1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <iterator> 31 #include <set> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "dag-patterns" 35 36 static inline bool isIntegerOrPtr(MVT VT) { 37 return VT.isInteger() || VT == MVT::iPTR; 38 } 39 static inline bool isFloatingPoint(MVT VT) { 40 return VT.isFloatingPoint(); 41 } 42 static inline bool isVector(MVT VT) { 43 return VT.isVector(); 44 } 45 static inline bool isScalar(MVT VT) { 46 return !VT.isVector(); 47 } 48 49 template <typename Predicate> 50 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 51 bool Erased = false; 52 // It is ok to iterate over MachineValueTypeSet and remove elements from it 53 // at the same time. 54 for (MVT T : S) { 55 if (!P(T)) 56 continue; 57 Erased = true; 58 S.erase(T); 59 } 60 return Erased; 61 } 62 63 // --- TypeSetByHwMode 64 65 // This is a parameterized type-set class. For each mode there is a list 66 // of types that are currently possible for a given tree node. Type 67 // inference will apply to each mode separately. 68 69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 70 for (const ValueTypeByHwMode &VVT : VTList) { 71 insert(VVT); 72 AddrSpaces.push_back(VVT.PtrAddrSpace); 73 } 74 } 75 76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 77 for (const auto &I : *this) { 78 if (I.second.size() > 1) 79 return false; 80 if (!AllowEmpty && I.second.empty()) 81 return false; 82 } 83 return true; 84 } 85 86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 87 assert(isValueTypeByHwMode(true) && 88 "The type set has multiple types for at least one HW mode"); 89 ValueTypeByHwMode VVT; 90 auto ASI = AddrSpaces.begin(); 91 92 for (const auto &I : *this) { 93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 94 VVT.getOrCreateTypeForMode(I.first, T); 95 if (ASI != AddrSpaces.end()) 96 VVT.PtrAddrSpace = *ASI++; 97 } 98 return VVT; 99 } 100 101 bool TypeSetByHwMode::isPossible() const { 102 for (const auto &I : *this) 103 if (!I.second.empty()) 104 return true; 105 return false; 106 } 107 108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 109 bool Changed = false; 110 bool ContainsDefault = false; 111 MVT DT = MVT::Other; 112 113 SmallDenseSet<unsigned, 4> Modes; 114 for (const auto &P : VVT) { 115 unsigned M = P.first; 116 Modes.insert(M); 117 // Make sure there exists a set for each specific mode from VVT. 118 Changed |= getOrCreate(M).insert(P.second).second; 119 // Cache VVT's default mode. 120 if (DefaultMode == M) { 121 ContainsDefault = true; 122 DT = P.second; 123 } 124 } 125 126 // If VVT has a default mode, add the corresponding type to all 127 // modes in "this" that do not exist in VVT. 128 if (ContainsDefault) 129 for (auto &I : *this) 130 if (!Modes.count(I.first)) 131 Changed |= I.second.insert(DT).second; 132 133 return Changed; 134 } 135 136 // Constrain the type set to be the intersection with VTS. 137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 138 bool Changed = false; 139 if (hasDefault()) { 140 for (const auto &I : VTS) { 141 unsigned M = I.first; 142 if (M == DefaultMode || hasMode(M)) 143 continue; 144 Map.insert({M, Map.at(DefaultMode)}); 145 Changed = true; 146 } 147 } 148 149 for (auto &I : *this) { 150 unsigned M = I.first; 151 SetType &S = I.second; 152 if (VTS.hasMode(M) || VTS.hasDefault()) { 153 Changed |= intersect(I.second, VTS.get(M)); 154 } else if (!S.empty()) { 155 S.clear(); 156 Changed = true; 157 } 158 } 159 return Changed; 160 } 161 162 template <typename Predicate> 163 bool TypeSetByHwMode::constrain(Predicate P) { 164 bool Changed = false; 165 for (auto &I : *this) 166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 167 return Changed; 168 } 169 170 template <typename Predicate> 171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 172 assert(empty()); 173 for (const auto &I : VTS) { 174 SetType &S = getOrCreate(I.first); 175 for (auto J : I.second) 176 if (P(J)) 177 S.insert(J); 178 } 179 return !empty(); 180 } 181 182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 183 SmallVector<unsigned, 4> Modes; 184 Modes.reserve(Map.size()); 185 186 for (const auto &I : *this) 187 Modes.push_back(I.first); 188 if (Modes.empty()) { 189 OS << "{}"; 190 return; 191 } 192 array_pod_sort(Modes.begin(), Modes.end()); 193 194 OS << '{'; 195 for (unsigned M : Modes) { 196 OS << ' ' << getModeName(M) << ':'; 197 writeToStream(get(M), OS); 198 } 199 OS << " }"; 200 } 201 202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 203 SmallVector<MVT, 4> Types(S.begin(), S.end()); 204 array_pod_sort(Types.begin(), Types.end()); 205 206 OS << '['; 207 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 208 OS << ValueTypeByHwMode::getMVTName(Types[i]); 209 if (i != e-1) 210 OS << ' '; 211 } 212 OS << ']'; 213 } 214 215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 216 // The isSimple call is much quicker than hasDefault - check this first. 217 bool IsSimple = isSimple(); 218 bool VTSIsSimple = VTS.isSimple(); 219 if (IsSimple && VTSIsSimple) 220 return *begin() == *VTS.begin(); 221 222 // Speedup: We have a default if the set is simple. 223 bool HaveDefault = IsSimple || hasDefault(); 224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 225 if (HaveDefault != VTSHaveDefault) 226 return false; 227 228 SmallDenseSet<unsigned, 4> Modes; 229 for (auto &I : *this) 230 Modes.insert(I.first); 231 for (const auto &I : VTS) 232 Modes.insert(I.first); 233 234 if (HaveDefault) { 235 // Both sets have default mode. 236 for (unsigned M : Modes) { 237 if (get(M) != VTS.get(M)) 238 return false; 239 } 240 } else { 241 // Neither set has default mode. 242 for (unsigned M : Modes) { 243 // If there is no default mode, an empty set is equivalent to not having 244 // the corresponding mode. 245 bool NoModeThis = !hasMode(M) || get(M).empty(); 246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 247 if (NoModeThis != NoModeVTS) 248 return false; 249 if (!NoModeThis) 250 if (get(M) != VTS.get(M)) 251 return false; 252 } 253 } 254 255 return true; 256 } 257 258 namespace llvm { 259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 260 T.writeToStream(OS); 261 return OS; 262 } 263 } 264 265 LLVM_DUMP_METHOD 266 void TypeSetByHwMode::dump() const { 267 dbgs() << *this << '\n'; 268 } 269 270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 272 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 273 274 if (OutP == InP) 275 return berase_if(Out, Int); 276 277 // Compute the intersection of scalars separately to account for only 278 // one set containing iPTR. 279 // The itersection of iPTR with a set of integer scalar types that does not 280 // include iPTR will result in the most specific scalar type: 281 // - iPTR is more specific than any set with two elements or more 282 // - iPTR is less specific than any single integer scalar type. 283 // For example 284 // { iPTR } * { i32 } -> { i32 } 285 // { iPTR } * { i32 i64 } -> { iPTR } 286 // and 287 // { iPTR i32 } * { i32 } -> { i32 } 288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 290 291 // Compute the difference between the two sets in such a way that the 292 // iPTR is in the set that is being subtracted. This is to see if there 293 // are any extra scalars in the set without iPTR that are not in the 294 // set containing iPTR. Then the iPTR could be considered a "wildcard" 295 // matching these scalars. If there is only one such scalar, it would 296 // replace the iPTR, if there are more, the iPTR would be retained. 297 SetType Diff; 298 if (InP) { 299 Diff = Out; 300 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 301 // Pre-remove these elements and rely only on InP/OutP to determine 302 // whether a change has been made. 303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 304 } else { 305 Diff = In; 306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 307 Out.erase(MVT::iPTR); 308 } 309 310 // The actual intersection. 311 bool Changed = berase_if(Out, Int); 312 unsigned NumD = Diff.size(); 313 if (NumD == 0) 314 return Changed; 315 316 if (NumD == 1) { 317 Out.insert(*Diff.begin()); 318 // This is a change only if Out was the one with iPTR (which is now 319 // being replaced). 320 Changed |= OutP; 321 } else { 322 // Multiple elements from Out are now replaced with iPTR. 323 Out.insert(MVT::iPTR); 324 Changed |= !OutP; 325 } 326 return Changed; 327 } 328 329 bool TypeSetByHwMode::validate() const { 330 #ifndef NDEBUG 331 if (empty()) 332 return true; 333 bool AllEmpty = true; 334 for (const auto &I : *this) 335 AllEmpty &= I.second.empty(); 336 return !AllEmpty; 337 #endif 338 return true; 339 } 340 341 // --- TypeInfer 342 343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 344 const TypeSetByHwMode &In) { 345 ValidateOnExit _1(Out, *this); 346 In.validate(); 347 if (In.empty() || Out == In || TP.hasError()) 348 return false; 349 if (Out.empty()) { 350 Out = In; 351 return true; 352 } 353 354 bool Changed = Out.constrain(In); 355 if (Changed && Out.empty()) 356 TP.error("Type contradiction"); 357 358 return Changed; 359 } 360 361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 362 ValidateOnExit _1(Out, *this); 363 if (TP.hasError()) 364 return false; 365 assert(!Out.empty() && "cannot pick from an empty set"); 366 367 bool Changed = false; 368 for (auto &I : Out) { 369 TypeSetByHwMode::SetType &S = I.second; 370 if (S.size() <= 1) 371 continue; 372 MVT T = *S.begin(); // Pick the first element. 373 S.clear(); 374 S.insert(T); 375 Changed = true; 376 } 377 return Changed; 378 } 379 380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 if (!Out.empty()) 385 return Out.constrain(isIntegerOrPtr); 386 387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 388 } 389 390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 391 ValidateOnExit _1(Out, *this); 392 if (TP.hasError()) 393 return false; 394 if (!Out.empty()) 395 return Out.constrain(isFloatingPoint); 396 397 return Out.assign_if(getLegalTypes(), isFloatingPoint); 398 } 399 400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 401 ValidateOnExit _1(Out, *this); 402 if (TP.hasError()) 403 return false; 404 if (!Out.empty()) 405 return Out.constrain(isScalar); 406 407 return Out.assign_if(getLegalTypes(), isScalar); 408 } 409 410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 411 ValidateOnExit _1(Out, *this); 412 if (TP.hasError()) 413 return false; 414 if (!Out.empty()) 415 return Out.constrain(isVector); 416 417 return Out.assign_if(getLegalTypes(), isVector); 418 } 419 420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 421 ValidateOnExit _1(Out, *this); 422 if (TP.hasError() || !Out.empty()) 423 return false; 424 425 Out = getLegalTypes(); 426 return true; 427 } 428 429 template <typename Iter, typename Pred, typename Less> 430 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 431 if (B == E) 432 return E; 433 Iter Min = E; 434 for (Iter I = B; I != E; ++I) { 435 if (!P(*I)) 436 continue; 437 if (Min == E || L(*I, *Min)) 438 Min = I; 439 } 440 return Min; 441 } 442 443 template <typename Iter, typename Pred, typename Less> 444 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 445 if (B == E) 446 return E; 447 Iter Max = E; 448 for (Iter I = B; I != E; ++I) { 449 if (!P(*I)) 450 continue; 451 if (Max == E || L(*Max, *I)) 452 Max = I; 453 } 454 return Max; 455 } 456 457 /// Make sure that for each type in Small, there exists a larger type in Big. 458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 459 TypeSetByHwMode &Big) { 460 ValidateOnExit _1(Small, *this), _2(Big, *this); 461 if (TP.hasError()) 462 return false; 463 bool Changed = false; 464 465 if (Small.empty()) 466 Changed |= EnforceAny(Small); 467 if (Big.empty()) 468 Changed |= EnforceAny(Big); 469 470 assert(Small.hasDefault() && Big.hasDefault()); 471 472 std::vector<unsigned> Modes = union_modes(Small, Big); 473 474 // 1. Only allow integer or floating point types and make sure that 475 // both sides are both integer or both floating point. 476 // 2. Make sure that either both sides have vector types, or neither 477 // of them does. 478 for (unsigned M : Modes) { 479 TypeSetByHwMode::SetType &S = Small.get(M); 480 TypeSetByHwMode::SetType &B = Big.get(M); 481 482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 484 Changed |= berase_if(S, NotInt) | 485 berase_if(B, NotInt); 486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 488 Changed |= berase_if(S, NotFP) | 489 berase_if(B, NotFP); 490 } else if (S.empty() || B.empty()) { 491 Changed = !S.empty() || !B.empty(); 492 S.clear(); 493 B.clear(); 494 } else { 495 TP.error("Incompatible types"); 496 return Changed; 497 } 498 499 if (none_of(S, isVector) || none_of(B, isVector)) { 500 Changed |= berase_if(S, isVector) | 501 berase_if(B, isVector); 502 } 503 } 504 505 auto LT = [](MVT A, MVT B) -> bool { 506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 508 A.getSizeInBits() < B.getSizeInBits()); 509 }; 510 auto LE = [](MVT A, MVT B) -> bool { 511 // This function is used when removing elements: when a vector is compared 512 // to a non-vector, it should return false (to avoid removal). 513 if (A.isVector() != B.isVector()) 514 return false; 515 516 // Note on the < comparison below: 517 // X86 has patterns like 518 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))), 519 // where the truncated vector is given a type v16i8, while the source 520 // vector has type v4i32. They both have the same size in bits. 521 // The minimal type in the result is obviously v16i8, and when we remove 522 // all types from the source that are smaller-or-equal than v8i16, the 523 // only source type would also be removed (since it's equal in size). 524 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() || 525 A.getSizeInBits() < B.getSizeInBits(); 526 }; 527 528 for (unsigned M : Modes) { 529 TypeSetByHwMode::SetType &S = Small.get(M); 530 TypeSetByHwMode::SetType &B = Big.get(M); 531 // MinS = min scalar in Small, remove all scalars from Big that are 532 // smaller-or-equal than MinS. 533 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 534 if (MinS != S.end()) 535 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 536 537 // MaxS = max scalar in Big, remove all scalars from Small that are 538 // larger than MaxS. 539 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 540 if (MaxS != B.end()) 541 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 542 543 // MinV = min vector in Small, remove all vectors from Big that are 544 // smaller-or-equal than MinV. 545 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 546 if (MinV != S.end()) 547 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 548 549 // MaxV = max vector in Big, remove all vectors from Small that are 550 // larger than MaxV. 551 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 552 if (MaxV != B.end()) 553 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 554 } 555 556 return Changed; 557 } 558 559 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 560 /// for each type U in Elem, U is a scalar type. 561 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 562 /// type T in Vec, such that U is the element type of T. 563 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 564 TypeSetByHwMode &Elem) { 565 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 566 if (TP.hasError()) 567 return false; 568 bool Changed = false; 569 570 if (Vec.empty()) 571 Changed |= EnforceVector(Vec); 572 if (Elem.empty()) 573 Changed |= EnforceScalar(Elem); 574 575 for (unsigned M : union_modes(Vec, Elem)) { 576 TypeSetByHwMode::SetType &V = Vec.get(M); 577 TypeSetByHwMode::SetType &E = Elem.get(M); 578 579 Changed |= berase_if(V, isScalar); // Scalar = !vector 580 Changed |= berase_if(E, isVector); // Vector = !scalar 581 assert(!V.empty() && !E.empty()); 582 583 SmallSet<MVT,4> VT, ST; 584 // Collect element types from the "vector" set. 585 for (MVT T : V) 586 VT.insert(T.getVectorElementType()); 587 // Collect scalar types from the "element" set. 588 for (MVT T : E) 589 ST.insert(T); 590 591 // Remove from V all (vector) types whose element type is not in S. 592 Changed |= berase_if(V, [&ST](MVT T) -> bool { 593 return !ST.count(T.getVectorElementType()); 594 }); 595 // Remove from E all (scalar) types, for which there is no corresponding 596 // type in V. 597 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 598 } 599 600 return Changed; 601 } 602 603 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 604 const ValueTypeByHwMode &VVT) { 605 TypeSetByHwMode Tmp(VVT); 606 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 607 return EnforceVectorEltTypeIs(Vec, Tmp); 608 } 609 610 /// Ensure that for each type T in Sub, T is a vector type, and there 611 /// exists a type U in Vec such that U is a vector type with the same 612 /// element type as T and at least as many elements as T. 613 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 614 TypeSetByHwMode &Sub) { 615 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 616 if (TP.hasError()) 617 return false; 618 619 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 620 auto IsSubVec = [](MVT B, MVT P) -> bool { 621 if (!B.isVector() || !P.isVector()) 622 return false; 623 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 624 // but until there are obvious use-cases for this, keep the 625 // types separate. 626 if (B.isScalableVector() != P.isScalableVector()) 627 return false; 628 if (B.getVectorElementType() != P.getVectorElementType()) 629 return false; 630 return B.getVectorNumElements() < P.getVectorNumElements(); 631 }; 632 633 /// Return true if S has no element (vector type) that T is a sub-vector of, 634 /// i.e. has the same element type as T and more elements. 635 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 636 for (const auto &I : S) 637 if (IsSubVec(T, I)) 638 return false; 639 return true; 640 }; 641 642 /// Return true if S has no element (vector type) that T is a super-vector 643 /// of, i.e. has the same element type as T and fewer elements. 644 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 645 for (const auto &I : S) 646 if (IsSubVec(I, T)) 647 return false; 648 return true; 649 }; 650 651 bool Changed = false; 652 653 if (Vec.empty()) 654 Changed |= EnforceVector(Vec); 655 if (Sub.empty()) 656 Changed |= EnforceVector(Sub); 657 658 for (unsigned M : union_modes(Vec, Sub)) { 659 TypeSetByHwMode::SetType &S = Sub.get(M); 660 TypeSetByHwMode::SetType &V = Vec.get(M); 661 662 Changed |= berase_if(S, isScalar); 663 664 // Erase all types from S that are not sub-vectors of a type in V. 665 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 666 667 // Erase all types from V that are not super-vectors of a type in S. 668 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 669 } 670 671 return Changed; 672 } 673 674 /// 1. Ensure that V has a scalar type iff W has a scalar type. 675 /// 2. Ensure that for each vector type T in V, there exists a vector 676 /// type U in W, such that T and U have the same number of elements. 677 /// 3. Ensure that for each vector type U in W, there exists a vector 678 /// type T in V, such that T and U have the same number of elements 679 /// (reverse of 2). 680 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 681 ValidateOnExit _1(V, *this), _2(W, *this); 682 if (TP.hasError()) 683 return false; 684 685 bool Changed = false; 686 if (V.empty()) 687 Changed |= EnforceAny(V); 688 if (W.empty()) 689 Changed |= EnforceAny(W); 690 691 // An actual vector type cannot have 0 elements, so we can treat scalars 692 // as zero-length vectors. This way both vectors and scalars can be 693 // processed identically. 694 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 695 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 696 }; 697 698 for (unsigned M : union_modes(V, W)) { 699 TypeSetByHwMode::SetType &VS = V.get(M); 700 TypeSetByHwMode::SetType &WS = W.get(M); 701 702 SmallSet<unsigned,2> VN, WN; 703 for (MVT T : VS) 704 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 705 for (MVT T : WS) 706 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 707 708 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 709 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 710 } 711 return Changed; 712 } 713 714 /// 1. Ensure that for each type T in A, there exists a type U in B, 715 /// such that T and U have equal size in bits. 716 /// 2. Ensure that for each type U in B, there exists a type T in A 717 /// such that T and U have equal size in bits (reverse of 1). 718 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 719 ValidateOnExit _1(A, *this), _2(B, *this); 720 if (TP.hasError()) 721 return false; 722 bool Changed = false; 723 if (A.empty()) 724 Changed |= EnforceAny(A); 725 if (B.empty()) 726 Changed |= EnforceAny(B); 727 728 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 729 return !Sizes.count(T.getSizeInBits()); 730 }; 731 732 for (unsigned M : union_modes(A, B)) { 733 TypeSetByHwMode::SetType &AS = A.get(M); 734 TypeSetByHwMode::SetType &BS = B.get(M); 735 SmallSet<unsigned,2> AN, BN; 736 737 for (MVT T : AS) 738 AN.insert(T.getSizeInBits()); 739 for (MVT T : BS) 740 BN.insert(T.getSizeInBits()); 741 742 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 743 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 744 } 745 746 return Changed; 747 } 748 749 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 750 ValidateOnExit _1(VTS, *this); 751 const TypeSetByHwMode &Legal = getLegalTypes(); 752 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 753 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 754 755 for (auto &I : VTS) 756 expandOverloads(I.second, LegalTypes); 757 } 758 759 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 760 const TypeSetByHwMode::SetType &Legal) { 761 std::set<MVT> Ovs; 762 for (MVT T : Out) { 763 if (!T.isOverloaded()) 764 continue; 765 766 Ovs.insert(T); 767 // MachineValueTypeSet allows iteration and erasing. 768 Out.erase(T); 769 } 770 771 for (MVT Ov : Ovs) { 772 switch (Ov.SimpleTy) { 773 case MVT::iPTRAny: 774 Out.insert(MVT::iPTR); 775 return; 776 case MVT::iAny: 777 for (MVT T : MVT::integer_valuetypes()) 778 if (Legal.count(T)) 779 Out.insert(T); 780 for (MVT T : MVT::integer_vector_valuetypes()) 781 if (Legal.count(T)) 782 Out.insert(T); 783 return; 784 case MVT::fAny: 785 for (MVT T : MVT::fp_valuetypes()) 786 if (Legal.count(T)) 787 Out.insert(T); 788 for (MVT T : MVT::fp_vector_valuetypes()) 789 if (Legal.count(T)) 790 Out.insert(T); 791 return; 792 case MVT::vAny: 793 for (MVT T : MVT::vector_valuetypes()) 794 if (Legal.count(T)) 795 Out.insert(T); 796 return; 797 case MVT::Any: 798 for (MVT T : MVT::all_valuetypes()) 799 if (Legal.count(T)) 800 Out.insert(T); 801 return; 802 default: 803 break; 804 } 805 } 806 } 807 808 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 809 if (!LegalTypesCached) { 810 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 811 // Stuff all types from all modes into the default mode. 812 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 813 for (const auto &I : LTS) 814 LegalTypes.insert(I.second); 815 LegalTypesCached = true; 816 } 817 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 818 return LegalCache; 819 } 820 821 #ifndef NDEBUG 822 TypeInfer::ValidateOnExit::~ValidateOnExit() { 823 if (Infer.Validate && !VTS.validate()) { 824 dbgs() << "Type set is empty for each HW mode:\n" 825 "possible type contradiction in the pattern below " 826 "(use -print-records with llvm-tblgen to see all " 827 "expanded records).\n"; 828 Infer.TP.dump(); 829 llvm_unreachable(nullptr); 830 } 831 } 832 #endif 833 834 835 //===----------------------------------------------------------------------===// 836 // ScopedName Implementation 837 //===----------------------------------------------------------------------===// 838 839 bool ScopedName::operator==(const ScopedName &o) const { 840 return Scope == o.Scope && Identifier == o.Identifier; 841 } 842 843 bool ScopedName::operator!=(const ScopedName &o) const { 844 return !(*this == o); 845 } 846 847 848 //===----------------------------------------------------------------------===// 849 // TreePredicateFn Implementation 850 //===----------------------------------------------------------------------===// 851 852 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 853 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 854 assert( 855 (!hasPredCode() || !hasImmCode()) && 856 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 857 } 858 859 bool TreePredicateFn::hasPredCode() const { 860 return isLoad() || isStore() || isAtomic() || 861 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 862 } 863 864 std::string TreePredicateFn::getPredCode() const { 865 std::string Code = ""; 866 867 if (!isLoad() && !isStore() && !isAtomic()) { 868 Record *MemoryVT = getMemoryVT(); 869 870 if (MemoryVT) 871 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 872 "MemoryVT requires IsLoad or IsStore"); 873 } 874 875 if (!isLoad() && !isStore()) { 876 if (isUnindexed()) 877 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 878 "IsUnindexed requires IsLoad or IsStore"); 879 880 Record *ScalarMemoryVT = getScalarMemoryVT(); 881 882 if (ScalarMemoryVT) 883 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 884 "ScalarMemoryVT requires IsLoad or IsStore"); 885 } 886 887 if (isLoad() + isStore() + isAtomic() > 1) 888 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 889 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 890 891 if (isLoad()) { 892 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 893 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 894 getScalarMemoryVT() == nullptr) 895 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 896 "IsLoad cannot be used by itself"); 897 } else { 898 if (isNonExtLoad()) 899 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 900 "IsNonExtLoad requires IsLoad"); 901 if (isAnyExtLoad()) 902 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 903 "IsAnyExtLoad requires IsLoad"); 904 if (isSignExtLoad()) 905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 906 "IsSignExtLoad requires IsLoad"); 907 if (isZeroExtLoad()) 908 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 909 "IsZeroExtLoad requires IsLoad"); 910 } 911 912 if (isStore()) { 913 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 914 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 916 "IsStore cannot be used by itself"); 917 } else { 918 if (isNonTruncStore()) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsNonTruncStore requires IsStore"); 921 if (isTruncStore()) 922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 923 "IsTruncStore requires IsStore"); 924 } 925 926 if (isAtomic()) { 927 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 928 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 929 !isAtomicOrderingAcquireRelease() && 930 !isAtomicOrderingSequentiallyConsistent() && 931 !isAtomicOrderingAcquireOrStronger() && 932 !isAtomicOrderingReleaseOrStronger() && 933 !isAtomicOrderingWeakerThanAcquire() && 934 !isAtomicOrderingWeakerThanRelease()) 935 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 936 "IsAtomic cannot be used by itself"); 937 } else { 938 if (isAtomicOrderingMonotonic()) 939 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 940 "IsAtomicOrderingMonotonic requires IsAtomic"); 941 if (isAtomicOrderingAcquire()) 942 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 943 "IsAtomicOrderingAcquire requires IsAtomic"); 944 if (isAtomicOrderingRelease()) 945 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 946 "IsAtomicOrderingRelease requires IsAtomic"); 947 if (isAtomicOrderingAcquireRelease()) 948 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 949 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 950 if (isAtomicOrderingSequentiallyConsistent()) 951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 952 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 953 if (isAtomicOrderingAcquireOrStronger()) 954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 955 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 956 if (isAtomicOrderingReleaseOrStronger()) 957 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 958 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 959 if (isAtomicOrderingWeakerThanAcquire()) 960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 961 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 962 } 963 964 if (isLoad() || isStore() || isAtomic()) { 965 StringRef SDNodeName = 966 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode"; 967 968 Record *MemoryVT = getMemoryVT(); 969 970 if (MemoryVT) 971 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" + 972 MemoryVT->getName() + ") return false;\n") 973 .str(); 974 } 975 976 if (isAtomic() && isAtomicOrderingMonotonic()) 977 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 978 "AtomicOrdering::Monotonic) return false;\n"; 979 if (isAtomic() && isAtomicOrderingAcquire()) 980 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 981 "AtomicOrdering::Acquire) return false;\n"; 982 if (isAtomic() && isAtomicOrderingRelease()) 983 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 984 "AtomicOrdering::Release) return false;\n"; 985 if (isAtomic() && isAtomicOrderingAcquireRelease()) 986 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 987 "AtomicOrdering::AcquireRelease) return false;\n"; 988 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 989 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 990 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 991 992 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 993 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 994 "return false;\n"; 995 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 996 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 997 "return false;\n"; 998 999 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1000 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1001 "return false;\n"; 1002 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1003 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1004 "return false;\n"; 1005 1006 if (isLoad() || isStore()) { 1007 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1008 1009 if (isUnindexed()) 1010 Code += ("if (cast<" + SDNodeName + 1011 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1012 "return false;\n") 1013 .str(); 1014 1015 if (isLoad()) { 1016 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1017 isZeroExtLoad()) > 1) 1018 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1019 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1020 "IsZeroExtLoad are mutually exclusive"); 1021 if (isNonExtLoad()) 1022 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1023 "ISD::NON_EXTLOAD) return false;\n"; 1024 if (isAnyExtLoad()) 1025 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1026 "return false;\n"; 1027 if (isSignExtLoad()) 1028 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1029 "return false;\n"; 1030 if (isZeroExtLoad()) 1031 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1032 "return false;\n"; 1033 } else { 1034 if ((isNonTruncStore() + isTruncStore()) > 1) 1035 PrintFatalError( 1036 getOrigPatFragRecord()->getRecord()->getLoc(), 1037 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1038 if (isNonTruncStore()) 1039 Code += 1040 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1041 if (isTruncStore()) 1042 Code += 1043 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1044 } 1045 1046 Record *ScalarMemoryVT = getScalarMemoryVT(); 1047 1048 if (ScalarMemoryVT) 1049 Code += ("if (cast<" + SDNodeName + 1050 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1051 ScalarMemoryVT->getName() + ") return false;\n") 1052 .str(); 1053 } 1054 1055 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1056 1057 Code += PredicateCode; 1058 1059 if (PredicateCode.empty() && !Code.empty()) 1060 Code += "return true;\n"; 1061 1062 return Code; 1063 } 1064 1065 bool TreePredicateFn::hasImmCode() const { 1066 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1067 } 1068 1069 std::string TreePredicateFn::getImmCode() const { 1070 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1071 } 1072 1073 bool TreePredicateFn::immCodeUsesAPInt() const { 1074 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1075 } 1076 1077 bool TreePredicateFn::immCodeUsesAPFloat() const { 1078 bool Unset; 1079 // The return value will be false when IsAPFloat is unset. 1080 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1081 Unset); 1082 } 1083 1084 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1085 bool Value) const { 1086 bool Unset; 1087 bool Result = 1088 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1089 if (Unset) 1090 return false; 1091 return Result == Value; 1092 } 1093 bool TreePredicateFn::usesOperands() const { 1094 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1095 } 1096 bool TreePredicateFn::isLoad() const { 1097 return isPredefinedPredicateEqualTo("IsLoad", true); 1098 } 1099 bool TreePredicateFn::isStore() const { 1100 return isPredefinedPredicateEqualTo("IsStore", true); 1101 } 1102 bool TreePredicateFn::isAtomic() const { 1103 return isPredefinedPredicateEqualTo("IsAtomic", true); 1104 } 1105 bool TreePredicateFn::isUnindexed() const { 1106 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1107 } 1108 bool TreePredicateFn::isNonExtLoad() const { 1109 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1110 } 1111 bool TreePredicateFn::isAnyExtLoad() const { 1112 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1113 } 1114 bool TreePredicateFn::isSignExtLoad() const { 1115 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1116 } 1117 bool TreePredicateFn::isZeroExtLoad() const { 1118 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1119 } 1120 bool TreePredicateFn::isNonTruncStore() const { 1121 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1122 } 1123 bool TreePredicateFn::isTruncStore() const { 1124 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1125 } 1126 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1127 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1128 } 1129 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1130 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1131 } 1132 bool TreePredicateFn::isAtomicOrderingRelease() const { 1133 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1134 } 1135 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1136 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1137 } 1138 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1139 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1140 true); 1141 } 1142 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1143 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1144 } 1145 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1146 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1147 } 1148 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1149 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1150 } 1151 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1152 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1153 } 1154 Record *TreePredicateFn::getMemoryVT() const { 1155 Record *R = getOrigPatFragRecord()->getRecord(); 1156 if (R->isValueUnset("MemoryVT")) 1157 return nullptr; 1158 return R->getValueAsDef("MemoryVT"); 1159 } 1160 Record *TreePredicateFn::getScalarMemoryVT() const { 1161 Record *R = getOrigPatFragRecord()->getRecord(); 1162 if (R->isValueUnset("ScalarMemoryVT")) 1163 return nullptr; 1164 return R->getValueAsDef("ScalarMemoryVT"); 1165 } 1166 bool TreePredicateFn::hasGISelPredicateCode() const { 1167 return !PatFragRec->getRecord() 1168 ->getValueAsString("GISelPredicateCode") 1169 .empty(); 1170 } 1171 std::string TreePredicateFn::getGISelPredicateCode() const { 1172 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1173 } 1174 1175 StringRef TreePredicateFn::getImmType() const { 1176 if (immCodeUsesAPInt()) 1177 return "const APInt &"; 1178 if (immCodeUsesAPFloat()) 1179 return "const APFloat &"; 1180 return "int64_t"; 1181 } 1182 1183 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1184 if (immCodeUsesAPInt()) 1185 return "APInt"; 1186 else if (immCodeUsesAPFloat()) 1187 return "APFloat"; 1188 return "I64"; 1189 } 1190 1191 /// isAlwaysTrue - Return true if this is a noop predicate. 1192 bool TreePredicateFn::isAlwaysTrue() const { 1193 return !hasPredCode() && !hasImmCode(); 1194 } 1195 1196 /// Return the name to use in the generated code to reference this, this is 1197 /// "Predicate_foo" if from a pattern fragment "foo". 1198 std::string TreePredicateFn::getFnName() const { 1199 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1200 } 1201 1202 /// getCodeToRunOnSDNode - Return the code for the function body that 1203 /// evaluates this predicate. The argument is expected to be in "Node", 1204 /// not N. This handles casting and conversion to a concrete node type as 1205 /// appropriate. 1206 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1207 // Handle immediate predicates first. 1208 std::string ImmCode = getImmCode(); 1209 if (!ImmCode.empty()) { 1210 if (isLoad()) 1211 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1212 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1213 if (isStore()) 1214 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1215 "IsStore cannot be used with ImmLeaf or its subclasses"); 1216 if (isUnindexed()) 1217 PrintFatalError( 1218 getOrigPatFragRecord()->getRecord()->getLoc(), 1219 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1220 if (isNonExtLoad()) 1221 PrintFatalError( 1222 getOrigPatFragRecord()->getRecord()->getLoc(), 1223 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1224 if (isAnyExtLoad()) 1225 PrintFatalError( 1226 getOrigPatFragRecord()->getRecord()->getLoc(), 1227 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1228 if (isSignExtLoad()) 1229 PrintFatalError( 1230 getOrigPatFragRecord()->getRecord()->getLoc(), 1231 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1232 if (isZeroExtLoad()) 1233 PrintFatalError( 1234 getOrigPatFragRecord()->getRecord()->getLoc(), 1235 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1236 if (isNonTruncStore()) 1237 PrintFatalError( 1238 getOrigPatFragRecord()->getRecord()->getLoc(), 1239 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1240 if (isTruncStore()) 1241 PrintFatalError( 1242 getOrigPatFragRecord()->getRecord()->getLoc(), 1243 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1244 if (getMemoryVT()) 1245 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1246 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1247 if (getScalarMemoryVT()) 1248 PrintFatalError( 1249 getOrigPatFragRecord()->getRecord()->getLoc(), 1250 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1251 1252 std::string Result = (" " + getImmType() + " Imm = ").str(); 1253 if (immCodeUsesAPFloat()) 1254 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1255 else if (immCodeUsesAPInt()) 1256 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1257 else 1258 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1259 return Result + ImmCode; 1260 } 1261 1262 // Handle arbitrary node predicates. 1263 assert(hasPredCode() && "Don't have any predicate code!"); 1264 StringRef ClassName; 1265 if (PatFragRec->getOnlyTree()->isLeaf()) 1266 ClassName = "SDNode"; 1267 else { 1268 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1269 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1270 } 1271 std::string Result; 1272 if (ClassName == "SDNode") 1273 Result = " SDNode *N = Node;\n"; 1274 else 1275 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1276 1277 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1278 } 1279 1280 //===----------------------------------------------------------------------===// 1281 // PatternToMatch implementation 1282 // 1283 1284 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1285 if (!P->isLeaf()) 1286 return false; 1287 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1288 if (!DI) 1289 return false; 1290 1291 Record *R = DI->getDef(); 1292 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1293 } 1294 1295 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1296 /// patterns before small ones. This is used to determine the size of a 1297 /// pattern. 1298 static unsigned getPatternSize(const TreePatternNode *P, 1299 const CodeGenDAGPatterns &CGP) { 1300 unsigned Size = 3; // The node itself. 1301 // If the root node is a ConstantSDNode, increases its size. 1302 // e.g. (set R32:$dst, 0). 1303 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1304 Size += 2; 1305 1306 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1307 Size += AM->getComplexity(); 1308 // We don't want to count any children twice, so return early. 1309 return Size; 1310 } 1311 1312 // If this node has some predicate function that must match, it adds to the 1313 // complexity of this node. 1314 if (!P->getPredicateCalls().empty()) 1315 ++Size; 1316 1317 // Count children in the count if they are also nodes. 1318 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1319 const TreePatternNode *Child = P->getChild(i); 1320 if (!Child->isLeaf() && Child->getNumTypes()) { 1321 const TypeSetByHwMode &T0 = Child->getExtType(0); 1322 // At this point, all variable type sets should be simple, i.e. only 1323 // have a default mode. 1324 if (T0.getMachineValueType() != MVT::Other) { 1325 Size += getPatternSize(Child, CGP); 1326 continue; 1327 } 1328 } 1329 if (Child->isLeaf()) { 1330 if (isa<IntInit>(Child->getLeafValue())) 1331 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1332 else if (Child->getComplexPatternInfo(CGP)) 1333 Size += getPatternSize(Child, CGP); 1334 else if (isImmAllOnesAllZerosMatch(Child)) 1335 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1336 else if (!Child->getPredicateCalls().empty()) 1337 ++Size; 1338 } 1339 } 1340 1341 return Size; 1342 } 1343 1344 /// Compute the complexity metric for the input pattern. This roughly 1345 /// corresponds to the number of nodes that are covered. 1346 int PatternToMatch:: 1347 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1348 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1349 } 1350 1351 /// getPredicateCheck - Return a single string containing all of this 1352 /// pattern's predicates concatenated with "&&" operators. 1353 /// 1354 std::string PatternToMatch::getPredicateCheck() const { 1355 SmallVector<const Predicate*,4> PredList; 1356 for (const Predicate &P : Predicates) 1357 PredList.push_back(&P); 1358 llvm::sort(PredList, deref<llvm::less>()); 1359 1360 std::string Check; 1361 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1362 if (i != 0) 1363 Check += " && "; 1364 Check += '(' + PredList[i]->getCondString() + ')'; 1365 } 1366 return Check; 1367 } 1368 1369 //===----------------------------------------------------------------------===// 1370 // SDTypeConstraint implementation 1371 // 1372 1373 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1374 OperandNo = R->getValueAsInt("OperandNum"); 1375 1376 if (R->isSubClassOf("SDTCisVT")) { 1377 ConstraintType = SDTCisVT; 1378 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1379 for (const auto &P : VVT) 1380 if (P.second == MVT::isVoid) 1381 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1382 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1383 ConstraintType = SDTCisPtrTy; 1384 } else if (R->isSubClassOf("SDTCisInt")) { 1385 ConstraintType = SDTCisInt; 1386 } else if (R->isSubClassOf("SDTCisFP")) { 1387 ConstraintType = SDTCisFP; 1388 } else if (R->isSubClassOf("SDTCisVec")) { 1389 ConstraintType = SDTCisVec; 1390 } else if (R->isSubClassOf("SDTCisSameAs")) { 1391 ConstraintType = SDTCisSameAs; 1392 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1393 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1394 ConstraintType = SDTCisVTSmallerThanOp; 1395 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1396 R->getValueAsInt("OtherOperandNum"); 1397 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1398 ConstraintType = SDTCisOpSmallerThanOp; 1399 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1400 R->getValueAsInt("BigOperandNum"); 1401 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1402 ConstraintType = SDTCisEltOfVec; 1403 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1404 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1405 ConstraintType = SDTCisSubVecOfVec; 1406 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1407 R->getValueAsInt("OtherOpNum"); 1408 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1409 ConstraintType = SDTCVecEltisVT; 1410 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1411 for (const auto &P : VVT) { 1412 MVT T = P.second; 1413 if (T.isVector()) 1414 PrintFatalError(R->getLoc(), 1415 "Cannot use vector type as SDTCVecEltisVT"); 1416 if (!T.isInteger() && !T.isFloatingPoint()) 1417 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1418 "as SDTCVecEltisVT"); 1419 } 1420 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1421 ConstraintType = SDTCisSameNumEltsAs; 1422 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1423 R->getValueAsInt("OtherOperandNum"); 1424 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1425 ConstraintType = SDTCisSameSizeAs; 1426 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1427 R->getValueAsInt("OtherOperandNum"); 1428 } else { 1429 PrintFatalError(R->getLoc(), 1430 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1431 } 1432 } 1433 1434 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1435 /// N, and the result number in ResNo. 1436 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1437 const SDNodeInfo &NodeInfo, 1438 unsigned &ResNo) { 1439 unsigned NumResults = NodeInfo.getNumResults(); 1440 if (OpNo < NumResults) { 1441 ResNo = OpNo; 1442 return N; 1443 } 1444 1445 OpNo -= NumResults; 1446 1447 if (OpNo >= N->getNumChildren()) { 1448 std::string S; 1449 raw_string_ostream OS(S); 1450 OS << "Invalid operand number in type constraint " 1451 << (OpNo+NumResults) << " "; 1452 N->print(OS); 1453 PrintFatalError(OS.str()); 1454 } 1455 1456 return N->getChild(OpNo); 1457 } 1458 1459 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1460 /// constraint to the nodes operands. This returns true if it makes a 1461 /// change, false otherwise. If a type contradiction is found, flag an error. 1462 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1463 const SDNodeInfo &NodeInfo, 1464 TreePattern &TP) const { 1465 if (TP.hasError()) 1466 return false; 1467 1468 unsigned ResNo = 0; // The result number being referenced. 1469 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1470 TypeInfer &TI = TP.getInfer(); 1471 1472 switch (ConstraintType) { 1473 case SDTCisVT: 1474 // Operand must be a particular type. 1475 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1476 case SDTCisPtrTy: 1477 // Operand must be same as target pointer type. 1478 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1479 case SDTCisInt: 1480 // Require it to be one of the legal integer VTs. 1481 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1482 case SDTCisFP: 1483 // Require it to be one of the legal fp VTs. 1484 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1485 case SDTCisVec: 1486 // Require it to be one of the legal vector VTs. 1487 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1488 case SDTCisSameAs: { 1489 unsigned OResNo = 0; 1490 TreePatternNode *OtherNode = 1491 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1492 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1493 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1494 } 1495 case SDTCisVTSmallerThanOp: { 1496 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1497 // have an integer type that is smaller than the VT. 1498 if (!NodeToApply->isLeaf() || 1499 !isa<DefInit>(NodeToApply->getLeafValue()) || 1500 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1501 ->isSubClassOf("ValueType")) { 1502 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1503 return false; 1504 } 1505 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1506 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1507 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1508 TypeSetByHwMode TypeListTmp(VVT); 1509 1510 unsigned OResNo = 0; 1511 TreePatternNode *OtherNode = 1512 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1513 OResNo); 1514 1515 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1516 } 1517 case SDTCisOpSmallerThanOp: { 1518 unsigned BResNo = 0; 1519 TreePatternNode *BigOperand = 1520 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1521 BResNo); 1522 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1523 BigOperand->getExtType(BResNo)); 1524 } 1525 case SDTCisEltOfVec: { 1526 unsigned VResNo = 0; 1527 TreePatternNode *VecOperand = 1528 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1529 VResNo); 1530 // Filter vector types out of VecOperand that don't have the right element 1531 // type. 1532 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1533 NodeToApply->getExtType(ResNo)); 1534 } 1535 case SDTCisSubVecOfVec: { 1536 unsigned VResNo = 0; 1537 TreePatternNode *BigVecOperand = 1538 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1539 VResNo); 1540 1541 // Filter vector types out of BigVecOperand that don't have the 1542 // right subvector type. 1543 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1544 NodeToApply->getExtType(ResNo)); 1545 } 1546 case SDTCVecEltisVT: { 1547 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1548 } 1549 case SDTCisSameNumEltsAs: { 1550 unsigned OResNo = 0; 1551 TreePatternNode *OtherNode = 1552 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1553 N, NodeInfo, OResNo); 1554 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1555 NodeToApply->getExtType(ResNo)); 1556 } 1557 case SDTCisSameSizeAs: { 1558 unsigned OResNo = 0; 1559 TreePatternNode *OtherNode = 1560 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1561 N, NodeInfo, OResNo); 1562 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1563 NodeToApply->getExtType(ResNo)); 1564 } 1565 } 1566 llvm_unreachable("Invalid ConstraintType!"); 1567 } 1568 1569 // Update the node type to match an instruction operand or result as specified 1570 // in the ins or outs lists on the instruction definition. Return true if the 1571 // type was actually changed. 1572 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1573 Record *Operand, 1574 TreePattern &TP) { 1575 // The 'unknown' operand indicates that types should be inferred from the 1576 // context. 1577 if (Operand->isSubClassOf("unknown_class")) 1578 return false; 1579 1580 // The Operand class specifies a type directly. 1581 if (Operand->isSubClassOf("Operand")) { 1582 Record *R = Operand->getValueAsDef("Type"); 1583 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1584 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1585 } 1586 1587 // PointerLikeRegClass has a type that is determined at runtime. 1588 if (Operand->isSubClassOf("PointerLikeRegClass")) 1589 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1590 1591 // Both RegisterClass and RegisterOperand operands derive their types from a 1592 // register class def. 1593 Record *RC = nullptr; 1594 if (Operand->isSubClassOf("RegisterClass")) 1595 RC = Operand; 1596 else if (Operand->isSubClassOf("RegisterOperand")) 1597 RC = Operand->getValueAsDef("RegClass"); 1598 1599 assert(RC && "Unknown operand type"); 1600 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1601 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1602 } 1603 1604 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1605 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1606 if (!TP.getInfer().isConcrete(Types[i], true)) 1607 return true; 1608 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1609 if (getChild(i)->ContainsUnresolvedType(TP)) 1610 return true; 1611 return false; 1612 } 1613 1614 bool TreePatternNode::hasProperTypeByHwMode() const { 1615 for (const TypeSetByHwMode &S : Types) 1616 if (!S.isDefaultOnly()) 1617 return true; 1618 for (const TreePatternNodePtr &C : Children) 1619 if (C->hasProperTypeByHwMode()) 1620 return true; 1621 return false; 1622 } 1623 1624 bool TreePatternNode::hasPossibleType() const { 1625 for (const TypeSetByHwMode &S : Types) 1626 if (!S.isPossible()) 1627 return false; 1628 for (const TreePatternNodePtr &C : Children) 1629 if (!C->hasPossibleType()) 1630 return false; 1631 return true; 1632 } 1633 1634 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1635 for (TypeSetByHwMode &S : Types) { 1636 S.makeSimple(Mode); 1637 // Check if the selected mode had a type conflict. 1638 if (S.get(DefaultMode).empty()) 1639 return false; 1640 } 1641 for (const TreePatternNodePtr &C : Children) 1642 if (!C->setDefaultMode(Mode)) 1643 return false; 1644 return true; 1645 } 1646 1647 //===----------------------------------------------------------------------===// 1648 // SDNodeInfo implementation 1649 // 1650 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1651 EnumName = R->getValueAsString("Opcode"); 1652 SDClassName = R->getValueAsString("SDClass"); 1653 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1654 NumResults = TypeProfile->getValueAsInt("NumResults"); 1655 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1656 1657 // Parse the properties. 1658 Properties = parseSDPatternOperatorProperties(R); 1659 1660 // Parse the type constraints. 1661 std::vector<Record*> ConstraintList = 1662 TypeProfile->getValueAsListOfDefs("Constraints"); 1663 for (Record *R : ConstraintList) 1664 TypeConstraints.emplace_back(R, CGH); 1665 } 1666 1667 /// getKnownType - If the type constraints on this node imply a fixed type 1668 /// (e.g. all stores return void, etc), then return it as an 1669 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1670 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1671 unsigned NumResults = getNumResults(); 1672 assert(NumResults <= 1 && 1673 "We only work with nodes with zero or one result so far!"); 1674 assert(ResNo == 0 && "Only handles single result nodes so far"); 1675 1676 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1677 // Make sure that this applies to the correct node result. 1678 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1679 continue; 1680 1681 switch (Constraint.ConstraintType) { 1682 default: break; 1683 case SDTypeConstraint::SDTCisVT: 1684 if (Constraint.VVT.isSimple()) 1685 return Constraint.VVT.getSimple().SimpleTy; 1686 break; 1687 case SDTypeConstraint::SDTCisPtrTy: 1688 return MVT::iPTR; 1689 } 1690 } 1691 return MVT::Other; 1692 } 1693 1694 //===----------------------------------------------------------------------===// 1695 // TreePatternNode implementation 1696 // 1697 1698 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1699 if (Operator->getName() == "set" || 1700 Operator->getName() == "implicit") 1701 return 0; // All return nothing. 1702 1703 if (Operator->isSubClassOf("Intrinsic")) 1704 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1705 1706 if (Operator->isSubClassOf("SDNode")) 1707 return CDP.getSDNodeInfo(Operator).getNumResults(); 1708 1709 if (Operator->isSubClassOf("PatFrags")) { 1710 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1711 // the forward reference case where one pattern fragment references another 1712 // before it is processed. 1713 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1714 // The number of results of a fragment with alternative records is the 1715 // maximum number of results across all alternatives. 1716 unsigned NumResults = 0; 1717 for (auto T : PFRec->getTrees()) 1718 NumResults = std::max(NumResults, T->getNumTypes()); 1719 return NumResults; 1720 } 1721 1722 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1723 assert(LI && "Invalid Fragment"); 1724 unsigned NumResults = 0; 1725 for (Init *I : LI->getValues()) { 1726 Record *Op = nullptr; 1727 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1728 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1729 Op = DI->getDef(); 1730 assert(Op && "Invalid Fragment"); 1731 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1732 } 1733 return NumResults; 1734 } 1735 1736 if (Operator->isSubClassOf("Instruction")) { 1737 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1738 1739 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1740 1741 // Subtract any defaulted outputs. 1742 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1743 Record *OperandNode = InstInfo.Operands[i].Rec; 1744 1745 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1746 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1747 --NumDefsToAdd; 1748 } 1749 1750 // Add on one implicit def if it has a resolvable type. 1751 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1752 ++NumDefsToAdd; 1753 return NumDefsToAdd; 1754 } 1755 1756 if (Operator->isSubClassOf("SDNodeXForm")) 1757 return 1; // FIXME: Generalize SDNodeXForm 1758 1759 if (Operator->isSubClassOf("ValueType")) 1760 return 1; // A type-cast of one result. 1761 1762 if (Operator->isSubClassOf("ComplexPattern")) 1763 return 1; 1764 1765 errs() << *Operator; 1766 PrintFatalError("Unhandled node in GetNumNodeResults"); 1767 } 1768 1769 void TreePatternNode::print(raw_ostream &OS) const { 1770 if (isLeaf()) 1771 OS << *getLeafValue(); 1772 else 1773 OS << '(' << getOperator()->getName(); 1774 1775 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1776 OS << ':'; 1777 getExtType(i).writeToStream(OS); 1778 } 1779 1780 if (!isLeaf()) { 1781 if (getNumChildren() != 0) { 1782 OS << " "; 1783 getChild(0)->print(OS); 1784 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1785 OS << ", "; 1786 getChild(i)->print(OS); 1787 } 1788 } 1789 OS << ")"; 1790 } 1791 1792 for (const TreePredicateCall &Pred : PredicateCalls) { 1793 OS << "<<P:"; 1794 if (Pred.Scope) 1795 OS << Pred.Scope << ":"; 1796 OS << Pred.Fn.getFnName() << ">>"; 1797 } 1798 if (TransformFn) 1799 OS << "<<X:" << TransformFn->getName() << ">>"; 1800 if (!getName().empty()) 1801 OS << ":$" << getName(); 1802 1803 for (const ScopedName &Name : NamesAsPredicateArg) 1804 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1805 } 1806 void TreePatternNode::dump() const { 1807 print(errs()); 1808 } 1809 1810 /// isIsomorphicTo - Return true if this node is recursively 1811 /// isomorphic to the specified node. For this comparison, the node's 1812 /// entire state is considered. The assigned name is ignored, since 1813 /// nodes with differing names are considered isomorphic. However, if 1814 /// the assigned name is present in the dependent variable set, then 1815 /// the assigned name is considered significant and the node is 1816 /// isomorphic if the names match. 1817 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1818 const MultipleUseVarSet &DepVars) const { 1819 if (N == this) return true; 1820 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1821 getPredicateCalls() != N->getPredicateCalls() || 1822 getTransformFn() != N->getTransformFn()) 1823 return false; 1824 1825 if (isLeaf()) { 1826 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1827 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1828 return ((DI->getDef() == NDI->getDef()) 1829 && (DepVars.find(getName()) == DepVars.end() 1830 || getName() == N->getName())); 1831 } 1832 } 1833 return getLeafValue() == N->getLeafValue(); 1834 } 1835 1836 if (N->getOperator() != getOperator() || 1837 N->getNumChildren() != getNumChildren()) return false; 1838 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1839 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1840 return false; 1841 return true; 1842 } 1843 1844 /// clone - Make a copy of this tree and all of its children. 1845 /// 1846 TreePatternNodePtr TreePatternNode::clone() const { 1847 TreePatternNodePtr New; 1848 if (isLeaf()) { 1849 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1850 } else { 1851 std::vector<TreePatternNodePtr> CChildren; 1852 CChildren.reserve(Children.size()); 1853 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1854 CChildren.push_back(getChild(i)->clone()); 1855 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1856 getNumTypes()); 1857 } 1858 New->setName(getName()); 1859 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1860 New->Types = Types; 1861 New->setPredicateCalls(getPredicateCalls()); 1862 New->setTransformFn(getTransformFn()); 1863 return New; 1864 } 1865 1866 /// RemoveAllTypes - Recursively strip all the types of this tree. 1867 void TreePatternNode::RemoveAllTypes() { 1868 // Reset to unknown type. 1869 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1870 if (isLeaf()) return; 1871 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1872 getChild(i)->RemoveAllTypes(); 1873 } 1874 1875 1876 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1877 /// with actual values specified by ArgMap. 1878 void TreePatternNode::SubstituteFormalArguments( 1879 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1880 if (isLeaf()) return; 1881 1882 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1883 TreePatternNode *Child = getChild(i); 1884 if (Child->isLeaf()) { 1885 Init *Val = Child->getLeafValue(); 1886 // Note that, when substituting into an output pattern, Val might be an 1887 // UnsetInit. 1888 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1889 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1890 // We found a use of a formal argument, replace it with its value. 1891 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1892 assert(NewChild && "Couldn't find formal argument!"); 1893 assert((Child->getPredicateCalls().empty() || 1894 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1895 "Non-empty child predicate clobbered!"); 1896 setChild(i, std::move(NewChild)); 1897 } 1898 } else { 1899 getChild(i)->SubstituteFormalArguments(ArgMap); 1900 } 1901 } 1902 } 1903 1904 1905 /// InlinePatternFragments - If this pattern refers to any pattern 1906 /// fragments, return the set of inlined versions (this can be more than 1907 /// one if a PatFrags record has multiple alternatives). 1908 void TreePatternNode::InlinePatternFragments( 1909 TreePatternNodePtr T, TreePattern &TP, 1910 std::vector<TreePatternNodePtr> &OutAlternatives) { 1911 1912 if (TP.hasError()) 1913 return; 1914 1915 if (isLeaf()) { 1916 OutAlternatives.push_back(T); // nothing to do. 1917 return; 1918 } 1919 1920 Record *Op = getOperator(); 1921 1922 if (!Op->isSubClassOf("PatFrags")) { 1923 if (getNumChildren() == 0) { 1924 OutAlternatives.push_back(T); 1925 return; 1926 } 1927 1928 // Recursively inline children nodes. 1929 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 1930 ChildAlternatives.resize(getNumChildren()); 1931 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1932 TreePatternNodePtr Child = getChildShared(i); 1933 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 1934 // If there are no alternatives for any child, there are no 1935 // alternatives for this expression as whole. 1936 if (ChildAlternatives[i].empty()) 1937 return; 1938 1939 for (auto NewChild : ChildAlternatives[i]) 1940 assert((Child->getPredicateCalls().empty() || 1941 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1942 "Non-empty child predicate clobbered!"); 1943 } 1944 1945 // The end result is an all-pairs construction of the resultant pattern. 1946 std::vector<unsigned> Idxs; 1947 Idxs.resize(ChildAlternatives.size()); 1948 bool NotDone; 1949 do { 1950 // Create the variant and add it to the output list. 1951 std::vector<TreePatternNodePtr> NewChildren; 1952 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 1953 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 1954 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 1955 getOperator(), std::move(NewChildren), getNumTypes()); 1956 1957 // Copy over properties. 1958 R->setName(getName()); 1959 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1960 R->setPredicateCalls(getPredicateCalls()); 1961 R->setTransformFn(getTransformFn()); 1962 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 1963 R->setType(i, getExtType(i)); 1964 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 1965 R->setResultIndex(i, getResultIndex(i)); 1966 1967 // Register alternative. 1968 OutAlternatives.push_back(R); 1969 1970 // Increment indices to the next permutation by incrementing the 1971 // indices from last index backward, e.g., generate the sequence 1972 // [0, 0], [0, 1], [1, 0], [1, 1]. 1973 int IdxsIdx; 1974 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 1975 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 1976 Idxs[IdxsIdx] = 0; 1977 else 1978 break; 1979 } 1980 NotDone = (IdxsIdx >= 0); 1981 } while (NotDone); 1982 1983 return; 1984 } 1985 1986 // Otherwise, we found a reference to a fragment. First, look up its 1987 // TreePattern record. 1988 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1989 1990 // Verify that we are passing the right number of operands. 1991 if (Frag->getNumArgs() != Children.size()) { 1992 TP.error("'" + Op->getName() + "' fragment requires " + 1993 Twine(Frag->getNumArgs()) + " operands!"); 1994 return; 1995 } 1996 1997 TreePredicateFn PredFn(Frag); 1998 unsigned Scope = 0; 1999 if (TreePredicateFn(Frag).usesOperands()) 2000 Scope = TP.getDAGPatterns().allocateScope(); 2001 2002 // Compute the map of formal to actual arguments. 2003 std::map<std::string, TreePatternNodePtr> ArgMap; 2004 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2005 TreePatternNodePtr Child = getChildShared(i); 2006 if (Scope != 0) { 2007 Child = Child->clone(); 2008 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2009 } 2010 ArgMap[Frag->getArgName(i)] = Child; 2011 } 2012 2013 // Loop over all fragment alternatives. 2014 for (auto Alternative : Frag->getTrees()) { 2015 TreePatternNodePtr FragTree = Alternative->clone(); 2016 2017 if (!PredFn.isAlwaysTrue()) 2018 FragTree->addPredicateCall(PredFn, Scope); 2019 2020 // Resolve formal arguments to their actual value. 2021 if (Frag->getNumArgs()) 2022 FragTree->SubstituteFormalArguments(ArgMap); 2023 2024 // Transfer types. Note that the resolved alternative may have fewer 2025 // (but not more) results than the PatFrags node. 2026 FragTree->setName(getName()); 2027 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2028 FragTree->UpdateNodeType(i, getExtType(i), TP); 2029 2030 // Transfer in the old predicates. 2031 for (const TreePredicateCall &Pred : getPredicateCalls()) 2032 FragTree->addPredicateCall(Pred); 2033 2034 // The fragment we inlined could have recursive inlining that is needed. See 2035 // if there are any pattern fragments in it and inline them as needed. 2036 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2037 } 2038 } 2039 2040 /// getImplicitType - Check to see if the specified record has an implicit 2041 /// type which should be applied to it. This will infer the type of register 2042 /// references from the register file information, for example. 2043 /// 2044 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2045 /// the F8RC register class argument in: 2046 /// 2047 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2048 /// 2049 /// When Unnamed is false, return the type of a named DAG operand such as the 2050 /// GPR:$src operand above. 2051 /// 2052 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2053 bool NotRegisters, 2054 bool Unnamed, 2055 TreePattern &TP) { 2056 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2057 2058 // Check to see if this is a register operand. 2059 if (R->isSubClassOf("RegisterOperand")) { 2060 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2061 if (NotRegisters) 2062 return TypeSetByHwMode(); // Unknown. 2063 Record *RegClass = R->getValueAsDef("RegClass"); 2064 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2065 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2066 } 2067 2068 // Check to see if this is a register or a register class. 2069 if (R->isSubClassOf("RegisterClass")) { 2070 assert(ResNo == 0 && "Regclass ref only has one result!"); 2071 // An unnamed register class represents itself as an i32 immediate, for 2072 // example on a COPY_TO_REGCLASS instruction. 2073 if (Unnamed) 2074 return TypeSetByHwMode(MVT::i32); 2075 2076 // In a named operand, the register class provides the possible set of 2077 // types. 2078 if (NotRegisters) 2079 return TypeSetByHwMode(); // Unknown. 2080 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2081 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2082 } 2083 2084 if (R->isSubClassOf("PatFrags")) { 2085 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2086 // Pattern fragment types will be resolved when they are inlined. 2087 return TypeSetByHwMode(); // Unknown. 2088 } 2089 2090 if (R->isSubClassOf("Register")) { 2091 assert(ResNo == 0 && "Registers only produce one result!"); 2092 if (NotRegisters) 2093 return TypeSetByHwMode(); // Unknown. 2094 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2095 return TypeSetByHwMode(T.getRegisterVTs(R)); 2096 } 2097 2098 if (R->isSubClassOf("SubRegIndex")) { 2099 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2100 return TypeSetByHwMode(MVT::i32); 2101 } 2102 2103 if (R->isSubClassOf("ValueType")) { 2104 assert(ResNo == 0 && "This node only has one result!"); 2105 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2106 // 2107 // (sext_inreg GPR:$src, i16) 2108 // ~~~ 2109 if (Unnamed) 2110 return TypeSetByHwMode(MVT::Other); 2111 // With a name, the ValueType simply provides the type of the named 2112 // variable. 2113 // 2114 // (sext_inreg i32:$src, i16) 2115 // ~~~~~~~~ 2116 if (NotRegisters) 2117 return TypeSetByHwMode(); // Unknown. 2118 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2119 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2120 } 2121 2122 if (R->isSubClassOf("CondCode")) { 2123 assert(ResNo == 0 && "This node only has one result!"); 2124 // Using a CondCodeSDNode. 2125 return TypeSetByHwMode(MVT::Other); 2126 } 2127 2128 if (R->isSubClassOf("ComplexPattern")) { 2129 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2130 if (NotRegisters) 2131 return TypeSetByHwMode(); // Unknown. 2132 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2133 } 2134 if (R->isSubClassOf("PointerLikeRegClass")) { 2135 assert(ResNo == 0 && "Regclass can only have one result!"); 2136 TypeSetByHwMode VTS(MVT::iPTR); 2137 TP.getInfer().expandOverloads(VTS); 2138 return VTS; 2139 } 2140 2141 if (R->getName() == "node" || R->getName() == "srcvalue" || 2142 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2143 R->getName() == "immAllZerosV") { 2144 // Placeholder. 2145 return TypeSetByHwMode(); // Unknown. 2146 } 2147 2148 if (R->isSubClassOf("Operand")) { 2149 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2150 Record *T = R->getValueAsDef("Type"); 2151 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2152 } 2153 2154 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2155 return TypeSetByHwMode(MVT::Other); 2156 } 2157 2158 2159 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2160 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2161 const CodeGenIntrinsic *TreePatternNode:: 2162 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2163 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2164 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2165 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2166 return nullptr; 2167 2168 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2169 return &CDP.getIntrinsicInfo(IID); 2170 } 2171 2172 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2173 /// return the ComplexPattern information, otherwise return null. 2174 const ComplexPattern * 2175 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2176 Record *Rec; 2177 if (isLeaf()) { 2178 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2179 if (!DI) 2180 return nullptr; 2181 Rec = DI->getDef(); 2182 } else 2183 Rec = getOperator(); 2184 2185 if (!Rec->isSubClassOf("ComplexPattern")) 2186 return nullptr; 2187 return &CGP.getComplexPattern(Rec); 2188 } 2189 2190 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2191 // A ComplexPattern specifically declares how many results it fills in. 2192 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2193 return CP->getNumOperands(); 2194 2195 // If MIOperandInfo is specified, that gives the count. 2196 if (isLeaf()) { 2197 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2198 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2199 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2200 if (MIOps->getNumArgs()) 2201 return MIOps->getNumArgs(); 2202 } 2203 } 2204 2205 // Otherwise there is just one result. 2206 return 1; 2207 } 2208 2209 /// NodeHasProperty - Return true if this node has the specified property. 2210 bool TreePatternNode::NodeHasProperty(SDNP Property, 2211 const CodeGenDAGPatterns &CGP) const { 2212 if (isLeaf()) { 2213 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2214 return CP->hasProperty(Property); 2215 2216 return false; 2217 } 2218 2219 if (Property != SDNPHasChain) { 2220 // The chain proprety is already present on the different intrinsic node 2221 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2222 // on the intrinsic. Anything else is specific to the individual intrinsic. 2223 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2224 return Int->hasProperty(Property); 2225 } 2226 2227 if (!Operator->isSubClassOf("SDPatternOperator")) 2228 return false; 2229 2230 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2231 } 2232 2233 2234 2235 2236 /// TreeHasProperty - Return true if any node in this tree has the specified 2237 /// property. 2238 bool TreePatternNode::TreeHasProperty(SDNP Property, 2239 const CodeGenDAGPatterns &CGP) const { 2240 if (NodeHasProperty(Property, CGP)) 2241 return true; 2242 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2243 if (getChild(i)->TreeHasProperty(Property, CGP)) 2244 return true; 2245 return false; 2246 } 2247 2248 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2249 /// commutative intrinsic. 2250 bool 2251 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2252 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2253 return Int->isCommutative; 2254 return false; 2255 } 2256 2257 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2258 if (!N->isLeaf()) 2259 return N->getOperator()->isSubClassOf(Class); 2260 2261 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2262 if (DI && DI->getDef()->isSubClassOf(Class)) 2263 return true; 2264 2265 return false; 2266 } 2267 2268 static void emitTooManyOperandsError(TreePattern &TP, 2269 StringRef InstName, 2270 unsigned Expected, 2271 unsigned Actual) { 2272 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2273 " operands but expected only " + Twine(Expected) + "!"); 2274 } 2275 2276 static void emitTooFewOperandsError(TreePattern &TP, 2277 StringRef InstName, 2278 unsigned Actual) { 2279 TP.error("Instruction '" + InstName + 2280 "' expects more than the provided " + Twine(Actual) + " operands!"); 2281 } 2282 2283 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2284 /// this node and its children in the tree. This returns true if it makes a 2285 /// change, false otherwise. If a type contradiction is found, flag an error. 2286 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2287 if (TP.hasError()) 2288 return false; 2289 2290 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2291 if (isLeaf()) { 2292 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2293 // If it's a regclass or something else known, include the type. 2294 bool MadeChange = false; 2295 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2296 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2297 NotRegisters, 2298 !hasName(), TP), TP); 2299 return MadeChange; 2300 } 2301 2302 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2303 assert(Types.size() == 1 && "Invalid IntInit"); 2304 2305 // Int inits are always integers. :) 2306 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2307 2308 if (!TP.getInfer().isConcrete(Types[0], false)) 2309 return MadeChange; 2310 2311 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2312 for (auto &P : VVT) { 2313 MVT::SimpleValueType VT = P.second.SimpleTy; 2314 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2315 continue; 2316 unsigned Size = MVT(VT).getSizeInBits(); 2317 // Make sure that the value is representable for this type. 2318 if (Size >= 32) 2319 continue; 2320 // Check that the value doesn't use more bits than we have. It must 2321 // either be a sign- or zero-extended equivalent of the original. 2322 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2323 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2324 SignBitAndAbove == 1) 2325 continue; 2326 2327 TP.error("Integer value '" + Twine(II->getValue()) + 2328 "' is out of range for type '" + getEnumName(VT) + "'!"); 2329 break; 2330 } 2331 return MadeChange; 2332 } 2333 2334 return false; 2335 } 2336 2337 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2338 bool MadeChange = false; 2339 2340 // Apply the result type to the node. 2341 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2342 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2343 2344 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2345 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2346 2347 if (getNumChildren() != NumParamVTs + 1) { 2348 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2349 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2350 return false; 2351 } 2352 2353 // Apply type info to the intrinsic ID. 2354 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2355 2356 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2357 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2358 2359 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2360 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2361 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2362 } 2363 return MadeChange; 2364 } 2365 2366 if (getOperator()->isSubClassOf("SDNode")) { 2367 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2368 2369 // Check that the number of operands is sane. Negative operands -> varargs. 2370 if (NI.getNumOperands() >= 0 && 2371 getNumChildren() != (unsigned)NI.getNumOperands()) { 2372 TP.error(getOperator()->getName() + " node requires exactly " + 2373 Twine(NI.getNumOperands()) + " operands!"); 2374 return false; 2375 } 2376 2377 bool MadeChange = false; 2378 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2379 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2380 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2381 return MadeChange; 2382 } 2383 2384 if (getOperator()->isSubClassOf("Instruction")) { 2385 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2386 CodeGenInstruction &InstInfo = 2387 CDP.getTargetInfo().getInstruction(getOperator()); 2388 2389 bool MadeChange = false; 2390 2391 // Apply the result types to the node, these come from the things in the 2392 // (outs) list of the instruction. 2393 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2394 Inst.getNumResults()); 2395 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2396 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2397 2398 // If the instruction has implicit defs, we apply the first one as a result. 2399 // FIXME: This sucks, it should apply all implicit defs. 2400 if (!InstInfo.ImplicitDefs.empty()) { 2401 unsigned ResNo = NumResultsToAdd; 2402 2403 // FIXME: Generalize to multiple possible types and multiple possible 2404 // ImplicitDefs. 2405 MVT::SimpleValueType VT = 2406 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2407 2408 if (VT != MVT::Other) 2409 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2410 } 2411 2412 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2413 // be the same. 2414 if (getOperator()->getName() == "INSERT_SUBREG") { 2415 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2416 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2417 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2418 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2419 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2420 // variadic. 2421 2422 unsigned NChild = getNumChildren(); 2423 if (NChild < 3) { 2424 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2425 return false; 2426 } 2427 2428 if (NChild % 2 == 0) { 2429 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2430 return false; 2431 } 2432 2433 if (!isOperandClass(getChild(0), "RegisterClass")) { 2434 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2435 return false; 2436 } 2437 2438 for (unsigned I = 1; I < NChild; I += 2) { 2439 TreePatternNode *SubIdxChild = getChild(I + 1); 2440 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2441 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2442 Twine(I + 1) + "!"); 2443 return false; 2444 } 2445 } 2446 } 2447 2448 unsigned ChildNo = 0; 2449 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2450 Record *OperandNode = Inst.getOperand(i); 2451 2452 // If the instruction expects a predicate or optional def operand, we 2453 // codegen this by setting the operand to it's default value if it has a 2454 // non-empty DefaultOps field. 2455 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 2456 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 2457 continue; 2458 2459 // Verify that we didn't run out of provided operands. 2460 if (ChildNo >= getNumChildren()) { 2461 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2462 return false; 2463 } 2464 2465 TreePatternNode *Child = getChild(ChildNo++); 2466 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2467 2468 // If the operand has sub-operands, they may be provided by distinct 2469 // child patterns, so attempt to match each sub-operand separately. 2470 if (OperandNode->isSubClassOf("Operand")) { 2471 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2472 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2473 // But don't do that if the whole operand is being provided by 2474 // a single ComplexPattern-related Operand. 2475 2476 if (Child->getNumMIResults(CDP) < NumArgs) { 2477 // Match first sub-operand against the child we already have. 2478 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2479 MadeChange |= 2480 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2481 2482 // And the remaining sub-operands against subsequent children. 2483 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2484 if (ChildNo >= getNumChildren()) { 2485 emitTooFewOperandsError(TP, getOperator()->getName(), 2486 getNumChildren()); 2487 return false; 2488 } 2489 Child = getChild(ChildNo++); 2490 2491 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2492 MadeChange |= 2493 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2494 } 2495 continue; 2496 } 2497 } 2498 } 2499 2500 // If we didn't match by pieces above, attempt to match the whole 2501 // operand now. 2502 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2503 } 2504 2505 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2506 emitTooManyOperandsError(TP, getOperator()->getName(), 2507 ChildNo, getNumChildren()); 2508 return false; 2509 } 2510 2511 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2512 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2513 return MadeChange; 2514 } 2515 2516 if (getOperator()->isSubClassOf("ComplexPattern")) { 2517 bool MadeChange = false; 2518 2519 for (unsigned i = 0; i < getNumChildren(); ++i) 2520 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2521 2522 return MadeChange; 2523 } 2524 2525 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2526 2527 // Node transforms always take one operand. 2528 if (getNumChildren() != 1) { 2529 TP.error("Node transform '" + getOperator()->getName() + 2530 "' requires one operand!"); 2531 return false; 2532 } 2533 2534 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2535 return MadeChange; 2536 } 2537 2538 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2539 /// RHS of a commutative operation, not the on LHS. 2540 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2541 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2542 return true; 2543 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2544 return true; 2545 return false; 2546 } 2547 2548 2549 /// canPatternMatch - If it is impossible for this pattern to match on this 2550 /// target, fill in Reason and return false. Otherwise, return true. This is 2551 /// used as a sanity check for .td files (to prevent people from writing stuff 2552 /// that can never possibly work), and to prevent the pattern permuter from 2553 /// generating stuff that is useless. 2554 bool TreePatternNode::canPatternMatch(std::string &Reason, 2555 const CodeGenDAGPatterns &CDP) { 2556 if (isLeaf()) return true; 2557 2558 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2559 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2560 return false; 2561 2562 // If this is an intrinsic, handle cases that would make it not match. For 2563 // example, if an operand is required to be an immediate. 2564 if (getOperator()->isSubClassOf("Intrinsic")) { 2565 // TODO: 2566 return true; 2567 } 2568 2569 if (getOperator()->isSubClassOf("ComplexPattern")) 2570 return true; 2571 2572 // If this node is a commutative operator, check that the LHS isn't an 2573 // immediate. 2574 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2575 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2576 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2577 // Scan all of the operands of the node and make sure that only the last one 2578 // is a constant node, unless the RHS also is. 2579 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2580 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2581 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2582 if (OnlyOnRHSOfCommutative(getChild(i))) { 2583 Reason="Immediate value must be on the RHS of commutative operators!"; 2584 return false; 2585 } 2586 } 2587 } 2588 2589 return true; 2590 } 2591 2592 //===----------------------------------------------------------------------===// 2593 // TreePattern implementation 2594 // 2595 2596 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2597 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2598 isInputPattern(isInput), HasError(false), 2599 Infer(*this) { 2600 for (Init *I : RawPat->getValues()) 2601 Trees.push_back(ParseTreePattern(I, "")); 2602 } 2603 2604 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2605 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2606 isInputPattern(isInput), HasError(false), 2607 Infer(*this) { 2608 Trees.push_back(ParseTreePattern(Pat, "")); 2609 } 2610 2611 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2612 CodeGenDAGPatterns &cdp) 2613 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2614 Infer(*this) { 2615 Trees.push_back(Pat); 2616 } 2617 2618 void TreePattern::error(const Twine &Msg) { 2619 if (HasError) 2620 return; 2621 dump(); 2622 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2623 HasError = true; 2624 } 2625 2626 void TreePattern::ComputeNamedNodes() { 2627 for (TreePatternNodePtr &Tree : Trees) 2628 ComputeNamedNodes(Tree.get()); 2629 } 2630 2631 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2632 if (!N->getName().empty()) 2633 NamedNodes[N->getName()].push_back(N); 2634 2635 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2636 ComputeNamedNodes(N->getChild(i)); 2637 } 2638 2639 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2640 StringRef OpName) { 2641 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2642 Record *R = DI->getDef(); 2643 2644 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2645 // TreePatternNode of its own. For example: 2646 /// (foo GPR, imm) -> (foo GPR, (imm)) 2647 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2648 return ParseTreePattern( 2649 DagInit::get(DI, nullptr, 2650 std::vector<std::pair<Init*, StringInit*> >()), 2651 OpName); 2652 2653 // Input argument? 2654 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2655 if (R->getName() == "node" && !OpName.empty()) { 2656 if (OpName.empty()) 2657 error("'node' argument requires a name to match with operand list"); 2658 Args.push_back(OpName); 2659 } 2660 2661 Res->setName(OpName); 2662 return Res; 2663 } 2664 2665 // ?:$name or just $name. 2666 if (isa<UnsetInit>(TheInit)) { 2667 if (OpName.empty()) 2668 error("'?' argument requires a name to match with operand list"); 2669 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2670 Args.push_back(OpName); 2671 Res->setName(OpName); 2672 return Res; 2673 } 2674 2675 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2676 if (!OpName.empty()) 2677 error("Constant int or bit argument should not have a name!"); 2678 if (isa<BitInit>(TheInit)) 2679 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2680 return std::make_shared<TreePatternNode>(TheInit, 1); 2681 } 2682 2683 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2684 // Turn this into an IntInit. 2685 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2686 if (!II || !isa<IntInit>(II)) 2687 error("Bits value must be constants!"); 2688 return ParseTreePattern(II, OpName); 2689 } 2690 2691 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2692 if (!Dag) { 2693 TheInit->print(errs()); 2694 error("Pattern has unexpected init kind!"); 2695 } 2696 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2697 if (!OpDef) error("Pattern has unexpected operator type!"); 2698 Record *Operator = OpDef->getDef(); 2699 2700 if (Operator->isSubClassOf("ValueType")) { 2701 // If the operator is a ValueType, then this must be "type cast" of a leaf 2702 // node. 2703 if (Dag->getNumArgs() != 1) 2704 error("Type cast only takes one operand!"); 2705 2706 TreePatternNodePtr New = 2707 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2708 2709 // Apply the type cast. 2710 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2711 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2712 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2713 2714 if (!OpName.empty()) 2715 error("ValueType cast should not have a name!"); 2716 return New; 2717 } 2718 2719 // Verify that this is something that makes sense for an operator. 2720 if (!Operator->isSubClassOf("PatFrags") && 2721 !Operator->isSubClassOf("SDNode") && 2722 !Operator->isSubClassOf("Instruction") && 2723 !Operator->isSubClassOf("SDNodeXForm") && 2724 !Operator->isSubClassOf("Intrinsic") && 2725 !Operator->isSubClassOf("ComplexPattern") && 2726 Operator->getName() != "set" && 2727 Operator->getName() != "implicit") 2728 error("Unrecognized node '" + Operator->getName() + "'!"); 2729 2730 // Check to see if this is something that is illegal in an input pattern. 2731 if (isInputPattern) { 2732 if (Operator->isSubClassOf("Instruction") || 2733 Operator->isSubClassOf("SDNodeXForm")) 2734 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2735 } else { 2736 if (Operator->isSubClassOf("Intrinsic")) 2737 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2738 2739 if (Operator->isSubClassOf("SDNode") && 2740 Operator->getName() != "imm" && 2741 Operator->getName() != "fpimm" && 2742 Operator->getName() != "tglobaltlsaddr" && 2743 Operator->getName() != "tconstpool" && 2744 Operator->getName() != "tjumptable" && 2745 Operator->getName() != "tframeindex" && 2746 Operator->getName() != "texternalsym" && 2747 Operator->getName() != "tblockaddress" && 2748 Operator->getName() != "tglobaladdr" && 2749 Operator->getName() != "bb" && 2750 Operator->getName() != "vt" && 2751 Operator->getName() != "mcsym") 2752 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2753 } 2754 2755 std::vector<TreePatternNodePtr> Children; 2756 2757 // Parse all the operands. 2758 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2759 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2760 2761 // Get the actual number of results before Operator is converted to an intrinsic 2762 // node (which is hard-coded to have either zero or one result). 2763 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2764 2765 // If the operator is an intrinsic, then this is just syntactic sugar for 2766 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2767 // convert the intrinsic name to a number. 2768 if (Operator->isSubClassOf("Intrinsic")) { 2769 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2770 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2771 2772 // If this intrinsic returns void, it must have side-effects and thus a 2773 // chain. 2774 if (Int.IS.RetVTs.empty()) 2775 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2776 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2777 // Has side-effects, requires chain. 2778 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2779 else // Otherwise, no chain. 2780 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2781 2782 Children.insert(Children.begin(), 2783 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2784 } 2785 2786 if (Operator->isSubClassOf("ComplexPattern")) { 2787 for (unsigned i = 0; i < Children.size(); ++i) { 2788 TreePatternNodePtr Child = Children[i]; 2789 2790 if (Child->getName().empty()) 2791 error("All arguments to a ComplexPattern must be named"); 2792 2793 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2794 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2795 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2796 auto OperandId = std::make_pair(Operator, i); 2797 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2798 if (PrevOp != ComplexPatternOperands.end()) { 2799 if (PrevOp->getValue() != OperandId) 2800 error("All ComplexPattern operands must appear consistently: " 2801 "in the same order in just one ComplexPattern instance."); 2802 } else 2803 ComplexPatternOperands[Child->getName()] = OperandId; 2804 } 2805 } 2806 2807 TreePatternNodePtr Result = 2808 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2809 NumResults); 2810 Result->setName(OpName); 2811 2812 if (Dag->getName()) { 2813 assert(Result->getName().empty()); 2814 Result->setName(Dag->getNameStr()); 2815 } 2816 return Result; 2817 } 2818 2819 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2820 /// will never match in favor of something obvious that will. This is here 2821 /// strictly as a convenience to target authors because it allows them to write 2822 /// more type generic things and have useless type casts fold away. 2823 /// 2824 /// This returns true if any change is made. 2825 static bool SimplifyTree(TreePatternNodePtr &N) { 2826 if (N->isLeaf()) 2827 return false; 2828 2829 // If we have a bitconvert with a resolved type and if the source and 2830 // destination types are the same, then the bitconvert is useless, remove it. 2831 if (N->getOperator()->getName() == "bitconvert" && 2832 N->getExtType(0).isValueTypeByHwMode(false) && 2833 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2834 N->getName().empty()) { 2835 N = N->getChildShared(0); 2836 SimplifyTree(N); 2837 return true; 2838 } 2839 2840 // Walk all children. 2841 bool MadeChange = false; 2842 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2843 TreePatternNodePtr Child = N->getChildShared(i); 2844 MadeChange |= SimplifyTree(Child); 2845 N->setChild(i, std::move(Child)); 2846 } 2847 return MadeChange; 2848 } 2849 2850 2851 2852 /// InferAllTypes - Infer/propagate as many types throughout the expression 2853 /// patterns as possible. Return true if all types are inferred, false 2854 /// otherwise. Flags an error if a type contradiction is found. 2855 bool TreePattern:: 2856 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2857 if (NamedNodes.empty()) 2858 ComputeNamedNodes(); 2859 2860 bool MadeChange = true; 2861 while (MadeChange) { 2862 MadeChange = false; 2863 for (TreePatternNodePtr &Tree : Trees) { 2864 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2865 MadeChange |= SimplifyTree(Tree); 2866 } 2867 2868 // If there are constraints on our named nodes, apply them. 2869 for (auto &Entry : NamedNodes) { 2870 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2871 2872 // If we have input named node types, propagate their types to the named 2873 // values here. 2874 if (InNamedTypes) { 2875 if (!InNamedTypes->count(Entry.getKey())) { 2876 error("Node '" + std::string(Entry.getKey()) + 2877 "' in output pattern but not input pattern"); 2878 return true; 2879 } 2880 2881 const SmallVectorImpl<TreePatternNode*> &InNodes = 2882 InNamedTypes->find(Entry.getKey())->second; 2883 2884 // The input types should be fully resolved by now. 2885 for (TreePatternNode *Node : Nodes) { 2886 // If this node is a register class, and it is the root of the pattern 2887 // then we're mapping something onto an input register. We allow 2888 // changing the type of the input register in this case. This allows 2889 // us to match things like: 2890 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2891 if (Node == Trees[0].get() && Node->isLeaf()) { 2892 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2893 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2894 DI->getDef()->isSubClassOf("RegisterOperand"))) 2895 continue; 2896 } 2897 2898 assert(Node->getNumTypes() == 1 && 2899 InNodes[0]->getNumTypes() == 1 && 2900 "FIXME: cannot name multiple result nodes yet"); 2901 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2902 *this); 2903 } 2904 } 2905 2906 // If there are multiple nodes with the same name, they must all have the 2907 // same type. 2908 if (Entry.second.size() > 1) { 2909 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2910 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2911 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2912 "FIXME: cannot name multiple result nodes yet"); 2913 2914 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2915 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2916 } 2917 } 2918 } 2919 } 2920 2921 bool HasUnresolvedTypes = false; 2922 for (const TreePatternNodePtr &Tree : Trees) 2923 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2924 return !HasUnresolvedTypes; 2925 } 2926 2927 void TreePattern::print(raw_ostream &OS) const { 2928 OS << getRecord()->getName(); 2929 if (!Args.empty()) { 2930 OS << "(" << Args[0]; 2931 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2932 OS << ", " << Args[i]; 2933 OS << ")"; 2934 } 2935 OS << ": "; 2936 2937 if (Trees.size() > 1) 2938 OS << "[\n"; 2939 for (const TreePatternNodePtr &Tree : Trees) { 2940 OS << "\t"; 2941 Tree->print(OS); 2942 OS << "\n"; 2943 } 2944 2945 if (Trees.size() > 1) 2946 OS << "]\n"; 2947 } 2948 2949 void TreePattern::dump() const { print(errs()); } 2950 2951 //===----------------------------------------------------------------------===// 2952 // CodeGenDAGPatterns implementation 2953 // 2954 2955 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 2956 PatternRewriterFn PatternRewriter) 2957 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 2958 PatternRewriter(PatternRewriter) { 2959 2960 Intrinsics = CodeGenIntrinsicTable(Records, false); 2961 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2962 ParseNodeInfo(); 2963 ParseNodeTransforms(); 2964 ParseComplexPatterns(); 2965 ParsePatternFragments(); 2966 ParseDefaultOperands(); 2967 ParseInstructions(); 2968 ParsePatternFragments(/*OutFrags*/true); 2969 ParsePatterns(); 2970 2971 // Break patterns with parameterized types into a series of patterns, 2972 // where each one has a fixed type and is predicated on the conditions 2973 // of the associated HW mode. 2974 ExpandHwModeBasedTypes(); 2975 2976 // Generate variants. For example, commutative patterns can match 2977 // multiple ways. Add them to PatternsToMatch as well. 2978 GenerateVariants(); 2979 2980 // Infer instruction flags. For example, we can detect loads, 2981 // stores, and side effects in many cases by examining an 2982 // instruction's pattern. 2983 InferInstructionFlags(); 2984 2985 // Verify that instruction flags match the patterns. 2986 VerifyInstructionFlags(); 2987 } 2988 2989 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2990 Record *N = Records.getDef(Name); 2991 if (!N || !N->isSubClassOf("SDNode")) 2992 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2993 2994 return N; 2995 } 2996 2997 // Parse all of the SDNode definitions for the target, populating SDNodes. 2998 void CodeGenDAGPatterns::ParseNodeInfo() { 2999 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3000 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3001 3002 while (!Nodes.empty()) { 3003 Record *R = Nodes.back(); 3004 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3005 Nodes.pop_back(); 3006 } 3007 3008 // Get the builtin intrinsic nodes. 3009 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3010 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3011 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3012 } 3013 3014 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3015 /// map, and emit them to the file as functions. 3016 void CodeGenDAGPatterns::ParseNodeTransforms() { 3017 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3018 while (!Xforms.empty()) { 3019 Record *XFormNode = Xforms.back(); 3020 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3021 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3022 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 3023 3024 Xforms.pop_back(); 3025 } 3026 } 3027 3028 void CodeGenDAGPatterns::ParseComplexPatterns() { 3029 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3030 while (!AMs.empty()) { 3031 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3032 AMs.pop_back(); 3033 } 3034 } 3035 3036 3037 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3038 /// file, building up the PatternFragments map. After we've collected them all, 3039 /// inline fragments together as necessary, so that there are no references left 3040 /// inside a pattern fragment to a pattern fragment. 3041 /// 3042 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3043 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3044 3045 // First step, parse all of the fragments. 3046 for (Record *Frag : Fragments) { 3047 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3048 continue; 3049 3050 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3051 TreePattern *P = 3052 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 3053 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3054 *this)).get(); 3055 3056 // Validate the argument list, converting it to set, to discard duplicates. 3057 std::vector<std::string> &Args = P->getArgList(); 3058 // Copy the args so we can take StringRefs to them. 3059 auto ArgsCopy = Args; 3060 SmallDenseSet<StringRef, 4> OperandsSet; 3061 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3062 3063 if (OperandsSet.count("")) 3064 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3065 3066 // Parse the operands list. 3067 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3068 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3069 // Special cases: ops == outs == ins. Different names are used to 3070 // improve readability. 3071 if (!OpsOp || 3072 (OpsOp->getDef()->getName() != "ops" && 3073 OpsOp->getDef()->getName() != "outs" && 3074 OpsOp->getDef()->getName() != "ins")) 3075 P->error("Operands list should start with '(ops ... '!"); 3076 3077 // Copy over the arguments. 3078 Args.clear(); 3079 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3080 if (!isa<DefInit>(OpsList->getArg(j)) || 3081 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3082 P->error("Operands list should all be 'node' values."); 3083 if (!OpsList->getArgName(j)) 3084 P->error("Operands list should have names for each operand!"); 3085 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3086 if (!OperandsSet.count(ArgNameStr)) 3087 P->error("'" + ArgNameStr + 3088 "' does not occur in pattern or was multiply specified!"); 3089 OperandsSet.erase(ArgNameStr); 3090 Args.push_back(ArgNameStr); 3091 } 3092 3093 if (!OperandsSet.empty()) 3094 P->error("Operands list does not contain an entry for operand '" + 3095 *OperandsSet.begin() + "'!"); 3096 3097 // If there is a node transformation corresponding to this, keep track of 3098 // it. 3099 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3100 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3101 for (auto T : P->getTrees()) 3102 T->setTransformFn(Transform); 3103 } 3104 3105 // Now that we've parsed all of the tree fragments, do a closure on them so 3106 // that there are not references to PatFrags left inside of them. 3107 for (Record *Frag : Fragments) { 3108 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3109 continue; 3110 3111 TreePattern &ThePat = *PatternFragments[Frag]; 3112 ThePat.InlinePatternFragments(); 3113 3114 // Infer as many types as possible. Don't worry about it if we don't infer 3115 // all of them, some may depend on the inputs of the pattern. Also, don't 3116 // validate type sets; validation may cause spurious failures e.g. if a 3117 // fragment needs floating-point types but the current target does not have 3118 // any (this is only an error if that fragment is ever used!). 3119 { 3120 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3121 ThePat.InferAllTypes(); 3122 ThePat.resetError(); 3123 } 3124 3125 // If debugging, print out the pattern fragment result. 3126 LLVM_DEBUG(ThePat.dump()); 3127 } 3128 } 3129 3130 void CodeGenDAGPatterns::ParseDefaultOperands() { 3131 std::vector<Record*> DefaultOps; 3132 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3133 3134 // Find some SDNode. 3135 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3136 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3137 3138 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3139 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3140 3141 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3142 // SomeSDnode so that we can parse this. 3143 std::vector<std::pair<Init*, StringInit*> > Ops; 3144 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3145 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3146 DefaultInfo->getArgName(op))); 3147 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3148 3149 // Create a TreePattern to parse this. 3150 TreePattern P(DefaultOps[i], DI, false, *this); 3151 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3152 3153 // Copy the operands over into a DAGDefaultOperand. 3154 DAGDefaultOperand DefaultOpInfo; 3155 3156 const TreePatternNodePtr &T = P.getTree(0); 3157 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3158 TreePatternNodePtr TPN = T->getChildShared(op); 3159 while (TPN->ApplyTypeConstraints(P, false)) 3160 /* Resolve all types */; 3161 3162 if (TPN->ContainsUnresolvedType(P)) { 3163 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3164 DefaultOps[i]->getName() + 3165 "' doesn't have a concrete type!"); 3166 } 3167 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3168 } 3169 3170 // Insert it into the DefaultOperands map so we can find it later. 3171 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3172 } 3173 } 3174 3175 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3176 /// instruction input. Return true if this is a real use. 3177 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3178 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3179 // No name -> not interesting. 3180 if (Pat->getName().empty()) { 3181 if (Pat->isLeaf()) { 3182 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3183 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3184 DI->getDef()->isSubClassOf("RegisterOperand"))) 3185 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3186 } 3187 return false; 3188 } 3189 3190 Record *Rec; 3191 if (Pat->isLeaf()) { 3192 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3193 if (!DI) 3194 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3195 Rec = DI->getDef(); 3196 } else { 3197 Rec = Pat->getOperator(); 3198 } 3199 3200 // SRCVALUE nodes are ignored. 3201 if (Rec->getName() == "srcvalue") 3202 return false; 3203 3204 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3205 if (!Slot) { 3206 Slot = Pat; 3207 return true; 3208 } 3209 Record *SlotRec; 3210 if (Slot->isLeaf()) { 3211 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3212 } else { 3213 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3214 SlotRec = Slot->getOperator(); 3215 } 3216 3217 // Ensure that the inputs agree if we've already seen this input. 3218 if (Rec != SlotRec) 3219 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3220 // Ensure that the types can agree as well. 3221 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3222 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3223 if (Slot->getExtTypes() != Pat->getExtTypes()) 3224 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3225 return true; 3226 } 3227 3228 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3229 /// part of "I", the instruction), computing the set of inputs and outputs of 3230 /// the pattern. Report errors if we see anything naughty. 3231 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3232 TreePattern &I, TreePatternNodePtr Pat, 3233 std::map<std::string, TreePatternNodePtr> &InstInputs, 3234 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3235 &InstResults, 3236 std::vector<Record *> &InstImpResults) { 3237 3238 // The instruction pattern still has unresolved fragments. For *named* 3239 // nodes we must resolve those here. This may not result in multiple 3240 // alternatives. 3241 if (!Pat->getName().empty()) { 3242 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3243 SrcPattern.InlinePatternFragments(); 3244 SrcPattern.InferAllTypes(); 3245 Pat = SrcPattern.getOnlyTree(); 3246 } 3247 3248 if (Pat->isLeaf()) { 3249 bool isUse = HandleUse(I, Pat, InstInputs); 3250 if (!isUse && Pat->getTransformFn()) 3251 I.error("Cannot specify a transform function for a non-input value!"); 3252 return; 3253 } 3254 3255 if (Pat->getOperator()->getName() == "implicit") { 3256 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3257 TreePatternNode *Dest = Pat->getChild(i); 3258 if (!Dest->isLeaf()) 3259 I.error("implicitly defined value should be a register!"); 3260 3261 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3262 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3263 I.error("implicitly defined value should be a register!"); 3264 InstImpResults.push_back(Val->getDef()); 3265 } 3266 return; 3267 } 3268 3269 if (Pat->getOperator()->getName() != "set") { 3270 // If this is not a set, verify that the children nodes are not void typed, 3271 // and recurse. 3272 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3273 if (Pat->getChild(i)->getNumTypes() == 0) 3274 I.error("Cannot have void nodes inside of patterns!"); 3275 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3276 InstResults, InstImpResults); 3277 } 3278 3279 // If this is a non-leaf node with no children, treat it basically as if 3280 // it were a leaf. This handles nodes like (imm). 3281 bool isUse = HandleUse(I, Pat, InstInputs); 3282 3283 if (!isUse && Pat->getTransformFn()) 3284 I.error("Cannot specify a transform function for a non-input value!"); 3285 return; 3286 } 3287 3288 // Otherwise, this is a set, validate and collect instruction results. 3289 if (Pat->getNumChildren() == 0) 3290 I.error("set requires operands!"); 3291 3292 if (Pat->getTransformFn()) 3293 I.error("Cannot specify a transform function on a set node!"); 3294 3295 // Check the set destinations. 3296 unsigned NumDests = Pat->getNumChildren()-1; 3297 for (unsigned i = 0; i != NumDests; ++i) { 3298 TreePatternNodePtr Dest = Pat->getChildShared(i); 3299 // For set destinations we also must resolve fragments here. 3300 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3301 DestPattern.InlinePatternFragments(); 3302 DestPattern.InferAllTypes(); 3303 Dest = DestPattern.getOnlyTree(); 3304 3305 if (!Dest->isLeaf()) 3306 I.error("set destination should be a register!"); 3307 3308 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3309 if (!Val) { 3310 I.error("set destination should be a register!"); 3311 continue; 3312 } 3313 3314 if (Val->getDef()->isSubClassOf("RegisterClass") || 3315 Val->getDef()->isSubClassOf("ValueType") || 3316 Val->getDef()->isSubClassOf("RegisterOperand") || 3317 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3318 if (Dest->getName().empty()) 3319 I.error("set destination must have a name!"); 3320 if (InstResults.count(Dest->getName())) 3321 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3322 InstResults[Dest->getName()] = Dest; 3323 } else if (Val->getDef()->isSubClassOf("Register")) { 3324 InstImpResults.push_back(Val->getDef()); 3325 } else { 3326 I.error("set destination should be a register!"); 3327 } 3328 } 3329 3330 // Verify and collect info from the computation. 3331 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3332 InstResults, InstImpResults); 3333 } 3334 3335 //===----------------------------------------------------------------------===// 3336 // Instruction Analysis 3337 //===----------------------------------------------------------------------===// 3338 3339 class InstAnalyzer { 3340 const CodeGenDAGPatterns &CDP; 3341 public: 3342 bool hasSideEffects; 3343 bool mayStore; 3344 bool mayLoad; 3345 bool isBitcast; 3346 bool isVariadic; 3347 bool hasChain; 3348 3349 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3350 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3351 isBitcast(false), isVariadic(false), hasChain(false) {} 3352 3353 void Analyze(const PatternToMatch &Pat) { 3354 const TreePatternNode *N = Pat.getSrcPattern(); 3355 AnalyzeNode(N); 3356 // These properties are detected only on the root node. 3357 isBitcast = IsNodeBitcast(N); 3358 } 3359 3360 private: 3361 bool IsNodeBitcast(const TreePatternNode *N) const { 3362 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3363 return false; 3364 3365 if (N->isLeaf()) 3366 return false; 3367 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3368 return false; 3369 3370 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3371 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3372 return false; 3373 return OpInfo.getEnumName() == "ISD::BITCAST"; 3374 } 3375 3376 public: 3377 void AnalyzeNode(const TreePatternNode *N) { 3378 if (N->isLeaf()) { 3379 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3380 Record *LeafRec = DI->getDef(); 3381 // Handle ComplexPattern leaves. 3382 if (LeafRec->isSubClassOf("ComplexPattern")) { 3383 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3384 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3385 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3386 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3387 } 3388 } 3389 return; 3390 } 3391 3392 // Analyze children. 3393 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3394 AnalyzeNode(N->getChild(i)); 3395 3396 // Notice properties of the node. 3397 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3398 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3399 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3400 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3401 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3402 3403 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3404 // If this is an intrinsic, analyze it. 3405 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3406 mayLoad = true;// These may load memory. 3407 3408 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3409 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3410 3411 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3412 IntInfo->hasSideEffects) 3413 // ReadWriteMem intrinsics can have other strange effects. 3414 hasSideEffects = true; 3415 } 3416 } 3417 3418 }; 3419 3420 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3421 const InstAnalyzer &PatInfo, 3422 Record *PatDef) { 3423 bool Error = false; 3424 3425 // Remember where InstInfo got its flags. 3426 if (InstInfo.hasUndefFlags()) 3427 InstInfo.InferredFrom = PatDef; 3428 3429 // Check explicitly set flags for consistency. 3430 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3431 !InstInfo.hasSideEffects_Unset) { 3432 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3433 // the pattern has no side effects. That could be useful for div/rem 3434 // instructions that may trap. 3435 if (!InstInfo.hasSideEffects) { 3436 Error = true; 3437 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3438 Twine(InstInfo.hasSideEffects)); 3439 } 3440 } 3441 3442 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3443 Error = true; 3444 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3445 Twine(InstInfo.mayStore)); 3446 } 3447 3448 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3449 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3450 // Some targets translate immediates to loads. 3451 if (!InstInfo.mayLoad) { 3452 Error = true; 3453 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3454 Twine(InstInfo.mayLoad)); 3455 } 3456 } 3457 3458 // Transfer inferred flags. 3459 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3460 InstInfo.mayStore |= PatInfo.mayStore; 3461 InstInfo.mayLoad |= PatInfo.mayLoad; 3462 3463 // These flags are silently added without any verification. 3464 // FIXME: To match historical behavior of TableGen, for now add those flags 3465 // only when we're inferring from the primary instruction pattern. 3466 if (PatDef->isSubClassOf("Instruction")) { 3467 InstInfo.isBitcast |= PatInfo.isBitcast; 3468 InstInfo.hasChain |= PatInfo.hasChain; 3469 InstInfo.hasChain_Inferred = true; 3470 } 3471 3472 // Don't infer isVariadic. This flag means something different on SDNodes and 3473 // instructions. For example, a CALL SDNode is variadic because it has the 3474 // call arguments as operands, but a CALL instruction is not variadic - it 3475 // has argument registers as implicit, not explicit uses. 3476 3477 return Error; 3478 } 3479 3480 /// hasNullFragReference - Return true if the DAG has any reference to the 3481 /// null_frag operator. 3482 static bool hasNullFragReference(DagInit *DI) { 3483 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3484 if (!OpDef) return false; 3485 Record *Operator = OpDef->getDef(); 3486 3487 // If this is the null fragment, return true. 3488 if (Operator->getName() == "null_frag") return true; 3489 // If any of the arguments reference the null fragment, return true. 3490 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3491 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3492 if (Arg && hasNullFragReference(Arg)) 3493 return true; 3494 } 3495 3496 return false; 3497 } 3498 3499 /// hasNullFragReference - Return true if any DAG in the list references 3500 /// the null_frag operator. 3501 static bool hasNullFragReference(ListInit *LI) { 3502 for (Init *I : LI->getValues()) { 3503 DagInit *DI = dyn_cast<DagInit>(I); 3504 assert(DI && "non-dag in an instruction Pattern list?!"); 3505 if (hasNullFragReference(DI)) 3506 return true; 3507 } 3508 return false; 3509 } 3510 3511 /// Get all the instructions in a tree. 3512 static void 3513 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3514 if (Tree->isLeaf()) 3515 return; 3516 if (Tree->getOperator()->isSubClassOf("Instruction")) 3517 Instrs.push_back(Tree->getOperator()); 3518 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3519 getInstructionsInTree(Tree->getChild(i), Instrs); 3520 } 3521 3522 /// Check the class of a pattern leaf node against the instruction operand it 3523 /// represents. 3524 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3525 Record *Leaf) { 3526 if (OI.Rec == Leaf) 3527 return true; 3528 3529 // Allow direct value types to be used in instruction set patterns. 3530 // The type will be checked later. 3531 if (Leaf->isSubClassOf("ValueType")) 3532 return true; 3533 3534 // Patterns can also be ComplexPattern instances. 3535 if (Leaf->isSubClassOf("ComplexPattern")) 3536 return true; 3537 3538 return false; 3539 } 3540 3541 void CodeGenDAGPatterns::parseInstructionPattern( 3542 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3543 3544 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3545 3546 // Parse the instruction. 3547 TreePattern I(CGI.TheDef, Pat, true, *this); 3548 3549 // InstInputs - Keep track of all of the inputs of the instruction, along 3550 // with the record they are declared as. 3551 std::map<std::string, TreePatternNodePtr> InstInputs; 3552 3553 // InstResults - Keep track of all the virtual registers that are 'set' 3554 // in the instruction, including what reg class they are. 3555 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3556 InstResults; 3557 3558 std::vector<Record*> InstImpResults; 3559 3560 // Verify that the top-level forms in the instruction are of void type, and 3561 // fill in the InstResults map. 3562 SmallString<32> TypesString; 3563 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3564 TypesString.clear(); 3565 TreePatternNodePtr Pat = I.getTree(j); 3566 if (Pat->getNumTypes() != 0) { 3567 raw_svector_ostream OS(TypesString); 3568 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3569 if (k > 0) 3570 OS << ", "; 3571 Pat->getExtType(k).writeToStream(OS); 3572 } 3573 I.error("Top-level forms in instruction pattern should have" 3574 " void types, has types " + 3575 OS.str()); 3576 } 3577 3578 // Find inputs and outputs, and verify the structure of the uses/defs. 3579 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3580 InstImpResults); 3581 } 3582 3583 // Now that we have inputs and outputs of the pattern, inspect the operands 3584 // list for the instruction. This determines the order that operands are 3585 // added to the machine instruction the node corresponds to. 3586 unsigned NumResults = InstResults.size(); 3587 3588 // Parse the operands list from the (ops) list, validating it. 3589 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3590 3591 // Check that all of the results occur first in the list. 3592 std::vector<Record*> Results; 3593 std::vector<unsigned> ResultIndices; 3594 SmallVector<TreePatternNodePtr, 2> ResNodes; 3595 for (unsigned i = 0; i != NumResults; ++i) { 3596 if (i == CGI.Operands.size()) { 3597 const std::string &OpName = 3598 std::find_if(InstResults.begin(), InstResults.end(), 3599 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3600 return P.second; 3601 }) 3602 ->first; 3603 3604 I.error("'" + OpName + "' set but does not appear in operand list!"); 3605 } 3606 3607 const std::string &OpName = CGI.Operands[i].Name; 3608 3609 // Check that it exists in InstResults. 3610 auto InstResultIter = InstResults.find(OpName); 3611 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3612 I.error("Operand $" + OpName + " does not exist in operand list!"); 3613 3614 TreePatternNodePtr RNode = InstResultIter->second; 3615 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3616 ResNodes.push_back(std::move(RNode)); 3617 if (!R) 3618 I.error("Operand $" + OpName + " should be a set destination: all " 3619 "outputs must occur before inputs in operand list!"); 3620 3621 if (!checkOperandClass(CGI.Operands[i], R)) 3622 I.error("Operand $" + OpName + " class mismatch!"); 3623 3624 // Remember the return type. 3625 Results.push_back(CGI.Operands[i].Rec); 3626 3627 // Remember the result index. 3628 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3629 3630 // Okay, this one checks out. 3631 InstResultIter->second = nullptr; 3632 } 3633 3634 // Loop over the inputs next. 3635 std::vector<TreePatternNodePtr> ResultNodeOperands; 3636 std::vector<Record*> Operands; 3637 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3638 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3639 const std::string &OpName = Op.Name; 3640 if (OpName.empty()) 3641 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3642 3643 if (!InstInputs.count(OpName)) { 3644 // If this is an operand with a DefaultOps set filled in, we can ignore 3645 // this. When we codegen it, we will do so as always executed. 3646 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3647 // Does it have a non-empty DefaultOps field? If so, ignore this 3648 // operand. 3649 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3650 continue; 3651 } 3652 I.error("Operand $" + OpName + 3653 " does not appear in the instruction pattern"); 3654 } 3655 TreePatternNodePtr InVal = InstInputs[OpName]; 3656 InstInputs.erase(OpName); // It occurred, remove from map. 3657 3658 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3659 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3660 if (!checkOperandClass(Op, InRec)) 3661 I.error("Operand $" + OpName + "'s register class disagrees" 3662 " between the operand and pattern"); 3663 } 3664 Operands.push_back(Op.Rec); 3665 3666 // Construct the result for the dest-pattern operand list. 3667 TreePatternNodePtr OpNode = InVal->clone(); 3668 3669 // No predicate is useful on the result. 3670 OpNode->clearPredicateCalls(); 3671 3672 // Promote the xform function to be an explicit node if set. 3673 if (Record *Xform = OpNode->getTransformFn()) { 3674 OpNode->setTransformFn(nullptr); 3675 std::vector<TreePatternNodePtr> Children; 3676 Children.push_back(OpNode); 3677 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3678 OpNode->getNumTypes()); 3679 } 3680 3681 ResultNodeOperands.push_back(std::move(OpNode)); 3682 } 3683 3684 if (!InstInputs.empty()) 3685 I.error("Input operand $" + InstInputs.begin()->first + 3686 " occurs in pattern but not in operands list!"); 3687 3688 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3689 I.getRecord(), std::move(ResultNodeOperands), 3690 GetNumNodeResults(I.getRecord(), *this)); 3691 // Copy fully inferred output node types to instruction result pattern. 3692 for (unsigned i = 0; i != NumResults; ++i) { 3693 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3694 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3695 ResultPattern->setResultIndex(i, ResultIndices[i]); 3696 } 3697 3698 // FIXME: Assume only the first tree is the pattern. The others are clobber 3699 // nodes. 3700 TreePatternNodePtr Pattern = I.getTree(0); 3701 TreePatternNodePtr SrcPattern; 3702 if (Pattern->getOperator()->getName() == "set") { 3703 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3704 } else{ 3705 // Not a set (store or something?) 3706 SrcPattern = Pattern; 3707 } 3708 3709 // Create and insert the instruction. 3710 // FIXME: InstImpResults should not be part of DAGInstruction. 3711 Record *R = I.getRecord(); 3712 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3713 std::forward_as_tuple(Results, Operands, InstImpResults, 3714 SrcPattern, ResultPattern)); 3715 3716 LLVM_DEBUG(I.dump()); 3717 } 3718 3719 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3720 /// any fragments involved. This populates the Instructions list with fully 3721 /// resolved instructions. 3722 void CodeGenDAGPatterns::ParseInstructions() { 3723 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3724 3725 for (Record *Instr : Instrs) { 3726 ListInit *LI = nullptr; 3727 3728 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3729 LI = Instr->getValueAsListInit("Pattern"); 3730 3731 // If there is no pattern, only collect minimal information about the 3732 // instruction for its operand list. We have to assume that there is one 3733 // result, as we have no detailed info. A pattern which references the 3734 // null_frag operator is as-if no pattern were specified. Normally this 3735 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3736 // null_frag. 3737 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3738 std::vector<Record*> Results; 3739 std::vector<Record*> Operands; 3740 3741 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3742 3743 if (InstInfo.Operands.size() != 0) { 3744 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3745 Results.push_back(InstInfo.Operands[j].Rec); 3746 3747 // The rest are inputs. 3748 for (unsigned j = InstInfo.Operands.NumDefs, 3749 e = InstInfo.Operands.size(); j < e; ++j) 3750 Operands.push_back(InstInfo.Operands[j].Rec); 3751 } 3752 3753 // Create and insert the instruction. 3754 std::vector<Record*> ImpResults; 3755 Instructions.insert(std::make_pair(Instr, 3756 DAGInstruction(Results, Operands, ImpResults))); 3757 continue; // no pattern. 3758 } 3759 3760 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3761 parseInstructionPattern(CGI, LI, Instructions); 3762 } 3763 3764 // If we can, convert the instructions to be patterns that are matched! 3765 for (auto &Entry : Instructions) { 3766 Record *Instr = Entry.first; 3767 DAGInstruction &TheInst = Entry.second; 3768 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3769 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3770 3771 if (SrcPattern && ResultPattern) { 3772 TreePattern Pattern(Instr, SrcPattern, true, *this); 3773 TreePattern Result(Instr, ResultPattern, false, *this); 3774 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3775 } 3776 } 3777 } 3778 3779 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3780 3781 static void FindNames(TreePatternNode *P, 3782 std::map<std::string, NameRecord> &Names, 3783 TreePattern *PatternTop) { 3784 if (!P->getName().empty()) { 3785 NameRecord &Rec = Names[P->getName()]; 3786 // If this is the first instance of the name, remember the node. 3787 if (Rec.second++ == 0) 3788 Rec.first = P; 3789 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3790 PatternTop->error("repetition of value: $" + P->getName() + 3791 " where different uses have different types!"); 3792 } 3793 3794 if (!P->isLeaf()) { 3795 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3796 FindNames(P->getChild(i), Names, PatternTop); 3797 } 3798 } 3799 3800 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3801 std::vector<Predicate> Preds; 3802 for (Init *I : L->getValues()) { 3803 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3804 Preds.push_back(Pred->getDef()); 3805 else 3806 llvm_unreachable("Non-def on the list"); 3807 } 3808 3809 // Sort so that different orders get canonicalized to the same string. 3810 llvm::sort(Preds); 3811 return Preds; 3812 } 3813 3814 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3815 PatternToMatch &&PTM) { 3816 // Do some sanity checking on the pattern we're about to match. 3817 std::string Reason; 3818 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3819 PrintWarning(Pattern->getRecord()->getLoc(), 3820 Twine("Pattern can never match: ") + Reason); 3821 return; 3822 } 3823 3824 // If the source pattern's root is a complex pattern, that complex pattern 3825 // must specify the nodes it can potentially match. 3826 if (const ComplexPattern *CP = 3827 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3828 if (CP->getRootNodes().empty()) 3829 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3830 " could match"); 3831 3832 3833 // Find all of the named values in the input and output, ensure they have the 3834 // same type. 3835 std::map<std::string, NameRecord> SrcNames, DstNames; 3836 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3837 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3838 3839 // Scan all of the named values in the destination pattern, rejecting them if 3840 // they don't exist in the input pattern. 3841 for (const auto &Entry : DstNames) { 3842 if (SrcNames[Entry.first].first == nullptr) 3843 Pattern->error("Pattern has input without matching name in output: $" + 3844 Entry.first); 3845 } 3846 3847 // Scan all of the named values in the source pattern, rejecting them if the 3848 // name isn't used in the dest, and isn't used to tie two values together. 3849 for (const auto &Entry : SrcNames) 3850 if (DstNames[Entry.first].first == nullptr && 3851 SrcNames[Entry.first].second == 1) 3852 Pattern->error("Pattern has dead named input: $" + Entry.first); 3853 3854 PatternsToMatch.push_back(PTM); 3855 } 3856 3857 void CodeGenDAGPatterns::InferInstructionFlags() { 3858 ArrayRef<const CodeGenInstruction*> Instructions = 3859 Target.getInstructionsByEnumValue(); 3860 3861 unsigned Errors = 0; 3862 3863 // Try to infer flags from all patterns in PatternToMatch. These include 3864 // both the primary instruction patterns (which always come first) and 3865 // patterns defined outside the instruction. 3866 for (const PatternToMatch &PTM : ptms()) { 3867 // We can only infer from single-instruction patterns, otherwise we won't 3868 // know which instruction should get the flags. 3869 SmallVector<Record*, 8> PatInstrs; 3870 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3871 if (PatInstrs.size() != 1) 3872 continue; 3873 3874 // Get the single instruction. 3875 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3876 3877 // Only infer properties from the first pattern. We'll verify the others. 3878 if (InstInfo.InferredFrom) 3879 continue; 3880 3881 InstAnalyzer PatInfo(*this); 3882 PatInfo.Analyze(PTM); 3883 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3884 } 3885 3886 if (Errors) 3887 PrintFatalError("pattern conflicts"); 3888 3889 // If requested by the target, guess any undefined properties. 3890 if (Target.guessInstructionProperties()) { 3891 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3892 CodeGenInstruction *InstInfo = 3893 const_cast<CodeGenInstruction *>(Instructions[i]); 3894 if (InstInfo->InferredFrom) 3895 continue; 3896 // The mayLoad and mayStore flags default to false. 3897 // Conservatively assume hasSideEffects if it wasn't explicit. 3898 if (InstInfo->hasSideEffects_Unset) 3899 InstInfo->hasSideEffects = true; 3900 } 3901 return; 3902 } 3903 3904 // Complain about any flags that are still undefined. 3905 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3906 CodeGenInstruction *InstInfo = 3907 const_cast<CodeGenInstruction *>(Instructions[i]); 3908 if (InstInfo->InferredFrom) 3909 continue; 3910 if (InstInfo->hasSideEffects_Unset) 3911 PrintError(InstInfo->TheDef->getLoc(), 3912 "Can't infer hasSideEffects from patterns"); 3913 if (InstInfo->mayStore_Unset) 3914 PrintError(InstInfo->TheDef->getLoc(), 3915 "Can't infer mayStore from patterns"); 3916 if (InstInfo->mayLoad_Unset) 3917 PrintError(InstInfo->TheDef->getLoc(), 3918 "Can't infer mayLoad from patterns"); 3919 } 3920 } 3921 3922 3923 /// Verify instruction flags against pattern node properties. 3924 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3925 unsigned Errors = 0; 3926 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3927 const PatternToMatch &PTM = *I; 3928 SmallVector<Record*, 8> Instrs; 3929 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3930 if (Instrs.empty()) 3931 continue; 3932 3933 // Count the number of instructions with each flag set. 3934 unsigned NumSideEffects = 0; 3935 unsigned NumStores = 0; 3936 unsigned NumLoads = 0; 3937 for (const Record *Instr : Instrs) { 3938 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3939 NumSideEffects += InstInfo.hasSideEffects; 3940 NumStores += InstInfo.mayStore; 3941 NumLoads += InstInfo.mayLoad; 3942 } 3943 3944 // Analyze the source pattern. 3945 InstAnalyzer PatInfo(*this); 3946 PatInfo.Analyze(PTM); 3947 3948 // Collect error messages. 3949 SmallVector<std::string, 4> Msgs; 3950 3951 // Check for missing flags in the output. 3952 // Permit extra flags for now at least. 3953 if (PatInfo.hasSideEffects && !NumSideEffects) 3954 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3955 3956 // Don't verify store flags on instructions with side effects. At least for 3957 // intrinsics, side effects implies mayStore. 3958 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3959 Msgs.push_back("pattern may store, but mayStore isn't set"); 3960 3961 // Similarly, mayStore implies mayLoad on intrinsics. 3962 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3963 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3964 3965 // Print error messages. 3966 if (Msgs.empty()) 3967 continue; 3968 ++Errors; 3969 3970 for (const std::string &Msg : Msgs) 3971 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3972 (Instrs.size() == 1 ? 3973 "instruction" : "output instructions")); 3974 // Provide the location of the relevant instruction definitions. 3975 for (const Record *Instr : Instrs) { 3976 if (Instr != PTM.getSrcRecord()) 3977 PrintError(Instr->getLoc(), "defined here"); 3978 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3979 if (InstInfo.InferredFrom && 3980 InstInfo.InferredFrom != InstInfo.TheDef && 3981 InstInfo.InferredFrom != PTM.getSrcRecord()) 3982 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3983 } 3984 } 3985 if (Errors) 3986 PrintFatalError("Errors in DAG patterns"); 3987 } 3988 3989 /// Given a pattern result with an unresolved type, see if we can find one 3990 /// instruction with an unresolved result type. Force this result type to an 3991 /// arbitrary element if it's possible types to converge results. 3992 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3993 if (N->isLeaf()) 3994 return false; 3995 3996 // Analyze children. 3997 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3998 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3999 return true; 4000 4001 if (!N->getOperator()->isSubClassOf("Instruction")) 4002 return false; 4003 4004 // If this type is already concrete or completely unknown we can't do 4005 // anything. 4006 TypeInfer &TI = TP.getInfer(); 4007 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4008 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4009 continue; 4010 4011 // Otherwise, force its type to an arbitrary choice. 4012 if (TI.forceArbitrary(N->getExtType(i))) 4013 return true; 4014 } 4015 4016 return false; 4017 } 4018 4019 // Promote xform function to be an explicit node wherever set. 4020 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4021 if (Record *Xform = N->getTransformFn()) { 4022 N->setTransformFn(nullptr); 4023 std::vector<TreePatternNodePtr> Children; 4024 Children.push_back(PromoteXForms(N)); 4025 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4026 N->getNumTypes()); 4027 } 4028 4029 if (!N->isLeaf()) 4030 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4031 TreePatternNodePtr Child = N->getChildShared(i); 4032 N->setChild(i, PromoteXForms(Child)); 4033 } 4034 return N; 4035 } 4036 4037 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4038 TreePattern &Pattern, TreePattern &Result, 4039 const std::vector<Record *> &InstImpResults) { 4040 4041 // Inline pattern fragments and expand multiple alternatives. 4042 Pattern.InlinePatternFragments(); 4043 Result.InlinePatternFragments(); 4044 4045 if (Result.getNumTrees() != 1) 4046 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4047 4048 // Infer types. 4049 bool IterateInference; 4050 bool InferredAllPatternTypes, InferredAllResultTypes; 4051 do { 4052 // Infer as many types as possible. If we cannot infer all of them, we 4053 // can never do anything with this pattern: report it to the user. 4054 InferredAllPatternTypes = 4055 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4056 4057 // Infer as many types as possible. If we cannot infer all of them, we 4058 // can never do anything with this pattern: report it to the user. 4059 InferredAllResultTypes = 4060 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4061 4062 IterateInference = false; 4063 4064 // Apply the type of the result to the source pattern. This helps us 4065 // resolve cases where the input type is known to be a pointer type (which 4066 // is considered resolved), but the result knows it needs to be 32- or 4067 // 64-bits. Infer the other way for good measure. 4068 for (auto T : Pattern.getTrees()) 4069 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4070 T->getNumTypes()); 4071 i != e; ++i) { 4072 IterateInference |= T->UpdateNodeType( 4073 i, Result.getOnlyTree()->getExtType(i), Result); 4074 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4075 i, T->getExtType(i), Result); 4076 } 4077 4078 // If our iteration has converged and the input pattern's types are fully 4079 // resolved but the result pattern is not fully resolved, we may have a 4080 // situation where we have two instructions in the result pattern and 4081 // the instructions require a common register class, but don't care about 4082 // what actual MVT is used. This is actually a bug in our modelling: 4083 // output patterns should have register classes, not MVTs. 4084 // 4085 // In any case, to handle this, we just go through and disambiguate some 4086 // arbitrary types to the result pattern's nodes. 4087 if (!IterateInference && InferredAllPatternTypes && 4088 !InferredAllResultTypes) 4089 IterateInference = 4090 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4091 } while (IterateInference); 4092 4093 // Verify that we inferred enough types that we can do something with the 4094 // pattern and result. If these fire the user has to add type casts. 4095 if (!InferredAllPatternTypes) 4096 Pattern.error("Could not infer all types in pattern!"); 4097 if (!InferredAllResultTypes) { 4098 Pattern.dump(); 4099 Result.error("Could not infer all types in pattern result!"); 4100 } 4101 4102 // Promote xform function to be an explicit node wherever set. 4103 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4104 4105 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4106 Temp.InferAllTypes(); 4107 4108 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4109 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4110 4111 if (PatternRewriter) 4112 PatternRewriter(&Pattern); 4113 4114 // A pattern may end up with an "impossible" type, i.e. a situation 4115 // where all types have been eliminated for some node in this pattern. 4116 // This could occur for intrinsics that only make sense for a specific 4117 // value type, and use a specific register class. If, for some mode, 4118 // that register class does not accept that type, the type inference 4119 // will lead to a contradiction, which is not an error however, but 4120 // a sign that this pattern will simply never match. 4121 if (Temp.getOnlyTree()->hasPossibleType()) 4122 for (auto T : Pattern.getTrees()) 4123 if (T->hasPossibleType()) 4124 AddPatternToMatch(&Pattern, 4125 PatternToMatch(TheDef, makePredList(Preds), 4126 T, Temp.getOnlyTree(), 4127 InstImpResults, Complexity, 4128 TheDef->getID())); 4129 } 4130 4131 void CodeGenDAGPatterns::ParsePatterns() { 4132 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4133 4134 for (Record *CurPattern : Patterns) { 4135 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4136 4137 // If the pattern references the null_frag, there's nothing to do. 4138 if (hasNullFragReference(Tree)) 4139 continue; 4140 4141 TreePattern Pattern(CurPattern, Tree, true, *this); 4142 4143 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4144 if (LI->empty()) continue; // no pattern. 4145 4146 // Parse the instruction. 4147 TreePattern Result(CurPattern, LI, false, *this); 4148 4149 if (Result.getNumTrees() != 1) 4150 Result.error("Cannot handle instructions producing instructions " 4151 "with temporaries yet!"); 4152 4153 // Validate that the input pattern is correct. 4154 std::map<std::string, TreePatternNodePtr> InstInputs; 4155 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4156 InstResults; 4157 std::vector<Record*> InstImpResults; 4158 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4159 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4160 InstResults, InstImpResults); 4161 4162 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4163 } 4164 } 4165 4166 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4167 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4168 for (const auto &I : VTS) 4169 Modes.insert(I.first); 4170 4171 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4172 collectModes(Modes, N->getChild(i)); 4173 } 4174 4175 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4176 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4177 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4178 std::vector<PatternToMatch> Copy = PatternsToMatch; 4179 PatternsToMatch.clear(); 4180 4181 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4182 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4183 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4184 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4185 return; 4186 } 4187 4188 std::vector<Predicate> Preds = P.Predicates; 4189 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4190 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4191 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4192 std::move(NewDst), P.getDstRegs(), 4193 P.getAddedComplexity(), Record::getNewUID(), 4194 Mode); 4195 }; 4196 4197 for (PatternToMatch &P : Copy) { 4198 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4199 if (P.SrcPattern->hasProperTypeByHwMode()) 4200 SrcP = P.SrcPattern; 4201 if (P.DstPattern->hasProperTypeByHwMode()) 4202 DstP = P.DstPattern; 4203 if (!SrcP && !DstP) { 4204 PatternsToMatch.push_back(P); 4205 continue; 4206 } 4207 4208 std::set<unsigned> Modes; 4209 if (SrcP) 4210 collectModes(Modes, SrcP.get()); 4211 if (DstP) 4212 collectModes(Modes, DstP.get()); 4213 4214 // The predicate for the default mode needs to be constructed for each 4215 // pattern separately. 4216 // Since not all modes must be present in each pattern, if a mode m is 4217 // absent, then there is no point in constructing a check for m. If such 4218 // a check was created, it would be equivalent to checking the default 4219 // mode, except not all modes' predicates would be a part of the checking 4220 // code. The subsequently generated check for the default mode would then 4221 // have the exact same patterns, but a different predicate code. To avoid 4222 // duplicated patterns with different predicate checks, construct the 4223 // default check as a negation of all predicates that are actually present 4224 // in the source/destination patterns. 4225 std::vector<Predicate> DefaultPred; 4226 4227 for (unsigned M : Modes) { 4228 if (M == DefaultMode) 4229 continue; 4230 if (ModeChecks.find(M) != ModeChecks.end()) 4231 continue; 4232 4233 // Fill the map entry for this mode. 4234 const HwMode &HM = CGH.getMode(M); 4235 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4236 4237 // Add negations of the HM's predicates to the default predicate. 4238 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4239 } 4240 4241 for (unsigned M : Modes) { 4242 if (M == DefaultMode) 4243 continue; 4244 AppendPattern(P, M); 4245 } 4246 4247 bool HasDefault = Modes.count(DefaultMode); 4248 if (HasDefault) 4249 AppendPattern(P, DefaultMode); 4250 } 4251 } 4252 4253 /// Dependent variable map for CodeGenDAGPattern variant generation 4254 typedef StringMap<int> DepVarMap; 4255 4256 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4257 if (N->isLeaf()) { 4258 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4259 DepMap[N->getName()]++; 4260 } else { 4261 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4262 FindDepVarsOf(N->getChild(i), DepMap); 4263 } 4264 } 4265 4266 /// Find dependent variables within child patterns 4267 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4268 DepVarMap depcounts; 4269 FindDepVarsOf(N, depcounts); 4270 for (const auto &Pair : depcounts) { 4271 if (Pair.getValue() > 1) 4272 DepVars.insert(Pair.getKey()); 4273 } 4274 } 4275 4276 #ifndef NDEBUG 4277 /// Dump the dependent variable set: 4278 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4279 if (DepVars.empty()) { 4280 LLVM_DEBUG(errs() << "<empty set>"); 4281 } else { 4282 LLVM_DEBUG(errs() << "[ "); 4283 for (const auto &DepVar : DepVars) { 4284 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4285 } 4286 LLVM_DEBUG(errs() << "]"); 4287 } 4288 } 4289 #endif 4290 4291 4292 /// CombineChildVariants - Given a bunch of permutations of each child of the 4293 /// 'operator' node, put them together in all possible ways. 4294 static void CombineChildVariants( 4295 TreePatternNodePtr Orig, 4296 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4297 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4298 const MultipleUseVarSet &DepVars) { 4299 // Make sure that each operand has at least one variant to choose from. 4300 for (const auto &Variants : ChildVariants) 4301 if (Variants.empty()) 4302 return; 4303 4304 // The end result is an all-pairs construction of the resultant pattern. 4305 std::vector<unsigned> Idxs; 4306 Idxs.resize(ChildVariants.size()); 4307 bool NotDone; 4308 do { 4309 #ifndef NDEBUG 4310 LLVM_DEBUG(if (!Idxs.empty()) { 4311 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4312 for (unsigned Idx : Idxs) { 4313 errs() << Idx << " "; 4314 } 4315 errs() << "]\n"; 4316 }); 4317 #endif 4318 // Create the variant and add it to the output list. 4319 std::vector<TreePatternNodePtr> NewChildren; 4320 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4321 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4322 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4323 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4324 4325 // Copy over properties. 4326 R->setName(Orig->getName()); 4327 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4328 R->setPredicateCalls(Orig->getPredicateCalls()); 4329 R->setTransformFn(Orig->getTransformFn()); 4330 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4331 R->setType(i, Orig->getExtType(i)); 4332 4333 // If this pattern cannot match, do not include it as a variant. 4334 std::string ErrString; 4335 // Scan to see if this pattern has already been emitted. We can get 4336 // duplication due to things like commuting: 4337 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4338 // which are the same pattern. Ignore the dups. 4339 if (R->canPatternMatch(ErrString, CDP) && 4340 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4341 return R->isIsomorphicTo(Variant.get(), DepVars); 4342 })) 4343 OutVariants.push_back(R); 4344 4345 // Increment indices to the next permutation by incrementing the 4346 // indices from last index backward, e.g., generate the sequence 4347 // [0, 0], [0, 1], [1, 0], [1, 1]. 4348 int IdxsIdx; 4349 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4350 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4351 Idxs[IdxsIdx] = 0; 4352 else 4353 break; 4354 } 4355 NotDone = (IdxsIdx >= 0); 4356 } while (NotDone); 4357 } 4358 4359 /// CombineChildVariants - A helper function for binary operators. 4360 /// 4361 static void CombineChildVariants(TreePatternNodePtr Orig, 4362 const std::vector<TreePatternNodePtr> &LHS, 4363 const std::vector<TreePatternNodePtr> &RHS, 4364 std::vector<TreePatternNodePtr> &OutVariants, 4365 CodeGenDAGPatterns &CDP, 4366 const MultipleUseVarSet &DepVars) { 4367 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4368 ChildVariants.push_back(LHS); 4369 ChildVariants.push_back(RHS); 4370 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4371 } 4372 4373 static void 4374 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4375 std::vector<TreePatternNodePtr> &Children) { 4376 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4377 Record *Operator = N->getOperator(); 4378 4379 // Only permit raw nodes. 4380 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4381 N->getTransformFn()) { 4382 Children.push_back(N); 4383 return; 4384 } 4385 4386 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4387 Children.push_back(N->getChildShared(0)); 4388 else 4389 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4390 4391 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4392 Children.push_back(N->getChildShared(1)); 4393 else 4394 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4395 } 4396 4397 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4398 /// the (potentially recursive) pattern by using algebraic laws. 4399 /// 4400 static void GenerateVariantsOf(TreePatternNodePtr N, 4401 std::vector<TreePatternNodePtr> &OutVariants, 4402 CodeGenDAGPatterns &CDP, 4403 const MultipleUseVarSet &DepVars) { 4404 // We cannot permute leaves or ComplexPattern uses. 4405 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4406 OutVariants.push_back(N); 4407 return; 4408 } 4409 4410 // Look up interesting info about the node. 4411 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4412 4413 // If this node is associative, re-associate. 4414 if (NodeInfo.hasProperty(SDNPAssociative)) { 4415 // Re-associate by pulling together all of the linked operators 4416 std::vector<TreePatternNodePtr> MaximalChildren; 4417 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4418 4419 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4420 // permutations. 4421 if (MaximalChildren.size() == 3) { 4422 // Find the variants of all of our maximal children. 4423 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4424 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4425 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4426 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4427 4428 // There are only two ways we can permute the tree: 4429 // (A op B) op C and A op (B op C) 4430 // Within these forms, we can also permute A/B/C. 4431 4432 // Generate legal pair permutations of A/B/C. 4433 std::vector<TreePatternNodePtr> ABVariants; 4434 std::vector<TreePatternNodePtr> BAVariants; 4435 std::vector<TreePatternNodePtr> ACVariants; 4436 std::vector<TreePatternNodePtr> CAVariants; 4437 std::vector<TreePatternNodePtr> BCVariants; 4438 std::vector<TreePatternNodePtr> CBVariants; 4439 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4440 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4441 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4442 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4443 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4444 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4445 4446 // Combine those into the result: (x op x) op x 4447 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4448 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4449 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4450 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4451 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4452 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4453 4454 // Combine those into the result: x op (x op x) 4455 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4456 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4457 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4458 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4459 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4460 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4461 return; 4462 } 4463 } 4464 4465 // Compute permutations of all children. 4466 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4467 ChildVariants.resize(N->getNumChildren()); 4468 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4469 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4470 4471 // Build all permutations based on how the children were formed. 4472 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4473 4474 // If this node is commutative, consider the commuted order. 4475 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4476 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4477 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4478 "Commutative but doesn't have 2 children!"); 4479 // Don't count children which are actually register references. 4480 unsigned NC = 0; 4481 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4482 TreePatternNode *Child = N->getChild(i); 4483 if (Child->isLeaf()) 4484 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4485 Record *RR = DI->getDef(); 4486 if (RR->isSubClassOf("Register")) 4487 continue; 4488 } 4489 NC++; 4490 } 4491 // Consider the commuted order. 4492 if (isCommIntrinsic) { 4493 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4494 // operands are the commutative operands, and there might be more operands 4495 // after those. 4496 assert(NC >= 3 && 4497 "Commutative intrinsic should have at least 3 children!"); 4498 std::vector<std::vector<TreePatternNodePtr>> Variants; 4499 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4500 Variants.push_back(std::move(ChildVariants[2])); 4501 Variants.push_back(std::move(ChildVariants[1])); 4502 for (unsigned i = 3; i != NC; ++i) 4503 Variants.push_back(std::move(ChildVariants[i])); 4504 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4505 } else if (NC == N->getNumChildren()) { 4506 std::vector<std::vector<TreePatternNodePtr>> Variants; 4507 Variants.push_back(std::move(ChildVariants[1])); 4508 Variants.push_back(std::move(ChildVariants[0])); 4509 for (unsigned i = 2; i != NC; ++i) 4510 Variants.push_back(std::move(ChildVariants[i])); 4511 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4512 } 4513 } 4514 } 4515 4516 4517 // GenerateVariants - Generate variants. For example, commutative patterns can 4518 // match multiple ways. Add them to PatternsToMatch as well. 4519 void CodeGenDAGPatterns::GenerateVariants() { 4520 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4521 4522 // Loop over all of the patterns we've collected, checking to see if we can 4523 // generate variants of the instruction, through the exploitation of 4524 // identities. This permits the target to provide aggressive matching without 4525 // the .td file having to contain tons of variants of instructions. 4526 // 4527 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4528 // intentionally do not reconsider these. Any variants of added patterns have 4529 // already been added. 4530 // 4531 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4532 BitVector MatchedPatterns(NumOriginalPatterns); 4533 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4534 BitVector(NumOriginalPatterns)); 4535 4536 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4537 DepsAndVariants; 4538 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4539 4540 // Collect patterns with more than one variant. 4541 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4542 MultipleUseVarSet DepVars; 4543 std::vector<TreePatternNodePtr> Variants; 4544 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4545 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4546 LLVM_DEBUG(DumpDepVars(DepVars)); 4547 LLVM_DEBUG(errs() << "\n"); 4548 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4549 *this, DepVars); 4550 4551 assert(!Variants.empty() && "Must create at least original variant!"); 4552 if (Variants.size() == 1) // No additional variants for this pattern. 4553 continue; 4554 4555 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4556 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4557 4558 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4559 4560 // Cache matching predicates. 4561 if (MatchedPatterns[i]) 4562 continue; 4563 4564 const std::vector<Predicate> &Predicates = 4565 PatternsToMatch[i].getPredicates(); 4566 4567 BitVector &Matches = MatchedPredicates[i]; 4568 MatchedPatterns.set(i); 4569 Matches.set(i); 4570 4571 // Don't test patterns that have already been cached - it won't match. 4572 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4573 if (!MatchedPatterns[p]) 4574 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4575 4576 // Copy this to all the matching patterns. 4577 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4578 if (p != (int)i) { 4579 MatchedPatterns.set(p); 4580 MatchedPredicates[p] = Matches; 4581 } 4582 } 4583 4584 for (auto it : PatternsWithVariants) { 4585 unsigned i = it.first; 4586 const MultipleUseVarSet &DepVars = it.second.first; 4587 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4588 4589 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4590 TreePatternNodePtr Variant = Variants[v]; 4591 BitVector &Matches = MatchedPredicates[i]; 4592 4593 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4594 errs() << "\n"); 4595 4596 // Scan to see if an instruction or explicit pattern already matches this. 4597 bool AlreadyExists = false; 4598 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4599 // Skip if the top level predicates do not match. 4600 if (!Matches[p]) 4601 continue; 4602 // Check to see if this variant already exists. 4603 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4604 DepVars)) { 4605 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4606 AlreadyExists = true; 4607 break; 4608 } 4609 } 4610 // If we already have it, ignore the variant. 4611 if (AlreadyExists) continue; 4612 4613 // Otherwise, add it to the list of patterns we have. 4614 PatternsToMatch.push_back(PatternToMatch( 4615 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4616 Variant, PatternsToMatch[i].getDstPatternShared(), 4617 PatternsToMatch[i].getDstRegs(), 4618 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4619 MatchedPredicates.push_back(Matches); 4620 4621 // Add a new match the same as this pattern. 4622 for (auto &P : MatchedPredicates) 4623 P.push_back(P[i]); 4624 } 4625 4626 LLVM_DEBUG(errs() << "\n"); 4627 } 4628 } 4629