecord()->getRecord(); 1266 if (R->isValueUnset("MemoryVT")) 1267 return nullptr; 1268 return R->getValueAsDef("MemoryVT"); 1269 } 1270 1271 ListInit *TreePredicateFn::getAddressSpaces() const { 1272 Record *R = getOrigPatFragRecord()->getRecord(); 1273 if (R->isValueUnset("AddressSpaces")) 1274 return nullptr; 1275 return R->getValueAsListInit("AddressSpaces"); 1276 } 1277 1278 int64_t TreePredicateFn::getMinAlignment() const { 1279 Record *R = getOrigPatFragRecord()->getRecord(); 1280 if (R->isValueUnset("MinAlignment")) 1281 return 0; 1282 return R->getValueAsInt("MinAlignment"); 1283 } 1284 1285 Record *TreePredicateFn::getScalarMemoryVT() const { 1286 Record *R = getOrigPatFragRecord()->getRecord(); 1287 if (R->isValueUnset("ScalarMemoryVT")) 1288 return nullptr; 1289 return R->getValueAsDef("ScalarMemoryVT"); 1290 } 1291 bool TreePredicateFn::hasGISelPredicateCode() const { 1292 return !PatFragRec->getRecord() 1293 ->getValueAsString("GISelPredicateCode") 1294 .empty(); 1295 } 1296 std::string TreePredicateFn::getGISelPredicateCode() const { 1297 return std::string( 1298 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1299 } 1300 1301 StringRef TreePredicateFn::getImmType() const { 1302 if (immCodeUsesAPInt()) 1303 return "const APInt &"; 1304 if (immCodeUsesAPFloat()) 1305 return "const APFloat &"; 1306 return "int64_t"; 1307 } 1308 1309 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1310 if (immCodeUsesAPInt()) 1311 return "APInt"; 1312 if (immCodeUsesAPFloat()) 1313 return "APFloat"; 1314 return "I64"; 1315 } 1316 1317 /// isAlwaysTrue - Return true if this is a noop predicate. 1318 bool TreePredicateFn::isAlwaysTrue() const { 1319 return !hasPredCode() && !hasImmCode(); 1320 } 1321 1322 /// Return the name to use in the generated code to reference this, this is 1323 /// "Predicate_foo" if from a pattern fragment "foo". 1324 std::string TreePredicateFn::getFnName() const { 1325 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1326 } 1327 1328 /// getCodeToRunOnSDNode - Return the code for the function body that 1329 /// evaluates this predicate. The argument is expected to be in "Node", 1330 /// not N. This handles casting and conversion to a concrete node type as 1331 /// appropriate. 1332 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1333 // Handle immediate predicates first. 1334 std::string ImmCode = getImmCode(); 1335 if (!ImmCode.empty()) { 1336 if (isLoad()) 1337 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1338 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1339 if (isStore()) 1340 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1341 "IsStore cannot be used with ImmLeaf or its subclasses"); 1342 if (isUnindexed()) 1343 PrintFatalError( 1344 getOrigPatFragRecord()->getRecord()->getLoc(), 1345 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1346 if (isNonExtLoad()) 1347 PrintFatalError( 1348 getOrigPatFragRecord()->getRecord()->getLoc(), 1349 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1350 if (isAnyExtLoad()) 1351 PrintFatalError( 1352 getOrigPatFragRecord()->getRecord()->getLoc(), 1353 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1354 if (isSignExtLoad()) 1355 PrintFatalError( 1356 getOrigPatFragRecord()->getRecord()->getLoc(), 1357 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1358 if (isZeroExtLoad()) 1359 PrintFatalError( 1360 getOrigPatFragRecord()->getRecord()->getLoc(), 1361 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1362 if (isNonTruncStore()) 1363 PrintFatalError( 1364 getOrigPatFragRecord()->getRecord()->getLoc(), 1365 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1366 if (isTruncStore()) 1367 PrintFatalError( 1368 getOrigPatFragRecord()->getRecord()->getLoc(), 1369 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1370 if (getMemoryVT()) 1371 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1372 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1373 if (getScalarMemoryVT()) 1374 PrintFatalError( 1375 getOrigPatFragRecord()->getRecord()->getLoc(), 1376 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1377 1378 std::string Result = (" " + getImmType() + " Imm = ").str(); 1379 if (immCodeUsesAPFloat()) 1380 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1381 else if (immCodeUsesAPInt()) 1382 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1383 else 1384 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1385 return Result + ImmCode; 1386 } 1387 1388 // Handle arbitrary node predicates. 1389 assert(hasPredCode() && "Don't have any predicate code!"); 1390 1391 // If this is using PatFrags, there are multiple trees to search. They should 1392 // all have the same class. FIXME: Is there a way to find a common 1393 // superclass? 1394 StringRef ClassName; 1395 for (const auto &Tree : PatFragRec->getTrees()) { 1396 StringRef TreeClassName; 1397 if (Tree->isLeaf()) 1398 TreeClassName = "SDNode"; 1399 else { 1400 Record *Op = Tree->getOperator(); 1401 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1402 TreeClassName = Info.getSDClassName(); 1403 } 1404 1405 if (ClassName.empty()) 1406 ClassName = TreeClassName; 1407 else if (ClassName != TreeClassName) { 1408 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1409 "PatFrags trees do not have consistent class"); 1410 } 1411 } 1412 1413 std::string Result; 1414 if (ClassName == "SDNode") 1415 Result = " SDNode *N = Node;\n"; 1416 else 1417 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1418 1419 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1420 } 1421 1422 //===----------------------------------------------------------------------===// 1423 // PatternToMatch implementation 1424 // 1425 1426 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1427 if (!P->isLeaf()) 1428 return false; 1429 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1430 if (!DI) 1431 return false; 1432 1433 Record *R = DI->getDef(); 1434 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1435 } 1436 1437 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1438 /// patterns before small ones. This is used to determine the size of a 1439 /// pattern. 1440 static unsigned getPatternSize(const TreePatternNode *P, 1441 const CodeGenDAGPatterns &CGP) { 1442 unsigned Size = 3; // The node itself. 1443 // If the root node is a ConstantSDNode, increases its size. 1444 // e.g. (set R32:$dst, 0). 1445 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1446 Size += 2; 1447 1448 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1449 Size += AM->getComplexity(); 1450 // We don't want to count any children twice, so return early. 1451 return Size; 1452 } 1453 1454 // If this node has some predicate function that must match, it adds to the 1455 // complexity of this node. 1456 if (!P->getPredicateCalls().empty()) 1457 ++Size; 1458 1459 // Count children in the count if they are also nodes. 1460 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1461 const TreePatternNode *Child = P->getChild(i); 1462 if (!Child->isLeaf() && Child->getNumTypes()) { 1463 const TypeSetByHwMode &T0 = Child->getExtType(0); 1464 // At this point, all variable type sets should be simple, i.e. only 1465 // have a default mode. 1466 if (T0.getMachineValueType() != MVT::Other) { 1467 Size += getPatternSize(Child, CGP); 1468 continue; 1469 } 1470 } 1471 if (Child->isLeaf()) { 1472 if (isa<IntInit>(Child->getLeafValue())) 1473 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1474 else if (Child->getComplexPatternInfo(CGP)) 1475 Size += getPatternSize(Child, CGP); 1476 else if (isImmAllOnesAllZerosMatch(Child)) 1477 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1478 else if (!Child->getPredicateCalls().empty()) 1479 ++Size; 1480 } 1481 } 1482 1483 return Size; 1484 } 1485 1486 /// Compute the complexity metric for the input pattern. This roughly 1487 /// corresponds to the number of nodes that are covered. 1488 int PatternToMatch:: 1489 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1490 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1491 } 1492 1493 void PatternToMatch::getPredicateRecords( 1494 SmallVectorImpl<Record *> &PredicateRecs) const { 1495 for (Init *I : Predicates->getValues()) { 1496 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1497 Record *Def = Pred->getDef(); 1498 if (!Def->isSubClassOf("Predicate")) { 1499 #ifndef NDEBUG 1500 Def->dump(); 1501 #endif 1502 llvm_unreachable("Unknown predicate type!"); 1503 } 1504 PredicateRecs.push_back(Def); 1505 } 1506 } 1507 // Sort so that different orders get canonicalized to the same string. 1508 llvm::sort(PredicateRecs, LessRecord()); 1509 } 1510 1511 /// getPredicateCheck - Return a single string containing all of this 1512 /// pattern's predicates concatenated with "&&" operators. 1513 /// 1514 std::string PatternToMatch::getPredicateCheck() const { 1515 SmallVector<Record *, 4> PredicateRecs; 1516 getPredicateRecords(PredicateRecs); 1517 1518 SmallString<128> PredicateCheck; 1519 for (Record *Pred : PredicateRecs) { 1520 StringRef CondString = Pred->getValueAsString("CondString"); 1521 if (CondString.empty()) 1522 continue; 1523 if (!PredicateCheck.empty()) 1524 PredicateCheck += " && "; 1525 PredicateCheck += "("; 1526 PredicateCheck += CondString; 1527 PredicateCheck += ")"; 1528 } 1529 1530 if (!HwModeFeatures.empty()) { 1531 if (!PredicateCheck.empty()) 1532 PredicateCheck += " && "; 1533 PredicateCheck += HwModeFeatures; 1534 } 1535 1536 return std::string(PredicateCheck); 1537 } 1538 1539 //===----------------------------------------------------------------------===// 1540 // SDTypeConstraint implementation 1541 // 1542 1543 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1544 OperandNo = R->getValueAsInt("OperandNum"); 1545 1546 if (R->isSubClassOf("SDTCisVT")) { 1547 ConstraintType = SDTCisVT; 1548 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1549 for (const auto &P : VVT) 1550 if (P.second == MVT::isVoid) 1551 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1552 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1553 ConstraintType = SDTCisPtrTy; 1554 } else if (R->isSubClassOf("SDTCisInt")) { 1555 ConstraintType = SDTCisInt; 1556 } else if (R->isSubClassOf("SDTCisFP")) { 1557 ConstraintType = SDTCisFP; 1558 } else if (R->isSubClassOf("SDTCisVec")) { 1559 ConstraintType = SDTCisVec; 1560 } else if (R->isSubClassOf("SDTCisSameAs")) { 1561 ConstraintType = SDTCisSameAs; 1562 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1563 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1564 ConstraintType = SDTCisVTSmallerThanOp; 1565 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1566 R->getValueAsInt("OtherOperandNum"); 1567 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1568 ConstraintType = SDTCisOpSmallerThanOp; 1569 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1570 R->getValueAsInt("BigOperandNum"); 1571 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1572 ConstraintType = SDTCisEltOfVec; 1573 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1574 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1575 ConstraintType = SDTCisSubVecOfVec; 1576 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1577 R->getValueAsInt("OtherOpNum"); 1578 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1579 ConstraintType = SDTCVecEltisVT; 1580 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1581 for (const auto &P : VVT) { 1582 MVT T = P.second; 1583 if (T.isVector()) 1584 PrintFatalError(R->getLoc(), 1585 "Cannot use vector type as SDTCVecEltisVT"); 1586 if (!T.isInteger() && !T.isFloatingPoint()) 1587 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1588 "as SDTCVecEltisVT"); 1589 } 1590 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1591 ConstraintType = SDTCisSameNumEltsAs; 1592 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1593 R->getValueAsInt("OtherOperandNum"); 1594 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1595 ConstraintType = SDTCisSameSizeAs; 1596 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1597 R->getValueAsInt("OtherOperandNum"); 1598 } else { 1599 PrintFatalError(R->getLoc(), 1600 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1601 } 1602 } 1603 1604 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1605 /// N, and the result number in ResNo. 1606 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1607 const SDNodeInfo &NodeInfo, 1608 unsigned &ResNo) { 1609 unsigned NumResults = NodeInfo.getNumResults(); 1610 if (OpNo < NumResults) { 1611 ResNo = OpNo; 1612 return N; 1613 } 1614 1615 OpNo -= NumResults; 1616 1617 if (OpNo >= N->getNumChildren()) { 1618 std::string S; 1619 raw_string_ostream OS(S); 1620 OS << "Invalid operand number in type constraint " 1621 << (OpNo+NumResults) << " "; 1622 N->print(OS); 1623 PrintFatalError(S); 1624 } 1625 1626 return N->getChild(OpNo); 1627 } 1628 1629 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1630 /// constraint to the nodes operands. This returns true if it makes a 1631 /// change, false otherwise. If a type contradiction is found, flag an error. 1632 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1633 const SDNodeInfo &NodeInfo, 1634 TreePattern &TP) const { 1635 if (TP.hasError()) 1636 return false; 1637 1638 unsigned ResNo = 0; // The result number being referenced. 1639 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1640 TypeInfer &TI = TP.getInfer(); 1641 1642 switch (ConstraintType) { 1643 case SDTCisVT: 1644 // Operand must be a particular type. 1645 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1646 case SDTCisPtrTy: 1647 // Operand must be same as target pointer type. 1648 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1649 case SDTCisInt: 1650 // Require it to be one of the legal integer VTs. 1651 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1652 case SDTCisFP: 1653 // Require it to be one of the legal fp VTs. 1654 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1655 case SDTCisVec: 1656 // Require it to be one of the legal vector VTs. 1657 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1658 case SDTCisSameAs: { 1659 unsigned OResNo = 0; 1660 TreePatternNode *OtherNode = 1661 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1662 return (int)NodeToApply->UpdateNodeType(ResNo, 1663 OtherNode->getExtType(OResNo), TP) | 1664 (int)OtherNode->UpdateNodeType(OResNo, 1665 NodeToApply->getExtType(ResNo), TP); 1666 } 1667 case SDTCisVTSmallerThanOp: { 1668 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1669 // have an integer type that is smaller than the VT. 1670 if (!NodeToApply->isLeaf() || 1671 !isa<DefInit>(NodeToApply->getLeafValue()) || 1672 !cast<DefInit>(NodeToApply->getLeafValue())->getDef() 1673 ->isSubClassOf("ValueType")) { 1674 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1675 return false; 1676 } 1677 DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue()); 1678 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1679 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1680 TypeSetByHwMode TypeListTmp(VVT); 1681 1682 unsigned OResNo = 0; 1683 TreePatternNode *OtherNode = 1684 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1685 OResNo); 1686 1687 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo), 1688 /*SmallIsVT*/ true); 1689 } 1690 case SDTCisOpSmallerThanOp: { 1691 unsigned BResNo = 0; 1692 TreePatternNode *BigOperand = 1693 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1694 BResNo); 1695 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1696 BigOperand->getExtType(BResNo)); 1697 } 1698 case SDTCisEltOfVec: { 1699 unsigned VResNo = 0; 1700 TreePatternNode *VecOperand = 1701 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1702 VResNo); 1703 // Filter vector types out of VecOperand that don't have the right element 1704 // type. 1705 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1706 NodeToApply->getExtType(ResNo)); 1707 } 1708 case SDTCisSubVecOfVec: { 1709 unsigned VResNo = 0; 1710 TreePatternNode *BigVecOperand = 1711 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1712 VResNo); 1713 1714 // Filter vector types out of BigVecOperand that don't have the 1715 // right subvector type. 1716 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1717 NodeToApply->getExtType(ResNo)); 1718 } 1719 case SDTCVecEltisVT: { 1720 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1721 } 1722 case SDTCisSameNumEltsAs: { 1723 unsigned OResNo = 0; 1724 TreePatternNode *OtherNode = 1725 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1726 N, NodeInfo, OResNo); 1727 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1728 NodeToApply->getExtType(ResNo)); 1729 } 1730 case SDTCisSameSizeAs: { 1731 unsigned OResNo = 0; 1732 TreePatternNode *OtherNode = 1733 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1734 N, NodeInfo, OResNo); 1735 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1736 NodeToApply->getExtType(ResNo)); 1737 } 1738 } 1739 llvm_unreachable("Invalid ConstraintType!"); 1740 } 1741 1742 // Update the node type to match an instruction operand or result as specified 1743 // in the ins or outs lists on the instruction definition. Return true if the 1744 // type was actually changed. 1745 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1746 Record *Operand, 1747 TreePattern &TP) { 1748 // The 'unknown' operand indicates that types should be inferred from the 1749 // context. 1750 if (Operand->isSubClassOf("unknown_class")) 1751 return false; 1752 1753 // The Operand class specifies a type directly. 1754 if (Operand->isSubClassOf("Operand")) { 1755 Record *R = Operand->getValueAsDef("Type"); 1756 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1757 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1758 } 1759 1760 // PointerLikeRegClass has a type that is determined at runtime. 1761 if (Operand->isSubClassOf("PointerLikeRegClass")) 1762 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1763 1764 // Both RegisterClass and RegisterOperand operands derive their types from a 1765 // register class def. 1766 Record *RC = nullptr; 1767 if (Operand->isSubClassOf("RegisterClass")) 1768 RC = Operand; 1769 else if (Operand->isSubClassOf("RegisterOperand")) 1770 RC = Operand->getValueAsDef("RegClass"); 1771 1772 assert(RC && "Unknown operand type"); 1773 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1774 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1775 } 1776 1777 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1778 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1779 if (!TP.getInfer().isConcrete(Types[i], true)) 1780 return true; 1781 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1782 if (getChild(i)->ContainsUnresolvedType(TP)) 1783 return true; 1784 return false; 1785 } 1786 1787 bool TreePatternNode::hasProperTypeByHwMode() const { 1788 for (const TypeSetByHwMode &S : Types) 1789 if (!S.isDefaultOnly()) 1790 return true; 1791 for (const TreePatternNodePtr &C : Children) 1792 if (C->hasProperTypeByHwMode()) 1793 return true; 1794 return false; 1795 } 1796 1797 bool TreePatternNode::hasPossibleType() const { 1798 for (const TypeSetByHwMode &S : Types) 1799 if (!S.isPossible()) 1800 return false; 1801 for (const TreePatternNodePtr &C : Children) 1802 if (!C->hasPossibleType()) 1803 return false; 1804 return true; 1805 } 1806 1807 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1808 for (TypeSetByHwMode &S : Types) { 1809 S.makeSimple(Mode); 1810 // Check if the selected mode had a type conflict. 1811 if (S.get(DefaultMode).empty()) 1812 return false; 1813 } 1814 for (const TreePatternNodePtr &C : Children) 1815 if (!C->setDefaultMode(Mode)) 1816 return false; 1817 return true; 1818 } 1819 1820 //===----------------------------------------------------------------------===// 1821 // SDNodeInfo implementation 1822 // 1823 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1824 EnumName = R->getValueAsString("Opcode"); 1825 SDClassName = R->getValueAsString("SDClass"); 1826 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1827 NumResults = TypeProfile->getValueAsInt("NumResults"); 1828 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1829 1830 // Parse the properties. 1831 Properties = parseSDPatternOperatorProperties(R); 1832 1833 // Parse the type constraints. 1834 std::vector<Record*> ConstraintList = 1835 TypeProfile->getValueAsListOfDefs("Constraints"); 1836 for (Record *R : ConstraintList) 1837 TypeConstraints.emplace_back(R, CGH); 1838 } 1839 1840 /// getKnownType - If the type constraints on this node imply a fixed type 1841 /// (e.g. all stores return void, etc), then return it as an 1842 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1843 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1844 unsigned NumResults = getNumResults(); 1845 assert(NumResults <= 1 && 1846 "We only work with nodes with zero or one result so far!"); 1847 assert(ResNo == 0 && "Only handles single result nodes so far"); 1848 1849 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1850 // Make sure that this applies to the correct node result. 1851 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1852 continue; 1853 1854 switch (Constraint.ConstraintType) { 1855 default: break; 1856 case SDTypeConstraint::SDTCisVT: 1857 if (Constraint.VVT.isSimple()) 1858 return Constraint.VVT.getSimple().SimpleTy; 1859 break; 1860 case SDTypeConstraint::SDTCisPtrTy: 1861 return MVT::iPTR; 1862 } 1863 } 1864 return MVT::Other; 1865 } 1866 1867 //===----------------------------------------------------------------------===// 1868 // TreePatternNode implementation 1869 // 1870 1871 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1872 if (Operator->getName() == "set" || 1873 Operator->getName() == "implicit") 1874 return 0; // All return nothing. 1875 1876 if (Operator->isSubClassOf("Intrinsic")) 1877 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1878 1879 if (Operator->isSubClassOf("SDNode")) 1880 return CDP.getSDNodeInfo(Operator).getNumResults(); 1881 1882 if (Operator->isSubClassOf("PatFrags")) { 1883 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1884 // the forward reference case where one pattern fragment references another 1885 // before it is processed. 1886 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1887 // The number of results of a fragment with alternative records is the 1888 // maximum number of results across all alternatives. 1889 unsigned NumResults = 0; 1890 for (const auto &T : PFRec->getTrees()) 1891 NumResults = std::max(NumResults, T->getNumTypes()); 1892 return NumResults; 1893 } 1894 1895 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1896 assert(LI && "Invalid Fragment"); 1897 unsigned NumResults = 0; 1898 for (Init *I : LI->getValues()) { 1899 Record *Op = nullptr; 1900 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1901 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1902 Op = DI->getDef(); 1903 assert(Op && "Invalid Fragment"); 1904 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1905 } 1906 return NumResults; 1907 } 1908 1909 if (Operator->isSubClassOf("Instruction")) { 1910 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1911 1912 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1913 1914 // Subtract any defaulted outputs. 1915 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1916 Record *OperandNode = InstInfo.Operands[i].Rec; 1917 1918 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1919 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1920 --NumDefsToAdd; 1921 } 1922 1923 // Add on one implicit def if it has a resolvable type. 1924 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1925 ++NumDefsToAdd; 1926 return NumDefsToAdd; 1927 } 1928 1929 if (Operator->isSubClassOf("SDNodeXForm")) 1930 return 1; // FIXME: Generalize SDNodeXForm 1931 1932 if (Operator->isSubClassOf("ValueType")) 1933 return 1; // A type-cast of one result. 1934 1935 if (Operator->isSubClassOf("ComplexPattern")) 1936 return 1; 1937 1938 errs() << *Operator; 1939 PrintFatalError("Unhandled node in GetNumNodeResults"); 1940 } 1941 1942 void TreePatternNode::print(raw_ostream &OS) const { 1943 if (isLeaf()) 1944 OS << *getLeafValue(); 1945 else 1946 OS << '(' << getOperator()->getName(); 1947 1948 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1949 OS << ':'; 1950 getExtType(i).writeToStream(OS); 1951 } 1952 1953 if (!isLeaf()) { 1954 if (getNumChildren() != 0) { 1955 OS << " "; 1956 ListSeparator LS; 1957 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1958 OS << LS; 1959 getChild(i)->print(OS); 1960 } 1961 } 1962 OS << ")"; 1963 } 1964 1965 for (const TreePredicateCall &Pred : PredicateCalls) { 1966 OS << "<<P:"; 1967 if (Pred.Scope) 1968 OS << Pred.Scope << ":"; 1969 OS << Pred.Fn.getFnName() << ">>"; 1970 } 1971 if (TransformFn) 1972 OS << "<<X:" << TransformFn->getName() << ">>"; 1973 if (!getName().empty()) 1974 OS << ":$" << getName(); 1975 1976 for (const ScopedName &Name : NamesAsPredicateArg) 1977 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1978 } 1979 void TreePatternNode::dump() const { 1980 print(errs()); 1981 } 1982 1983 /// isIsomorphicTo - Return true if this node is recursively 1984 /// isomorphic to the specified node. For this comparison, the node's 1985 /// entire state is considered. The assigned name is ignored, since 1986 /// nodes with differing names are considered isomorphic. However, if 1987 /// the assigned name is present in the dependent variable set, then 1988 /// the assigned name is considered significant and the node is 1989 /// isomorphic if the names match. 1990 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1991 const MultipleUseVarSet &DepVars) const { 1992 if (N == this) return true; 1993 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1994 getPredicateCalls() != N->getPredicateCalls() || 1995 getTransformFn() != N->getTransformFn()) 1996 return false; 1997 1998 if (isLeaf()) { 1999 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2000 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 2001 return ((DI->getDef() == NDI->getDef()) 2002 && (DepVars.find(getName()) == DepVars.end() 2003 || getName() == N->getName())); 2004 } 2005 } 2006 return getLeafValue() == N->getLeafValue(); 2007 } 2008 2009 if (N->getOperator() != getOperator() || 2010 N->getNumChildren() != getNumChildren()) return false; 2011 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2012 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 2013 return false; 2014 return true; 2015 } 2016 2017 /// clone - Make a copy of this tree and all of its children. 2018 /// 2019 TreePatternNodePtr TreePatternNode::clone() const { 2020 TreePatternNodePtr New; 2021 if (isLeaf()) { 2022 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 2023 } else { 2024 std::vector<TreePatternNodePtr> CChildren; 2025 CChildren.reserve(Children.size()); 2026 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2027 CChildren.push_back(getChild(i)->clone()); 2028 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 2029 getNumTypes()); 2030 } 2031 New->setName(getName()); 2032 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2033 New->Types = Types; 2034 New->setPredicateCalls(getPredicateCalls()); 2035 New->setTransformFn(getTransformFn()); 2036 return New; 2037 } 2038 2039 /// RemoveAllTypes - Recursively strip all the types of this tree. 2040 void TreePatternNode::RemoveAllTypes() { 2041 // Reset to unknown type. 2042 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2043 if (isLeaf()) return; 2044 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2045 getChild(i)->RemoveAllTypes(); 2046 } 2047 2048 2049 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2050 /// with actual values specified by ArgMap. 2051 void TreePatternNode::SubstituteFormalArguments( 2052 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2053 if (isLeaf()) return; 2054 2055 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2056 TreePatternNode *Child = getChild(i); 2057 if (Child->isLeaf()) { 2058 Init *Val = Child->getLeafValue(); 2059 // Note that, when substituting into an output pattern, Val might be an 2060 // UnsetInit. 2061 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 2062 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2063 // We found a use of a formal argument, replace it with its value. 2064 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 2065 assert(NewChild && "Couldn't find formal argument!"); 2066 assert((Child->getPredicateCalls().empty() || 2067 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 2068 "Non-empty child predicate clobbered!"); 2069 setChild(i, std::move(NewChild)); 2070 } 2071 } else { 2072 getChild(i)->SubstituteFormalArguments(ArgMap); 2073 } 2074 } 2075 } 2076 2077 2078 /// InlinePatternFragments - If this pattern refers to any pattern 2079 /// fragments, return the set of inlined versions (this can be more than 2080 /// one if a PatFrags record has multiple alternatives). 2081 void TreePatternNode::InlinePatternFragments( 2082 TreePatternNodePtr T, TreePattern &TP, 2083 std::vector<TreePatternNodePtr> &OutAlternatives) { 2084 2085 if (TP.hasError()) 2086 return; 2087 2088 if (isLeaf()) { 2089 OutAlternatives.push_back(T); // nothing to do. 2090 return; 2091 } 2092 2093 Record *Op = getOperator(); 2094 2095 if (!Op->isSubClassOf("PatFrags")) { 2096 if (getNumChildren() == 0) { 2097 OutAlternatives.push_back(T); 2098 return; 2099 } 2100 2101 // Recursively inline children nodes. 2102 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2103 ChildAlternatives.resize(getNumChildren()); 2104 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2105 TreePatternNodePtr Child = getChildShared(i); 2106 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2107 // If there are no alternatives for any child, there are no 2108 // alternatives for this expression as whole. 2109 if (ChildAlternatives[i].empty()) 2110 return; 2111 2112 assert((Child->getPredicateCalls().empty() || 2113 llvm::all_of(ChildAlternatives[i], 2114 [&](const TreePatternNodePtr &NewChild) { 2115 return NewChild->getPredicateCalls() == 2116 Child->getPredicateCalls(); 2117 })) && 2118 "Non-empty child predicate clobbered!"); 2119 } 2120 2121 // The end result is an all-pairs construction of the resultant pattern. 2122 std::vector<unsigned> Idxs; 2123 Idxs.resize(ChildAlternatives.size()); 2124 bool NotDone; 2125 do { 2126 // Create the variant and add it to the output list. 2127 std::vector<TreePatternNodePtr> NewChildren; 2128 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2129 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2130 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2131 getOperator(), std::move(NewChildren), getNumTypes()); 2132 2133 // Copy over properties. 2134 R->setName(getName()); 2135 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2136 R->setPredicateCalls(getPredicateCalls()); 2137 R->setTransformFn(getTransformFn()); 2138 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2139 R->setType(i, getExtType(i)); 2140 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2141 R->setResultIndex(i, getResultIndex(i)); 2142 2143 // Register alternative. 2144 OutAlternatives.push_back(R); 2145 2146 // Increment indices to the next permutation by incrementing the 2147 // indices from last index backward, e.g., generate the sequence 2148 // [0, 0], [0, 1], [1, 0], [1, 1]. 2149 int IdxsIdx; 2150 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2151 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2152 Idxs[IdxsIdx] = 0; 2153 else 2154 break; 2155 } 2156 NotDone = (IdxsIdx >= 0); 2157 } while (NotDone); 2158 2159 return; 2160 } 2161 2162 // Otherwise, we found a reference to a fragment. First, look up its 2163 // TreePattern record. 2164 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2165 2166 // Verify that we are passing the right number of operands. 2167 if (Frag->getNumArgs() != Children.size()) { 2168 TP.error("'" + Op->getName() + "' fragment requires " + 2169 Twine(Frag->getNumArgs()) + " operands!"); 2170 return; 2171 } 2172 2173 TreePredicateFn PredFn(Frag); 2174 unsigned Scope = 0; 2175 if (TreePredicateFn(Frag).usesOperands()) 2176 Scope = TP.getDAGPatterns().allocateScope(); 2177 2178 // Compute the map of formal to actual arguments. 2179 std::map<std::string, TreePatternNodePtr> ArgMap; 2180 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2181 TreePatternNodePtr Child = getChildShared(i); 2182 if (Scope != 0) { 2183 Child = Child->clone(); 2184 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2185 } 2186 ArgMap[Frag->getArgName(i)] = Child; 2187 } 2188 2189 // Loop over all fragment alternatives. 2190 for (const auto &Alternative : Frag->getTrees()) { 2191 TreePatternNodePtr FragTree = Alternative->clone(); 2192 2193 if (!PredFn.isAlwaysTrue()) 2194 FragTree->addPredicateCall(PredFn, Scope); 2195 2196 // Resolve formal arguments to their actual value. 2197 if (Frag->getNumArgs()) 2198 FragTree->SubstituteFormalArguments(ArgMap); 2199 2200 // Transfer types. Note that the resolved alternative may have fewer 2201 // (but not more) results than the PatFrags node. 2202 FragTree->setName(getName()); 2203 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2204 FragTree->UpdateNodeType(i, getExtType(i), TP); 2205 2206 // Transfer in the old predicates. 2207 for (const TreePredicateCall &Pred : getPredicateCalls()) 2208 FragTree->addPredicateCall(Pred); 2209 2210 // The fragment we inlined could have recursive inlining that is needed. See 2211 // if there are any pattern fragments in it and inline them as needed. 2212 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2213 } 2214 } 2215 2216 /// getImplicitType - Check to see if the specified record has an implicit 2217 /// type which should be applied to it. This will infer the type of register 2218 /// references from the register file information, for example. 2219 /// 2220 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2221 /// the F8RC register class argument in: 2222 /// 2223 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2224 /// 2225 /// When Unnamed is false, return the type of a named DAG operand such as the 2226 /// GPR:$src operand above. 2227 /// 2228 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2229 bool NotRegisters, 2230 bool Unnamed, 2231 TreePattern &TP) { 2232 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2233 2234 // Check to see if this is a register operand. 2235 if (R->isSubClassOf("RegisterOperand")) { 2236 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2237 if (NotRegisters) 2238 return TypeSetByHwMode(); // Unknown. 2239 Record *RegClass = R->getValueAsDef("RegClass"); 2240 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2241 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2242 } 2243 2244 // Check to see if this is a register or a register class. 2245 if (R->isSubClassOf("RegisterClass")) { 2246 assert(ResNo == 0 && "Regclass ref only has one result!"); 2247 // An unnamed register class represents itself as an i32 immediate, for 2248 // example on a COPY_TO_REGCLASS instruction. 2249 if (Unnamed) 2250 return TypeSetByHwMode(MVT::i32); 2251 2252 // In a named operand, the register class provides the possible set of 2253 // types. 2254 if (NotRegisters) 2255 return TypeSetByHwMode(); // Unknown. 2256 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2257 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2258 } 2259 2260 if (R->isSubClassOf("PatFrags")) { 2261 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2262 // Pattern fragment types will be resolved when they are inlined. 2263 return TypeSetByHwMode(); // Unknown. 2264 } 2265 2266 if (R->isSubClassOf("Register")) { 2267 assert(ResNo == 0 && "Registers only produce one result!"); 2268 if (NotRegisters) 2269 return TypeSetByHwMode(); // Unknown. 2270 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2271 return TypeSetByHwMode(T.getRegisterVTs(R)); 2272 } 2273 2274 if (R->isSubClassOf("SubRegIndex")) { 2275 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2276 return TypeSetByHwMode(MVT::i32); 2277 } 2278 2279 if (R->isSubClassOf("ValueType")) { 2280 assert(ResNo == 0 && "This node only has one result!"); 2281 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2282 // 2283 // (sext_inreg GPR:$src, i16) 2284 // ~~~ 2285 if (Unnamed) 2286 return TypeSetByHwMode(MVT::Other); 2287 // With a name, the ValueType simply provides the type of the named 2288 // variable. 2289 // 2290 // (sext_inreg i32:$src, i16) 2291 // ~~~~~~~~ 2292 if (NotRegisters) 2293 return TypeSetByHwMode(); // Unknown. 2294 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2295 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2296 } 2297 2298 if (R->isSubClassOf("CondCode")) { 2299 assert(ResNo == 0 && "This node only has one result!"); 2300 // Using a CondCodeSDNode. 2301 return TypeSetByHwMode(MVT::Other); 2302 } 2303 2304 if (R->isSubClassOf("ComplexPattern")) { 2305 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2306 if (NotRegisters) 2307 return TypeSetByHwMode(); // Unknown. 2308 Record *T = CDP.getComplexPattern(R).getValueType(); 2309 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2310 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2311 } 2312 if (R->isSubClassOf("PointerLikeRegClass")) { 2313 assert(ResNo == 0 && "Regclass can only have one result!"); 2314 TypeSetByHwMode VTS(MVT::iPTR); 2315 TP.getInfer().expandOverloads(VTS); 2316 return VTS; 2317 } 2318 2319 if (R->getName() == "node" || R->getName() == "srcvalue" || 2320 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2321 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2322 // Placeholder. 2323 return TypeSetByHwMode(); // Unknown. 2324 } 2325 2326 if (R->isSubClassOf("Operand")) { 2327 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2328 Record *T = R->getValueAsDef("Type"); 2329 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2330 } 2331 2332 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2333 return TypeSetByHwMode(MVT::Other); 2334 } 2335 2336 2337 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2338 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2339 const CodeGenIntrinsic *TreePatternNode:: 2340 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2341 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2342 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2343 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2344 return nullptr; 2345 2346 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2347 return &CDP.getIntrinsicInfo(IID); 2348 } 2349 2350 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2351 /// return the ComplexPattern information, otherwise return null. 2352 const ComplexPattern * 2353 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2354 Record *Rec; 2355 if (isLeaf()) { 2356 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2357 if (!DI) 2358 return nullptr; 2359 Rec = DI->getDef(); 2360 } else 2361 Rec = getOperator(); 2362 2363 if (!Rec->isSubClassOf("ComplexPattern")) 2364 return nullptr; 2365 return &CGP.getComplexPattern(Rec); 2366 } 2367 2368 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2369 // A ComplexPattern specifically declares how many results it fills in. 2370 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2371 return CP->getNumOperands(); 2372 2373 // If MIOperandInfo is specified, that gives the count. 2374 if (isLeaf()) { 2375 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2376 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2377 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2378 if (MIOps->getNumArgs()) 2379 return MIOps->getNumArgs(); 2380 } 2381 } 2382 2383 // Otherwise there is just one result. 2384 return 1; 2385 } 2386 2387 /// NodeHasProperty - Return true if this node has the specified property. 2388 bool TreePatternNode::NodeHasProperty(SDNP Property, 2389 const CodeGenDAGPatterns &CGP) const { 2390 if (isLeaf()) { 2391 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2392 return CP->hasProperty(Property); 2393 2394 return false; 2395 } 2396 2397 if (Property != SDNPHasChain) { 2398 // The chain proprety is already present on the different intrinsic node 2399 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2400 // on the intrinsic. Anything else is specific to the individual intrinsic. 2401 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2402 return Int->hasProperty(Property); 2403 } 2404 2405 if (!Operator->isSubClassOf("SDPatternOperator")) 2406 return false; 2407 2408 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2409 } 2410 2411 2412 2413 2414 /// TreeHasProperty - Return true if any node in this tree has the specified 2415 /// property. 2416 bool TreePatternNode::TreeHasProperty(SDNP Property, 2417 const CodeGenDAGPatterns &CGP) const { 2418 if (NodeHasProperty(Property, CGP)) 2419 return true; 2420 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2421 if (getChild(i)->TreeHasProperty(Property, CGP)) 2422 return true; 2423 return false; 2424 } 2425 2426 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2427 /// commutative intrinsic. 2428 bool 2429 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2430 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2431 return Int->isCommutative; 2432 return false; 2433 } 2434 2435 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2436 if (!N->isLeaf()) 2437 return N->getOperator()->isSubClassOf(Class); 2438 2439 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2440 if (DI && DI->getDef()->isSubClassOf(Class)) 2441 return true; 2442 2443 return false; 2444 } 2445 2446 static void emitTooManyOperandsError(TreePattern &TP, 2447 StringRef InstName, 2448 unsigned Expected, 2449 unsigned Actual) { 2450 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2451 " operands but expected only " + Twine(Expected) + "!"); 2452 } 2453 2454 static void emitTooFewOperandsError(TreePattern &TP, 2455 StringRef InstName, 2456 unsigned Actual) { 2457 TP.error("Instruction '" + InstName + 2458 "' expects more than the provided " + Twine(Actual) + " operands!"); 2459 } 2460 2461 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2462 /// this node and its children in the tree. This returns true if it makes a 2463 /// change, false otherwise. If a type contradiction is found, flag an error. 2464 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2465 if (TP.hasError()) 2466 return false; 2467 2468 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2469 if (isLeaf()) { 2470 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2471 // If it's a regclass or something else known, include the type. 2472 bool MadeChange = false; 2473 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2474 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2475 NotRegisters, 2476 !hasName(), TP), TP); 2477 return MadeChange; 2478 } 2479 2480 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2481 assert(Types.size() == 1 && "Invalid IntInit"); 2482 2483 // Int inits are always integers. :) 2484 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2485 2486 if (!TP.getInfer().isConcrete(Types[0], false)) 2487 return MadeChange; 2488 2489 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2490 for (auto &P : VVT) { 2491 MVT::SimpleValueType VT = P.second.SimpleTy; 2492 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2493 continue; 2494 unsigned Size = MVT(VT).getFixedSizeInBits(); 2495 // Make sure that the value is representable for this type. 2496 if (Size >= 32) 2497 continue; 2498 // Check that the value doesn't use more bits than we have. It must 2499 // either be a sign- or zero-extended equivalent of the original. 2500 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2501 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2502 SignBitAndAbove == 1) 2503 continue; 2504 2505 TP.error("Integer value '" + Twine(II->getValue()) + 2506 "' is out of range for type '" + getEnumName(VT) + "'!"); 2507 break; 2508 } 2509 return MadeChange; 2510 } 2511 2512 return false; 2513 } 2514 2515 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2516 bool MadeChange = false; 2517 2518 // Apply the result type to the node. 2519 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2520 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2521 2522 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2523 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2524 2525 if (getNumChildren() != NumParamVTs + 1) { 2526 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2527 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2528 return false; 2529 } 2530 2531 // Apply type info to the intrinsic ID. 2532 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2533 2534 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2535 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2536 2537 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2538 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2539 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2540 } 2541 return MadeChange; 2542 } 2543 2544 if (getOperator()->isSubClassOf("SDNode")) { 2545 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2546 2547 // Check that the number of operands is sane. Negative operands -> varargs. 2548 if (NI.getNumOperands() >= 0 && 2549 getNumChildren() != (unsigned)NI.getNumOperands()) { 2550 TP.error(getOperator()->getName() + " node requires exactly " + 2551 Twine(NI.getNumOperands()) + " operands!"); 2552 return false; 2553 } 2554 2555 bool MadeChange = false; 2556 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2557 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2558 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2559 return MadeChange; 2560 } 2561 2562 if (getOperator()->isSubClassOf("Instruction")) { 2563 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2564 CodeGenInstruction &InstInfo = 2565 CDP.getTargetInfo().getInstruction(getOperator()); 2566 2567 bool MadeChange = false; 2568 2569 // Apply the result types to the node, these come from the things in the 2570 // (outs) list of the instruction. 2571 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2572 Inst.getNumResults()); 2573 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2574 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2575 2576 // If the instruction has implicit defs, we apply the first one as a result. 2577 // FIXME: This sucks, it should apply all implicit defs. 2578 if (!InstInfo.ImplicitDefs.empty()) { 2579 unsigned ResNo = NumResultsToAdd; 2580 2581 // FIXME: Generalize to multiple possible types and multiple possible 2582 // ImplicitDefs. 2583 MVT::SimpleValueType VT = 2584 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2585 2586 if (VT != MVT::Other) 2587 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2588 } 2589 2590 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2591 // be the same. 2592 if (getOperator()->getName() == "INSERT_SUBREG") { 2593 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2594 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2595 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2596 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2597 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2598 // variadic. 2599 2600 unsigned NChild = getNumChildren(); 2601 if (NChild < 3) { 2602 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2603 return false; 2604 } 2605 2606 if (NChild % 2 == 0) { 2607 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2608 return false; 2609 } 2610 2611 if (!isOperandClass(getChild(0), "RegisterClass")) { 2612 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2613 return false; 2614 } 2615 2616 for (unsigned I = 1; I < NChild; I += 2) { 2617 TreePatternNode *SubIdxChild = getChild(I + 1); 2618 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2619 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2620 Twine(I + 1) + "!"); 2621 return false; 2622 } 2623 } 2624 } 2625 2626 unsigned NumResults = Inst.getNumResults(); 2627 unsigned NumFixedOperands = InstInfo.Operands.size(); 2628 2629 // If one or more operands with a default value appear at the end of the 2630 // formal operand list for an instruction, we allow them to be overridden 2631 // by optional operands provided in the pattern. 2632 // 2633 // But if an operand B without a default appears at any point after an 2634 // operand A with a default, then we don't allow A to be overridden, 2635 // because there would be no way to specify whether the next operand in 2636 // the pattern was intended to override A or skip it. 2637 unsigned NonOverridableOperands = NumFixedOperands; 2638 while (NonOverridableOperands > NumResults && 2639 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2640 --NonOverridableOperands; 2641 2642 unsigned ChildNo = 0; 2643 assert(NumResults <= NumFixedOperands); 2644 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2645 Record *OperandNode = InstInfo.Operands[i].Rec; 2646 2647 // If the operand has a default value, do we use it? We must use the 2648 // default if we've run out of children of the pattern DAG to consume, 2649 // or if the operand is followed by a non-defaulted one. 2650 if (CDP.operandHasDefault(OperandNode) && 2651 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2652 continue; 2653 2654 // If we have run out of child nodes and there _isn't_ a default 2655 // value we can use for the next operand, give an error. 2656 if (ChildNo >= getNumChildren()) { 2657 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2658 return false; 2659 } 2660 2661 TreePatternNode *Child = getChild(ChildNo++); 2662 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2663 2664 // If the operand has sub-operands, they may be provided by distinct 2665 // child patterns, so attempt to match each sub-operand separately. 2666 if (OperandNode->isSubClassOf("Operand")) { 2667 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2668 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2669 // But don't do that if the whole operand is being provided by 2670 // a single ComplexPattern-related Operand. 2671 2672 if (Child->getNumMIResults(CDP) < NumArgs) { 2673 // Match first sub-operand against the child we already have. 2674 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2675 MadeChange |= 2676 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2677 2678 // And the remaining sub-operands against subsequent children. 2679 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2680 if (ChildNo >= getNumChildren()) { 2681 emitTooFewOperandsError(TP, getOperator()->getName(), 2682 getNumChildren()); 2683 return false; 2684 } 2685 Child = getChild(ChildNo++); 2686 2687 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2688 MadeChange |= 2689 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2690 } 2691 continue; 2692 } 2693 } 2694 } 2695 2696 // If we didn't match by pieces above, attempt to match the whole 2697 // operand now. 2698 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2699 } 2700 2701 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2702 emitTooManyOperandsError(TP, getOperator()->getName(), 2703 ChildNo, getNumChildren()); 2704 return false; 2705 } 2706 2707 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2708 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2709 return MadeChange; 2710 } 2711 2712 if (getOperator()->isSubClassOf("ComplexPattern")) { 2713 bool MadeChange = false; 2714 2715 if (!NotRegisters) { 2716 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2717 Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2718 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2719 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2720 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2721 // exclusively use those as non-leaf nodes with explicit type casts, so 2722 // for backwards compatibility we do no inference in that case. This is 2723 // not supported when the ComplexPattern is used as a leaf value, 2724 // however; this inconsistency should be resolved, either by adding this 2725 // case there or by altering the backends to not do this (e.g. using Any 2726 // instead may work). 2727 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2728 MadeChange |= UpdateNodeType(0, VVT, TP); 2729 } 2730 2731 for (unsigned i = 0; i < getNumChildren(); ++i) 2732 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2733 2734 return MadeChange; 2735 } 2736 2737 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2738 2739 // Node transforms always take one operand. 2740 if (getNumChildren() != 1) { 2741 TP.error("Node transform '" + getOperator()->getName() + 2742 "' requires one operand!"); 2743 return false; 2744 } 2745 2746 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2747 return MadeChange; 2748 } 2749 2750 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2751 /// RHS of a commutative operation, not the on LHS. 2752 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2753 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2754 return true; 2755 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2756 return true; 2757 if (isImmAllOnesAllZerosMatch(N)) 2758 return true; 2759 return false; 2760 } 2761 2762 2763 /// canPatternMatch - If it is impossible for this pattern to match on this 2764 /// target, fill in Reason and return false. Otherwise, return true. This is 2765 /// used as a sanity check for .td files (to prevent people from writing stuff 2766 /// that can never possibly work), and to prevent the pattern permuter from 2767 /// generating stuff that is useless. 2768 bool TreePatternNode::canPatternMatch(std::string &Reason, 2769 const CodeGenDAGPatterns &CDP) { 2770 if (isLeaf()) return true; 2771 2772 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2773 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2774 return false; 2775 2776 // If this is an intrinsic, handle cases that would make it not match. For 2777 // example, if an operand is required to be an immediate. 2778 if (getOperator()->isSubClassOf("Intrinsic")) { 2779 // TODO: 2780 return true; 2781 } 2782 2783 if (getOperator()->isSubClassOf("ComplexPattern")) 2784 return true; 2785 2786 // If this node is a commutative operator, check that the LHS isn't an 2787 // immediate. 2788 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2789 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2790 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2791 // Scan all of the operands of the node and make sure that only the last one 2792 // is a constant node, unless the RHS also is. 2793 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2794 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2795 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2796 if (OnlyOnRHSOfCommutative(getChild(i))) { 2797 Reason="Immediate value must be on the RHS of commutative operators!"; 2798 return false; 2799 } 2800 } 2801 } 2802 2803 return true; 2804 } 2805 2806 //===----------------------------------------------------------------------===// 2807 // TreePattern implementation 2808 // 2809 2810 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2811 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2812 isInputPattern(isInput), HasError(false), 2813 Infer(*this) { 2814 for (Init *I : RawPat->getValues()) 2815 Trees.push_back(ParseTreePattern(I, "")); 2816 } 2817 2818 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2819 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2820 isInputPattern(isInput), HasError(false), 2821 Infer(*this) { 2822 Trees.push_back(ParseTreePattern(Pat, "")); 2823 } 2824 2825 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2826 CodeGenDAGPatterns &cdp) 2827 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2828 Infer(*this) { 2829 Trees.push_back(Pat); 2830 } 2831 2832 void TreePattern::error(const Twine &Msg) { 2833 if (HasError) 2834 return; 2835 dump(); 2836 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2837 HasError = true; 2838 } 2839 2840 void TreePattern::ComputeNamedNodes() { 2841 for (TreePatternNodePtr &Tree : Trees) 2842 ComputeNamedNodes(Tree.get()); 2843 } 2844 2845 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2846 if (!N->getName().empty()) 2847 NamedNodes[N->getName()].push_back(N); 2848 2849 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2850 ComputeNamedNodes(N->getChild(i)); 2851 } 2852 2853 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2854 StringRef OpName) { 2855 RecordKeeper &RK = TheInit->getRecordKeeper(); 2856 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2857 Record *R = DI->getDef(); 2858 2859 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2860 // TreePatternNode of its own. For example: 2861 /// (foo GPR, imm) -> (foo GPR, (imm)) 2862 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2863 return ParseTreePattern( 2864 DagInit::get(DI, nullptr, 2865 std::vector<std::pair<Init*, StringInit*> >()), 2866 OpName); 2867 2868 // Input argument? 2869 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2870 if (R->getName() == "node" && !OpName.empty()) { 2871 if (OpName.empty()) 2872 error("'node' argument requires a name to match with operand list"); 2873 Args.push_back(std::string(OpName)); 2874 } 2875 2876 Res->setName(OpName); 2877 return Res; 2878 } 2879 2880 // ?:$name or just $name. 2881 if (isa<UnsetInit>(TheInit)) { 2882 if (OpName.empty()) 2883 error("'?' argument requires a name to match with operand list"); 2884 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2885 Args.push_back(std::string(OpName)); 2886 Res->setName(OpName); 2887 return Res; 2888 } 2889 2890 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2891 if (!OpName.empty()) 2892 error("Constant int or bit argument should not have a name!"); 2893 if (isa<BitInit>(TheInit)) 2894 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2895 return std::make_shared<TreePatternNode>(TheInit, 1); 2896 } 2897 2898 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2899 // Turn this into an IntInit. 2900 Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2901 if (!II || !isa<IntInit>(II)) 2902 error("Bits value must be constants!"); 2903 return ParseTreePattern(II, OpName); 2904 } 2905 2906 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2907 if (!Dag) { 2908 TheInit->print(errs()); 2909 error("Pattern has unexpected init kind!"); 2910 } 2911 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2912 if (!OpDef) error("Pattern has unexpected operator type!"); 2913 Record *Operator = OpDef->getDef(); 2914 2915 if (Operator->isSubClassOf("ValueType")) { 2916 // If the operator is a ValueType, then this must be "type cast" of a leaf 2917 // node. 2918 if (Dag->getNumArgs() != 1) 2919 error("Type cast only takes one operand!"); 2920 2921 TreePatternNodePtr New = 2922 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2923 2924 // Apply the type cast. 2925 if (New->getNumTypes() != 1) 2926 error("Type cast can only have one type!"); 2927 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2928 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2929 2930 if (!OpName.empty()) 2931 error("ValueType cast should not have a name!"); 2932 return New; 2933 } 2934 2935 // Verify that this is something that makes sense for an operator. 2936 if (!Operator->isSubClassOf("PatFrags") && 2937 !Operator->isSubClassOf("SDNode") && 2938 !Operator->isSubClassOf("Instruction") && 2939 !Operator->isSubClassOf("SDNodeXForm") && 2940 !Operator->isSubClassOf("Intrinsic") && 2941 !Operator->isSubClassOf("ComplexPattern") && 2942 Operator->getName() != "set" && 2943 Operator->getName() != "implicit") 2944 error("Unrecognized node '" + Operator->getName() + "'!"); 2945 2946 // Check to see if this is something that is illegal in an input pattern. 2947 if (isInputPattern) { 2948 if (Operator->isSubClassOf("Instruction") || 2949 Operator->isSubClassOf("SDNodeXForm")) 2950 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2951 } else { 2952 if (Operator->isSubClassOf("Intrinsic")) 2953 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2954 2955 if (Operator->isSubClassOf("SDNode") && 2956 Operator->getName() != "imm" && 2957 Operator->getName() != "timm" && 2958 Operator->getName() != "fpimm" && 2959 Operator->getName() != "tglobaltlsaddr" && 2960 Operator->getName() != "tconstpool" && 2961 Operator->getName() != "tjumptable" && 2962 Operator->getName() != "tframeindex" && 2963 Operator->getName() != "texternalsym" && 2964 Operator->getName() != "tblockaddress" && 2965 Operator->getName() != "tglobaladdr" && 2966 Operator->getName() != "bb" && 2967 Operator->getName() != "vt" && 2968 Operator->getName() != "mcsym") 2969 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2970 } 2971 2972 std::vector<TreePatternNodePtr> Children; 2973 2974 // Parse all the operands. 2975 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2976 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2977 2978 // Get the actual number of results before Operator is converted to an intrinsic 2979 // node (which is hard-coded to have either zero or one result). 2980 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2981 2982 // If the operator is an intrinsic, then this is just syntactic sugar for 2983 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2984 // convert the intrinsic name to a number. 2985 if (Operator->isSubClassOf("Intrinsic")) { 2986 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2987 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2988 2989 // If this intrinsic returns void, it must have side-effects and thus a 2990 // chain. 2991 if (Int.IS.RetVTs.empty()) 2992 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2993 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2994 // Has side-effects, requires chain. 2995 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2996 else // Otherwise, no chain. 2997 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2998 2999 Children.insert(Children.begin(), std::make_shared<TreePatternNode>( 3000 IntInit::get(RK, IID), 1)); 3001 } 3002 3003 if (Operator->isSubClassOf("ComplexPattern")) { 3004 for (unsigned i = 0; i < Children.size(); ++i) { 3005 TreePatternNodePtr Child = Children[i]; 3006 3007 if (Child->getName().empty()) 3008 error("All arguments to a ComplexPattern must be named"); 3009 3010 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 3011 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 3012 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 3013 auto OperandId = std::make_pair(Operator, i); 3014 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 3015 if (PrevOp != ComplexPatternOperands.end()) { 3016 if (PrevOp->getValue() != OperandId) 3017 error("All ComplexPattern operands must appear consistently: " 3018 "in the same order in just one ComplexPattern instance."); 3019 } else 3020 ComplexPatternOperands[Child->getName()] = OperandId; 3021 } 3022 } 3023 3024 TreePatternNodePtr Result = 3025 std::make_shared<TreePatternNode>(Operator, std::move(Children), 3026 NumResults); 3027 Result->setName(OpName); 3028 3029 if (Dag->getName()) { 3030 assert(Result->getName().empty()); 3031 Result->setName(Dag->getNameStr()); 3032 } 3033 return Result; 3034 } 3035 3036 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3037 /// will never match in favor of something obvious that will. This is here 3038 /// strictly as a convenience to target authors because it allows them to write 3039 /// more type generic things and have useless type casts fold away. 3040 /// 3041 /// This returns true if any change is made. 3042 static bool SimplifyTree(TreePatternNodePtr &N) { 3043 if (N->isLeaf()) 3044 return false; 3045 3046 // If we have a bitconvert with a resolved type and if the source and 3047 // destination types are the same, then the bitconvert is useless, remove it. 3048 // 3049 // We make an exception if the types are completely empty. This can come up 3050 // when the pattern being simplified is in the Fragments list of a PatFrags, 3051 // so that the operand is just an untyped "node". In that situation we leave 3052 // bitconverts unsimplified, and simplify them later once the fragment is 3053 // expanded into its true context. 3054 if (N->getOperator()->getName() == "bitconvert" && 3055 N->getExtType(0).isValueTypeByHwMode(false) && 3056 !N->getExtType(0).empty() && 3057 N->getExtType(0) == N->getChild(0)->getExtType(0) && 3058 N->getName().empty()) { 3059 N = N->getChildShared(0); 3060 SimplifyTree(N); 3061 return true; 3062 } 3063 3064 // Walk all children. 3065 bool MadeChange = false; 3066 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3067 TreePatternNodePtr Child = N->getChildShared(i); 3068 MadeChange |= SimplifyTree(Child); 3069 N->setChild(i, std::move(Child)); 3070 } 3071 return MadeChange; 3072 } 3073 3074 3075 3076 /// InferAllTypes - Infer/propagate as many types throughout the expression 3077 /// patterns as possible. Return true if all types are inferred, false 3078 /// otherwise. Flags an error if a type contradiction is found. 3079 bool TreePattern:: 3080 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 3081 if (NamedNodes.empty()) 3082 ComputeNamedNodes(); 3083 3084 bool MadeChange = true; 3085 while (MadeChange) { 3086 MadeChange = false; 3087 for (TreePatternNodePtr &Tree : Trees) { 3088 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3089 MadeChange |= SimplifyTree(Tree); 3090 } 3091 3092 // If there are constraints on our named nodes, apply them. 3093 for (auto &Entry : NamedNodes) { 3094 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 3095 3096 // If we have input named node types, propagate their types to the named 3097 // values here. 3098 if (InNamedTypes) { 3099 if (!InNamedTypes->count(Entry.getKey())) { 3100 error("Node '" + std::string(Entry.getKey()) + 3101 "' in output pattern but not input pattern"); 3102 return true; 3103 } 3104 3105 const SmallVectorImpl<TreePatternNode*> &InNodes = 3106 InNamedTypes->find(Entry.getKey())->second; 3107 3108 // The input types should be fully resolved by now. 3109 for (TreePatternNode *Node : Nodes) { 3110 // If this node is a register class, and it is the root of the pattern 3111 // then we're mapping something onto an input register. We allow 3112 // changing the type of the input register in this case. This allows 3113 // us to match things like: 3114 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3115 if (Node == Trees[0].get() && Node->isLeaf()) { 3116 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3117 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3118 DI->getDef()->isSubClassOf("RegisterOperand"))) 3119 continue; 3120 } 3121 3122 assert(Node->getNumTypes() == 1 && 3123 InNodes[0]->getNumTypes() == 1 && 3124 "FIXME: cannot name multiple result nodes yet"); 3125 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3126 *this); 3127 } 3128 } 3129 3130 // If there are multiple nodes with the same name, they must all have the 3131 // same type. 3132 if (Entry.second.size() > 1) { 3133 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3134 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3135 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3136 "FIXME: cannot name multiple result nodes yet"); 3137 3138 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3139 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3140 } 3141 } 3142 } 3143 } 3144 3145 bool HasUnresolvedTypes = false; 3146 for (const TreePatternNodePtr &Tree : Trees) 3147 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3148 return !HasUnresolvedTypes; 3149 } 3150 3151 void TreePattern::print(raw_ostream &OS) const { 3152 OS << getRecord()->getName(); 3153 if (!Args.empty()) { 3154 OS << "("; 3155 ListSeparator LS; 3156 for (const std::string &Arg : Args) 3157 OS << LS << Arg; 3158 OS << ")"; 3159 } 3160 OS << ": "; 3161 3162 if (Trees.size() > 1) 3163 OS << "[\n"; 3164 for (const TreePatternNodePtr &Tree : Trees) { 3165 OS << "\t"; 3166 Tree->print(OS); 3167 OS << "\n"; 3168 } 3169 3170 if (Trees.size() > 1) 3171 OS << "]\n"; 3172 } 3173 3174 void TreePattern::dump() const { print(errs()); } 3175 3176 //===----------------------------------------------------------------------===// 3177 // CodeGenDAGPatterns implementation 3178 // 3179 3180 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3181 PatternRewriterFn PatternRewriter) 3182 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3183 PatternRewriter(PatternRewriter) { 3184 3185 Intrinsics = CodeGenIntrinsicTable(Records); 3186 ParseNodeInfo(); 3187 ParseNodeTransforms(); 3188 ParseComplexPatterns(); 3189 ParsePatternFragments(); 3190 ParseDefaultOperands(); 3191 ParseInstructions(); 3192 ParsePatternFragments(/*OutFrags*/true); 3193 ParsePatterns(); 3194 3195 // Generate variants. For example, commutative patterns can match 3196 // multiple ways. Add them to PatternsToMatch as well. 3197 GenerateVariants(); 3198 3199 // Break patterns with parameterized types into a series of patterns, 3200 // where each one has a fixed type and is predicated on the conditions 3201 // of the associated HW mode. 3202 ExpandHwModeBasedTypes(); 3203 3204 // Infer instruction flags. For example, we can detect loads, 3205 // stores, and side effects in many cases by examining an 3206 // instruction's pattern. 3207 InferInstructionFlags(); 3208 3209 // Verify that instruction flags match the patterns. 3210 VerifyInstructionFlags(); 3211 } 3212 3213 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3214 Record *N = Records.getDef(Name); 3215 if (!N || !N->isSubClassOf("SDNode")) 3216 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3217 3218 return N; 3219 } 3220 3221 // Parse all of the SDNode definitions for the target, populating SDNodes. 3222 void CodeGenDAGPatterns::ParseNodeInfo() { 3223 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3224 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3225 3226 while (!Nodes.empty()) { 3227 Record *R = Nodes.back(); 3228 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3229 Nodes.pop_back(); 3230 } 3231 3232 // Get the builtin intrinsic nodes. 3233 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3234 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3235 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3236 } 3237 3238 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3239 /// map, and emit them to the file as functions. 3240 void CodeGenDAGPatterns::ParseNodeTransforms() { 3241 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3242 while (!Xforms.empty()) { 3243 Record *XFormNode = Xforms.back(); 3244 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3245 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3246 SDNodeXForms.insert( 3247 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3248 3249 Xforms.pop_back(); 3250 } 3251 } 3252 3253 void CodeGenDAGPatterns::ParseComplexPatterns() { 3254 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3255 while (!AMs.empty()) { 3256 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3257 AMs.pop_back(); 3258 } 3259 } 3260 3261 3262 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3263 /// file, building up the PatternFragments map. After we've collected them all, 3264 /// inline fragments together as necessary, so that there are no references left 3265 /// inside a pattern fragment to a pattern fragment. 3266 /// 3267 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3268 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3269 3270 // First step, parse all of the fragments. 3271 for (Record *Frag : Fragments) { 3272 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3273 continue; 3274 3275 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3276 TreePattern *P = 3277 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3278 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3279 *this)).get(); 3280 3281 // Validate the argument list, converting it to set, to discard duplicates. 3282 std::vector<std::string> &Args = P->getArgList(); 3283 // Copy the args so we can take StringRefs to them. 3284 auto ArgsCopy = Args; 3285 SmallDenseSet<StringRef, 4> OperandsSet; 3286 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3287 3288 if (OperandsSet.count("")) 3289 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3290 3291 // Parse the operands list. 3292 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3293 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3294 // Special cases: ops == outs == ins. Different names are used to 3295 // improve readability. 3296 if (!OpsOp || 3297 (OpsOp->getDef()->getName() != "ops" && 3298 OpsOp->getDef()->getName() != "outs" && 3299 OpsOp->getDef()->getName() != "ins")) 3300 P->error("Operands list should start with '(ops ... '!"); 3301 3302 // Copy over the arguments. 3303 Args.clear(); 3304 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3305 if (!isa<DefInit>(OpsList->getArg(j)) || 3306 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3307 P->error("Operands list should all be 'node' values."); 3308 if (!OpsList->getArgName(j)) 3309 P->error("Operands list should have names for each operand!"); 3310 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3311 if (!OperandsSet.count(ArgNameStr)) 3312 P->error("'" + ArgNameStr + 3313 "' does not occur in pattern or was multiply specified!"); 3314 OperandsSet.erase(ArgNameStr); 3315 Args.push_back(std::string(ArgNameStr)); 3316 } 3317 3318 if (!OperandsSet.empty()) 3319 P->error("Operands list does not contain an entry for operand '" + 3320 *OperandsSet.begin() + "'!"); 3321 3322 // If there is a node transformation corresponding to this, keep track of 3323 // it. 3324 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3325 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3326 for (const auto &T : P->getTrees()) 3327 T->setTransformFn(Transform); 3328 } 3329 3330 // Now that we've parsed all of the tree fragments, do a closure on them so 3331 // that there are not references to PatFrags left inside of them. 3332 for (Record *Frag : Fragments) { 3333 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3334 continue; 3335 3336 TreePattern &ThePat = *PatternFragments[Frag]; 3337 ThePat.InlinePatternFragments(); 3338 3339 // Infer as many types as possible. Don't worry about it if we don't infer 3340 // all of them, some may depend on the inputs of the pattern. Also, don't 3341 // validate type sets; validation may cause spurious failures e.g. if a 3342 // fragment needs floating-point types but the current target does not have 3343 // any (this is only an error if that fragment is ever used!). 3344 { 3345 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3346 ThePat.InferAllTypes(); 3347 ThePat.resetError(); 3348 } 3349 3350 // If debugging, print out the pattern fragment result. 3351 LLVM_DEBUG(ThePat.dump()); 3352 } 3353 } 3354 3355 void CodeGenDAGPatterns::ParseDefaultOperands() { 3356 std::vector<Record*> DefaultOps; 3357 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3358 3359 // Find some SDNode. 3360 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3361 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3362 3363 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3364 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3365 3366 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3367 // SomeSDnode so that we can parse this. 3368 std::vector<std::pair<Init*, StringInit*> > Ops; 3369 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3370 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3371 DefaultInfo->getArgName(op))); 3372 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3373 3374 // Create a TreePattern to parse this. 3375 TreePattern P(DefaultOps[i], DI, false, *this); 3376 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3377 3378 // Copy the operands over into a DAGDefaultOperand. 3379 DAGDefaultOperand DefaultOpInfo; 3380 3381 const TreePatternNodePtr &T = P.getTree(0); 3382 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3383 TreePatternNodePtr TPN = T->getChildShared(op); 3384 while (TPN->ApplyTypeConstraints(P, false)) 3385 /* Resolve all types */; 3386 3387 if (TPN->ContainsUnresolvedType(P)) { 3388 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3389 DefaultOps[i]->getName() + 3390 "' doesn't have a concrete type!"); 3391 } 3392 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3393 } 3394 3395 // Insert it into the DefaultOperands map so we can find it later. 3396 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3397 } 3398 } 3399 3400 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3401 /// instruction input. Return true if this is a real use. 3402 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3403 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3404 // No name -> not interesting. 3405 if (Pat->getName().empty()) { 3406 if (Pat->isLeaf()) { 3407 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3408 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3409 DI->getDef()->isSubClassOf("RegisterOperand"))) 3410 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3411 } 3412 return false; 3413 } 3414 3415 Record *Rec; 3416 if (Pat->isLeaf()) { 3417 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3418 if (!DI) 3419 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3420 Rec = DI->getDef(); 3421 } else { 3422 Rec = Pat->getOperator(); 3423 } 3424 3425 // SRCVALUE nodes are ignored. 3426 if (Rec->getName() == "srcvalue") 3427 return false; 3428 3429 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3430 if (!Slot) { 3431 Slot = Pat; 3432 return true; 3433 } 3434 Record *SlotRec; 3435 if (Slot->isLeaf()) { 3436 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3437 } else { 3438 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3439 SlotRec = Slot->getOperator(); 3440 } 3441 3442 // Ensure that the inputs agree if we've already seen this input. 3443 if (Rec != SlotRec) 3444 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3445 // Ensure that the types can agree as well. 3446 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3447 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3448 if (Slot->getExtTypes() != Pat->getExtTypes()) 3449 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3450 return true; 3451 } 3452 3453 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3454 /// part of "I", the instruction), computing the set of inputs and outputs of 3455 /// the pattern. Report errors if we see anything naughty. 3456 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3457 TreePattern &I, TreePatternNodePtr Pat, 3458 std::map<std::string, TreePatternNodePtr> &InstInputs, 3459 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3460 &InstResults, 3461 std::vector<Record *> &InstImpResults) { 3462 3463 // The instruction pattern still has unresolved fragments. For *named* 3464 // nodes we must resolve those here. This may not result in multiple 3465 // alternatives. 3466 if (!Pat->getName().empty()) { 3467 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3468 SrcPattern.InlinePatternFragments(); 3469 SrcPattern.InferAllTypes(); 3470 Pat = SrcPattern.getOnlyTree(); 3471 } 3472 3473 if (Pat->isLeaf()) { 3474 bool isUse = HandleUse(I, Pat, InstInputs); 3475 if (!isUse && Pat->getTransformFn()) 3476 I.error("Cannot specify a transform function for a non-input value!"); 3477 return; 3478 } 3479 3480 if (Pat->getOperator()->getName() == "implicit") { 3481 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3482 TreePatternNode *Dest = Pat->getChild(i); 3483 if (!Dest->isLeaf()) 3484 I.error("implicitly defined value should be a register!"); 3485 3486 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3487 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3488 I.error("implicitly defined value should be a register!"); 3489 InstImpResults.push_back(Val->getDef()); 3490 } 3491 return; 3492 } 3493 3494 if (Pat->getOperator()->getName() != "set") { 3495 // If this is not a set, verify that the children nodes are not void typed, 3496 // and recurse. 3497 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3498 if (Pat->getChild(i)->getNumTypes() == 0) 3499 I.error("Cannot have void nodes inside of patterns!"); 3500 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3501 InstResults, InstImpResults); 3502 } 3503 3504 // If this is a non-leaf node with no children, treat it basically as if 3505 // it were a leaf. This handles nodes like (imm). 3506 bool isUse = HandleUse(I, Pat, InstInputs); 3507 3508 if (!isUse && Pat->getTransformFn()) 3509 I.error("Cannot specify a transform function for a non-input value!"); 3510 return; 3511 } 3512 3513 // Otherwise, this is a set, validate and collect instruction results. 3514 if (Pat->getNumChildren() == 0) 3515 I.error("set requires operands!"); 3516 3517 if (Pat->getTransformFn()) 3518 I.error("Cannot specify a transform function on a set node!"); 3519 3520 // Check the set destinations. 3521 unsigned NumDests = Pat->getNumChildren()-1; 3522 for (unsigned i = 0; i != NumDests; ++i) { 3523 TreePatternNodePtr Dest = Pat->getChildShared(i); 3524 // For set destinations we also must resolve fragments here. 3525 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3526 DestPattern.InlinePatternFragments(); 3527 DestPattern.InferAllTypes(); 3528 Dest = DestPattern.getOnlyTree(); 3529 3530 if (!Dest->isLeaf()) 3531 I.error("set destination should be a register!"); 3532 3533 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3534 if (!Val) { 3535 I.error("set destination should be a register!"); 3536 continue; 3537 } 3538 3539 if (Val->getDef()->isSubClassOf("RegisterClass") || 3540 Val->getDef()->isSubClassOf("ValueType") || 3541 Val->getDef()->isSubClassOf("RegisterOperand") || 3542 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3543 if (Dest->getName().empty()) 3544 I.error("set destination must have a name!"); 3545 if (InstResults.count(Dest->getName())) 3546 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3547 InstResults[Dest->getName()] = Dest; 3548 } else if (Val->getDef()->isSubClassOf("Register")) { 3549 InstImpResults.push_back(Val->getDef()); 3550 } else { 3551 I.error("set destination should be a register!"); 3552 } 3553 } 3554 3555 // Verify and collect info from the computation. 3556 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3557 InstResults, InstImpResults); 3558 } 3559 3560 //===----------------------------------------------------------------------===// 3561 // Instruction Analysis 3562 //===----------------------------------------------------------------------===// 3563 3564 class InstAnalyzer { 3565 const CodeGenDAGPatterns &CDP; 3566 public: 3567 bool hasSideEffects; 3568 bool mayStore; 3569 bool mayLoad; 3570 bool isBitcast; 3571 bool isVariadic; 3572 bool hasChain; 3573 3574 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3575 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3576 isBitcast(false), isVariadic(false), hasChain(false) {} 3577 3578 void Analyze(const PatternToMatch &Pat) { 3579 const TreePatternNode *N = Pat.getSrcPattern(); 3580 AnalyzeNode(N); 3581 // These properties are detected only on the root node. 3582 isBitcast = IsNodeBitcast(N); 3583 } 3584 3585 private: 3586 bool IsNodeBitcast(const TreePatternNode *N) const { 3587 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3588 return false; 3589 3590 if (N->isLeaf()) 3591 return false; 3592 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3593 return false; 3594 3595 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3596 return false; 3597 3598 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3599 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3600 return false; 3601 return OpInfo.getEnumName() == "ISD::BITCAST"; 3602 } 3603 3604 public: 3605 void AnalyzeNode(const TreePatternNode *N) { 3606 if (N->isLeaf()) { 3607 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3608 Record *LeafRec = DI->getDef(); 3609 // Handle ComplexPattern leaves. 3610 if (LeafRec->isSubClassOf("ComplexPattern")) { 3611 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3612 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3613 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3614 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3615 } 3616 } 3617 return; 3618 } 3619 3620 // Analyze children. 3621 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3622 AnalyzeNode(N->getChild(i)); 3623 3624 // Notice properties of the node. 3625 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3626 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3627 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3628 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3629 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3630 3631 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3632 // If this is an intrinsic, analyze it. 3633 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3634 mayLoad = true;// These may load memory. 3635 3636 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3637 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3638 3639 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3640 IntInfo->hasSideEffects) 3641 // ReadWriteMem intrinsics can have other strange effects. 3642 hasSideEffects = true; 3643 } 3644 } 3645 3646 }; 3647 3648 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3649 const InstAnalyzer &PatInfo, 3650 Record *PatDef) { 3651 bool Error = false; 3652 3653 // Remember where InstInfo got its flags. 3654 if (InstInfo.hasUndefFlags()) 3655 InstInfo.InferredFrom = PatDef; 3656 3657 // Check explicitly set flags for consistency. 3658 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3659 !InstInfo.hasSideEffects_Unset) { 3660 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3661 // the pattern has no side effects. That could be useful for div/rem 3662 // instructions that may trap. 3663 if (!InstInfo.hasSideEffects) { 3664 Error = true; 3665 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3666 Twine(InstInfo.hasSideEffects)); 3667 } 3668 } 3669 3670 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3671 Error = true; 3672 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3673 Twine(InstInfo.mayStore)); 3674 } 3675 3676 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3677 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3678 // Some targets translate immediates to loads. 3679 if (!InstInfo.mayLoad) { 3680 Error = true; 3681 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3682 Twine(InstInfo.mayLoad)); 3683 } 3684 } 3685 3686 // Transfer inferred flags. 3687 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3688 InstInfo.mayStore |= PatInfo.mayStore; 3689 InstInfo.mayLoad |= PatInfo.mayLoad; 3690 3691 // These flags are silently added without any verification. 3692 // FIXME: To match historical behavior of TableGen, for now add those flags 3693 // only when we're inferring from the primary instruction pattern. 3694 if (PatDef->isSubClassOf("Instruction")) { 3695 InstInfo.isBitcast |= PatInfo.isBitcast; 3696 InstInfo.hasChain |= PatInfo.hasChain; 3697 InstInfo.hasChain_Inferred = true; 3698 } 3699 3700 // Don't infer isVariadic. This flag means something different on SDNodes and 3701 // instructions. For example, a CALL SDNode is variadic because it has the 3702 // call arguments as operands, but a CALL instruction is not variadic - it 3703 // has argument registers as implicit, not explicit uses. 3704 3705 return Error; 3706 } 3707 3708 /// hasNullFragReference - Return true if the DAG has any reference to the 3709 /// null_frag operator. 3710 static bool hasNullFragReference(DagInit *DI) { 3711 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3712 if (!OpDef) return false; 3713 Record *Operator = OpDef->getDef(); 3714 3715 // If this is the null fragment, return true. 3716 if (Operator->getName() == "null_frag") return true; 3717 // If any of the arguments reference the null fragment, return true. 3718 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3719 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3720 if (Arg->getDef()->getName() == "null_frag") 3721 return true; 3722 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3723 if (Arg && hasNullFragReference(Arg)) 3724 return true; 3725 } 3726 3727 return false; 3728 } 3729 3730 /// hasNullFragReference - Return true if any DAG in the list references 3731 /// the null_frag operator. 3732 static bool hasNullFragReference(ListInit *LI) { 3733 for (Init *I : LI->getValues()) { 3734 DagInit *DI = dyn_cast<DagInit>(I); 3735 assert(DI && "non-dag in an instruction Pattern list?!"); 3736 if (hasNullFragReference(DI)) 3737 return true; 3738 } 3739 return false; 3740 } 3741 3742 /// Get all the instructions in a tree. 3743 static void 3744 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3745 if (Tree->isLeaf()) 3746 return; 3747 if (Tree->getOperator()->isSubClassOf("Instruction")) 3748 Instrs.push_back(Tree->getOperator()); 3749 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3750 getInstructionsInTree(Tree->getChild(i), Instrs); 3751 } 3752 3753 /// Check the class of a pattern leaf node against the instruction operand it 3754 /// represents. 3755 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3756 Record *Leaf) { 3757 if (OI.Rec == Leaf) 3758 return true; 3759 3760 // Allow direct value types to be used in instruction set patterns. 3761 // The type will be checked later. 3762 if (Leaf->isSubClassOf("ValueType")) 3763 return true; 3764 3765 // Patterns can also be ComplexPattern instances. 3766 if (Leaf->isSubClassOf("ComplexPattern")) 3767 return true; 3768 3769 return false; 3770 } 3771 3772 void CodeGenDAGPatterns::parseInstructionPattern( 3773 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3774 3775 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3776 3777 // Parse the instruction. 3778 TreePattern I(CGI.TheDef, Pat, true, *this); 3779 3780 // InstInputs - Keep track of all of the inputs of the instruction, along 3781 // with the record they are declared as. 3782 std::map<std::string, TreePatternNodePtr> InstInputs; 3783 3784 // InstResults - Keep track of all the virtual registers that are 'set' 3785 // in the instruction, including what reg class they are. 3786 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3787 InstResults; 3788 3789 std::vector<Record*> InstImpResults; 3790 3791 // Verify that the top-level forms in the instruction are of void type, and 3792 // fill in the InstResults map. 3793 SmallString<32> TypesString; 3794 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3795 TypesString.clear(); 3796 TreePatternNodePtr Pat = I.getTree(j); 3797 if (Pat->getNumTypes() != 0) { 3798 raw_svector_ostream OS(TypesString); 3799 ListSeparator LS; 3800 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3801 OS << LS; 3802 Pat->getExtType(k).writeToStream(OS); 3803 } 3804 I.error("Top-level forms in instruction pattern should have" 3805 " void types, has types " + 3806 OS.str()); 3807 } 3808 3809 // Find inputs and outputs, and verify the structure of the uses/defs. 3810 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3811 InstImpResults); 3812 } 3813 3814 // Now that we have inputs and outputs of the pattern, inspect the operands 3815 // list for the instruction. This determines the order that operands are 3816 // added to the machine instruction the node corresponds to. 3817 unsigned NumResults = InstResults.size(); 3818 3819 // Parse the operands list from the (ops) list, validating it. 3820 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3821 3822 // Check that all of the results occur first in the list. 3823 std::vector<Record*> Results; 3824 std::vector<unsigned> ResultIndices; 3825 SmallVector<TreePatternNodePtr, 2> ResNodes; 3826 for (unsigned i = 0; i != NumResults; ++i) { 3827 if (i == CGI.Operands.size()) { 3828 const std::string &OpName = 3829 llvm::find_if( 3830 InstResults, 3831 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3832 return P.second; 3833 }) 3834 ->first; 3835 3836 I.error("'" + OpName + "' set but does not appear in operand list!"); 3837 } 3838 3839 const std::string &OpName = CGI.Operands[i].Name; 3840 3841 // Check that it exists in InstResults. 3842 auto InstResultIter = InstResults.find(OpName); 3843 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3844 I.error("Operand $" + OpName + " does not exist in operand list!"); 3845 3846 TreePatternNodePtr RNode = InstResultIter->second; 3847 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3848 ResNodes.push_back(std::move(RNode)); 3849 if (!R) 3850 I.error("Operand $" + OpName + " should be a set destination: all " 3851 "outputs must occur before inputs in operand list!"); 3852 3853 if (!checkOperandClass(CGI.Operands[i], R)) 3854 I.error("Operand $" + OpName + " class mismatch!"); 3855 3856 // Remember the return type. 3857 Results.push_back(CGI.Operands[i].Rec); 3858 3859 // Remember the result index. 3860 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3861 3862 // Okay, this one checks out. 3863 InstResultIter->second = nullptr; 3864 } 3865 3866 // Loop over the inputs next. 3867 std::vector<TreePatternNodePtr> ResultNodeOperands; 3868 std::vector<Record*> Operands; 3869 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3870 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3871 const std::string &OpName = Op.Name; 3872 if (OpName.empty()) 3873 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3874 3875 if (!InstInputs.count(OpName)) { 3876 // If this is an operand with a DefaultOps set filled in, we can ignore 3877 // this. When we codegen it, we will do so as always executed. 3878 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3879 // Does it have a non-empty DefaultOps field? If so, ignore this 3880 // operand. 3881 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3882 continue; 3883 } 3884 I.error("Operand $" + OpName + 3885 " does not appear in the instruction pattern"); 3886 } 3887 TreePatternNodePtr InVal = InstInputs[OpName]; 3888 InstInputs.erase(OpName); // It occurred, remove from map. 3889 3890 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3891 Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3892 if (!checkOperandClass(Op, InRec)) 3893 I.error("Operand $" + OpName + "'s register class disagrees" 3894 " between the operand and pattern"); 3895 } 3896 Operands.push_back(Op.Rec); 3897 3898 // Construct the result for the dest-pattern operand list. 3899 TreePatternNodePtr OpNode = InVal->clone(); 3900 3901 // No predicate is useful on the result. 3902 OpNode->clearPredicateCalls(); 3903 3904 // Promote the xform function to be an explicit node if set. 3905 if (Record *Xform = OpNode->getTransformFn()) { 3906 OpNode->setTransformFn(nullptr); 3907 std::vector<TreePatternNodePtr> Children; 3908 Children.push_back(OpNode); 3909 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3910 OpNode->getNumTypes()); 3911 } 3912 3913 ResultNodeOperands.push_back(std::move(OpNode)); 3914 } 3915 3916 if (!InstInputs.empty()) 3917 I.error("Input operand $" + InstInputs.begin()->first + 3918 " occurs in pattern but not in operands list!"); 3919 3920 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3921 I.getRecord(), std::move(ResultNodeOperands), 3922 GetNumNodeResults(I.getRecord(), *this)); 3923 // Copy fully inferred output node types to instruction result pattern. 3924 for (unsigned i = 0; i != NumResults; ++i) { 3925 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3926 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3927 ResultPattern->setResultIndex(i, ResultIndices[i]); 3928 } 3929 3930 // FIXME: Assume only the first tree is the pattern. The others are clobber 3931 // nodes. 3932 TreePatternNodePtr Pattern = I.getTree(0); 3933 TreePatternNodePtr SrcPattern; 3934 if (Pattern->getOperator()->getName() == "set") { 3935 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3936 } else{ 3937 // Not a set (store or something?) 3938 SrcPattern = Pattern; 3939 } 3940 3941 // Create and insert the instruction. 3942 // FIXME: InstImpResults should not be part of DAGInstruction. 3943 Record *R = I.getRecord(); 3944 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3945 std::forward_as_tuple(Results, Operands, InstImpResults, 3946 SrcPattern, ResultPattern)); 3947 3948 LLVM_DEBUG(I.dump()); 3949 } 3950 3951 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3952 /// any fragments involved. This populates the Instructions list with fully 3953 /// resolved instructions. 3954 void CodeGenDAGPatterns::ParseInstructions() { 3955 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3956 3957 for (Record *Instr : Instrs) { 3958 ListInit *LI = nullptr; 3959 3960 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3961 LI = Instr->getValueAsListInit("Pattern"); 3962 3963 // If there is no pattern, only collect minimal information about the 3964 // instruction for its operand list. We have to assume that there is one 3965 // result, as we have no detailed info. A pattern which references the 3966 // null_frag operator is as-if no pattern were specified. Normally this 3967 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3968 // null_frag. 3969 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3970 std::vector<Record*> Results; 3971 std::vector<Record*> Operands; 3972 3973 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3974 3975 if (InstInfo.Operands.size() != 0) { 3976 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3977 Results.push_back(InstInfo.Operands[j].Rec); 3978 3979 // The rest are inputs. 3980 for (unsigned j = InstInfo.Operands.NumDefs, 3981 e = InstInfo.Operands.size(); j < e; ++j) 3982 Operands.push_back(InstInfo.Operands[j].Rec); 3983 } 3984 3985 // Create and insert the instruction. 3986 std::vector<Record*> ImpResults; 3987 Instructions.insert(std::make_pair(Instr, 3988 DAGInstruction(Results, Operands, ImpResults))); 3989 continue; // no pattern. 3990 } 3991 3992 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3993 parseInstructionPattern(CGI, LI, Instructions); 3994 } 3995 3996 // If we can, convert the instructions to be patterns that are matched! 3997 for (auto &Entry : Instructions) { 3998 Record *Instr = Entry.first; 3999 DAGInstruction &TheInst = Entry.second; 4000 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 4001 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 4002 4003 if (SrcPattern && ResultPattern) { 4004 TreePattern Pattern(Instr, SrcPattern, true, *this); 4005 TreePattern Result(Instr, ResultPattern, false, *this); 4006 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 4007 } 4008 } 4009 } 4010 4011 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 4012 4013 static void FindNames(TreePatternNode *P, 4014 std::map<std::string, NameRecord> &Names, 4015 TreePattern *PatternTop) { 4016 if (!P->getName().empty()) { 4017 NameRecord &Rec = Names[P->getName()]; 4018 // If this is the first instance of the name, remember the node. 4019 if (Rec.second++ == 0) 4020 Rec.first = P; 4021 else if (Rec.first->getExtTypes() != P->getExtTypes()) 4022 PatternTop->error("repetition of value: $" + P->getName() + 4023 " where different uses have different types!"); 4024 } 4025 4026 if (!P->isLeaf()) { 4027 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 4028 FindNames(P->getChild(i), Names, PatternTop); 4029 } 4030 } 4031 4032 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4033 PatternToMatch &&PTM) { 4034 // Do some sanity checking on the pattern we're about to match. 4035 std::string Reason; 4036 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 4037 PrintWarning(Pattern->getRecord()->getLoc(), 4038 Twine("Pattern can never match: ") + Reason); 4039 return; 4040 } 4041 4042 // If the source pattern's root is a complex pattern, that complex pattern 4043 // must specify the nodes it can potentially match. 4044 if (const ComplexPattern *CP = 4045 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 4046 if (CP->getRootNodes().empty()) 4047 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4048 " could match"); 4049 4050 4051 // Find all of the named values in the input and output, ensure they have the 4052 // same type. 4053 std::map<std::string, NameRecord> SrcNames, DstNames; 4054 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4055 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4056 4057 // Scan all of the named values in the destination pattern, rejecting them if 4058 // they don't exist in the input pattern. 4059 for (const auto &Entry : DstNames) { 4060 if (SrcNames[Entry.first].first == nullptr) 4061 Pattern->error("Pattern has input without matching name in output: $" + 4062 Entry.first); 4063 } 4064 4065 // Scan all of the named values in the source pattern, rejecting them if the 4066 // name isn't used in the dest, and isn't used to tie two values together. 4067 for (const auto &Entry : SrcNames) 4068 if (DstNames[Entry.first].first == nullptr && 4069 SrcNames[Entry.first].second == 1) 4070 Pattern->error("Pattern has dead named input: $" + Entry.first); 4071 4072 PatternsToMatch.push_back(std::move(PTM)); 4073 } 4074 4075 void CodeGenDAGPatterns::InferInstructionFlags() { 4076 ArrayRef<const CodeGenInstruction*> Instructions = 4077 Target.getInstructionsByEnumValue(); 4078 4079 unsigned Errors = 0; 4080 4081 // Try to infer flags from all patterns in PatternToMatch. These include 4082 // both the primary instruction patterns (which always come first) and 4083 // patterns defined outside the instruction. 4084 for (const PatternToMatch &PTM : ptms()) { 4085 // We can only infer from single-instruction patterns, otherwise we won't 4086 // know which instruction should get the flags. 4087 SmallVector<Record*, 8> PatInstrs; 4088 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4089 if (PatInstrs.size() != 1) 4090 continue; 4091 4092 // Get the single instruction. 4093 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4094 4095 // Only infer properties from the first pattern. We'll verify the others. 4096 if (InstInfo.InferredFrom) 4097 continue; 4098 4099 InstAnalyzer PatInfo(*this); 4100 PatInfo.Analyze(PTM); 4101 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4102 } 4103 4104 if (Errors) 4105 PrintFatalError("pattern conflicts"); 4106 4107 // If requested by the target, guess any undefined properties. 4108 if (Target.guessInstructionProperties()) { 4109 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4110 CodeGenInstruction *InstInfo = 4111 const_cast<CodeGenInstruction *>(Instructions[i]); 4112 if (InstInfo->InferredFrom) 4113 continue; 4114 // The mayLoad and mayStore flags default to false. 4115 // Conservatively assume hasSideEffects if it wasn't explicit. 4116 if (InstInfo->hasSideEffects_Unset) 4117 InstInfo->hasSideEffects = true; 4118 } 4119 return; 4120 } 4121 4122 // Complain about any flags that are still undefined. 4123 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4124 CodeGenInstruction *InstInfo = 4125 const_cast<CodeGenInstruction *>(Instructions[i]); 4126 if (InstInfo->InferredFrom) 4127 continue; 4128 if (InstInfo->hasSideEffects_Unset) 4129 PrintError(InstInfo->TheDef->getLoc(), 4130 "Can't infer hasSideEffects from patterns"); 4131 if (InstInfo->mayStore_Unset) 4132 PrintError(InstInfo->TheDef->getLoc(), 4133 "Can't infer mayStore from patterns"); 4134 if (InstInfo->mayLoad_Unset) 4135 PrintError(InstInfo->TheDef->getLoc(), 4136 "Can't infer mayLoad from patterns"); 4137 } 4138 } 4139 4140 4141 /// Verify instruction flags against pattern node properties. 4142 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4143 unsigned Errors = 0; 4144 for (const PatternToMatch &PTM : ptms()) { 4145 SmallVector<Record*, 8> Instrs; 4146 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4147 if (Instrs.empty()) 4148 continue; 4149 4150 // Count the number of instructions with each flag set. 4151 unsigned NumSideEffects = 0; 4152 unsigned NumStores = 0; 4153 unsigned NumLoads = 0; 4154 for (const Record *Instr : Instrs) { 4155 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4156 NumSideEffects += InstInfo.hasSideEffects; 4157 NumStores += InstInfo.mayStore; 4158 NumLoads += InstInfo.mayLoad; 4159 } 4160 4161 // Analyze the source pattern. 4162 InstAnalyzer PatInfo(*this); 4163 PatInfo.Analyze(PTM); 4164 4165 // Collect error messages. 4166 SmallVector<std::string, 4> Msgs; 4167 4168 // Check for missing flags in the output. 4169 // Permit extra flags for now at least. 4170 if (PatInfo.hasSideEffects && !NumSideEffects) 4171 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4172 4173 // Don't verify store flags on instructions with side effects. At least for 4174 // intrinsics, side effects implies mayStore. 4175 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4176 Msgs.push_back("pattern may store, but mayStore isn't set"); 4177 4178 // Similarly, mayStore implies mayLoad on intrinsics. 4179 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4180 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4181 4182 // Print error messages. 4183 if (Msgs.empty()) 4184 continue; 4185 ++Errors; 4186 4187 for (const std::string &Msg : Msgs) 4188 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4189 (Instrs.size() == 1 ? 4190 "instruction" : "output instructions")); 4191 // Provide the location of the relevant instruction definitions. 4192 for (const Record *Instr : Instrs) { 4193 if (Instr != PTM.getSrcRecord()) 4194 PrintError(Instr->getLoc(), "defined here"); 4195 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4196 if (InstInfo.InferredFrom && 4197 InstInfo.InferredFrom != InstInfo.TheDef && 4198 InstInfo.InferredFrom != PTM.getSrcRecord()) 4199 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4200 } 4201 } 4202 if (Errors) 4203 PrintFatalError("Errors in DAG patterns"); 4204 } 4205 4206 /// Given a pattern result with an unresolved type, see if we can find one 4207 /// instruction with an unresolved result type. Force this result type to an 4208 /// arbitrary element if it's possible types to converge results. 4209 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4210 if (N->isLeaf()) 4211 return false; 4212 4213 // Analyze children. 4214 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4215 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4216 return true; 4217 4218 if (!N->getOperator()->isSubClassOf("Instruction")) 4219 return false; 4220 4221 // If this type is already concrete or completely unknown we can't do 4222 // anything. 4223 TypeInfer &TI = TP.getInfer(); 4224 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4225 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4226 continue; 4227 4228 // Otherwise, force its type to an arbitrary choice. 4229 if (TI.forceArbitrary(N->getExtType(i))) 4230 return true; 4231 } 4232 4233 return false; 4234 } 4235 4236 // Promote xform function to be an explicit node wherever set. 4237 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4238 if (Record *Xform = N->getTransformFn()) { 4239 N->setTransformFn(nullptr); 4240 std::vector<TreePatternNodePtr> Children; 4241 Children.push_back(PromoteXForms(N)); 4242 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4243 N->getNumTypes()); 4244 } 4245 4246 if (!N->isLeaf()) 4247 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4248 TreePatternNodePtr Child = N->getChildShared(i); 4249 N->setChild(i, PromoteXForms(Child)); 4250 } 4251 return N; 4252 } 4253 4254 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4255 TreePattern &Pattern, TreePattern &Result, 4256 const std::vector<Record *> &InstImpResults) { 4257 4258 // Inline pattern fragments and expand multiple alternatives. 4259 Pattern.InlinePatternFragments(); 4260 Result.InlinePatternFragments(); 4261 4262 if (Result.getNumTrees() != 1) 4263 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4264 4265 // Infer types. 4266 bool IterateInference; 4267 bool InferredAllPatternTypes, InferredAllResultTypes; 4268 do { 4269 // Infer as many types as possible. If we cannot infer all of them, we 4270 // can never do anything with this pattern: report it to the user. 4271 InferredAllPatternTypes = 4272 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4273 4274 // Infer as many types as possible. If we cannot infer all of them, we 4275 // can never do anything with this pattern: report it to the user. 4276 InferredAllResultTypes = 4277 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4278 4279 IterateInference = false; 4280 4281 // Apply the type of the result to the source pattern. This helps us 4282 // resolve cases where the input type is known to be a pointer type (which 4283 // is considered resolved), but the result knows it needs to be 32- or 4284 // 64-bits. Infer the other way for good measure. 4285 for (const auto &T : Pattern.getTrees()) 4286 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4287 T->getNumTypes()); 4288 i != e; ++i) { 4289 IterateInference |= T->UpdateNodeType( 4290 i, Result.getOnlyTree()->getExtType(i), Result); 4291 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4292 i, T->getExtType(i), Result); 4293 } 4294 4295 // If our iteration has converged and the input pattern's types are fully 4296 // resolved but the result pattern is not fully resolved, we may have a 4297 // situation where we have two instructions in the result pattern and 4298 // the instructions require a common register class, but don't care about 4299 // what actual MVT is used. This is actually a bug in our modelling: 4300 // output patterns should have register classes, not MVTs. 4301 // 4302 // In any case, to handle this, we just go through and disambiguate some 4303 // arbitrary types to the result pattern's nodes. 4304 if (!IterateInference && InferredAllPatternTypes && 4305 !InferredAllResultTypes) 4306 IterateInference = 4307 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4308 } while (IterateInference); 4309 4310 // Verify that we inferred enough types that we can do something with the 4311 // pattern and result. If these fire the user has to add type casts. 4312 if (!InferredAllPatternTypes) 4313 Pattern.error("Could not infer all types in pattern!"); 4314 if (!InferredAllResultTypes) { 4315 Pattern.dump(); 4316 Result.error("Could not infer all types in pattern result!"); 4317 } 4318 4319 // Promote xform function to be an explicit node wherever set. 4320 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4321 4322 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4323 Temp.InferAllTypes(); 4324 4325 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4326 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4327 4328 if (PatternRewriter) 4329 PatternRewriter(&Pattern); 4330 4331 // A pattern may end up with an "impossible" type, i.e. a situation 4332 // where all types have been eliminated for some node in this pattern. 4333 // This could occur for intrinsics that only make sense for a specific 4334 // value type, and use a specific register class. If, for some mode, 4335 // that register class does not accept that type, the type inference 4336 // will lead to a contradiction, which is not an error however, but 4337 // a sign that this pattern will simply never match. 4338 if (Temp.getOnlyTree()->hasPossibleType()) 4339 for (const auto &T : Pattern.getTrees()) 4340 if (T->hasPossibleType()) 4341 AddPatternToMatch(&Pattern, 4342 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4343 InstImpResults, Complexity, 4344 TheDef->getID())); 4345 } 4346 4347 void CodeGenDAGPatterns::ParsePatterns() { 4348 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4349 4350 for (Record *CurPattern : Patterns) { 4351 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4352 4353 // If the pattern references the null_frag, there's nothing to do. 4354 if (hasNullFragReference(Tree)) 4355 continue; 4356 4357 TreePattern Pattern(CurPattern, Tree, true, *this); 4358 4359 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4360 if (LI->empty()) continue; // no pattern. 4361 4362 // Parse the instruction. 4363 TreePattern Result(CurPattern, LI, false, *this); 4364 4365 if (Result.getNumTrees() != 1) 4366 Result.error("Cannot handle instructions producing instructions " 4367 "with temporaries yet!"); 4368 4369 // Validate that the input pattern is correct. 4370 std::map<std::string, TreePatternNodePtr> InstInputs; 4371 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4372 InstResults; 4373 std::vector<Record*> InstImpResults; 4374 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4375 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4376 InstResults, InstImpResults); 4377 4378 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4379 } 4380 } 4381 4382 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4383 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4384 for (const auto &I : VTS) 4385 Modes.insert(I.first); 4386 4387 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4388 collectModes(Modes, N->getChild(i)); 4389 } 4390 4391 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4392 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4393 std::vector<PatternToMatch> Copy; 4394 PatternsToMatch.swap(Copy); 4395 4396 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4397 StringRef Check) { 4398 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4399 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4400 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4401 return; 4402 } 4403 4404 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4405 std::move(NewSrc), std::move(NewDst), 4406 P.getDstRegs(), P.getAddedComplexity(), 4407 Record::getNewUID(Records), Mode, Check); 4408 }; 4409 4410 for (PatternToMatch &P : Copy) { 4411 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4412 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4413 SrcP = P.getSrcPatternShared(); 4414 if (P.getDstPattern()->hasProperTypeByHwMode()) 4415 DstP = P.getDstPatternShared(); 4416 if (!SrcP && !DstP) { 4417 PatternsToMatch.push_back(P); 4418 continue; 4419 } 4420 4421 std::set<unsigned> Modes; 4422 if (SrcP) 4423 collectModes(Modes, SrcP.get()); 4424 if (DstP) 4425 collectModes(Modes, DstP.get()); 4426 4427 // The predicate for the default mode needs to be constructed for each 4428 // pattern separately. 4429 // Since not all modes must be present in each pattern, if a mode m is 4430 // absent, then there is no point in constructing a check for m. If such 4431 // a check was created, it would be equivalent to checking the default 4432 // mode, except not all modes' predicates would be a part of the checking 4433 // code. The subsequently generated check for the default mode would then 4434 // have the exact same patterns, but a different predicate code. To avoid 4435 // duplicated patterns with different predicate checks, construct the 4436 // default check as a negation of all predicates that are actually present 4437 // in the source/destination patterns. 4438 SmallString<128> DefaultCheck; 4439 4440 for (unsigned M : Modes) { 4441 if (M == DefaultMode) 4442 continue; 4443 4444 // Fill the map entry for this mode. 4445 const HwMode &HM = CGH.getMode(M); 4446 AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))"); 4447 4448 // Add negations of the HM's predicates to the default predicate. 4449 if (!DefaultCheck.empty()) 4450 DefaultCheck += " && "; 4451 DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\""; 4452 DefaultCheck += HM.Features; 4453 DefaultCheck += "\")))"; 4454 } 4455 4456 bool HasDefault = Modes.count(DefaultMode); 4457 if (HasDefault) 4458 AppendPattern(P, DefaultMode, DefaultCheck); 4459 } 4460 } 4461 4462 /// Dependent variable map for CodeGenDAGPattern variant generation 4463 typedef StringMap<int> DepVarMap; 4464 4465 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4466 if (N->isLeaf()) { 4467 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4468 DepMap[N->getName()]++; 4469 } else { 4470 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4471 FindDepVarsOf(N->getChild(i), DepMap); 4472 } 4473 } 4474 4475 /// Find dependent variables within child patterns 4476 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4477 DepVarMap depcounts; 4478 FindDepVarsOf(N, depcounts); 4479 for (const auto &Pair : depcounts) { 4480 if (Pair.getValue() > 1) 4481 DepVars.insert(Pair.getKey()); 4482 } 4483 } 4484 4485 #ifndef NDEBUG 4486 /// Dump the dependent variable set: 4487 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4488 if (DepVars.empty()) { 4489 LLVM_DEBUG(errs() << "<empty set>"); 4490 } else { 4491 LLVM_DEBUG(errs() << "[ "); 4492 for (const auto &DepVar : DepVars) { 4493 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4494 } 4495 LLVM_DEBUG(errs() << "]"); 4496 } 4497 } 4498 #endif 4499 4500 4501 /// CombineChildVariants - Given a bunch of permutations of each child of the 4502 /// 'operator' node, put them together in all possible ways. 4503 static void CombineChildVariants( 4504 TreePatternNodePtr Orig, 4505 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4506 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4507 const MultipleUseVarSet &DepVars) { 4508 // Make sure that each operand has at least one variant to choose from. 4509 for (const auto &Variants : ChildVariants) 4510 if (Variants.empty()) 4511 return; 4512 4513 // The end result is an all-pairs construction of the resultant pattern. 4514 std::vector<unsigned> Idxs; 4515 Idxs.resize(ChildVariants.size()); 4516 bool NotDone; 4517 do { 4518 #ifndef NDEBUG 4519 LLVM_DEBUG(if (!Idxs.empty()) { 4520 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4521 for (unsigned Idx : Idxs) { 4522 errs() << Idx << " "; 4523 } 4524 errs() << "]\n"; 4525 }); 4526 #endif 4527 // Create the variant and add it to the output list. 4528 std::vector<TreePatternNodePtr> NewChildren; 4529 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4530 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4531 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4532 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4533 4534 // Copy over properties. 4535 R->setName(Orig->getName()); 4536 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4537 R->setPredicateCalls(Orig->getPredicateCalls()); 4538 R->setTransformFn(Orig->getTransformFn()); 4539 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4540 R->setType(i, Orig->getExtType(i)); 4541 4542 // If this pattern cannot match, do not include it as a variant. 4543 std::string ErrString; 4544 // Scan to see if this pattern has already been emitted. We can get 4545 // duplication due to things like commuting: 4546 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4547 // which are the same pattern. Ignore the dups. 4548 if (R->canPatternMatch(ErrString, CDP) && 4549 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4550 return R->isIsomorphicTo(Variant.get(), DepVars); 4551 })) 4552 OutVariants.push_back(R); 4553 4554 // Increment indices to the next permutation by incrementing the 4555 // indices from last index backward, e.g., generate the sequence 4556 // [0, 0], [0, 1], [1, 0], [1, 1]. 4557 int IdxsIdx; 4558 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4559 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4560 Idxs[IdxsIdx] = 0; 4561 else 4562 break; 4563 } 4564 NotDone = (IdxsIdx >= 0); 4565 } while (NotDone); 4566 } 4567 4568 /// CombineChildVariants - A helper function for binary operators. 4569 /// 4570 static void CombineChildVariants(TreePatternNodePtr Orig, 4571 const std::vector<TreePatternNodePtr> &LHS, 4572 const std::vector<TreePatternNodePtr> &RHS, 4573 std::vector<TreePatternNodePtr> &OutVariants, 4574 CodeGenDAGPatterns &CDP, 4575 const MultipleUseVarSet &DepVars) { 4576 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4577 ChildVariants.push_back(LHS); 4578 ChildVariants.push_back(RHS); 4579 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4580 } 4581 4582 static void 4583 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4584 std::vector<TreePatternNodePtr> &Children) { 4585 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4586 Record *Operator = N->getOperator(); 4587 4588 // Only permit raw nodes. 4589 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4590 N->getTransformFn()) { 4591 Children.push_back(N); 4592 return; 4593 } 4594 4595 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4596 Children.push_back(N->getChildShared(0)); 4597 else 4598 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4599 4600 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4601 Children.push_back(N->getChildShared(1)); 4602 else 4603 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4604 } 4605 4606 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4607 /// the (potentially recursive) pattern by using algebraic laws. 4608 /// 4609 static void GenerateVariantsOf(TreePatternNodePtr N, 4610 std::vector<TreePatternNodePtr> &OutVariants, 4611 CodeGenDAGPatterns &CDP, 4612 const MultipleUseVarSet &DepVars) { 4613 // We cannot permute leaves or ComplexPattern uses. 4614 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4615 OutVariants.push_back(N); 4616 return; 4617 } 4618 4619 // Look up interesting info about the node. 4620 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4621 4622 // If this node is associative, re-associate. 4623 if (NodeInfo.hasProperty(SDNPAssociative)) { 4624 // Re-associate by pulling together all of the linked operators 4625 std::vector<TreePatternNodePtr> MaximalChildren; 4626 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4627 4628 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4629 // permutations. 4630 if (MaximalChildren.size() == 3) { 4631 // Find the variants of all of our maximal children. 4632 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4633 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4634 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4635 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4636 4637 // There are only two ways we can permute the tree: 4638 // (A op B) op C and A op (B op C) 4639 // Within these forms, we can also permute A/B/C. 4640 4641 // Generate legal pair permutations of A/B/C. 4642 std::vector<TreePatternNodePtr> ABVariants; 4643 std::vector<TreePatternNodePtr> BAVariants; 4644 std::vector<TreePatternNodePtr> ACVariants; 4645 std::vector<TreePatternNodePtr> CAVariants; 4646 std::vector<TreePatternNodePtr> BCVariants; 4647 std::vector<TreePatternNodePtr> CBVariants; 4648 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4649 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4650 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4651 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4652 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4653 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4654 4655 // Combine those into the result: (x op x) op x 4656 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4657 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4658 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4659 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4660 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4661 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4662 4663 // Combine those into the result: x op (x op x) 4664 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4665 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4666 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4667 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4668 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4669 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4670 return; 4671 } 4672 } 4673 4674 // Compute permutations of all children. 4675 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4676 ChildVariants.resize(N->getNumChildren()); 4677 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4678 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4679 4680 // Build all permutations based on how the children were formed. 4681 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4682 4683 // If this node is commutative, consider the commuted order. 4684 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4685 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4686 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4687 assert(N->getNumChildren() >= (2 + Skip) && 4688 "Commutative but doesn't have 2 children!"); 4689 // Don't allow commuting children which are actually register references. 4690 bool NoRegisters = true; 4691 unsigned i = 0 + Skip; 4692 unsigned e = 2 + Skip; 4693 for (; i != e; ++i) { 4694 TreePatternNode *Child = N->getChild(i); 4695 if (Child->isLeaf()) 4696 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4697 Record *RR = DI->getDef(); 4698 if (RR->isSubClassOf("Register")) 4699 NoRegisters = false; 4700 } 4701 } 4702 // Consider the commuted order. 4703 if (NoRegisters) { 4704 std::vector<std::vector<TreePatternNodePtr>> Variants; 4705 unsigned i = 0; 4706 if (isCommIntrinsic) 4707 Variants.push_back(std::move(ChildVariants[i++])); // Intrinsic id. 4708 Variants.push_back(std::move(ChildVariants[i + 1])); 4709 Variants.push_back(std::move(ChildVariants[i])); 4710 i += 2; 4711 // Remaining operands are not commuted. 4712 for (; i != N->getNumChildren(); ++i) 4713 Variants.push_back(std::move(ChildVariants[i])); 4714 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4715 } 4716 } 4717 } 4718 4719 4720 // GenerateVariants - Generate variants. For example, commutative patterns can 4721 // match multiple ways. Add them to PatternsToMatch as well. 4722 void CodeGenDAGPatterns::GenerateVariants() { 4723 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4724 4725 // Loop over all of the patterns we've collected, checking to see if we can 4726 // generate variants of the instruction, through the exploitation of 4727 // identities. This permits the target to provide aggressive matching without 4728 // the .td file having to contain tons of variants of instructions. 4729 // 4730 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4731 // intentionally do not reconsider these. Any variants of added patterns have 4732 // already been added. 4733 // 4734 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4735 MultipleUseVarSet DepVars; 4736 std::vector<TreePatternNodePtr> Variants; 4737 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4738 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4739 LLVM_DEBUG(DumpDepVars(DepVars)); 4740 LLVM_DEBUG(errs() << "\n"); 4741 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4742 *this, DepVars); 4743 4744 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4745 "HwModes should not have been expanded yet!"); 4746 4747 assert(!Variants.empty() && "Must create at least original variant!"); 4748 if (Variants.size() == 1) // No additional variants for this pattern. 4749 continue; 4750 4751 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4752 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4753 4754 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4755 TreePatternNodePtr Variant = Variants[v]; 4756 4757 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4758 errs() << "\n"); 4759 4760 // Scan to see if an instruction or explicit pattern already matches this. 4761 bool AlreadyExists = false; 4762 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4763 // Skip if the top level predicates do not match. 4764 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4765 PatternsToMatch[p].getPredicates())) 4766 continue; 4767 // Check to see if this variant already exists. 4768 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4769 DepVars)) { 4770 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4771 AlreadyExists = true; 4772 break; 4773 } 4774 } 4775 // If we already have it, ignore the variant. 4776 if (AlreadyExists) continue; 4777 4778 // Otherwise, add it to the list of patterns we have. 4779 PatternsToMatch.emplace_back( 4780 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4781 Variant, PatternsToMatch[i].getDstPatternShared(), 4782 PatternsToMatch[i].getDstRegs(), 4783 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records), 4784 PatternsToMatch[i].getForceMode(), 4785 PatternsToMatch[i].getHwModeFeatures()); 4786 } 4787 4788 LLVM_DEBUG(errs() << "\n"); 4789 } 4790 } 4791