1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 50 template <typename Predicate> 51 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 52 bool Erased = false; 53 // It is ok to iterate over MachineValueTypeSet and remove elements from it 54 // at the same time. 55 for (MVT T : S) { 56 if (!P(T)) 57 continue; 58 Erased = true; 59 S.erase(T); 60 } 61 return Erased; 62 } 63 64 // --- TypeSetByHwMode 65 66 // This is a parameterized type-set class. For each mode there is a list 67 // of types that are currently possible for a given tree node. Type 68 // inference will apply to each mode separately. 69 70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 71 for (const ValueTypeByHwMode &VVT : VTList) { 72 insert(VVT); 73 AddrSpaces.push_back(VVT.PtrAddrSpace); 74 } 75 } 76 77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 78 for (const auto &I : *this) { 79 if (I.second.size() > 1) 80 return false; 81 if (!AllowEmpty && I.second.empty()) 82 return false; 83 } 84 return true; 85 } 86 87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 88 assert(isValueTypeByHwMode(true) && 89 "The type set has multiple types for at least one HW mode"); 90 ValueTypeByHwMode VVT; 91 auto ASI = AddrSpaces.begin(); 92 93 for (const auto &I : *this) { 94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 95 VVT.getOrCreateTypeForMode(I.first, T); 96 if (ASI != AddrSpaces.end()) 97 VVT.PtrAddrSpace = *ASI++; 98 } 99 return VVT; 100 } 101 102 bool TypeSetByHwMode::isPossible() const { 103 for (const auto &I : *this) 104 if (!I.second.empty()) 105 return true; 106 return false; 107 } 108 109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 110 bool Changed = false; 111 bool ContainsDefault = false; 112 MVT DT = MVT::Other; 113 114 SmallDenseSet<unsigned, 4> Modes; 115 for (const auto &P : VVT) { 116 unsigned M = P.first; 117 Modes.insert(M); 118 // Make sure there exists a set for each specific mode from VVT. 119 Changed |= getOrCreate(M).insert(P.second).second; 120 // Cache VVT's default mode. 121 if (DefaultMode == M) { 122 ContainsDefault = true; 123 DT = P.second; 124 } 125 } 126 127 // If VVT has a default mode, add the corresponding type to all 128 // modes in "this" that do not exist in VVT. 129 if (ContainsDefault) 130 for (auto &I : *this) 131 if (!Modes.count(I.first)) 132 Changed |= I.second.insert(DT).second; 133 134 return Changed; 135 } 136 137 // Constrain the type set to be the intersection with VTS. 138 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 139 bool Changed = false; 140 if (hasDefault()) { 141 for (const auto &I : VTS) { 142 unsigned M = I.first; 143 if (M == DefaultMode || hasMode(M)) 144 continue; 145 Map.insert({M, Map.at(DefaultMode)}); 146 Changed = true; 147 } 148 } 149 150 for (auto &I : *this) { 151 unsigned M = I.first; 152 SetType &S = I.second; 153 if (VTS.hasMode(M) || VTS.hasDefault()) { 154 Changed |= intersect(I.second, VTS.get(M)); 155 } else if (!S.empty()) { 156 S.clear(); 157 Changed = true; 158 } 159 } 160 return Changed; 161 } 162 163 template <typename Predicate> 164 bool TypeSetByHwMode::constrain(Predicate P) { 165 bool Changed = false; 166 for (auto &I : *this) 167 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 168 return Changed; 169 } 170 171 template <typename Predicate> 172 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 173 assert(empty()); 174 for (const auto &I : VTS) { 175 SetType &S = getOrCreate(I.first); 176 for (auto J : I.second) 177 if (P(J)) 178 S.insert(J); 179 } 180 return !empty(); 181 } 182 183 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 184 SmallVector<unsigned, 4> Modes; 185 Modes.reserve(Map.size()); 186 187 for (const auto &I : *this) 188 Modes.push_back(I.first); 189 if (Modes.empty()) { 190 OS << "{}"; 191 return; 192 } 193 array_pod_sort(Modes.begin(), Modes.end()); 194 195 OS << '{'; 196 for (unsigned M : Modes) { 197 OS << ' ' << getModeName(M) << ':'; 198 writeToStream(get(M), OS); 199 } 200 OS << " }"; 201 } 202 203 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 204 SmallVector<MVT, 4> Types(S.begin(), S.end()); 205 array_pod_sort(Types.begin(), Types.end()); 206 207 OS << '['; 208 ListSeparator LS(" "); 209 for (const MVT &T : Types) 210 OS << LS << ValueTypeByHwMode::getMVTName(T); 211 OS << ']'; 212 } 213 214 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 215 // The isSimple call is much quicker than hasDefault - check this first. 216 bool IsSimple = isSimple(); 217 bool VTSIsSimple = VTS.isSimple(); 218 if (IsSimple && VTSIsSimple) 219 return *begin() == *VTS.begin(); 220 221 // Speedup: We have a default if the set is simple. 222 bool HaveDefault = IsSimple || hasDefault(); 223 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 224 if (HaveDefault != VTSHaveDefault) 225 return false; 226 227 SmallDenseSet<unsigned, 4> Modes; 228 for (auto &I : *this) 229 Modes.insert(I.first); 230 for (const auto &I : VTS) 231 Modes.insert(I.first); 232 233 if (HaveDefault) { 234 // Both sets have default mode. 235 for (unsigned M : Modes) { 236 if (get(M) != VTS.get(M)) 237 return false; 238 } 239 } else { 240 // Neither set has default mode. 241 for (unsigned M : Modes) { 242 // If there is no default mode, an empty set is equivalent to not having 243 // the corresponding mode. 244 bool NoModeThis = !hasMode(M) || get(M).empty(); 245 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 246 if (NoModeThis != NoModeVTS) 247 return false; 248 if (!NoModeThis) 249 if (get(M) != VTS.get(M)) 250 return false; 251 } 252 } 253 254 return true; 255 } 256 257 namespace llvm { 258 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 259 T.writeToStream(OS); 260 return OS; 261 } 262 } 263 264 LLVM_DUMP_METHOD 265 void TypeSetByHwMode::dump() const { 266 dbgs() << *this << '\n'; 267 } 268 269 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 270 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 271 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 272 273 if (OutP == InP) 274 return berase_if(Out, Int); 275 276 // Compute the intersection of scalars separately to account for only 277 // one set containing iPTR. 278 // The intersection of iPTR with a set of integer scalar types that does not 279 // include iPTR will result in the most specific scalar type: 280 // - iPTR is more specific than any set with two elements or more 281 // - iPTR is less specific than any single integer scalar type. 282 // For example 283 // { iPTR } * { i32 } -> { i32 } 284 // { iPTR } * { i32 i64 } -> { iPTR } 285 // and 286 // { iPTR i32 } * { i32 } -> { i32 } 287 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 288 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 289 290 // Compute the difference between the two sets in such a way that the 291 // iPTR is in the set that is being subtracted. This is to see if there 292 // are any extra scalars in the set without iPTR that are not in the 293 // set containing iPTR. Then the iPTR could be considered a "wildcard" 294 // matching these scalars. If there is only one such scalar, it would 295 // replace the iPTR, if there are more, the iPTR would be retained. 296 SetType Diff; 297 if (InP) { 298 Diff = Out; 299 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 300 // Pre-remove these elements and rely only on InP/OutP to determine 301 // whether a change has been made. 302 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 303 } else { 304 Diff = In; 305 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 306 Out.erase(MVT::iPTR); 307 } 308 309 // The actual intersection. 310 bool Changed = berase_if(Out, Int); 311 unsigned NumD = Diff.size(); 312 if (NumD == 0) 313 return Changed; 314 315 if (NumD == 1) { 316 Out.insert(*Diff.begin()); 317 // This is a change only if Out was the one with iPTR (which is now 318 // being replaced). 319 Changed |= OutP; 320 } else { 321 // Multiple elements from Out are now replaced with iPTR. 322 Out.insert(MVT::iPTR); 323 Changed |= !OutP; 324 } 325 return Changed; 326 } 327 328 bool TypeSetByHwMode::validate() const { 329 #ifndef NDEBUG 330 if (empty()) 331 return true; 332 bool AllEmpty = true; 333 for (const auto &I : *this) 334 AllEmpty &= I.second.empty(); 335 return !AllEmpty; 336 #endif 337 return true; 338 } 339 340 // --- TypeInfer 341 342 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 343 const TypeSetByHwMode &In) { 344 ValidateOnExit _1(Out, *this); 345 In.validate(); 346 if (In.empty() || Out == In || TP.hasError()) 347 return false; 348 if (Out.empty()) { 349 Out = In; 350 return true; 351 } 352 353 bool Changed = Out.constrain(In); 354 if (Changed && Out.empty()) 355 TP.error("Type contradiction"); 356 357 return Changed; 358 } 359 360 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 361 ValidateOnExit _1(Out, *this); 362 if (TP.hasError()) 363 return false; 364 assert(!Out.empty() && "cannot pick from an empty set"); 365 366 bool Changed = false; 367 for (auto &I : Out) { 368 TypeSetByHwMode::SetType &S = I.second; 369 if (S.size() <= 1) 370 continue; 371 MVT T = *S.begin(); // Pick the first element. 372 S.clear(); 373 S.insert(T); 374 Changed = true; 375 } 376 return Changed; 377 } 378 379 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 380 ValidateOnExit _1(Out, *this); 381 if (TP.hasError()) 382 return false; 383 if (!Out.empty()) 384 return Out.constrain(isIntegerOrPtr); 385 386 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 387 } 388 389 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 390 ValidateOnExit _1(Out, *this); 391 if (TP.hasError()) 392 return false; 393 if (!Out.empty()) 394 return Out.constrain(isFloatingPoint); 395 396 return Out.assign_if(getLegalTypes(), isFloatingPoint); 397 } 398 399 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 400 ValidateOnExit _1(Out, *this); 401 if (TP.hasError()) 402 return false; 403 if (!Out.empty()) 404 return Out.constrain(isScalar); 405 406 return Out.assign_if(getLegalTypes(), isScalar); 407 } 408 409 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 410 ValidateOnExit _1(Out, *this); 411 if (TP.hasError()) 412 return false; 413 if (!Out.empty()) 414 return Out.constrain(isVector); 415 416 return Out.assign_if(getLegalTypes(), isVector); 417 } 418 419 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 420 ValidateOnExit _1(Out, *this); 421 if (TP.hasError() || !Out.empty()) 422 return false; 423 424 Out = getLegalTypes(); 425 return true; 426 } 427 428 template <typename Iter, typename Pred, typename Less> 429 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 430 if (B == E) 431 return E; 432 Iter Min = E; 433 for (Iter I = B; I != E; ++I) { 434 if (!P(*I)) 435 continue; 436 if (Min == E || L(*I, *Min)) 437 Min = I; 438 } 439 return Min; 440 } 441 442 template <typename Iter, typename Pred, typename Less> 443 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 444 if (B == E) 445 return E; 446 Iter Max = E; 447 for (Iter I = B; I != E; ++I) { 448 if (!P(*I)) 449 continue; 450 if (Max == E || L(*Max, *I)) 451 Max = I; 452 } 453 return Max; 454 } 455 456 /// Make sure that for each type in Small, there exists a larger type in Big. 457 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 458 TypeSetByHwMode &Big) { 459 ValidateOnExit _1(Small, *this), _2(Big, *this); 460 if (TP.hasError()) 461 return false; 462 bool Changed = false; 463 464 if (Small.empty()) 465 Changed |= EnforceAny(Small); 466 if (Big.empty()) 467 Changed |= EnforceAny(Big); 468 469 assert(Small.hasDefault() && Big.hasDefault()); 470 471 std::vector<unsigned> Modes = union_modes(Small, Big); 472 473 // 1. Only allow integer or floating point types and make sure that 474 // both sides are both integer or both floating point. 475 // 2. Make sure that either both sides have vector types, or neither 476 // of them does. 477 for (unsigned M : Modes) { 478 TypeSetByHwMode::SetType &S = Small.get(M); 479 TypeSetByHwMode::SetType &B = Big.get(M); 480 481 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 482 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 483 Changed |= berase_if(S, NotInt); 484 Changed |= berase_if(B, NotInt); 485 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 486 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 487 Changed |= berase_if(S, NotFP); 488 Changed |= berase_if(B, NotFP); 489 } else if (S.empty() || B.empty()) { 490 Changed = !S.empty() || !B.empty(); 491 S.clear(); 492 B.clear(); 493 } else { 494 TP.error("Incompatible types"); 495 return Changed; 496 } 497 498 if (none_of(S, isVector) || none_of(B, isVector)) { 499 Changed |= berase_if(S, isVector); 500 Changed |= berase_if(B, isVector); 501 } 502 } 503 504 auto LT = [](MVT A, MVT B) -> bool { 505 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 506 // purposes of ordering. 507 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 508 A.getSizeInBits().getKnownMinSize()); 509 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 510 B.getSizeInBits().getKnownMinSize()); 511 return ASize < BSize; 512 }; 513 auto SameKindLE = [](MVT A, MVT B) -> bool { 514 // This function is used when removing elements: when a vector is compared 515 // to a non-vector or a scalable vector to any non-scalable MVT, it should 516 // return false (to avoid removal). 517 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 518 std::make_tuple(B.isVector(), B.isScalableVector())) 519 return false; 520 521 return std::make_tuple(A.getScalarSizeInBits(), 522 A.getSizeInBits().getKnownMinSize()) <= 523 std::make_tuple(B.getScalarSizeInBits(), 524 B.getSizeInBits().getKnownMinSize()); 525 }; 526 527 for (unsigned M : Modes) { 528 TypeSetByHwMode::SetType &S = Small.get(M); 529 TypeSetByHwMode::SetType &B = Big.get(M); 530 // MinS = min scalar in Small, remove all scalars from Big that are 531 // smaller-or-equal than MinS. 532 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 533 if (MinS != S.end()) 534 Changed |= berase_if(B, std::bind(SameKindLE, 535 std::placeholders::_1, *MinS)); 536 537 // MaxS = max scalar in Big, remove all scalars from Small that are 538 // larger than MaxS. 539 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 540 if (MaxS != B.end()) 541 Changed |= berase_if(S, std::bind(SameKindLE, 542 *MaxS, std::placeholders::_1)); 543 544 // MinV = min vector in Small, remove all vectors from Big that are 545 // smaller-or-equal than MinV. 546 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 547 if (MinV != S.end()) 548 Changed |= berase_if(B, std::bind(SameKindLE, 549 std::placeholders::_1, *MinV)); 550 551 // MaxV = max vector in Big, remove all vectors from Small that are 552 // larger than MaxV. 553 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 554 if (MaxV != B.end()) 555 Changed |= berase_if(S, std::bind(SameKindLE, 556 *MaxV, std::placeholders::_1)); 557 } 558 559 return Changed; 560 } 561 562 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 563 /// for each type U in Elem, U is a scalar type. 564 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 565 /// type T in Vec, such that U is the element type of T. 566 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 567 TypeSetByHwMode &Elem) { 568 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 569 if (TP.hasError()) 570 return false; 571 bool Changed = false; 572 573 if (Vec.empty()) 574 Changed |= EnforceVector(Vec); 575 if (Elem.empty()) 576 Changed |= EnforceScalar(Elem); 577 578 for (unsigned M : union_modes(Vec, Elem)) { 579 TypeSetByHwMode::SetType &V = Vec.get(M); 580 TypeSetByHwMode::SetType &E = Elem.get(M); 581 582 Changed |= berase_if(V, isScalar); // Scalar = !vector 583 Changed |= berase_if(E, isVector); // Vector = !scalar 584 assert(!V.empty() && !E.empty()); 585 586 SmallSet<MVT,4> VT, ST; 587 // Collect element types from the "vector" set. 588 for (MVT T : V) 589 VT.insert(T.getVectorElementType()); 590 // Collect scalar types from the "element" set. 591 for (MVT T : E) 592 ST.insert(T); 593 594 // Remove from V all (vector) types whose element type is not in S. 595 Changed |= berase_if(V, [&ST](MVT T) -> bool { 596 return !ST.count(T.getVectorElementType()); 597 }); 598 // Remove from E all (scalar) types, for which there is no corresponding 599 // type in V. 600 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 601 } 602 603 return Changed; 604 } 605 606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 607 const ValueTypeByHwMode &VVT) { 608 TypeSetByHwMode Tmp(VVT); 609 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 610 return EnforceVectorEltTypeIs(Vec, Tmp); 611 } 612 613 /// Ensure that for each type T in Sub, T is a vector type, and there 614 /// exists a type U in Vec such that U is a vector type with the same 615 /// element type as T and at least as many elements as T. 616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 617 TypeSetByHwMode &Sub) { 618 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 619 if (TP.hasError()) 620 return false; 621 622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 623 auto IsSubVec = [](MVT B, MVT P) -> bool { 624 if (!B.isVector() || !P.isVector()) 625 return false; 626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 627 // but until there are obvious use-cases for this, keep the 628 // types separate. 629 if (B.isScalableVector() != P.isScalableVector()) 630 return false; 631 if (B.getVectorElementType() != P.getVectorElementType()) 632 return false; 633 return B.getVectorNumElements() < P.getVectorNumElements(); 634 }; 635 636 /// Return true if S has no element (vector type) that T is a sub-vector of, 637 /// i.e. has the same element type as T and more elements. 638 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 639 for (auto I : S) 640 if (IsSubVec(T, I)) 641 return false; 642 return true; 643 }; 644 645 /// Return true if S has no element (vector type) that T is a super-vector 646 /// of, i.e. has the same element type as T and fewer elements. 647 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 648 for (auto I : S) 649 if (IsSubVec(I, T)) 650 return false; 651 return true; 652 }; 653 654 bool Changed = false; 655 656 if (Vec.empty()) 657 Changed |= EnforceVector(Vec); 658 if (Sub.empty()) 659 Changed |= EnforceVector(Sub); 660 661 for (unsigned M : union_modes(Vec, Sub)) { 662 TypeSetByHwMode::SetType &S = Sub.get(M); 663 TypeSetByHwMode::SetType &V = Vec.get(M); 664 665 Changed |= berase_if(S, isScalar); 666 667 // Erase all types from S that are not sub-vectors of a type in V. 668 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 669 670 // Erase all types from V that are not super-vectors of a type in S. 671 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 672 } 673 674 return Changed; 675 } 676 677 /// 1. Ensure that V has a scalar type iff W has a scalar type. 678 /// 2. Ensure that for each vector type T in V, there exists a vector 679 /// type U in W, such that T and U have the same number of elements. 680 /// 3. Ensure that for each vector type U in W, there exists a vector 681 /// type T in V, such that T and U have the same number of elements 682 /// (reverse of 2). 683 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 684 ValidateOnExit _1(V, *this), _2(W, *this); 685 if (TP.hasError()) 686 return false; 687 688 bool Changed = false; 689 if (V.empty()) 690 Changed |= EnforceAny(V); 691 if (W.empty()) 692 Changed |= EnforceAny(W); 693 694 // An actual vector type cannot have 0 elements, so we can treat scalars 695 // as zero-length vectors. This way both vectors and scalars can be 696 // processed identically. 697 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 698 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 699 }; 700 701 for (unsigned M : union_modes(V, W)) { 702 TypeSetByHwMode::SetType &VS = V.get(M); 703 TypeSetByHwMode::SetType &WS = W.get(M); 704 705 SmallSet<unsigned,2> VN, WN; 706 for (MVT T : VS) 707 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 708 for (MVT T : WS) 709 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 710 711 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 712 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 713 } 714 return Changed; 715 } 716 717 namespace { 718 struct TypeSizeComparator { 719 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 720 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 721 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 722 } 723 }; 724 } // end anonymous namespace 725 726 /// 1. Ensure that for each type T in A, there exists a type U in B, 727 /// such that T and U have equal size in bits. 728 /// 2. Ensure that for each type U in B, there exists a type T in A 729 /// such that T and U have equal size in bits (reverse of 1). 730 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 731 ValidateOnExit _1(A, *this), _2(B, *this); 732 if (TP.hasError()) 733 return false; 734 bool Changed = false; 735 if (A.empty()) 736 Changed |= EnforceAny(A); 737 if (B.empty()) 738 Changed |= EnforceAny(B); 739 740 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 741 742 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 743 return !Sizes.count(T.getSizeInBits()); 744 }; 745 746 for (unsigned M : union_modes(A, B)) { 747 TypeSetByHwMode::SetType &AS = A.get(M); 748 TypeSetByHwMode::SetType &BS = B.get(M); 749 TypeSizeSet AN, BN; 750 751 for (MVT T : AS) 752 AN.insert(T.getSizeInBits()); 753 for (MVT T : BS) 754 BN.insert(T.getSizeInBits()); 755 756 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 757 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 758 } 759 760 return Changed; 761 } 762 763 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 764 ValidateOnExit _1(VTS, *this); 765 const TypeSetByHwMode &Legal = getLegalTypes(); 766 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 767 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 768 769 for (auto &I : VTS) 770 expandOverloads(I.second, LegalTypes); 771 } 772 773 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 774 const TypeSetByHwMode::SetType &Legal) { 775 std::set<MVT> Ovs; 776 for (MVT T : Out) { 777 if (!T.isOverloaded()) 778 continue; 779 780 Ovs.insert(T); 781 // MachineValueTypeSet allows iteration and erasing. 782 Out.erase(T); 783 } 784 785 for (MVT Ov : Ovs) { 786 switch (Ov.SimpleTy) { 787 case MVT::iPTRAny: 788 Out.insert(MVT::iPTR); 789 return; 790 case MVT::iAny: 791 for (MVT T : MVT::integer_valuetypes()) 792 if (Legal.count(T)) 793 Out.insert(T); 794 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 795 if (Legal.count(T)) 796 Out.insert(T); 797 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 798 if (Legal.count(T)) 799 Out.insert(T); 800 return; 801 case MVT::fAny: 802 for (MVT T : MVT::fp_valuetypes()) 803 if (Legal.count(T)) 804 Out.insert(T); 805 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 806 if (Legal.count(T)) 807 Out.insert(T); 808 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 809 if (Legal.count(T)) 810 Out.insert(T); 811 return; 812 case MVT::vAny: 813 for (MVT T : MVT::vector_valuetypes()) 814 if (Legal.count(T)) 815 Out.insert(T); 816 return; 817 case MVT::Any: 818 for (MVT T : MVT::all_valuetypes()) 819 if (Legal.count(T)) 820 Out.insert(T); 821 return; 822 default: 823 break; 824 } 825 } 826 } 827 828 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 829 if (!LegalTypesCached) { 830 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 831 // Stuff all types from all modes into the default mode. 832 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 833 for (const auto &I : LTS) 834 LegalTypes.insert(I.second); 835 LegalTypesCached = true; 836 } 837 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 838 return LegalCache; 839 } 840 841 #ifndef NDEBUG 842 TypeInfer::ValidateOnExit::~ValidateOnExit() { 843 if (Infer.Validate && !VTS.validate()) { 844 dbgs() << "Type set is empty for each HW mode:\n" 845 "possible type contradiction in the pattern below " 846 "(use -print-records with llvm-tblgen to see all " 847 "expanded records).\n"; 848 Infer.TP.dump(); 849 dbgs() << "Generated from record:\n"; 850 Infer.TP.getRecord()->dump(); 851 PrintFatalError(Infer.TP.getRecord()->getLoc(), 852 "Type set is empty for each HW mode in '" + 853 Infer.TP.getRecord()->getName() + "'"); 854 } 855 } 856 #endif 857 858 859 //===----------------------------------------------------------------------===// 860 // ScopedName Implementation 861 //===----------------------------------------------------------------------===// 862 863 bool ScopedName::operator==(const ScopedName &o) const { 864 return Scope == o.Scope && Identifier == o.Identifier; 865 } 866 867 bool ScopedName::operator!=(const ScopedName &o) const { 868 return !(*this == o); 869 } 870 871 872 //===----------------------------------------------------------------------===// 873 // TreePredicateFn Implementation 874 //===----------------------------------------------------------------------===// 875 876 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 877 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 878 assert( 879 (!hasPredCode() || !hasImmCode()) && 880 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 881 } 882 883 bool TreePredicateFn::hasPredCode() const { 884 return isLoad() || isStore() || isAtomic() || 885 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 886 } 887 888 std::string TreePredicateFn::getPredCode() const { 889 std::string Code; 890 891 if (!isLoad() && !isStore() && !isAtomic()) { 892 Record *MemoryVT = getMemoryVT(); 893 894 if (MemoryVT) 895 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 896 "MemoryVT requires IsLoad or IsStore"); 897 } 898 899 if (!isLoad() && !isStore()) { 900 if (isUnindexed()) 901 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 902 "IsUnindexed requires IsLoad or IsStore"); 903 904 Record *ScalarMemoryVT = getScalarMemoryVT(); 905 906 if (ScalarMemoryVT) 907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 908 "ScalarMemoryVT requires IsLoad or IsStore"); 909 } 910 911 if (isLoad() + isStore() + isAtomic() > 1) 912 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 913 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 914 915 if (isLoad()) { 916 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 917 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 918 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 919 getMinAlignment() < 1) 920 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 921 "IsLoad cannot be used by itself"); 922 } else { 923 if (isNonExtLoad()) 924 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 925 "IsNonExtLoad requires IsLoad"); 926 if (isAnyExtLoad()) 927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 928 "IsAnyExtLoad requires IsLoad"); 929 if (isSignExtLoad()) 930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 931 "IsSignExtLoad requires IsLoad"); 932 if (isZeroExtLoad()) 933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 934 "IsZeroExtLoad requires IsLoad"); 935 } 936 937 if (isStore()) { 938 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 939 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 940 getAddressSpaces() == nullptr && getMinAlignment() < 1) 941 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 942 "IsStore cannot be used by itself"); 943 } else { 944 if (isNonTruncStore()) 945 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 946 "IsNonTruncStore requires IsStore"); 947 if (isTruncStore()) 948 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 949 "IsTruncStore requires IsStore"); 950 } 951 952 if (isAtomic()) { 953 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 954 getAddressSpaces() == nullptr && 955 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 956 !isAtomicOrderingAcquireRelease() && 957 !isAtomicOrderingSequentiallyConsistent() && 958 !isAtomicOrderingAcquireOrStronger() && 959 !isAtomicOrderingReleaseOrStronger() && 960 !isAtomicOrderingWeakerThanAcquire() && 961 !isAtomicOrderingWeakerThanRelease()) 962 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 963 "IsAtomic cannot be used by itself"); 964 } else { 965 if (isAtomicOrderingMonotonic()) 966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 967 "IsAtomicOrderingMonotonic requires IsAtomic"); 968 if (isAtomicOrderingAcquire()) 969 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 970 "IsAtomicOrderingAcquire requires IsAtomic"); 971 if (isAtomicOrderingRelease()) 972 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 973 "IsAtomicOrderingRelease requires IsAtomic"); 974 if (isAtomicOrderingAcquireRelease()) 975 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 976 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 977 if (isAtomicOrderingSequentiallyConsistent()) 978 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 979 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 980 if (isAtomicOrderingAcquireOrStronger()) 981 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 982 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 983 if (isAtomicOrderingReleaseOrStronger()) 984 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 985 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 986 if (isAtomicOrderingWeakerThanAcquire()) 987 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 988 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 989 } 990 991 if (isLoad() || isStore() || isAtomic()) { 992 if (ListInit *AddressSpaces = getAddressSpaces()) { 993 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 994 " if ("; 995 996 ListSeparator LS(" && "); 997 for (Init *Val : AddressSpaces->getValues()) { 998 Code += LS; 999 1000 IntInit *IntVal = dyn_cast<IntInit>(Val); 1001 if (!IntVal) { 1002 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1003 "AddressSpaces element must be integer"); 1004 } 1005 1006 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1007 } 1008 1009 Code += ")\nreturn false;\n"; 1010 } 1011 1012 int64_t MinAlign = getMinAlignment(); 1013 if (MinAlign > 0) { 1014 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1015 Code += utostr(MinAlign); 1016 Code += "))\nreturn false;\n"; 1017 } 1018 1019 Record *MemoryVT = getMemoryVT(); 1020 1021 if (MemoryVT) 1022 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1023 MemoryVT->getName() + ") return false;\n") 1024 .str(); 1025 } 1026 1027 if (isAtomic() && isAtomicOrderingMonotonic()) 1028 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1029 "AtomicOrdering::Monotonic) return false;\n"; 1030 if (isAtomic() && isAtomicOrderingAcquire()) 1031 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1032 "AtomicOrdering::Acquire) return false;\n"; 1033 if (isAtomic() && isAtomicOrderingRelease()) 1034 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1035 "AtomicOrdering::Release) return false;\n"; 1036 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1037 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1038 "AtomicOrdering::AcquireRelease) return false;\n"; 1039 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1040 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1041 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1042 1043 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1044 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1045 "return false;\n"; 1046 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1047 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1048 "return false;\n"; 1049 1050 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1051 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1052 "return false;\n"; 1053 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1054 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1055 "return false;\n"; 1056 1057 if (isLoad() || isStore()) { 1058 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1059 1060 if (isUnindexed()) 1061 Code += ("if (cast<" + SDNodeName + 1062 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1063 "return false;\n") 1064 .str(); 1065 1066 if (isLoad()) { 1067 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1068 isZeroExtLoad()) > 1) 1069 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1070 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1071 "IsZeroExtLoad are mutually exclusive"); 1072 if (isNonExtLoad()) 1073 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1074 "ISD::NON_EXTLOAD) return false;\n"; 1075 if (isAnyExtLoad()) 1076 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1077 "return false;\n"; 1078 if (isSignExtLoad()) 1079 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1080 "return false;\n"; 1081 if (isZeroExtLoad()) 1082 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1083 "return false;\n"; 1084 } else { 1085 if ((isNonTruncStore() + isTruncStore()) > 1) 1086 PrintFatalError( 1087 getOrigPatFragRecord()->getRecord()->getLoc(), 1088 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1089 if (isNonTruncStore()) 1090 Code += 1091 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1092 if (isTruncStore()) 1093 Code += 1094 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1095 } 1096 1097 Record *ScalarMemoryVT = getScalarMemoryVT(); 1098 1099 if (ScalarMemoryVT) 1100 Code += ("if (cast<" + SDNodeName + 1101 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1102 ScalarMemoryVT->getName() + ") return false;\n") 1103 .str(); 1104 } 1105 1106 std::string PredicateCode = 1107 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1108 1109 Code += PredicateCode; 1110 1111 if (PredicateCode.empty() && !Code.empty()) 1112 Code += "return true;\n"; 1113 1114 return Code; 1115 } 1116 1117 bool TreePredicateFn::hasImmCode() const { 1118 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1119 } 1120 1121 std::string TreePredicateFn::getImmCode() const { 1122 return std::string( 1123 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1124 } 1125 1126 bool TreePredicateFn::immCodeUsesAPInt() const { 1127 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1128 } 1129 1130 bool TreePredicateFn::immCodeUsesAPFloat() const { 1131 bool Unset; 1132 // The return value will be false when IsAPFloat is unset. 1133 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1134 Unset); 1135 } 1136 1137 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1138 bool Value) const { 1139 bool Unset; 1140 bool Result = 1141 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1142 if (Unset) 1143 return false; 1144 return Result == Value; 1145 } 1146 bool TreePredicateFn::usesOperands() const { 1147 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1148 } 1149 bool TreePredicateFn::isLoad() const { 1150 return isPredefinedPredicateEqualTo("IsLoad", true); 1151 } 1152 bool TreePredicateFn::isStore() const { 1153 return isPredefinedPredicateEqualTo("IsStore", true); 1154 } 1155 bool TreePredicateFn::isAtomic() const { 1156 return isPredefinedPredicateEqualTo("IsAtomic", true); 1157 } 1158 bool TreePredicateFn::isUnindexed() const { 1159 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1160 } 1161 bool TreePredicateFn::isNonExtLoad() const { 1162 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1163 } 1164 bool TreePredicateFn::isAnyExtLoad() const { 1165 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1166 } 1167 bool TreePredicateFn::isSignExtLoad() const { 1168 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1169 } 1170 bool TreePredicateFn::isZeroExtLoad() const { 1171 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1172 } 1173 bool TreePredicateFn::isNonTruncStore() const { 1174 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1175 } 1176 bool TreePredicateFn::isTruncStore() const { 1177 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1178 } 1179 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1180 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1181 } 1182 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1183 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1184 } 1185 bool TreePredicateFn::isAtomicOrderingRelease() const { 1186 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1187 } 1188 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1189 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1190 } 1191 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1192 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1193 true); 1194 } 1195 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1196 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1197 } 1198 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1199 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1200 } 1201 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1202 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1203 } 1204 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1205 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1206 } 1207 Record *TreePredicateFn::getMemoryVT() const { 1208 Record *R = getOrigPatFragRecord()->getRecord(); 1209 if (R->isValueUnset("MemoryVT")) 1210 return nullptr; 1211 return R->getValueAsDef("MemoryVT"); 1212 } 1213 1214 ListInit *TreePredicateFn::getAddressSpaces() const { 1215 Record *R = getOrigPatFragRecord()->getRecord(); 1216 if (R->isValueUnset("AddressSpaces")) 1217 return nullptr; 1218 return R->getValueAsListInit("AddressSpaces"); 1219 } 1220 1221 int64_t TreePredicateFn::getMinAlignment() const { 1222 Record *R = getOrigPatFragRecord()->getRecord(); 1223 if (R->isValueUnset("MinAlignment")) 1224 return 0; 1225 return R->getValueAsInt("MinAlignment"); 1226 } 1227 1228 Record *TreePredicateFn::getScalarMemoryVT() const { 1229 Record *R = getOrigPatFragRecord()->getRecord(); 1230 if (R->isValueUnset("ScalarMemoryVT")) 1231 return nullptr; 1232 return R->getValueAsDef("ScalarMemoryVT"); 1233 } 1234 bool TreePredicateFn::hasGISelPredicateCode() const { 1235 return !PatFragRec->getRecord() 1236 ->getValueAsString("GISelPredicateCode") 1237 .empty(); 1238 } 1239 std::string TreePredicateFn::getGISelPredicateCode() const { 1240 return std::string( 1241 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1242 } 1243 1244 StringRef TreePredicateFn::getImmType() const { 1245 if (immCodeUsesAPInt()) 1246 return "const APInt &"; 1247 if (immCodeUsesAPFloat()) 1248 return "const APFloat &"; 1249 return "int64_t"; 1250 } 1251 1252 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1253 if (immCodeUsesAPInt()) 1254 return "APInt"; 1255 if (immCodeUsesAPFloat()) 1256 return "APFloat"; 1257 return "I64"; 1258 } 1259 1260 /// isAlwaysTrue - Return true if this is a noop predicate. 1261 bool TreePredicateFn::isAlwaysTrue() const { 1262 return !hasPredCode() && !hasImmCode(); 1263 } 1264 1265 /// Return the name to use in the generated code to reference this, this is 1266 /// "Predicate_foo" if from a pattern fragment "foo". 1267 std::string TreePredicateFn::getFnName() const { 1268 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1269 } 1270 1271 /// getCodeToRunOnSDNode - Return the code for the function body that 1272 /// evaluates this predicate. The argument is expected to be in "Node", 1273 /// not N. This handles casting and conversion to a concrete node type as 1274 /// appropriate. 1275 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1276 // Handle immediate predicates first. 1277 std::string ImmCode = getImmCode(); 1278 if (!ImmCode.empty()) { 1279 if (isLoad()) 1280 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1281 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1282 if (isStore()) 1283 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1284 "IsStore cannot be used with ImmLeaf or its subclasses"); 1285 if (isUnindexed()) 1286 PrintFatalError( 1287 getOrigPatFragRecord()->getRecord()->getLoc(), 1288 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1289 if (isNonExtLoad()) 1290 PrintFatalError( 1291 getOrigPatFragRecord()->getRecord()->getLoc(), 1292 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1293 if (isAnyExtLoad()) 1294 PrintFatalError( 1295 getOrigPatFragRecord()->getRecord()->getLoc(), 1296 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1297 if (isSignExtLoad()) 1298 PrintFatalError( 1299 getOrigPatFragRecord()->getRecord()->getLoc(), 1300 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1301 if (isZeroExtLoad()) 1302 PrintFatalError( 1303 getOrigPatFragRecord()->getRecord()->getLoc(), 1304 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1305 if (isNonTruncStore()) 1306 PrintFatalError( 1307 getOrigPatFragRecord()->getRecord()->getLoc(), 1308 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1309 if (isTruncStore()) 1310 PrintFatalError( 1311 getOrigPatFragRecord()->getRecord()->getLoc(), 1312 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1313 if (getMemoryVT()) 1314 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1315 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1316 if (getScalarMemoryVT()) 1317 PrintFatalError( 1318 getOrigPatFragRecord()->getRecord()->getLoc(), 1319 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1320 1321 std::string Result = (" " + getImmType() + " Imm = ").str(); 1322 if (immCodeUsesAPFloat()) 1323 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1324 else if (immCodeUsesAPInt()) 1325 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1326 else 1327 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1328 return Result + ImmCode; 1329 } 1330 1331 // Handle arbitrary node predicates. 1332 assert(hasPredCode() && "Don't have any predicate code!"); 1333 1334 // If this is using PatFrags, there are multiple trees to search. They should 1335 // all have the same class. FIXME: Is there a way to find a common 1336 // superclass? 1337 StringRef ClassName; 1338 for (const auto &Tree : PatFragRec->getTrees()) { 1339 StringRef TreeClassName; 1340 if (Tree->isLeaf()) 1341 TreeClassName = "SDNode"; 1342 else { 1343 Record *Op = Tree->getOperator(); 1344 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1345 TreeClassName = Info.getSDClassName(); 1346 } 1347 1348 if (ClassName.empty()) 1349 ClassName = TreeClassName; 1350 else if (ClassName != TreeClassName) { 1351 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1352 "PatFrags trees do not have consistent class"); 1353 } 1354 } 1355 1356 std::string Result; 1357 if (ClassName == "SDNode") 1358 Result = " SDNode *N = Node;\n"; 1359 else 1360 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1361 1362 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1363 } 1364 1365 //===----------------------------------------------------------------------===// 1366 // PatternToMatch implementation 1367 // 1368 1369 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1370 if (!P->isLeaf()) 1371 return false; 1372 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1373 if (!DI) 1374 return false; 1375 1376 Record *R = DI->getDef(); 1377 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1378 } 1379 1380 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1381 /// patterns before small ones. This is used to determine the size of a 1382 /// pattern. 1383 static unsigned getPatternSize(const TreePatternNode *P, 1384 const CodeGenDAGPatterns &CGP) { 1385 unsigned Size = 3; // The node itself. 1386 // If the root node is a ConstantSDNode, increases its size. 1387 // e.g. (set R32:$dst, 0). 1388 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1389 Size += 2; 1390 1391 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1392 Size += AM->getComplexity(); 1393 // We don't want to count any children twice, so return early. 1394 return Size; 1395 } 1396 1397 // If this node has some predicate function that must match, it adds to the 1398 // complexity of this node. 1399 if (!P->getPredicateCalls().empty()) 1400 ++Size; 1401 1402 // Count children in the count if they are also nodes. 1403 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1404 const TreePatternNode *Child = P->getChild(i); 1405 if (!Child->isLeaf() && Child->getNumTypes()) { 1406 const TypeSetByHwMode &T0 = Child->getExtType(0); 1407 // At this point, all variable type sets should be simple, i.e. only 1408 // have a default mode. 1409 if (T0.getMachineValueType() != MVT::Other) { 1410 Size += getPatternSize(Child, CGP); 1411 continue; 1412 } 1413 } 1414 if (Child->isLeaf()) { 1415 if (isa<IntInit>(Child->getLeafValue())) 1416 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1417 else if (Child->getComplexPatternInfo(CGP)) 1418 Size += getPatternSize(Child, CGP); 1419 else if (isImmAllOnesAllZerosMatch(Child)) 1420 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1421 else if (!Child->getPredicateCalls().empty()) 1422 ++Size; 1423 } 1424 } 1425 1426 return Size; 1427 } 1428 1429 /// Compute the complexity metric for the input pattern. This roughly 1430 /// corresponds to the number of nodes that are covered. 1431 int PatternToMatch:: 1432 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1433 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1434 } 1435 1436 /// getPredicateCheck - Return a single string containing all of this 1437 /// pattern's predicates concatenated with "&&" operators. 1438 /// 1439 std::string PatternToMatch::getPredicateCheck() const { 1440 SmallVector<const Predicate*,4> PredList; 1441 for (const Predicate &P : Predicates) { 1442 if (!P.getCondString().empty()) 1443 PredList.push_back(&P); 1444 } 1445 llvm::sort(PredList, deref<std::less<>>()); 1446 1447 std::string Check; 1448 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1449 if (i != 0) 1450 Check += " && "; 1451 Check += '(' + PredList[i]->getCondString() + ')'; 1452 } 1453 return Check; 1454 } 1455 1456 //===----------------------------------------------------------------------===// 1457 // SDTypeConstraint implementation 1458 // 1459 1460 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1461 OperandNo = R->getValueAsInt("OperandNum"); 1462 1463 if (R->isSubClassOf("SDTCisVT")) { 1464 ConstraintType = SDTCisVT; 1465 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1466 for (const auto &P : VVT) 1467 if (P.second == MVT::isVoid) 1468 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1469 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1470 ConstraintType = SDTCisPtrTy; 1471 } else if (R->isSubClassOf("SDTCisInt")) { 1472 ConstraintType = SDTCisInt; 1473 } else if (R->isSubClassOf("SDTCisFP")) { 1474 ConstraintType = SDTCisFP; 1475 } else if (R->isSubClassOf("SDTCisVec")) { 1476 ConstraintType = SDTCisVec; 1477 } else if (R->isSubClassOf("SDTCisSameAs")) { 1478 ConstraintType = SDTCisSameAs; 1479 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1480 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1481 ConstraintType = SDTCisVTSmallerThanOp; 1482 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1483 R->getValueAsInt("OtherOperandNum"); 1484 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1485 ConstraintType = SDTCisOpSmallerThanOp; 1486 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1487 R->getValueAsInt("BigOperandNum"); 1488 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1489 ConstraintType = SDTCisEltOfVec; 1490 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1491 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1492 ConstraintType = SDTCisSubVecOfVec; 1493 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1494 R->getValueAsInt("OtherOpNum"); 1495 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1496 ConstraintType = SDTCVecEltisVT; 1497 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1498 for (const auto &P : VVT) { 1499 MVT T = P.second; 1500 if (T.isVector()) 1501 PrintFatalError(R->getLoc(), 1502 "Cannot use vector type as SDTCVecEltisVT"); 1503 if (!T.isInteger() && !T.isFloatingPoint()) 1504 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1505 "as SDTCVecEltisVT"); 1506 } 1507 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1508 ConstraintType = SDTCisSameNumEltsAs; 1509 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1510 R->getValueAsInt("OtherOperandNum"); 1511 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1512 ConstraintType = SDTCisSameSizeAs; 1513 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1514 R->getValueAsInt("OtherOperandNum"); 1515 } else { 1516 PrintFatalError(R->getLoc(), 1517 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1518 } 1519 } 1520 1521 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1522 /// N, and the result number in ResNo. 1523 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1524 const SDNodeInfo &NodeInfo, 1525 unsigned &ResNo) { 1526 unsigned NumResults = NodeInfo.getNumResults(); 1527 if (OpNo < NumResults) { 1528 ResNo = OpNo; 1529 return N; 1530 } 1531 1532 OpNo -= NumResults; 1533 1534 if (OpNo >= N->getNumChildren()) { 1535 std::string S; 1536 raw_string_ostream OS(S); 1537 OS << "Invalid operand number in type constraint " 1538 << (OpNo+NumResults) << " "; 1539 N->print(OS); 1540 PrintFatalError(OS.str()); 1541 } 1542 1543 return N->getChild(OpNo); 1544 } 1545 1546 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1547 /// constraint to the nodes operands. This returns true if it makes a 1548 /// change, false otherwise. If a type contradiction is found, flag an error. 1549 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1550 const SDNodeInfo &NodeInfo, 1551 TreePattern &TP) const { 1552 if (TP.hasError()) 1553 return false; 1554 1555 unsigned ResNo = 0; // The result number being referenced. 1556 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1557 TypeInfer &TI = TP.getInfer(); 1558 1559 switch (ConstraintType) { 1560 case SDTCisVT: 1561 // Operand must be a particular type. 1562 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1563 case SDTCisPtrTy: 1564 // Operand must be same as target pointer type. 1565 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1566 case SDTCisInt: 1567 // Require it to be one of the legal integer VTs. 1568 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1569 case SDTCisFP: 1570 // Require it to be one of the legal fp VTs. 1571 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1572 case SDTCisVec: 1573 // Require it to be one of the legal vector VTs. 1574 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1575 case SDTCisSameAs: { 1576 unsigned OResNo = 0; 1577 TreePatternNode *OtherNode = 1578 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1579 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1580 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1581 } 1582 case SDTCisVTSmallerThanOp: { 1583 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1584 // have an integer type that is smaller than the VT. 1585 if (!NodeToApply->isLeaf() || 1586 !isa<DefInit>(NodeToApply->getLeafValue()) || 1587 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1588 ->isSubClassOf("ValueType")) { 1589 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1590 return false; 1591 } 1592 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1593 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1594 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1595 TypeSetByHwMode TypeListTmp(VVT); 1596 1597 unsigned OResNo = 0; 1598 TreePatternNode *OtherNode = 1599 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1600 OResNo); 1601 1602 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1603 } 1604 case SDTCisOpSmallerThanOp: { 1605 unsigned BResNo = 0; 1606 TreePatternNode *BigOperand = 1607 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1608 BResNo); 1609 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1610 BigOperand->getExtType(BResNo)); 1611 } 1612 case SDTCisEltOfVec: { 1613 unsigned VResNo = 0; 1614 TreePatternNode *VecOperand = 1615 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1616 VResNo); 1617 // Filter vector types out of VecOperand that don't have the right element 1618 // type. 1619 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1620 NodeToApply->getExtType(ResNo)); 1621 } 1622 case SDTCisSubVecOfVec: { 1623 unsigned VResNo = 0; 1624 TreePatternNode *BigVecOperand = 1625 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1626 VResNo); 1627 1628 // Filter vector types out of BigVecOperand that don't have the 1629 // right subvector type. 1630 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1631 NodeToApply->getExtType(ResNo)); 1632 } 1633 case SDTCVecEltisVT: { 1634 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1635 } 1636 case SDTCisSameNumEltsAs: { 1637 unsigned OResNo = 0; 1638 TreePatternNode *OtherNode = 1639 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1640 N, NodeInfo, OResNo); 1641 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1642 NodeToApply->getExtType(ResNo)); 1643 } 1644 case SDTCisSameSizeAs: { 1645 unsigned OResNo = 0; 1646 TreePatternNode *OtherNode = 1647 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1648 N, NodeInfo, OResNo); 1649 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1650 NodeToApply->getExtType(ResNo)); 1651 } 1652 } 1653 llvm_unreachable("Invalid ConstraintType!"); 1654 } 1655 1656 // Update the node type to match an instruction operand or result as specified 1657 // in the ins or outs lists on the instruction definition. Return true if the 1658 // type was actually changed. 1659 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1660 Record *Operand, 1661 TreePattern &TP) { 1662 // The 'unknown' operand indicates that types should be inferred from the 1663 // context. 1664 if (Operand->isSubClassOf("unknown_class")) 1665 return false; 1666 1667 // The Operand class specifies a type directly. 1668 if (Operand->isSubClassOf("Operand")) { 1669 Record *R = Operand->getValueAsDef("Type"); 1670 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1671 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1672 } 1673 1674 // PointerLikeRegClass has a type that is determined at runtime. 1675 if (Operand->isSubClassOf("PointerLikeRegClass")) 1676 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1677 1678 // Both RegisterClass and RegisterOperand operands derive their types from a 1679 // register class def. 1680 Record *RC = nullptr; 1681 if (Operand->isSubClassOf("RegisterClass")) 1682 RC = Operand; 1683 else if (Operand->isSubClassOf("RegisterOperand")) 1684 RC = Operand->getValueAsDef("RegClass"); 1685 1686 assert(RC && "Unknown operand type"); 1687 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1688 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1689 } 1690 1691 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1692 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1693 if (!TP.getInfer().isConcrete(Types[i], true)) 1694 return true; 1695 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1696 if (getChild(i)->ContainsUnresolvedType(TP)) 1697 return true; 1698 return false; 1699 } 1700 1701 bool TreePatternNode::hasProperTypeByHwMode() const { 1702 for (const TypeSetByHwMode &S : Types) 1703 if (!S.isDefaultOnly()) 1704 return true; 1705 for (const TreePatternNodePtr &C : Children) 1706 if (C->hasProperTypeByHwMode()) 1707 return true; 1708 return false; 1709 } 1710 1711 bool TreePatternNode::hasPossibleType() const { 1712 for (const TypeSetByHwMode &S : Types) 1713 if (!S.isPossible()) 1714 return false; 1715 for (const TreePatternNodePtr &C : Children) 1716 if (!C->hasPossibleType()) 1717 return false; 1718 return true; 1719 } 1720 1721 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1722 for (TypeSetByHwMode &S : Types) { 1723 S.makeSimple(Mode); 1724 // Check if the selected mode had a type conflict. 1725 if (S.get(DefaultMode).empty()) 1726 return false; 1727 } 1728 for (const TreePatternNodePtr &C : Children) 1729 if (!C->setDefaultMode(Mode)) 1730 return false; 1731 return true; 1732 } 1733 1734 //===----------------------------------------------------------------------===// 1735 // SDNodeInfo implementation 1736 // 1737 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1738 EnumName = R->getValueAsString("Opcode"); 1739 SDClassName = R->getValueAsString("SDClass"); 1740 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1741 NumResults = TypeProfile->getValueAsInt("NumResults"); 1742 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1743 1744 // Parse the properties. 1745 Properties = parseSDPatternOperatorProperties(R); 1746 1747 // Parse the type constraints. 1748 std::vector<Record*> ConstraintList = 1749 TypeProfile->getValueAsListOfDefs("Constraints"); 1750 for (Record *R : ConstraintList) 1751 TypeConstraints.emplace_back(R, CGH); 1752 } 1753 1754 /// getKnownType - If the type constraints on this node imply a fixed type 1755 /// (e.g. all stores return void, etc), then return it as an 1756 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1757 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1758 unsigned NumResults = getNumResults(); 1759 assert(NumResults <= 1 && 1760 "We only work with nodes with zero or one result so far!"); 1761 assert(ResNo == 0 && "Only handles single result nodes so far"); 1762 1763 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1764 // Make sure that this applies to the correct node result. 1765 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1766 continue; 1767 1768 switch (Constraint.ConstraintType) { 1769 default: break; 1770 case SDTypeConstraint::SDTCisVT: 1771 if (Constraint.VVT.isSimple()) 1772 return Constraint.VVT.getSimple().SimpleTy; 1773 break; 1774 case SDTypeConstraint::SDTCisPtrTy: 1775 return MVT::iPTR; 1776 } 1777 } 1778 return MVT::Other; 1779 } 1780 1781 //===----------------------------------------------------------------------===// 1782 // TreePatternNode implementation 1783 // 1784 1785 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1786 if (Operator->getName() == "set" || 1787 Operator->getName() == "implicit") 1788 return 0; // All return nothing. 1789 1790 if (Operator->isSubClassOf("Intrinsic")) 1791 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1792 1793 if (Operator->isSubClassOf("SDNode")) 1794 return CDP.getSDNodeInfo(Operator).getNumResults(); 1795 1796 if (Operator->isSubClassOf("PatFrags")) { 1797 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1798 // the forward reference case where one pattern fragment references another 1799 // before it is processed. 1800 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1801 // The number of results of a fragment with alternative records is the 1802 // maximum number of results across all alternatives. 1803 unsigned NumResults = 0; 1804 for (const auto &T : PFRec->getTrees()) 1805 NumResults = std::max(NumResults, T->getNumTypes()); 1806 return NumResults; 1807 } 1808 1809 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1810 assert(LI && "Invalid Fragment"); 1811 unsigned NumResults = 0; 1812 for (Init *I : LI->getValues()) { 1813 Record *Op = nullptr; 1814 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1815 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1816 Op = DI->getDef(); 1817 assert(Op && "Invalid Fragment"); 1818 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1819 } 1820 return NumResults; 1821 } 1822 1823 if (Operator->isSubClassOf("Instruction")) { 1824 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1825 1826 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1827 1828 // Subtract any defaulted outputs. 1829 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1830 Record *OperandNode = InstInfo.Operands[i].Rec; 1831 1832 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1833 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1834 --NumDefsToAdd; 1835 } 1836 1837 // Add on one implicit def if it has a resolvable type. 1838 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1839 ++NumDefsToAdd; 1840 return NumDefsToAdd; 1841 } 1842 1843 if (Operator->isSubClassOf("SDNodeXForm")) 1844 return 1; // FIXME: Generalize SDNodeXForm 1845 1846 if (Operator->isSubClassOf("ValueType")) 1847 return 1; // A type-cast of one result. 1848 1849 if (Operator->isSubClassOf("ComplexPattern")) 1850 return 1; 1851 1852 errs() << *Operator; 1853 PrintFatalError("Unhandled node in GetNumNodeResults"); 1854 } 1855 1856 void TreePatternNode::print(raw_ostream &OS) const { 1857 if (isLeaf()) 1858 OS << *getLeafValue(); 1859 else 1860 OS << '(' << getOperator()->getName(); 1861 1862 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1863 OS << ':'; 1864 getExtType(i).writeToStream(OS); 1865 } 1866 1867 if (!isLeaf()) { 1868 if (getNumChildren() != 0) { 1869 OS << " "; 1870 ListSeparator LS; 1871 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1872 OS << LS; 1873 getChild(i)->print(OS); 1874 } 1875 } 1876 OS << ")"; 1877 } 1878 1879 for (const TreePredicateCall &Pred : PredicateCalls) { 1880 OS << "<<P:"; 1881 if (Pred.Scope) 1882 OS << Pred.Scope << ":"; 1883 OS << Pred.Fn.getFnName() << ">>"; 1884 } 1885 if (TransformFn) 1886 OS << "<<X:" << TransformFn->getName() << ">>"; 1887 if (!getName().empty()) 1888 OS << ":$" << getName(); 1889 1890 for (const ScopedName &Name : NamesAsPredicateArg) 1891 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1892 } 1893 void TreePatternNode::dump() const { 1894 print(errs()); 1895 } 1896 1897 /// isIsomorphicTo - Return true if this node is recursively 1898 /// isomorphic to the specified node. For this comparison, the node's 1899 /// entire state is considered. The assigned name is ignored, since 1900 /// nodes with differing names are considered isomorphic. However, if 1901 /// the assigned name is present in the dependent variable set, then 1902 /// the assigned name is considered significant and the node is 1903 /// isomorphic if the names match. 1904 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1905 const MultipleUseVarSet &DepVars) const { 1906 if (N == this) return true; 1907 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1908 getPredicateCalls() != N->getPredicateCalls() || 1909 getTransformFn() != N->getTransformFn()) 1910 return false; 1911 1912 if (isLeaf()) { 1913 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1914 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1915 return ((DI->getDef() == NDI->getDef()) 1916 && (DepVars.find(getName()) == DepVars.end() 1917 || getName() == N->getName())); 1918 } 1919 } 1920 return getLeafValue() == N->getLeafValue(); 1921 } 1922 1923 if (N->getOperator() != getOperator() || 1924 N->getNumChildren() != getNumChildren()) return false; 1925 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1926 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1927 return false; 1928 return true; 1929 } 1930 1931 /// clone - Make a copy of this tree and all of its children. 1932 /// 1933 TreePatternNodePtr TreePatternNode::clone() const { 1934 TreePatternNodePtr New; 1935 if (isLeaf()) { 1936 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1937 } else { 1938 std::vector<TreePatternNodePtr> CChildren; 1939 CChildren.reserve(Children.size()); 1940 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1941 CChildren.push_back(getChild(i)->clone()); 1942 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1943 getNumTypes()); 1944 } 1945 New->setName(getName()); 1946 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1947 New->Types = Types; 1948 New->setPredicateCalls(getPredicateCalls()); 1949 New->setTransformFn(getTransformFn()); 1950 return New; 1951 } 1952 1953 /// RemoveAllTypes - Recursively strip all the types of this tree. 1954 void TreePatternNode::RemoveAllTypes() { 1955 // Reset to unknown type. 1956 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1957 if (isLeaf()) return; 1958 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1959 getChild(i)->RemoveAllTypes(); 1960 } 1961 1962 1963 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1964 /// with actual values specified by ArgMap. 1965 void TreePatternNode::SubstituteFormalArguments( 1966 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1967 if (isLeaf()) return; 1968 1969 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1970 TreePatternNode *Child = getChild(i); 1971 if (Child->isLeaf()) { 1972 Init *Val = Child->getLeafValue(); 1973 // Note that, when substituting into an output pattern, Val might be an 1974 // UnsetInit. 1975 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1976 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1977 // We found a use of a formal argument, replace it with its value. 1978 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1979 assert(NewChild && "Couldn't find formal argument!"); 1980 assert((Child->getPredicateCalls().empty() || 1981 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1982 "Non-empty child predicate clobbered!"); 1983 setChild(i, std::move(NewChild)); 1984 } 1985 } else { 1986 getChild(i)->SubstituteFormalArguments(ArgMap); 1987 } 1988 } 1989 } 1990 1991 1992 /// InlinePatternFragments - If this pattern refers to any pattern 1993 /// fragments, return the set of inlined versions (this can be more than 1994 /// one if a PatFrags record has multiple alternatives). 1995 void TreePatternNode::InlinePatternFragments( 1996 TreePatternNodePtr T, TreePattern &TP, 1997 std::vector<TreePatternNodePtr> &OutAlternatives) { 1998 1999 if (TP.hasError()) 2000 return; 2001 2002 if (isLeaf()) { 2003 OutAlternatives.push_back(T); // nothing to do. 2004 return; 2005 } 2006 2007 Record *Op = getOperator(); 2008 2009 if (!Op->isSubClassOf("PatFrags")) { 2010 if (getNumChildren() == 0) { 2011 OutAlternatives.push_back(T); 2012 return; 2013 } 2014 2015 // Recursively inline children nodes. 2016 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2017 ChildAlternatives.resize(getNumChildren()); 2018 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2019 TreePatternNodePtr Child = getChildShared(i); 2020 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2021 // If there are no alternatives for any child, there are no 2022 // alternatives for this expression as whole. 2023 if (ChildAlternatives[i].empty()) 2024 return; 2025 2026 assert((Child->getPredicateCalls().empty() || 2027 llvm::all_of(ChildAlternatives[i], 2028 [&](const TreePatternNodePtr &NewChild) { 2029 return NewChild->getPredicateCalls() == 2030 Child->getPredicateCalls(); 2031 })) && 2032 "Non-empty child predicate clobbered!"); 2033 } 2034 2035 // The end result is an all-pairs construction of the resultant pattern. 2036 std::vector<unsigned> Idxs; 2037 Idxs.resize(ChildAlternatives.size()); 2038 bool NotDone; 2039 do { 2040 // Create the variant and add it to the output list. 2041 std::vector<TreePatternNodePtr> NewChildren; 2042 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2043 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2044 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2045 getOperator(), std::move(NewChildren), getNumTypes()); 2046 2047 // Copy over properties. 2048 R->setName(getName()); 2049 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2050 R->setPredicateCalls(getPredicateCalls()); 2051 R->setTransformFn(getTransformFn()); 2052 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2053 R->setType(i, getExtType(i)); 2054 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2055 R->setResultIndex(i, getResultIndex(i)); 2056 2057 // Register alternative. 2058 OutAlternatives.push_back(R); 2059 2060 // Increment indices to the next permutation by incrementing the 2061 // indices from last index backward, e.g., generate the sequence 2062 // [0, 0], [0, 1], [1, 0], [1, 1]. 2063 int IdxsIdx; 2064 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2065 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2066 Idxs[IdxsIdx] = 0; 2067 else 2068 break; 2069 } 2070 NotDone = (IdxsIdx >= 0); 2071 } while (NotDone); 2072 2073 return; 2074 } 2075 2076 // Otherwise, we found a reference to a fragment. First, look up its 2077 // TreePattern record. 2078 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2079 2080 // Verify that we are passing the right number of operands. 2081 if (Frag->getNumArgs() != Children.size()) { 2082 TP.error("'" + Op->getName() + "' fragment requires " + 2083 Twine(Frag->getNumArgs()) + " operands!"); 2084 return; 2085 } 2086 2087 TreePredicateFn PredFn(Frag); 2088 unsigned Scope = 0; 2089 if (TreePredicateFn(Frag).usesOperands()) 2090 Scope = TP.getDAGPatterns().allocateScope(); 2091 2092 // Compute the map of formal to actual arguments. 2093 std::map<std::string, TreePatternNodePtr> ArgMap; 2094 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2095 TreePatternNodePtr Child = getChildShared(i); 2096 if (Scope != 0) { 2097 Child = Child->clone(); 2098 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2099 } 2100 ArgMap[Frag->getArgName(i)] = Child; 2101 } 2102 2103 // Loop over all fragment alternatives. 2104 for (const auto &Alternative : Frag->getTrees()) { 2105 TreePatternNodePtr FragTree = Alternative->clone(); 2106 2107 if (!PredFn.isAlwaysTrue()) 2108 FragTree->addPredicateCall(PredFn, Scope); 2109 2110 // Resolve formal arguments to their actual value. 2111 if (Frag->getNumArgs()) 2112 FragTree->SubstituteFormalArguments(ArgMap); 2113 2114 // Transfer types. Note that the resolved alternative may have fewer 2115 // (but not more) results than the PatFrags node. 2116 FragTree->setName(getName()); 2117 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2118 FragTree->UpdateNodeType(i, getExtType(i), TP); 2119 2120 // Transfer in the old predicates. 2121 for (const TreePredicateCall &Pred : getPredicateCalls()) 2122 FragTree->addPredicateCall(Pred); 2123 2124 // The fragment we inlined could have recursive inlining that is needed. See 2125 // if there are any pattern fragments in it and inline them as needed. 2126 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2127 } 2128 } 2129 2130 /// getImplicitType - Check to see if the specified record has an implicit 2131 /// type which should be applied to it. This will infer the type of register 2132 /// references from the register file information, for example. 2133 /// 2134 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2135 /// the F8RC register class argument in: 2136 /// 2137 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2138 /// 2139 /// When Unnamed is false, return the type of a named DAG operand such as the 2140 /// GPR:$src operand above. 2141 /// 2142 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2143 bool NotRegisters, 2144 bool Unnamed, 2145 TreePattern &TP) { 2146 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2147 2148 // Check to see if this is a register operand. 2149 if (R->isSubClassOf("RegisterOperand")) { 2150 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2151 if (NotRegisters) 2152 return TypeSetByHwMode(); // Unknown. 2153 Record *RegClass = R->getValueAsDef("RegClass"); 2154 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2155 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2156 } 2157 2158 // Check to see if this is a register or a register class. 2159 if (R->isSubClassOf("RegisterClass")) { 2160 assert(ResNo == 0 && "Regclass ref only has one result!"); 2161 // An unnamed register class represents itself as an i32 immediate, for 2162 // example on a COPY_TO_REGCLASS instruction. 2163 if (Unnamed) 2164 return TypeSetByHwMode(MVT::i32); 2165 2166 // In a named operand, the register class provides the possible set of 2167 // types. 2168 if (NotRegisters) 2169 return TypeSetByHwMode(); // Unknown. 2170 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2171 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2172 } 2173 2174 if (R->isSubClassOf("PatFrags")) { 2175 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2176 // Pattern fragment types will be resolved when they are inlined. 2177 return TypeSetByHwMode(); // Unknown. 2178 } 2179 2180 if (R->isSubClassOf("Register")) { 2181 assert(ResNo == 0 && "Registers only produce one result!"); 2182 if (NotRegisters) 2183 return TypeSetByHwMode(); // Unknown. 2184 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2185 return TypeSetByHwMode(T.getRegisterVTs(R)); 2186 } 2187 2188 if (R->isSubClassOf("SubRegIndex")) { 2189 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2190 return TypeSetByHwMode(MVT::i32); 2191 } 2192 2193 if (R->isSubClassOf("ValueType")) { 2194 assert(ResNo == 0 && "This node only has one result!"); 2195 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2196 // 2197 // (sext_inreg GPR:$src, i16) 2198 // ~~~ 2199 if (Unnamed) 2200 return TypeSetByHwMode(MVT::Other); 2201 // With a name, the ValueType simply provides the type of the named 2202 // variable. 2203 // 2204 // (sext_inreg i32:$src, i16) 2205 // ~~~~~~~~ 2206 if (NotRegisters) 2207 return TypeSetByHwMode(); // Unknown. 2208 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2209 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2210 } 2211 2212 if (R->isSubClassOf("CondCode")) { 2213 assert(ResNo == 0 && "This node only has one result!"); 2214 // Using a CondCodeSDNode. 2215 return TypeSetByHwMode(MVT::Other); 2216 } 2217 2218 if (R->isSubClassOf("ComplexPattern")) { 2219 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2220 if (NotRegisters) 2221 return TypeSetByHwMode(); // Unknown. 2222 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2223 } 2224 if (R->isSubClassOf("PointerLikeRegClass")) { 2225 assert(ResNo == 0 && "Regclass can only have one result!"); 2226 TypeSetByHwMode VTS(MVT::iPTR); 2227 TP.getInfer().expandOverloads(VTS); 2228 return VTS; 2229 } 2230 2231 if (R->getName() == "node" || R->getName() == "srcvalue" || 2232 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2233 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2234 // Placeholder. 2235 return TypeSetByHwMode(); // Unknown. 2236 } 2237 2238 if (R->isSubClassOf("Operand")) { 2239 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2240 Record *T = R->getValueAsDef("Type"); 2241 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2242 } 2243 2244 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2245 return TypeSetByHwMode(MVT::Other); 2246 } 2247 2248 2249 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2250 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2251 const CodeGenIntrinsic *TreePatternNode:: 2252 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2253 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2254 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2255 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2256 return nullptr; 2257 2258 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2259 return &CDP.getIntrinsicInfo(IID); 2260 } 2261 2262 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2263 /// return the ComplexPattern information, otherwise return null. 2264 const ComplexPattern * 2265 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2266 Record *Rec; 2267 if (isLeaf()) { 2268 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2269 if (!DI) 2270 return nullptr; 2271 Rec = DI->getDef(); 2272 } else 2273 Rec = getOperator(); 2274 2275 if (!Rec->isSubClassOf("ComplexPattern")) 2276 return nullptr; 2277 return &CGP.getComplexPattern(Rec); 2278 } 2279 2280 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2281 // A ComplexPattern specifically declares how many results it fills in. 2282 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2283 return CP->getNumOperands(); 2284 2285 // If MIOperandInfo is specified, that gives the count. 2286 if (isLeaf()) { 2287 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2288 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2289 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2290 if (MIOps->getNumArgs()) 2291 return MIOps->getNumArgs(); 2292 } 2293 } 2294 2295 // Otherwise there is just one result. 2296 return 1; 2297 } 2298 2299 /// NodeHasProperty - Return true if this node has the specified property. 2300 bool TreePatternNode::NodeHasProperty(SDNP Property, 2301 const CodeGenDAGPatterns &CGP) const { 2302 if (isLeaf()) { 2303 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2304 return CP->hasProperty(Property); 2305 2306 return false; 2307 } 2308 2309 if (Property != SDNPHasChain) { 2310 // The chain proprety is already present on the different intrinsic node 2311 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2312 // on the intrinsic. Anything else is specific to the individual intrinsic. 2313 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2314 return Int->hasProperty(Property); 2315 } 2316 2317 if (!Operator->isSubClassOf("SDPatternOperator")) 2318 return false; 2319 2320 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2321 } 2322 2323 2324 2325 2326 /// TreeHasProperty - Return true if any node in this tree has the specified 2327 /// property. 2328 bool TreePatternNode::TreeHasProperty(SDNP Property, 2329 const CodeGenDAGPatterns &CGP) const { 2330 if (NodeHasProperty(Property, CGP)) 2331 return true; 2332 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2333 if (getChild(i)->TreeHasProperty(Property, CGP)) 2334 return true; 2335 return false; 2336 } 2337 2338 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2339 /// commutative intrinsic. 2340 bool 2341 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2342 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2343 return Int->isCommutative; 2344 return false; 2345 } 2346 2347 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2348 if (!N->isLeaf()) 2349 return N->getOperator()->isSubClassOf(Class); 2350 2351 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2352 if (DI && DI->getDef()->isSubClassOf(Class)) 2353 return true; 2354 2355 return false; 2356 } 2357 2358 static void emitTooManyOperandsError(TreePattern &TP, 2359 StringRef InstName, 2360 unsigned Expected, 2361 unsigned Actual) { 2362 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2363 " operands but expected only " + Twine(Expected) + "!"); 2364 } 2365 2366 static void emitTooFewOperandsError(TreePattern &TP, 2367 StringRef InstName, 2368 unsigned Actual) { 2369 TP.error("Instruction '" + InstName + 2370 "' expects more than the provided " + Twine(Actual) + " operands!"); 2371 } 2372 2373 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2374 /// this node and its children in the tree. This returns true if it makes a 2375 /// change, false otherwise. If a type contradiction is found, flag an error. 2376 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2377 if (TP.hasError()) 2378 return false; 2379 2380 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2381 if (isLeaf()) { 2382 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2383 // If it's a regclass or something else known, include the type. 2384 bool MadeChange = false; 2385 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2386 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2387 NotRegisters, 2388 !hasName(), TP), TP); 2389 return MadeChange; 2390 } 2391 2392 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2393 assert(Types.size() == 1 && "Invalid IntInit"); 2394 2395 // Int inits are always integers. :) 2396 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2397 2398 if (!TP.getInfer().isConcrete(Types[0], false)) 2399 return MadeChange; 2400 2401 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2402 for (auto &P : VVT) { 2403 MVT::SimpleValueType VT = P.second.SimpleTy; 2404 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2405 continue; 2406 unsigned Size = MVT(VT).getFixedSizeInBits(); 2407 // Make sure that the value is representable for this type. 2408 if (Size >= 32) 2409 continue; 2410 // Check that the value doesn't use more bits than we have. It must 2411 // either be a sign- or zero-extended equivalent of the original. 2412 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2413 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2414 SignBitAndAbove == 1) 2415 continue; 2416 2417 TP.error("Integer value '" + Twine(II->getValue()) + 2418 "' is out of range for type '" + getEnumName(VT) + "'!"); 2419 break; 2420 } 2421 return MadeChange; 2422 } 2423 2424 return false; 2425 } 2426 2427 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2428 bool MadeChange = false; 2429 2430 // Apply the result type to the node. 2431 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2432 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2433 2434 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2435 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2436 2437 if (getNumChildren() != NumParamVTs + 1) { 2438 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2439 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2440 return false; 2441 } 2442 2443 // Apply type info to the intrinsic ID. 2444 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2445 2446 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2447 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2448 2449 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2450 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2451 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2452 } 2453 return MadeChange; 2454 } 2455 2456 if (getOperator()->isSubClassOf("SDNode")) { 2457 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2458 2459 // Check that the number of operands is sane. Negative operands -> varargs. 2460 if (NI.getNumOperands() >= 0 && 2461 getNumChildren() != (unsigned)NI.getNumOperands()) { 2462 TP.error(getOperator()->getName() + " node requires exactly " + 2463 Twine(NI.getNumOperands()) + " operands!"); 2464 return false; 2465 } 2466 2467 bool MadeChange = false; 2468 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2469 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2470 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2471 return MadeChange; 2472 } 2473 2474 if (getOperator()->isSubClassOf("Instruction")) { 2475 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2476 CodeGenInstruction &InstInfo = 2477 CDP.getTargetInfo().getInstruction(getOperator()); 2478 2479 bool MadeChange = false; 2480 2481 // Apply the result types to the node, these come from the things in the 2482 // (outs) list of the instruction. 2483 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2484 Inst.getNumResults()); 2485 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2486 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2487 2488 // If the instruction has implicit defs, we apply the first one as a result. 2489 // FIXME: This sucks, it should apply all implicit defs. 2490 if (!InstInfo.ImplicitDefs.empty()) { 2491 unsigned ResNo = NumResultsToAdd; 2492 2493 // FIXME: Generalize to multiple possible types and multiple possible 2494 // ImplicitDefs. 2495 MVT::SimpleValueType VT = 2496 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2497 2498 if (VT != MVT::Other) 2499 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2500 } 2501 2502 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2503 // be the same. 2504 if (getOperator()->getName() == "INSERT_SUBREG") { 2505 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2506 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2507 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2508 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2509 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2510 // variadic. 2511 2512 unsigned NChild = getNumChildren(); 2513 if (NChild < 3) { 2514 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2515 return false; 2516 } 2517 2518 if (NChild % 2 == 0) { 2519 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2520 return false; 2521 } 2522 2523 if (!isOperandClass(getChild(0), "RegisterClass")) { 2524 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2525 return false; 2526 } 2527 2528 for (unsigned I = 1; I < NChild; I += 2) { 2529 TreePatternNode *SubIdxChild = getChild(I + 1); 2530 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2531 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2532 Twine(I + 1) + "!"); 2533 return false; 2534 } 2535 } 2536 } 2537 2538 unsigned NumResults = Inst.getNumResults(); 2539 unsigned NumFixedOperands = InstInfo.Operands.size(); 2540 2541 // If one or more operands with a default value appear at the end of the 2542 // formal operand list for an instruction, we allow them to be overridden 2543 // by optional operands provided in the pattern. 2544 // 2545 // But if an operand B without a default appears at any point after an 2546 // operand A with a default, then we don't allow A to be overridden, 2547 // because there would be no way to specify whether the next operand in 2548 // the pattern was intended to override A or skip it. 2549 unsigned NonOverridableOperands = NumFixedOperands; 2550 while (NonOverridableOperands > NumResults && 2551 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2552 --NonOverridableOperands; 2553 2554 unsigned ChildNo = 0; 2555 assert(NumResults <= NumFixedOperands); 2556 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2557 Record *OperandNode = InstInfo.Operands[i].Rec; 2558 2559 // If the operand has a default value, do we use it? We must use the 2560 // default if we've run out of children of the pattern DAG to consume, 2561 // or if the operand is followed by a non-defaulted one. 2562 if (CDP.operandHasDefault(OperandNode) && 2563 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2564 continue; 2565 2566 // If we have run out of child nodes and there _isn't_ a default 2567 // value we can use for the next operand, give an error. 2568 if (ChildNo >= getNumChildren()) { 2569 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2570 return false; 2571 } 2572 2573 TreePatternNode *Child = getChild(ChildNo++); 2574 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2575 2576 // If the operand has sub-operands, they may be provided by distinct 2577 // child patterns, so attempt to match each sub-operand separately. 2578 if (OperandNode->isSubClassOf("Operand")) { 2579 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2580 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2581 // But don't do that if the whole operand is being provided by 2582 // a single ComplexPattern-related Operand. 2583 2584 if (Child->getNumMIResults(CDP) < NumArgs) { 2585 // Match first sub-operand against the child we already have. 2586 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2587 MadeChange |= 2588 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2589 2590 // And the remaining sub-operands against subsequent children. 2591 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2592 if (ChildNo >= getNumChildren()) { 2593 emitTooFewOperandsError(TP, getOperator()->getName(), 2594 getNumChildren()); 2595 return false; 2596 } 2597 Child = getChild(ChildNo++); 2598 2599 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2600 MadeChange |= 2601 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2602 } 2603 continue; 2604 } 2605 } 2606 } 2607 2608 // If we didn't match by pieces above, attempt to match the whole 2609 // operand now. 2610 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2611 } 2612 2613 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2614 emitTooManyOperandsError(TP, getOperator()->getName(), 2615 ChildNo, getNumChildren()); 2616 return false; 2617 } 2618 2619 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2620 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2621 return MadeChange; 2622 } 2623 2624 if (getOperator()->isSubClassOf("ComplexPattern")) { 2625 bool MadeChange = false; 2626 2627 for (unsigned i = 0; i < getNumChildren(); ++i) 2628 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2629 2630 return MadeChange; 2631 } 2632 2633 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2634 2635 // Node transforms always take one operand. 2636 if (getNumChildren() != 1) { 2637 TP.error("Node transform '" + getOperator()->getName() + 2638 "' requires one operand!"); 2639 return false; 2640 } 2641 2642 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2643 return MadeChange; 2644 } 2645 2646 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2647 /// RHS of a commutative operation, not the on LHS. 2648 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2649 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2650 return true; 2651 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2652 return true; 2653 if (isImmAllOnesAllZerosMatch(N)) 2654 return true; 2655 return false; 2656 } 2657 2658 2659 /// canPatternMatch - If it is impossible for this pattern to match on this 2660 /// target, fill in Reason and return false. Otherwise, return true. This is 2661 /// used as a sanity check for .td files (to prevent people from writing stuff 2662 /// that can never possibly work), and to prevent the pattern permuter from 2663 /// generating stuff that is useless. 2664 bool TreePatternNode::canPatternMatch(std::string &Reason, 2665 const CodeGenDAGPatterns &CDP) { 2666 if (isLeaf()) return true; 2667 2668 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2669 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2670 return false; 2671 2672 // If this is an intrinsic, handle cases that would make it not match. For 2673 // example, if an operand is required to be an immediate. 2674 if (getOperator()->isSubClassOf("Intrinsic")) { 2675 // TODO: 2676 return true; 2677 } 2678 2679 if (getOperator()->isSubClassOf("ComplexPattern")) 2680 return true; 2681 2682 // If this node is a commutative operator, check that the LHS isn't an 2683 // immediate. 2684 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2685 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2686 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2687 // Scan all of the operands of the node and make sure that only the last one 2688 // is a constant node, unless the RHS also is. 2689 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2690 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2691 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2692 if (OnlyOnRHSOfCommutative(getChild(i))) { 2693 Reason="Immediate value must be on the RHS of commutative operators!"; 2694 return false; 2695 } 2696 } 2697 } 2698 2699 return true; 2700 } 2701 2702 //===----------------------------------------------------------------------===// 2703 // TreePattern implementation 2704 // 2705 2706 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2707 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2708 isInputPattern(isInput), HasError(false), 2709 Infer(*this) { 2710 for (Init *I : RawPat->getValues()) 2711 Trees.push_back(ParseTreePattern(I, "")); 2712 } 2713 2714 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2715 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2716 isInputPattern(isInput), HasError(false), 2717 Infer(*this) { 2718 Trees.push_back(ParseTreePattern(Pat, "")); 2719 } 2720 2721 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2722 CodeGenDAGPatterns &cdp) 2723 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2724 Infer(*this) { 2725 Trees.push_back(Pat); 2726 } 2727 2728 void TreePattern::error(const Twine &Msg) { 2729 if (HasError) 2730 return; 2731 dump(); 2732 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2733 HasError = true; 2734 } 2735 2736 void TreePattern::ComputeNamedNodes() { 2737 for (TreePatternNodePtr &Tree : Trees) 2738 ComputeNamedNodes(Tree.get()); 2739 } 2740 2741 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2742 if (!N->getName().empty()) 2743 NamedNodes[N->getName()].push_back(N); 2744 2745 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2746 ComputeNamedNodes(N->getChild(i)); 2747 } 2748 2749 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2750 StringRef OpName) { 2751 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2752 Record *R = DI->getDef(); 2753 2754 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2755 // TreePatternNode of its own. For example: 2756 /// (foo GPR, imm) -> (foo GPR, (imm)) 2757 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2758 return ParseTreePattern( 2759 DagInit::get(DI, nullptr, 2760 std::vector<std::pair<Init*, StringInit*> >()), 2761 OpName); 2762 2763 // Input argument? 2764 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2765 if (R->getName() == "node" && !OpName.empty()) { 2766 if (OpName.empty()) 2767 error("'node' argument requires a name to match with operand list"); 2768 Args.push_back(std::string(OpName)); 2769 } 2770 2771 Res->setName(OpName); 2772 return Res; 2773 } 2774 2775 // ?:$name or just $name. 2776 if (isa<UnsetInit>(TheInit)) { 2777 if (OpName.empty()) 2778 error("'?' argument requires a name to match with operand list"); 2779 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2780 Args.push_back(std::string(OpName)); 2781 Res->setName(OpName); 2782 return Res; 2783 } 2784 2785 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2786 if (!OpName.empty()) 2787 error("Constant int or bit argument should not have a name!"); 2788 if (isa<BitInit>(TheInit)) 2789 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2790 return std::make_shared<TreePatternNode>(TheInit, 1); 2791 } 2792 2793 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2794 // Turn this into an IntInit. 2795 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2796 if (!II || !isa<IntInit>(II)) 2797 error("Bits value must be constants!"); 2798 return ParseTreePattern(II, OpName); 2799 } 2800 2801 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2802 if (!Dag) { 2803 TheInit->print(errs()); 2804 error("Pattern has unexpected init kind!"); 2805 } 2806 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2807 if (!OpDef) error("Pattern has unexpected operator type!"); 2808 Record *Operator = OpDef->getDef(); 2809 2810 if (Operator->isSubClassOf("ValueType")) { 2811 // If the operator is a ValueType, then this must be "type cast" of a leaf 2812 // node. 2813 if (Dag->getNumArgs() != 1) 2814 error("Type cast only takes one operand!"); 2815 2816 TreePatternNodePtr New = 2817 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2818 2819 // Apply the type cast. 2820 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2821 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2822 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2823 2824 if (!OpName.empty()) 2825 error("ValueType cast should not have a name!"); 2826 return New; 2827 } 2828 2829 // Verify that this is something that makes sense for an operator. 2830 if (!Operator->isSubClassOf("PatFrags") && 2831 !Operator->isSubClassOf("SDNode") && 2832 !Operator->isSubClassOf("Instruction") && 2833 !Operator->isSubClassOf("SDNodeXForm") && 2834 !Operator->isSubClassOf("Intrinsic") && 2835 !Operator->isSubClassOf("ComplexPattern") && 2836 Operator->getName() != "set" && 2837 Operator->getName() != "implicit") 2838 error("Unrecognized node '" + Operator->getName() + "'!"); 2839 2840 // Check to see if this is something that is illegal in an input pattern. 2841 if (isInputPattern) { 2842 if (Operator->isSubClassOf("Instruction") || 2843 Operator->isSubClassOf("SDNodeXForm")) 2844 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2845 } else { 2846 if (Operator->isSubClassOf("Intrinsic")) 2847 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2848 2849 if (Operator->isSubClassOf("SDNode") && 2850 Operator->getName() != "imm" && 2851 Operator->getName() != "timm" && 2852 Operator->getName() != "fpimm" && 2853 Operator->getName() != "tglobaltlsaddr" && 2854 Operator->getName() != "tconstpool" && 2855 Operator->getName() != "tjumptable" && 2856 Operator->getName() != "tframeindex" && 2857 Operator->getName() != "texternalsym" && 2858 Operator->getName() != "tblockaddress" && 2859 Operator->getName() != "tglobaladdr" && 2860 Operator->getName() != "bb" && 2861 Operator->getName() != "vt" && 2862 Operator->getName() != "mcsym") 2863 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2864 } 2865 2866 std::vector<TreePatternNodePtr> Children; 2867 2868 // Parse all the operands. 2869 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2870 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2871 2872 // Get the actual number of results before Operator is converted to an intrinsic 2873 // node (which is hard-coded to have either zero or one result). 2874 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2875 2876 // If the operator is an intrinsic, then this is just syntactic sugar for 2877 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2878 // convert the intrinsic name to a number. 2879 if (Operator->isSubClassOf("Intrinsic")) { 2880 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2881 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2882 2883 // If this intrinsic returns void, it must have side-effects and thus a 2884 // chain. 2885 if (Int.IS.RetVTs.empty()) 2886 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2887 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2888 // Has side-effects, requires chain. 2889 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2890 else // Otherwise, no chain. 2891 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2892 2893 Children.insert(Children.begin(), 2894 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2895 } 2896 2897 if (Operator->isSubClassOf("ComplexPattern")) { 2898 for (unsigned i = 0; i < Children.size(); ++i) { 2899 TreePatternNodePtr Child = Children[i]; 2900 2901 if (Child->getName().empty()) 2902 error("All arguments to a ComplexPattern must be named"); 2903 2904 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2905 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2906 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2907 auto OperandId = std::make_pair(Operator, i); 2908 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2909 if (PrevOp != ComplexPatternOperands.end()) { 2910 if (PrevOp->getValue() != OperandId) 2911 error("All ComplexPattern operands must appear consistently: " 2912 "in the same order in just one ComplexPattern instance."); 2913 } else 2914 ComplexPatternOperands[Child->getName()] = OperandId; 2915 } 2916 } 2917 2918 TreePatternNodePtr Result = 2919 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2920 NumResults); 2921 Result->setName(OpName); 2922 2923 if (Dag->getName()) { 2924 assert(Result->getName().empty()); 2925 Result->setName(Dag->getNameStr()); 2926 } 2927 return Result; 2928 } 2929 2930 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2931 /// will never match in favor of something obvious that will. This is here 2932 /// strictly as a convenience to target authors because it allows them to write 2933 /// more type generic things and have useless type casts fold away. 2934 /// 2935 /// This returns true if any change is made. 2936 static bool SimplifyTree(TreePatternNodePtr &N) { 2937 if (N->isLeaf()) 2938 return false; 2939 2940 // If we have a bitconvert with a resolved type and if the source and 2941 // destination types are the same, then the bitconvert is useless, remove it. 2942 // 2943 // We make an exception if the types are completely empty. This can come up 2944 // when the pattern being simplified is in the Fragments list of a PatFrags, 2945 // so that the operand is just an untyped "node". In that situation we leave 2946 // bitconverts unsimplified, and simplify them later once the fragment is 2947 // expanded into its true context. 2948 if (N->getOperator()->getName() == "bitconvert" && 2949 N->getExtType(0).isValueTypeByHwMode(false) && 2950 !N->getExtType(0).empty() && 2951 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2952 N->getName().empty()) { 2953 N = N->getChildShared(0); 2954 SimplifyTree(N); 2955 return true; 2956 } 2957 2958 // Walk all children. 2959 bool MadeChange = false; 2960 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2961 TreePatternNodePtr Child = N->getChildShared(i); 2962 MadeChange |= SimplifyTree(Child); 2963 N->setChild(i, std::move(Child)); 2964 } 2965 return MadeChange; 2966 } 2967 2968 2969 2970 /// InferAllTypes - Infer/propagate as many types throughout the expression 2971 /// patterns as possible. Return true if all types are inferred, false 2972 /// otherwise. Flags an error if a type contradiction is found. 2973 bool TreePattern:: 2974 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2975 if (NamedNodes.empty()) 2976 ComputeNamedNodes(); 2977 2978 bool MadeChange = true; 2979 while (MadeChange) { 2980 MadeChange = false; 2981 for (TreePatternNodePtr &Tree : Trees) { 2982 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2983 MadeChange |= SimplifyTree(Tree); 2984 } 2985 2986 // If there are constraints on our named nodes, apply them. 2987 for (auto &Entry : NamedNodes) { 2988 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2989 2990 // If we have input named node types, propagate their types to the named 2991 // values here. 2992 if (InNamedTypes) { 2993 if (!InNamedTypes->count(Entry.getKey())) { 2994 error("Node '" + std::string(Entry.getKey()) + 2995 "' in output pattern but not input pattern"); 2996 return true; 2997 } 2998 2999 const SmallVectorImpl<TreePatternNode*> &InNodes = 3000 InNamedTypes->find(Entry.getKey())->second; 3001 3002 // The input types should be fully resolved by now. 3003 for (TreePatternNode *Node : Nodes) { 3004 // If this node is a register class, and it is the root of the pattern 3005 // then we're mapping something onto an input register. We allow 3006 // changing the type of the input register in this case. This allows 3007 // us to match things like: 3008 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3009 if (Node == Trees[0].get() && Node->isLeaf()) { 3010 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3011 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3012 DI->getDef()->isSubClassOf("RegisterOperand"))) 3013 continue; 3014 } 3015 3016 assert(Node->getNumTypes() == 1 && 3017 InNodes[0]->getNumTypes() == 1 && 3018 "FIXME: cannot name multiple result nodes yet"); 3019 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3020 *this); 3021 } 3022 } 3023 3024 // If there are multiple nodes with the same name, they must all have the 3025 // same type. 3026 if (Entry.second.size() > 1) { 3027 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3028 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3029 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3030 "FIXME: cannot name multiple result nodes yet"); 3031 3032 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3033 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3034 } 3035 } 3036 } 3037 } 3038 3039 bool HasUnresolvedTypes = false; 3040 for (const TreePatternNodePtr &Tree : Trees) 3041 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3042 return !HasUnresolvedTypes; 3043 } 3044 3045 void TreePattern::print(raw_ostream &OS) const { 3046 OS << getRecord()->getName(); 3047 if (!Args.empty()) { 3048 OS << "("; 3049 ListSeparator LS; 3050 for (const std::string &Arg : Args) 3051 OS << LS << Arg; 3052 OS << ")"; 3053 } 3054 OS << ": "; 3055 3056 if (Trees.size() > 1) 3057 OS << "[\n"; 3058 for (const TreePatternNodePtr &Tree : Trees) { 3059 OS << "\t"; 3060 Tree->print(OS); 3061 OS << "\n"; 3062 } 3063 3064 if (Trees.size() > 1) 3065 OS << "]\n"; 3066 } 3067 3068 void TreePattern::dump() const { print(errs()); } 3069 3070 //===----------------------------------------------------------------------===// 3071 // CodeGenDAGPatterns implementation 3072 // 3073 3074 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3075 PatternRewriterFn PatternRewriter) 3076 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3077 PatternRewriter(PatternRewriter) { 3078 3079 Intrinsics = CodeGenIntrinsicTable(Records); 3080 ParseNodeInfo(); 3081 ParseNodeTransforms(); 3082 ParseComplexPatterns(); 3083 ParsePatternFragments(); 3084 ParseDefaultOperands(); 3085 ParseInstructions(); 3086 ParsePatternFragments(/*OutFrags*/true); 3087 ParsePatterns(); 3088 3089 // Generate variants. For example, commutative patterns can match 3090 // multiple ways. Add them to PatternsToMatch as well. 3091 GenerateVariants(); 3092 3093 // Break patterns with parameterized types into a series of patterns, 3094 // where each one has a fixed type and is predicated on the conditions 3095 // of the associated HW mode. 3096 ExpandHwModeBasedTypes(); 3097 3098 // Infer instruction flags. For example, we can detect loads, 3099 // stores, and side effects in many cases by examining an 3100 // instruction's pattern. 3101 InferInstructionFlags(); 3102 3103 // Verify that instruction flags match the patterns. 3104 VerifyInstructionFlags(); 3105 } 3106 3107 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3108 Record *N = Records.getDef(Name); 3109 if (!N || !N->isSubClassOf("SDNode")) 3110 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3111 3112 return N; 3113 } 3114 3115 // Parse all of the SDNode definitions for the target, populating SDNodes. 3116 void CodeGenDAGPatterns::ParseNodeInfo() { 3117 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3118 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3119 3120 while (!Nodes.empty()) { 3121 Record *R = Nodes.back(); 3122 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3123 Nodes.pop_back(); 3124 } 3125 3126 // Get the builtin intrinsic nodes. 3127 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3128 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3129 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3130 } 3131 3132 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3133 /// map, and emit them to the file as functions. 3134 void CodeGenDAGPatterns::ParseNodeTransforms() { 3135 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3136 while (!Xforms.empty()) { 3137 Record *XFormNode = Xforms.back(); 3138 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3139 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3140 SDNodeXForms.insert( 3141 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3142 3143 Xforms.pop_back(); 3144 } 3145 } 3146 3147 void CodeGenDAGPatterns::ParseComplexPatterns() { 3148 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3149 while (!AMs.empty()) { 3150 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3151 AMs.pop_back(); 3152 } 3153 } 3154 3155 3156 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3157 /// file, building up the PatternFragments map. After we've collected them all, 3158 /// inline fragments together as necessary, so that there are no references left 3159 /// inside a pattern fragment to a pattern fragment. 3160 /// 3161 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3162 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3163 3164 // First step, parse all of the fragments. 3165 for (Record *Frag : Fragments) { 3166 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3167 continue; 3168 3169 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3170 TreePattern *P = 3171 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3172 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3173 *this)).get(); 3174 3175 // Validate the argument list, converting it to set, to discard duplicates. 3176 std::vector<std::string> &Args = P->getArgList(); 3177 // Copy the args so we can take StringRefs to them. 3178 auto ArgsCopy = Args; 3179 SmallDenseSet<StringRef, 4> OperandsSet; 3180 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3181 3182 if (OperandsSet.count("")) 3183 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3184 3185 // Parse the operands list. 3186 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3187 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3188 // Special cases: ops == outs == ins. Different names are used to 3189 // improve readability. 3190 if (!OpsOp || 3191 (OpsOp->getDef()->getName() != "ops" && 3192 OpsOp->getDef()->getName() != "outs" && 3193 OpsOp->getDef()->getName() != "ins")) 3194 P->error("Operands list should start with '(ops ... '!"); 3195 3196 // Copy over the arguments. 3197 Args.clear(); 3198 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3199 if (!isa<DefInit>(OpsList->getArg(j)) || 3200 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3201 P->error("Operands list should all be 'node' values."); 3202 if (!OpsList->getArgName(j)) 3203 P->error("Operands list should have names for each operand!"); 3204 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3205 if (!OperandsSet.count(ArgNameStr)) 3206 P->error("'" + ArgNameStr + 3207 "' does not occur in pattern or was multiply specified!"); 3208 OperandsSet.erase(ArgNameStr); 3209 Args.push_back(std::string(ArgNameStr)); 3210 } 3211 3212 if (!OperandsSet.empty()) 3213 P->error("Operands list does not contain an entry for operand '" + 3214 *OperandsSet.begin() + "'!"); 3215 3216 // If there is a node transformation corresponding to this, keep track of 3217 // it. 3218 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3219 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3220 for (const auto &T : P->getTrees()) 3221 T->setTransformFn(Transform); 3222 } 3223 3224 // Now that we've parsed all of the tree fragments, do a closure on them so 3225 // that there are not references to PatFrags left inside of them. 3226 for (Record *Frag : Fragments) { 3227 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3228 continue; 3229 3230 TreePattern &ThePat = *PatternFragments[Frag]; 3231 ThePat.InlinePatternFragments(); 3232 3233 // Infer as many types as possible. Don't worry about it if we don't infer 3234 // all of them, some may depend on the inputs of the pattern. Also, don't 3235 // validate type sets; validation may cause spurious failures e.g. if a 3236 // fragment needs floating-point types but the current target does not have 3237 // any (this is only an error if that fragment is ever used!). 3238 { 3239 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3240 ThePat.InferAllTypes(); 3241 ThePat.resetError(); 3242 } 3243 3244 // If debugging, print out the pattern fragment result. 3245 LLVM_DEBUG(ThePat.dump()); 3246 } 3247 } 3248 3249 void CodeGenDAGPatterns::ParseDefaultOperands() { 3250 std::vector<Record*> DefaultOps; 3251 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3252 3253 // Find some SDNode. 3254 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3255 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3256 3257 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3258 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3259 3260 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3261 // SomeSDnode so that we can parse this. 3262 std::vector<std::pair<Init*, StringInit*> > Ops; 3263 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3264 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3265 DefaultInfo->getArgName(op))); 3266 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3267 3268 // Create a TreePattern to parse this. 3269 TreePattern P(DefaultOps[i], DI, false, *this); 3270 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3271 3272 // Copy the operands over into a DAGDefaultOperand. 3273 DAGDefaultOperand DefaultOpInfo; 3274 3275 const TreePatternNodePtr &T = P.getTree(0); 3276 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3277 TreePatternNodePtr TPN = T->getChildShared(op); 3278 while (TPN->ApplyTypeConstraints(P, false)) 3279 /* Resolve all types */; 3280 3281 if (TPN->ContainsUnresolvedType(P)) { 3282 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3283 DefaultOps[i]->getName() + 3284 "' doesn't have a concrete type!"); 3285 } 3286 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3287 } 3288 3289 // Insert it into the DefaultOperands map so we can find it later. 3290 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3291 } 3292 } 3293 3294 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3295 /// instruction input. Return true if this is a real use. 3296 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3297 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3298 // No name -> not interesting. 3299 if (Pat->getName().empty()) { 3300 if (Pat->isLeaf()) { 3301 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3302 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3303 DI->getDef()->isSubClassOf("RegisterOperand"))) 3304 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3305 } 3306 return false; 3307 } 3308 3309 Record *Rec; 3310 if (Pat->isLeaf()) { 3311 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3312 if (!DI) 3313 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3314 Rec = DI->getDef(); 3315 } else { 3316 Rec = Pat->getOperator(); 3317 } 3318 3319 // SRCVALUE nodes are ignored. 3320 if (Rec->getName() == "srcvalue") 3321 return false; 3322 3323 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3324 if (!Slot) { 3325 Slot = Pat; 3326 return true; 3327 } 3328 Record *SlotRec; 3329 if (Slot->isLeaf()) { 3330 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3331 } else { 3332 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3333 SlotRec = Slot->getOperator(); 3334 } 3335 3336 // Ensure that the inputs agree if we've already seen this input. 3337 if (Rec != SlotRec) 3338 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3339 // Ensure that the types can agree as well. 3340 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3341 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3342 if (Slot->getExtTypes() != Pat->getExtTypes()) 3343 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3344 return true; 3345 } 3346 3347 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3348 /// part of "I", the instruction), computing the set of inputs and outputs of 3349 /// the pattern. Report errors if we see anything naughty. 3350 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3351 TreePattern &I, TreePatternNodePtr Pat, 3352 std::map<std::string, TreePatternNodePtr> &InstInputs, 3353 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3354 &InstResults, 3355 std::vector<Record *> &InstImpResults) { 3356 3357 // The instruction pattern still has unresolved fragments. For *named* 3358 // nodes we must resolve those here. This may not result in multiple 3359 // alternatives. 3360 if (!Pat->getName().empty()) { 3361 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3362 SrcPattern.InlinePatternFragments(); 3363 SrcPattern.InferAllTypes(); 3364 Pat = SrcPattern.getOnlyTree(); 3365 } 3366 3367 if (Pat->isLeaf()) { 3368 bool isUse = HandleUse(I, Pat, InstInputs); 3369 if (!isUse && Pat->getTransformFn()) 3370 I.error("Cannot specify a transform function for a non-input value!"); 3371 return; 3372 } 3373 3374 if (Pat->getOperator()->getName() == "implicit") { 3375 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3376 TreePatternNode *Dest = Pat->getChild(i); 3377 if (!Dest->isLeaf()) 3378 I.error("implicitly defined value should be a register!"); 3379 3380 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3381 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3382 I.error("implicitly defined value should be a register!"); 3383 InstImpResults.push_back(Val->getDef()); 3384 } 3385 return; 3386 } 3387 3388 if (Pat->getOperator()->getName() != "set") { 3389 // If this is not a set, verify that the children nodes are not void typed, 3390 // and recurse. 3391 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3392 if (Pat->getChild(i)->getNumTypes() == 0) 3393 I.error("Cannot have void nodes inside of patterns!"); 3394 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3395 InstResults, InstImpResults); 3396 } 3397 3398 // If this is a non-leaf node with no children, treat it basically as if 3399 // it were a leaf. This handles nodes like (imm). 3400 bool isUse = HandleUse(I, Pat, InstInputs); 3401 3402 if (!isUse && Pat->getTransformFn()) 3403 I.error("Cannot specify a transform function for a non-input value!"); 3404 return; 3405 } 3406 3407 // Otherwise, this is a set, validate and collect instruction results. 3408 if (Pat->getNumChildren() == 0) 3409 I.error("set requires operands!"); 3410 3411 if (Pat->getTransformFn()) 3412 I.error("Cannot specify a transform function on a set node!"); 3413 3414 // Check the set destinations. 3415 unsigned NumDests = Pat->getNumChildren()-1; 3416 for (unsigned i = 0; i != NumDests; ++i) { 3417 TreePatternNodePtr Dest = Pat->getChildShared(i); 3418 // For set destinations we also must resolve fragments here. 3419 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3420 DestPattern.InlinePatternFragments(); 3421 DestPattern.InferAllTypes(); 3422 Dest = DestPattern.getOnlyTree(); 3423 3424 if (!Dest->isLeaf()) 3425 I.error("set destination should be a register!"); 3426 3427 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3428 if (!Val) { 3429 I.error("set destination should be a register!"); 3430 continue; 3431 } 3432 3433 if (Val->getDef()->isSubClassOf("RegisterClass") || 3434 Val->getDef()->isSubClassOf("ValueType") || 3435 Val->getDef()->isSubClassOf("RegisterOperand") || 3436 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3437 if (Dest->getName().empty()) 3438 I.error("set destination must have a name!"); 3439 if (InstResults.count(Dest->getName())) 3440 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3441 InstResults[Dest->getName()] = Dest; 3442 } else if (Val->getDef()->isSubClassOf("Register")) { 3443 InstImpResults.push_back(Val->getDef()); 3444 } else { 3445 I.error("set destination should be a register!"); 3446 } 3447 } 3448 3449 // Verify and collect info from the computation. 3450 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3451 InstResults, InstImpResults); 3452 } 3453 3454 //===----------------------------------------------------------------------===// 3455 // Instruction Analysis 3456 //===----------------------------------------------------------------------===// 3457 3458 class InstAnalyzer { 3459 const CodeGenDAGPatterns &CDP; 3460 public: 3461 bool hasSideEffects; 3462 bool mayStore; 3463 bool mayLoad; 3464 bool isBitcast; 3465 bool isVariadic; 3466 bool hasChain; 3467 3468 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3469 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3470 isBitcast(false), isVariadic(false), hasChain(false) {} 3471 3472 void Analyze(const PatternToMatch &Pat) { 3473 const TreePatternNode *N = Pat.getSrcPattern(); 3474 AnalyzeNode(N); 3475 // These properties are detected only on the root node. 3476 isBitcast = IsNodeBitcast(N); 3477 } 3478 3479 private: 3480 bool IsNodeBitcast(const TreePatternNode *N) const { 3481 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3482 return false; 3483 3484 if (N->isLeaf()) 3485 return false; 3486 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3487 return false; 3488 3489 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3490 return false; 3491 3492 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3493 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3494 return false; 3495 return OpInfo.getEnumName() == "ISD::BITCAST"; 3496 } 3497 3498 public: 3499 void AnalyzeNode(const TreePatternNode *N) { 3500 if (N->isLeaf()) { 3501 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3502 Record *LeafRec = DI->getDef(); 3503 // Handle ComplexPattern leaves. 3504 if (LeafRec->isSubClassOf("ComplexPattern")) { 3505 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3506 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3507 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3508 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3509 } 3510 } 3511 return; 3512 } 3513 3514 // Analyze children. 3515 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3516 AnalyzeNode(N->getChild(i)); 3517 3518 // Notice properties of the node. 3519 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3520 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3521 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3522 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3523 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3524 3525 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3526 // If this is an intrinsic, analyze it. 3527 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3528 mayLoad = true;// These may load memory. 3529 3530 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3531 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3532 3533 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3534 IntInfo->hasSideEffects) 3535 // ReadWriteMem intrinsics can have other strange effects. 3536 hasSideEffects = true; 3537 } 3538 } 3539 3540 }; 3541 3542 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3543 const InstAnalyzer &PatInfo, 3544 Record *PatDef) { 3545 bool Error = false; 3546 3547 // Remember where InstInfo got its flags. 3548 if (InstInfo.hasUndefFlags()) 3549 InstInfo.InferredFrom = PatDef; 3550 3551 // Check explicitly set flags for consistency. 3552 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3553 !InstInfo.hasSideEffects_Unset) { 3554 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3555 // the pattern has no side effects. That could be useful for div/rem 3556 // instructions that may trap. 3557 if (!InstInfo.hasSideEffects) { 3558 Error = true; 3559 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3560 Twine(InstInfo.hasSideEffects)); 3561 } 3562 } 3563 3564 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3565 Error = true; 3566 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3567 Twine(InstInfo.mayStore)); 3568 } 3569 3570 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3571 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3572 // Some targets translate immediates to loads. 3573 if (!InstInfo.mayLoad) { 3574 Error = true; 3575 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3576 Twine(InstInfo.mayLoad)); 3577 } 3578 } 3579 3580 // Transfer inferred flags. 3581 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3582 InstInfo.mayStore |= PatInfo.mayStore; 3583 InstInfo.mayLoad |= PatInfo.mayLoad; 3584 3585 // These flags are silently added without any verification. 3586 // FIXME: To match historical behavior of TableGen, for now add those flags 3587 // only when we're inferring from the primary instruction pattern. 3588 if (PatDef->isSubClassOf("Instruction")) { 3589 InstInfo.isBitcast |= PatInfo.isBitcast; 3590 InstInfo.hasChain |= PatInfo.hasChain; 3591 InstInfo.hasChain_Inferred = true; 3592 } 3593 3594 // Don't infer isVariadic. This flag means something different on SDNodes and 3595 // instructions. For example, a CALL SDNode is variadic because it has the 3596 // call arguments as operands, but a CALL instruction is not variadic - it 3597 // has argument registers as implicit, not explicit uses. 3598 3599 return Error; 3600 } 3601 3602 /// hasNullFragReference - Return true if the DAG has any reference to the 3603 /// null_frag operator. 3604 static bool hasNullFragReference(DagInit *DI) { 3605 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3606 if (!OpDef) return false; 3607 Record *Operator = OpDef->getDef(); 3608 3609 // If this is the null fragment, return true. 3610 if (Operator->getName() == "null_frag") return true; 3611 // If any of the arguments reference the null fragment, return true. 3612 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3613 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3614 if (Arg->getDef()->getName() == "null_frag") 3615 return true; 3616 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3617 if (Arg && hasNullFragReference(Arg)) 3618 return true; 3619 } 3620 3621 return false; 3622 } 3623 3624 /// hasNullFragReference - Return true if any DAG in the list references 3625 /// the null_frag operator. 3626 static bool hasNullFragReference(ListInit *LI) { 3627 for (Init *I : LI->getValues()) { 3628 DagInit *DI = dyn_cast<DagInit>(I); 3629 assert(DI && "non-dag in an instruction Pattern list?!"); 3630 if (hasNullFragReference(DI)) 3631 return true; 3632 } 3633 return false; 3634 } 3635 3636 /// Get all the instructions in a tree. 3637 static void 3638 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3639 if (Tree->isLeaf()) 3640 return; 3641 if (Tree->getOperator()->isSubClassOf("Instruction")) 3642 Instrs.push_back(Tree->getOperator()); 3643 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3644 getInstructionsInTree(Tree->getChild(i), Instrs); 3645 } 3646 3647 /// Check the class of a pattern leaf node against the instruction operand it 3648 /// represents. 3649 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3650 Record *Leaf) { 3651 if (OI.Rec == Leaf) 3652 return true; 3653 3654 // Allow direct value types to be used in instruction set patterns. 3655 // The type will be checked later. 3656 if (Leaf->isSubClassOf("ValueType")) 3657 return true; 3658 3659 // Patterns can also be ComplexPattern instances. 3660 if (Leaf->isSubClassOf("ComplexPattern")) 3661 return true; 3662 3663 return false; 3664 } 3665 3666 void CodeGenDAGPatterns::parseInstructionPattern( 3667 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3668 3669 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3670 3671 // Parse the instruction. 3672 TreePattern I(CGI.TheDef, Pat, true, *this); 3673 3674 // InstInputs - Keep track of all of the inputs of the instruction, along 3675 // with the record they are declared as. 3676 std::map<std::string, TreePatternNodePtr> InstInputs; 3677 3678 // InstResults - Keep track of all the virtual registers that are 'set' 3679 // in the instruction, including what reg class they are. 3680 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3681 InstResults; 3682 3683 std::vector<Record*> InstImpResults; 3684 3685 // Verify that the top-level forms in the instruction are of void type, and 3686 // fill in the InstResults map. 3687 SmallString<32> TypesString; 3688 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3689 TypesString.clear(); 3690 TreePatternNodePtr Pat = I.getTree(j); 3691 if (Pat->getNumTypes() != 0) { 3692 raw_svector_ostream OS(TypesString); 3693 ListSeparator LS; 3694 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3695 OS << LS; 3696 Pat->getExtType(k).writeToStream(OS); 3697 } 3698 I.error("Top-level forms in instruction pattern should have" 3699 " void types, has types " + 3700 OS.str()); 3701 } 3702 3703 // Find inputs and outputs, and verify the structure of the uses/defs. 3704 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3705 InstImpResults); 3706 } 3707 3708 // Now that we have inputs and outputs of the pattern, inspect the operands 3709 // list for the instruction. This determines the order that operands are 3710 // added to the machine instruction the node corresponds to. 3711 unsigned NumResults = InstResults.size(); 3712 3713 // Parse the operands list from the (ops) list, validating it. 3714 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3715 3716 // Check that all of the results occur first in the list. 3717 std::vector<Record*> Results; 3718 std::vector<unsigned> ResultIndices; 3719 SmallVector<TreePatternNodePtr, 2> ResNodes; 3720 for (unsigned i = 0; i != NumResults; ++i) { 3721 if (i == CGI.Operands.size()) { 3722 const std::string &OpName = 3723 llvm::find_if( 3724 InstResults, 3725 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3726 return P.second; 3727 }) 3728 ->first; 3729 3730 I.error("'" + OpName + "' set but does not appear in operand list!"); 3731 } 3732 3733 const std::string &OpName = CGI.Operands[i].Name; 3734 3735 // Check that it exists in InstResults. 3736 auto InstResultIter = InstResults.find(OpName); 3737 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3738 I.error("Operand $" + OpName + " does not exist in operand list!"); 3739 3740 TreePatternNodePtr RNode = InstResultIter->second; 3741 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3742 ResNodes.push_back(std::move(RNode)); 3743 if (!R) 3744 I.error("Operand $" + OpName + " should be a set destination: all " 3745 "outputs must occur before inputs in operand list!"); 3746 3747 if (!checkOperandClass(CGI.Operands[i], R)) 3748 I.error("Operand $" + OpName + " class mismatch!"); 3749 3750 // Remember the return type. 3751 Results.push_back(CGI.Operands[i].Rec); 3752 3753 // Remember the result index. 3754 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3755 3756 // Okay, this one checks out. 3757 InstResultIter->second = nullptr; 3758 } 3759 3760 // Loop over the inputs next. 3761 std::vector<TreePatternNodePtr> ResultNodeOperands; 3762 std::vector<Record*> Operands; 3763 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3764 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3765 const std::string &OpName = Op.Name; 3766 if (OpName.empty()) 3767 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3768 3769 if (!InstInputs.count(OpName)) { 3770 // If this is an operand with a DefaultOps set filled in, we can ignore 3771 // this. When we codegen it, we will do so as always executed. 3772 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3773 // Does it have a non-empty DefaultOps field? If so, ignore this 3774 // operand. 3775 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3776 continue; 3777 } 3778 I.error("Operand $" + OpName + 3779 " does not appear in the instruction pattern"); 3780 } 3781 TreePatternNodePtr InVal = InstInputs[OpName]; 3782 InstInputs.erase(OpName); // It occurred, remove from map. 3783 3784 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3785 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3786 if (!checkOperandClass(Op, InRec)) 3787 I.error("Operand $" + OpName + "'s register class disagrees" 3788 " between the operand and pattern"); 3789 } 3790 Operands.push_back(Op.Rec); 3791 3792 // Construct the result for the dest-pattern operand list. 3793 TreePatternNodePtr OpNode = InVal->clone(); 3794 3795 // No predicate is useful on the result. 3796 OpNode->clearPredicateCalls(); 3797 3798 // Promote the xform function to be an explicit node if set. 3799 if (Record *Xform = OpNode->getTransformFn()) { 3800 OpNode->setTransformFn(nullptr); 3801 std::vector<TreePatternNodePtr> Children; 3802 Children.push_back(OpNode); 3803 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3804 OpNode->getNumTypes()); 3805 } 3806 3807 ResultNodeOperands.push_back(std::move(OpNode)); 3808 } 3809 3810 if (!InstInputs.empty()) 3811 I.error("Input operand $" + InstInputs.begin()->first + 3812 " occurs in pattern but not in operands list!"); 3813 3814 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3815 I.getRecord(), std::move(ResultNodeOperands), 3816 GetNumNodeResults(I.getRecord(), *this)); 3817 // Copy fully inferred output node types to instruction result pattern. 3818 for (unsigned i = 0; i != NumResults; ++i) { 3819 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3820 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3821 ResultPattern->setResultIndex(i, ResultIndices[i]); 3822 } 3823 3824 // FIXME: Assume only the first tree is the pattern. The others are clobber 3825 // nodes. 3826 TreePatternNodePtr Pattern = I.getTree(0); 3827 TreePatternNodePtr SrcPattern; 3828 if (Pattern->getOperator()->getName() == "set") { 3829 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3830 } else{ 3831 // Not a set (store or something?) 3832 SrcPattern = Pattern; 3833 } 3834 3835 // Create and insert the instruction. 3836 // FIXME: InstImpResults should not be part of DAGInstruction. 3837 Record *R = I.getRecord(); 3838 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3839 std::forward_as_tuple(Results, Operands, InstImpResults, 3840 SrcPattern, ResultPattern)); 3841 3842 LLVM_DEBUG(I.dump()); 3843 } 3844 3845 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3846 /// any fragments involved. This populates the Instructions list with fully 3847 /// resolved instructions. 3848 void CodeGenDAGPatterns::ParseInstructions() { 3849 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3850 3851 for (Record *Instr : Instrs) { 3852 ListInit *LI = nullptr; 3853 3854 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3855 LI = Instr->getValueAsListInit("Pattern"); 3856 3857 // If there is no pattern, only collect minimal information about the 3858 // instruction for its operand list. We have to assume that there is one 3859 // result, as we have no detailed info. A pattern which references the 3860 // null_frag operator is as-if no pattern were specified. Normally this 3861 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3862 // null_frag. 3863 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3864 std::vector<Record*> Results; 3865 std::vector<Record*> Operands; 3866 3867 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3868 3869 if (InstInfo.Operands.size() != 0) { 3870 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3871 Results.push_back(InstInfo.Operands[j].Rec); 3872 3873 // The rest are inputs. 3874 for (unsigned j = InstInfo.Operands.NumDefs, 3875 e = InstInfo.Operands.size(); j < e; ++j) 3876 Operands.push_back(InstInfo.Operands[j].Rec); 3877 } 3878 3879 // Create and insert the instruction. 3880 std::vector<Record*> ImpResults; 3881 Instructions.insert(std::make_pair(Instr, 3882 DAGInstruction(Results, Operands, ImpResults))); 3883 continue; // no pattern. 3884 } 3885 3886 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3887 parseInstructionPattern(CGI, LI, Instructions); 3888 } 3889 3890 // If we can, convert the instructions to be patterns that are matched! 3891 for (auto &Entry : Instructions) { 3892 Record *Instr = Entry.first; 3893 DAGInstruction &TheInst = Entry.second; 3894 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3895 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3896 3897 if (SrcPattern && ResultPattern) { 3898 TreePattern Pattern(Instr, SrcPattern, true, *this); 3899 TreePattern Result(Instr, ResultPattern, false, *this); 3900 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3901 } 3902 } 3903 } 3904 3905 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3906 3907 static void FindNames(TreePatternNode *P, 3908 std::map<std::string, NameRecord> &Names, 3909 TreePattern *PatternTop) { 3910 if (!P->getName().empty()) { 3911 NameRecord &Rec = Names[P->getName()]; 3912 // If this is the first instance of the name, remember the node. 3913 if (Rec.second++ == 0) 3914 Rec.first = P; 3915 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3916 PatternTop->error("repetition of value: $" + P->getName() + 3917 " where different uses have different types!"); 3918 } 3919 3920 if (!P->isLeaf()) { 3921 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3922 FindNames(P->getChild(i), Names, PatternTop); 3923 } 3924 } 3925 3926 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3927 std::vector<Predicate> Preds; 3928 for (Init *I : L->getValues()) { 3929 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3930 Preds.push_back(Pred->getDef()); 3931 else 3932 llvm_unreachable("Non-def on the list"); 3933 } 3934 3935 // Sort so that different orders get canonicalized to the same string. 3936 llvm::sort(Preds); 3937 return Preds; 3938 } 3939 3940 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3941 PatternToMatch &&PTM) { 3942 // Do some sanity checking on the pattern we're about to match. 3943 std::string Reason; 3944 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3945 PrintWarning(Pattern->getRecord()->getLoc(), 3946 Twine("Pattern can never match: ") + Reason); 3947 return; 3948 } 3949 3950 // If the source pattern's root is a complex pattern, that complex pattern 3951 // must specify the nodes it can potentially match. 3952 if (const ComplexPattern *CP = 3953 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3954 if (CP->getRootNodes().empty()) 3955 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3956 " could match"); 3957 3958 3959 // Find all of the named values in the input and output, ensure they have the 3960 // same type. 3961 std::map<std::string, NameRecord> SrcNames, DstNames; 3962 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3963 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3964 3965 // Scan all of the named values in the destination pattern, rejecting them if 3966 // they don't exist in the input pattern. 3967 for (const auto &Entry : DstNames) { 3968 if (SrcNames[Entry.first].first == nullptr) 3969 Pattern->error("Pattern has input without matching name in output: $" + 3970 Entry.first); 3971 } 3972 3973 // Scan all of the named values in the source pattern, rejecting them if the 3974 // name isn't used in the dest, and isn't used to tie two values together. 3975 for (const auto &Entry : SrcNames) 3976 if (DstNames[Entry.first].first == nullptr && 3977 SrcNames[Entry.first].second == 1) 3978 Pattern->error("Pattern has dead named input: $" + Entry.first); 3979 3980 PatternsToMatch.push_back(std::move(PTM)); 3981 } 3982 3983 void CodeGenDAGPatterns::InferInstructionFlags() { 3984 ArrayRef<const CodeGenInstruction*> Instructions = 3985 Target.getInstructionsByEnumValue(); 3986 3987 unsigned Errors = 0; 3988 3989 // Try to infer flags from all patterns in PatternToMatch. These include 3990 // both the primary instruction patterns (which always come first) and 3991 // patterns defined outside the instruction. 3992 for (const PatternToMatch &PTM : ptms()) { 3993 // We can only infer from single-instruction patterns, otherwise we won't 3994 // know which instruction should get the flags. 3995 SmallVector<Record*, 8> PatInstrs; 3996 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3997 if (PatInstrs.size() != 1) 3998 continue; 3999 4000 // Get the single instruction. 4001 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4002 4003 // Only infer properties from the first pattern. We'll verify the others. 4004 if (InstInfo.InferredFrom) 4005 continue; 4006 4007 InstAnalyzer PatInfo(*this); 4008 PatInfo.Analyze(PTM); 4009 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4010 } 4011 4012 if (Errors) 4013 PrintFatalError("pattern conflicts"); 4014 4015 // If requested by the target, guess any undefined properties. 4016 if (Target.guessInstructionProperties()) { 4017 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4018 CodeGenInstruction *InstInfo = 4019 const_cast<CodeGenInstruction *>(Instructions[i]); 4020 if (InstInfo->InferredFrom) 4021 continue; 4022 // The mayLoad and mayStore flags default to false. 4023 // Conservatively assume hasSideEffects if it wasn't explicit. 4024 if (InstInfo->hasSideEffects_Unset) 4025 InstInfo->hasSideEffects = true; 4026 } 4027 return; 4028 } 4029 4030 // Complain about any flags that are still undefined. 4031 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4032 CodeGenInstruction *InstInfo = 4033 const_cast<CodeGenInstruction *>(Instructions[i]); 4034 if (InstInfo->InferredFrom) 4035 continue; 4036 if (InstInfo->hasSideEffects_Unset) 4037 PrintError(InstInfo->TheDef->getLoc(), 4038 "Can't infer hasSideEffects from patterns"); 4039 if (InstInfo->mayStore_Unset) 4040 PrintError(InstInfo->TheDef->getLoc(), 4041 "Can't infer mayStore from patterns"); 4042 if (InstInfo->mayLoad_Unset) 4043 PrintError(InstInfo->TheDef->getLoc(), 4044 "Can't infer mayLoad from patterns"); 4045 } 4046 } 4047 4048 4049 /// Verify instruction flags against pattern node properties. 4050 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4051 unsigned Errors = 0; 4052 for (const PatternToMatch &PTM : ptms()) { 4053 SmallVector<Record*, 8> Instrs; 4054 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4055 if (Instrs.empty()) 4056 continue; 4057 4058 // Count the number of instructions with each flag set. 4059 unsigned NumSideEffects = 0; 4060 unsigned NumStores = 0; 4061 unsigned NumLoads = 0; 4062 for (const Record *Instr : Instrs) { 4063 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4064 NumSideEffects += InstInfo.hasSideEffects; 4065 NumStores += InstInfo.mayStore; 4066 NumLoads += InstInfo.mayLoad; 4067 } 4068 4069 // Analyze the source pattern. 4070 InstAnalyzer PatInfo(*this); 4071 PatInfo.Analyze(PTM); 4072 4073 // Collect error messages. 4074 SmallVector<std::string, 4> Msgs; 4075 4076 // Check for missing flags in the output. 4077 // Permit extra flags for now at least. 4078 if (PatInfo.hasSideEffects && !NumSideEffects) 4079 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4080 4081 // Don't verify store flags on instructions with side effects. At least for 4082 // intrinsics, side effects implies mayStore. 4083 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4084 Msgs.push_back("pattern may store, but mayStore isn't set"); 4085 4086 // Similarly, mayStore implies mayLoad on intrinsics. 4087 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4088 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4089 4090 // Print error messages. 4091 if (Msgs.empty()) 4092 continue; 4093 ++Errors; 4094 4095 for (const std::string &Msg : Msgs) 4096 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4097 (Instrs.size() == 1 ? 4098 "instruction" : "output instructions")); 4099 // Provide the location of the relevant instruction definitions. 4100 for (const Record *Instr : Instrs) { 4101 if (Instr != PTM.getSrcRecord()) 4102 PrintError(Instr->getLoc(), "defined here"); 4103 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4104 if (InstInfo.InferredFrom && 4105 InstInfo.InferredFrom != InstInfo.TheDef && 4106 InstInfo.InferredFrom != PTM.getSrcRecord()) 4107 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4108 } 4109 } 4110 if (Errors) 4111 PrintFatalError("Errors in DAG patterns"); 4112 } 4113 4114 /// Given a pattern result with an unresolved type, see if we can find one 4115 /// instruction with an unresolved result type. Force this result type to an 4116 /// arbitrary element if it's possible types to converge results. 4117 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4118 if (N->isLeaf()) 4119 return false; 4120 4121 // Analyze children. 4122 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4123 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4124 return true; 4125 4126 if (!N->getOperator()->isSubClassOf("Instruction")) 4127 return false; 4128 4129 // If this type is already concrete or completely unknown we can't do 4130 // anything. 4131 TypeInfer &TI = TP.getInfer(); 4132 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4133 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4134 continue; 4135 4136 // Otherwise, force its type to an arbitrary choice. 4137 if (TI.forceArbitrary(N->getExtType(i))) 4138 return true; 4139 } 4140 4141 return false; 4142 } 4143 4144 // Promote xform function to be an explicit node wherever set. 4145 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4146 if (Record *Xform = N->getTransformFn()) { 4147 N->setTransformFn(nullptr); 4148 std::vector<TreePatternNodePtr> Children; 4149 Children.push_back(PromoteXForms(N)); 4150 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4151 N->getNumTypes()); 4152 } 4153 4154 if (!N->isLeaf()) 4155 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4156 TreePatternNodePtr Child = N->getChildShared(i); 4157 N->setChild(i, PromoteXForms(Child)); 4158 } 4159 return N; 4160 } 4161 4162 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4163 TreePattern &Pattern, TreePattern &Result, 4164 const std::vector<Record *> &InstImpResults) { 4165 4166 // Inline pattern fragments and expand multiple alternatives. 4167 Pattern.InlinePatternFragments(); 4168 Result.InlinePatternFragments(); 4169 4170 if (Result.getNumTrees() != 1) 4171 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4172 4173 // Infer types. 4174 bool IterateInference; 4175 bool InferredAllPatternTypes, InferredAllResultTypes; 4176 do { 4177 // Infer as many types as possible. If we cannot infer all of them, we 4178 // can never do anything with this pattern: report it to the user. 4179 InferredAllPatternTypes = 4180 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4181 4182 // Infer as many types as possible. If we cannot infer all of them, we 4183 // can never do anything with this pattern: report it to the user. 4184 InferredAllResultTypes = 4185 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4186 4187 IterateInference = false; 4188 4189 // Apply the type of the result to the source pattern. This helps us 4190 // resolve cases where the input type is known to be a pointer type (which 4191 // is considered resolved), but the result knows it needs to be 32- or 4192 // 64-bits. Infer the other way for good measure. 4193 for (const auto &T : Pattern.getTrees()) 4194 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4195 T->getNumTypes()); 4196 i != e; ++i) { 4197 IterateInference |= T->UpdateNodeType( 4198 i, Result.getOnlyTree()->getExtType(i), Result); 4199 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4200 i, T->getExtType(i), Result); 4201 } 4202 4203 // If our iteration has converged and the input pattern's types are fully 4204 // resolved but the result pattern is not fully resolved, we may have a 4205 // situation where we have two instructions in the result pattern and 4206 // the instructions require a common register class, but don't care about 4207 // what actual MVT is used. This is actually a bug in our modelling: 4208 // output patterns should have register classes, not MVTs. 4209 // 4210 // In any case, to handle this, we just go through and disambiguate some 4211 // arbitrary types to the result pattern's nodes. 4212 if (!IterateInference && InferredAllPatternTypes && 4213 !InferredAllResultTypes) 4214 IterateInference = 4215 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4216 } while (IterateInference); 4217 4218 // Verify that we inferred enough types that we can do something with the 4219 // pattern and result. If these fire the user has to add type casts. 4220 if (!InferredAllPatternTypes) 4221 Pattern.error("Could not infer all types in pattern!"); 4222 if (!InferredAllResultTypes) { 4223 Pattern.dump(); 4224 Result.error("Could not infer all types in pattern result!"); 4225 } 4226 4227 // Promote xform function to be an explicit node wherever set. 4228 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4229 4230 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4231 Temp.InferAllTypes(); 4232 4233 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4234 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4235 4236 if (PatternRewriter) 4237 PatternRewriter(&Pattern); 4238 4239 // A pattern may end up with an "impossible" type, i.e. a situation 4240 // where all types have been eliminated for some node in this pattern. 4241 // This could occur for intrinsics that only make sense for a specific 4242 // value type, and use a specific register class. If, for some mode, 4243 // that register class does not accept that type, the type inference 4244 // will lead to a contradiction, which is not an error however, but 4245 // a sign that this pattern will simply never match. 4246 if (Temp.getOnlyTree()->hasPossibleType()) 4247 for (const auto &T : Pattern.getTrees()) 4248 if (T->hasPossibleType()) 4249 AddPatternToMatch(&Pattern, 4250 PatternToMatch(TheDef, makePredList(Preds), 4251 T, Temp.getOnlyTree(), 4252 InstImpResults, Complexity, 4253 TheDef->getID())); 4254 } 4255 4256 void CodeGenDAGPatterns::ParsePatterns() { 4257 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4258 4259 for (Record *CurPattern : Patterns) { 4260 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4261 4262 // If the pattern references the null_frag, there's nothing to do. 4263 if (hasNullFragReference(Tree)) 4264 continue; 4265 4266 TreePattern Pattern(CurPattern, Tree, true, *this); 4267 4268 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4269 if (LI->empty()) continue; // no pattern. 4270 4271 // Parse the instruction. 4272 TreePattern Result(CurPattern, LI, false, *this); 4273 4274 if (Result.getNumTrees() != 1) 4275 Result.error("Cannot handle instructions producing instructions " 4276 "with temporaries yet!"); 4277 4278 // Validate that the input pattern is correct. 4279 std::map<std::string, TreePatternNodePtr> InstInputs; 4280 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4281 InstResults; 4282 std::vector<Record*> InstImpResults; 4283 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4284 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4285 InstResults, InstImpResults); 4286 4287 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4288 } 4289 } 4290 4291 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4292 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4293 for (const auto &I : VTS) 4294 Modes.insert(I.first); 4295 4296 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4297 collectModes(Modes, N->getChild(i)); 4298 } 4299 4300 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4301 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4302 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4303 std::vector<PatternToMatch> Copy; 4304 PatternsToMatch.swap(Copy); 4305 4306 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4307 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4308 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4309 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4310 return; 4311 } 4312 4313 std::vector<Predicate> Preds = P.getPredicates(); 4314 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4315 llvm::append_range(Preds, MC); 4316 PatternsToMatch.emplace_back(P.getSrcRecord(), std::move(Preds), 4317 std::move(NewSrc), std::move(NewDst), 4318 P.getDstRegs(), 4319 P.getAddedComplexity(), Record::getNewUID(), 4320 Mode); 4321 }; 4322 4323 for (PatternToMatch &P : Copy) { 4324 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4325 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4326 SrcP = P.getSrcPatternShared(); 4327 if (P.getDstPattern()->hasProperTypeByHwMode()) 4328 DstP = P.getDstPatternShared(); 4329 if (!SrcP && !DstP) { 4330 PatternsToMatch.push_back(P); 4331 continue; 4332 } 4333 4334 std::set<unsigned> Modes; 4335 if (SrcP) 4336 collectModes(Modes, SrcP.get()); 4337 if (DstP) 4338 collectModes(Modes, DstP.get()); 4339 4340 // The predicate for the default mode needs to be constructed for each 4341 // pattern separately. 4342 // Since not all modes must be present in each pattern, if a mode m is 4343 // absent, then there is no point in constructing a check for m. If such 4344 // a check was created, it would be equivalent to checking the default 4345 // mode, except not all modes' predicates would be a part of the checking 4346 // code. The subsequently generated check for the default mode would then 4347 // have the exact same patterns, but a different predicate code. To avoid 4348 // duplicated patterns with different predicate checks, construct the 4349 // default check as a negation of all predicates that are actually present 4350 // in the source/destination patterns. 4351 std::vector<Predicate> DefaultPred; 4352 4353 for (unsigned M : Modes) { 4354 if (M == DefaultMode) 4355 continue; 4356 if (ModeChecks.find(M) != ModeChecks.end()) 4357 continue; 4358 4359 // Fill the map entry for this mode. 4360 const HwMode &HM = CGH.getMode(M); 4361 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4362 4363 // Add negations of the HM's predicates to the default predicate. 4364 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4365 } 4366 4367 for (unsigned M : Modes) { 4368 if (M == DefaultMode) 4369 continue; 4370 AppendPattern(P, M); 4371 } 4372 4373 bool HasDefault = Modes.count(DefaultMode); 4374 if (HasDefault) 4375 AppendPattern(P, DefaultMode); 4376 } 4377 } 4378 4379 /// Dependent variable map for CodeGenDAGPattern variant generation 4380 typedef StringMap<int> DepVarMap; 4381 4382 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4383 if (N->isLeaf()) { 4384 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4385 DepMap[N->getName()]++; 4386 } else { 4387 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4388 FindDepVarsOf(N->getChild(i), DepMap); 4389 } 4390 } 4391 4392 /// Find dependent variables within child patterns 4393 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4394 DepVarMap depcounts; 4395 FindDepVarsOf(N, depcounts); 4396 for (const auto &Pair : depcounts) { 4397 if (Pair.getValue() > 1) 4398 DepVars.insert(Pair.getKey()); 4399 } 4400 } 4401 4402 #ifndef NDEBUG 4403 /// Dump the dependent variable set: 4404 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4405 if (DepVars.empty()) { 4406 LLVM_DEBUG(errs() << "<empty set>"); 4407 } else { 4408 LLVM_DEBUG(errs() << "[ "); 4409 for (const auto &DepVar : DepVars) { 4410 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4411 } 4412 LLVM_DEBUG(errs() << "]"); 4413 } 4414 } 4415 #endif 4416 4417 4418 /// CombineChildVariants - Given a bunch of permutations of each child of the 4419 /// 'operator' node, put them together in all possible ways. 4420 static void CombineChildVariants( 4421 TreePatternNodePtr Orig, 4422 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4423 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4424 const MultipleUseVarSet &DepVars) { 4425 // Make sure that each operand has at least one variant to choose from. 4426 for (const auto &Variants : ChildVariants) 4427 if (Variants.empty()) 4428 return; 4429 4430 // The end result is an all-pairs construction of the resultant pattern. 4431 std::vector<unsigned> Idxs; 4432 Idxs.resize(ChildVariants.size()); 4433 bool NotDone; 4434 do { 4435 #ifndef NDEBUG 4436 LLVM_DEBUG(if (!Idxs.empty()) { 4437 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4438 for (unsigned Idx : Idxs) { 4439 errs() << Idx << " "; 4440 } 4441 errs() << "]\n"; 4442 }); 4443 #endif 4444 // Create the variant and add it to the output list. 4445 std::vector<TreePatternNodePtr> NewChildren; 4446 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4447 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4448 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4449 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4450 4451 // Copy over properties. 4452 R->setName(Orig->getName()); 4453 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4454 R->setPredicateCalls(Orig->getPredicateCalls()); 4455 R->setTransformFn(Orig->getTransformFn()); 4456 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4457 R->setType(i, Orig->getExtType(i)); 4458 4459 // If this pattern cannot match, do not include it as a variant. 4460 std::string ErrString; 4461 // Scan to see if this pattern has already been emitted. We can get 4462 // duplication due to things like commuting: 4463 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4464 // which are the same pattern. Ignore the dups. 4465 if (R->canPatternMatch(ErrString, CDP) && 4466 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4467 return R->isIsomorphicTo(Variant.get(), DepVars); 4468 })) 4469 OutVariants.push_back(R); 4470 4471 // Increment indices to the next permutation by incrementing the 4472 // indices from last index backward, e.g., generate the sequence 4473 // [0, 0], [0, 1], [1, 0], [1, 1]. 4474 int IdxsIdx; 4475 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4476 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4477 Idxs[IdxsIdx] = 0; 4478 else 4479 break; 4480 } 4481 NotDone = (IdxsIdx >= 0); 4482 } while (NotDone); 4483 } 4484 4485 /// CombineChildVariants - A helper function for binary operators. 4486 /// 4487 static void CombineChildVariants(TreePatternNodePtr Orig, 4488 const std::vector<TreePatternNodePtr> &LHS, 4489 const std::vector<TreePatternNodePtr> &RHS, 4490 std::vector<TreePatternNodePtr> &OutVariants, 4491 CodeGenDAGPatterns &CDP, 4492 const MultipleUseVarSet &DepVars) { 4493 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4494 ChildVariants.push_back(LHS); 4495 ChildVariants.push_back(RHS); 4496 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4497 } 4498 4499 static void 4500 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4501 std::vector<TreePatternNodePtr> &Children) { 4502 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4503 Record *Operator = N->getOperator(); 4504 4505 // Only permit raw nodes. 4506 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4507 N->getTransformFn()) { 4508 Children.push_back(N); 4509 return; 4510 } 4511 4512 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4513 Children.push_back(N->getChildShared(0)); 4514 else 4515 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4516 4517 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4518 Children.push_back(N->getChildShared(1)); 4519 else 4520 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4521 } 4522 4523 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4524 /// the (potentially recursive) pattern by using algebraic laws. 4525 /// 4526 static void GenerateVariantsOf(TreePatternNodePtr N, 4527 std::vector<TreePatternNodePtr> &OutVariants, 4528 CodeGenDAGPatterns &CDP, 4529 const MultipleUseVarSet &DepVars) { 4530 // We cannot permute leaves or ComplexPattern uses. 4531 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4532 OutVariants.push_back(N); 4533 return; 4534 } 4535 4536 // Look up interesting info about the node. 4537 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4538 4539 // If this node is associative, re-associate. 4540 if (NodeInfo.hasProperty(SDNPAssociative)) { 4541 // Re-associate by pulling together all of the linked operators 4542 std::vector<TreePatternNodePtr> MaximalChildren; 4543 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4544 4545 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4546 // permutations. 4547 if (MaximalChildren.size() == 3) { 4548 // Find the variants of all of our maximal children. 4549 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4550 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4551 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4552 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4553 4554 // There are only two ways we can permute the tree: 4555 // (A op B) op C and A op (B op C) 4556 // Within these forms, we can also permute A/B/C. 4557 4558 // Generate legal pair permutations of A/B/C. 4559 std::vector<TreePatternNodePtr> ABVariants; 4560 std::vector<TreePatternNodePtr> BAVariants; 4561 std::vector<TreePatternNodePtr> ACVariants; 4562 std::vector<TreePatternNodePtr> CAVariants; 4563 std::vector<TreePatternNodePtr> BCVariants; 4564 std::vector<TreePatternNodePtr> CBVariants; 4565 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4566 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4567 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4568 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4569 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4570 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4571 4572 // Combine those into the result: (x op x) op x 4573 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4574 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4575 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4576 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4577 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4578 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4579 4580 // Combine those into the result: x op (x op x) 4581 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4582 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4583 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4584 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4585 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4586 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4587 return; 4588 } 4589 } 4590 4591 // Compute permutations of all children. 4592 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4593 ChildVariants.resize(N->getNumChildren()); 4594 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4595 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4596 4597 // Build all permutations based on how the children were formed. 4598 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4599 4600 // If this node is commutative, consider the commuted order. 4601 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4602 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4603 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4604 "Commutative but doesn't have 2 children!"); 4605 // Don't count children which are actually register references. 4606 unsigned NC = 0; 4607 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4608 TreePatternNode *Child = N->getChild(i); 4609 if (Child->isLeaf()) 4610 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4611 Record *RR = DI->getDef(); 4612 if (RR->isSubClassOf("Register")) 4613 continue; 4614 } 4615 NC++; 4616 } 4617 // Consider the commuted order. 4618 if (isCommIntrinsic) { 4619 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4620 // operands are the commutative operands, and there might be more operands 4621 // after those. 4622 assert(NC >= 3 && 4623 "Commutative intrinsic should have at least 3 children!"); 4624 std::vector<std::vector<TreePatternNodePtr>> Variants; 4625 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4626 Variants.push_back(std::move(ChildVariants[2])); 4627 Variants.push_back(std::move(ChildVariants[1])); 4628 for (unsigned i = 3; i != NC; ++i) 4629 Variants.push_back(std::move(ChildVariants[i])); 4630 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4631 } else if (NC == N->getNumChildren()) { 4632 std::vector<std::vector<TreePatternNodePtr>> Variants; 4633 Variants.push_back(std::move(ChildVariants[1])); 4634 Variants.push_back(std::move(ChildVariants[0])); 4635 for (unsigned i = 2; i != NC; ++i) 4636 Variants.push_back(std::move(ChildVariants[i])); 4637 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4638 } 4639 } 4640 } 4641 4642 4643 // GenerateVariants - Generate variants. For example, commutative patterns can 4644 // match multiple ways. Add them to PatternsToMatch as well. 4645 void CodeGenDAGPatterns::GenerateVariants() { 4646 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4647 4648 // Loop over all of the patterns we've collected, checking to see if we can 4649 // generate variants of the instruction, through the exploitation of 4650 // identities. This permits the target to provide aggressive matching without 4651 // the .td file having to contain tons of variants of instructions. 4652 // 4653 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4654 // intentionally do not reconsider these. Any variants of added patterns have 4655 // already been added. 4656 // 4657 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4658 BitVector MatchedPatterns(NumOriginalPatterns); 4659 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4660 BitVector(NumOriginalPatterns)); 4661 4662 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4663 DepsAndVariants; 4664 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4665 4666 // Collect patterns with more than one variant. 4667 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4668 MultipleUseVarSet DepVars; 4669 std::vector<TreePatternNodePtr> Variants; 4670 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4671 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4672 LLVM_DEBUG(DumpDepVars(DepVars)); 4673 LLVM_DEBUG(errs() << "\n"); 4674 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4675 *this, DepVars); 4676 4677 assert(!Variants.empty() && "Must create at least original variant!"); 4678 if (Variants.size() == 1) // No additional variants for this pattern. 4679 continue; 4680 4681 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4682 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4683 4684 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4685 4686 // Cache matching predicates. 4687 if (MatchedPatterns[i]) 4688 continue; 4689 4690 const std::vector<Predicate> &Predicates = 4691 PatternsToMatch[i].getPredicates(); 4692 4693 BitVector &Matches = MatchedPredicates[i]; 4694 MatchedPatterns.set(i); 4695 Matches.set(i); 4696 4697 // Don't test patterns that have already been cached - it won't match. 4698 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4699 if (!MatchedPatterns[p]) 4700 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4701 4702 // Copy this to all the matching patterns. 4703 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4704 if (p != (int)i) { 4705 MatchedPatterns.set(p); 4706 MatchedPredicates[p] = Matches; 4707 } 4708 } 4709 4710 for (const auto &it : PatternsWithVariants) { 4711 unsigned i = it.first; 4712 const MultipleUseVarSet &DepVars = it.second.first; 4713 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4714 4715 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4716 TreePatternNodePtr Variant = Variants[v]; 4717 BitVector &Matches = MatchedPredicates[i]; 4718 4719 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4720 errs() << "\n"); 4721 4722 // Scan to see if an instruction or explicit pattern already matches this. 4723 bool AlreadyExists = false; 4724 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4725 // Skip if the top level predicates do not match. 4726 if (!Matches[p]) 4727 continue; 4728 // Check to see if this variant already exists. 4729 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4730 DepVars)) { 4731 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4732 AlreadyExists = true; 4733 break; 4734 } 4735 } 4736 // If we already have it, ignore the variant. 4737 if (AlreadyExists) continue; 4738 4739 // Otherwise, add it to the list of patterns we have. 4740 PatternsToMatch.emplace_back( 4741 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4742 Variant, PatternsToMatch[i].getDstPatternShared(), 4743 PatternsToMatch[i].getDstRegs(), 4744 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 4745 MatchedPredicates.push_back(Matches); 4746 4747 // Add a new match the same as this pattern. 4748 for (auto &P : MatchedPredicates) 4749 P.push_back(P[i]); 4750 } 4751 4752 LLVM_DEBUG(errs() << "\n"); 4753 } 4754 } 4755