1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <iterator> 31 #include <set> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "dag-patterns" 35 36 static inline bool isIntegerOrPtr(MVT VT) { 37 return VT.isInteger() || VT == MVT::iPTR; 38 } 39 static inline bool isFloatingPoint(MVT VT) { 40 return VT.isFloatingPoint(); 41 } 42 static inline bool isVector(MVT VT) { 43 return VT.isVector(); 44 } 45 static inline bool isScalar(MVT VT) { 46 return !VT.isVector(); 47 } 48 49 template <typename Predicate> 50 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 51 bool Erased = false; 52 // It is ok to iterate over MachineValueTypeSet and remove elements from it 53 // at the same time. 54 for (MVT T : S) { 55 if (!P(T)) 56 continue; 57 Erased = true; 58 S.erase(T); 59 } 60 return Erased; 61 } 62 63 // --- TypeSetByHwMode 64 65 // This is a parameterized type-set class. For each mode there is a list 66 // of types that are currently possible for a given tree node. Type 67 // inference will apply to each mode separately. 68 69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 70 for (const ValueTypeByHwMode &VVT : VTList) { 71 insert(VVT); 72 AddrSpaces.push_back(VVT.PtrAddrSpace); 73 } 74 } 75 76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 77 for (const auto &I : *this) { 78 if (I.second.size() > 1) 79 return false; 80 if (!AllowEmpty && I.second.empty()) 81 return false; 82 } 83 return true; 84 } 85 86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 87 assert(isValueTypeByHwMode(true) && 88 "The type set has multiple types for at least one HW mode"); 89 ValueTypeByHwMode VVT; 90 auto ASI = AddrSpaces.begin(); 91 92 for (const auto &I : *this) { 93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 94 VVT.getOrCreateTypeForMode(I.first, T); 95 if (ASI != AddrSpaces.end()) 96 VVT.PtrAddrSpace = *ASI++; 97 } 98 return VVT; 99 } 100 101 bool TypeSetByHwMode::isPossible() const { 102 for (const auto &I : *this) 103 if (!I.second.empty()) 104 return true; 105 return false; 106 } 107 108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 109 bool Changed = false; 110 bool ContainsDefault = false; 111 MVT DT = MVT::Other; 112 113 SmallDenseSet<unsigned, 4> Modes; 114 for (const auto &P : VVT) { 115 unsigned M = P.first; 116 Modes.insert(M); 117 // Make sure there exists a set for each specific mode from VVT. 118 Changed |= getOrCreate(M).insert(P.second).second; 119 // Cache VVT's default mode. 120 if (DefaultMode == M) { 121 ContainsDefault = true; 122 DT = P.second; 123 } 124 } 125 126 // If VVT has a default mode, add the corresponding type to all 127 // modes in "this" that do not exist in VVT. 128 if (ContainsDefault) 129 for (auto &I : *this) 130 if (!Modes.count(I.first)) 131 Changed |= I.second.insert(DT).second; 132 133 return Changed; 134 } 135 136 // Constrain the type set to be the intersection with VTS. 137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 138 bool Changed = false; 139 if (hasDefault()) { 140 for (const auto &I : VTS) { 141 unsigned M = I.first; 142 if (M == DefaultMode || hasMode(M)) 143 continue; 144 Map.insert({M, Map.at(DefaultMode)}); 145 Changed = true; 146 } 147 } 148 149 for (auto &I : *this) { 150 unsigned M = I.first; 151 SetType &S = I.second; 152 if (VTS.hasMode(M) || VTS.hasDefault()) { 153 Changed |= intersect(I.second, VTS.get(M)); 154 } else if (!S.empty()) { 155 S.clear(); 156 Changed = true; 157 } 158 } 159 return Changed; 160 } 161 162 template <typename Predicate> 163 bool TypeSetByHwMode::constrain(Predicate P) { 164 bool Changed = false; 165 for (auto &I : *this) 166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 167 return Changed; 168 } 169 170 template <typename Predicate> 171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 172 assert(empty()); 173 for (const auto &I : VTS) { 174 SetType &S = getOrCreate(I.first); 175 for (auto J : I.second) 176 if (P(J)) 177 S.insert(J); 178 } 179 return !empty(); 180 } 181 182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 183 SmallVector<unsigned, 4> Modes; 184 Modes.reserve(Map.size()); 185 186 for (const auto &I : *this) 187 Modes.push_back(I.first); 188 if (Modes.empty()) { 189 OS << "{}"; 190 return; 191 } 192 array_pod_sort(Modes.begin(), Modes.end()); 193 194 OS << '{'; 195 for (unsigned M : Modes) { 196 OS << ' ' << getModeName(M) << ':'; 197 writeToStream(get(M), OS); 198 } 199 OS << " }"; 200 } 201 202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 203 SmallVector<MVT, 4> Types(S.begin(), S.end()); 204 array_pod_sort(Types.begin(), Types.end()); 205 206 OS << '['; 207 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 208 OS << ValueTypeByHwMode::getMVTName(Types[i]); 209 if (i != e-1) 210 OS << ' '; 211 } 212 OS << ']'; 213 } 214 215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 216 // The isSimple call is much quicker than hasDefault - check this first. 217 bool IsSimple = isSimple(); 218 bool VTSIsSimple = VTS.isSimple(); 219 if (IsSimple && VTSIsSimple) 220 return *begin() == *VTS.begin(); 221 222 // Speedup: We have a default if the set is simple. 223 bool HaveDefault = IsSimple || hasDefault(); 224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 225 if (HaveDefault != VTSHaveDefault) 226 return false; 227 228 SmallDenseSet<unsigned, 4> Modes; 229 for (auto &I : *this) 230 Modes.insert(I.first); 231 for (const auto &I : VTS) 232 Modes.insert(I.first); 233 234 if (HaveDefault) { 235 // Both sets have default mode. 236 for (unsigned M : Modes) { 237 if (get(M) != VTS.get(M)) 238 return false; 239 } 240 } else { 241 // Neither set has default mode. 242 for (unsigned M : Modes) { 243 // If there is no default mode, an empty set is equivalent to not having 244 // the corresponding mode. 245 bool NoModeThis = !hasMode(M) || get(M).empty(); 246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 247 if (NoModeThis != NoModeVTS) 248 return false; 249 if (!NoModeThis) 250 if (get(M) != VTS.get(M)) 251 return false; 252 } 253 } 254 255 return true; 256 } 257 258 namespace llvm { 259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 260 T.writeToStream(OS); 261 return OS; 262 } 263 } 264 265 LLVM_DUMP_METHOD 266 void TypeSetByHwMode::dump() const { 267 dbgs() << *this << '\n'; 268 } 269 270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 272 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 273 274 if (OutP == InP) 275 return berase_if(Out, Int); 276 277 // Compute the intersection of scalars separately to account for only 278 // one set containing iPTR. 279 // The itersection of iPTR with a set of integer scalar types that does not 280 // include iPTR will result in the most specific scalar type: 281 // - iPTR is more specific than any set with two elements or more 282 // - iPTR is less specific than any single integer scalar type. 283 // For example 284 // { iPTR } * { i32 } -> { i32 } 285 // { iPTR } * { i32 i64 } -> { iPTR } 286 // and 287 // { iPTR i32 } * { i32 } -> { i32 } 288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 290 291 // Compute the difference between the two sets in such a way that the 292 // iPTR is in the set that is being subtracted. This is to see if there 293 // are any extra scalars in the set without iPTR that are not in the 294 // set containing iPTR. Then the iPTR could be considered a "wildcard" 295 // matching these scalars. If there is only one such scalar, it would 296 // replace the iPTR, if there are more, the iPTR would be retained. 297 SetType Diff; 298 if (InP) { 299 Diff = Out; 300 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 301 // Pre-remove these elements and rely only on InP/OutP to determine 302 // whether a change has been made. 303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 304 } else { 305 Diff = In; 306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 307 Out.erase(MVT::iPTR); 308 } 309 310 // The actual intersection. 311 bool Changed = berase_if(Out, Int); 312 unsigned NumD = Diff.size(); 313 if (NumD == 0) 314 return Changed; 315 316 if (NumD == 1) { 317 Out.insert(*Diff.begin()); 318 // This is a change only if Out was the one with iPTR (which is now 319 // being replaced). 320 Changed |= OutP; 321 } else { 322 // Multiple elements from Out are now replaced with iPTR. 323 Out.insert(MVT::iPTR); 324 Changed |= !OutP; 325 } 326 return Changed; 327 } 328 329 bool TypeSetByHwMode::validate() const { 330 #ifndef NDEBUG 331 if (empty()) 332 return true; 333 bool AllEmpty = true; 334 for (const auto &I : *this) 335 AllEmpty &= I.second.empty(); 336 return !AllEmpty; 337 #endif 338 return true; 339 } 340 341 // --- TypeInfer 342 343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 344 const TypeSetByHwMode &In) { 345 ValidateOnExit _1(Out, *this); 346 In.validate(); 347 if (In.empty() || Out == In || TP.hasError()) 348 return false; 349 if (Out.empty()) { 350 Out = In; 351 return true; 352 } 353 354 bool Changed = Out.constrain(In); 355 if (Changed && Out.empty()) 356 TP.error("Type contradiction"); 357 358 return Changed; 359 } 360 361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 362 ValidateOnExit _1(Out, *this); 363 if (TP.hasError()) 364 return false; 365 assert(!Out.empty() && "cannot pick from an empty set"); 366 367 bool Changed = false; 368 for (auto &I : Out) { 369 TypeSetByHwMode::SetType &S = I.second; 370 if (S.size() <= 1) 371 continue; 372 MVT T = *S.begin(); // Pick the first element. 373 S.clear(); 374 S.insert(T); 375 Changed = true; 376 } 377 return Changed; 378 } 379 380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 if (!Out.empty()) 385 return Out.constrain(isIntegerOrPtr); 386 387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 388 } 389 390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 391 ValidateOnExit _1(Out, *this); 392 if (TP.hasError()) 393 return false; 394 if (!Out.empty()) 395 return Out.constrain(isFloatingPoint); 396 397 return Out.assign_if(getLegalTypes(), isFloatingPoint); 398 } 399 400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 401 ValidateOnExit _1(Out, *this); 402 if (TP.hasError()) 403 return false; 404 if (!Out.empty()) 405 return Out.constrain(isScalar); 406 407 return Out.assign_if(getLegalTypes(), isScalar); 408 } 409 410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 411 ValidateOnExit _1(Out, *this); 412 if (TP.hasError()) 413 return false; 414 if (!Out.empty()) 415 return Out.constrain(isVector); 416 417 return Out.assign_if(getLegalTypes(), isVector); 418 } 419 420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 421 ValidateOnExit _1(Out, *this); 422 if (TP.hasError() || !Out.empty()) 423 return false; 424 425 Out = getLegalTypes(); 426 return true; 427 } 428 429 template <typename Iter, typename Pred, typename Less> 430 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 431 if (B == E) 432 return E; 433 Iter Min = E; 434 for (Iter I = B; I != E; ++I) { 435 if (!P(*I)) 436 continue; 437 if (Min == E || L(*I, *Min)) 438 Min = I; 439 } 440 return Min; 441 } 442 443 template <typename Iter, typename Pred, typename Less> 444 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 445 if (B == E) 446 return E; 447 Iter Max = E; 448 for (Iter I = B; I != E; ++I) { 449 if (!P(*I)) 450 continue; 451 if (Max == E || L(*Max, *I)) 452 Max = I; 453 } 454 return Max; 455 } 456 457 /// Make sure that for each type in Small, there exists a larger type in Big. 458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 459 TypeSetByHwMode &Big) { 460 ValidateOnExit _1(Small, *this), _2(Big, *this); 461 if (TP.hasError()) 462 return false; 463 bool Changed = false; 464 465 if (Small.empty()) 466 Changed |= EnforceAny(Small); 467 if (Big.empty()) 468 Changed |= EnforceAny(Big); 469 470 assert(Small.hasDefault() && Big.hasDefault()); 471 472 std::vector<unsigned> Modes = union_modes(Small, Big); 473 474 // 1. Only allow integer or floating point types and make sure that 475 // both sides are both integer or both floating point. 476 // 2. Make sure that either both sides have vector types, or neither 477 // of them does. 478 for (unsigned M : Modes) { 479 TypeSetByHwMode::SetType &S = Small.get(M); 480 TypeSetByHwMode::SetType &B = Big.get(M); 481 482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 484 Changed |= berase_if(S, NotInt) | 485 berase_if(B, NotInt); 486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 488 Changed |= berase_if(S, NotFP) | 489 berase_if(B, NotFP); 490 } else if (S.empty() || B.empty()) { 491 Changed = !S.empty() || !B.empty(); 492 S.clear(); 493 B.clear(); 494 } else { 495 TP.error("Incompatible types"); 496 return Changed; 497 } 498 499 if (none_of(S, isVector) || none_of(B, isVector)) { 500 Changed |= berase_if(S, isVector) | 501 berase_if(B, isVector); 502 } 503 } 504 505 auto LT = [](MVT A, MVT B) -> bool { 506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 508 A.getSizeInBits() < B.getSizeInBits()); 509 }; 510 auto LE = [<](MVT A, MVT B) -> bool { 511 // This function is used when removing elements: when a vector is compared 512 // to a non-vector, it should return false (to avoid removal). 513 if (A.isVector() != B.isVector()) 514 return false; 515 516 return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 517 A.getSizeInBits() == B.getSizeInBits()); 518 }; 519 520 for (unsigned M : Modes) { 521 TypeSetByHwMode::SetType &S = Small.get(M); 522 TypeSetByHwMode::SetType &B = Big.get(M); 523 // MinS = min scalar in Small, remove all scalars from Big that are 524 // smaller-or-equal than MinS. 525 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 526 if (MinS != S.end()) 527 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 528 529 // MaxS = max scalar in Big, remove all scalars from Small that are 530 // larger than MaxS. 531 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 532 if (MaxS != B.end()) 533 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 534 535 // MinV = min vector in Small, remove all vectors from Big that are 536 // smaller-or-equal than MinV. 537 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 538 if (MinV != S.end()) 539 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 540 541 // MaxV = max vector in Big, remove all vectors from Small that are 542 // larger than MaxV. 543 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 544 if (MaxV != B.end()) 545 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 546 } 547 548 return Changed; 549 } 550 551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 552 /// for each type U in Elem, U is a scalar type. 553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 554 /// type T in Vec, such that U is the element type of T. 555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 556 TypeSetByHwMode &Elem) { 557 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 558 if (TP.hasError()) 559 return false; 560 bool Changed = false; 561 562 if (Vec.empty()) 563 Changed |= EnforceVector(Vec); 564 if (Elem.empty()) 565 Changed |= EnforceScalar(Elem); 566 567 for (unsigned M : union_modes(Vec, Elem)) { 568 TypeSetByHwMode::SetType &V = Vec.get(M); 569 TypeSetByHwMode::SetType &E = Elem.get(M); 570 571 Changed |= berase_if(V, isScalar); // Scalar = !vector 572 Changed |= berase_if(E, isVector); // Vector = !scalar 573 assert(!V.empty() && !E.empty()); 574 575 SmallSet<MVT,4> VT, ST; 576 // Collect element types from the "vector" set. 577 for (MVT T : V) 578 VT.insert(T.getVectorElementType()); 579 // Collect scalar types from the "element" set. 580 for (MVT T : E) 581 ST.insert(T); 582 583 // Remove from V all (vector) types whose element type is not in S. 584 Changed |= berase_if(V, [&ST](MVT T) -> bool { 585 return !ST.count(T.getVectorElementType()); 586 }); 587 // Remove from E all (scalar) types, for which there is no corresponding 588 // type in V. 589 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 590 } 591 592 return Changed; 593 } 594 595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 596 const ValueTypeByHwMode &VVT) { 597 TypeSetByHwMode Tmp(VVT); 598 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 599 return EnforceVectorEltTypeIs(Vec, Tmp); 600 } 601 602 /// Ensure that for each type T in Sub, T is a vector type, and there 603 /// exists a type U in Vec such that U is a vector type with the same 604 /// element type as T and at least as many elements as T. 605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 606 TypeSetByHwMode &Sub) { 607 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 608 if (TP.hasError()) 609 return false; 610 611 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 612 auto IsSubVec = [](MVT B, MVT P) -> bool { 613 if (!B.isVector() || !P.isVector()) 614 return false; 615 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 616 // but until there are obvious use-cases for this, keep the 617 // types separate. 618 if (B.isScalableVector() != P.isScalableVector()) 619 return false; 620 if (B.getVectorElementType() != P.getVectorElementType()) 621 return false; 622 return B.getVectorNumElements() < P.getVectorNumElements(); 623 }; 624 625 /// Return true if S has no element (vector type) that T is a sub-vector of, 626 /// i.e. has the same element type as T and more elements. 627 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 628 for (const auto &I : S) 629 if (IsSubVec(T, I)) 630 return false; 631 return true; 632 }; 633 634 /// Return true if S has no element (vector type) that T is a super-vector 635 /// of, i.e. has the same element type as T and fewer elements. 636 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 637 for (const auto &I : S) 638 if (IsSubVec(I, T)) 639 return false; 640 return true; 641 }; 642 643 bool Changed = false; 644 645 if (Vec.empty()) 646 Changed |= EnforceVector(Vec); 647 if (Sub.empty()) 648 Changed |= EnforceVector(Sub); 649 650 for (unsigned M : union_modes(Vec, Sub)) { 651 TypeSetByHwMode::SetType &S = Sub.get(M); 652 TypeSetByHwMode::SetType &V = Vec.get(M); 653 654 Changed |= berase_if(S, isScalar); 655 656 // Erase all types from S that are not sub-vectors of a type in V. 657 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 658 659 // Erase all types from V that are not super-vectors of a type in S. 660 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 661 } 662 663 return Changed; 664 } 665 666 /// 1. Ensure that V has a scalar type iff W has a scalar type. 667 /// 2. Ensure that for each vector type T in V, there exists a vector 668 /// type U in W, such that T and U have the same number of elements. 669 /// 3. Ensure that for each vector type U in W, there exists a vector 670 /// type T in V, such that T and U have the same number of elements 671 /// (reverse of 2). 672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 673 ValidateOnExit _1(V, *this), _2(W, *this); 674 if (TP.hasError()) 675 return false; 676 677 bool Changed = false; 678 if (V.empty()) 679 Changed |= EnforceAny(V); 680 if (W.empty()) 681 Changed |= EnforceAny(W); 682 683 // An actual vector type cannot have 0 elements, so we can treat scalars 684 // as zero-length vectors. This way both vectors and scalars can be 685 // processed identically. 686 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 687 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 688 }; 689 690 for (unsigned M : union_modes(V, W)) { 691 TypeSetByHwMode::SetType &VS = V.get(M); 692 TypeSetByHwMode::SetType &WS = W.get(M); 693 694 SmallSet<unsigned,2> VN, WN; 695 for (MVT T : VS) 696 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 697 for (MVT T : WS) 698 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 699 700 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 701 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 702 } 703 return Changed; 704 } 705 706 /// 1. Ensure that for each type T in A, there exists a type U in B, 707 /// such that T and U have equal size in bits. 708 /// 2. Ensure that for each type U in B, there exists a type T in A 709 /// such that T and U have equal size in bits (reverse of 1). 710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 711 ValidateOnExit _1(A, *this), _2(B, *this); 712 if (TP.hasError()) 713 return false; 714 bool Changed = false; 715 if (A.empty()) 716 Changed |= EnforceAny(A); 717 if (B.empty()) 718 Changed |= EnforceAny(B); 719 720 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 721 return !Sizes.count(T.getSizeInBits()); 722 }; 723 724 for (unsigned M : union_modes(A, B)) { 725 TypeSetByHwMode::SetType &AS = A.get(M); 726 TypeSetByHwMode::SetType &BS = B.get(M); 727 SmallSet<unsigned,2> AN, BN; 728 729 for (MVT T : AS) 730 AN.insert(T.getSizeInBits()); 731 for (MVT T : BS) 732 BN.insert(T.getSizeInBits()); 733 734 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 735 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 736 } 737 738 return Changed; 739 } 740 741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 742 ValidateOnExit _1(VTS, *this); 743 const TypeSetByHwMode &Legal = getLegalTypes(); 744 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 745 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 746 747 for (auto &I : VTS) 748 expandOverloads(I.second, LegalTypes); 749 } 750 751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 752 const TypeSetByHwMode::SetType &Legal) { 753 std::set<MVT> Ovs; 754 for (MVT T : Out) { 755 if (!T.isOverloaded()) 756 continue; 757 758 Ovs.insert(T); 759 // MachineValueTypeSet allows iteration and erasing. 760 Out.erase(T); 761 } 762 763 for (MVT Ov : Ovs) { 764 switch (Ov.SimpleTy) { 765 case MVT::iPTRAny: 766 Out.insert(MVT::iPTR); 767 return; 768 case MVT::iAny: 769 for (MVT T : MVT::integer_valuetypes()) 770 if (Legal.count(T)) 771 Out.insert(T); 772 for (MVT T : MVT::integer_vector_valuetypes()) 773 if (Legal.count(T)) 774 Out.insert(T); 775 return; 776 case MVT::fAny: 777 for (MVT T : MVT::fp_valuetypes()) 778 if (Legal.count(T)) 779 Out.insert(T); 780 for (MVT T : MVT::fp_vector_valuetypes()) 781 if (Legal.count(T)) 782 Out.insert(T); 783 return; 784 case MVT::vAny: 785 for (MVT T : MVT::vector_valuetypes()) 786 if (Legal.count(T)) 787 Out.insert(T); 788 return; 789 case MVT::Any: 790 for (MVT T : MVT::all_valuetypes()) 791 if (Legal.count(T)) 792 Out.insert(T); 793 return; 794 default: 795 break; 796 } 797 } 798 } 799 800 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 801 if (!LegalTypesCached) { 802 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 803 // Stuff all types from all modes into the default mode. 804 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 805 for (const auto &I : LTS) 806 LegalTypes.insert(I.second); 807 LegalTypesCached = true; 808 } 809 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 810 return LegalCache; 811 } 812 813 #ifndef NDEBUG 814 TypeInfer::ValidateOnExit::~ValidateOnExit() { 815 if (Infer.Validate && !VTS.validate()) { 816 dbgs() << "Type set is empty for each HW mode:\n" 817 "possible type contradiction in the pattern below " 818 "(use -print-records with llvm-tblgen to see all " 819 "expanded records).\n"; 820 Infer.TP.dump(); 821 llvm_unreachable(nullptr); 822 } 823 } 824 #endif 825 826 827 //===----------------------------------------------------------------------===// 828 // ScopedName Implementation 829 //===----------------------------------------------------------------------===// 830 831 bool ScopedName::operator==(const ScopedName &o) const { 832 return Scope == o.Scope && Identifier == o.Identifier; 833 } 834 835 bool ScopedName::operator!=(const ScopedName &o) const { 836 return !(*this == o); 837 } 838 839 840 //===----------------------------------------------------------------------===// 841 // TreePredicateFn Implementation 842 //===----------------------------------------------------------------------===// 843 844 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 845 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 846 assert( 847 (!hasPredCode() || !hasImmCode()) && 848 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 849 } 850 851 bool TreePredicateFn::hasPredCode() const { 852 return isLoad() || isStore() || isAtomic() || 853 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 854 } 855 856 std::string TreePredicateFn::getPredCode() const { 857 std::string Code = ""; 858 859 if (!isLoad() && !isStore() && !isAtomic()) { 860 Record *MemoryVT = getMemoryVT(); 861 862 if (MemoryVT) 863 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 864 "MemoryVT requires IsLoad or IsStore"); 865 } 866 867 if (!isLoad() && !isStore()) { 868 if (isUnindexed()) 869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 870 "IsUnindexed requires IsLoad or IsStore"); 871 872 Record *ScalarMemoryVT = getScalarMemoryVT(); 873 874 if (ScalarMemoryVT) 875 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 876 "ScalarMemoryVT requires IsLoad or IsStore"); 877 } 878 879 if (isLoad() + isStore() + isAtomic() > 1) 880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 881 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 882 883 if (isLoad()) { 884 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 885 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 886 getScalarMemoryVT() == nullptr) 887 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 888 "IsLoad cannot be used by itself"); 889 } else { 890 if (isNonExtLoad()) 891 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 892 "IsNonExtLoad requires IsLoad"); 893 if (isAnyExtLoad()) 894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 895 "IsAnyExtLoad requires IsLoad"); 896 if (isSignExtLoad()) 897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 898 "IsSignExtLoad requires IsLoad"); 899 if (isZeroExtLoad()) 900 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 901 "IsZeroExtLoad requires IsLoad"); 902 } 903 904 if (isStore()) { 905 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 906 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 908 "IsStore cannot be used by itself"); 909 } else { 910 if (isNonTruncStore()) 911 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 912 "IsNonTruncStore requires IsStore"); 913 if (isTruncStore()) 914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 915 "IsTruncStore requires IsStore"); 916 } 917 918 if (isAtomic()) { 919 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 920 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 921 !isAtomicOrderingAcquireRelease() && 922 !isAtomicOrderingSequentiallyConsistent() && 923 !isAtomicOrderingAcquireOrStronger() && 924 !isAtomicOrderingReleaseOrStronger() && 925 !isAtomicOrderingWeakerThanAcquire() && 926 !isAtomicOrderingWeakerThanRelease()) 927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 928 "IsAtomic cannot be used by itself"); 929 } else { 930 if (isAtomicOrderingMonotonic()) 931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 932 "IsAtomicOrderingMonotonic requires IsAtomic"); 933 if (isAtomicOrderingAcquire()) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsAtomicOrderingAcquire requires IsAtomic"); 936 if (isAtomicOrderingRelease()) 937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 938 "IsAtomicOrderingRelease requires IsAtomic"); 939 if (isAtomicOrderingAcquireRelease()) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 942 if (isAtomicOrderingSequentiallyConsistent()) 943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 944 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 945 if (isAtomicOrderingAcquireOrStronger()) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 948 if (isAtomicOrderingReleaseOrStronger()) 949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 950 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 951 if (isAtomicOrderingWeakerThanAcquire()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 954 } 955 956 if (isLoad() || isStore() || isAtomic()) { 957 if (ListInit *AddressSpaces = getAddressSpaces()) { 958 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 959 " if ("; 960 961 bool First = true; 962 for (Init *Val : AddressSpaces->getValues()) { 963 if (First) 964 First = false; 965 else 966 Code += " && "; 967 968 IntInit *IntVal = dyn_cast<IntInit>(Val); 969 if (!IntVal) { 970 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 971 "AddressSpaces element must be integer"); 972 } 973 974 Code += "AddrSpace != " + utostr(IntVal->getValue()); 975 } 976 977 Code += ")\nreturn false;\n"; 978 } 979 980 Record *MemoryVT = getMemoryVT(); 981 982 if (MemoryVT) 983 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 984 MemoryVT->getName() + ") return false;\n") 985 .str(); 986 } 987 988 if (isAtomic() && isAtomicOrderingMonotonic()) 989 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 990 "AtomicOrdering::Monotonic) return false;\n"; 991 if (isAtomic() && isAtomicOrderingAcquire()) 992 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 993 "AtomicOrdering::Acquire) return false;\n"; 994 if (isAtomic() && isAtomicOrderingRelease()) 995 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 996 "AtomicOrdering::Release) return false;\n"; 997 if (isAtomic() && isAtomicOrderingAcquireRelease()) 998 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 999 "AtomicOrdering::AcquireRelease) return false;\n"; 1000 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1001 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1002 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1003 1004 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1005 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1006 "return false;\n"; 1007 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1008 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1009 "return false;\n"; 1010 1011 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1012 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1013 "return false;\n"; 1014 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1015 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1016 "return false;\n"; 1017 1018 if (isLoad() || isStore()) { 1019 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1020 1021 if (isUnindexed()) 1022 Code += ("if (cast<" + SDNodeName + 1023 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1024 "return false;\n") 1025 .str(); 1026 1027 if (isLoad()) { 1028 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1029 isZeroExtLoad()) > 1) 1030 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1031 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1032 "IsZeroExtLoad are mutually exclusive"); 1033 if (isNonExtLoad()) 1034 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1035 "ISD::NON_EXTLOAD) return false;\n"; 1036 if (isAnyExtLoad()) 1037 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1038 "return false;\n"; 1039 if (isSignExtLoad()) 1040 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1041 "return false;\n"; 1042 if (isZeroExtLoad()) 1043 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1044 "return false;\n"; 1045 } else { 1046 if ((isNonTruncStore() + isTruncStore()) > 1) 1047 PrintFatalError( 1048 getOrigPatFragRecord()->getRecord()->getLoc(), 1049 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1050 if (isNonTruncStore()) 1051 Code += 1052 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1053 if (isTruncStore()) 1054 Code += 1055 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1056 } 1057 1058 Record *ScalarMemoryVT = getScalarMemoryVT(); 1059 1060 if (ScalarMemoryVT) 1061 Code += ("if (cast<" + SDNodeName + 1062 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1063 ScalarMemoryVT->getName() + ") return false;\n") 1064 .str(); 1065 } 1066 1067 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1068 1069 Code += PredicateCode; 1070 1071 if (PredicateCode.empty() && !Code.empty()) 1072 Code += "return true;\n"; 1073 1074 return Code; 1075 } 1076 1077 bool TreePredicateFn::hasImmCode() const { 1078 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1079 } 1080 1081 std::string TreePredicateFn::getImmCode() const { 1082 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1083 } 1084 1085 bool TreePredicateFn::immCodeUsesAPInt() const { 1086 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1087 } 1088 1089 bool TreePredicateFn::immCodeUsesAPFloat() const { 1090 bool Unset; 1091 // The return value will be false when IsAPFloat is unset. 1092 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1093 Unset); 1094 } 1095 1096 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1097 bool Value) const { 1098 bool Unset; 1099 bool Result = 1100 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1101 if (Unset) 1102 return false; 1103 return Result == Value; 1104 } 1105 bool TreePredicateFn::usesOperands() const { 1106 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1107 } 1108 bool TreePredicateFn::isLoad() const { 1109 return isPredefinedPredicateEqualTo("IsLoad", true); 1110 } 1111 bool TreePredicateFn::isStore() const { 1112 return isPredefinedPredicateEqualTo("IsStore", true); 1113 } 1114 bool TreePredicateFn::isAtomic() const { 1115 return isPredefinedPredicateEqualTo("IsAtomic", true); 1116 } 1117 bool TreePredicateFn::isUnindexed() const { 1118 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1119 } 1120 bool TreePredicateFn::isNonExtLoad() const { 1121 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1122 } 1123 bool TreePredicateFn::isAnyExtLoad() const { 1124 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1125 } 1126 bool TreePredicateFn::isSignExtLoad() const { 1127 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1128 } 1129 bool TreePredicateFn::isZeroExtLoad() const { 1130 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1131 } 1132 bool TreePredicateFn::isNonTruncStore() const { 1133 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1134 } 1135 bool TreePredicateFn::isTruncStore() const { 1136 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1137 } 1138 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1139 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1140 } 1141 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1142 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1143 } 1144 bool TreePredicateFn::isAtomicOrderingRelease() const { 1145 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1146 } 1147 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1148 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1149 } 1150 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1151 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1152 true); 1153 } 1154 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1155 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1156 } 1157 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1158 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1159 } 1160 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1161 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1162 } 1163 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1164 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1165 } 1166 Record *TreePredicateFn::getMemoryVT() const { 1167 Record *R = getOrigPatFragRecord()->getRecord(); 1168 if (R->isValueUnset("MemoryVT")) 1169 return nullptr; 1170 return R->getValueAsDef("MemoryVT"); 1171 } 1172 1173 ListInit *TreePredicateFn::getAddressSpaces() const { 1174 Record *R = getOrigPatFragRecord()->getRecord(); 1175 if (R->isValueUnset("AddressSpaces")) 1176 return nullptr; 1177 return R->getValueAsListInit("AddressSpaces"); 1178 } 1179 1180 Record *TreePredicateFn::getScalarMemoryVT() const { 1181 Record *R = getOrigPatFragRecord()->getRecord(); 1182 if (R->isValueUnset("ScalarMemoryVT")) 1183 return nullptr; 1184 return R->getValueAsDef("ScalarMemoryVT"); 1185 } 1186 bool TreePredicateFn::hasGISelPredicateCode() const { 1187 return !PatFragRec->getRecord() 1188 ->getValueAsString("GISelPredicateCode") 1189 .empty(); 1190 } 1191 std::string TreePredicateFn::getGISelPredicateCode() const { 1192 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1193 } 1194 1195 StringRef TreePredicateFn::getImmType() const { 1196 if (immCodeUsesAPInt()) 1197 return "const APInt &"; 1198 if (immCodeUsesAPFloat()) 1199 return "const APFloat &"; 1200 return "int64_t"; 1201 } 1202 1203 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1204 if (immCodeUsesAPInt()) 1205 return "APInt"; 1206 else if (immCodeUsesAPFloat()) 1207 return "APFloat"; 1208 return "I64"; 1209 } 1210 1211 /// isAlwaysTrue - Return true if this is a noop predicate. 1212 bool TreePredicateFn::isAlwaysTrue() const { 1213 return !hasPredCode() && !hasImmCode(); 1214 } 1215 1216 /// Return the name to use in the generated code to reference this, this is 1217 /// "Predicate_foo" if from a pattern fragment "foo". 1218 std::string TreePredicateFn::getFnName() const { 1219 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1220 } 1221 1222 /// getCodeToRunOnSDNode - Return the code for the function body that 1223 /// evaluates this predicate. The argument is expected to be in "Node", 1224 /// not N. This handles casting and conversion to a concrete node type as 1225 /// appropriate. 1226 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1227 // Handle immediate predicates first. 1228 std::string ImmCode = getImmCode(); 1229 if (!ImmCode.empty()) { 1230 if (isLoad()) 1231 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1232 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1233 if (isStore()) 1234 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1235 "IsStore cannot be used with ImmLeaf or its subclasses"); 1236 if (isUnindexed()) 1237 PrintFatalError( 1238 getOrigPatFragRecord()->getRecord()->getLoc(), 1239 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1240 if (isNonExtLoad()) 1241 PrintFatalError( 1242 getOrigPatFragRecord()->getRecord()->getLoc(), 1243 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1244 if (isAnyExtLoad()) 1245 PrintFatalError( 1246 getOrigPatFragRecord()->getRecord()->getLoc(), 1247 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1248 if (isSignExtLoad()) 1249 PrintFatalError( 1250 getOrigPatFragRecord()->getRecord()->getLoc(), 1251 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1252 if (isZeroExtLoad()) 1253 PrintFatalError( 1254 getOrigPatFragRecord()->getRecord()->getLoc(), 1255 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1256 if (isNonTruncStore()) 1257 PrintFatalError( 1258 getOrigPatFragRecord()->getRecord()->getLoc(), 1259 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1260 if (isTruncStore()) 1261 PrintFatalError( 1262 getOrigPatFragRecord()->getRecord()->getLoc(), 1263 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1264 if (getMemoryVT()) 1265 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1266 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1267 if (getScalarMemoryVT()) 1268 PrintFatalError( 1269 getOrigPatFragRecord()->getRecord()->getLoc(), 1270 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1271 1272 std::string Result = (" " + getImmType() + " Imm = ").str(); 1273 if (immCodeUsesAPFloat()) 1274 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1275 else if (immCodeUsesAPInt()) 1276 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1277 else 1278 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1279 return Result + ImmCode; 1280 } 1281 1282 // Handle arbitrary node predicates. 1283 assert(hasPredCode() && "Don't have any predicate code!"); 1284 StringRef ClassName; 1285 if (PatFragRec->getOnlyTree()->isLeaf()) 1286 ClassName = "SDNode"; 1287 else { 1288 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1289 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1290 } 1291 std::string Result; 1292 if (ClassName == "SDNode") 1293 Result = " SDNode *N = Node;\n"; 1294 else 1295 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1296 1297 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1298 } 1299 1300 //===----------------------------------------------------------------------===// 1301 // PatternToMatch implementation 1302 // 1303 1304 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1305 if (!P->isLeaf()) 1306 return false; 1307 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1308 if (!DI) 1309 return false; 1310 1311 Record *R = DI->getDef(); 1312 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1313 } 1314 1315 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1316 /// patterns before small ones. This is used to determine the size of a 1317 /// pattern. 1318 static unsigned getPatternSize(const TreePatternNode *P, 1319 const CodeGenDAGPatterns &CGP) { 1320 unsigned Size = 3; // The node itself. 1321 // If the root node is a ConstantSDNode, increases its size. 1322 // e.g. (set R32:$dst, 0). 1323 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1324 Size += 2; 1325 1326 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1327 Size += AM->getComplexity(); 1328 // We don't want to count any children twice, so return early. 1329 return Size; 1330 } 1331 1332 // If this node has some predicate function that must match, it adds to the 1333 // complexity of this node. 1334 if (!P->getPredicateCalls().empty()) 1335 ++Size; 1336 1337 // Count children in the count if they are also nodes. 1338 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1339 const TreePatternNode *Child = P->getChild(i); 1340 if (!Child->isLeaf() && Child->getNumTypes()) { 1341 const TypeSetByHwMode &T0 = Child->getExtType(0); 1342 // At this point, all variable type sets should be simple, i.e. only 1343 // have a default mode. 1344 if (T0.getMachineValueType() != MVT::Other) { 1345 Size += getPatternSize(Child, CGP); 1346 continue; 1347 } 1348 } 1349 if (Child->isLeaf()) { 1350 if (isa<IntInit>(Child->getLeafValue())) 1351 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1352 else if (Child->getComplexPatternInfo(CGP)) 1353 Size += getPatternSize(Child, CGP); 1354 else if (isImmAllOnesAllZerosMatch(Child)) 1355 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1356 else if (!Child->getPredicateCalls().empty()) 1357 ++Size; 1358 } 1359 } 1360 1361 return Size; 1362 } 1363 1364 /// Compute the complexity metric for the input pattern. This roughly 1365 /// corresponds to the number of nodes that are covered. 1366 int PatternToMatch:: 1367 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1368 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1369 } 1370 1371 /// getPredicateCheck - Return a single string containing all of this 1372 /// pattern's predicates concatenated with "&&" operators. 1373 /// 1374 std::string PatternToMatch::getPredicateCheck() const { 1375 SmallVector<const Predicate*,4> PredList; 1376 for (const Predicate &P : Predicates) 1377 PredList.push_back(&P); 1378 llvm::sort(PredList, deref<llvm::less>()); 1379 1380 std::string Check; 1381 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1382 if (i != 0) 1383 Check += " && "; 1384 Check += '(' + PredList[i]->getCondString() + ')'; 1385 } 1386 return Check; 1387 } 1388 1389 //===----------------------------------------------------------------------===// 1390 // SDTypeConstraint implementation 1391 // 1392 1393 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1394 OperandNo = R->getValueAsInt("OperandNum"); 1395 1396 if (R->isSubClassOf("SDTCisVT")) { 1397 ConstraintType = SDTCisVT; 1398 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1399 for (const auto &P : VVT) 1400 if (P.second == MVT::isVoid) 1401 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1402 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1403 ConstraintType = SDTCisPtrTy; 1404 } else if (R->isSubClassOf("SDTCisInt")) { 1405 ConstraintType = SDTCisInt; 1406 } else if (R->isSubClassOf("SDTCisFP")) { 1407 ConstraintType = SDTCisFP; 1408 } else if (R->isSubClassOf("SDTCisVec")) { 1409 ConstraintType = SDTCisVec; 1410 } else if (R->isSubClassOf("SDTCisSameAs")) { 1411 ConstraintType = SDTCisSameAs; 1412 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1413 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1414 ConstraintType = SDTCisVTSmallerThanOp; 1415 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1416 R->getValueAsInt("OtherOperandNum"); 1417 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1418 ConstraintType = SDTCisOpSmallerThanOp; 1419 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1420 R->getValueAsInt("BigOperandNum"); 1421 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1422 ConstraintType = SDTCisEltOfVec; 1423 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1424 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1425 ConstraintType = SDTCisSubVecOfVec; 1426 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1427 R->getValueAsInt("OtherOpNum"); 1428 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1429 ConstraintType = SDTCVecEltisVT; 1430 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1431 for (const auto &P : VVT) { 1432 MVT T = P.second; 1433 if (T.isVector()) 1434 PrintFatalError(R->getLoc(), 1435 "Cannot use vector type as SDTCVecEltisVT"); 1436 if (!T.isInteger() && !T.isFloatingPoint()) 1437 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1438 "as SDTCVecEltisVT"); 1439 } 1440 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1441 ConstraintType = SDTCisSameNumEltsAs; 1442 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1443 R->getValueAsInt("OtherOperandNum"); 1444 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1445 ConstraintType = SDTCisSameSizeAs; 1446 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1447 R->getValueAsInt("OtherOperandNum"); 1448 } else { 1449 PrintFatalError(R->getLoc(), 1450 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1451 } 1452 } 1453 1454 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1455 /// N, and the result number in ResNo. 1456 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1457 const SDNodeInfo &NodeInfo, 1458 unsigned &ResNo) { 1459 unsigned NumResults = NodeInfo.getNumResults(); 1460 if (OpNo < NumResults) { 1461 ResNo = OpNo; 1462 return N; 1463 } 1464 1465 OpNo -= NumResults; 1466 1467 if (OpNo >= N->getNumChildren()) { 1468 std::string S; 1469 raw_string_ostream OS(S); 1470 OS << "Invalid operand number in type constraint " 1471 << (OpNo+NumResults) << " "; 1472 N->print(OS); 1473 PrintFatalError(OS.str()); 1474 } 1475 1476 return N->getChild(OpNo); 1477 } 1478 1479 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1480 /// constraint to the nodes operands. This returns true if it makes a 1481 /// change, false otherwise. If a type contradiction is found, flag an error. 1482 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1483 const SDNodeInfo &NodeInfo, 1484 TreePattern &TP) const { 1485 if (TP.hasError()) 1486 return false; 1487 1488 unsigned ResNo = 0; // The result number being referenced. 1489 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1490 TypeInfer &TI = TP.getInfer(); 1491 1492 switch (ConstraintType) { 1493 case SDTCisVT: 1494 // Operand must be a particular type. 1495 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1496 case SDTCisPtrTy: 1497 // Operand must be same as target pointer type. 1498 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1499 case SDTCisInt: 1500 // Require it to be one of the legal integer VTs. 1501 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1502 case SDTCisFP: 1503 // Require it to be one of the legal fp VTs. 1504 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1505 case SDTCisVec: 1506 // Require it to be one of the legal vector VTs. 1507 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1508 case SDTCisSameAs: { 1509 unsigned OResNo = 0; 1510 TreePatternNode *OtherNode = 1511 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1512 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1513 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1514 } 1515 case SDTCisVTSmallerThanOp: { 1516 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1517 // have an integer type that is smaller than the VT. 1518 if (!NodeToApply->isLeaf() || 1519 !isa<DefInit>(NodeToApply->getLeafValue()) || 1520 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1521 ->isSubClassOf("ValueType")) { 1522 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1523 return false; 1524 } 1525 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1526 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1527 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1528 TypeSetByHwMode TypeListTmp(VVT); 1529 1530 unsigned OResNo = 0; 1531 TreePatternNode *OtherNode = 1532 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1533 OResNo); 1534 1535 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1536 } 1537 case SDTCisOpSmallerThanOp: { 1538 unsigned BResNo = 0; 1539 TreePatternNode *BigOperand = 1540 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1541 BResNo); 1542 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1543 BigOperand->getExtType(BResNo)); 1544 } 1545 case SDTCisEltOfVec: { 1546 unsigned VResNo = 0; 1547 TreePatternNode *VecOperand = 1548 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1549 VResNo); 1550 // Filter vector types out of VecOperand that don't have the right element 1551 // type. 1552 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1553 NodeToApply->getExtType(ResNo)); 1554 } 1555 case SDTCisSubVecOfVec: { 1556 unsigned VResNo = 0; 1557 TreePatternNode *BigVecOperand = 1558 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1559 VResNo); 1560 1561 // Filter vector types out of BigVecOperand that don't have the 1562 // right subvector type. 1563 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1564 NodeToApply->getExtType(ResNo)); 1565 } 1566 case SDTCVecEltisVT: { 1567 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1568 } 1569 case SDTCisSameNumEltsAs: { 1570 unsigned OResNo = 0; 1571 TreePatternNode *OtherNode = 1572 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1573 N, NodeInfo, OResNo); 1574 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1575 NodeToApply->getExtType(ResNo)); 1576 } 1577 case SDTCisSameSizeAs: { 1578 unsigned OResNo = 0; 1579 TreePatternNode *OtherNode = 1580 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1581 N, NodeInfo, OResNo); 1582 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1583 NodeToApply->getExtType(ResNo)); 1584 } 1585 } 1586 llvm_unreachable("Invalid ConstraintType!"); 1587 } 1588 1589 // Update the node type to match an instruction operand or result as specified 1590 // in the ins or outs lists on the instruction definition. Return true if the 1591 // type was actually changed. 1592 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1593 Record *Operand, 1594 TreePattern &TP) { 1595 // The 'unknown' operand indicates that types should be inferred from the 1596 // context. 1597 if (Operand->isSubClassOf("unknown_class")) 1598 return false; 1599 1600 // The Operand class specifies a type directly. 1601 if (Operand->isSubClassOf("Operand")) { 1602 Record *R = Operand->getValueAsDef("Type"); 1603 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1604 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1605 } 1606 1607 // PointerLikeRegClass has a type that is determined at runtime. 1608 if (Operand->isSubClassOf("PointerLikeRegClass")) 1609 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1610 1611 // Both RegisterClass and RegisterOperand operands derive their types from a 1612 // register class def. 1613 Record *RC = nullptr; 1614 if (Operand->isSubClassOf("RegisterClass")) 1615 RC = Operand; 1616 else if (Operand->isSubClassOf("RegisterOperand")) 1617 RC = Operand->getValueAsDef("RegClass"); 1618 1619 assert(RC && "Unknown operand type"); 1620 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1621 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1622 } 1623 1624 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1625 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1626 if (!TP.getInfer().isConcrete(Types[i], true)) 1627 return true; 1628 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1629 if (getChild(i)->ContainsUnresolvedType(TP)) 1630 return true; 1631 return false; 1632 } 1633 1634 bool TreePatternNode::hasProperTypeByHwMode() const { 1635 for (const TypeSetByHwMode &S : Types) 1636 if (!S.isDefaultOnly()) 1637 return true; 1638 for (const TreePatternNodePtr &C : Children) 1639 if (C->hasProperTypeByHwMode()) 1640 return true; 1641 return false; 1642 } 1643 1644 bool TreePatternNode::hasPossibleType() const { 1645 for (const TypeSetByHwMode &S : Types) 1646 if (!S.isPossible()) 1647 return false; 1648 for (const TreePatternNodePtr &C : Children) 1649 if (!C->hasPossibleType()) 1650 return false; 1651 return true; 1652 } 1653 1654 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1655 for (TypeSetByHwMode &S : Types) { 1656 S.makeSimple(Mode); 1657 // Check if the selected mode had a type conflict. 1658 if (S.get(DefaultMode).empty()) 1659 return false; 1660 } 1661 for (const TreePatternNodePtr &C : Children) 1662 if (!C->setDefaultMode(Mode)) 1663 return false; 1664 return true; 1665 } 1666 1667 //===----------------------------------------------------------------------===// 1668 // SDNodeInfo implementation 1669 // 1670 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1671 EnumName = R->getValueAsString("Opcode"); 1672 SDClassName = R->getValueAsString("SDClass"); 1673 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1674 NumResults = TypeProfile->getValueAsInt("NumResults"); 1675 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1676 1677 // Parse the properties. 1678 Properties = parseSDPatternOperatorProperties(R); 1679 1680 // Parse the type constraints. 1681 std::vector<Record*> ConstraintList = 1682 TypeProfile->getValueAsListOfDefs("Constraints"); 1683 for (Record *R : ConstraintList) 1684 TypeConstraints.emplace_back(R, CGH); 1685 } 1686 1687 /// getKnownType - If the type constraints on this node imply a fixed type 1688 /// (e.g. all stores return void, etc), then return it as an 1689 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1690 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1691 unsigned NumResults = getNumResults(); 1692 assert(NumResults <= 1 && 1693 "We only work with nodes with zero or one result so far!"); 1694 assert(ResNo == 0 && "Only handles single result nodes so far"); 1695 1696 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1697 // Make sure that this applies to the correct node result. 1698 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1699 continue; 1700 1701 switch (Constraint.ConstraintType) { 1702 default: break; 1703 case SDTypeConstraint::SDTCisVT: 1704 if (Constraint.VVT.isSimple()) 1705 return Constraint.VVT.getSimple().SimpleTy; 1706 break; 1707 case SDTypeConstraint::SDTCisPtrTy: 1708 return MVT::iPTR; 1709 } 1710 } 1711 return MVT::Other; 1712 } 1713 1714 //===----------------------------------------------------------------------===// 1715 // TreePatternNode implementation 1716 // 1717 1718 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1719 if (Operator->getName() == "set" || 1720 Operator->getName() == "implicit") 1721 return 0; // All return nothing. 1722 1723 if (Operator->isSubClassOf("Intrinsic")) 1724 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1725 1726 if (Operator->isSubClassOf("SDNode")) 1727 return CDP.getSDNodeInfo(Operator).getNumResults(); 1728 1729 if (Operator->isSubClassOf("PatFrags")) { 1730 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1731 // the forward reference case where one pattern fragment references another 1732 // before it is processed. 1733 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1734 // The number of results of a fragment with alternative records is the 1735 // maximum number of results across all alternatives. 1736 unsigned NumResults = 0; 1737 for (auto T : PFRec->getTrees()) 1738 NumResults = std::max(NumResults, T->getNumTypes()); 1739 return NumResults; 1740 } 1741 1742 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1743 assert(LI && "Invalid Fragment"); 1744 unsigned NumResults = 0; 1745 for (Init *I : LI->getValues()) { 1746 Record *Op = nullptr; 1747 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1748 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1749 Op = DI->getDef(); 1750 assert(Op && "Invalid Fragment"); 1751 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1752 } 1753 return NumResults; 1754 } 1755 1756 if (Operator->isSubClassOf("Instruction")) { 1757 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1758 1759 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1760 1761 // Subtract any defaulted outputs. 1762 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1763 Record *OperandNode = InstInfo.Operands[i].Rec; 1764 1765 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1766 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1767 --NumDefsToAdd; 1768 } 1769 1770 // Add on one implicit def if it has a resolvable type. 1771 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1772 ++NumDefsToAdd; 1773 return NumDefsToAdd; 1774 } 1775 1776 if (Operator->isSubClassOf("SDNodeXForm")) 1777 return 1; // FIXME: Generalize SDNodeXForm 1778 1779 if (Operator->isSubClassOf("ValueType")) 1780 return 1; // A type-cast of one result. 1781 1782 if (Operator->isSubClassOf("ComplexPattern")) 1783 return 1; 1784 1785 errs() << *Operator; 1786 PrintFatalError("Unhandled node in GetNumNodeResults"); 1787 } 1788 1789 void TreePatternNode::print(raw_ostream &OS) const { 1790 if (isLeaf()) 1791 OS << *getLeafValue(); 1792 else 1793 OS << '(' << getOperator()->getName(); 1794 1795 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1796 OS << ':'; 1797 getExtType(i).writeToStream(OS); 1798 } 1799 1800 if (!isLeaf()) { 1801 if (getNumChildren() != 0) { 1802 OS << " "; 1803 getChild(0)->print(OS); 1804 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1805 OS << ", "; 1806 getChild(i)->print(OS); 1807 } 1808 } 1809 OS << ")"; 1810 } 1811 1812 for (const TreePredicateCall &Pred : PredicateCalls) { 1813 OS << "<<P:"; 1814 if (Pred.Scope) 1815 OS << Pred.Scope << ":"; 1816 OS << Pred.Fn.getFnName() << ">>"; 1817 } 1818 if (TransformFn) 1819 OS << "<<X:" << TransformFn->getName() << ">>"; 1820 if (!getName().empty()) 1821 OS << ":$" << getName(); 1822 1823 for (const ScopedName &Name : NamesAsPredicateArg) 1824 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1825 } 1826 void TreePatternNode::dump() const { 1827 print(errs()); 1828 } 1829 1830 /// isIsomorphicTo - Return true if this node is recursively 1831 /// isomorphic to the specified node. For this comparison, the node's 1832 /// entire state is considered. The assigned name is ignored, since 1833 /// nodes with differing names are considered isomorphic. However, if 1834 /// the assigned name is present in the dependent variable set, then 1835 /// the assigned name is considered significant and the node is 1836 /// isomorphic if the names match. 1837 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1838 const MultipleUseVarSet &DepVars) const { 1839 if (N == this) return true; 1840 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1841 getPredicateCalls() != N->getPredicateCalls() || 1842 getTransformFn() != N->getTransformFn()) 1843 return false; 1844 1845 if (isLeaf()) { 1846 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1847 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1848 return ((DI->getDef() == NDI->getDef()) 1849 && (DepVars.find(getName()) == DepVars.end() 1850 || getName() == N->getName())); 1851 } 1852 } 1853 return getLeafValue() == N->getLeafValue(); 1854 } 1855 1856 if (N->getOperator() != getOperator() || 1857 N->getNumChildren() != getNumChildren()) return false; 1858 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1859 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1860 return false; 1861 return true; 1862 } 1863 1864 /// clone - Make a copy of this tree and all of its children. 1865 /// 1866 TreePatternNodePtr TreePatternNode::clone() const { 1867 TreePatternNodePtr New; 1868 if (isLeaf()) { 1869 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1870 } else { 1871 std::vector<TreePatternNodePtr> CChildren; 1872 CChildren.reserve(Children.size()); 1873 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1874 CChildren.push_back(getChild(i)->clone()); 1875 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1876 getNumTypes()); 1877 } 1878 New->setName(getName()); 1879 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1880 New->Types = Types; 1881 New->setPredicateCalls(getPredicateCalls()); 1882 New->setTransformFn(getTransformFn()); 1883 return New; 1884 } 1885 1886 /// RemoveAllTypes - Recursively strip all the types of this tree. 1887 void TreePatternNode::RemoveAllTypes() { 1888 // Reset to unknown type. 1889 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1890 if (isLeaf()) return; 1891 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1892 getChild(i)->RemoveAllTypes(); 1893 } 1894 1895 1896 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1897 /// with actual values specified by ArgMap. 1898 void TreePatternNode::SubstituteFormalArguments( 1899 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1900 if (isLeaf()) return; 1901 1902 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1903 TreePatternNode *Child = getChild(i); 1904 if (Child->isLeaf()) { 1905 Init *Val = Child->getLeafValue(); 1906 // Note that, when substituting into an output pattern, Val might be an 1907 // UnsetInit. 1908 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1909 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1910 // We found a use of a formal argument, replace it with its value. 1911 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1912 assert(NewChild && "Couldn't find formal argument!"); 1913 assert((Child->getPredicateCalls().empty() || 1914 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1915 "Non-empty child predicate clobbered!"); 1916 setChild(i, std::move(NewChild)); 1917 } 1918 } else { 1919 getChild(i)->SubstituteFormalArguments(ArgMap); 1920 } 1921 } 1922 } 1923 1924 1925 /// InlinePatternFragments - If this pattern refers to any pattern 1926 /// fragments, return the set of inlined versions (this can be more than 1927 /// one if a PatFrags record has multiple alternatives). 1928 void TreePatternNode::InlinePatternFragments( 1929 TreePatternNodePtr T, TreePattern &TP, 1930 std::vector<TreePatternNodePtr> &OutAlternatives) { 1931 1932 if (TP.hasError()) 1933 return; 1934 1935 if (isLeaf()) { 1936 OutAlternatives.push_back(T); // nothing to do. 1937 return; 1938 } 1939 1940 Record *Op = getOperator(); 1941 1942 if (!Op->isSubClassOf("PatFrags")) { 1943 if (getNumChildren() == 0) { 1944 OutAlternatives.push_back(T); 1945 return; 1946 } 1947 1948 // Recursively inline children nodes. 1949 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 1950 ChildAlternatives.resize(getNumChildren()); 1951 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1952 TreePatternNodePtr Child = getChildShared(i); 1953 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 1954 // If there are no alternatives for any child, there are no 1955 // alternatives for this expression as whole. 1956 if (ChildAlternatives[i].empty()) 1957 return; 1958 1959 for (auto NewChild : ChildAlternatives[i]) 1960 assert((Child->getPredicateCalls().empty() || 1961 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1962 "Non-empty child predicate clobbered!"); 1963 } 1964 1965 // The end result is an all-pairs construction of the resultant pattern. 1966 std::vector<unsigned> Idxs; 1967 Idxs.resize(ChildAlternatives.size()); 1968 bool NotDone; 1969 do { 1970 // Create the variant and add it to the output list. 1971 std::vector<TreePatternNodePtr> NewChildren; 1972 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 1973 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 1974 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 1975 getOperator(), std::move(NewChildren), getNumTypes()); 1976 1977 // Copy over properties. 1978 R->setName(getName()); 1979 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1980 R->setPredicateCalls(getPredicateCalls()); 1981 R->setTransformFn(getTransformFn()); 1982 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 1983 R->setType(i, getExtType(i)); 1984 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 1985 R->setResultIndex(i, getResultIndex(i)); 1986 1987 // Register alternative. 1988 OutAlternatives.push_back(R); 1989 1990 // Increment indices to the next permutation by incrementing the 1991 // indices from last index backward, e.g., generate the sequence 1992 // [0, 0], [0, 1], [1, 0], [1, 1]. 1993 int IdxsIdx; 1994 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 1995 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 1996 Idxs[IdxsIdx] = 0; 1997 else 1998 break; 1999 } 2000 NotDone = (IdxsIdx >= 0); 2001 } while (NotDone); 2002 2003 return; 2004 } 2005 2006 // Otherwise, we found a reference to a fragment. First, look up its 2007 // TreePattern record. 2008 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2009 2010 // Verify that we are passing the right number of operands. 2011 if (Frag->getNumArgs() != Children.size()) { 2012 TP.error("'" + Op->getName() + "' fragment requires " + 2013 Twine(Frag->getNumArgs()) + " operands!"); 2014 return; 2015 } 2016 2017 TreePredicateFn PredFn(Frag); 2018 unsigned Scope = 0; 2019 if (TreePredicateFn(Frag).usesOperands()) 2020 Scope = TP.getDAGPatterns().allocateScope(); 2021 2022 // Compute the map of formal to actual arguments. 2023 std::map<std::string, TreePatternNodePtr> ArgMap; 2024 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2025 TreePatternNodePtr Child = getChildShared(i); 2026 if (Scope != 0) { 2027 Child = Child->clone(); 2028 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2029 } 2030 ArgMap[Frag->getArgName(i)] = Child; 2031 } 2032 2033 // Loop over all fragment alternatives. 2034 for (auto Alternative : Frag->getTrees()) { 2035 TreePatternNodePtr FragTree = Alternative->clone(); 2036 2037 if (!PredFn.isAlwaysTrue()) 2038 FragTree->addPredicateCall(PredFn, Scope); 2039 2040 // Resolve formal arguments to their actual value. 2041 if (Frag->getNumArgs()) 2042 FragTree->SubstituteFormalArguments(ArgMap); 2043 2044 // Transfer types. Note that the resolved alternative may have fewer 2045 // (but not more) results than the PatFrags node. 2046 FragTree->setName(getName()); 2047 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2048 FragTree->UpdateNodeType(i, getExtType(i), TP); 2049 2050 // Transfer in the old predicates. 2051 for (const TreePredicateCall &Pred : getPredicateCalls()) 2052 FragTree->addPredicateCall(Pred); 2053 2054 // The fragment we inlined could have recursive inlining that is needed. See 2055 // if there are any pattern fragments in it and inline them as needed. 2056 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2057 } 2058 } 2059 2060 /// getImplicitType - Check to see if the specified record has an implicit 2061 /// type which should be applied to it. This will infer the type of register 2062 /// references from the register file information, for example. 2063 /// 2064 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2065 /// the F8RC register class argument in: 2066 /// 2067 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2068 /// 2069 /// When Unnamed is false, return the type of a named DAG operand such as the 2070 /// GPR:$src operand above. 2071 /// 2072 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2073 bool NotRegisters, 2074 bool Unnamed, 2075 TreePattern &TP) { 2076 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2077 2078 // Check to see if this is a register operand. 2079 if (R->isSubClassOf("RegisterOperand")) { 2080 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2081 if (NotRegisters) 2082 return TypeSetByHwMode(); // Unknown. 2083 Record *RegClass = R->getValueAsDef("RegClass"); 2084 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2085 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2086 } 2087 2088 // Check to see if this is a register or a register class. 2089 if (R->isSubClassOf("RegisterClass")) { 2090 assert(ResNo == 0 && "Regclass ref only has one result!"); 2091 // An unnamed register class represents itself as an i32 immediate, for 2092 // example on a COPY_TO_REGCLASS instruction. 2093 if (Unnamed) 2094 return TypeSetByHwMode(MVT::i32); 2095 2096 // In a named operand, the register class provides the possible set of 2097 // types. 2098 if (NotRegisters) 2099 return TypeSetByHwMode(); // Unknown. 2100 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2101 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2102 } 2103 2104 if (R->isSubClassOf("PatFrags")) { 2105 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2106 // Pattern fragment types will be resolved when they are inlined. 2107 return TypeSetByHwMode(); // Unknown. 2108 } 2109 2110 if (R->isSubClassOf("Register")) { 2111 assert(ResNo == 0 && "Registers only produce one result!"); 2112 if (NotRegisters) 2113 return TypeSetByHwMode(); // Unknown. 2114 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2115 return TypeSetByHwMode(T.getRegisterVTs(R)); 2116 } 2117 2118 if (R->isSubClassOf("SubRegIndex")) { 2119 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2120 return TypeSetByHwMode(MVT::i32); 2121 } 2122 2123 if (R->isSubClassOf("ValueType")) { 2124 assert(ResNo == 0 && "This node only has one result!"); 2125 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2126 // 2127 // (sext_inreg GPR:$src, i16) 2128 // ~~~ 2129 if (Unnamed) 2130 return TypeSetByHwMode(MVT::Other); 2131 // With a name, the ValueType simply provides the type of the named 2132 // variable. 2133 // 2134 // (sext_inreg i32:$src, i16) 2135 // ~~~~~~~~ 2136 if (NotRegisters) 2137 return TypeSetByHwMode(); // Unknown. 2138 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2139 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2140 } 2141 2142 if (R->isSubClassOf("CondCode")) { 2143 assert(ResNo == 0 && "This node only has one result!"); 2144 // Using a CondCodeSDNode. 2145 return TypeSetByHwMode(MVT::Other); 2146 } 2147 2148 if (R->isSubClassOf("ComplexPattern")) { 2149 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2150 if (NotRegisters) 2151 return TypeSetByHwMode(); // Unknown. 2152 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2153 } 2154 if (R->isSubClassOf("PointerLikeRegClass")) { 2155 assert(ResNo == 0 && "Regclass can only have one result!"); 2156 TypeSetByHwMode VTS(MVT::iPTR); 2157 TP.getInfer().expandOverloads(VTS); 2158 return VTS; 2159 } 2160 2161 if (R->getName() == "node" || R->getName() == "srcvalue" || 2162 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2163 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2164 // Placeholder. 2165 return TypeSetByHwMode(); // Unknown. 2166 } 2167 2168 if (R->isSubClassOf("Operand")) { 2169 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2170 Record *T = R->getValueAsDef("Type"); 2171 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2172 } 2173 2174 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2175 return TypeSetByHwMode(MVT::Other); 2176 } 2177 2178 2179 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2180 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2181 const CodeGenIntrinsic *TreePatternNode:: 2182 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2183 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2184 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2185 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2186 return nullptr; 2187 2188 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2189 return &CDP.getIntrinsicInfo(IID); 2190 } 2191 2192 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2193 /// return the ComplexPattern information, otherwise return null. 2194 const ComplexPattern * 2195 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2196 Record *Rec; 2197 if (isLeaf()) { 2198 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2199 if (!DI) 2200 return nullptr; 2201 Rec = DI->getDef(); 2202 } else 2203 Rec = getOperator(); 2204 2205 if (!Rec->isSubClassOf("ComplexPattern")) 2206 return nullptr; 2207 return &CGP.getComplexPattern(Rec); 2208 } 2209 2210 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2211 // A ComplexPattern specifically declares how many results it fills in. 2212 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2213 return CP->getNumOperands(); 2214 2215 // If MIOperandInfo is specified, that gives the count. 2216 if (isLeaf()) { 2217 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2218 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2219 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2220 if (MIOps->getNumArgs()) 2221 return MIOps->getNumArgs(); 2222 } 2223 } 2224 2225 // Otherwise there is just one result. 2226 return 1; 2227 } 2228 2229 /// NodeHasProperty - Return true if this node has the specified property. 2230 bool TreePatternNode::NodeHasProperty(SDNP Property, 2231 const CodeGenDAGPatterns &CGP) const { 2232 if (isLeaf()) { 2233 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2234 return CP->hasProperty(Property); 2235 2236 return false; 2237 } 2238 2239 if (Property != SDNPHasChain) { 2240 // The chain proprety is already present on the different intrinsic node 2241 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2242 // on the intrinsic. Anything else is specific to the individual intrinsic. 2243 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2244 return Int->hasProperty(Property); 2245 } 2246 2247 if (!Operator->isSubClassOf("SDPatternOperator")) 2248 return false; 2249 2250 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2251 } 2252 2253 2254 2255 2256 /// TreeHasProperty - Return true if any node in this tree has the specified 2257 /// property. 2258 bool TreePatternNode::TreeHasProperty(SDNP Property, 2259 const CodeGenDAGPatterns &CGP) const { 2260 if (NodeHasProperty(Property, CGP)) 2261 return true; 2262 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2263 if (getChild(i)->TreeHasProperty(Property, CGP)) 2264 return true; 2265 return false; 2266 } 2267 2268 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2269 /// commutative intrinsic. 2270 bool 2271 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2272 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2273 return Int->isCommutative; 2274 return false; 2275 } 2276 2277 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2278 if (!N->isLeaf()) 2279 return N->getOperator()->isSubClassOf(Class); 2280 2281 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2282 if (DI && DI->getDef()->isSubClassOf(Class)) 2283 return true; 2284 2285 return false; 2286 } 2287 2288 static void emitTooManyOperandsError(TreePattern &TP, 2289 StringRef InstName, 2290 unsigned Expected, 2291 unsigned Actual) { 2292 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2293 " operands but expected only " + Twine(Expected) + "!"); 2294 } 2295 2296 static void emitTooFewOperandsError(TreePattern &TP, 2297 StringRef InstName, 2298 unsigned Actual) { 2299 TP.error("Instruction '" + InstName + 2300 "' expects more than the provided " + Twine(Actual) + " operands!"); 2301 } 2302 2303 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2304 /// this node and its children in the tree. This returns true if it makes a 2305 /// change, false otherwise. If a type contradiction is found, flag an error. 2306 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2307 if (TP.hasError()) 2308 return false; 2309 2310 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2311 if (isLeaf()) { 2312 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2313 // If it's a regclass or something else known, include the type. 2314 bool MadeChange = false; 2315 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2316 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2317 NotRegisters, 2318 !hasName(), TP), TP); 2319 return MadeChange; 2320 } 2321 2322 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2323 assert(Types.size() == 1 && "Invalid IntInit"); 2324 2325 // Int inits are always integers. :) 2326 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2327 2328 if (!TP.getInfer().isConcrete(Types[0], false)) 2329 return MadeChange; 2330 2331 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2332 for (auto &P : VVT) { 2333 MVT::SimpleValueType VT = P.second.SimpleTy; 2334 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2335 continue; 2336 unsigned Size = MVT(VT).getSizeInBits(); 2337 // Make sure that the value is representable for this type. 2338 if (Size >= 32) 2339 continue; 2340 // Check that the value doesn't use more bits than we have. It must 2341 // either be a sign- or zero-extended equivalent of the original. 2342 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2343 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2344 SignBitAndAbove == 1) 2345 continue; 2346 2347 TP.error("Integer value '" + Twine(II->getValue()) + 2348 "' is out of range for type '" + getEnumName(VT) + "'!"); 2349 break; 2350 } 2351 return MadeChange; 2352 } 2353 2354 return false; 2355 } 2356 2357 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2358 bool MadeChange = false; 2359 2360 // Apply the result type to the node. 2361 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2362 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2363 2364 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2365 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2366 2367 if (getNumChildren() != NumParamVTs + 1) { 2368 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2369 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2370 return false; 2371 } 2372 2373 // Apply type info to the intrinsic ID. 2374 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2375 2376 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2377 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2378 2379 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2380 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2381 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2382 } 2383 return MadeChange; 2384 } 2385 2386 if (getOperator()->isSubClassOf("SDNode")) { 2387 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2388 2389 // Check that the number of operands is sane. Negative operands -> varargs. 2390 if (NI.getNumOperands() >= 0 && 2391 getNumChildren() != (unsigned)NI.getNumOperands()) { 2392 TP.error(getOperator()->getName() + " node requires exactly " + 2393 Twine(NI.getNumOperands()) + " operands!"); 2394 return false; 2395 } 2396 2397 bool MadeChange = false; 2398 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2399 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2400 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2401 return MadeChange; 2402 } 2403 2404 if (getOperator()->isSubClassOf("Instruction")) { 2405 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2406 CodeGenInstruction &InstInfo = 2407 CDP.getTargetInfo().getInstruction(getOperator()); 2408 2409 bool MadeChange = false; 2410 2411 // Apply the result types to the node, these come from the things in the 2412 // (outs) list of the instruction. 2413 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2414 Inst.getNumResults()); 2415 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2416 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2417 2418 // If the instruction has implicit defs, we apply the first one as a result. 2419 // FIXME: This sucks, it should apply all implicit defs. 2420 if (!InstInfo.ImplicitDefs.empty()) { 2421 unsigned ResNo = NumResultsToAdd; 2422 2423 // FIXME: Generalize to multiple possible types and multiple possible 2424 // ImplicitDefs. 2425 MVT::SimpleValueType VT = 2426 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2427 2428 if (VT != MVT::Other) 2429 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2430 } 2431 2432 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2433 // be the same. 2434 if (getOperator()->getName() == "INSERT_SUBREG") { 2435 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2436 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2437 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2438 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2439 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2440 // variadic. 2441 2442 unsigned NChild = getNumChildren(); 2443 if (NChild < 3) { 2444 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2445 return false; 2446 } 2447 2448 if (NChild % 2 == 0) { 2449 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2450 return false; 2451 } 2452 2453 if (!isOperandClass(getChild(0), "RegisterClass")) { 2454 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2455 return false; 2456 } 2457 2458 for (unsigned I = 1; I < NChild; I += 2) { 2459 TreePatternNode *SubIdxChild = getChild(I + 1); 2460 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2461 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2462 Twine(I + 1) + "!"); 2463 return false; 2464 } 2465 } 2466 } 2467 2468 // If one or more operands with a default value appear at the end of the 2469 // formal operand list for an instruction, we allow them to be overridden 2470 // by optional operands provided in the pattern. 2471 // 2472 // But if an operand B without a default appears at any point after an 2473 // operand A with a default, then we don't allow A to be overridden, 2474 // because there would be no way to specify whether the next operand in 2475 // the pattern was intended to override A or skip it. 2476 unsigned NonOverridableOperands = Inst.getNumOperands(); 2477 while (NonOverridableOperands > 0 && 2478 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1))) 2479 --NonOverridableOperands; 2480 2481 unsigned ChildNo = 0; 2482 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2483 Record *OperandNode = Inst.getOperand(i); 2484 2485 // If the operand has a default value, do we use it? We must use the 2486 // default if we've run out of children of the pattern DAG to consume, 2487 // or if the operand is followed by a non-defaulted one. 2488 if (CDP.operandHasDefault(OperandNode) && 2489 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2490 continue; 2491 2492 // If we have run out of child nodes and there _isn't_ a default 2493 // value we can use for the next operand, give an error. 2494 if (ChildNo >= getNumChildren()) { 2495 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2496 return false; 2497 } 2498 2499 TreePatternNode *Child = getChild(ChildNo++); 2500 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2501 2502 // If the operand has sub-operands, they may be provided by distinct 2503 // child patterns, so attempt to match each sub-operand separately. 2504 if (OperandNode->isSubClassOf("Operand")) { 2505 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2506 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2507 // But don't do that if the whole operand is being provided by 2508 // a single ComplexPattern-related Operand. 2509 2510 if (Child->getNumMIResults(CDP) < NumArgs) { 2511 // Match first sub-operand against the child we already have. 2512 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2513 MadeChange |= 2514 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2515 2516 // And the remaining sub-operands against subsequent children. 2517 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2518 if (ChildNo >= getNumChildren()) { 2519 emitTooFewOperandsError(TP, getOperator()->getName(), 2520 getNumChildren()); 2521 return false; 2522 } 2523 Child = getChild(ChildNo++); 2524 2525 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2526 MadeChange |= 2527 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2528 } 2529 continue; 2530 } 2531 } 2532 } 2533 2534 // If we didn't match by pieces above, attempt to match the whole 2535 // operand now. 2536 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2537 } 2538 2539 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2540 emitTooManyOperandsError(TP, getOperator()->getName(), 2541 ChildNo, getNumChildren()); 2542 return false; 2543 } 2544 2545 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2546 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2547 return MadeChange; 2548 } 2549 2550 if (getOperator()->isSubClassOf("ComplexPattern")) { 2551 bool MadeChange = false; 2552 2553 for (unsigned i = 0; i < getNumChildren(); ++i) 2554 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2555 2556 return MadeChange; 2557 } 2558 2559 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2560 2561 // Node transforms always take one operand. 2562 if (getNumChildren() != 1) { 2563 TP.error("Node transform '" + getOperator()->getName() + 2564 "' requires one operand!"); 2565 return false; 2566 } 2567 2568 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2569 return MadeChange; 2570 } 2571 2572 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2573 /// RHS of a commutative operation, not the on LHS. 2574 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2575 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2576 return true; 2577 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2578 return true; 2579 return false; 2580 } 2581 2582 2583 /// canPatternMatch - If it is impossible for this pattern to match on this 2584 /// target, fill in Reason and return false. Otherwise, return true. This is 2585 /// used as a sanity check for .td files (to prevent people from writing stuff 2586 /// that can never possibly work), and to prevent the pattern permuter from 2587 /// generating stuff that is useless. 2588 bool TreePatternNode::canPatternMatch(std::string &Reason, 2589 const CodeGenDAGPatterns &CDP) { 2590 if (isLeaf()) return true; 2591 2592 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2593 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2594 return false; 2595 2596 // If this is an intrinsic, handle cases that would make it not match. For 2597 // example, if an operand is required to be an immediate. 2598 if (getOperator()->isSubClassOf("Intrinsic")) { 2599 // TODO: 2600 return true; 2601 } 2602 2603 if (getOperator()->isSubClassOf("ComplexPattern")) 2604 return true; 2605 2606 // If this node is a commutative operator, check that the LHS isn't an 2607 // immediate. 2608 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2609 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2610 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2611 // Scan all of the operands of the node and make sure that only the last one 2612 // is a constant node, unless the RHS also is. 2613 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2614 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2615 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2616 if (OnlyOnRHSOfCommutative(getChild(i))) { 2617 Reason="Immediate value must be on the RHS of commutative operators!"; 2618 return false; 2619 } 2620 } 2621 } 2622 2623 return true; 2624 } 2625 2626 //===----------------------------------------------------------------------===// 2627 // TreePattern implementation 2628 // 2629 2630 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2631 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2632 isInputPattern(isInput), HasError(false), 2633 Infer(*this) { 2634 for (Init *I : RawPat->getValues()) 2635 Trees.push_back(ParseTreePattern(I, "")); 2636 } 2637 2638 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2639 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2640 isInputPattern(isInput), HasError(false), 2641 Infer(*this) { 2642 Trees.push_back(ParseTreePattern(Pat, "")); 2643 } 2644 2645 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2646 CodeGenDAGPatterns &cdp) 2647 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2648 Infer(*this) { 2649 Trees.push_back(Pat); 2650 } 2651 2652 void TreePattern::error(const Twine &Msg) { 2653 if (HasError) 2654 return; 2655 dump(); 2656 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2657 HasError = true; 2658 } 2659 2660 void TreePattern::ComputeNamedNodes() { 2661 for (TreePatternNodePtr &Tree : Trees) 2662 ComputeNamedNodes(Tree.get()); 2663 } 2664 2665 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2666 if (!N->getName().empty()) 2667 NamedNodes[N->getName()].push_back(N); 2668 2669 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2670 ComputeNamedNodes(N->getChild(i)); 2671 } 2672 2673 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2674 StringRef OpName) { 2675 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2676 Record *R = DI->getDef(); 2677 2678 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2679 // TreePatternNode of its own. For example: 2680 /// (foo GPR, imm) -> (foo GPR, (imm)) 2681 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2682 return ParseTreePattern( 2683 DagInit::get(DI, nullptr, 2684 std::vector<std::pair<Init*, StringInit*> >()), 2685 OpName); 2686 2687 // Input argument? 2688 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2689 if (R->getName() == "node" && !OpName.empty()) { 2690 if (OpName.empty()) 2691 error("'node' argument requires a name to match with operand list"); 2692 Args.push_back(OpName); 2693 } 2694 2695 Res->setName(OpName); 2696 return Res; 2697 } 2698 2699 // ?:$name or just $name. 2700 if (isa<UnsetInit>(TheInit)) { 2701 if (OpName.empty()) 2702 error("'?' argument requires a name to match with operand list"); 2703 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2704 Args.push_back(OpName); 2705 Res->setName(OpName); 2706 return Res; 2707 } 2708 2709 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2710 if (!OpName.empty()) 2711 error("Constant int or bit argument should not have a name!"); 2712 if (isa<BitInit>(TheInit)) 2713 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2714 return std::make_shared<TreePatternNode>(TheInit, 1); 2715 } 2716 2717 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2718 // Turn this into an IntInit. 2719 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2720 if (!II || !isa<IntInit>(II)) 2721 error("Bits value must be constants!"); 2722 return ParseTreePattern(II, OpName); 2723 } 2724 2725 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2726 if (!Dag) { 2727 TheInit->print(errs()); 2728 error("Pattern has unexpected init kind!"); 2729 } 2730 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2731 if (!OpDef) error("Pattern has unexpected operator type!"); 2732 Record *Operator = OpDef->getDef(); 2733 2734 if (Operator->isSubClassOf("ValueType")) { 2735 // If the operator is a ValueType, then this must be "type cast" of a leaf 2736 // node. 2737 if (Dag->getNumArgs() != 1) 2738 error("Type cast only takes one operand!"); 2739 2740 TreePatternNodePtr New = 2741 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2742 2743 // Apply the type cast. 2744 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2745 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2746 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2747 2748 if (!OpName.empty()) 2749 error("ValueType cast should not have a name!"); 2750 return New; 2751 } 2752 2753 // Verify that this is something that makes sense for an operator. 2754 if (!Operator->isSubClassOf("PatFrags") && 2755 !Operator->isSubClassOf("SDNode") && 2756 !Operator->isSubClassOf("Instruction") && 2757 !Operator->isSubClassOf("SDNodeXForm") && 2758 !Operator->isSubClassOf("Intrinsic") && 2759 !Operator->isSubClassOf("ComplexPattern") && 2760 Operator->getName() != "set" && 2761 Operator->getName() != "implicit") 2762 error("Unrecognized node '" + Operator->getName() + "'!"); 2763 2764 // Check to see if this is something that is illegal in an input pattern. 2765 if (isInputPattern) { 2766 if (Operator->isSubClassOf("Instruction") || 2767 Operator->isSubClassOf("SDNodeXForm")) 2768 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2769 } else { 2770 if (Operator->isSubClassOf("Intrinsic")) 2771 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2772 2773 if (Operator->isSubClassOf("SDNode") && 2774 Operator->getName() != "imm" && 2775 Operator->getName() != "fpimm" && 2776 Operator->getName() != "tglobaltlsaddr" && 2777 Operator->getName() != "tconstpool" && 2778 Operator->getName() != "tjumptable" && 2779 Operator->getName() != "tframeindex" && 2780 Operator->getName() != "texternalsym" && 2781 Operator->getName() != "tblockaddress" && 2782 Operator->getName() != "tglobaladdr" && 2783 Operator->getName() != "bb" && 2784 Operator->getName() != "vt" && 2785 Operator->getName() != "mcsym") 2786 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2787 } 2788 2789 std::vector<TreePatternNodePtr> Children; 2790 2791 // Parse all the operands. 2792 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2793 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2794 2795 // Get the actual number of results before Operator is converted to an intrinsic 2796 // node (which is hard-coded to have either zero or one result). 2797 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2798 2799 // If the operator is an intrinsic, then this is just syntactic sugar for 2800 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2801 // convert the intrinsic name to a number. 2802 if (Operator->isSubClassOf("Intrinsic")) { 2803 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2804 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2805 2806 // If this intrinsic returns void, it must have side-effects and thus a 2807 // chain. 2808 if (Int.IS.RetVTs.empty()) 2809 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2810 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2811 // Has side-effects, requires chain. 2812 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2813 else // Otherwise, no chain. 2814 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2815 2816 Children.insert(Children.begin(), 2817 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2818 } 2819 2820 if (Operator->isSubClassOf("ComplexPattern")) { 2821 for (unsigned i = 0; i < Children.size(); ++i) { 2822 TreePatternNodePtr Child = Children[i]; 2823 2824 if (Child->getName().empty()) 2825 error("All arguments to a ComplexPattern must be named"); 2826 2827 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2828 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2829 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2830 auto OperandId = std::make_pair(Operator, i); 2831 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2832 if (PrevOp != ComplexPatternOperands.end()) { 2833 if (PrevOp->getValue() != OperandId) 2834 error("All ComplexPattern operands must appear consistently: " 2835 "in the same order in just one ComplexPattern instance."); 2836 } else 2837 ComplexPatternOperands[Child->getName()] = OperandId; 2838 } 2839 } 2840 2841 TreePatternNodePtr Result = 2842 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2843 NumResults); 2844 Result->setName(OpName); 2845 2846 if (Dag->getName()) { 2847 assert(Result->getName().empty()); 2848 Result->setName(Dag->getNameStr()); 2849 } 2850 return Result; 2851 } 2852 2853 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2854 /// will never match in favor of something obvious that will. This is here 2855 /// strictly as a convenience to target authors because it allows them to write 2856 /// more type generic things and have useless type casts fold away. 2857 /// 2858 /// This returns true if any change is made. 2859 static bool SimplifyTree(TreePatternNodePtr &N) { 2860 if (N->isLeaf()) 2861 return false; 2862 2863 // If we have a bitconvert with a resolved type and if the source and 2864 // destination types are the same, then the bitconvert is useless, remove it. 2865 if (N->getOperator()->getName() == "bitconvert" && 2866 N->getExtType(0).isValueTypeByHwMode(false) && 2867 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2868 N->getName().empty()) { 2869 N = N->getChildShared(0); 2870 SimplifyTree(N); 2871 return true; 2872 } 2873 2874 // Walk all children. 2875 bool MadeChange = false; 2876 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2877 TreePatternNodePtr Child = N->getChildShared(i); 2878 MadeChange |= SimplifyTree(Child); 2879 N->setChild(i, std::move(Child)); 2880 } 2881 return MadeChange; 2882 } 2883 2884 2885 2886 /// InferAllTypes - Infer/propagate as many types throughout the expression 2887 /// patterns as possible. Return true if all types are inferred, false 2888 /// otherwise. Flags an error if a type contradiction is found. 2889 bool TreePattern:: 2890 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2891 if (NamedNodes.empty()) 2892 ComputeNamedNodes(); 2893 2894 bool MadeChange = true; 2895 while (MadeChange) { 2896 MadeChange = false; 2897 for (TreePatternNodePtr &Tree : Trees) { 2898 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2899 MadeChange |= SimplifyTree(Tree); 2900 } 2901 2902 // If there are constraints on our named nodes, apply them. 2903 for (auto &Entry : NamedNodes) { 2904 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2905 2906 // If we have input named node types, propagate their types to the named 2907 // values here. 2908 if (InNamedTypes) { 2909 if (!InNamedTypes->count(Entry.getKey())) { 2910 error("Node '" + std::string(Entry.getKey()) + 2911 "' in output pattern but not input pattern"); 2912 return true; 2913 } 2914 2915 const SmallVectorImpl<TreePatternNode*> &InNodes = 2916 InNamedTypes->find(Entry.getKey())->second; 2917 2918 // The input types should be fully resolved by now. 2919 for (TreePatternNode *Node : Nodes) { 2920 // If this node is a register class, and it is the root of the pattern 2921 // then we're mapping something onto an input register. We allow 2922 // changing the type of the input register in this case. This allows 2923 // us to match things like: 2924 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2925 if (Node == Trees[0].get() && Node->isLeaf()) { 2926 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2927 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2928 DI->getDef()->isSubClassOf("RegisterOperand"))) 2929 continue; 2930 } 2931 2932 assert(Node->getNumTypes() == 1 && 2933 InNodes[0]->getNumTypes() == 1 && 2934 "FIXME: cannot name multiple result nodes yet"); 2935 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2936 *this); 2937 } 2938 } 2939 2940 // If there are multiple nodes with the same name, they must all have the 2941 // same type. 2942 if (Entry.second.size() > 1) { 2943 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2944 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2945 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2946 "FIXME: cannot name multiple result nodes yet"); 2947 2948 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2949 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2950 } 2951 } 2952 } 2953 } 2954 2955 bool HasUnresolvedTypes = false; 2956 for (const TreePatternNodePtr &Tree : Trees) 2957 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2958 return !HasUnresolvedTypes; 2959 } 2960 2961 void TreePattern::print(raw_ostream &OS) const { 2962 OS << getRecord()->getName(); 2963 if (!Args.empty()) { 2964 OS << "(" << Args[0]; 2965 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2966 OS << ", " << Args[i]; 2967 OS << ")"; 2968 } 2969 OS << ": "; 2970 2971 if (Trees.size() > 1) 2972 OS << "[\n"; 2973 for (const TreePatternNodePtr &Tree : Trees) { 2974 OS << "\t"; 2975 Tree->print(OS); 2976 OS << "\n"; 2977 } 2978 2979 if (Trees.size() > 1) 2980 OS << "]\n"; 2981 } 2982 2983 void TreePattern::dump() const { print(errs()); } 2984 2985 //===----------------------------------------------------------------------===// 2986 // CodeGenDAGPatterns implementation 2987 // 2988 2989 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 2990 PatternRewriterFn PatternRewriter) 2991 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 2992 PatternRewriter(PatternRewriter) { 2993 2994 Intrinsics = CodeGenIntrinsicTable(Records, false); 2995 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2996 ParseNodeInfo(); 2997 ParseNodeTransforms(); 2998 ParseComplexPatterns(); 2999 ParsePatternFragments(); 3000 ParseDefaultOperands(); 3001 ParseInstructions(); 3002 ParsePatternFragments(/*OutFrags*/true); 3003 ParsePatterns(); 3004 3005 // Break patterns with parameterized types into a series of patterns, 3006 // where each one has a fixed type and is predicated on the conditions 3007 // of the associated HW mode. 3008 ExpandHwModeBasedTypes(); 3009 3010 // Generate variants. For example, commutative patterns can match 3011 // multiple ways. Add them to PatternsToMatch as well. 3012 GenerateVariants(); 3013 3014 // Infer instruction flags. For example, we can detect loads, 3015 // stores, and side effects in many cases by examining an 3016 // instruction's pattern. 3017 InferInstructionFlags(); 3018 3019 // Verify that instruction flags match the patterns. 3020 VerifyInstructionFlags(); 3021 } 3022 3023 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 3024 Record *N = Records.getDef(Name); 3025 if (!N || !N->isSubClassOf("SDNode")) 3026 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3027 3028 return N; 3029 } 3030 3031 // Parse all of the SDNode definitions for the target, populating SDNodes. 3032 void CodeGenDAGPatterns::ParseNodeInfo() { 3033 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3034 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3035 3036 while (!Nodes.empty()) { 3037 Record *R = Nodes.back(); 3038 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3039 Nodes.pop_back(); 3040 } 3041 3042 // Get the builtin intrinsic nodes. 3043 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3044 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3045 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3046 } 3047 3048 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3049 /// map, and emit them to the file as functions. 3050 void CodeGenDAGPatterns::ParseNodeTransforms() { 3051 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3052 while (!Xforms.empty()) { 3053 Record *XFormNode = Xforms.back(); 3054 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3055 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3056 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 3057 3058 Xforms.pop_back(); 3059 } 3060 } 3061 3062 void CodeGenDAGPatterns::ParseComplexPatterns() { 3063 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3064 while (!AMs.empty()) { 3065 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3066 AMs.pop_back(); 3067 } 3068 } 3069 3070 3071 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3072 /// file, building up the PatternFragments map. After we've collected them all, 3073 /// inline fragments together as necessary, so that there are no references left 3074 /// inside a pattern fragment to a pattern fragment. 3075 /// 3076 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3077 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3078 3079 // First step, parse all of the fragments. 3080 for (Record *Frag : Fragments) { 3081 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3082 continue; 3083 3084 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3085 TreePattern *P = 3086 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 3087 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3088 *this)).get(); 3089 3090 // Validate the argument list, converting it to set, to discard duplicates. 3091 std::vector<std::string> &Args = P->getArgList(); 3092 // Copy the args so we can take StringRefs to them. 3093 auto ArgsCopy = Args; 3094 SmallDenseSet<StringRef, 4> OperandsSet; 3095 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3096 3097 if (OperandsSet.count("")) 3098 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3099 3100 // Parse the operands list. 3101 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3102 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3103 // Special cases: ops == outs == ins. Different names are used to 3104 // improve readability. 3105 if (!OpsOp || 3106 (OpsOp->getDef()->getName() != "ops" && 3107 OpsOp->getDef()->getName() != "outs" && 3108 OpsOp->getDef()->getName() != "ins")) 3109 P->error("Operands list should start with '(ops ... '!"); 3110 3111 // Copy over the arguments. 3112 Args.clear(); 3113 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3114 if (!isa<DefInit>(OpsList->getArg(j)) || 3115 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3116 P->error("Operands list should all be 'node' values."); 3117 if (!OpsList->getArgName(j)) 3118 P->error("Operands list should have names for each operand!"); 3119 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3120 if (!OperandsSet.count(ArgNameStr)) 3121 P->error("'" + ArgNameStr + 3122 "' does not occur in pattern or was multiply specified!"); 3123 OperandsSet.erase(ArgNameStr); 3124 Args.push_back(ArgNameStr); 3125 } 3126 3127 if (!OperandsSet.empty()) 3128 P->error("Operands list does not contain an entry for operand '" + 3129 *OperandsSet.begin() + "'!"); 3130 3131 // If there is a node transformation corresponding to this, keep track of 3132 // it. 3133 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3134 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3135 for (auto T : P->getTrees()) 3136 T->setTransformFn(Transform); 3137 } 3138 3139 // Now that we've parsed all of the tree fragments, do a closure on them so 3140 // that there are not references to PatFrags left inside of them. 3141 for (Record *Frag : Fragments) { 3142 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3143 continue; 3144 3145 TreePattern &ThePat = *PatternFragments[Frag]; 3146 ThePat.InlinePatternFragments(); 3147 3148 // Infer as many types as possible. Don't worry about it if we don't infer 3149 // all of them, some may depend on the inputs of the pattern. Also, don't 3150 // validate type sets; validation may cause spurious failures e.g. if a 3151 // fragment needs floating-point types but the current target does not have 3152 // any (this is only an error if that fragment is ever used!). 3153 { 3154 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3155 ThePat.InferAllTypes(); 3156 ThePat.resetError(); 3157 } 3158 3159 // If debugging, print out the pattern fragment result. 3160 LLVM_DEBUG(ThePat.dump()); 3161 } 3162 } 3163 3164 void CodeGenDAGPatterns::ParseDefaultOperands() { 3165 std::vector<Record*> DefaultOps; 3166 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3167 3168 // Find some SDNode. 3169 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3170 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3171 3172 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3173 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3174 3175 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3176 // SomeSDnode so that we can parse this. 3177 std::vector<std::pair<Init*, StringInit*> > Ops; 3178 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3179 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3180 DefaultInfo->getArgName(op))); 3181 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3182 3183 // Create a TreePattern to parse this. 3184 TreePattern P(DefaultOps[i], DI, false, *this); 3185 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3186 3187 // Copy the operands over into a DAGDefaultOperand. 3188 DAGDefaultOperand DefaultOpInfo; 3189 3190 const TreePatternNodePtr &T = P.getTree(0); 3191 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3192 TreePatternNodePtr TPN = T->getChildShared(op); 3193 while (TPN->ApplyTypeConstraints(P, false)) 3194 /* Resolve all types */; 3195 3196 if (TPN->ContainsUnresolvedType(P)) { 3197 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3198 DefaultOps[i]->getName() + 3199 "' doesn't have a concrete type!"); 3200 } 3201 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3202 } 3203 3204 // Insert it into the DefaultOperands map so we can find it later. 3205 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3206 } 3207 } 3208 3209 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3210 /// instruction input. Return true if this is a real use. 3211 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3212 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3213 // No name -> not interesting. 3214 if (Pat->getName().empty()) { 3215 if (Pat->isLeaf()) { 3216 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3217 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3218 DI->getDef()->isSubClassOf("RegisterOperand"))) 3219 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3220 } 3221 return false; 3222 } 3223 3224 Record *Rec; 3225 if (Pat->isLeaf()) { 3226 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3227 if (!DI) 3228 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3229 Rec = DI->getDef(); 3230 } else { 3231 Rec = Pat->getOperator(); 3232 } 3233 3234 // SRCVALUE nodes are ignored. 3235 if (Rec->getName() == "srcvalue") 3236 return false; 3237 3238 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3239 if (!Slot) { 3240 Slot = Pat; 3241 return true; 3242 } 3243 Record *SlotRec; 3244 if (Slot->isLeaf()) { 3245 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3246 } else { 3247 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3248 SlotRec = Slot->getOperator(); 3249 } 3250 3251 // Ensure that the inputs agree if we've already seen this input. 3252 if (Rec != SlotRec) 3253 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3254 // Ensure that the types can agree as well. 3255 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3256 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3257 if (Slot->getExtTypes() != Pat->getExtTypes()) 3258 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3259 return true; 3260 } 3261 3262 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3263 /// part of "I", the instruction), computing the set of inputs and outputs of 3264 /// the pattern. Report errors if we see anything naughty. 3265 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3266 TreePattern &I, TreePatternNodePtr Pat, 3267 std::map<std::string, TreePatternNodePtr> &InstInputs, 3268 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3269 &InstResults, 3270 std::vector<Record *> &InstImpResults) { 3271 3272 // The instruction pattern still has unresolved fragments. For *named* 3273 // nodes we must resolve those here. This may not result in multiple 3274 // alternatives. 3275 if (!Pat->getName().empty()) { 3276 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3277 SrcPattern.InlinePatternFragments(); 3278 SrcPattern.InferAllTypes(); 3279 Pat = SrcPattern.getOnlyTree(); 3280 } 3281 3282 if (Pat->isLeaf()) { 3283 bool isUse = HandleUse(I, Pat, InstInputs); 3284 if (!isUse && Pat->getTransformFn()) 3285 I.error("Cannot specify a transform function for a non-input value!"); 3286 return; 3287 } 3288 3289 if (Pat->getOperator()->getName() == "implicit") { 3290 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3291 TreePatternNode *Dest = Pat->getChild(i); 3292 if (!Dest->isLeaf()) 3293 I.error("implicitly defined value should be a register!"); 3294 3295 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3296 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3297 I.error("implicitly defined value should be a register!"); 3298 InstImpResults.push_back(Val->getDef()); 3299 } 3300 return; 3301 } 3302 3303 if (Pat->getOperator()->getName() != "set") { 3304 // If this is not a set, verify that the children nodes are not void typed, 3305 // and recurse. 3306 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3307 if (Pat->getChild(i)->getNumTypes() == 0) 3308 I.error("Cannot have void nodes inside of patterns!"); 3309 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3310 InstResults, InstImpResults); 3311 } 3312 3313 // If this is a non-leaf node with no children, treat it basically as if 3314 // it were a leaf. This handles nodes like (imm). 3315 bool isUse = HandleUse(I, Pat, InstInputs); 3316 3317 if (!isUse && Pat->getTransformFn()) 3318 I.error("Cannot specify a transform function for a non-input value!"); 3319 return; 3320 } 3321 3322 // Otherwise, this is a set, validate and collect instruction results. 3323 if (Pat->getNumChildren() == 0) 3324 I.error("set requires operands!"); 3325 3326 if (Pat->getTransformFn()) 3327 I.error("Cannot specify a transform function on a set node!"); 3328 3329 // Check the set destinations. 3330 unsigned NumDests = Pat->getNumChildren()-1; 3331 for (unsigned i = 0; i != NumDests; ++i) { 3332 TreePatternNodePtr Dest = Pat->getChildShared(i); 3333 // For set destinations we also must resolve fragments here. 3334 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3335 DestPattern.InlinePatternFragments(); 3336 DestPattern.InferAllTypes(); 3337 Dest = DestPattern.getOnlyTree(); 3338 3339 if (!Dest->isLeaf()) 3340 I.error("set destination should be a register!"); 3341 3342 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3343 if (!Val) { 3344 I.error("set destination should be a register!"); 3345 continue; 3346 } 3347 3348 if (Val->getDef()->isSubClassOf("RegisterClass") || 3349 Val->getDef()->isSubClassOf("ValueType") || 3350 Val->getDef()->isSubClassOf("RegisterOperand") || 3351 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3352 if (Dest->getName().empty()) 3353 I.error("set destination must have a name!"); 3354 if (InstResults.count(Dest->getName())) 3355 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3356 InstResults[Dest->getName()] = Dest; 3357 } else if (Val->getDef()->isSubClassOf("Register")) { 3358 InstImpResults.push_back(Val->getDef()); 3359 } else { 3360 I.error("set destination should be a register!"); 3361 } 3362 } 3363 3364 // Verify and collect info from the computation. 3365 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3366 InstResults, InstImpResults); 3367 } 3368 3369 //===----------------------------------------------------------------------===// 3370 // Instruction Analysis 3371 //===----------------------------------------------------------------------===// 3372 3373 class InstAnalyzer { 3374 const CodeGenDAGPatterns &CDP; 3375 public: 3376 bool hasSideEffects; 3377 bool mayStore; 3378 bool mayLoad; 3379 bool isBitcast; 3380 bool isVariadic; 3381 bool hasChain; 3382 3383 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3384 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3385 isBitcast(false), isVariadic(false), hasChain(false) {} 3386 3387 void Analyze(const PatternToMatch &Pat) { 3388 const TreePatternNode *N = Pat.getSrcPattern(); 3389 AnalyzeNode(N); 3390 // These properties are detected only on the root node. 3391 isBitcast = IsNodeBitcast(N); 3392 } 3393 3394 private: 3395 bool IsNodeBitcast(const TreePatternNode *N) const { 3396 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3397 return false; 3398 3399 if (N->isLeaf()) 3400 return false; 3401 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3402 return false; 3403 3404 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3405 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3406 return false; 3407 return OpInfo.getEnumName() == "ISD::BITCAST"; 3408 } 3409 3410 public: 3411 void AnalyzeNode(const TreePatternNode *N) { 3412 if (N->isLeaf()) { 3413 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3414 Record *LeafRec = DI->getDef(); 3415 // Handle ComplexPattern leaves. 3416 if (LeafRec->isSubClassOf("ComplexPattern")) { 3417 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3418 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3419 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3420 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3421 } 3422 } 3423 return; 3424 } 3425 3426 // Analyze children. 3427 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3428 AnalyzeNode(N->getChild(i)); 3429 3430 // Notice properties of the node. 3431 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3432 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3433 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3434 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3435 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3436 3437 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3438 // If this is an intrinsic, analyze it. 3439 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3440 mayLoad = true;// These may load memory. 3441 3442 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3443 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3444 3445 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3446 IntInfo->hasSideEffects) 3447 // ReadWriteMem intrinsics can have other strange effects. 3448 hasSideEffects = true; 3449 } 3450 } 3451 3452 }; 3453 3454 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3455 const InstAnalyzer &PatInfo, 3456 Record *PatDef) { 3457 bool Error = false; 3458 3459 // Remember where InstInfo got its flags. 3460 if (InstInfo.hasUndefFlags()) 3461 InstInfo.InferredFrom = PatDef; 3462 3463 // Check explicitly set flags for consistency. 3464 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3465 !InstInfo.hasSideEffects_Unset) { 3466 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3467 // the pattern has no side effects. That could be useful for div/rem 3468 // instructions that may trap. 3469 if (!InstInfo.hasSideEffects) { 3470 Error = true; 3471 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3472 Twine(InstInfo.hasSideEffects)); 3473 } 3474 } 3475 3476 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3477 Error = true; 3478 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3479 Twine(InstInfo.mayStore)); 3480 } 3481 3482 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3483 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3484 // Some targets translate immediates to loads. 3485 if (!InstInfo.mayLoad) { 3486 Error = true; 3487 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3488 Twine(InstInfo.mayLoad)); 3489 } 3490 } 3491 3492 // Transfer inferred flags. 3493 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3494 InstInfo.mayStore |= PatInfo.mayStore; 3495 InstInfo.mayLoad |= PatInfo.mayLoad; 3496 3497 // These flags are silently added without any verification. 3498 // FIXME: To match historical behavior of TableGen, for now add those flags 3499 // only when we're inferring from the primary instruction pattern. 3500 if (PatDef->isSubClassOf("Instruction")) { 3501 InstInfo.isBitcast |= PatInfo.isBitcast; 3502 InstInfo.hasChain |= PatInfo.hasChain; 3503 InstInfo.hasChain_Inferred = true; 3504 } 3505 3506 // Don't infer isVariadic. This flag means something different on SDNodes and 3507 // instructions. For example, a CALL SDNode is variadic because it has the 3508 // call arguments as operands, but a CALL instruction is not variadic - it 3509 // has argument registers as implicit, not explicit uses. 3510 3511 return Error; 3512 } 3513 3514 /// hasNullFragReference - Return true if the DAG has any reference to the 3515 /// null_frag operator. 3516 static bool hasNullFragReference(DagInit *DI) { 3517 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3518 if (!OpDef) return false; 3519 Record *Operator = OpDef->getDef(); 3520 3521 // If this is the null fragment, return true. 3522 if (Operator->getName() == "null_frag") return true; 3523 // If any of the arguments reference the null fragment, return true. 3524 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3525 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3526 if (Arg && hasNullFragReference(Arg)) 3527 return true; 3528 } 3529 3530 return false; 3531 } 3532 3533 /// hasNullFragReference - Return true if any DAG in the list references 3534 /// the null_frag operator. 3535 static bool hasNullFragReference(ListInit *LI) { 3536 for (Init *I : LI->getValues()) { 3537 DagInit *DI = dyn_cast<DagInit>(I); 3538 assert(DI && "non-dag in an instruction Pattern list?!"); 3539 if (hasNullFragReference(DI)) 3540 return true; 3541 } 3542 return false; 3543 } 3544 3545 /// Get all the instructions in a tree. 3546 static void 3547 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3548 if (Tree->isLeaf()) 3549 return; 3550 if (Tree->getOperator()->isSubClassOf("Instruction")) 3551 Instrs.push_back(Tree->getOperator()); 3552 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3553 getInstructionsInTree(Tree->getChild(i), Instrs); 3554 } 3555 3556 /// Check the class of a pattern leaf node against the instruction operand it 3557 /// represents. 3558 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3559 Record *Leaf) { 3560 if (OI.Rec == Leaf) 3561 return true; 3562 3563 // Allow direct value types to be used in instruction set patterns. 3564 // The type will be checked later. 3565 if (Leaf->isSubClassOf("ValueType")) 3566 return true; 3567 3568 // Patterns can also be ComplexPattern instances. 3569 if (Leaf->isSubClassOf("ComplexPattern")) 3570 return true; 3571 3572 return false; 3573 } 3574 3575 void CodeGenDAGPatterns::parseInstructionPattern( 3576 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3577 3578 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3579 3580 // Parse the instruction. 3581 TreePattern I(CGI.TheDef, Pat, true, *this); 3582 3583 // InstInputs - Keep track of all of the inputs of the instruction, along 3584 // with the record they are declared as. 3585 std::map<std::string, TreePatternNodePtr> InstInputs; 3586 3587 // InstResults - Keep track of all the virtual registers that are 'set' 3588 // in the instruction, including what reg class they are. 3589 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3590 InstResults; 3591 3592 std::vector<Record*> InstImpResults; 3593 3594 // Verify that the top-level forms in the instruction are of void type, and 3595 // fill in the InstResults map. 3596 SmallString<32> TypesString; 3597 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3598 TypesString.clear(); 3599 TreePatternNodePtr Pat = I.getTree(j); 3600 if (Pat->getNumTypes() != 0) { 3601 raw_svector_ostream OS(TypesString); 3602 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3603 if (k > 0) 3604 OS << ", "; 3605 Pat->getExtType(k).writeToStream(OS); 3606 } 3607 I.error("Top-level forms in instruction pattern should have" 3608 " void types, has types " + 3609 OS.str()); 3610 } 3611 3612 // Find inputs and outputs, and verify the structure of the uses/defs. 3613 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3614 InstImpResults); 3615 } 3616 3617 // Now that we have inputs and outputs of the pattern, inspect the operands 3618 // list for the instruction. This determines the order that operands are 3619 // added to the machine instruction the node corresponds to. 3620 unsigned NumResults = InstResults.size(); 3621 3622 // Parse the operands list from the (ops) list, validating it. 3623 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3624 3625 // Check that all of the results occur first in the list. 3626 std::vector<Record*> Results; 3627 std::vector<unsigned> ResultIndices; 3628 SmallVector<TreePatternNodePtr, 2> ResNodes; 3629 for (unsigned i = 0; i != NumResults; ++i) { 3630 if (i == CGI.Operands.size()) { 3631 const std::string &OpName = 3632 std::find_if(InstResults.begin(), InstResults.end(), 3633 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3634 return P.second; 3635 }) 3636 ->first; 3637 3638 I.error("'" + OpName + "' set but does not appear in operand list!"); 3639 } 3640 3641 const std::string &OpName = CGI.Operands[i].Name; 3642 3643 // Check that it exists in InstResults. 3644 auto InstResultIter = InstResults.find(OpName); 3645 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3646 I.error("Operand $" + OpName + " does not exist in operand list!"); 3647 3648 TreePatternNodePtr RNode = InstResultIter->second; 3649 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3650 ResNodes.push_back(std::move(RNode)); 3651 if (!R) 3652 I.error("Operand $" + OpName + " should be a set destination: all " 3653 "outputs must occur before inputs in operand list!"); 3654 3655 if (!checkOperandClass(CGI.Operands[i], R)) 3656 I.error("Operand $" + OpName + " class mismatch!"); 3657 3658 // Remember the return type. 3659 Results.push_back(CGI.Operands[i].Rec); 3660 3661 // Remember the result index. 3662 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3663 3664 // Okay, this one checks out. 3665 InstResultIter->second = nullptr; 3666 } 3667 3668 // Loop over the inputs next. 3669 std::vector<TreePatternNodePtr> ResultNodeOperands; 3670 std::vector<Record*> Operands; 3671 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3672 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3673 const std::string &OpName = Op.Name; 3674 if (OpName.empty()) 3675 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3676 3677 if (!InstInputs.count(OpName)) { 3678 // If this is an operand with a DefaultOps set filled in, we can ignore 3679 // this. When we codegen it, we will do so as always executed. 3680 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3681 // Does it have a non-empty DefaultOps field? If so, ignore this 3682 // operand. 3683 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3684 continue; 3685 } 3686 I.error("Operand $" + OpName + 3687 " does not appear in the instruction pattern"); 3688 } 3689 TreePatternNodePtr InVal = InstInputs[OpName]; 3690 InstInputs.erase(OpName); // It occurred, remove from map. 3691 3692 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3693 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3694 if (!checkOperandClass(Op, InRec)) 3695 I.error("Operand $" + OpName + "'s register class disagrees" 3696 " between the operand and pattern"); 3697 } 3698 Operands.push_back(Op.Rec); 3699 3700 // Construct the result for the dest-pattern operand list. 3701 TreePatternNodePtr OpNode = InVal->clone(); 3702 3703 // No predicate is useful on the result. 3704 OpNode->clearPredicateCalls(); 3705 3706 // Promote the xform function to be an explicit node if set. 3707 if (Record *Xform = OpNode->getTransformFn()) { 3708 OpNode->setTransformFn(nullptr); 3709 std::vector<TreePatternNodePtr> Children; 3710 Children.push_back(OpNode); 3711 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3712 OpNode->getNumTypes()); 3713 } 3714 3715 ResultNodeOperands.push_back(std::move(OpNode)); 3716 } 3717 3718 if (!InstInputs.empty()) 3719 I.error("Input operand $" + InstInputs.begin()->first + 3720 " occurs in pattern but not in operands list!"); 3721 3722 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3723 I.getRecord(), std::move(ResultNodeOperands), 3724 GetNumNodeResults(I.getRecord(), *this)); 3725 // Copy fully inferred output node types to instruction result pattern. 3726 for (unsigned i = 0; i != NumResults; ++i) { 3727 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3728 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3729 ResultPattern->setResultIndex(i, ResultIndices[i]); 3730 } 3731 3732 // FIXME: Assume only the first tree is the pattern. The others are clobber 3733 // nodes. 3734 TreePatternNodePtr Pattern = I.getTree(0); 3735 TreePatternNodePtr SrcPattern; 3736 if (Pattern->getOperator()->getName() == "set") { 3737 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3738 } else{ 3739 // Not a set (store or something?) 3740 SrcPattern = Pattern; 3741 } 3742 3743 // Create and insert the instruction. 3744 // FIXME: InstImpResults should not be part of DAGInstruction. 3745 Record *R = I.getRecord(); 3746 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3747 std::forward_as_tuple(Results, Operands, InstImpResults, 3748 SrcPattern, ResultPattern)); 3749 3750 LLVM_DEBUG(I.dump()); 3751 } 3752 3753 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3754 /// any fragments involved. This populates the Instructions list with fully 3755 /// resolved instructions. 3756 void CodeGenDAGPatterns::ParseInstructions() { 3757 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3758 3759 for (Record *Instr : Instrs) { 3760 ListInit *LI = nullptr; 3761 3762 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3763 LI = Instr->getValueAsListInit("Pattern"); 3764 3765 // If there is no pattern, only collect minimal information about the 3766 // instruction for its operand list. We have to assume that there is one 3767 // result, as we have no detailed info. A pattern which references the 3768 // null_frag operator is as-if no pattern were specified. Normally this 3769 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3770 // null_frag. 3771 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3772 std::vector<Record*> Results; 3773 std::vector<Record*> Operands; 3774 3775 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3776 3777 if (InstInfo.Operands.size() != 0) { 3778 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3779 Results.push_back(InstInfo.Operands[j].Rec); 3780 3781 // The rest are inputs. 3782 for (unsigned j = InstInfo.Operands.NumDefs, 3783 e = InstInfo.Operands.size(); j < e; ++j) 3784 Operands.push_back(InstInfo.Operands[j].Rec); 3785 } 3786 3787 // Create and insert the instruction. 3788 std::vector<Record*> ImpResults; 3789 Instructions.insert(std::make_pair(Instr, 3790 DAGInstruction(Results, Operands, ImpResults))); 3791 continue; // no pattern. 3792 } 3793 3794 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3795 parseInstructionPattern(CGI, LI, Instructions); 3796 } 3797 3798 // If we can, convert the instructions to be patterns that are matched! 3799 for (auto &Entry : Instructions) { 3800 Record *Instr = Entry.first; 3801 DAGInstruction &TheInst = Entry.second; 3802 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3803 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3804 3805 if (SrcPattern && ResultPattern) { 3806 TreePattern Pattern(Instr, SrcPattern, true, *this); 3807 TreePattern Result(Instr, ResultPattern, false, *this); 3808 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3809 } 3810 } 3811 } 3812 3813 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3814 3815 static void FindNames(TreePatternNode *P, 3816 std::map<std::string, NameRecord> &Names, 3817 TreePattern *PatternTop) { 3818 if (!P->getName().empty()) { 3819 NameRecord &Rec = Names[P->getName()]; 3820 // If this is the first instance of the name, remember the node. 3821 if (Rec.second++ == 0) 3822 Rec.first = P; 3823 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3824 PatternTop->error("repetition of value: $" + P->getName() + 3825 " where different uses have different types!"); 3826 } 3827 3828 if (!P->isLeaf()) { 3829 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3830 FindNames(P->getChild(i), Names, PatternTop); 3831 } 3832 } 3833 3834 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3835 std::vector<Predicate> Preds; 3836 for (Init *I : L->getValues()) { 3837 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3838 Preds.push_back(Pred->getDef()); 3839 else 3840 llvm_unreachable("Non-def on the list"); 3841 } 3842 3843 // Sort so that different orders get canonicalized to the same string. 3844 llvm::sort(Preds); 3845 return Preds; 3846 } 3847 3848 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3849 PatternToMatch &&PTM) { 3850 // Do some sanity checking on the pattern we're about to match. 3851 std::string Reason; 3852 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3853 PrintWarning(Pattern->getRecord()->getLoc(), 3854 Twine("Pattern can never match: ") + Reason); 3855 return; 3856 } 3857 3858 // If the source pattern's root is a complex pattern, that complex pattern 3859 // must specify the nodes it can potentially match. 3860 if (const ComplexPattern *CP = 3861 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3862 if (CP->getRootNodes().empty()) 3863 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3864 " could match"); 3865 3866 3867 // Find all of the named values in the input and output, ensure they have the 3868 // same type. 3869 std::map<std::string, NameRecord> SrcNames, DstNames; 3870 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3871 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3872 3873 // Scan all of the named values in the destination pattern, rejecting them if 3874 // they don't exist in the input pattern. 3875 for (const auto &Entry : DstNames) { 3876 if (SrcNames[Entry.first].first == nullptr) 3877 Pattern->error("Pattern has input without matching name in output: $" + 3878 Entry.first); 3879 } 3880 3881 // Scan all of the named values in the source pattern, rejecting them if the 3882 // name isn't used in the dest, and isn't used to tie two values together. 3883 for (const auto &Entry : SrcNames) 3884 if (DstNames[Entry.first].first == nullptr && 3885 SrcNames[Entry.first].second == 1) 3886 Pattern->error("Pattern has dead named input: $" + Entry.first); 3887 3888 PatternsToMatch.push_back(PTM); 3889 } 3890 3891 void CodeGenDAGPatterns::InferInstructionFlags() { 3892 ArrayRef<const CodeGenInstruction*> Instructions = 3893 Target.getInstructionsByEnumValue(); 3894 3895 unsigned Errors = 0; 3896 3897 // Try to infer flags from all patterns in PatternToMatch. These include 3898 // both the primary instruction patterns (which always come first) and 3899 // patterns defined outside the instruction. 3900 for (const PatternToMatch &PTM : ptms()) { 3901 // We can only infer from single-instruction patterns, otherwise we won't 3902 // know which instruction should get the flags. 3903 SmallVector<Record*, 8> PatInstrs; 3904 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3905 if (PatInstrs.size() != 1) 3906 continue; 3907 3908 // Get the single instruction. 3909 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3910 3911 // Only infer properties from the first pattern. We'll verify the others. 3912 if (InstInfo.InferredFrom) 3913 continue; 3914 3915 InstAnalyzer PatInfo(*this); 3916 PatInfo.Analyze(PTM); 3917 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3918 } 3919 3920 if (Errors) 3921 PrintFatalError("pattern conflicts"); 3922 3923 // If requested by the target, guess any undefined properties. 3924 if (Target.guessInstructionProperties()) { 3925 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3926 CodeGenInstruction *InstInfo = 3927 const_cast<CodeGenInstruction *>(Instructions[i]); 3928 if (InstInfo->InferredFrom) 3929 continue; 3930 // The mayLoad and mayStore flags default to false. 3931 // Conservatively assume hasSideEffects if it wasn't explicit. 3932 if (InstInfo->hasSideEffects_Unset) 3933 InstInfo->hasSideEffects = true; 3934 } 3935 return; 3936 } 3937 3938 // Complain about any flags that are still undefined. 3939 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3940 CodeGenInstruction *InstInfo = 3941 const_cast<CodeGenInstruction *>(Instructions[i]); 3942 if (InstInfo->InferredFrom) 3943 continue; 3944 if (InstInfo->hasSideEffects_Unset) 3945 PrintError(InstInfo->TheDef->getLoc(), 3946 "Can't infer hasSideEffects from patterns"); 3947 if (InstInfo->mayStore_Unset) 3948 PrintError(InstInfo->TheDef->getLoc(), 3949 "Can't infer mayStore from patterns"); 3950 if (InstInfo->mayLoad_Unset) 3951 PrintError(InstInfo->TheDef->getLoc(), 3952 "Can't infer mayLoad from patterns"); 3953 } 3954 } 3955 3956 3957 /// Verify instruction flags against pattern node properties. 3958 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3959 unsigned Errors = 0; 3960 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3961 const PatternToMatch &PTM = *I; 3962 SmallVector<Record*, 8> Instrs; 3963 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3964 if (Instrs.empty()) 3965 continue; 3966 3967 // Count the number of instructions with each flag set. 3968 unsigned NumSideEffects = 0; 3969 unsigned NumStores = 0; 3970 unsigned NumLoads = 0; 3971 for (const Record *Instr : Instrs) { 3972 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3973 NumSideEffects += InstInfo.hasSideEffects; 3974 NumStores += InstInfo.mayStore; 3975 NumLoads += InstInfo.mayLoad; 3976 } 3977 3978 // Analyze the source pattern. 3979 InstAnalyzer PatInfo(*this); 3980 PatInfo.Analyze(PTM); 3981 3982 // Collect error messages. 3983 SmallVector<std::string, 4> Msgs; 3984 3985 // Check for missing flags in the output. 3986 // Permit extra flags for now at least. 3987 if (PatInfo.hasSideEffects && !NumSideEffects) 3988 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3989 3990 // Don't verify store flags on instructions with side effects. At least for 3991 // intrinsics, side effects implies mayStore. 3992 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3993 Msgs.push_back("pattern may store, but mayStore isn't set"); 3994 3995 // Similarly, mayStore implies mayLoad on intrinsics. 3996 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3997 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3998 3999 // Print error messages. 4000 if (Msgs.empty()) 4001 continue; 4002 ++Errors; 4003 4004 for (const std::string &Msg : Msgs) 4005 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4006 (Instrs.size() == 1 ? 4007 "instruction" : "output instructions")); 4008 // Provide the location of the relevant instruction definitions. 4009 for (const Record *Instr : Instrs) { 4010 if (Instr != PTM.getSrcRecord()) 4011 PrintError(Instr->getLoc(), "defined here"); 4012 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4013 if (InstInfo.InferredFrom && 4014 InstInfo.InferredFrom != InstInfo.TheDef && 4015 InstInfo.InferredFrom != PTM.getSrcRecord()) 4016 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4017 } 4018 } 4019 if (Errors) 4020 PrintFatalError("Errors in DAG patterns"); 4021 } 4022 4023 /// Given a pattern result with an unresolved type, see if we can find one 4024 /// instruction with an unresolved result type. Force this result type to an 4025 /// arbitrary element if it's possible types to converge results. 4026 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4027 if (N->isLeaf()) 4028 return false; 4029 4030 // Analyze children. 4031 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4032 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4033 return true; 4034 4035 if (!N->getOperator()->isSubClassOf("Instruction")) 4036 return false; 4037 4038 // If this type is already concrete or completely unknown we can't do 4039 // anything. 4040 TypeInfer &TI = TP.getInfer(); 4041 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4042 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4043 continue; 4044 4045 // Otherwise, force its type to an arbitrary choice. 4046 if (TI.forceArbitrary(N->getExtType(i))) 4047 return true; 4048 } 4049 4050 return false; 4051 } 4052 4053 // Promote xform function to be an explicit node wherever set. 4054 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4055 if (Record *Xform = N->getTransformFn()) { 4056 N->setTransformFn(nullptr); 4057 std::vector<TreePatternNodePtr> Children; 4058 Children.push_back(PromoteXForms(N)); 4059 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4060 N->getNumTypes()); 4061 } 4062 4063 if (!N->isLeaf()) 4064 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4065 TreePatternNodePtr Child = N->getChildShared(i); 4066 N->setChild(i, PromoteXForms(Child)); 4067 } 4068 return N; 4069 } 4070 4071 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4072 TreePattern &Pattern, TreePattern &Result, 4073 const std::vector<Record *> &InstImpResults) { 4074 4075 // Inline pattern fragments and expand multiple alternatives. 4076 Pattern.InlinePatternFragments(); 4077 Result.InlinePatternFragments(); 4078 4079 if (Result.getNumTrees() != 1) 4080 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4081 4082 // Infer types. 4083 bool IterateInference; 4084 bool InferredAllPatternTypes, InferredAllResultTypes; 4085 do { 4086 // Infer as many types as possible. If we cannot infer all of them, we 4087 // can never do anything with this pattern: report it to the user. 4088 InferredAllPatternTypes = 4089 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4090 4091 // Infer as many types as possible. If we cannot infer all of them, we 4092 // can never do anything with this pattern: report it to the user. 4093 InferredAllResultTypes = 4094 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4095 4096 IterateInference = false; 4097 4098 // Apply the type of the result to the source pattern. This helps us 4099 // resolve cases where the input type is known to be a pointer type (which 4100 // is considered resolved), but the result knows it needs to be 32- or 4101 // 64-bits. Infer the other way for good measure. 4102 for (auto T : Pattern.getTrees()) 4103 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4104 T->getNumTypes()); 4105 i != e; ++i) { 4106 IterateInference |= T->UpdateNodeType( 4107 i, Result.getOnlyTree()->getExtType(i), Result); 4108 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4109 i, T->getExtType(i), Result); 4110 } 4111 4112 // If our iteration has converged and the input pattern's types are fully 4113 // resolved but the result pattern is not fully resolved, we may have a 4114 // situation where we have two instructions in the result pattern and 4115 // the instructions require a common register class, but don't care about 4116 // what actual MVT is used. This is actually a bug in our modelling: 4117 // output patterns should have register classes, not MVTs. 4118 // 4119 // In any case, to handle this, we just go through and disambiguate some 4120 // arbitrary types to the result pattern's nodes. 4121 if (!IterateInference && InferredAllPatternTypes && 4122 !InferredAllResultTypes) 4123 IterateInference = 4124 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4125 } while (IterateInference); 4126 4127 // Verify that we inferred enough types that we can do something with the 4128 // pattern and result. If these fire the user has to add type casts. 4129 if (!InferredAllPatternTypes) 4130 Pattern.error("Could not infer all types in pattern!"); 4131 if (!InferredAllResultTypes) { 4132 Pattern.dump(); 4133 Result.error("Could not infer all types in pattern result!"); 4134 } 4135 4136 // Promote xform function to be an explicit node wherever set. 4137 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4138 4139 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4140 Temp.InferAllTypes(); 4141 4142 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4143 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4144 4145 if (PatternRewriter) 4146 PatternRewriter(&Pattern); 4147 4148 // A pattern may end up with an "impossible" type, i.e. a situation 4149 // where all types have been eliminated for some node in this pattern. 4150 // This could occur for intrinsics that only make sense for a specific 4151 // value type, and use a specific register class. If, for some mode, 4152 // that register class does not accept that type, the type inference 4153 // will lead to a contradiction, which is not an error however, but 4154 // a sign that this pattern will simply never match. 4155 if (Temp.getOnlyTree()->hasPossibleType()) 4156 for (auto T : Pattern.getTrees()) 4157 if (T->hasPossibleType()) 4158 AddPatternToMatch(&Pattern, 4159 PatternToMatch(TheDef, makePredList(Preds), 4160 T, Temp.getOnlyTree(), 4161 InstImpResults, Complexity, 4162 TheDef->getID())); 4163 } 4164 4165 void CodeGenDAGPatterns::ParsePatterns() { 4166 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4167 4168 for (Record *CurPattern : Patterns) { 4169 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4170 4171 // If the pattern references the null_frag, there's nothing to do. 4172 if (hasNullFragReference(Tree)) 4173 continue; 4174 4175 TreePattern Pattern(CurPattern, Tree, true, *this); 4176 4177 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4178 if (LI->empty()) continue; // no pattern. 4179 4180 // Parse the instruction. 4181 TreePattern Result(CurPattern, LI, false, *this); 4182 4183 if (Result.getNumTrees() != 1) 4184 Result.error("Cannot handle instructions producing instructions " 4185 "with temporaries yet!"); 4186 4187 // Validate that the input pattern is correct. 4188 std::map<std::string, TreePatternNodePtr> InstInputs; 4189 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4190 InstResults; 4191 std::vector<Record*> InstImpResults; 4192 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4193 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4194 InstResults, InstImpResults); 4195 4196 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4197 } 4198 } 4199 4200 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4201 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4202 for (const auto &I : VTS) 4203 Modes.insert(I.first); 4204 4205 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4206 collectModes(Modes, N->getChild(i)); 4207 } 4208 4209 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4210 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4211 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4212 std::vector<PatternToMatch> Copy = PatternsToMatch; 4213 PatternsToMatch.clear(); 4214 4215 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4216 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4217 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4218 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4219 return; 4220 } 4221 4222 std::vector<Predicate> Preds = P.Predicates; 4223 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4224 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4225 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4226 std::move(NewDst), P.getDstRegs(), 4227 P.getAddedComplexity(), Record::getNewUID(), 4228 Mode); 4229 }; 4230 4231 for (PatternToMatch &P : Copy) { 4232 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4233 if (P.SrcPattern->hasProperTypeByHwMode()) 4234 SrcP = P.SrcPattern; 4235 if (P.DstPattern->hasProperTypeByHwMode()) 4236 DstP = P.DstPattern; 4237 if (!SrcP && !DstP) { 4238 PatternsToMatch.push_back(P); 4239 continue; 4240 } 4241 4242 std::set<unsigned> Modes; 4243 if (SrcP) 4244 collectModes(Modes, SrcP.get()); 4245 if (DstP) 4246 collectModes(Modes, DstP.get()); 4247 4248 // The predicate for the default mode needs to be constructed for each 4249 // pattern separately. 4250 // Since not all modes must be present in each pattern, if a mode m is 4251 // absent, then there is no point in constructing a check for m. If such 4252 // a check was created, it would be equivalent to checking the default 4253 // mode, except not all modes' predicates would be a part of the checking 4254 // code. The subsequently generated check for the default mode would then 4255 // have the exact same patterns, but a different predicate code. To avoid 4256 // duplicated patterns with different predicate checks, construct the 4257 // default check as a negation of all predicates that are actually present 4258 // in the source/destination patterns. 4259 std::vector<Predicate> DefaultPred; 4260 4261 for (unsigned M : Modes) { 4262 if (M == DefaultMode) 4263 continue; 4264 if (ModeChecks.find(M) != ModeChecks.end()) 4265 continue; 4266 4267 // Fill the map entry for this mode. 4268 const HwMode &HM = CGH.getMode(M); 4269 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4270 4271 // Add negations of the HM's predicates to the default predicate. 4272 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4273 } 4274 4275 for (unsigned M : Modes) { 4276 if (M == DefaultMode) 4277 continue; 4278 AppendPattern(P, M); 4279 } 4280 4281 bool HasDefault = Modes.count(DefaultMode); 4282 if (HasDefault) 4283 AppendPattern(P, DefaultMode); 4284 } 4285 } 4286 4287 /// Dependent variable map for CodeGenDAGPattern variant generation 4288 typedef StringMap<int> DepVarMap; 4289 4290 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4291 if (N->isLeaf()) { 4292 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4293 DepMap[N->getName()]++; 4294 } else { 4295 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4296 FindDepVarsOf(N->getChild(i), DepMap); 4297 } 4298 } 4299 4300 /// Find dependent variables within child patterns 4301 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4302 DepVarMap depcounts; 4303 FindDepVarsOf(N, depcounts); 4304 for (const auto &Pair : depcounts) { 4305 if (Pair.getValue() > 1) 4306 DepVars.insert(Pair.getKey()); 4307 } 4308 } 4309 4310 #ifndef NDEBUG 4311 /// Dump the dependent variable set: 4312 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4313 if (DepVars.empty()) { 4314 LLVM_DEBUG(errs() << "<empty set>"); 4315 } else { 4316 LLVM_DEBUG(errs() << "[ "); 4317 for (const auto &DepVar : DepVars) { 4318 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4319 } 4320 LLVM_DEBUG(errs() << "]"); 4321 } 4322 } 4323 #endif 4324 4325 4326 /// CombineChildVariants - Given a bunch of permutations of each child of the 4327 /// 'operator' node, put them together in all possible ways. 4328 static void CombineChildVariants( 4329 TreePatternNodePtr Orig, 4330 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4331 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4332 const MultipleUseVarSet &DepVars) { 4333 // Make sure that each operand has at least one variant to choose from. 4334 for (const auto &Variants : ChildVariants) 4335 if (Variants.empty()) 4336 return; 4337 4338 // The end result is an all-pairs construction of the resultant pattern. 4339 std::vector<unsigned> Idxs; 4340 Idxs.resize(ChildVariants.size()); 4341 bool NotDone; 4342 do { 4343 #ifndef NDEBUG 4344 LLVM_DEBUG(if (!Idxs.empty()) { 4345 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4346 for (unsigned Idx : Idxs) { 4347 errs() << Idx << " "; 4348 } 4349 errs() << "]\n"; 4350 }); 4351 #endif 4352 // Create the variant and add it to the output list. 4353 std::vector<TreePatternNodePtr> NewChildren; 4354 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4355 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4356 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4357 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4358 4359 // Copy over properties. 4360 R->setName(Orig->getName()); 4361 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4362 R->setPredicateCalls(Orig->getPredicateCalls()); 4363 R->setTransformFn(Orig->getTransformFn()); 4364 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4365 R->setType(i, Orig->getExtType(i)); 4366 4367 // If this pattern cannot match, do not include it as a variant. 4368 std::string ErrString; 4369 // Scan to see if this pattern has already been emitted. We can get 4370 // duplication due to things like commuting: 4371 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4372 // which are the same pattern. Ignore the dups. 4373 if (R->canPatternMatch(ErrString, CDP) && 4374 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4375 return R->isIsomorphicTo(Variant.get(), DepVars); 4376 })) 4377 OutVariants.push_back(R); 4378 4379 // Increment indices to the next permutation by incrementing the 4380 // indices from last index backward, e.g., generate the sequence 4381 // [0, 0], [0, 1], [1, 0], [1, 1]. 4382 int IdxsIdx; 4383 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4384 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4385 Idxs[IdxsIdx] = 0; 4386 else 4387 break; 4388 } 4389 NotDone = (IdxsIdx >= 0); 4390 } while (NotDone); 4391 } 4392 4393 /// CombineChildVariants - A helper function for binary operators. 4394 /// 4395 static void CombineChildVariants(TreePatternNodePtr Orig, 4396 const std::vector<TreePatternNodePtr> &LHS, 4397 const std::vector<TreePatternNodePtr> &RHS, 4398 std::vector<TreePatternNodePtr> &OutVariants, 4399 CodeGenDAGPatterns &CDP, 4400 const MultipleUseVarSet &DepVars) { 4401 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4402 ChildVariants.push_back(LHS); 4403 ChildVariants.push_back(RHS); 4404 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4405 } 4406 4407 static void 4408 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4409 std::vector<TreePatternNodePtr> &Children) { 4410 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4411 Record *Operator = N->getOperator(); 4412 4413 // Only permit raw nodes. 4414 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4415 N->getTransformFn()) { 4416 Children.push_back(N); 4417 return; 4418 } 4419 4420 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4421 Children.push_back(N->getChildShared(0)); 4422 else 4423 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4424 4425 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4426 Children.push_back(N->getChildShared(1)); 4427 else 4428 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4429 } 4430 4431 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4432 /// the (potentially recursive) pattern by using algebraic laws. 4433 /// 4434 static void GenerateVariantsOf(TreePatternNodePtr N, 4435 std::vector<TreePatternNodePtr> &OutVariants, 4436 CodeGenDAGPatterns &CDP, 4437 const MultipleUseVarSet &DepVars) { 4438 // We cannot permute leaves or ComplexPattern uses. 4439 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4440 OutVariants.push_back(N); 4441 return; 4442 } 4443 4444 // Look up interesting info about the node. 4445 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4446 4447 // If this node is associative, re-associate. 4448 if (NodeInfo.hasProperty(SDNPAssociative)) { 4449 // Re-associate by pulling together all of the linked operators 4450 std::vector<TreePatternNodePtr> MaximalChildren; 4451 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4452 4453 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4454 // permutations. 4455 if (MaximalChildren.size() == 3) { 4456 // Find the variants of all of our maximal children. 4457 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4458 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4459 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4460 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4461 4462 // There are only two ways we can permute the tree: 4463 // (A op B) op C and A op (B op C) 4464 // Within these forms, we can also permute A/B/C. 4465 4466 // Generate legal pair permutations of A/B/C. 4467 std::vector<TreePatternNodePtr> ABVariants; 4468 std::vector<TreePatternNodePtr> BAVariants; 4469 std::vector<TreePatternNodePtr> ACVariants; 4470 std::vector<TreePatternNodePtr> CAVariants; 4471 std::vector<TreePatternNodePtr> BCVariants; 4472 std::vector<TreePatternNodePtr> CBVariants; 4473 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4474 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4475 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4476 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4477 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4478 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4479 4480 // Combine those into the result: (x op x) op x 4481 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4482 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4483 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4484 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4485 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4486 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4487 4488 // Combine those into the result: x op (x op x) 4489 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4490 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4491 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4492 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4493 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4494 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4495 return; 4496 } 4497 } 4498 4499 // Compute permutations of all children. 4500 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4501 ChildVariants.resize(N->getNumChildren()); 4502 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4503 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4504 4505 // Build all permutations based on how the children were formed. 4506 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4507 4508 // If this node is commutative, consider the commuted order. 4509 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4510 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4511 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4512 "Commutative but doesn't have 2 children!"); 4513 // Don't count children which are actually register references. 4514 unsigned NC = 0; 4515 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4516 TreePatternNode *Child = N->getChild(i); 4517 if (Child->isLeaf()) 4518 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4519 Record *RR = DI->getDef(); 4520 if (RR->isSubClassOf("Register")) 4521 continue; 4522 } 4523 NC++; 4524 } 4525 // Consider the commuted order. 4526 if (isCommIntrinsic) { 4527 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4528 // operands are the commutative operands, and there might be more operands 4529 // after those. 4530 assert(NC >= 3 && 4531 "Commutative intrinsic should have at least 3 children!"); 4532 std::vector<std::vector<TreePatternNodePtr>> Variants; 4533 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4534 Variants.push_back(std::move(ChildVariants[2])); 4535 Variants.push_back(std::move(ChildVariants[1])); 4536 for (unsigned i = 3; i != NC; ++i) 4537 Variants.push_back(std::move(ChildVariants[i])); 4538 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4539 } else if (NC == N->getNumChildren()) { 4540 std::vector<std::vector<TreePatternNodePtr>> Variants; 4541 Variants.push_back(std::move(ChildVariants[1])); 4542 Variants.push_back(std::move(ChildVariants[0])); 4543 for (unsigned i = 2; i != NC; ++i) 4544 Variants.push_back(std::move(ChildVariants[i])); 4545 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4546 } 4547 } 4548 } 4549 4550 4551 // GenerateVariants - Generate variants. For example, commutative patterns can 4552 // match multiple ways. Add them to PatternsToMatch as well. 4553 void CodeGenDAGPatterns::GenerateVariants() { 4554 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4555 4556 // Loop over all of the patterns we've collected, checking to see if we can 4557 // generate variants of the instruction, through the exploitation of 4558 // identities. This permits the target to provide aggressive matching without 4559 // the .td file having to contain tons of variants of instructions. 4560 // 4561 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4562 // intentionally do not reconsider these. Any variants of added patterns have 4563 // already been added. 4564 // 4565 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4566 BitVector MatchedPatterns(NumOriginalPatterns); 4567 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4568 BitVector(NumOriginalPatterns)); 4569 4570 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4571 DepsAndVariants; 4572 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4573 4574 // Collect patterns with more than one variant. 4575 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4576 MultipleUseVarSet DepVars; 4577 std::vector<TreePatternNodePtr> Variants; 4578 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4579 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4580 LLVM_DEBUG(DumpDepVars(DepVars)); 4581 LLVM_DEBUG(errs() << "\n"); 4582 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4583 *this, DepVars); 4584 4585 assert(!Variants.empty() && "Must create at least original variant!"); 4586 if (Variants.size() == 1) // No additional variants for this pattern. 4587 continue; 4588 4589 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4590 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4591 4592 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4593 4594 // Cache matching predicates. 4595 if (MatchedPatterns[i]) 4596 continue; 4597 4598 const std::vector<Predicate> &Predicates = 4599 PatternsToMatch[i].getPredicates(); 4600 4601 BitVector &Matches = MatchedPredicates[i]; 4602 MatchedPatterns.set(i); 4603 Matches.set(i); 4604 4605 // Don't test patterns that have already been cached - it won't match. 4606 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4607 if (!MatchedPatterns[p]) 4608 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4609 4610 // Copy this to all the matching patterns. 4611 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4612 if (p != (int)i) { 4613 MatchedPatterns.set(p); 4614 MatchedPredicates[p] = Matches; 4615 } 4616 } 4617 4618 for (auto it : PatternsWithVariants) { 4619 unsigned i = it.first; 4620 const MultipleUseVarSet &DepVars = it.second.first; 4621 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4622 4623 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4624 TreePatternNodePtr Variant = Variants[v]; 4625 BitVector &Matches = MatchedPredicates[i]; 4626 4627 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4628 errs() << "\n"); 4629 4630 // Scan to see if an instruction or explicit pattern already matches this. 4631 bool AlreadyExists = false; 4632 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4633 // Skip if the top level predicates do not match. 4634 if (!Matches[p]) 4635 continue; 4636 // Check to see if this variant already exists. 4637 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4638 DepVars)) { 4639 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4640 AlreadyExists = true; 4641 break; 4642 } 4643 } 4644 // If we already have it, ignore the variant. 4645 if (AlreadyExists) continue; 4646 4647 // Otherwise, add it to the list of patterns we have. 4648 PatternsToMatch.push_back(PatternToMatch( 4649 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4650 Variant, PatternsToMatch[i].getDstPatternShared(), 4651 PatternsToMatch[i].getDstRegs(), 4652 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4653 MatchedPredicates.push_back(Matches); 4654 4655 // Add a new match the same as this pattern. 4656 for (auto &P : MatchedPredicates) 4657 P.push_back(P[i]); 4658 } 4659 4660 LLVM_DEBUG(errs() << "\n"); 4661 } 4662 } 4663