1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 50 template <typename Predicate> 51 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 52 bool Erased = false; 53 // It is ok to iterate over MachineValueTypeSet and remove elements from it 54 // at the same time. 55 for (MVT T : S) { 56 if (!P(T)) 57 continue; 58 Erased = true; 59 S.erase(T); 60 } 61 return Erased; 62 } 63 64 // --- TypeSetByHwMode 65 66 // This is a parameterized type-set class. For each mode there is a list 67 // of types that are currently possible for a given tree node. Type 68 // inference will apply to each mode separately. 69 70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 71 for (const ValueTypeByHwMode &VVT : VTList) { 72 insert(VVT); 73 AddrSpaces.push_back(VVT.PtrAddrSpace); 74 } 75 } 76 77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 78 for (const auto &I : *this) { 79 if (I.second.size() > 1) 80 return false; 81 if (!AllowEmpty && I.second.empty()) 82 return false; 83 } 84 return true; 85 } 86 87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 88 assert(isValueTypeByHwMode(true) && 89 "The type set has multiple types for at least one HW mode"); 90 ValueTypeByHwMode VVT; 91 auto ASI = AddrSpaces.begin(); 92 93 for (const auto &I : *this) { 94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 95 VVT.getOrCreateTypeForMode(I.first, T); 96 if (ASI != AddrSpaces.end()) 97 VVT.PtrAddrSpace = *ASI++; 98 } 99 return VVT; 100 } 101 102 bool TypeSetByHwMode::isPossible() const { 103 for (const auto &I : *this) 104 if (!I.second.empty()) 105 return true; 106 return false; 107 } 108 109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 110 bool Changed = false; 111 bool ContainsDefault = false; 112 MVT DT = MVT::Other; 113 114 SmallDenseSet<unsigned, 4> Modes; 115 for (const auto &P : VVT) { 116 unsigned M = P.first; 117 Modes.insert(M); 118 // Make sure there exists a set for each specific mode from VVT. 119 Changed |= getOrCreate(M).insert(P.second).second; 120 // Cache VVT's default mode. 121 if (DefaultMode == M) { 122 ContainsDefault = true; 123 DT = P.second; 124 } 125 } 126 127 // If VVT has a default mode, add the corresponding type to all 128 // modes in "this" that do not exist in VVT. 129 if (ContainsDefault) 130 for (auto &I : *this) 131 if (!Modes.count(I.first)) 132 Changed |= I.second.insert(DT).second; 133 134 return Changed; 135 } 136 137 // Constrain the type set to be the intersection with VTS. 138 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 139 bool Changed = false; 140 if (hasDefault()) { 141 for (const auto &I : VTS) { 142 unsigned M = I.first; 143 if (M == DefaultMode || hasMode(M)) 144 continue; 145 Map.insert({M, Map.at(DefaultMode)}); 146 Changed = true; 147 } 148 } 149 150 for (auto &I : *this) { 151 unsigned M = I.first; 152 SetType &S = I.second; 153 if (VTS.hasMode(M) || VTS.hasDefault()) { 154 Changed |= intersect(I.second, VTS.get(M)); 155 } else if (!S.empty()) { 156 S.clear(); 157 Changed = true; 158 } 159 } 160 return Changed; 161 } 162 163 template <typename Predicate> 164 bool TypeSetByHwMode::constrain(Predicate P) { 165 bool Changed = false; 166 for (auto &I : *this) 167 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 168 return Changed; 169 } 170 171 template <typename Predicate> 172 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 173 assert(empty()); 174 for (const auto &I : VTS) { 175 SetType &S = getOrCreate(I.first); 176 for (auto J : I.second) 177 if (P(J)) 178 S.insert(J); 179 } 180 return !empty(); 181 } 182 183 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 184 SmallVector<unsigned, 4> Modes; 185 Modes.reserve(Map.size()); 186 187 for (const auto &I : *this) 188 Modes.push_back(I.first); 189 if (Modes.empty()) { 190 OS << "{}"; 191 return; 192 } 193 array_pod_sort(Modes.begin(), Modes.end()); 194 195 OS << '{'; 196 for (unsigned M : Modes) { 197 OS << ' ' << getModeName(M) << ':'; 198 writeToStream(get(M), OS); 199 } 200 OS << " }"; 201 } 202 203 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 204 SmallVector<MVT, 4> Types(S.begin(), S.end()); 205 array_pod_sort(Types.begin(), Types.end()); 206 207 OS << '['; 208 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 209 OS << ValueTypeByHwMode::getMVTName(Types[i]); 210 if (i != e-1) 211 OS << ' '; 212 } 213 OS << ']'; 214 } 215 216 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 217 // The isSimple call is much quicker than hasDefault - check this first. 218 bool IsSimple = isSimple(); 219 bool VTSIsSimple = VTS.isSimple(); 220 if (IsSimple && VTSIsSimple) 221 return *begin() == *VTS.begin(); 222 223 // Speedup: We have a default if the set is simple. 224 bool HaveDefault = IsSimple || hasDefault(); 225 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 226 if (HaveDefault != VTSHaveDefault) 227 return false; 228 229 SmallDenseSet<unsigned, 4> Modes; 230 for (auto &I : *this) 231 Modes.insert(I.first); 232 for (const auto &I : VTS) 233 Modes.insert(I.first); 234 235 if (HaveDefault) { 236 // Both sets have default mode. 237 for (unsigned M : Modes) { 238 if (get(M) != VTS.get(M)) 239 return false; 240 } 241 } else { 242 // Neither set has default mode. 243 for (unsigned M : Modes) { 244 // If there is no default mode, an empty set is equivalent to not having 245 // the corresponding mode. 246 bool NoModeThis = !hasMode(M) || get(M).empty(); 247 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 248 if (NoModeThis != NoModeVTS) 249 return false; 250 if (!NoModeThis) 251 if (get(M) != VTS.get(M)) 252 return false; 253 } 254 } 255 256 return true; 257 } 258 259 namespace llvm { 260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 261 T.writeToStream(OS); 262 return OS; 263 } 264 } 265 266 LLVM_DUMP_METHOD 267 void TypeSetByHwMode::dump() const { 268 dbgs() << *this << '\n'; 269 } 270 271 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 272 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 273 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 274 275 if (OutP == InP) 276 return berase_if(Out, Int); 277 278 // Compute the intersection of scalars separately to account for only 279 // one set containing iPTR. 280 // The itersection of iPTR with a set of integer scalar types that does not 281 // include iPTR will result in the most specific scalar type: 282 // - iPTR is more specific than any set with two elements or more 283 // - iPTR is less specific than any single integer scalar type. 284 // For example 285 // { iPTR } * { i32 } -> { i32 } 286 // { iPTR } * { i32 i64 } -> { iPTR } 287 // and 288 // { iPTR i32 } * { i32 } -> { i32 } 289 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 290 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 291 292 // Compute the difference between the two sets in such a way that the 293 // iPTR is in the set that is being subtracted. This is to see if there 294 // are any extra scalars in the set without iPTR that are not in the 295 // set containing iPTR. Then the iPTR could be considered a "wildcard" 296 // matching these scalars. If there is only one such scalar, it would 297 // replace the iPTR, if there are more, the iPTR would be retained. 298 SetType Diff; 299 if (InP) { 300 Diff = Out; 301 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 302 // Pre-remove these elements and rely only on InP/OutP to determine 303 // whether a change has been made. 304 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 305 } else { 306 Diff = In; 307 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 308 Out.erase(MVT::iPTR); 309 } 310 311 // The actual intersection. 312 bool Changed = berase_if(Out, Int); 313 unsigned NumD = Diff.size(); 314 if (NumD == 0) 315 return Changed; 316 317 if (NumD == 1) { 318 Out.insert(*Diff.begin()); 319 // This is a change only if Out was the one with iPTR (which is now 320 // being replaced). 321 Changed |= OutP; 322 } else { 323 // Multiple elements from Out are now replaced with iPTR. 324 Out.insert(MVT::iPTR); 325 Changed |= !OutP; 326 } 327 return Changed; 328 } 329 330 bool TypeSetByHwMode::validate() const { 331 #ifndef NDEBUG 332 if (empty()) 333 return true; 334 bool AllEmpty = true; 335 for (const auto &I : *this) 336 AllEmpty &= I.second.empty(); 337 return !AllEmpty; 338 #endif 339 return true; 340 } 341 342 // --- TypeInfer 343 344 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 345 const TypeSetByHwMode &In) { 346 ValidateOnExit _1(Out, *this); 347 In.validate(); 348 if (In.empty() || Out == In || TP.hasError()) 349 return false; 350 if (Out.empty()) { 351 Out = In; 352 return true; 353 } 354 355 bool Changed = Out.constrain(In); 356 if (Changed && Out.empty()) 357 TP.error("Type contradiction"); 358 359 return Changed; 360 } 361 362 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 363 ValidateOnExit _1(Out, *this); 364 if (TP.hasError()) 365 return false; 366 assert(!Out.empty() && "cannot pick from an empty set"); 367 368 bool Changed = false; 369 for (auto &I : Out) { 370 TypeSetByHwMode::SetType &S = I.second; 371 if (S.size() <= 1) 372 continue; 373 MVT T = *S.begin(); // Pick the first element. 374 S.clear(); 375 S.insert(T); 376 Changed = true; 377 } 378 return Changed; 379 } 380 381 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 382 ValidateOnExit _1(Out, *this); 383 if (TP.hasError()) 384 return false; 385 if (!Out.empty()) 386 return Out.constrain(isIntegerOrPtr); 387 388 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 389 } 390 391 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 392 ValidateOnExit _1(Out, *this); 393 if (TP.hasError()) 394 return false; 395 if (!Out.empty()) 396 return Out.constrain(isFloatingPoint); 397 398 return Out.assign_if(getLegalTypes(), isFloatingPoint); 399 } 400 401 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 402 ValidateOnExit _1(Out, *this); 403 if (TP.hasError()) 404 return false; 405 if (!Out.empty()) 406 return Out.constrain(isScalar); 407 408 return Out.assign_if(getLegalTypes(), isScalar); 409 } 410 411 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 412 ValidateOnExit _1(Out, *this); 413 if (TP.hasError()) 414 return false; 415 if (!Out.empty()) 416 return Out.constrain(isVector); 417 418 return Out.assign_if(getLegalTypes(), isVector); 419 } 420 421 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 422 ValidateOnExit _1(Out, *this); 423 if (TP.hasError() || !Out.empty()) 424 return false; 425 426 Out = getLegalTypes(); 427 return true; 428 } 429 430 template <typename Iter, typename Pred, typename Less> 431 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 432 if (B == E) 433 return E; 434 Iter Min = E; 435 for (Iter I = B; I != E; ++I) { 436 if (!P(*I)) 437 continue; 438 if (Min == E || L(*I, *Min)) 439 Min = I; 440 } 441 return Min; 442 } 443 444 template <typename Iter, typename Pred, typename Less> 445 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 446 if (B == E) 447 return E; 448 Iter Max = E; 449 for (Iter I = B; I != E; ++I) { 450 if (!P(*I)) 451 continue; 452 if (Max == E || L(*Max, *I)) 453 Max = I; 454 } 455 return Max; 456 } 457 458 /// Make sure that for each type in Small, there exists a larger type in Big. 459 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 460 TypeSetByHwMode &Big) { 461 ValidateOnExit _1(Small, *this), _2(Big, *this); 462 if (TP.hasError()) 463 return false; 464 bool Changed = false; 465 466 if (Small.empty()) 467 Changed |= EnforceAny(Small); 468 if (Big.empty()) 469 Changed |= EnforceAny(Big); 470 471 assert(Small.hasDefault() && Big.hasDefault()); 472 473 std::vector<unsigned> Modes = union_modes(Small, Big); 474 475 // 1. Only allow integer or floating point types and make sure that 476 // both sides are both integer or both floating point. 477 // 2. Make sure that either both sides have vector types, or neither 478 // of them does. 479 for (unsigned M : Modes) { 480 TypeSetByHwMode::SetType &S = Small.get(M); 481 TypeSetByHwMode::SetType &B = Big.get(M); 482 483 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 484 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 485 Changed |= berase_if(S, NotInt); 486 Changed |= berase_if(B, NotInt); 487 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 488 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 489 Changed |= berase_if(S, NotFP); 490 Changed |= berase_if(B, NotFP); 491 } else if (S.empty() || B.empty()) { 492 Changed = !S.empty() || !B.empty(); 493 S.clear(); 494 B.clear(); 495 } else { 496 TP.error("Incompatible types"); 497 return Changed; 498 } 499 500 if (none_of(S, isVector) || none_of(B, isVector)) { 501 Changed |= berase_if(S, isVector); 502 Changed |= berase_if(B, isVector); 503 } 504 } 505 506 auto LT = [](MVT A, MVT B) -> bool { 507 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 508 // purposes of ordering. 509 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 510 A.getSizeInBits()); 511 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 512 B.getSizeInBits()); 513 return ASize < BSize; 514 }; 515 auto SameKindLE = [](MVT A, MVT B) -> bool { 516 // This function is used when removing elements: when a vector is compared 517 // to a non-vector or a scalable vector to any non-scalable MVT, it should 518 // return false (to avoid removal). 519 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 520 std::make_tuple(B.isVector(), B.isScalableVector())) 521 return false; 522 523 return std::make_tuple(A.getScalarSizeInBits(), A.getSizeInBits()) <= 524 std::make_tuple(B.getScalarSizeInBits(), B.getSizeInBits()); 525 }; 526 527 for (unsigned M : Modes) { 528 TypeSetByHwMode::SetType &S = Small.get(M); 529 TypeSetByHwMode::SetType &B = Big.get(M); 530 // MinS = min scalar in Small, remove all scalars from Big that are 531 // smaller-or-equal than MinS. 532 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 533 if (MinS != S.end()) 534 Changed |= berase_if(B, std::bind(SameKindLE, 535 std::placeholders::_1, *MinS)); 536 537 // MaxS = max scalar in Big, remove all scalars from Small that are 538 // larger than MaxS. 539 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 540 if (MaxS != B.end()) 541 Changed |= berase_if(S, std::bind(SameKindLE, 542 *MaxS, std::placeholders::_1)); 543 544 // MinV = min vector in Small, remove all vectors from Big that are 545 // smaller-or-equal than MinV. 546 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 547 if (MinV != S.end()) 548 Changed |= berase_if(B, std::bind(SameKindLE, 549 std::placeholders::_1, *MinV)); 550 551 // MaxV = max vector in Big, remove all vectors from Small that are 552 // larger than MaxV. 553 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 554 if (MaxV != B.end()) 555 Changed |= berase_if(S, std::bind(SameKindLE, 556 *MaxV, std::placeholders::_1)); 557 } 558 559 return Changed; 560 } 561 562 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 563 /// for each type U in Elem, U is a scalar type. 564 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 565 /// type T in Vec, such that U is the element type of T. 566 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 567 TypeSetByHwMode &Elem) { 568 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 569 if (TP.hasError()) 570 return false; 571 bool Changed = false; 572 573 if (Vec.empty()) 574 Changed |= EnforceVector(Vec); 575 if (Elem.empty()) 576 Changed |= EnforceScalar(Elem); 577 578 for (unsigned M : union_modes(Vec, Elem)) { 579 TypeSetByHwMode::SetType &V = Vec.get(M); 580 TypeSetByHwMode::SetType &E = Elem.get(M); 581 582 Changed |= berase_if(V, isScalar); // Scalar = !vector 583 Changed |= berase_if(E, isVector); // Vector = !scalar 584 assert(!V.empty() && !E.empty()); 585 586 SmallSet<MVT,4> VT, ST; 587 // Collect element types from the "vector" set. 588 for (MVT T : V) 589 VT.insert(T.getVectorElementType()); 590 // Collect scalar types from the "element" set. 591 for (MVT T : E) 592 ST.insert(T); 593 594 // Remove from V all (vector) types whose element type is not in S. 595 Changed |= berase_if(V, [&ST](MVT T) -> bool { 596 return !ST.count(T.getVectorElementType()); 597 }); 598 // Remove from E all (scalar) types, for which there is no corresponding 599 // type in V. 600 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 601 } 602 603 return Changed; 604 } 605 606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 607 const ValueTypeByHwMode &VVT) { 608 TypeSetByHwMode Tmp(VVT); 609 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 610 return EnforceVectorEltTypeIs(Vec, Tmp); 611 } 612 613 /// Ensure that for each type T in Sub, T is a vector type, and there 614 /// exists a type U in Vec such that U is a vector type with the same 615 /// element type as T and at least as many elements as T. 616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 617 TypeSetByHwMode &Sub) { 618 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 619 if (TP.hasError()) 620 return false; 621 622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 623 auto IsSubVec = [](MVT B, MVT P) -> bool { 624 if (!B.isVector() || !P.isVector()) 625 return false; 626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 627 // but until there are obvious use-cases for this, keep the 628 // types separate. 629 if (B.isScalableVector() != P.isScalableVector()) 630 return false; 631 if (B.getVectorElementType() != P.getVectorElementType()) 632 return false; 633 return B.getVectorNumElements() < P.getVectorNumElements(); 634 }; 635 636 /// Return true if S has no element (vector type) that T is a sub-vector of, 637 /// i.e. has the same element type as T and more elements. 638 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 639 for (const auto &I : S) 640 if (IsSubVec(T, I)) 641 return false; 642 return true; 643 }; 644 645 /// Return true if S has no element (vector type) that T is a super-vector 646 /// of, i.e. has the same element type as T and fewer elements. 647 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 648 for (const auto &I : S) 649 if (IsSubVec(I, T)) 650 return false; 651 return true; 652 }; 653 654 bool Changed = false; 655 656 if (Vec.empty()) 657 Changed |= EnforceVector(Vec); 658 if (Sub.empty()) 659 Changed |= EnforceVector(Sub); 660 661 for (unsigned M : union_modes(Vec, Sub)) { 662 TypeSetByHwMode::SetType &S = Sub.get(M); 663 TypeSetByHwMode::SetType &V = Vec.get(M); 664 665 Changed |= berase_if(S, isScalar); 666 667 // Erase all types from S that are not sub-vectors of a type in V. 668 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 669 670 // Erase all types from V that are not super-vectors of a type in S. 671 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 672 } 673 674 return Changed; 675 } 676 677 /// 1. Ensure that V has a scalar type iff W has a scalar type. 678 /// 2. Ensure that for each vector type T in V, there exists a vector 679 /// type U in W, such that T and U have the same number of elements. 680 /// 3. Ensure that for each vector type U in W, there exists a vector 681 /// type T in V, such that T and U have the same number of elements 682 /// (reverse of 2). 683 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 684 ValidateOnExit _1(V, *this), _2(W, *this); 685 if (TP.hasError()) 686 return false; 687 688 bool Changed = false; 689 if (V.empty()) 690 Changed |= EnforceAny(V); 691 if (W.empty()) 692 Changed |= EnforceAny(W); 693 694 // An actual vector type cannot have 0 elements, so we can treat scalars 695 // as zero-length vectors. This way both vectors and scalars can be 696 // processed identically. 697 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 698 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 699 }; 700 701 for (unsigned M : union_modes(V, W)) { 702 TypeSetByHwMode::SetType &VS = V.get(M); 703 TypeSetByHwMode::SetType &WS = W.get(M); 704 705 SmallSet<unsigned,2> VN, WN; 706 for (MVT T : VS) 707 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 708 for (MVT T : WS) 709 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 710 711 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 712 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 713 } 714 return Changed; 715 } 716 717 /// 1. Ensure that for each type T in A, there exists a type U in B, 718 /// such that T and U have equal size in bits. 719 /// 2. Ensure that for each type U in B, there exists a type T in A 720 /// such that T and U have equal size in bits (reverse of 1). 721 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 722 ValidateOnExit _1(A, *this), _2(B, *this); 723 if (TP.hasError()) 724 return false; 725 bool Changed = false; 726 if (A.empty()) 727 Changed |= EnforceAny(A); 728 if (B.empty()) 729 Changed |= EnforceAny(B); 730 731 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 732 return !Sizes.count(T.getSizeInBits()); 733 }; 734 735 for (unsigned M : union_modes(A, B)) { 736 TypeSetByHwMode::SetType &AS = A.get(M); 737 TypeSetByHwMode::SetType &BS = B.get(M); 738 SmallSet<unsigned,2> AN, BN; 739 740 for (MVT T : AS) 741 AN.insert(T.getSizeInBits()); 742 for (MVT T : BS) 743 BN.insert(T.getSizeInBits()); 744 745 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 746 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 747 } 748 749 return Changed; 750 } 751 752 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 753 ValidateOnExit _1(VTS, *this); 754 const TypeSetByHwMode &Legal = getLegalTypes(); 755 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 756 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 757 758 for (auto &I : VTS) 759 expandOverloads(I.second, LegalTypes); 760 } 761 762 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 763 const TypeSetByHwMode::SetType &Legal) { 764 std::set<MVT> Ovs; 765 for (MVT T : Out) { 766 if (!T.isOverloaded()) 767 continue; 768 769 Ovs.insert(T); 770 // MachineValueTypeSet allows iteration and erasing. 771 Out.erase(T); 772 } 773 774 for (MVT Ov : Ovs) { 775 switch (Ov.SimpleTy) { 776 case MVT::iPTRAny: 777 Out.insert(MVT::iPTR); 778 return; 779 case MVT::iAny: 780 for (MVT T : MVT::integer_valuetypes()) 781 if (Legal.count(T)) 782 Out.insert(T); 783 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 784 if (Legal.count(T)) 785 Out.insert(T); 786 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 787 if (Legal.count(T)) 788 Out.insert(T); 789 return; 790 case MVT::fAny: 791 for (MVT T : MVT::fp_valuetypes()) 792 if (Legal.count(T)) 793 Out.insert(T); 794 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 795 if (Legal.count(T)) 796 Out.insert(T); 797 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 798 if (Legal.count(T)) 799 Out.insert(T); 800 return; 801 case MVT::vAny: 802 for (MVT T : MVT::vector_valuetypes()) 803 if (Legal.count(T)) 804 Out.insert(T); 805 return; 806 case MVT::Any: 807 for (MVT T : MVT::all_valuetypes()) 808 if (Legal.count(T)) 809 Out.insert(T); 810 return; 811 default: 812 break; 813 } 814 } 815 } 816 817 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 818 if (!LegalTypesCached) { 819 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 820 // Stuff all types from all modes into the default mode. 821 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 822 for (const auto &I : LTS) 823 LegalTypes.insert(I.second); 824 LegalTypesCached = true; 825 } 826 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 827 return LegalCache; 828 } 829 830 #ifndef NDEBUG 831 TypeInfer::ValidateOnExit::~ValidateOnExit() { 832 if (Infer.Validate && !VTS.validate()) { 833 dbgs() << "Type set is empty for each HW mode:\n" 834 "possible type contradiction in the pattern below " 835 "(use -print-records with llvm-tblgen to see all " 836 "expanded records).\n"; 837 Infer.TP.dump(); 838 llvm_unreachable(nullptr); 839 } 840 } 841 #endif 842 843 844 //===----------------------------------------------------------------------===// 845 // ScopedName Implementation 846 //===----------------------------------------------------------------------===// 847 848 bool ScopedName::operator==(const ScopedName &o) const { 849 return Scope == o.Scope && Identifier == o.Identifier; 850 } 851 852 bool ScopedName::operator!=(const ScopedName &o) const { 853 return !(*this == o); 854 } 855 856 857 //===----------------------------------------------------------------------===// 858 // TreePredicateFn Implementation 859 //===----------------------------------------------------------------------===// 860 861 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 862 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 863 assert( 864 (!hasPredCode() || !hasImmCode()) && 865 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 866 } 867 868 bool TreePredicateFn::hasPredCode() const { 869 return isLoad() || isStore() || isAtomic() || 870 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 871 } 872 873 std::string TreePredicateFn::getPredCode() const { 874 std::string Code = ""; 875 876 if (!isLoad() && !isStore() && !isAtomic()) { 877 Record *MemoryVT = getMemoryVT(); 878 879 if (MemoryVT) 880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 881 "MemoryVT requires IsLoad or IsStore"); 882 } 883 884 if (!isLoad() && !isStore()) { 885 if (isUnindexed()) 886 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 887 "IsUnindexed requires IsLoad or IsStore"); 888 889 Record *ScalarMemoryVT = getScalarMemoryVT(); 890 891 if (ScalarMemoryVT) 892 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 893 "ScalarMemoryVT requires IsLoad or IsStore"); 894 } 895 896 if (isLoad() + isStore() + isAtomic() > 1) 897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 898 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 899 900 if (isLoad()) { 901 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 902 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 903 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 904 getMinAlignment() < 1) 905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 906 "IsLoad cannot be used by itself"); 907 } else { 908 if (isNonExtLoad()) 909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 910 "IsNonExtLoad requires IsLoad"); 911 if (isAnyExtLoad()) 912 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 913 "IsAnyExtLoad requires IsLoad"); 914 if (isSignExtLoad()) 915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 916 "IsSignExtLoad requires IsLoad"); 917 if (isZeroExtLoad()) 918 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 919 "IsZeroExtLoad requires IsLoad"); 920 } 921 922 if (isStore()) { 923 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 924 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 925 getAddressSpaces() == nullptr && getMinAlignment() < 1) 926 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 927 "IsStore cannot be used by itself"); 928 } else { 929 if (isNonTruncStore()) 930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 931 "IsNonTruncStore requires IsStore"); 932 if (isTruncStore()) 933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 934 "IsTruncStore requires IsStore"); 935 } 936 937 if (isAtomic()) { 938 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 939 getAddressSpaces() == nullptr && 940 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 941 !isAtomicOrderingAcquireRelease() && 942 !isAtomicOrderingSequentiallyConsistent() && 943 !isAtomicOrderingAcquireOrStronger() && 944 !isAtomicOrderingReleaseOrStronger() && 945 !isAtomicOrderingWeakerThanAcquire() && 946 !isAtomicOrderingWeakerThanRelease()) 947 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 948 "IsAtomic cannot be used by itself"); 949 } else { 950 if (isAtomicOrderingMonotonic()) 951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 952 "IsAtomicOrderingMonotonic requires IsAtomic"); 953 if (isAtomicOrderingAcquire()) 954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 955 "IsAtomicOrderingAcquire requires IsAtomic"); 956 if (isAtomicOrderingRelease()) 957 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 958 "IsAtomicOrderingRelease requires IsAtomic"); 959 if (isAtomicOrderingAcquireRelease()) 960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 961 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 962 if (isAtomicOrderingSequentiallyConsistent()) 963 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 964 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 965 if (isAtomicOrderingAcquireOrStronger()) 966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 967 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 968 if (isAtomicOrderingReleaseOrStronger()) 969 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 970 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 971 if (isAtomicOrderingWeakerThanAcquire()) 972 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 973 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 974 } 975 976 if (isLoad() || isStore() || isAtomic()) { 977 if (ListInit *AddressSpaces = getAddressSpaces()) { 978 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 979 " if ("; 980 981 bool First = true; 982 for (Init *Val : AddressSpaces->getValues()) { 983 if (First) 984 First = false; 985 else 986 Code += " && "; 987 988 IntInit *IntVal = dyn_cast<IntInit>(Val); 989 if (!IntVal) { 990 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 991 "AddressSpaces element must be integer"); 992 } 993 994 Code += "AddrSpace != " + utostr(IntVal->getValue()); 995 } 996 997 Code += ")\nreturn false;\n"; 998 } 999 1000 int64_t MinAlign = getMinAlignment(); 1001 if (MinAlign > 0) { 1002 Code += "if (cast<MemSDNode>(N)->getAlignment() < "; 1003 Code += utostr(MinAlign); 1004 Code += ")\nreturn false;\n"; 1005 } 1006 1007 Record *MemoryVT = getMemoryVT(); 1008 1009 if (MemoryVT) 1010 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1011 MemoryVT->getName() + ") return false;\n") 1012 .str(); 1013 } 1014 1015 if (isAtomic() && isAtomicOrderingMonotonic()) 1016 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1017 "AtomicOrdering::Monotonic) return false;\n"; 1018 if (isAtomic() && isAtomicOrderingAcquire()) 1019 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1020 "AtomicOrdering::Acquire) return false;\n"; 1021 if (isAtomic() && isAtomicOrderingRelease()) 1022 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1023 "AtomicOrdering::Release) return false;\n"; 1024 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1025 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1026 "AtomicOrdering::AcquireRelease) return false;\n"; 1027 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1028 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1029 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1030 1031 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1032 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1033 "return false;\n"; 1034 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1035 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1036 "return false;\n"; 1037 1038 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1039 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1040 "return false;\n"; 1041 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1042 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1043 "return false;\n"; 1044 1045 if (isLoad() || isStore()) { 1046 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1047 1048 if (isUnindexed()) 1049 Code += ("if (cast<" + SDNodeName + 1050 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1051 "return false;\n") 1052 .str(); 1053 1054 if (isLoad()) { 1055 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1056 isZeroExtLoad()) > 1) 1057 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1058 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1059 "IsZeroExtLoad are mutually exclusive"); 1060 if (isNonExtLoad()) 1061 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1062 "ISD::NON_EXTLOAD) return false;\n"; 1063 if (isAnyExtLoad()) 1064 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1065 "return false;\n"; 1066 if (isSignExtLoad()) 1067 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1068 "return false;\n"; 1069 if (isZeroExtLoad()) 1070 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1071 "return false;\n"; 1072 } else { 1073 if ((isNonTruncStore() + isTruncStore()) > 1) 1074 PrintFatalError( 1075 getOrigPatFragRecord()->getRecord()->getLoc(), 1076 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1077 if (isNonTruncStore()) 1078 Code += 1079 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1080 if (isTruncStore()) 1081 Code += 1082 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1083 } 1084 1085 Record *ScalarMemoryVT = getScalarMemoryVT(); 1086 1087 if (ScalarMemoryVT) 1088 Code += ("if (cast<" + SDNodeName + 1089 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1090 ScalarMemoryVT->getName() + ") return false;\n") 1091 .str(); 1092 } 1093 1094 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1095 1096 Code += PredicateCode; 1097 1098 if (PredicateCode.empty() && !Code.empty()) 1099 Code += "return true;\n"; 1100 1101 return Code; 1102 } 1103 1104 bool TreePredicateFn::hasImmCode() const { 1105 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1106 } 1107 1108 std::string TreePredicateFn::getImmCode() const { 1109 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1110 } 1111 1112 bool TreePredicateFn::immCodeUsesAPInt() const { 1113 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1114 } 1115 1116 bool TreePredicateFn::immCodeUsesAPFloat() const { 1117 bool Unset; 1118 // The return value will be false when IsAPFloat is unset. 1119 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1120 Unset); 1121 } 1122 1123 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1124 bool Value) const { 1125 bool Unset; 1126 bool Result = 1127 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1128 if (Unset) 1129 return false; 1130 return Result == Value; 1131 } 1132 bool TreePredicateFn::usesOperands() const { 1133 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1134 } 1135 bool TreePredicateFn::isLoad() const { 1136 return isPredefinedPredicateEqualTo("IsLoad", true); 1137 } 1138 bool TreePredicateFn::isStore() const { 1139 return isPredefinedPredicateEqualTo("IsStore", true); 1140 } 1141 bool TreePredicateFn::isAtomic() const { 1142 return isPredefinedPredicateEqualTo("IsAtomic", true); 1143 } 1144 bool TreePredicateFn::isUnindexed() const { 1145 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1146 } 1147 bool TreePredicateFn::isNonExtLoad() const { 1148 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1149 } 1150 bool TreePredicateFn::isAnyExtLoad() const { 1151 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1152 } 1153 bool TreePredicateFn::isSignExtLoad() const { 1154 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1155 } 1156 bool TreePredicateFn::isZeroExtLoad() const { 1157 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1158 } 1159 bool TreePredicateFn::isNonTruncStore() const { 1160 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1161 } 1162 bool TreePredicateFn::isTruncStore() const { 1163 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1164 } 1165 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1166 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1167 } 1168 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1169 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1170 } 1171 bool TreePredicateFn::isAtomicOrderingRelease() const { 1172 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1173 } 1174 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1175 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1176 } 1177 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1178 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1179 true); 1180 } 1181 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1182 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1183 } 1184 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1185 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1186 } 1187 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1188 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1189 } 1190 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1191 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1192 } 1193 Record *TreePredicateFn::getMemoryVT() const { 1194 Record *R = getOrigPatFragRecord()->getRecord(); 1195 if (R->isValueUnset("MemoryVT")) 1196 return nullptr; 1197 return R->getValueAsDef("MemoryVT"); 1198 } 1199 1200 ListInit *TreePredicateFn::getAddressSpaces() const { 1201 Record *R = getOrigPatFragRecord()->getRecord(); 1202 if (R->isValueUnset("AddressSpaces")) 1203 return nullptr; 1204 return R->getValueAsListInit("AddressSpaces"); 1205 } 1206 1207 int64_t TreePredicateFn::getMinAlignment() const { 1208 Record *R = getOrigPatFragRecord()->getRecord(); 1209 if (R->isValueUnset("MinAlignment")) 1210 return 0; 1211 return R->getValueAsInt("MinAlignment"); 1212 } 1213 1214 Record *TreePredicateFn::getScalarMemoryVT() const { 1215 Record *R = getOrigPatFragRecord()->getRecord(); 1216 if (R->isValueUnset("ScalarMemoryVT")) 1217 return nullptr; 1218 return R->getValueAsDef("ScalarMemoryVT"); 1219 } 1220 bool TreePredicateFn::hasGISelPredicateCode() const { 1221 return !PatFragRec->getRecord() 1222 ->getValueAsString("GISelPredicateCode") 1223 .empty(); 1224 } 1225 std::string TreePredicateFn::getGISelPredicateCode() const { 1226 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1227 } 1228 1229 StringRef TreePredicateFn::getImmType() const { 1230 if (immCodeUsesAPInt()) 1231 return "const APInt &"; 1232 if (immCodeUsesAPFloat()) 1233 return "const APFloat &"; 1234 return "int64_t"; 1235 } 1236 1237 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1238 if (immCodeUsesAPInt()) 1239 return "APInt"; 1240 else if (immCodeUsesAPFloat()) 1241 return "APFloat"; 1242 return "I64"; 1243 } 1244 1245 /// isAlwaysTrue - Return true if this is a noop predicate. 1246 bool TreePredicateFn::isAlwaysTrue() const { 1247 return !hasPredCode() && !hasImmCode(); 1248 } 1249 1250 /// Return the name to use in the generated code to reference this, this is 1251 /// "Predicate_foo" if from a pattern fragment "foo". 1252 std::string TreePredicateFn::getFnName() const { 1253 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1254 } 1255 1256 /// getCodeToRunOnSDNode - Return the code for the function body that 1257 /// evaluates this predicate. The argument is expected to be in "Node", 1258 /// not N. This handles casting and conversion to a concrete node type as 1259 /// appropriate. 1260 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1261 // Handle immediate predicates first. 1262 std::string ImmCode = getImmCode(); 1263 if (!ImmCode.empty()) { 1264 if (isLoad()) 1265 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1266 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1267 if (isStore()) 1268 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1269 "IsStore cannot be used with ImmLeaf or its subclasses"); 1270 if (isUnindexed()) 1271 PrintFatalError( 1272 getOrigPatFragRecord()->getRecord()->getLoc(), 1273 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1274 if (isNonExtLoad()) 1275 PrintFatalError( 1276 getOrigPatFragRecord()->getRecord()->getLoc(), 1277 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1278 if (isAnyExtLoad()) 1279 PrintFatalError( 1280 getOrigPatFragRecord()->getRecord()->getLoc(), 1281 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1282 if (isSignExtLoad()) 1283 PrintFatalError( 1284 getOrigPatFragRecord()->getRecord()->getLoc(), 1285 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1286 if (isZeroExtLoad()) 1287 PrintFatalError( 1288 getOrigPatFragRecord()->getRecord()->getLoc(), 1289 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1290 if (isNonTruncStore()) 1291 PrintFatalError( 1292 getOrigPatFragRecord()->getRecord()->getLoc(), 1293 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1294 if (isTruncStore()) 1295 PrintFatalError( 1296 getOrigPatFragRecord()->getRecord()->getLoc(), 1297 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1298 if (getMemoryVT()) 1299 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1300 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1301 if (getScalarMemoryVT()) 1302 PrintFatalError( 1303 getOrigPatFragRecord()->getRecord()->getLoc(), 1304 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1305 1306 std::string Result = (" " + getImmType() + " Imm = ").str(); 1307 if (immCodeUsesAPFloat()) 1308 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1309 else if (immCodeUsesAPInt()) 1310 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1311 else 1312 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1313 return Result + ImmCode; 1314 } 1315 1316 // Handle arbitrary node predicates. 1317 assert(hasPredCode() && "Don't have any predicate code!"); 1318 StringRef ClassName; 1319 if (PatFragRec->getOnlyTree()->isLeaf()) 1320 ClassName = "SDNode"; 1321 else { 1322 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1323 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1324 } 1325 std::string Result; 1326 if (ClassName == "SDNode") 1327 Result = " SDNode *N = Node;\n"; 1328 else 1329 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1330 1331 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1332 } 1333 1334 //===----------------------------------------------------------------------===// 1335 // PatternToMatch implementation 1336 // 1337 1338 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1339 if (!P->isLeaf()) 1340 return false; 1341 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1342 if (!DI) 1343 return false; 1344 1345 Record *R = DI->getDef(); 1346 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1347 } 1348 1349 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1350 /// patterns before small ones. This is used to determine the size of a 1351 /// pattern. 1352 static unsigned getPatternSize(const TreePatternNode *P, 1353 const CodeGenDAGPatterns &CGP) { 1354 unsigned Size = 3; // The node itself. 1355 // If the root node is a ConstantSDNode, increases its size. 1356 // e.g. (set R32:$dst, 0). 1357 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1358 Size += 2; 1359 1360 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1361 Size += AM->getComplexity(); 1362 // We don't want to count any children twice, so return early. 1363 return Size; 1364 } 1365 1366 // If this node has some predicate function that must match, it adds to the 1367 // complexity of this node. 1368 if (!P->getPredicateCalls().empty()) 1369 ++Size; 1370 1371 // Count children in the count if they are also nodes. 1372 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1373 const TreePatternNode *Child = P->getChild(i); 1374 if (!Child->isLeaf() && Child->getNumTypes()) { 1375 const TypeSetByHwMode &T0 = Child->getExtType(0); 1376 // At this point, all variable type sets should be simple, i.e. only 1377 // have a default mode. 1378 if (T0.getMachineValueType() != MVT::Other) { 1379 Size += getPatternSize(Child, CGP); 1380 continue; 1381 } 1382 } 1383 if (Child->isLeaf()) { 1384 if (isa<IntInit>(Child->getLeafValue())) 1385 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1386 else if (Child->getComplexPatternInfo(CGP)) 1387 Size += getPatternSize(Child, CGP); 1388 else if (isImmAllOnesAllZerosMatch(Child)) 1389 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1390 else if (!Child->getPredicateCalls().empty()) 1391 ++Size; 1392 } 1393 } 1394 1395 return Size; 1396 } 1397 1398 /// Compute the complexity metric for the input pattern. This roughly 1399 /// corresponds to the number of nodes that are covered. 1400 int PatternToMatch:: 1401 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1402 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1403 } 1404 1405 /// getPredicateCheck - Return a single string containing all of this 1406 /// pattern's predicates concatenated with "&&" operators. 1407 /// 1408 std::string PatternToMatch::getPredicateCheck() const { 1409 SmallVector<const Predicate*,4> PredList; 1410 for (const Predicate &P : Predicates) { 1411 if (!P.getCondString().empty()) 1412 PredList.push_back(&P); 1413 } 1414 llvm::sort(PredList, deref<std::less<>>()); 1415 1416 std::string Check; 1417 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1418 if (i != 0) 1419 Check += " && "; 1420 Check += '(' + PredList[i]->getCondString() + ')'; 1421 } 1422 return Check; 1423 } 1424 1425 //===----------------------------------------------------------------------===// 1426 // SDTypeConstraint implementation 1427 // 1428 1429 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1430 OperandNo = R->getValueAsInt("OperandNum"); 1431 1432 if (R->isSubClassOf("SDTCisVT")) { 1433 ConstraintType = SDTCisVT; 1434 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1435 for (const auto &P : VVT) 1436 if (P.second == MVT::isVoid) 1437 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1438 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1439 ConstraintType = SDTCisPtrTy; 1440 } else if (R->isSubClassOf("SDTCisInt")) { 1441 ConstraintType = SDTCisInt; 1442 } else if (R->isSubClassOf("SDTCisFP")) { 1443 ConstraintType = SDTCisFP; 1444 } else if (R->isSubClassOf("SDTCisVec")) { 1445 ConstraintType = SDTCisVec; 1446 } else if (R->isSubClassOf("SDTCisSameAs")) { 1447 ConstraintType = SDTCisSameAs; 1448 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1449 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1450 ConstraintType = SDTCisVTSmallerThanOp; 1451 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1452 R->getValueAsInt("OtherOperandNum"); 1453 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1454 ConstraintType = SDTCisOpSmallerThanOp; 1455 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1456 R->getValueAsInt("BigOperandNum"); 1457 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1458 ConstraintType = SDTCisEltOfVec; 1459 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1460 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1461 ConstraintType = SDTCisSubVecOfVec; 1462 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1463 R->getValueAsInt("OtherOpNum"); 1464 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1465 ConstraintType = SDTCVecEltisVT; 1466 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1467 for (const auto &P : VVT) { 1468 MVT T = P.second; 1469 if (T.isVector()) 1470 PrintFatalError(R->getLoc(), 1471 "Cannot use vector type as SDTCVecEltisVT"); 1472 if (!T.isInteger() && !T.isFloatingPoint()) 1473 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1474 "as SDTCVecEltisVT"); 1475 } 1476 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1477 ConstraintType = SDTCisSameNumEltsAs; 1478 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1479 R->getValueAsInt("OtherOperandNum"); 1480 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1481 ConstraintType = SDTCisSameSizeAs; 1482 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1483 R->getValueAsInt("OtherOperandNum"); 1484 } else { 1485 PrintFatalError(R->getLoc(), 1486 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1487 } 1488 } 1489 1490 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1491 /// N, and the result number in ResNo. 1492 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1493 const SDNodeInfo &NodeInfo, 1494 unsigned &ResNo) { 1495 unsigned NumResults = NodeInfo.getNumResults(); 1496 if (OpNo < NumResults) { 1497 ResNo = OpNo; 1498 return N; 1499 } 1500 1501 OpNo -= NumResults; 1502 1503 if (OpNo >= N->getNumChildren()) { 1504 std::string S; 1505 raw_string_ostream OS(S); 1506 OS << "Invalid operand number in type constraint " 1507 << (OpNo+NumResults) << " "; 1508 N->print(OS); 1509 PrintFatalError(OS.str()); 1510 } 1511 1512 return N->getChild(OpNo); 1513 } 1514 1515 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1516 /// constraint to the nodes operands. This returns true if it makes a 1517 /// change, false otherwise. If a type contradiction is found, flag an error. 1518 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1519 const SDNodeInfo &NodeInfo, 1520 TreePattern &TP) const { 1521 if (TP.hasError()) 1522 return false; 1523 1524 unsigned ResNo = 0; // The result number being referenced. 1525 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1526 TypeInfer &TI = TP.getInfer(); 1527 1528 switch (ConstraintType) { 1529 case SDTCisVT: 1530 // Operand must be a particular type. 1531 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1532 case SDTCisPtrTy: 1533 // Operand must be same as target pointer type. 1534 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1535 case SDTCisInt: 1536 // Require it to be one of the legal integer VTs. 1537 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1538 case SDTCisFP: 1539 // Require it to be one of the legal fp VTs. 1540 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1541 case SDTCisVec: 1542 // Require it to be one of the legal vector VTs. 1543 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1544 case SDTCisSameAs: { 1545 unsigned OResNo = 0; 1546 TreePatternNode *OtherNode = 1547 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1548 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1549 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1550 } 1551 case SDTCisVTSmallerThanOp: { 1552 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1553 // have an integer type that is smaller than the VT. 1554 if (!NodeToApply->isLeaf() || 1555 !isa<DefInit>(NodeToApply->getLeafValue()) || 1556 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1557 ->isSubClassOf("ValueType")) { 1558 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1559 return false; 1560 } 1561 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1562 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1563 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1564 TypeSetByHwMode TypeListTmp(VVT); 1565 1566 unsigned OResNo = 0; 1567 TreePatternNode *OtherNode = 1568 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1569 OResNo); 1570 1571 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1572 } 1573 case SDTCisOpSmallerThanOp: { 1574 unsigned BResNo = 0; 1575 TreePatternNode *BigOperand = 1576 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1577 BResNo); 1578 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1579 BigOperand->getExtType(BResNo)); 1580 } 1581 case SDTCisEltOfVec: { 1582 unsigned VResNo = 0; 1583 TreePatternNode *VecOperand = 1584 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1585 VResNo); 1586 // Filter vector types out of VecOperand that don't have the right element 1587 // type. 1588 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1589 NodeToApply->getExtType(ResNo)); 1590 } 1591 case SDTCisSubVecOfVec: { 1592 unsigned VResNo = 0; 1593 TreePatternNode *BigVecOperand = 1594 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1595 VResNo); 1596 1597 // Filter vector types out of BigVecOperand that don't have the 1598 // right subvector type. 1599 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1600 NodeToApply->getExtType(ResNo)); 1601 } 1602 case SDTCVecEltisVT: { 1603 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1604 } 1605 case SDTCisSameNumEltsAs: { 1606 unsigned OResNo = 0; 1607 TreePatternNode *OtherNode = 1608 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1609 N, NodeInfo, OResNo); 1610 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1611 NodeToApply->getExtType(ResNo)); 1612 } 1613 case SDTCisSameSizeAs: { 1614 unsigned OResNo = 0; 1615 TreePatternNode *OtherNode = 1616 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1617 N, NodeInfo, OResNo); 1618 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1619 NodeToApply->getExtType(ResNo)); 1620 } 1621 } 1622 llvm_unreachable("Invalid ConstraintType!"); 1623 } 1624 1625 // Update the node type to match an instruction operand or result as specified 1626 // in the ins or outs lists on the instruction definition. Return true if the 1627 // type was actually changed. 1628 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1629 Record *Operand, 1630 TreePattern &TP) { 1631 // The 'unknown' operand indicates that types should be inferred from the 1632 // context. 1633 if (Operand->isSubClassOf("unknown_class")) 1634 return false; 1635 1636 // The Operand class specifies a type directly. 1637 if (Operand->isSubClassOf("Operand")) { 1638 Record *R = Operand->getValueAsDef("Type"); 1639 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1640 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1641 } 1642 1643 // PointerLikeRegClass has a type that is determined at runtime. 1644 if (Operand->isSubClassOf("PointerLikeRegClass")) 1645 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1646 1647 // Both RegisterClass and RegisterOperand operands derive their types from a 1648 // register class def. 1649 Record *RC = nullptr; 1650 if (Operand->isSubClassOf("RegisterClass")) 1651 RC = Operand; 1652 else if (Operand->isSubClassOf("RegisterOperand")) 1653 RC = Operand->getValueAsDef("RegClass"); 1654 1655 assert(RC && "Unknown operand type"); 1656 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1657 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1658 } 1659 1660 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1661 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1662 if (!TP.getInfer().isConcrete(Types[i], true)) 1663 return true; 1664 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1665 if (getChild(i)->ContainsUnresolvedType(TP)) 1666 return true; 1667 return false; 1668 } 1669 1670 bool TreePatternNode::hasProperTypeByHwMode() const { 1671 for (const TypeSetByHwMode &S : Types) 1672 if (!S.isDefaultOnly()) 1673 return true; 1674 for (const TreePatternNodePtr &C : Children) 1675 if (C->hasProperTypeByHwMode()) 1676 return true; 1677 return false; 1678 } 1679 1680 bool TreePatternNode::hasPossibleType() const { 1681 for (const TypeSetByHwMode &S : Types) 1682 if (!S.isPossible()) 1683 return false; 1684 for (const TreePatternNodePtr &C : Children) 1685 if (!C->hasPossibleType()) 1686 return false; 1687 return true; 1688 } 1689 1690 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1691 for (TypeSetByHwMode &S : Types) { 1692 S.makeSimple(Mode); 1693 // Check if the selected mode had a type conflict. 1694 if (S.get(DefaultMode).empty()) 1695 return false; 1696 } 1697 for (const TreePatternNodePtr &C : Children) 1698 if (!C->setDefaultMode(Mode)) 1699 return false; 1700 return true; 1701 } 1702 1703 //===----------------------------------------------------------------------===// 1704 // SDNodeInfo implementation 1705 // 1706 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1707 EnumName = R->getValueAsString("Opcode"); 1708 SDClassName = R->getValueAsString("SDClass"); 1709 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1710 NumResults = TypeProfile->getValueAsInt("NumResults"); 1711 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1712 1713 // Parse the properties. 1714 Properties = parseSDPatternOperatorProperties(R); 1715 1716 // Parse the type constraints. 1717 std::vector<Record*> ConstraintList = 1718 TypeProfile->getValueAsListOfDefs("Constraints"); 1719 for (Record *R : ConstraintList) 1720 TypeConstraints.emplace_back(R, CGH); 1721 } 1722 1723 /// getKnownType - If the type constraints on this node imply a fixed type 1724 /// (e.g. all stores return void, etc), then return it as an 1725 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1726 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1727 unsigned NumResults = getNumResults(); 1728 assert(NumResults <= 1 && 1729 "We only work with nodes with zero or one result so far!"); 1730 assert(ResNo == 0 && "Only handles single result nodes so far"); 1731 1732 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1733 // Make sure that this applies to the correct node result. 1734 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1735 continue; 1736 1737 switch (Constraint.ConstraintType) { 1738 default: break; 1739 case SDTypeConstraint::SDTCisVT: 1740 if (Constraint.VVT.isSimple()) 1741 return Constraint.VVT.getSimple().SimpleTy; 1742 break; 1743 case SDTypeConstraint::SDTCisPtrTy: 1744 return MVT::iPTR; 1745 } 1746 } 1747 return MVT::Other; 1748 } 1749 1750 //===----------------------------------------------------------------------===// 1751 // TreePatternNode implementation 1752 // 1753 1754 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1755 if (Operator->getName() == "set" || 1756 Operator->getName() == "implicit") 1757 return 0; // All return nothing. 1758 1759 if (Operator->isSubClassOf("Intrinsic")) 1760 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1761 1762 if (Operator->isSubClassOf("SDNode")) 1763 return CDP.getSDNodeInfo(Operator).getNumResults(); 1764 1765 if (Operator->isSubClassOf("PatFrags")) { 1766 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1767 // the forward reference case where one pattern fragment references another 1768 // before it is processed. 1769 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1770 // The number of results of a fragment with alternative records is the 1771 // maximum number of results across all alternatives. 1772 unsigned NumResults = 0; 1773 for (auto T : PFRec->getTrees()) 1774 NumResults = std::max(NumResults, T->getNumTypes()); 1775 return NumResults; 1776 } 1777 1778 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1779 assert(LI && "Invalid Fragment"); 1780 unsigned NumResults = 0; 1781 for (Init *I : LI->getValues()) { 1782 Record *Op = nullptr; 1783 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1784 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1785 Op = DI->getDef(); 1786 assert(Op && "Invalid Fragment"); 1787 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1788 } 1789 return NumResults; 1790 } 1791 1792 if (Operator->isSubClassOf("Instruction")) { 1793 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1794 1795 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1796 1797 // Subtract any defaulted outputs. 1798 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1799 Record *OperandNode = InstInfo.Operands[i].Rec; 1800 1801 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1802 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1803 --NumDefsToAdd; 1804 } 1805 1806 // Add on one implicit def if it has a resolvable type. 1807 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1808 ++NumDefsToAdd; 1809 return NumDefsToAdd; 1810 } 1811 1812 if (Operator->isSubClassOf("SDNodeXForm")) 1813 return 1; // FIXME: Generalize SDNodeXForm 1814 1815 if (Operator->isSubClassOf("ValueType")) 1816 return 1; // A type-cast of one result. 1817 1818 if (Operator->isSubClassOf("ComplexPattern")) 1819 return 1; 1820 1821 errs() << *Operator; 1822 PrintFatalError("Unhandled node in GetNumNodeResults"); 1823 } 1824 1825 void TreePatternNode::print(raw_ostream &OS) const { 1826 if (isLeaf()) 1827 OS << *getLeafValue(); 1828 else 1829 OS << '(' << getOperator()->getName(); 1830 1831 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1832 OS << ':'; 1833 getExtType(i).writeToStream(OS); 1834 } 1835 1836 if (!isLeaf()) { 1837 if (getNumChildren() != 0) { 1838 OS << " "; 1839 getChild(0)->print(OS); 1840 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1841 OS << ", "; 1842 getChild(i)->print(OS); 1843 } 1844 } 1845 OS << ")"; 1846 } 1847 1848 for (const TreePredicateCall &Pred : PredicateCalls) { 1849 OS << "<<P:"; 1850 if (Pred.Scope) 1851 OS << Pred.Scope << ":"; 1852 OS << Pred.Fn.getFnName() << ">>"; 1853 } 1854 if (TransformFn) 1855 OS << "<<X:" << TransformFn->getName() << ">>"; 1856 if (!getName().empty()) 1857 OS << ":$" << getName(); 1858 1859 for (const ScopedName &Name : NamesAsPredicateArg) 1860 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1861 } 1862 void TreePatternNode::dump() const { 1863 print(errs()); 1864 } 1865 1866 /// isIsomorphicTo - Return true if this node is recursively 1867 /// isomorphic to the specified node. For this comparison, the node's 1868 /// entire state is considered. The assigned name is ignored, since 1869 /// nodes with differing names are considered isomorphic. However, if 1870 /// the assigned name is present in the dependent variable set, then 1871 /// the assigned name is considered significant and the node is 1872 /// isomorphic if the names match. 1873 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1874 const MultipleUseVarSet &DepVars) const { 1875 if (N == this) return true; 1876 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1877 getPredicateCalls() != N->getPredicateCalls() || 1878 getTransformFn() != N->getTransformFn()) 1879 return false; 1880 1881 if (isLeaf()) { 1882 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1883 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1884 return ((DI->getDef() == NDI->getDef()) 1885 && (DepVars.find(getName()) == DepVars.end() 1886 || getName() == N->getName())); 1887 } 1888 } 1889 return getLeafValue() == N->getLeafValue(); 1890 } 1891 1892 if (N->getOperator() != getOperator() || 1893 N->getNumChildren() != getNumChildren()) return false; 1894 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1895 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1896 return false; 1897 return true; 1898 } 1899 1900 /// clone - Make a copy of this tree and all of its children. 1901 /// 1902 TreePatternNodePtr TreePatternNode::clone() const { 1903 TreePatternNodePtr New; 1904 if (isLeaf()) { 1905 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1906 } else { 1907 std::vector<TreePatternNodePtr> CChildren; 1908 CChildren.reserve(Children.size()); 1909 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1910 CChildren.push_back(getChild(i)->clone()); 1911 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1912 getNumTypes()); 1913 } 1914 New->setName(getName()); 1915 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1916 New->Types = Types; 1917 New->setPredicateCalls(getPredicateCalls()); 1918 New->setTransformFn(getTransformFn()); 1919 return New; 1920 } 1921 1922 /// RemoveAllTypes - Recursively strip all the types of this tree. 1923 void TreePatternNode::RemoveAllTypes() { 1924 // Reset to unknown type. 1925 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1926 if (isLeaf()) return; 1927 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1928 getChild(i)->RemoveAllTypes(); 1929 } 1930 1931 1932 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1933 /// with actual values specified by ArgMap. 1934 void TreePatternNode::SubstituteFormalArguments( 1935 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1936 if (isLeaf()) return; 1937 1938 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1939 TreePatternNode *Child = getChild(i); 1940 if (Child->isLeaf()) { 1941 Init *Val = Child->getLeafValue(); 1942 // Note that, when substituting into an output pattern, Val might be an 1943 // UnsetInit. 1944 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1945 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1946 // We found a use of a formal argument, replace it with its value. 1947 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1948 assert(NewChild && "Couldn't find formal argument!"); 1949 assert((Child->getPredicateCalls().empty() || 1950 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1951 "Non-empty child predicate clobbered!"); 1952 setChild(i, std::move(NewChild)); 1953 } 1954 } else { 1955 getChild(i)->SubstituteFormalArguments(ArgMap); 1956 } 1957 } 1958 } 1959 1960 1961 /// InlinePatternFragments - If this pattern refers to any pattern 1962 /// fragments, return the set of inlined versions (this can be more than 1963 /// one if a PatFrags record has multiple alternatives). 1964 void TreePatternNode::InlinePatternFragments( 1965 TreePatternNodePtr T, TreePattern &TP, 1966 std::vector<TreePatternNodePtr> &OutAlternatives) { 1967 1968 if (TP.hasError()) 1969 return; 1970 1971 if (isLeaf()) { 1972 OutAlternatives.push_back(T); // nothing to do. 1973 return; 1974 } 1975 1976 Record *Op = getOperator(); 1977 1978 if (!Op->isSubClassOf("PatFrags")) { 1979 if (getNumChildren() == 0) { 1980 OutAlternatives.push_back(T); 1981 return; 1982 } 1983 1984 // Recursively inline children nodes. 1985 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 1986 ChildAlternatives.resize(getNumChildren()); 1987 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1988 TreePatternNodePtr Child = getChildShared(i); 1989 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 1990 // If there are no alternatives for any child, there are no 1991 // alternatives for this expression as whole. 1992 if (ChildAlternatives[i].empty()) 1993 return; 1994 1995 for (auto NewChild : ChildAlternatives[i]) 1996 assert((Child->getPredicateCalls().empty() || 1997 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1998 "Non-empty child predicate clobbered!"); 1999 } 2000 2001 // The end result is an all-pairs construction of the resultant pattern. 2002 std::vector<unsigned> Idxs; 2003 Idxs.resize(ChildAlternatives.size()); 2004 bool NotDone; 2005 do { 2006 // Create the variant and add it to the output list. 2007 std::vector<TreePatternNodePtr> NewChildren; 2008 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2009 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2010 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2011 getOperator(), std::move(NewChildren), getNumTypes()); 2012 2013 // Copy over properties. 2014 R->setName(getName()); 2015 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2016 R->setPredicateCalls(getPredicateCalls()); 2017 R->setTransformFn(getTransformFn()); 2018 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2019 R->setType(i, getExtType(i)); 2020 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2021 R->setResultIndex(i, getResultIndex(i)); 2022 2023 // Register alternative. 2024 OutAlternatives.push_back(R); 2025 2026 // Increment indices to the next permutation by incrementing the 2027 // indices from last index backward, e.g., generate the sequence 2028 // [0, 0], [0, 1], [1, 0], [1, 1]. 2029 int IdxsIdx; 2030 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2031 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2032 Idxs[IdxsIdx] = 0; 2033 else 2034 break; 2035 } 2036 NotDone = (IdxsIdx >= 0); 2037 } while (NotDone); 2038 2039 return; 2040 } 2041 2042 // Otherwise, we found a reference to a fragment. First, look up its 2043 // TreePattern record. 2044 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2045 2046 // Verify that we are passing the right number of operands. 2047 if (Frag->getNumArgs() != Children.size()) { 2048 TP.error("'" + Op->getName() + "' fragment requires " + 2049 Twine(Frag->getNumArgs()) + " operands!"); 2050 return; 2051 } 2052 2053 TreePredicateFn PredFn(Frag); 2054 unsigned Scope = 0; 2055 if (TreePredicateFn(Frag).usesOperands()) 2056 Scope = TP.getDAGPatterns().allocateScope(); 2057 2058 // Compute the map of formal to actual arguments. 2059 std::map<std::string, TreePatternNodePtr> ArgMap; 2060 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2061 TreePatternNodePtr Child = getChildShared(i); 2062 if (Scope != 0) { 2063 Child = Child->clone(); 2064 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2065 } 2066 ArgMap[Frag->getArgName(i)] = Child; 2067 } 2068 2069 // Loop over all fragment alternatives. 2070 for (auto Alternative : Frag->getTrees()) { 2071 TreePatternNodePtr FragTree = Alternative->clone(); 2072 2073 if (!PredFn.isAlwaysTrue()) 2074 FragTree->addPredicateCall(PredFn, Scope); 2075 2076 // Resolve formal arguments to their actual value. 2077 if (Frag->getNumArgs()) 2078 FragTree->SubstituteFormalArguments(ArgMap); 2079 2080 // Transfer types. Note that the resolved alternative may have fewer 2081 // (but not more) results than the PatFrags node. 2082 FragTree->setName(getName()); 2083 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2084 FragTree->UpdateNodeType(i, getExtType(i), TP); 2085 2086 // Transfer in the old predicates. 2087 for (const TreePredicateCall &Pred : getPredicateCalls()) 2088 FragTree->addPredicateCall(Pred); 2089 2090 // The fragment we inlined could have recursive inlining that is needed. See 2091 // if there are any pattern fragments in it and inline them as needed. 2092 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2093 } 2094 } 2095 2096 /// getImplicitType - Check to see if the specified record has an implicit 2097 /// type which should be applied to it. This will infer the type of register 2098 /// references from the register file information, for example. 2099 /// 2100 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2101 /// the F8RC register class argument in: 2102 /// 2103 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2104 /// 2105 /// When Unnamed is false, return the type of a named DAG operand such as the 2106 /// GPR:$src operand above. 2107 /// 2108 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2109 bool NotRegisters, 2110 bool Unnamed, 2111 TreePattern &TP) { 2112 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2113 2114 // Check to see if this is a register operand. 2115 if (R->isSubClassOf("RegisterOperand")) { 2116 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2117 if (NotRegisters) 2118 return TypeSetByHwMode(); // Unknown. 2119 Record *RegClass = R->getValueAsDef("RegClass"); 2120 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2121 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2122 } 2123 2124 // Check to see if this is a register or a register class. 2125 if (R->isSubClassOf("RegisterClass")) { 2126 assert(ResNo == 0 && "Regclass ref only has one result!"); 2127 // An unnamed register class represents itself as an i32 immediate, for 2128 // example on a COPY_TO_REGCLASS instruction. 2129 if (Unnamed) 2130 return TypeSetByHwMode(MVT::i32); 2131 2132 // In a named operand, the register class provides the possible set of 2133 // types. 2134 if (NotRegisters) 2135 return TypeSetByHwMode(); // Unknown. 2136 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2137 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2138 } 2139 2140 if (R->isSubClassOf("PatFrags")) { 2141 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2142 // Pattern fragment types will be resolved when they are inlined. 2143 return TypeSetByHwMode(); // Unknown. 2144 } 2145 2146 if (R->isSubClassOf("Register")) { 2147 assert(ResNo == 0 && "Registers only produce one result!"); 2148 if (NotRegisters) 2149 return TypeSetByHwMode(); // Unknown. 2150 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2151 return TypeSetByHwMode(T.getRegisterVTs(R)); 2152 } 2153 2154 if (R->isSubClassOf("SubRegIndex")) { 2155 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2156 return TypeSetByHwMode(MVT::i32); 2157 } 2158 2159 if (R->isSubClassOf("ValueType")) { 2160 assert(ResNo == 0 && "This node only has one result!"); 2161 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2162 // 2163 // (sext_inreg GPR:$src, i16) 2164 // ~~~ 2165 if (Unnamed) 2166 return TypeSetByHwMode(MVT::Other); 2167 // With a name, the ValueType simply provides the type of the named 2168 // variable. 2169 // 2170 // (sext_inreg i32:$src, i16) 2171 // ~~~~~~~~ 2172 if (NotRegisters) 2173 return TypeSetByHwMode(); // Unknown. 2174 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2175 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2176 } 2177 2178 if (R->isSubClassOf("CondCode")) { 2179 assert(ResNo == 0 && "This node only has one result!"); 2180 // Using a CondCodeSDNode. 2181 return TypeSetByHwMode(MVT::Other); 2182 } 2183 2184 if (R->isSubClassOf("ComplexPattern")) { 2185 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2186 if (NotRegisters) 2187 return TypeSetByHwMode(); // Unknown. 2188 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2189 } 2190 if (R->isSubClassOf("PointerLikeRegClass")) { 2191 assert(ResNo == 0 && "Regclass can only have one result!"); 2192 TypeSetByHwMode VTS(MVT::iPTR); 2193 TP.getInfer().expandOverloads(VTS); 2194 return VTS; 2195 } 2196 2197 if (R->getName() == "node" || R->getName() == "srcvalue" || 2198 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2199 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2200 // Placeholder. 2201 return TypeSetByHwMode(); // Unknown. 2202 } 2203 2204 if (R->isSubClassOf("Operand")) { 2205 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2206 Record *T = R->getValueAsDef("Type"); 2207 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2208 } 2209 2210 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2211 return TypeSetByHwMode(MVT::Other); 2212 } 2213 2214 2215 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2216 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2217 const CodeGenIntrinsic *TreePatternNode:: 2218 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2219 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2220 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2221 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2222 return nullptr; 2223 2224 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2225 return &CDP.getIntrinsicInfo(IID); 2226 } 2227 2228 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2229 /// return the ComplexPattern information, otherwise return null. 2230 const ComplexPattern * 2231 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2232 Record *Rec; 2233 if (isLeaf()) { 2234 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2235 if (!DI) 2236 return nullptr; 2237 Rec = DI->getDef(); 2238 } else 2239 Rec = getOperator(); 2240 2241 if (!Rec->isSubClassOf("ComplexPattern")) 2242 return nullptr; 2243 return &CGP.getComplexPattern(Rec); 2244 } 2245 2246 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2247 // A ComplexPattern specifically declares how many results it fills in. 2248 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2249 return CP->getNumOperands(); 2250 2251 // If MIOperandInfo is specified, that gives the count. 2252 if (isLeaf()) { 2253 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2254 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2255 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2256 if (MIOps->getNumArgs()) 2257 return MIOps->getNumArgs(); 2258 } 2259 } 2260 2261 // Otherwise there is just one result. 2262 return 1; 2263 } 2264 2265 /// NodeHasProperty - Return true if this node has the specified property. 2266 bool TreePatternNode::NodeHasProperty(SDNP Property, 2267 const CodeGenDAGPatterns &CGP) const { 2268 if (isLeaf()) { 2269 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2270 return CP->hasProperty(Property); 2271 2272 return false; 2273 } 2274 2275 if (Property != SDNPHasChain) { 2276 // The chain proprety is already present on the different intrinsic node 2277 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2278 // on the intrinsic. Anything else is specific to the individual intrinsic. 2279 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2280 return Int->hasProperty(Property); 2281 } 2282 2283 if (!Operator->isSubClassOf("SDPatternOperator")) 2284 return false; 2285 2286 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2287 } 2288 2289 2290 2291 2292 /// TreeHasProperty - Return true if any node in this tree has the specified 2293 /// property. 2294 bool TreePatternNode::TreeHasProperty(SDNP Property, 2295 const CodeGenDAGPatterns &CGP) const { 2296 if (NodeHasProperty(Property, CGP)) 2297 return true; 2298 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2299 if (getChild(i)->TreeHasProperty(Property, CGP)) 2300 return true; 2301 return false; 2302 } 2303 2304 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2305 /// commutative intrinsic. 2306 bool 2307 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2308 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2309 return Int->isCommutative; 2310 return false; 2311 } 2312 2313 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2314 if (!N->isLeaf()) 2315 return N->getOperator()->isSubClassOf(Class); 2316 2317 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2318 if (DI && DI->getDef()->isSubClassOf(Class)) 2319 return true; 2320 2321 return false; 2322 } 2323 2324 static void emitTooManyOperandsError(TreePattern &TP, 2325 StringRef InstName, 2326 unsigned Expected, 2327 unsigned Actual) { 2328 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2329 " operands but expected only " + Twine(Expected) + "!"); 2330 } 2331 2332 static void emitTooFewOperandsError(TreePattern &TP, 2333 StringRef InstName, 2334 unsigned Actual) { 2335 TP.error("Instruction '" + InstName + 2336 "' expects more than the provided " + Twine(Actual) + " operands!"); 2337 } 2338 2339 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2340 /// this node and its children in the tree. This returns true if it makes a 2341 /// change, false otherwise. If a type contradiction is found, flag an error. 2342 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2343 if (TP.hasError()) 2344 return false; 2345 2346 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2347 if (isLeaf()) { 2348 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2349 // If it's a regclass or something else known, include the type. 2350 bool MadeChange = false; 2351 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2352 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2353 NotRegisters, 2354 !hasName(), TP), TP); 2355 return MadeChange; 2356 } 2357 2358 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2359 assert(Types.size() == 1 && "Invalid IntInit"); 2360 2361 // Int inits are always integers. :) 2362 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2363 2364 if (!TP.getInfer().isConcrete(Types[0], false)) 2365 return MadeChange; 2366 2367 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2368 for (auto &P : VVT) { 2369 MVT::SimpleValueType VT = P.second.SimpleTy; 2370 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2371 continue; 2372 unsigned Size = MVT(VT).getSizeInBits(); 2373 // Make sure that the value is representable for this type. 2374 if (Size >= 32) 2375 continue; 2376 // Check that the value doesn't use more bits than we have. It must 2377 // either be a sign- or zero-extended equivalent of the original. 2378 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2379 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2380 SignBitAndAbove == 1) 2381 continue; 2382 2383 TP.error("Integer value '" + Twine(II->getValue()) + 2384 "' is out of range for type '" + getEnumName(VT) + "'!"); 2385 break; 2386 } 2387 return MadeChange; 2388 } 2389 2390 return false; 2391 } 2392 2393 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2394 bool MadeChange = false; 2395 2396 // Apply the result type to the node. 2397 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2398 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2399 2400 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2401 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2402 2403 if (getNumChildren() != NumParamVTs + 1) { 2404 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2405 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2406 return false; 2407 } 2408 2409 // Apply type info to the intrinsic ID. 2410 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2411 2412 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2413 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2414 2415 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2416 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2417 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2418 } 2419 return MadeChange; 2420 } 2421 2422 if (getOperator()->isSubClassOf("SDNode")) { 2423 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2424 2425 // Check that the number of operands is sane. Negative operands -> varargs. 2426 if (NI.getNumOperands() >= 0 && 2427 getNumChildren() != (unsigned)NI.getNumOperands()) { 2428 TP.error(getOperator()->getName() + " node requires exactly " + 2429 Twine(NI.getNumOperands()) + " operands!"); 2430 return false; 2431 } 2432 2433 bool MadeChange = false; 2434 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2435 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2436 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2437 return MadeChange; 2438 } 2439 2440 if (getOperator()->isSubClassOf("Instruction")) { 2441 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2442 CodeGenInstruction &InstInfo = 2443 CDP.getTargetInfo().getInstruction(getOperator()); 2444 2445 bool MadeChange = false; 2446 2447 // Apply the result types to the node, these come from the things in the 2448 // (outs) list of the instruction. 2449 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2450 Inst.getNumResults()); 2451 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2452 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2453 2454 // If the instruction has implicit defs, we apply the first one as a result. 2455 // FIXME: This sucks, it should apply all implicit defs. 2456 if (!InstInfo.ImplicitDefs.empty()) { 2457 unsigned ResNo = NumResultsToAdd; 2458 2459 // FIXME: Generalize to multiple possible types and multiple possible 2460 // ImplicitDefs. 2461 MVT::SimpleValueType VT = 2462 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2463 2464 if (VT != MVT::Other) 2465 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2466 } 2467 2468 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2469 // be the same. 2470 if (getOperator()->getName() == "INSERT_SUBREG") { 2471 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2472 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2473 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2474 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2475 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2476 // variadic. 2477 2478 unsigned NChild = getNumChildren(); 2479 if (NChild < 3) { 2480 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2481 return false; 2482 } 2483 2484 if (NChild % 2 == 0) { 2485 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2486 return false; 2487 } 2488 2489 if (!isOperandClass(getChild(0), "RegisterClass")) { 2490 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2491 return false; 2492 } 2493 2494 for (unsigned I = 1; I < NChild; I += 2) { 2495 TreePatternNode *SubIdxChild = getChild(I + 1); 2496 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2497 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2498 Twine(I + 1) + "!"); 2499 return false; 2500 } 2501 } 2502 } 2503 2504 // If one or more operands with a default value appear at the end of the 2505 // formal operand list for an instruction, we allow them to be overridden 2506 // by optional operands provided in the pattern. 2507 // 2508 // But if an operand B without a default appears at any point after an 2509 // operand A with a default, then we don't allow A to be overridden, 2510 // because there would be no way to specify whether the next operand in 2511 // the pattern was intended to override A or skip it. 2512 unsigned NonOverridableOperands = Inst.getNumOperands(); 2513 while (NonOverridableOperands > 0 && 2514 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1))) 2515 --NonOverridableOperands; 2516 2517 unsigned ChildNo = 0; 2518 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2519 Record *OperandNode = Inst.getOperand(i); 2520 2521 // If the operand has a default value, do we use it? We must use the 2522 // default if we've run out of children of the pattern DAG to consume, 2523 // or if the operand is followed by a non-defaulted one. 2524 if (CDP.operandHasDefault(OperandNode) && 2525 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2526 continue; 2527 2528 // If we have run out of child nodes and there _isn't_ a default 2529 // value we can use for the next operand, give an error. 2530 if (ChildNo >= getNumChildren()) { 2531 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2532 return false; 2533 } 2534 2535 TreePatternNode *Child = getChild(ChildNo++); 2536 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2537 2538 // If the operand has sub-operands, they may be provided by distinct 2539 // child patterns, so attempt to match each sub-operand separately. 2540 if (OperandNode->isSubClassOf("Operand")) { 2541 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2542 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2543 // But don't do that if the whole operand is being provided by 2544 // a single ComplexPattern-related Operand. 2545 2546 if (Child->getNumMIResults(CDP) < NumArgs) { 2547 // Match first sub-operand against the child we already have. 2548 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2549 MadeChange |= 2550 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2551 2552 // And the remaining sub-operands against subsequent children. 2553 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2554 if (ChildNo >= getNumChildren()) { 2555 emitTooFewOperandsError(TP, getOperator()->getName(), 2556 getNumChildren()); 2557 return false; 2558 } 2559 Child = getChild(ChildNo++); 2560 2561 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2562 MadeChange |= 2563 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2564 } 2565 continue; 2566 } 2567 } 2568 } 2569 2570 // If we didn't match by pieces above, attempt to match the whole 2571 // operand now. 2572 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2573 } 2574 2575 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2576 emitTooManyOperandsError(TP, getOperator()->getName(), 2577 ChildNo, getNumChildren()); 2578 return false; 2579 } 2580 2581 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2582 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2583 return MadeChange; 2584 } 2585 2586 if (getOperator()->isSubClassOf("ComplexPattern")) { 2587 bool MadeChange = false; 2588 2589 for (unsigned i = 0; i < getNumChildren(); ++i) 2590 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2591 2592 return MadeChange; 2593 } 2594 2595 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2596 2597 // Node transforms always take one operand. 2598 if (getNumChildren() != 1) { 2599 TP.error("Node transform '" + getOperator()->getName() + 2600 "' requires one operand!"); 2601 return false; 2602 } 2603 2604 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2605 return MadeChange; 2606 } 2607 2608 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2609 /// RHS of a commutative operation, not the on LHS. 2610 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2611 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2612 return true; 2613 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2614 return true; 2615 return false; 2616 } 2617 2618 2619 /// canPatternMatch - If it is impossible for this pattern to match on this 2620 /// target, fill in Reason and return false. Otherwise, return true. This is 2621 /// used as a sanity check for .td files (to prevent people from writing stuff 2622 /// that can never possibly work), and to prevent the pattern permuter from 2623 /// generating stuff that is useless. 2624 bool TreePatternNode::canPatternMatch(std::string &Reason, 2625 const CodeGenDAGPatterns &CDP) { 2626 if (isLeaf()) return true; 2627 2628 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2629 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2630 return false; 2631 2632 // If this is an intrinsic, handle cases that would make it not match. For 2633 // example, if an operand is required to be an immediate. 2634 if (getOperator()->isSubClassOf("Intrinsic")) { 2635 // TODO: 2636 return true; 2637 } 2638 2639 if (getOperator()->isSubClassOf("ComplexPattern")) 2640 return true; 2641 2642 // If this node is a commutative operator, check that the LHS isn't an 2643 // immediate. 2644 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2645 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2646 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2647 // Scan all of the operands of the node and make sure that only the last one 2648 // is a constant node, unless the RHS also is. 2649 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2650 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2651 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2652 if (OnlyOnRHSOfCommutative(getChild(i))) { 2653 Reason="Immediate value must be on the RHS of commutative operators!"; 2654 return false; 2655 } 2656 } 2657 } 2658 2659 return true; 2660 } 2661 2662 //===----------------------------------------------------------------------===// 2663 // TreePattern implementation 2664 // 2665 2666 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2667 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2668 isInputPattern(isInput), HasError(false), 2669 Infer(*this) { 2670 for (Init *I : RawPat->getValues()) 2671 Trees.push_back(ParseTreePattern(I, "")); 2672 } 2673 2674 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2675 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2676 isInputPattern(isInput), HasError(false), 2677 Infer(*this) { 2678 Trees.push_back(ParseTreePattern(Pat, "")); 2679 } 2680 2681 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2682 CodeGenDAGPatterns &cdp) 2683 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2684 Infer(*this) { 2685 Trees.push_back(Pat); 2686 } 2687 2688 void TreePattern::error(const Twine &Msg) { 2689 if (HasError) 2690 return; 2691 dump(); 2692 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2693 HasError = true; 2694 } 2695 2696 void TreePattern::ComputeNamedNodes() { 2697 for (TreePatternNodePtr &Tree : Trees) 2698 ComputeNamedNodes(Tree.get()); 2699 } 2700 2701 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2702 if (!N->getName().empty()) 2703 NamedNodes[N->getName()].push_back(N); 2704 2705 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2706 ComputeNamedNodes(N->getChild(i)); 2707 } 2708 2709 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2710 StringRef OpName) { 2711 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2712 Record *R = DI->getDef(); 2713 2714 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2715 // TreePatternNode of its own. For example: 2716 /// (foo GPR, imm) -> (foo GPR, (imm)) 2717 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2718 return ParseTreePattern( 2719 DagInit::get(DI, nullptr, 2720 std::vector<std::pair<Init*, StringInit*> >()), 2721 OpName); 2722 2723 // Input argument? 2724 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2725 if (R->getName() == "node" && !OpName.empty()) { 2726 if (OpName.empty()) 2727 error("'node' argument requires a name to match with operand list"); 2728 Args.push_back(OpName); 2729 } 2730 2731 Res->setName(OpName); 2732 return Res; 2733 } 2734 2735 // ?:$name or just $name. 2736 if (isa<UnsetInit>(TheInit)) { 2737 if (OpName.empty()) 2738 error("'?' argument requires a name to match with operand list"); 2739 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2740 Args.push_back(OpName); 2741 Res->setName(OpName); 2742 return Res; 2743 } 2744 2745 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2746 if (!OpName.empty()) 2747 error("Constant int or bit argument should not have a name!"); 2748 if (isa<BitInit>(TheInit)) 2749 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2750 return std::make_shared<TreePatternNode>(TheInit, 1); 2751 } 2752 2753 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2754 // Turn this into an IntInit. 2755 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2756 if (!II || !isa<IntInit>(II)) 2757 error("Bits value must be constants!"); 2758 return ParseTreePattern(II, OpName); 2759 } 2760 2761 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2762 if (!Dag) { 2763 TheInit->print(errs()); 2764 error("Pattern has unexpected init kind!"); 2765 } 2766 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2767 if (!OpDef) error("Pattern has unexpected operator type!"); 2768 Record *Operator = OpDef->getDef(); 2769 2770 if (Operator->isSubClassOf("ValueType")) { 2771 // If the operator is a ValueType, then this must be "type cast" of a leaf 2772 // node. 2773 if (Dag->getNumArgs() != 1) 2774 error("Type cast only takes one operand!"); 2775 2776 TreePatternNodePtr New = 2777 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2778 2779 // Apply the type cast. 2780 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2781 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2782 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2783 2784 if (!OpName.empty()) 2785 error("ValueType cast should not have a name!"); 2786 return New; 2787 } 2788 2789 // Verify that this is something that makes sense for an operator. 2790 if (!Operator->isSubClassOf("PatFrags") && 2791 !Operator->isSubClassOf("SDNode") && 2792 !Operator->isSubClassOf("Instruction") && 2793 !Operator->isSubClassOf("SDNodeXForm") && 2794 !Operator->isSubClassOf("Intrinsic") && 2795 !Operator->isSubClassOf("ComplexPattern") && 2796 Operator->getName() != "set" && 2797 Operator->getName() != "implicit") 2798 error("Unrecognized node '" + Operator->getName() + "'!"); 2799 2800 // Check to see if this is something that is illegal in an input pattern. 2801 if (isInputPattern) { 2802 if (Operator->isSubClassOf("Instruction") || 2803 Operator->isSubClassOf("SDNodeXForm")) 2804 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2805 } else { 2806 if (Operator->isSubClassOf("Intrinsic")) 2807 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2808 2809 if (Operator->isSubClassOf("SDNode") && 2810 Operator->getName() != "imm" && 2811 Operator->getName() != "timm" && 2812 Operator->getName() != "fpimm" && 2813 Operator->getName() != "tglobaltlsaddr" && 2814 Operator->getName() != "tconstpool" && 2815 Operator->getName() != "tjumptable" && 2816 Operator->getName() != "tframeindex" && 2817 Operator->getName() != "texternalsym" && 2818 Operator->getName() != "tblockaddress" && 2819 Operator->getName() != "tglobaladdr" && 2820 Operator->getName() != "bb" && 2821 Operator->getName() != "vt" && 2822 Operator->getName() != "mcsym") 2823 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2824 } 2825 2826 std::vector<TreePatternNodePtr> Children; 2827 2828 // Parse all the operands. 2829 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2830 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2831 2832 // Get the actual number of results before Operator is converted to an intrinsic 2833 // node (which is hard-coded to have either zero or one result). 2834 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2835 2836 // If the operator is an intrinsic, then this is just syntactic sugar for 2837 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2838 // convert the intrinsic name to a number. 2839 if (Operator->isSubClassOf("Intrinsic")) { 2840 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2841 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2842 2843 // If this intrinsic returns void, it must have side-effects and thus a 2844 // chain. 2845 if (Int.IS.RetVTs.empty()) 2846 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2847 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2848 // Has side-effects, requires chain. 2849 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2850 else // Otherwise, no chain. 2851 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2852 2853 Children.insert(Children.begin(), 2854 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2855 } 2856 2857 if (Operator->isSubClassOf("ComplexPattern")) { 2858 for (unsigned i = 0; i < Children.size(); ++i) { 2859 TreePatternNodePtr Child = Children[i]; 2860 2861 if (Child->getName().empty()) 2862 error("All arguments to a ComplexPattern must be named"); 2863 2864 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2865 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2866 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2867 auto OperandId = std::make_pair(Operator, i); 2868 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2869 if (PrevOp != ComplexPatternOperands.end()) { 2870 if (PrevOp->getValue() != OperandId) 2871 error("All ComplexPattern operands must appear consistently: " 2872 "in the same order in just one ComplexPattern instance."); 2873 } else 2874 ComplexPatternOperands[Child->getName()] = OperandId; 2875 } 2876 } 2877 2878 TreePatternNodePtr Result = 2879 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2880 NumResults); 2881 Result->setName(OpName); 2882 2883 if (Dag->getName()) { 2884 assert(Result->getName().empty()); 2885 Result->setName(Dag->getNameStr()); 2886 } 2887 return Result; 2888 } 2889 2890 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2891 /// will never match in favor of something obvious that will. This is here 2892 /// strictly as a convenience to target authors because it allows them to write 2893 /// more type generic things and have useless type casts fold away. 2894 /// 2895 /// This returns true if any change is made. 2896 static bool SimplifyTree(TreePatternNodePtr &N) { 2897 if (N->isLeaf()) 2898 return false; 2899 2900 // If we have a bitconvert with a resolved type and if the source and 2901 // destination types are the same, then the bitconvert is useless, remove it. 2902 if (N->getOperator()->getName() == "bitconvert" && 2903 N->getExtType(0).isValueTypeByHwMode(false) && 2904 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2905 N->getName().empty()) { 2906 N = N->getChildShared(0); 2907 SimplifyTree(N); 2908 return true; 2909 } 2910 2911 // Walk all children. 2912 bool MadeChange = false; 2913 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2914 TreePatternNodePtr Child = N->getChildShared(i); 2915 MadeChange |= SimplifyTree(Child); 2916 N->setChild(i, std::move(Child)); 2917 } 2918 return MadeChange; 2919 } 2920 2921 2922 2923 /// InferAllTypes - Infer/propagate as many types throughout the expression 2924 /// patterns as possible. Return true if all types are inferred, false 2925 /// otherwise. Flags an error if a type contradiction is found. 2926 bool TreePattern:: 2927 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2928 if (NamedNodes.empty()) 2929 ComputeNamedNodes(); 2930 2931 bool MadeChange = true; 2932 while (MadeChange) { 2933 MadeChange = false; 2934 for (TreePatternNodePtr &Tree : Trees) { 2935 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2936 MadeChange |= SimplifyTree(Tree); 2937 } 2938 2939 // If there are constraints on our named nodes, apply them. 2940 for (auto &Entry : NamedNodes) { 2941 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2942 2943 // If we have input named node types, propagate their types to the named 2944 // values here. 2945 if (InNamedTypes) { 2946 if (!InNamedTypes->count(Entry.getKey())) { 2947 error("Node '" + std::string(Entry.getKey()) + 2948 "' in output pattern but not input pattern"); 2949 return true; 2950 } 2951 2952 const SmallVectorImpl<TreePatternNode*> &InNodes = 2953 InNamedTypes->find(Entry.getKey())->second; 2954 2955 // The input types should be fully resolved by now. 2956 for (TreePatternNode *Node : Nodes) { 2957 // If this node is a register class, and it is the root of the pattern 2958 // then we're mapping something onto an input register. We allow 2959 // changing the type of the input register in this case. This allows 2960 // us to match things like: 2961 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2962 if (Node == Trees[0].get() && Node->isLeaf()) { 2963 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2964 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2965 DI->getDef()->isSubClassOf("RegisterOperand"))) 2966 continue; 2967 } 2968 2969 assert(Node->getNumTypes() == 1 && 2970 InNodes[0]->getNumTypes() == 1 && 2971 "FIXME: cannot name multiple result nodes yet"); 2972 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2973 *this); 2974 } 2975 } 2976 2977 // If there are multiple nodes with the same name, they must all have the 2978 // same type. 2979 if (Entry.second.size() > 1) { 2980 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2981 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2982 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2983 "FIXME: cannot name multiple result nodes yet"); 2984 2985 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2986 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2987 } 2988 } 2989 } 2990 } 2991 2992 bool HasUnresolvedTypes = false; 2993 for (const TreePatternNodePtr &Tree : Trees) 2994 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2995 return !HasUnresolvedTypes; 2996 } 2997 2998 void TreePattern::print(raw_ostream &OS) const { 2999 OS << getRecord()->getName(); 3000 if (!Args.empty()) { 3001 OS << "(" << Args[0]; 3002 for (unsigned i = 1, e = Args.size(); i != e; ++i) 3003 OS << ", " << Args[i]; 3004 OS << ")"; 3005 } 3006 OS << ": "; 3007 3008 if (Trees.size() > 1) 3009 OS << "[\n"; 3010 for (const TreePatternNodePtr &Tree : Trees) { 3011 OS << "\t"; 3012 Tree->print(OS); 3013 OS << "\n"; 3014 } 3015 3016 if (Trees.size() > 1) 3017 OS << "]\n"; 3018 } 3019 3020 void TreePattern::dump() const { print(errs()); } 3021 3022 //===----------------------------------------------------------------------===// 3023 // CodeGenDAGPatterns implementation 3024 // 3025 3026 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3027 PatternRewriterFn PatternRewriter) 3028 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3029 PatternRewriter(PatternRewriter) { 3030 3031 Intrinsics = CodeGenIntrinsicTable(Records); 3032 ParseNodeInfo(); 3033 ParseNodeTransforms(); 3034 ParseComplexPatterns(); 3035 ParsePatternFragments(); 3036 ParseDefaultOperands(); 3037 ParseInstructions(); 3038 ParsePatternFragments(/*OutFrags*/true); 3039 ParsePatterns(); 3040 3041 // Break patterns with parameterized types into a series of patterns, 3042 // where each one has a fixed type and is predicated on the conditions 3043 // of the associated HW mode. 3044 ExpandHwModeBasedTypes(); 3045 3046 // Generate variants. For example, commutative patterns can match 3047 // multiple ways. Add them to PatternsToMatch as well. 3048 GenerateVariants(); 3049 3050 // Infer instruction flags. For example, we can detect loads, 3051 // stores, and side effects in many cases by examining an 3052 // instruction's pattern. 3053 InferInstructionFlags(); 3054 3055 // Verify that instruction flags match the patterns. 3056 VerifyInstructionFlags(); 3057 } 3058 3059 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 3060 Record *N = Records.getDef(Name); 3061 if (!N || !N->isSubClassOf("SDNode")) 3062 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3063 3064 return N; 3065 } 3066 3067 // Parse all of the SDNode definitions for the target, populating SDNodes. 3068 void CodeGenDAGPatterns::ParseNodeInfo() { 3069 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3070 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3071 3072 while (!Nodes.empty()) { 3073 Record *R = Nodes.back(); 3074 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3075 Nodes.pop_back(); 3076 } 3077 3078 // Get the builtin intrinsic nodes. 3079 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3080 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3081 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3082 } 3083 3084 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3085 /// map, and emit them to the file as functions. 3086 void CodeGenDAGPatterns::ParseNodeTransforms() { 3087 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3088 while (!Xforms.empty()) { 3089 Record *XFormNode = Xforms.back(); 3090 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3091 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3092 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 3093 3094 Xforms.pop_back(); 3095 } 3096 } 3097 3098 void CodeGenDAGPatterns::ParseComplexPatterns() { 3099 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3100 while (!AMs.empty()) { 3101 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3102 AMs.pop_back(); 3103 } 3104 } 3105 3106 3107 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3108 /// file, building up the PatternFragments map. After we've collected them all, 3109 /// inline fragments together as necessary, so that there are no references left 3110 /// inside a pattern fragment to a pattern fragment. 3111 /// 3112 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3113 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3114 3115 // First step, parse all of the fragments. 3116 for (Record *Frag : Fragments) { 3117 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3118 continue; 3119 3120 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3121 TreePattern *P = 3122 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3123 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3124 *this)).get(); 3125 3126 // Validate the argument list, converting it to set, to discard duplicates. 3127 std::vector<std::string> &Args = P->getArgList(); 3128 // Copy the args so we can take StringRefs to them. 3129 auto ArgsCopy = Args; 3130 SmallDenseSet<StringRef, 4> OperandsSet; 3131 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3132 3133 if (OperandsSet.count("")) 3134 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3135 3136 // Parse the operands list. 3137 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3138 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3139 // Special cases: ops == outs == ins. Different names are used to 3140 // improve readability. 3141 if (!OpsOp || 3142 (OpsOp->getDef()->getName() != "ops" && 3143 OpsOp->getDef()->getName() != "outs" && 3144 OpsOp->getDef()->getName() != "ins")) 3145 P->error("Operands list should start with '(ops ... '!"); 3146 3147 // Copy over the arguments. 3148 Args.clear(); 3149 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3150 if (!isa<DefInit>(OpsList->getArg(j)) || 3151 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3152 P->error("Operands list should all be 'node' values."); 3153 if (!OpsList->getArgName(j)) 3154 P->error("Operands list should have names for each operand!"); 3155 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3156 if (!OperandsSet.count(ArgNameStr)) 3157 P->error("'" + ArgNameStr + 3158 "' does not occur in pattern or was multiply specified!"); 3159 OperandsSet.erase(ArgNameStr); 3160 Args.push_back(ArgNameStr); 3161 } 3162 3163 if (!OperandsSet.empty()) 3164 P->error("Operands list does not contain an entry for operand '" + 3165 *OperandsSet.begin() + "'!"); 3166 3167 // If there is a node transformation corresponding to this, keep track of 3168 // it. 3169 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3170 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3171 for (auto T : P->getTrees()) 3172 T->setTransformFn(Transform); 3173 } 3174 3175 // Now that we've parsed all of the tree fragments, do a closure on them so 3176 // that there are not references to PatFrags left inside of them. 3177 for (Record *Frag : Fragments) { 3178 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3179 continue; 3180 3181 TreePattern &ThePat = *PatternFragments[Frag]; 3182 ThePat.InlinePatternFragments(); 3183 3184 // Infer as many types as possible. Don't worry about it if we don't infer 3185 // all of them, some may depend on the inputs of the pattern. Also, don't 3186 // validate type sets; validation may cause spurious failures e.g. if a 3187 // fragment needs floating-point types but the current target does not have 3188 // any (this is only an error if that fragment is ever used!). 3189 { 3190 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3191 ThePat.InferAllTypes(); 3192 ThePat.resetError(); 3193 } 3194 3195 // If debugging, print out the pattern fragment result. 3196 LLVM_DEBUG(ThePat.dump()); 3197 } 3198 } 3199 3200 void CodeGenDAGPatterns::ParseDefaultOperands() { 3201 std::vector<Record*> DefaultOps; 3202 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3203 3204 // Find some SDNode. 3205 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3206 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3207 3208 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3209 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3210 3211 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3212 // SomeSDnode so that we can parse this. 3213 std::vector<std::pair<Init*, StringInit*> > Ops; 3214 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3215 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3216 DefaultInfo->getArgName(op))); 3217 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3218 3219 // Create a TreePattern to parse this. 3220 TreePattern P(DefaultOps[i], DI, false, *this); 3221 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3222 3223 // Copy the operands over into a DAGDefaultOperand. 3224 DAGDefaultOperand DefaultOpInfo; 3225 3226 const TreePatternNodePtr &T = P.getTree(0); 3227 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3228 TreePatternNodePtr TPN = T->getChildShared(op); 3229 while (TPN->ApplyTypeConstraints(P, false)) 3230 /* Resolve all types */; 3231 3232 if (TPN->ContainsUnresolvedType(P)) { 3233 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3234 DefaultOps[i]->getName() + 3235 "' doesn't have a concrete type!"); 3236 } 3237 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3238 } 3239 3240 // Insert it into the DefaultOperands map so we can find it later. 3241 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3242 } 3243 } 3244 3245 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3246 /// instruction input. Return true if this is a real use. 3247 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3248 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3249 // No name -> not interesting. 3250 if (Pat->getName().empty()) { 3251 if (Pat->isLeaf()) { 3252 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3253 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3254 DI->getDef()->isSubClassOf("RegisterOperand"))) 3255 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3256 } 3257 return false; 3258 } 3259 3260 Record *Rec; 3261 if (Pat->isLeaf()) { 3262 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3263 if (!DI) 3264 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3265 Rec = DI->getDef(); 3266 } else { 3267 Rec = Pat->getOperator(); 3268 } 3269 3270 // SRCVALUE nodes are ignored. 3271 if (Rec->getName() == "srcvalue") 3272 return false; 3273 3274 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3275 if (!Slot) { 3276 Slot = Pat; 3277 return true; 3278 } 3279 Record *SlotRec; 3280 if (Slot->isLeaf()) { 3281 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3282 } else { 3283 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3284 SlotRec = Slot->getOperator(); 3285 } 3286 3287 // Ensure that the inputs agree if we've already seen this input. 3288 if (Rec != SlotRec) 3289 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3290 // Ensure that the types can agree as well. 3291 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3292 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3293 if (Slot->getExtTypes() != Pat->getExtTypes()) 3294 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3295 return true; 3296 } 3297 3298 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3299 /// part of "I", the instruction), computing the set of inputs and outputs of 3300 /// the pattern. Report errors if we see anything naughty. 3301 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3302 TreePattern &I, TreePatternNodePtr Pat, 3303 std::map<std::string, TreePatternNodePtr> &InstInputs, 3304 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3305 &InstResults, 3306 std::vector<Record *> &InstImpResults) { 3307 3308 // The instruction pattern still has unresolved fragments. For *named* 3309 // nodes we must resolve those here. This may not result in multiple 3310 // alternatives. 3311 if (!Pat->getName().empty()) { 3312 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3313 SrcPattern.InlinePatternFragments(); 3314 SrcPattern.InferAllTypes(); 3315 Pat = SrcPattern.getOnlyTree(); 3316 } 3317 3318 if (Pat->isLeaf()) { 3319 bool isUse = HandleUse(I, Pat, InstInputs); 3320 if (!isUse && Pat->getTransformFn()) 3321 I.error("Cannot specify a transform function for a non-input value!"); 3322 return; 3323 } 3324 3325 if (Pat->getOperator()->getName() == "implicit") { 3326 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3327 TreePatternNode *Dest = Pat->getChild(i); 3328 if (!Dest->isLeaf()) 3329 I.error("implicitly defined value should be a register!"); 3330 3331 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3332 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3333 I.error("implicitly defined value should be a register!"); 3334 InstImpResults.push_back(Val->getDef()); 3335 } 3336 return; 3337 } 3338 3339 if (Pat->getOperator()->getName() != "set") { 3340 // If this is not a set, verify that the children nodes are not void typed, 3341 // and recurse. 3342 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3343 if (Pat->getChild(i)->getNumTypes() == 0) 3344 I.error("Cannot have void nodes inside of patterns!"); 3345 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3346 InstResults, InstImpResults); 3347 } 3348 3349 // If this is a non-leaf node with no children, treat it basically as if 3350 // it were a leaf. This handles nodes like (imm). 3351 bool isUse = HandleUse(I, Pat, InstInputs); 3352 3353 if (!isUse && Pat->getTransformFn()) 3354 I.error("Cannot specify a transform function for a non-input value!"); 3355 return; 3356 } 3357 3358 // Otherwise, this is a set, validate and collect instruction results. 3359 if (Pat->getNumChildren() == 0) 3360 I.error("set requires operands!"); 3361 3362 if (Pat->getTransformFn()) 3363 I.error("Cannot specify a transform function on a set node!"); 3364 3365 // Check the set destinations. 3366 unsigned NumDests = Pat->getNumChildren()-1; 3367 for (unsigned i = 0; i != NumDests; ++i) { 3368 TreePatternNodePtr Dest = Pat->getChildShared(i); 3369 // For set destinations we also must resolve fragments here. 3370 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3371 DestPattern.InlinePatternFragments(); 3372 DestPattern.InferAllTypes(); 3373 Dest = DestPattern.getOnlyTree(); 3374 3375 if (!Dest->isLeaf()) 3376 I.error("set destination should be a register!"); 3377 3378 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3379 if (!Val) { 3380 I.error("set destination should be a register!"); 3381 continue; 3382 } 3383 3384 if (Val->getDef()->isSubClassOf("RegisterClass") || 3385 Val->getDef()->isSubClassOf("ValueType") || 3386 Val->getDef()->isSubClassOf("RegisterOperand") || 3387 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3388 if (Dest->getName().empty()) 3389 I.error("set destination must have a name!"); 3390 if (InstResults.count(Dest->getName())) 3391 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3392 InstResults[Dest->getName()] = Dest; 3393 } else if (Val->getDef()->isSubClassOf("Register")) { 3394 InstImpResults.push_back(Val->getDef()); 3395 } else { 3396 I.error("set destination should be a register!"); 3397 } 3398 } 3399 3400 // Verify and collect info from the computation. 3401 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3402 InstResults, InstImpResults); 3403 } 3404 3405 //===----------------------------------------------------------------------===// 3406 // Instruction Analysis 3407 //===----------------------------------------------------------------------===// 3408 3409 class InstAnalyzer { 3410 const CodeGenDAGPatterns &CDP; 3411 public: 3412 bool hasSideEffects; 3413 bool mayStore; 3414 bool mayLoad; 3415 bool isBitcast; 3416 bool isVariadic; 3417 bool hasChain; 3418 3419 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3420 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3421 isBitcast(false), isVariadic(false), hasChain(false) {} 3422 3423 void Analyze(const PatternToMatch &Pat) { 3424 const TreePatternNode *N = Pat.getSrcPattern(); 3425 AnalyzeNode(N); 3426 // These properties are detected only on the root node. 3427 isBitcast = IsNodeBitcast(N); 3428 } 3429 3430 private: 3431 bool IsNodeBitcast(const TreePatternNode *N) const { 3432 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3433 return false; 3434 3435 if (N->isLeaf()) 3436 return false; 3437 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3438 return false; 3439 3440 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3441 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3442 return false; 3443 return OpInfo.getEnumName() == "ISD::BITCAST"; 3444 } 3445 3446 public: 3447 void AnalyzeNode(const TreePatternNode *N) { 3448 if (N->isLeaf()) { 3449 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3450 Record *LeafRec = DI->getDef(); 3451 // Handle ComplexPattern leaves. 3452 if (LeafRec->isSubClassOf("ComplexPattern")) { 3453 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3454 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3455 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3456 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3457 } 3458 } 3459 return; 3460 } 3461 3462 // Analyze children. 3463 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3464 AnalyzeNode(N->getChild(i)); 3465 3466 // Notice properties of the node. 3467 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3468 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3469 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3470 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3471 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3472 3473 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3474 // If this is an intrinsic, analyze it. 3475 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3476 mayLoad = true;// These may load memory. 3477 3478 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3479 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3480 3481 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3482 IntInfo->hasSideEffects) 3483 // ReadWriteMem intrinsics can have other strange effects. 3484 hasSideEffects = true; 3485 } 3486 } 3487 3488 }; 3489 3490 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3491 const InstAnalyzer &PatInfo, 3492 Record *PatDef) { 3493 bool Error = false; 3494 3495 // Remember where InstInfo got its flags. 3496 if (InstInfo.hasUndefFlags()) 3497 InstInfo.InferredFrom = PatDef; 3498 3499 // Check explicitly set flags for consistency. 3500 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3501 !InstInfo.hasSideEffects_Unset) { 3502 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3503 // the pattern has no side effects. That could be useful for div/rem 3504 // instructions that may trap. 3505 if (!InstInfo.hasSideEffects) { 3506 Error = true; 3507 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3508 Twine(InstInfo.hasSideEffects)); 3509 } 3510 } 3511 3512 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3513 Error = true; 3514 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3515 Twine(InstInfo.mayStore)); 3516 } 3517 3518 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3519 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3520 // Some targets translate immediates to loads. 3521 if (!InstInfo.mayLoad) { 3522 Error = true; 3523 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3524 Twine(InstInfo.mayLoad)); 3525 } 3526 } 3527 3528 // Transfer inferred flags. 3529 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3530 InstInfo.mayStore |= PatInfo.mayStore; 3531 InstInfo.mayLoad |= PatInfo.mayLoad; 3532 3533 // These flags are silently added without any verification. 3534 // FIXME: To match historical behavior of TableGen, for now add those flags 3535 // only when we're inferring from the primary instruction pattern. 3536 if (PatDef->isSubClassOf("Instruction")) { 3537 InstInfo.isBitcast |= PatInfo.isBitcast; 3538 InstInfo.hasChain |= PatInfo.hasChain; 3539 InstInfo.hasChain_Inferred = true; 3540 } 3541 3542 // Don't infer isVariadic. This flag means something different on SDNodes and 3543 // instructions. For example, a CALL SDNode is variadic because it has the 3544 // call arguments as operands, but a CALL instruction is not variadic - it 3545 // has argument registers as implicit, not explicit uses. 3546 3547 return Error; 3548 } 3549 3550 /// hasNullFragReference - Return true if the DAG has any reference to the 3551 /// null_frag operator. 3552 static bool hasNullFragReference(DagInit *DI) { 3553 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3554 if (!OpDef) return false; 3555 Record *Operator = OpDef->getDef(); 3556 3557 // If this is the null fragment, return true. 3558 if (Operator->getName() == "null_frag") return true; 3559 // If any of the arguments reference the null fragment, return true. 3560 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3561 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3562 if (Arg && hasNullFragReference(Arg)) 3563 return true; 3564 } 3565 3566 return false; 3567 } 3568 3569 /// hasNullFragReference - Return true if any DAG in the list references 3570 /// the null_frag operator. 3571 static bool hasNullFragReference(ListInit *LI) { 3572 for (Init *I : LI->getValues()) { 3573 DagInit *DI = dyn_cast<DagInit>(I); 3574 assert(DI && "non-dag in an instruction Pattern list?!"); 3575 if (hasNullFragReference(DI)) 3576 return true; 3577 } 3578 return false; 3579 } 3580 3581 /// Get all the instructions in a tree. 3582 static void 3583 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3584 if (Tree->isLeaf()) 3585 return; 3586 if (Tree->getOperator()->isSubClassOf("Instruction")) 3587 Instrs.push_back(Tree->getOperator()); 3588 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3589 getInstructionsInTree(Tree->getChild(i), Instrs); 3590 } 3591 3592 /// Check the class of a pattern leaf node against the instruction operand it 3593 /// represents. 3594 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3595 Record *Leaf) { 3596 if (OI.Rec == Leaf) 3597 return true; 3598 3599 // Allow direct value types to be used in instruction set patterns. 3600 // The type will be checked later. 3601 if (Leaf->isSubClassOf("ValueType")) 3602 return true; 3603 3604 // Patterns can also be ComplexPattern instances. 3605 if (Leaf->isSubClassOf("ComplexPattern")) 3606 return true; 3607 3608 return false; 3609 } 3610 3611 void CodeGenDAGPatterns::parseInstructionPattern( 3612 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3613 3614 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3615 3616 // Parse the instruction. 3617 TreePattern I(CGI.TheDef, Pat, true, *this); 3618 3619 // InstInputs - Keep track of all of the inputs of the instruction, along 3620 // with the record they are declared as. 3621 std::map<std::string, TreePatternNodePtr> InstInputs; 3622 3623 // InstResults - Keep track of all the virtual registers that are 'set' 3624 // in the instruction, including what reg class they are. 3625 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3626 InstResults; 3627 3628 std::vector<Record*> InstImpResults; 3629 3630 // Verify that the top-level forms in the instruction are of void type, and 3631 // fill in the InstResults map. 3632 SmallString<32> TypesString; 3633 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3634 TypesString.clear(); 3635 TreePatternNodePtr Pat = I.getTree(j); 3636 if (Pat->getNumTypes() != 0) { 3637 raw_svector_ostream OS(TypesString); 3638 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3639 if (k > 0) 3640 OS << ", "; 3641 Pat->getExtType(k).writeToStream(OS); 3642 } 3643 I.error("Top-level forms in instruction pattern should have" 3644 " void types, has types " + 3645 OS.str()); 3646 } 3647 3648 // Find inputs and outputs, and verify the structure of the uses/defs. 3649 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3650 InstImpResults); 3651 } 3652 3653 // Now that we have inputs and outputs of the pattern, inspect the operands 3654 // list for the instruction. This determines the order that operands are 3655 // added to the machine instruction the node corresponds to. 3656 unsigned NumResults = InstResults.size(); 3657 3658 // Parse the operands list from the (ops) list, validating it. 3659 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3660 3661 // Check that all of the results occur first in the list. 3662 std::vector<Record*> Results; 3663 std::vector<unsigned> ResultIndices; 3664 SmallVector<TreePatternNodePtr, 2> ResNodes; 3665 for (unsigned i = 0; i != NumResults; ++i) { 3666 if (i == CGI.Operands.size()) { 3667 const std::string &OpName = 3668 std::find_if(InstResults.begin(), InstResults.end(), 3669 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3670 return P.second; 3671 }) 3672 ->first; 3673 3674 I.error("'" + OpName + "' set but does not appear in operand list!"); 3675 } 3676 3677 const std::string &OpName = CGI.Operands[i].Name; 3678 3679 // Check that it exists in InstResults. 3680 auto InstResultIter = InstResults.find(OpName); 3681 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3682 I.error("Operand $" + OpName + " does not exist in operand list!"); 3683 3684 TreePatternNodePtr RNode = InstResultIter->second; 3685 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3686 ResNodes.push_back(std::move(RNode)); 3687 if (!R) 3688 I.error("Operand $" + OpName + " should be a set destination: all " 3689 "outputs must occur before inputs in operand list!"); 3690 3691 if (!checkOperandClass(CGI.Operands[i], R)) 3692 I.error("Operand $" + OpName + " class mismatch!"); 3693 3694 // Remember the return type. 3695 Results.push_back(CGI.Operands[i].Rec); 3696 3697 // Remember the result index. 3698 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3699 3700 // Okay, this one checks out. 3701 InstResultIter->second = nullptr; 3702 } 3703 3704 // Loop over the inputs next. 3705 std::vector<TreePatternNodePtr> ResultNodeOperands; 3706 std::vector<Record*> Operands; 3707 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3708 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3709 const std::string &OpName = Op.Name; 3710 if (OpName.empty()) 3711 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3712 3713 if (!InstInputs.count(OpName)) { 3714 // If this is an operand with a DefaultOps set filled in, we can ignore 3715 // this. When we codegen it, we will do so as always executed. 3716 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3717 // Does it have a non-empty DefaultOps field? If so, ignore this 3718 // operand. 3719 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3720 continue; 3721 } 3722 I.error("Operand $" + OpName + 3723 " does not appear in the instruction pattern"); 3724 } 3725 TreePatternNodePtr InVal = InstInputs[OpName]; 3726 InstInputs.erase(OpName); // It occurred, remove from map. 3727 3728 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3729 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3730 if (!checkOperandClass(Op, InRec)) 3731 I.error("Operand $" + OpName + "'s register class disagrees" 3732 " between the operand and pattern"); 3733 } 3734 Operands.push_back(Op.Rec); 3735 3736 // Construct the result for the dest-pattern operand list. 3737 TreePatternNodePtr OpNode = InVal->clone(); 3738 3739 // No predicate is useful on the result. 3740 OpNode->clearPredicateCalls(); 3741 3742 // Promote the xform function to be an explicit node if set. 3743 if (Record *Xform = OpNode->getTransformFn()) { 3744 OpNode->setTransformFn(nullptr); 3745 std::vector<TreePatternNodePtr> Children; 3746 Children.push_back(OpNode); 3747 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3748 OpNode->getNumTypes()); 3749 } 3750 3751 ResultNodeOperands.push_back(std::move(OpNode)); 3752 } 3753 3754 if (!InstInputs.empty()) 3755 I.error("Input operand $" + InstInputs.begin()->first + 3756 " occurs in pattern but not in operands list!"); 3757 3758 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3759 I.getRecord(), std::move(ResultNodeOperands), 3760 GetNumNodeResults(I.getRecord(), *this)); 3761 // Copy fully inferred output node types to instruction result pattern. 3762 for (unsigned i = 0; i != NumResults; ++i) { 3763 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3764 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3765 ResultPattern->setResultIndex(i, ResultIndices[i]); 3766 } 3767 3768 // FIXME: Assume only the first tree is the pattern. The others are clobber 3769 // nodes. 3770 TreePatternNodePtr Pattern = I.getTree(0); 3771 TreePatternNodePtr SrcPattern; 3772 if (Pattern->getOperator()->getName() == "set") { 3773 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3774 } else{ 3775 // Not a set (store or something?) 3776 SrcPattern = Pattern; 3777 } 3778 3779 // Create and insert the instruction. 3780 // FIXME: InstImpResults should not be part of DAGInstruction. 3781 Record *R = I.getRecord(); 3782 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3783 std::forward_as_tuple(Results, Operands, InstImpResults, 3784 SrcPattern, ResultPattern)); 3785 3786 LLVM_DEBUG(I.dump()); 3787 } 3788 3789 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3790 /// any fragments involved. This populates the Instructions list with fully 3791 /// resolved instructions. 3792 void CodeGenDAGPatterns::ParseInstructions() { 3793 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3794 3795 for (Record *Instr : Instrs) { 3796 ListInit *LI = nullptr; 3797 3798 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3799 LI = Instr->getValueAsListInit("Pattern"); 3800 3801 // If there is no pattern, only collect minimal information about the 3802 // instruction for its operand list. We have to assume that there is one 3803 // result, as we have no detailed info. A pattern which references the 3804 // null_frag operator is as-if no pattern were specified. Normally this 3805 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3806 // null_frag. 3807 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3808 std::vector<Record*> Results; 3809 std::vector<Record*> Operands; 3810 3811 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3812 3813 if (InstInfo.Operands.size() != 0) { 3814 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3815 Results.push_back(InstInfo.Operands[j].Rec); 3816 3817 // The rest are inputs. 3818 for (unsigned j = InstInfo.Operands.NumDefs, 3819 e = InstInfo.Operands.size(); j < e; ++j) 3820 Operands.push_back(InstInfo.Operands[j].Rec); 3821 } 3822 3823 // Create and insert the instruction. 3824 std::vector<Record*> ImpResults; 3825 Instructions.insert(std::make_pair(Instr, 3826 DAGInstruction(Results, Operands, ImpResults))); 3827 continue; // no pattern. 3828 } 3829 3830 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3831 parseInstructionPattern(CGI, LI, Instructions); 3832 } 3833 3834 // If we can, convert the instructions to be patterns that are matched! 3835 for (auto &Entry : Instructions) { 3836 Record *Instr = Entry.first; 3837 DAGInstruction &TheInst = Entry.second; 3838 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3839 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3840 3841 if (SrcPattern && ResultPattern) { 3842 TreePattern Pattern(Instr, SrcPattern, true, *this); 3843 TreePattern Result(Instr, ResultPattern, false, *this); 3844 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3845 } 3846 } 3847 } 3848 3849 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3850 3851 static void FindNames(TreePatternNode *P, 3852 std::map<std::string, NameRecord> &Names, 3853 TreePattern *PatternTop) { 3854 if (!P->getName().empty()) { 3855 NameRecord &Rec = Names[P->getName()]; 3856 // If this is the first instance of the name, remember the node. 3857 if (Rec.second++ == 0) 3858 Rec.first = P; 3859 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3860 PatternTop->error("repetition of value: $" + P->getName() + 3861 " where different uses have different types!"); 3862 } 3863 3864 if (!P->isLeaf()) { 3865 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3866 FindNames(P->getChild(i), Names, PatternTop); 3867 } 3868 } 3869 3870 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3871 std::vector<Predicate> Preds; 3872 for (Init *I : L->getValues()) { 3873 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3874 Preds.push_back(Pred->getDef()); 3875 else 3876 llvm_unreachable("Non-def on the list"); 3877 } 3878 3879 // Sort so that different orders get canonicalized to the same string. 3880 llvm::sort(Preds); 3881 return Preds; 3882 } 3883 3884 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3885 PatternToMatch &&PTM) { 3886 // Do some sanity checking on the pattern we're about to match. 3887 std::string Reason; 3888 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3889 PrintWarning(Pattern->getRecord()->getLoc(), 3890 Twine("Pattern can never match: ") + Reason); 3891 return; 3892 } 3893 3894 // If the source pattern's root is a complex pattern, that complex pattern 3895 // must specify the nodes it can potentially match. 3896 if (const ComplexPattern *CP = 3897 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3898 if (CP->getRootNodes().empty()) 3899 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3900 " could match"); 3901 3902 3903 // Find all of the named values in the input and output, ensure they have the 3904 // same type. 3905 std::map<std::string, NameRecord> SrcNames, DstNames; 3906 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3907 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3908 3909 // Scan all of the named values in the destination pattern, rejecting them if 3910 // they don't exist in the input pattern. 3911 for (const auto &Entry : DstNames) { 3912 if (SrcNames[Entry.first].first == nullptr) 3913 Pattern->error("Pattern has input without matching name in output: $" + 3914 Entry.first); 3915 } 3916 3917 // Scan all of the named values in the source pattern, rejecting them if the 3918 // name isn't used in the dest, and isn't used to tie two values together. 3919 for (const auto &Entry : SrcNames) 3920 if (DstNames[Entry.first].first == nullptr && 3921 SrcNames[Entry.first].second == 1) 3922 Pattern->error("Pattern has dead named input: $" + Entry.first); 3923 3924 PatternsToMatch.push_back(PTM); 3925 } 3926 3927 void CodeGenDAGPatterns::InferInstructionFlags() { 3928 ArrayRef<const CodeGenInstruction*> Instructions = 3929 Target.getInstructionsByEnumValue(); 3930 3931 unsigned Errors = 0; 3932 3933 // Try to infer flags from all patterns in PatternToMatch. These include 3934 // both the primary instruction patterns (which always come first) and 3935 // patterns defined outside the instruction. 3936 for (const PatternToMatch &PTM : ptms()) { 3937 // We can only infer from single-instruction patterns, otherwise we won't 3938 // know which instruction should get the flags. 3939 SmallVector<Record*, 8> PatInstrs; 3940 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3941 if (PatInstrs.size() != 1) 3942 continue; 3943 3944 // Get the single instruction. 3945 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3946 3947 // Only infer properties from the first pattern. We'll verify the others. 3948 if (InstInfo.InferredFrom) 3949 continue; 3950 3951 InstAnalyzer PatInfo(*this); 3952 PatInfo.Analyze(PTM); 3953 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3954 } 3955 3956 if (Errors) 3957 PrintFatalError("pattern conflicts"); 3958 3959 // If requested by the target, guess any undefined properties. 3960 if (Target.guessInstructionProperties()) { 3961 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3962 CodeGenInstruction *InstInfo = 3963 const_cast<CodeGenInstruction *>(Instructions[i]); 3964 if (InstInfo->InferredFrom) 3965 continue; 3966 // The mayLoad and mayStore flags default to false. 3967 // Conservatively assume hasSideEffects if it wasn't explicit. 3968 if (InstInfo->hasSideEffects_Unset) 3969 InstInfo->hasSideEffects = true; 3970 } 3971 return; 3972 } 3973 3974 // Complain about any flags that are still undefined. 3975 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3976 CodeGenInstruction *InstInfo = 3977 const_cast<CodeGenInstruction *>(Instructions[i]); 3978 if (InstInfo->InferredFrom) 3979 continue; 3980 if (InstInfo->hasSideEffects_Unset) 3981 PrintError(InstInfo->TheDef->getLoc(), 3982 "Can't infer hasSideEffects from patterns"); 3983 if (InstInfo->mayStore_Unset) 3984 PrintError(InstInfo->TheDef->getLoc(), 3985 "Can't infer mayStore from patterns"); 3986 if (InstInfo->mayLoad_Unset) 3987 PrintError(InstInfo->TheDef->getLoc(), 3988 "Can't infer mayLoad from patterns"); 3989 } 3990 } 3991 3992 3993 /// Verify instruction flags against pattern node properties. 3994 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3995 unsigned Errors = 0; 3996 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3997 const PatternToMatch &PTM = *I; 3998 SmallVector<Record*, 8> Instrs; 3999 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4000 if (Instrs.empty()) 4001 continue; 4002 4003 // Count the number of instructions with each flag set. 4004 unsigned NumSideEffects = 0; 4005 unsigned NumStores = 0; 4006 unsigned NumLoads = 0; 4007 for (const Record *Instr : Instrs) { 4008 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4009 NumSideEffects += InstInfo.hasSideEffects; 4010 NumStores += InstInfo.mayStore; 4011 NumLoads += InstInfo.mayLoad; 4012 } 4013 4014 // Analyze the source pattern. 4015 InstAnalyzer PatInfo(*this); 4016 PatInfo.Analyze(PTM); 4017 4018 // Collect error messages. 4019 SmallVector<std::string, 4> Msgs; 4020 4021 // Check for missing flags in the output. 4022 // Permit extra flags for now at least. 4023 if (PatInfo.hasSideEffects && !NumSideEffects) 4024 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4025 4026 // Don't verify store flags on instructions with side effects. At least for 4027 // intrinsics, side effects implies mayStore. 4028 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4029 Msgs.push_back("pattern may store, but mayStore isn't set"); 4030 4031 // Similarly, mayStore implies mayLoad on intrinsics. 4032 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4033 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4034 4035 // Print error messages. 4036 if (Msgs.empty()) 4037 continue; 4038 ++Errors; 4039 4040 for (const std::string &Msg : Msgs) 4041 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4042 (Instrs.size() == 1 ? 4043 "instruction" : "output instructions")); 4044 // Provide the location of the relevant instruction definitions. 4045 for (const Record *Instr : Instrs) { 4046 if (Instr != PTM.getSrcRecord()) 4047 PrintError(Instr->getLoc(), "defined here"); 4048 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4049 if (InstInfo.InferredFrom && 4050 InstInfo.InferredFrom != InstInfo.TheDef && 4051 InstInfo.InferredFrom != PTM.getSrcRecord()) 4052 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4053 } 4054 } 4055 if (Errors) 4056 PrintFatalError("Errors in DAG patterns"); 4057 } 4058 4059 /// Given a pattern result with an unresolved type, see if we can find one 4060 /// instruction with an unresolved result type. Force this result type to an 4061 /// arbitrary element if it's possible types to converge results. 4062 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4063 if (N->isLeaf()) 4064 return false; 4065 4066 // Analyze children. 4067 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4068 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4069 return true; 4070 4071 if (!N->getOperator()->isSubClassOf("Instruction")) 4072 return false; 4073 4074 // If this type is already concrete or completely unknown we can't do 4075 // anything. 4076 TypeInfer &TI = TP.getInfer(); 4077 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4078 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4079 continue; 4080 4081 // Otherwise, force its type to an arbitrary choice. 4082 if (TI.forceArbitrary(N->getExtType(i))) 4083 return true; 4084 } 4085 4086 return false; 4087 } 4088 4089 // Promote xform function to be an explicit node wherever set. 4090 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4091 if (Record *Xform = N->getTransformFn()) { 4092 N->setTransformFn(nullptr); 4093 std::vector<TreePatternNodePtr> Children; 4094 Children.push_back(PromoteXForms(N)); 4095 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4096 N->getNumTypes()); 4097 } 4098 4099 if (!N->isLeaf()) 4100 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4101 TreePatternNodePtr Child = N->getChildShared(i); 4102 N->setChild(i, PromoteXForms(Child)); 4103 } 4104 return N; 4105 } 4106 4107 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4108 TreePattern &Pattern, TreePattern &Result, 4109 const std::vector<Record *> &InstImpResults) { 4110 4111 // Inline pattern fragments and expand multiple alternatives. 4112 Pattern.InlinePatternFragments(); 4113 Result.InlinePatternFragments(); 4114 4115 if (Result.getNumTrees() != 1) 4116 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4117 4118 // Infer types. 4119 bool IterateInference; 4120 bool InferredAllPatternTypes, InferredAllResultTypes; 4121 do { 4122 // Infer as many types as possible. If we cannot infer all of them, we 4123 // can never do anything with this pattern: report it to the user. 4124 InferredAllPatternTypes = 4125 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4126 4127 // Infer as many types as possible. If we cannot infer all of them, we 4128 // can never do anything with this pattern: report it to the user. 4129 InferredAllResultTypes = 4130 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4131 4132 IterateInference = false; 4133 4134 // Apply the type of the result to the source pattern. This helps us 4135 // resolve cases where the input type is known to be a pointer type (which 4136 // is considered resolved), but the result knows it needs to be 32- or 4137 // 64-bits. Infer the other way for good measure. 4138 for (auto T : Pattern.getTrees()) 4139 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4140 T->getNumTypes()); 4141 i != e; ++i) { 4142 IterateInference |= T->UpdateNodeType( 4143 i, Result.getOnlyTree()->getExtType(i), Result); 4144 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4145 i, T->getExtType(i), Result); 4146 } 4147 4148 // If our iteration has converged and the input pattern's types are fully 4149 // resolved but the result pattern is not fully resolved, we may have a 4150 // situation where we have two instructions in the result pattern and 4151 // the instructions require a common register class, but don't care about 4152 // what actual MVT is used. This is actually a bug in our modelling: 4153 // output patterns should have register classes, not MVTs. 4154 // 4155 // In any case, to handle this, we just go through and disambiguate some 4156 // arbitrary types to the result pattern's nodes. 4157 if (!IterateInference && InferredAllPatternTypes && 4158 !InferredAllResultTypes) 4159 IterateInference = 4160 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4161 } while (IterateInference); 4162 4163 // Verify that we inferred enough types that we can do something with the 4164 // pattern and result. If these fire the user has to add type casts. 4165 if (!InferredAllPatternTypes) 4166 Pattern.error("Could not infer all types in pattern!"); 4167 if (!InferredAllResultTypes) { 4168 Pattern.dump(); 4169 Result.error("Could not infer all types in pattern result!"); 4170 } 4171 4172 // Promote xform function to be an explicit node wherever set. 4173 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4174 4175 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4176 Temp.InferAllTypes(); 4177 4178 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4179 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4180 4181 if (PatternRewriter) 4182 PatternRewriter(&Pattern); 4183 4184 // A pattern may end up with an "impossible" type, i.e. a situation 4185 // where all types have been eliminated for some node in this pattern. 4186 // This could occur for intrinsics that only make sense for a specific 4187 // value type, and use a specific register class. If, for some mode, 4188 // that register class does not accept that type, the type inference 4189 // will lead to a contradiction, which is not an error however, but 4190 // a sign that this pattern will simply never match. 4191 if (Temp.getOnlyTree()->hasPossibleType()) 4192 for (auto T : Pattern.getTrees()) 4193 if (T->hasPossibleType()) 4194 AddPatternToMatch(&Pattern, 4195 PatternToMatch(TheDef, makePredList(Preds), 4196 T, Temp.getOnlyTree(), 4197 InstImpResults, Complexity, 4198 TheDef->getID())); 4199 } 4200 4201 void CodeGenDAGPatterns::ParsePatterns() { 4202 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4203 4204 for (Record *CurPattern : Patterns) { 4205 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4206 4207 // If the pattern references the null_frag, there's nothing to do. 4208 if (hasNullFragReference(Tree)) 4209 continue; 4210 4211 TreePattern Pattern(CurPattern, Tree, true, *this); 4212 4213 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4214 if (LI->empty()) continue; // no pattern. 4215 4216 // Parse the instruction. 4217 TreePattern Result(CurPattern, LI, false, *this); 4218 4219 if (Result.getNumTrees() != 1) 4220 Result.error("Cannot handle instructions producing instructions " 4221 "with temporaries yet!"); 4222 4223 // Validate that the input pattern is correct. 4224 std::map<std::string, TreePatternNodePtr> InstInputs; 4225 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4226 InstResults; 4227 std::vector<Record*> InstImpResults; 4228 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4229 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4230 InstResults, InstImpResults); 4231 4232 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4233 } 4234 } 4235 4236 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4237 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4238 for (const auto &I : VTS) 4239 Modes.insert(I.first); 4240 4241 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4242 collectModes(Modes, N->getChild(i)); 4243 } 4244 4245 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4246 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4247 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4248 std::vector<PatternToMatch> Copy = PatternsToMatch; 4249 PatternsToMatch.clear(); 4250 4251 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4252 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4253 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4254 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4255 return; 4256 } 4257 4258 std::vector<Predicate> Preds = P.Predicates; 4259 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4260 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4261 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4262 std::move(NewDst), P.getDstRegs(), 4263 P.getAddedComplexity(), Record::getNewUID(), 4264 Mode); 4265 }; 4266 4267 for (PatternToMatch &P : Copy) { 4268 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4269 if (P.SrcPattern->hasProperTypeByHwMode()) 4270 SrcP = P.SrcPattern; 4271 if (P.DstPattern->hasProperTypeByHwMode()) 4272 DstP = P.DstPattern; 4273 if (!SrcP && !DstP) { 4274 PatternsToMatch.push_back(P); 4275 continue; 4276 } 4277 4278 std::set<unsigned> Modes; 4279 if (SrcP) 4280 collectModes(Modes, SrcP.get()); 4281 if (DstP) 4282 collectModes(Modes, DstP.get()); 4283 4284 // The predicate for the default mode needs to be constructed for each 4285 // pattern separately. 4286 // Since not all modes must be present in each pattern, if a mode m is 4287 // absent, then there is no point in constructing a check for m. If such 4288 // a check was created, it would be equivalent to checking the default 4289 // mode, except not all modes' predicates would be a part of the checking 4290 // code. The subsequently generated check for the default mode would then 4291 // have the exact same patterns, but a different predicate code. To avoid 4292 // duplicated patterns with different predicate checks, construct the 4293 // default check as a negation of all predicates that are actually present 4294 // in the source/destination patterns. 4295 std::vector<Predicate> DefaultPred; 4296 4297 for (unsigned M : Modes) { 4298 if (M == DefaultMode) 4299 continue; 4300 if (ModeChecks.find(M) != ModeChecks.end()) 4301 continue; 4302 4303 // Fill the map entry for this mode. 4304 const HwMode &HM = CGH.getMode(M); 4305 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4306 4307 // Add negations of the HM's predicates to the default predicate. 4308 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4309 } 4310 4311 for (unsigned M : Modes) { 4312 if (M == DefaultMode) 4313 continue; 4314 AppendPattern(P, M); 4315 } 4316 4317 bool HasDefault = Modes.count(DefaultMode); 4318 if (HasDefault) 4319 AppendPattern(P, DefaultMode); 4320 } 4321 } 4322 4323 /// Dependent variable map for CodeGenDAGPattern variant generation 4324 typedef StringMap<int> DepVarMap; 4325 4326 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4327 if (N->isLeaf()) { 4328 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4329 DepMap[N->getName()]++; 4330 } else { 4331 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4332 FindDepVarsOf(N->getChild(i), DepMap); 4333 } 4334 } 4335 4336 /// Find dependent variables within child patterns 4337 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4338 DepVarMap depcounts; 4339 FindDepVarsOf(N, depcounts); 4340 for (const auto &Pair : depcounts) { 4341 if (Pair.getValue() > 1) 4342 DepVars.insert(Pair.getKey()); 4343 } 4344 } 4345 4346 #ifndef NDEBUG 4347 /// Dump the dependent variable set: 4348 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4349 if (DepVars.empty()) { 4350 LLVM_DEBUG(errs() << "<empty set>"); 4351 } else { 4352 LLVM_DEBUG(errs() << "[ "); 4353 for (const auto &DepVar : DepVars) { 4354 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4355 } 4356 LLVM_DEBUG(errs() << "]"); 4357 } 4358 } 4359 #endif 4360 4361 4362 /// CombineChildVariants - Given a bunch of permutations of each child of the 4363 /// 'operator' node, put them together in all possible ways. 4364 static void CombineChildVariants( 4365 TreePatternNodePtr Orig, 4366 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4367 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4368 const MultipleUseVarSet &DepVars) { 4369 // Make sure that each operand has at least one variant to choose from. 4370 for (const auto &Variants : ChildVariants) 4371 if (Variants.empty()) 4372 return; 4373 4374 // The end result is an all-pairs construction of the resultant pattern. 4375 std::vector<unsigned> Idxs; 4376 Idxs.resize(ChildVariants.size()); 4377 bool NotDone; 4378 do { 4379 #ifndef NDEBUG 4380 LLVM_DEBUG(if (!Idxs.empty()) { 4381 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4382 for (unsigned Idx : Idxs) { 4383 errs() << Idx << " "; 4384 } 4385 errs() << "]\n"; 4386 }); 4387 #endif 4388 // Create the variant and add it to the output list. 4389 std::vector<TreePatternNodePtr> NewChildren; 4390 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4391 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4392 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4393 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4394 4395 // Copy over properties. 4396 R->setName(Orig->getName()); 4397 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4398 R->setPredicateCalls(Orig->getPredicateCalls()); 4399 R->setTransformFn(Orig->getTransformFn()); 4400 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4401 R->setType(i, Orig->getExtType(i)); 4402 4403 // If this pattern cannot match, do not include it as a variant. 4404 std::string ErrString; 4405 // Scan to see if this pattern has already been emitted. We can get 4406 // duplication due to things like commuting: 4407 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4408 // which are the same pattern. Ignore the dups. 4409 if (R->canPatternMatch(ErrString, CDP) && 4410 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4411 return R->isIsomorphicTo(Variant.get(), DepVars); 4412 })) 4413 OutVariants.push_back(R); 4414 4415 // Increment indices to the next permutation by incrementing the 4416 // indices from last index backward, e.g., generate the sequence 4417 // [0, 0], [0, 1], [1, 0], [1, 1]. 4418 int IdxsIdx; 4419 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4420 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4421 Idxs[IdxsIdx] = 0; 4422 else 4423 break; 4424 } 4425 NotDone = (IdxsIdx >= 0); 4426 } while (NotDone); 4427 } 4428 4429 /// CombineChildVariants - A helper function for binary operators. 4430 /// 4431 static void CombineChildVariants(TreePatternNodePtr Orig, 4432 const std::vector<TreePatternNodePtr> &LHS, 4433 const std::vector<TreePatternNodePtr> &RHS, 4434 std::vector<TreePatternNodePtr> &OutVariants, 4435 CodeGenDAGPatterns &CDP, 4436 const MultipleUseVarSet &DepVars) { 4437 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4438 ChildVariants.push_back(LHS); 4439 ChildVariants.push_back(RHS); 4440 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4441 } 4442 4443 static void 4444 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4445 std::vector<TreePatternNodePtr> &Children) { 4446 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4447 Record *Operator = N->getOperator(); 4448 4449 // Only permit raw nodes. 4450 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4451 N->getTransformFn()) { 4452 Children.push_back(N); 4453 return; 4454 } 4455 4456 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4457 Children.push_back(N->getChildShared(0)); 4458 else 4459 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4460 4461 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4462 Children.push_back(N->getChildShared(1)); 4463 else 4464 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4465 } 4466 4467 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4468 /// the (potentially recursive) pattern by using algebraic laws. 4469 /// 4470 static void GenerateVariantsOf(TreePatternNodePtr N, 4471 std::vector<TreePatternNodePtr> &OutVariants, 4472 CodeGenDAGPatterns &CDP, 4473 const MultipleUseVarSet &DepVars) { 4474 // We cannot permute leaves or ComplexPattern uses. 4475 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4476 OutVariants.push_back(N); 4477 return; 4478 } 4479 4480 // Look up interesting info about the node. 4481 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4482 4483 // If this node is associative, re-associate. 4484 if (NodeInfo.hasProperty(SDNPAssociative)) { 4485 // Re-associate by pulling together all of the linked operators 4486 std::vector<TreePatternNodePtr> MaximalChildren; 4487 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4488 4489 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4490 // permutations. 4491 if (MaximalChildren.size() == 3) { 4492 // Find the variants of all of our maximal children. 4493 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4494 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4495 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4496 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4497 4498 // There are only two ways we can permute the tree: 4499 // (A op B) op C and A op (B op C) 4500 // Within these forms, we can also permute A/B/C. 4501 4502 // Generate legal pair permutations of A/B/C. 4503 std::vector<TreePatternNodePtr> ABVariants; 4504 std::vector<TreePatternNodePtr> BAVariants; 4505 std::vector<TreePatternNodePtr> ACVariants; 4506 std::vector<TreePatternNodePtr> CAVariants; 4507 std::vector<TreePatternNodePtr> BCVariants; 4508 std::vector<TreePatternNodePtr> CBVariants; 4509 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4510 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4511 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4512 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4513 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4514 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4515 4516 // Combine those into the result: (x op x) op x 4517 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4518 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4519 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4520 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4521 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4522 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4523 4524 // Combine those into the result: x op (x op x) 4525 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4526 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4527 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4528 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4529 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4530 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4531 return; 4532 } 4533 } 4534 4535 // Compute permutations of all children. 4536 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4537 ChildVariants.resize(N->getNumChildren()); 4538 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4539 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4540 4541 // Build all permutations based on how the children were formed. 4542 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4543 4544 // If this node is commutative, consider the commuted order. 4545 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4546 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4547 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4548 "Commutative but doesn't have 2 children!"); 4549 // Don't count children which are actually register references. 4550 unsigned NC = 0; 4551 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4552 TreePatternNode *Child = N->getChild(i); 4553 if (Child->isLeaf()) 4554 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4555 Record *RR = DI->getDef(); 4556 if (RR->isSubClassOf("Register")) 4557 continue; 4558 } 4559 NC++; 4560 } 4561 // Consider the commuted order. 4562 if (isCommIntrinsic) { 4563 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4564 // operands are the commutative operands, and there might be more operands 4565 // after those. 4566 assert(NC >= 3 && 4567 "Commutative intrinsic should have at least 3 children!"); 4568 std::vector<std::vector<TreePatternNodePtr>> Variants; 4569 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4570 Variants.push_back(std::move(ChildVariants[2])); 4571 Variants.push_back(std::move(ChildVariants[1])); 4572 for (unsigned i = 3; i != NC; ++i) 4573 Variants.push_back(std::move(ChildVariants[i])); 4574 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4575 } else if (NC == N->getNumChildren()) { 4576 std::vector<std::vector<TreePatternNodePtr>> Variants; 4577 Variants.push_back(std::move(ChildVariants[1])); 4578 Variants.push_back(std::move(ChildVariants[0])); 4579 for (unsigned i = 2; i != NC; ++i) 4580 Variants.push_back(std::move(ChildVariants[i])); 4581 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4582 } 4583 } 4584 } 4585 4586 4587 // GenerateVariants - Generate variants. For example, commutative patterns can 4588 // match multiple ways. Add them to PatternsToMatch as well. 4589 void CodeGenDAGPatterns::GenerateVariants() { 4590 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4591 4592 // Loop over all of the patterns we've collected, checking to see if we can 4593 // generate variants of the instruction, through the exploitation of 4594 // identities. This permits the target to provide aggressive matching without 4595 // the .td file having to contain tons of variants of instructions. 4596 // 4597 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4598 // intentionally do not reconsider these. Any variants of added patterns have 4599 // already been added. 4600 // 4601 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4602 BitVector MatchedPatterns(NumOriginalPatterns); 4603 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4604 BitVector(NumOriginalPatterns)); 4605 4606 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4607 DepsAndVariants; 4608 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4609 4610 // Collect patterns with more than one variant. 4611 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4612 MultipleUseVarSet DepVars; 4613 std::vector<TreePatternNodePtr> Variants; 4614 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4615 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4616 LLVM_DEBUG(DumpDepVars(DepVars)); 4617 LLVM_DEBUG(errs() << "\n"); 4618 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4619 *this, DepVars); 4620 4621 assert(!Variants.empty() && "Must create at least original variant!"); 4622 if (Variants.size() == 1) // No additional variants for this pattern. 4623 continue; 4624 4625 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4626 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4627 4628 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4629 4630 // Cache matching predicates. 4631 if (MatchedPatterns[i]) 4632 continue; 4633 4634 const std::vector<Predicate> &Predicates = 4635 PatternsToMatch[i].getPredicates(); 4636 4637 BitVector &Matches = MatchedPredicates[i]; 4638 MatchedPatterns.set(i); 4639 Matches.set(i); 4640 4641 // Don't test patterns that have already been cached - it won't match. 4642 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4643 if (!MatchedPatterns[p]) 4644 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4645 4646 // Copy this to all the matching patterns. 4647 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4648 if (p != (int)i) { 4649 MatchedPatterns.set(p); 4650 MatchedPredicates[p] = Matches; 4651 } 4652 } 4653 4654 for (auto it : PatternsWithVariants) { 4655 unsigned i = it.first; 4656 const MultipleUseVarSet &DepVars = it.second.first; 4657 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4658 4659 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4660 TreePatternNodePtr Variant = Variants[v]; 4661 BitVector &Matches = MatchedPredicates[i]; 4662 4663 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4664 errs() << "\n"); 4665 4666 // Scan to see if an instruction or explicit pattern already matches this. 4667 bool AlreadyExists = false; 4668 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4669 // Skip if the top level predicates do not match. 4670 if (!Matches[p]) 4671 continue; 4672 // Check to see if this variant already exists. 4673 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4674 DepVars)) { 4675 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4676 AlreadyExists = true; 4677 break; 4678 } 4679 } 4680 // If we already have it, ignore the variant. 4681 if (AlreadyExists) continue; 4682 4683 // Otherwise, add it to the list of patterns we have. 4684 PatternsToMatch.push_back(PatternToMatch( 4685 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4686 Variant, PatternsToMatch[i].getDstPatternShared(), 4687 PatternsToMatch[i].getDstRegs(), 4688 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4689 MatchedPredicates.push_back(Matches); 4690 4691 // Add a new match the same as this pattern. 4692 for (auto &P : MatchedPredicates) 4693 P.push_back(P[i]); 4694 } 4695 4696 LLVM_DEBUG(errs() << "\n"); 4697 } 4698 } 4699