1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 50 template <typename Predicate> 51 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 52 bool Erased = false; 53 // It is ok to iterate over MachineValueTypeSet and remove elements from it 54 // at the same time. 55 for (MVT T : S) { 56 if (!P(T)) 57 continue; 58 Erased = true; 59 S.erase(T); 60 } 61 return Erased; 62 } 63 64 // --- TypeSetByHwMode 65 66 // This is a parameterized type-set class. For each mode there is a list 67 // of types that are currently possible for a given tree node. Type 68 // inference will apply to each mode separately. 69 70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 71 for (const ValueTypeByHwMode &VVT : VTList) { 72 insert(VVT); 73 AddrSpaces.push_back(VVT.PtrAddrSpace); 74 } 75 } 76 77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 78 for (const auto &I : *this) { 79 if (I.second.size() > 1) 80 return false; 81 if (!AllowEmpty && I.second.empty()) 82 return false; 83 } 84 return true; 85 } 86 87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 88 assert(isValueTypeByHwMode(true) && 89 "The type set has multiple types for at least one HW mode"); 90 ValueTypeByHwMode VVT; 91 auto ASI = AddrSpaces.begin(); 92 93 for (const auto &I : *this) { 94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 95 VVT.getOrCreateTypeForMode(I.first, T); 96 if (ASI != AddrSpaces.end()) 97 VVT.PtrAddrSpace = *ASI++; 98 } 99 return VVT; 100 } 101 102 bool TypeSetByHwMode::isPossible() const { 103 for (const auto &I : *this) 104 if (!I.second.empty()) 105 return true; 106 return false; 107 } 108 109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 110 bool Changed = false; 111 bool ContainsDefault = false; 112 MVT DT = MVT::Other; 113 114 for (const auto &P : VVT) { 115 unsigned M = P.first; 116 // Make sure there exists a set for each specific mode from VVT. 117 Changed |= getOrCreate(M).insert(P.second).second; 118 // Cache VVT's default mode. 119 if (DefaultMode == M) { 120 ContainsDefault = true; 121 DT = P.second; 122 } 123 } 124 125 // If VVT has a default mode, add the corresponding type to all 126 // modes in "this" that do not exist in VVT. 127 if (ContainsDefault) 128 for (auto &I : *this) 129 if (!VVT.hasMode(I.first)) 130 Changed |= I.second.insert(DT).second; 131 132 return Changed; 133 } 134 135 // Constrain the type set to be the intersection with VTS. 136 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 137 bool Changed = false; 138 if (hasDefault()) { 139 for (const auto &I : VTS) { 140 unsigned M = I.first; 141 if (M == DefaultMode || hasMode(M)) 142 continue; 143 Map.insert({M, Map.at(DefaultMode)}); 144 Changed = true; 145 } 146 } 147 148 for (auto &I : *this) { 149 unsigned M = I.first; 150 SetType &S = I.second; 151 if (VTS.hasMode(M) || VTS.hasDefault()) { 152 Changed |= intersect(I.second, VTS.get(M)); 153 } else if (!S.empty()) { 154 S.clear(); 155 Changed = true; 156 } 157 } 158 return Changed; 159 } 160 161 template <typename Predicate> 162 bool TypeSetByHwMode::constrain(Predicate P) { 163 bool Changed = false; 164 for (auto &I : *this) 165 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 166 return Changed; 167 } 168 169 template <typename Predicate> 170 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 171 assert(empty()); 172 for (const auto &I : VTS) { 173 SetType &S = getOrCreate(I.first); 174 for (auto J : I.second) 175 if (P(J)) 176 S.insert(J); 177 } 178 return !empty(); 179 } 180 181 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 182 SmallVector<unsigned, 4> Modes; 183 Modes.reserve(Map.size()); 184 185 for (const auto &I : *this) 186 Modes.push_back(I.first); 187 if (Modes.empty()) { 188 OS << "{}"; 189 return; 190 } 191 array_pod_sort(Modes.begin(), Modes.end()); 192 193 OS << '{'; 194 for (unsigned M : Modes) { 195 OS << ' ' << getModeName(M) << ':'; 196 writeToStream(get(M), OS); 197 } 198 OS << " }"; 199 } 200 201 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 202 SmallVector<MVT, 4> Types(S.begin(), S.end()); 203 array_pod_sort(Types.begin(), Types.end()); 204 205 OS << '['; 206 ListSeparator LS(" "); 207 for (const MVT &T : Types) 208 OS << LS << ValueTypeByHwMode::getMVTName(T); 209 OS << ']'; 210 } 211 212 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 213 // The isSimple call is much quicker than hasDefault - check this first. 214 bool IsSimple = isSimple(); 215 bool VTSIsSimple = VTS.isSimple(); 216 if (IsSimple && VTSIsSimple) 217 return *begin() == *VTS.begin(); 218 219 // Speedup: We have a default if the set is simple. 220 bool HaveDefault = IsSimple || hasDefault(); 221 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 222 if (HaveDefault != VTSHaveDefault) 223 return false; 224 225 SmallSet<unsigned, 4> Modes; 226 for (auto &I : *this) 227 Modes.insert(I.first); 228 for (const auto &I : VTS) 229 Modes.insert(I.first); 230 231 if (HaveDefault) { 232 // Both sets have default mode. 233 for (unsigned M : Modes) { 234 if (get(M) != VTS.get(M)) 235 return false; 236 } 237 } else { 238 // Neither set has default mode. 239 for (unsigned M : Modes) { 240 // If there is no default mode, an empty set is equivalent to not having 241 // the corresponding mode. 242 bool NoModeThis = !hasMode(M) || get(M).empty(); 243 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 244 if (NoModeThis != NoModeVTS) 245 return false; 246 if (!NoModeThis) 247 if (get(M) != VTS.get(M)) 248 return false; 249 } 250 } 251 252 return true; 253 } 254 255 namespace llvm { 256 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 257 T.writeToStream(OS); 258 return OS; 259 } 260 } 261 262 LLVM_DUMP_METHOD 263 void TypeSetByHwMode::dump() const { 264 dbgs() << *this << '\n'; 265 } 266 267 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 268 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 269 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 270 271 if (OutP == InP) 272 return berase_if(Out, Int); 273 274 // Compute the intersection of scalars separately to account for only 275 // one set containing iPTR. 276 // The intersection of iPTR with a set of integer scalar types that does not 277 // include iPTR will result in the most specific scalar type: 278 // - iPTR is more specific than any set with two elements or more 279 // - iPTR is less specific than any single integer scalar type. 280 // For example 281 // { iPTR } * { i32 } -> { i32 } 282 // { iPTR } * { i32 i64 } -> { iPTR } 283 // and 284 // { iPTR i32 } * { i32 } -> { i32 } 285 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 286 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 287 288 // Compute the difference between the two sets in such a way that the 289 // iPTR is in the set that is being subtracted. This is to see if there 290 // are any extra scalars in the set without iPTR that are not in the 291 // set containing iPTR. Then the iPTR could be considered a "wildcard" 292 // matching these scalars. If there is only one such scalar, it would 293 // replace the iPTR, if there are more, the iPTR would be retained. 294 SetType Diff; 295 if (InP) { 296 Diff = Out; 297 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 298 // Pre-remove these elements and rely only on InP/OutP to determine 299 // whether a change has been made. 300 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 301 } else { 302 Diff = In; 303 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 304 Out.erase(MVT::iPTR); 305 } 306 307 // The actual intersection. 308 bool Changed = berase_if(Out, Int); 309 unsigned NumD = Diff.size(); 310 if (NumD == 0) 311 return Changed; 312 313 if (NumD == 1) { 314 Out.insert(*Diff.begin()); 315 // This is a change only if Out was the one with iPTR (which is now 316 // being replaced). 317 Changed |= OutP; 318 } else { 319 // Multiple elements from Out are now replaced with iPTR. 320 Out.insert(MVT::iPTR); 321 Changed |= !OutP; 322 } 323 return Changed; 324 } 325 326 bool TypeSetByHwMode::validate() const { 327 #ifndef NDEBUG 328 if (empty()) 329 return true; 330 bool AllEmpty = true; 331 for (const auto &I : *this) 332 AllEmpty &= I.second.empty(); 333 return !AllEmpty; 334 #endif 335 return true; 336 } 337 338 // --- TypeInfer 339 340 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 341 const TypeSetByHwMode &In) { 342 ValidateOnExit _1(Out, *this); 343 In.validate(); 344 if (In.empty() || Out == In || TP.hasError()) 345 return false; 346 if (Out.empty()) { 347 Out = In; 348 return true; 349 } 350 351 bool Changed = Out.constrain(In); 352 if (Changed && Out.empty()) 353 TP.error("Type contradiction"); 354 355 return Changed; 356 } 357 358 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 359 ValidateOnExit _1(Out, *this); 360 if (TP.hasError()) 361 return false; 362 assert(!Out.empty() && "cannot pick from an empty set"); 363 364 bool Changed = false; 365 for (auto &I : Out) { 366 TypeSetByHwMode::SetType &S = I.second; 367 if (S.size() <= 1) 368 continue; 369 MVT T = *S.begin(); // Pick the first element. 370 S.clear(); 371 S.insert(T); 372 Changed = true; 373 } 374 return Changed; 375 } 376 377 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 378 ValidateOnExit _1(Out, *this); 379 if (TP.hasError()) 380 return false; 381 if (!Out.empty()) 382 return Out.constrain(isIntegerOrPtr); 383 384 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 385 } 386 387 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 388 ValidateOnExit _1(Out, *this); 389 if (TP.hasError()) 390 return false; 391 if (!Out.empty()) 392 return Out.constrain(isFloatingPoint); 393 394 return Out.assign_if(getLegalTypes(), isFloatingPoint); 395 } 396 397 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 398 ValidateOnExit _1(Out, *this); 399 if (TP.hasError()) 400 return false; 401 if (!Out.empty()) 402 return Out.constrain(isScalar); 403 404 return Out.assign_if(getLegalTypes(), isScalar); 405 } 406 407 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 408 ValidateOnExit _1(Out, *this); 409 if (TP.hasError()) 410 return false; 411 if (!Out.empty()) 412 return Out.constrain(isVector); 413 414 return Out.assign_if(getLegalTypes(), isVector); 415 } 416 417 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 418 ValidateOnExit _1(Out, *this); 419 if (TP.hasError() || !Out.empty()) 420 return false; 421 422 Out = getLegalTypes(); 423 return true; 424 } 425 426 template <typename Iter, typename Pred, typename Less> 427 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 428 if (B == E) 429 return E; 430 Iter Min = E; 431 for (Iter I = B; I != E; ++I) { 432 if (!P(*I)) 433 continue; 434 if (Min == E || L(*I, *Min)) 435 Min = I; 436 } 437 return Min; 438 } 439 440 template <typename Iter, typename Pred, typename Less> 441 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 442 if (B == E) 443 return E; 444 Iter Max = E; 445 for (Iter I = B; I != E; ++I) { 446 if (!P(*I)) 447 continue; 448 if (Max == E || L(*Max, *I)) 449 Max = I; 450 } 451 return Max; 452 } 453 454 /// Make sure that for each type in Small, there exists a larger type in Big. 455 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 456 TypeSetByHwMode &Big) { 457 ValidateOnExit _1(Small, *this), _2(Big, *this); 458 if (TP.hasError()) 459 return false; 460 bool Changed = false; 461 462 if (Small.empty()) 463 Changed |= EnforceAny(Small); 464 if (Big.empty()) 465 Changed |= EnforceAny(Big); 466 467 assert(Small.hasDefault() && Big.hasDefault()); 468 469 std::vector<unsigned> Modes = union_modes(Small, Big); 470 471 // 1. Only allow integer or floating point types and make sure that 472 // both sides are both integer or both floating point. 473 // 2. Make sure that either both sides have vector types, or neither 474 // of them does. 475 for (unsigned M : Modes) { 476 TypeSetByHwMode::SetType &S = Small.get(M); 477 TypeSetByHwMode::SetType &B = Big.get(M); 478 479 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 480 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 481 Changed |= berase_if(S, NotInt); 482 Changed |= berase_if(B, NotInt); 483 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 484 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 485 Changed |= berase_if(S, NotFP); 486 Changed |= berase_if(B, NotFP); 487 } else if (S.empty() || B.empty()) { 488 Changed = !S.empty() || !B.empty(); 489 S.clear(); 490 B.clear(); 491 } else { 492 TP.error("Incompatible types"); 493 return Changed; 494 } 495 496 if (none_of(S, isVector) || none_of(B, isVector)) { 497 Changed |= berase_if(S, isVector); 498 Changed |= berase_if(B, isVector); 499 } 500 } 501 502 auto LT = [](MVT A, MVT B) -> bool { 503 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 504 // purposes of ordering. 505 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 506 A.getSizeInBits().getKnownMinSize()); 507 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 508 B.getSizeInBits().getKnownMinSize()); 509 return ASize < BSize; 510 }; 511 auto SameKindLE = [](MVT A, MVT B) -> bool { 512 // This function is used when removing elements: when a vector is compared 513 // to a non-vector or a scalable vector to any non-scalable MVT, it should 514 // return false (to avoid removal). 515 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 516 std::make_tuple(B.isVector(), B.isScalableVector())) 517 return false; 518 519 return std::make_tuple(A.getScalarSizeInBits(), 520 A.getSizeInBits().getKnownMinSize()) <= 521 std::make_tuple(B.getScalarSizeInBits(), 522 B.getSizeInBits().getKnownMinSize()); 523 }; 524 525 for (unsigned M : Modes) { 526 TypeSetByHwMode::SetType &S = Small.get(M); 527 TypeSetByHwMode::SetType &B = Big.get(M); 528 // MinS = min scalar in Small, remove all scalars from Big that are 529 // smaller-or-equal than MinS. 530 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 531 if (MinS != S.end()) 532 Changed |= berase_if(B, std::bind(SameKindLE, 533 std::placeholders::_1, *MinS)); 534 535 // MaxS = max scalar in Big, remove all scalars from Small that are 536 // larger than MaxS. 537 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 538 if (MaxS != B.end()) 539 Changed |= berase_if(S, std::bind(SameKindLE, 540 *MaxS, std::placeholders::_1)); 541 542 // MinV = min vector in Small, remove all vectors from Big that are 543 // smaller-or-equal than MinV. 544 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 545 if (MinV != S.end()) 546 Changed |= berase_if(B, std::bind(SameKindLE, 547 std::placeholders::_1, *MinV)); 548 549 // MaxV = max vector in Big, remove all vectors from Small that are 550 // larger than MaxV. 551 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 552 if (MaxV != B.end()) 553 Changed |= berase_if(S, std::bind(SameKindLE, 554 *MaxV, std::placeholders::_1)); 555 } 556 557 return Changed; 558 } 559 560 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 561 /// for each type U in Elem, U is a scalar type. 562 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 563 /// type T in Vec, such that U is the element type of T. 564 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 565 TypeSetByHwMode &Elem) { 566 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 567 if (TP.hasError()) 568 return false; 569 bool Changed = false; 570 571 if (Vec.empty()) 572 Changed |= EnforceVector(Vec); 573 if (Elem.empty()) 574 Changed |= EnforceScalar(Elem); 575 576 for (unsigned M : union_modes(Vec, Elem)) { 577 TypeSetByHwMode::SetType &V = Vec.get(M); 578 TypeSetByHwMode::SetType &E = Elem.get(M); 579 580 Changed |= berase_if(V, isScalar); // Scalar = !vector 581 Changed |= berase_if(E, isVector); // Vector = !scalar 582 assert(!V.empty() && !E.empty()); 583 584 SmallSet<MVT,4> VT, ST; 585 // Collect element types from the "vector" set. 586 for (MVT T : V) 587 VT.insert(T.getVectorElementType()); 588 // Collect scalar types from the "element" set. 589 for (MVT T : E) 590 ST.insert(T); 591 592 // Remove from V all (vector) types whose element type is not in S. 593 Changed |= berase_if(V, [&ST](MVT T) -> bool { 594 return !ST.count(T.getVectorElementType()); 595 }); 596 // Remove from E all (scalar) types, for which there is no corresponding 597 // type in V. 598 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 599 } 600 601 return Changed; 602 } 603 604 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 605 const ValueTypeByHwMode &VVT) { 606 TypeSetByHwMode Tmp(VVT); 607 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 608 return EnforceVectorEltTypeIs(Vec, Tmp); 609 } 610 611 /// Ensure that for each type T in Sub, T is a vector type, and there 612 /// exists a type U in Vec such that U is a vector type with the same 613 /// element type as T and at least as many elements as T. 614 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 615 TypeSetByHwMode &Sub) { 616 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 617 if (TP.hasError()) 618 return false; 619 620 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 621 auto IsSubVec = [](MVT B, MVT P) -> bool { 622 if (!B.isVector() || !P.isVector()) 623 return false; 624 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 625 // but until there are obvious use-cases for this, keep the 626 // types separate. 627 if (B.isScalableVector() != P.isScalableVector()) 628 return false; 629 if (B.getVectorElementType() != P.getVectorElementType()) 630 return false; 631 return B.getVectorNumElements() < P.getVectorNumElements(); 632 }; 633 634 /// Return true if S has no element (vector type) that T is a sub-vector of, 635 /// i.e. has the same element type as T and more elements. 636 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 637 for (auto I : S) 638 if (IsSubVec(T, I)) 639 return false; 640 return true; 641 }; 642 643 /// Return true if S has no element (vector type) that T is a super-vector 644 /// of, i.e. has the same element type as T and fewer elements. 645 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 646 for (auto I : S) 647 if (IsSubVec(I, T)) 648 return false; 649 return true; 650 }; 651 652 bool Changed = false; 653 654 if (Vec.empty()) 655 Changed |= EnforceVector(Vec); 656 if (Sub.empty()) 657 Changed |= EnforceVector(Sub); 658 659 for (unsigned M : union_modes(Vec, Sub)) { 660 TypeSetByHwMode::SetType &S = Sub.get(M); 661 TypeSetByHwMode::SetType &V = Vec.get(M); 662 663 Changed |= berase_if(S, isScalar); 664 665 // Erase all types from S that are not sub-vectors of a type in V. 666 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 667 668 // Erase all types from V that are not super-vectors of a type in S. 669 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 670 } 671 672 return Changed; 673 } 674 675 /// 1. Ensure that V has a scalar type iff W has a scalar type. 676 /// 2. Ensure that for each vector type T in V, there exists a vector 677 /// type U in W, such that T and U have the same number of elements. 678 /// 3. Ensure that for each vector type U in W, there exists a vector 679 /// type T in V, such that T and U have the same number of elements 680 /// (reverse of 2). 681 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 682 ValidateOnExit _1(V, *this), _2(W, *this); 683 if (TP.hasError()) 684 return false; 685 686 bool Changed = false; 687 if (V.empty()) 688 Changed |= EnforceAny(V); 689 if (W.empty()) 690 Changed |= EnforceAny(W); 691 692 // An actual vector type cannot have 0 elements, so we can treat scalars 693 // as zero-length vectors. This way both vectors and scalars can be 694 // processed identically. 695 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 696 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 697 }; 698 699 for (unsigned M : union_modes(V, W)) { 700 TypeSetByHwMode::SetType &VS = V.get(M); 701 TypeSetByHwMode::SetType &WS = W.get(M); 702 703 SmallSet<unsigned,2> VN, WN; 704 for (MVT T : VS) 705 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 706 for (MVT T : WS) 707 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 708 709 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 710 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 711 } 712 return Changed; 713 } 714 715 namespace { 716 struct TypeSizeComparator { 717 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 718 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 719 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 720 } 721 }; 722 } // end anonymous namespace 723 724 /// 1. Ensure that for each type T in A, there exists a type U in B, 725 /// such that T and U have equal size in bits. 726 /// 2. Ensure that for each type U in B, there exists a type T in A 727 /// such that T and U have equal size in bits (reverse of 1). 728 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 729 ValidateOnExit _1(A, *this), _2(B, *this); 730 if (TP.hasError()) 731 return false; 732 bool Changed = false; 733 if (A.empty()) 734 Changed |= EnforceAny(A); 735 if (B.empty()) 736 Changed |= EnforceAny(B); 737 738 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 739 740 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 741 return !Sizes.count(T.getSizeInBits()); 742 }; 743 744 for (unsigned M : union_modes(A, B)) { 745 TypeSetByHwMode::SetType &AS = A.get(M); 746 TypeSetByHwMode::SetType &BS = B.get(M); 747 TypeSizeSet AN, BN; 748 749 for (MVT T : AS) 750 AN.insert(T.getSizeInBits()); 751 for (MVT T : BS) 752 BN.insert(T.getSizeInBits()); 753 754 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 755 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 756 } 757 758 return Changed; 759 } 760 761 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 762 ValidateOnExit _1(VTS, *this); 763 const TypeSetByHwMode &Legal = getLegalTypes(); 764 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 765 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 766 767 for (auto &I : VTS) 768 expandOverloads(I.second, LegalTypes); 769 } 770 771 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 772 const TypeSetByHwMode::SetType &Legal) { 773 std::set<MVT> Ovs; 774 for (MVT T : Out) { 775 if (!T.isOverloaded()) 776 continue; 777 778 Ovs.insert(T); 779 // MachineValueTypeSet allows iteration and erasing. 780 Out.erase(T); 781 } 782 783 for (MVT Ov : Ovs) { 784 switch (Ov.SimpleTy) { 785 case MVT::iPTRAny: 786 Out.insert(MVT::iPTR); 787 return; 788 case MVT::iAny: 789 for (MVT T : MVT::integer_valuetypes()) 790 if (Legal.count(T)) 791 Out.insert(T); 792 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 793 if (Legal.count(T)) 794 Out.insert(T); 795 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 796 if (Legal.count(T)) 797 Out.insert(T); 798 return; 799 case MVT::fAny: 800 for (MVT T : MVT::fp_valuetypes()) 801 if (Legal.count(T)) 802 Out.insert(T); 803 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 804 if (Legal.count(T)) 805 Out.insert(T); 806 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 807 if (Legal.count(T)) 808 Out.insert(T); 809 return; 810 case MVT::vAny: 811 for (MVT T : MVT::vector_valuetypes()) 812 if (Legal.count(T)) 813 Out.insert(T); 814 return; 815 case MVT::Any: 816 for (MVT T : MVT::all_valuetypes()) 817 if (Legal.count(T)) 818 Out.insert(T); 819 return; 820 default: 821 break; 822 } 823 } 824 } 825 826 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 827 if (!LegalTypesCached) { 828 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 829 // Stuff all types from all modes into the default mode. 830 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 831 for (const auto &I : LTS) 832 LegalTypes.insert(I.second); 833 LegalTypesCached = true; 834 } 835 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 836 return LegalCache; 837 } 838 839 #ifndef NDEBUG 840 TypeInfer::ValidateOnExit::~ValidateOnExit() { 841 if (Infer.Validate && !VTS.validate()) { 842 dbgs() << "Type set is empty for each HW mode:\n" 843 "possible type contradiction in the pattern below " 844 "(use -print-records with llvm-tblgen to see all " 845 "expanded records).\n"; 846 Infer.TP.dump(); 847 dbgs() << "Generated from record:\n"; 848 Infer.TP.getRecord()->dump(); 849 PrintFatalError(Infer.TP.getRecord()->getLoc(), 850 "Type set is empty for each HW mode in '" + 851 Infer.TP.getRecord()->getName() + "'"); 852 } 853 } 854 #endif 855 856 857 //===----------------------------------------------------------------------===// 858 // ScopedName Implementation 859 //===----------------------------------------------------------------------===// 860 861 bool ScopedName::operator==(const ScopedName &o) const { 862 return Scope == o.Scope && Identifier == o.Identifier; 863 } 864 865 bool ScopedName::operator!=(const ScopedName &o) const { 866 return !(*this == o); 867 } 868 869 870 //===----------------------------------------------------------------------===// 871 // TreePredicateFn Implementation 872 //===----------------------------------------------------------------------===// 873 874 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 875 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 876 assert( 877 (!hasPredCode() || !hasImmCode()) && 878 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 879 } 880 881 bool TreePredicateFn::hasPredCode() const { 882 return isLoad() || isStore() || isAtomic() || 883 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 884 } 885 886 std::string TreePredicateFn::getPredCode() const { 887 std::string Code; 888 889 if (!isLoad() && !isStore() && !isAtomic()) { 890 Record *MemoryVT = getMemoryVT(); 891 892 if (MemoryVT) 893 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 894 "MemoryVT requires IsLoad or IsStore"); 895 } 896 897 if (!isLoad() && !isStore()) { 898 if (isUnindexed()) 899 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 900 "IsUnindexed requires IsLoad or IsStore"); 901 902 Record *ScalarMemoryVT = getScalarMemoryVT(); 903 904 if (ScalarMemoryVT) 905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 906 "ScalarMemoryVT requires IsLoad or IsStore"); 907 } 908 909 if (isLoad() + isStore() + isAtomic() > 1) 910 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 911 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 912 913 if (isLoad()) { 914 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 915 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 916 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 917 getMinAlignment() < 1) 918 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 919 "IsLoad cannot be used by itself"); 920 } else { 921 if (isNonExtLoad()) 922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 923 "IsNonExtLoad requires IsLoad"); 924 if (isAnyExtLoad()) 925 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 926 "IsAnyExtLoad requires IsLoad"); 927 if (isSignExtLoad()) 928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 929 "IsSignExtLoad requires IsLoad"); 930 if (isZeroExtLoad()) 931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 932 "IsZeroExtLoad requires IsLoad"); 933 } 934 935 if (isStore()) { 936 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 937 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 938 getAddressSpaces() == nullptr && getMinAlignment() < 1) 939 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 940 "IsStore cannot be used by itself"); 941 } else { 942 if (isNonTruncStore()) 943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 944 "IsNonTruncStore requires IsStore"); 945 if (isTruncStore()) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "IsTruncStore requires IsStore"); 948 } 949 950 if (isAtomic()) { 951 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 952 getAddressSpaces() == nullptr && 953 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 954 !isAtomicOrderingAcquireRelease() && 955 !isAtomicOrderingSequentiallyConsistent() && 956 !isAtomicOrderingAcquireOrStronger() && 957 !isAtomicOrderingReleaseOrStronger() && 958 !isAtomicOrderingWeakerThanAcquire() && 959 !isAtomicOrderingWeakerThanRelease()) 960 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 961 "IsAtomic cannot be used by itself"); 962 } else { 963 if (isAtomicOrderingMonotonic()) 964 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 965 "IsAtomicOrderingMonotonic requires IsAtomic"); 966 if (isAtomicOrderingAcquire()) 967 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 968 "IsAtomicOrderingAcquire requires IsAtomic"); 969 if (isAtomicOrderingRelease()) 970 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 971 "IsAtomicOrderingRelease requires IsAtomic"); 972 if (isAtomicOrderingAcquireRelease()) 973 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 974 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 975 if (isAtomicOrderingSequentiallyConsistent()) 976 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 977 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 978 if (isAtomicOrderingAcquireOrStronger()) 979 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 980 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 981 if (isAtomicOrderingReleaseOrStronger()) 982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 983 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 984 if (isAtomicOrderingWeakerThanAcquire()) 985 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 986 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 987 } 988 989 if (isLoad() || isStore() || isAtomic()) { 990 if (ListInit *AddressSpaces = getAddressSpaces()) { 991 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 992 " if ("; 993 994 ListSeparator LS(" && "); 995 for (Init *Val : AddressSpaces->getValues()) { 996 Code += LS; 997 998 IntInit *IntVal = dyn_cast<IntInit>(Val); 999 if (!IntVal) { 1000 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1001 "AddressSpaces element must be integer"); 1002 } 1003 1004 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1005 } 1006 1007 Code += ")\nreturn false;\n"; 1008 } 1009 1010 int64_t MinAlign = getMinAlignment(); 1011 if (MinAlign > 0) { 1012 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1013 Code += utostr(MinAlign); 1014 Code += "))\nreturn false;\n"; 1015 } 1016 1017 Record *MemoryVT = getMemoryVT(); 1018 1019 if (MemoryVT) 1020 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1021 MemoryVT->getName() + ") return false;\n") 1022 .str(); 1023 } 1024 1025 if (isAtomic() && isAtomicOrderingMonotonic()) 1026 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1027 "AtomicOrdering::Monotonic) return false;\n"; 1028 if (isAtomic() && isAtomicOrderingAcquire()) 1029 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1030 "AtomicOrdering::Acquire) return false;\n"; 1031 if (isAtomic() && isAtomicOrderingRelease()) 1032 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1033 "AtomicOrdering::Release) return false;\n"; 1034 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1035 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1036 "AtomicOrdering::AcquireRelease) return false;\n"; 1037 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1038 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1039 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1040 1041 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1042 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1043 "return false;\n"; 1044 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1045 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1046 "return false;\n"; 1047 1048 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1049 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1050 "return false;\n"; 1051 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1052 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1053 "return false;\n"; 1054 1055 if (isLoad() || isStore()) { 1056 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1057 1058 if (isUnindexed()) 1059 Code += ("if (cast<" + SDNodeName + 1060 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1061 "return false;\n") 1062 .str(); 1063 1064 if (isLoad()) { 1065 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1066 isZeroExtLoad()) > 1) 1067 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1068 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1069 "IsZeroExtLoad are mutually exclusive"); 1070 if (isNonExtLoad()) 1071 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1072 "ISD::NON_EXTLOAD) return false;\n"; 1073 if (isAnyExtLoad()) 1074 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1075 "return false;\n"; 1076 if (isSignExtLoad()) 1077 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1078 "return false;\n"; 1079 if (isZeroExtLoad()) 1080 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1081 "return false;\n"; 1082 } else { 1083 if ((isNonTruncStore() + isTruncStore()) > 1) 1084 PrintFatalError( 1085 getOrigPatFragRecord()->getRecord()->getLoc(), 1086 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1087 if (isNonTruncStore()) 1088 Code += 1089 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1090 if (isTruncStore()) 1091 Code += 1092 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1093 } 1094 1095 Record *ScalarMemoryVT = getScalarMemoryVT(); 1096 1097 if (ScalarMemoryVT) 1098 Code += ("if (cast<" + SDNodeName + 1099 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1100 ScalarMemoryVT->getName() + ") return false;\n") 1101 .str(); 1102 } 1103 1104 std::string PredicateCode = 1105 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1106 1107 Code += PredicateCode; 1108 1109 if (PredicateCode.empty() && !Code.empty()) 1110 Code += "return true;\n"; 1111 1112 return Code; 1113 } 1114 1115 bool TreePredicateFn::hasImmCode() const { 1116 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1117 } 1118 1119 std::string TreePredicateFn::getImmCode() const { 1120 return std::string( 1121 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1122 } 1123 1124 bool TreePredicateFn::immCodeUsesAPInt() const { 1125 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1126 } 1127 1128 bool TreePredicateFn::immCodeUsesAPFloat() const { 1129 bool Unset; 1130 // The return value will be false when IsAPFloat is unset. 1131 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1132 Unset); 1133 } 1134 1135 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1136 bool Value) const { 1137 bool Unset; 1138 bool Result = 1139 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1140 if (Unset) 1141 return false; 1142 return Result == Value; 1143 } 1144 bool TreePredicateFn::usesOperands() const { 1145 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1146 } 1147 bool TreePredicateFn::isLoad() const { 1148 return isPredefinedPredicateEqualTo("IsLoad", true); 1149 } 1150 bool TreePredicateFn::isStore() const { 1151 return isPredefinedPredicateEqualTo("IsStore", true); 1152 } 1153 bool TreePredicateFn::isAtomic() const { 1154 return isPredefinedPredicateEqualTo("IsAtomic", true); 1155 } 1156 bool TreePredicateFn::isUnindexed() const { 1157 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1158 } 1159 bool TreePredicateFn::isNonExtLoad() const { 1160 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1161 } 1162 bool TreePredicateFn::isAnyExtLoad() const { 1163 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1164 } 1165 bool TreePredicateFn::isSignExtLoad() const { 1166 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1167 } 1168 bool TreePredicateFn::isZeroExtLoad() const { 1169 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1170 } 1171 bool TreePredicateFn::isNonTruncStore() const { 1172 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1173 } 1174 bool TreePredicateFn::isTruncStore() const { 1175 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1176 } 1177 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1178 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1179 } 1180 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1181 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1182 } 1183 bool TreePredicateFn::isAtomicOrderingRelease() const { 1184 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1185 } 1186 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1187 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1188 } 1189 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1190 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1191 true); 1192 } 1193 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1194 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1195 } 1196 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1197 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1198 } 1199 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1200 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1201 } 1202 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1203 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1204 } 1205 Record *TreePredicateFn::getMemoryVT() const { 1206 Record *R = getOrigPatFragRecord()->getRecord(); 1207 if (R->isValueUnset("MemoryVT")) 1208 return nullptr; 1209 return R->getValueAsDef("MemoryVT"); 1210 } 1211 1212 ListInit *TreePredicateFn::getAddressSpaces() const { 1213 Record *R = getOrigPatFragRecord()->getRecord(); 1214 if (R->isValueUnset("AddressSpaces")) 1215 return nullptr; 1216 return R->getValueAsListInit("AddressSpaces"); 1217 } 1218 1219 int64_t TreePredicateFn::getMinAlignment() const { 1220 Record *R = getOrigPatFragRecord()->getRecord(); 1221 if (R->isValueUnset("MinAlignment")) 1222 return 0; 1223 return R->getValueAsInt("MinAlignment"); 1224 } 1225 1226 Record *TreePredicateFn::getScalarMemoryVT() const { 1227 Record *R = getOrigPatFragRecord()->getRecord(); 1228 if (R->isValueUnset("ScalarMemoryVT")) 1229 return nullptr; 1230 return R->getValueAsDef("ScalarMemoryVT"); 1231 } 1232 bool TreePredicateFn::hasGISelPredicateCode() const { 1233 return !PatFragRec->getRecord() 1234 ->getValueAsString("GISelPredicateCode") 1235 .empty(); 1236 } 1237 std::string TreePredicateFn::getGISelPredicateCode() const { 1238 return std::string( 1239 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1240 } 1241 1242 StringRef TreePredicateFn::getImmType() const { 1243 if (immCodeUsesAPInt()) 1244 return "const APInt &"; 1245 if (immCodeUsesAPFloat()) 1246 return "const APFloat &"; 1247 return "int64_t"; 1248 } 1249 1250 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1251 if (immCodeUsesAPInt()) 1252 return "APInt"; 1253 if (immCodeUsesAPFloat()) 1254 return "APFloat"; 1255 return "I64"; 1256 } 1257 1258 /// isAlwaysTrue - Return true if this is a noop predicate. 1259 bool TreePredicateFn::isAlwaysTrue() const { 1260 return !hasPredCode() && !hasImmCode(); 1261 } 1262 1263 /// Return the name to use in the generated code to reference this, this is 1264 /// "Predicate_foo" if from a pattern fragment "foo". 1265 std::string TreePredicateFn::getFnName() const { 1266 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1267 } 1268 1269 /// getCodeToRunOnSDNode - Return the code for the function body that 1270 /// evaluates this predicate. The argument is expected to be in "Node", 1271 /// not N. This handles casting and conversion to a concrete node type as 1272 /// appropriate. 1273 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1274 // Handle immediate predicates first. 1275 std::string ImmCode = getImmCode(); 1276 if (!ImmCode.empty()) { 1277 if (isLoad()) 1278 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1279 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1280 if (isStore()) 1281 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1282 "IsStore cannot be used with ImmLeaf or its subclasses"); 1283 if (isUnindexed()) 1284 PrintFatalError( 1285 getOrigPatFragRecord()->getRecord()->getLoc(), 1286 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1287 if (isNonExtLoad()) 1288 PrintFatalError( 1289 getOrigPatFragRecord()->getRecord()->getLoc(), 1290 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1291 if (isAnyExtLoad()) 1292 PrintFatalError( 1293 getOrigPatFragRecord()->getRecord()->getLoc(), 1294 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1295 if (isSignExtLoad()) 1296 PrintFatalError( 1297 getOrigPatFragRecord()->getRecord()->getLoc(), 1298 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1299 if (isZeroExtLoad()) 1300 PrintFatalError( 1301 getOrigPatFragRecord()->getRecord()->getLoc(), 1302 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1303 if (isNonTruncStore()) 1304 PrintFatalError( 1305 getOrigPatFragRecord()->getRecord()->getLoc(), 1306 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1307 if (isTruncStore()) 1308 PrintFatalError( 1309 getOrigPatFragRecord()->getRecord()->getLoc(), 1310 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1311 if (getMemoryVT()) 1312 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1313 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1314 if (getScalarMemoryVT()) 1315 PrintFatalError( 1316 getOrigPatFragRecord()->getRecord()->getLoc(), 1317 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1318 1319 std::string Result = (" " + getImmType() + " Imm = ").str(); 1320 if (immCodeUsesAPFloat()) 1321 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1322 else if (immCodeUsesAPInt()) 1323 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1324 else 1325 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1326 return Result + ImmCode; 1327 } 1328 1329 // Handle arbitrary node predicates. 1330 assert(hasPredCode() && "Don't have any predicate code!"); 1331 1332 // If this is using PatFrags, there are multiple trees to search. They should 1333 // all have the same class. FIXME: Is there a way to find a common 1334 // superclass? 1335 StringRef ClassName; 1336 for (const auto &Tree : PatFragRec->getTrees()) { 1337 StringRef TreeClassName; 1338 if (Tree->isLeaf()) 1339 TreeClassName = "SDNode"; 1340 else { 1341 Record *Op = Tree->getOperator(); 1342 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1343 TreeClassName = Info.getSDClassName(); 1344 } 1345 1346 if (ClassName.empty()) 1347 ClassName = TreeClassName; 1348 else if (ClassName != TreeClassName) { 1349 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1350 "PatFrags trees do not have consistent class"); 1351 } 1352 } 1353 1354 std::string Result; 1355 if (ClassName == "SDNode") 1356 Result = " SDNode *N = Node;\n"; 1357 else 1358 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1359 1360 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1361 } 1362 1363 //===----------------------------------------------------------------------===// 1364 // PatternToMatch implementation 1365 // 1366 1367 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1368 if (!P->isLeaf()) 1369 return false; 1370 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1371 if (!DI) 1372 return false; 1373 1374 Record *R = DI->getDef(); 1375 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1376 } 1377 1378 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1379 /// patterns before small ones. This is used to determine the size of a 1380 /// pattern. 1381 static unsigned getPatternSize(const TreePatternNode *P, 1382 const CodeGenDAGPatterns &CGP) { 1383 unsigned Size = 3; // The node itself. 1384 // If the root node is a ConstantSDNode, increases its size. 1385 // e.g. (set R32:$dst, 0). 1386 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1387 Size += 2; 1388 1389 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1390 Size += AM->getComplexity(); 1391 // We don't want to count any children twice, so return early. 1392 return Size; 1393 } 1394 1395 // If this node has some predicate function that must match, it adds to the 1396 // complexity of this node. 1397 if (!P->getPredicateCalls().empty()) 1398 ++Size; 1399 1400 // Count children in the count if they are also nodes. 1401 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1402 const TreePatternNode *Child = P->getChild(i); 1403 if (!Child->isLeaf() && Child->getNumTypes()) { 1404 const TypeSetByHwMode &T0 = Child->getExtType(0); 1405 // At this point, all variable type sets should be simple, i.e. only 1406 // have a default mode. 1407 if (T0.getMachineValueType() != MVT::Other) { 1408 Size += getPatternSize(Child, CGP); 1409 continue; 1410 } 1411 } 1412 if (Child->isLeaf()) { 1413 if (isa<IntInit>(Child->getLeafValue())) 1414 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1415 else if (Child->getComplexPatternInfo(CGP)) 1416 Size += getPatternSize(Child, CGP); 1417 else if (isImmAllOnesAllZerosMatch(Child)) 1418 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1419 else if (!Child->getPredicateCalls().empty()) 1420 ++Size; 1421 } 1422 } 1423 1424 return Size; 1425 } 1426 1427 /// Compute the complexity metric for the input pattern. This roughly 1428 /// corresponds to the number of nodes that are covered. 1429 int PatternToMatch:: 1430 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1431 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1432 } 1433 1434 /// getPredicateCheck - Return a single string containing all of this 1435 /// pattern's predicates concatenated with "&&" operators. 1436 /// 1437 std::string PatternToMatch::getPredicateCheck() const { 1438 SmallVector<const Predicate*,4> PredList; 1439 for (const Predicate &P : Predicates) { 1440 if (!P.getCondString().empty()) 1441 PredList.push_back(&P); 1442 } 1443 llvm::sort(PredList, deref<std::less<>>()); 1444 1445 std::string Check; 1446 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1447 if (i != 0) 1448 Check += " && "; 1449 Check += '(' + PredList[i]->getCondString() + ')'; 1450 } 1451 return Check; 1452 } 1453 1454 //===----------------------------------------------------------------------===// 1455 // SDTypeConstraint implementation 1456 // 1457 1458 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1459 OperandNo = R->getValueAsInt("OperandNum"); 1460 1461 if (R->isSubClassOf("SDTCisVT")) { 1462 ConstraintType = SDTCisVT; 1463 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1464 for (const auto &P : VVT) 1465 if (P.second == MVT::isVoid) 1466 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1467 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1468 ConstraintType = SDTCisPtrTy; 1469 } else if (R->isSubClassOf("SDTCisInt")) { 1470 ConstraintType = SDTCisInt; 1471 } else if (R->isSubClassOf("SDTCisFP")) { 1472 ConstraintType = SDTCisFP; 1473 } else if (R->isSubClassOf("SDTCisVec")) { 1474 ConstraintType = SDTCisVec; 1475 } else if (R->isSubClassOf("SDTCisSameAs")) { 1476 ConstraintType = SDTCisSameAs; 1477 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1478 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1479 ConstraintType = SDTCisVTSmallerThanOp; 1480 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1481 R->getValueAsInt("OtherOperandNum"); 1482 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1483 ConstraintType = SDTCisOpSmallerThanOp; 1484 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1485 R->getValueAsInt("BigOperandNum"); 1486 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1487 ConstraintType = SDTCisEltOfVec; 1488 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1489 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1490 ConstraintType = SDTCisSubVecOfVec; 1491 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1492 R->getValueAsInt("OtherOpNum"); 1493 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1494 ConstraintType = SDTCVecEltisVT; 1495 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1496 for (const auto &P : VVT) { 1497 MVT T = P.second; 1498 if (T.isVector()) 1499 PrintFatalError(R->getLoc(), 1500 "Cannot use vector type as SDTCVecEltisVT"); 1501 if (!T.isInteger() && !T.isFloatingPoint()) 1502 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1503 "as SDTCVecEltisVT"); 1504 } 1505 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1506 ConstraintType = SDTCisSameNumEltsAs; 1507 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1508 R->getValueAsInt("OtherOperandNum"); 1509 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1510 ConstraintType = SDTCisSameSizeAs; 1511 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1512 R->getValueAsInt("OtherOperandNum"); 1513 } else { 1514 PrintFatalError(R->getLoc(), 1515 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1516 } 1517 } 1518 1519 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1520 /// N, and the result number in ResNo. 1521 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1522 const SDNodeInfo &NodeInfo, 1523 unsigned &ResNo) { 1524 unsigned NumResults = NodeInfo.getNumResults(); 1525 if (OpNo < NumResults) { 1526 ResNo = OpNo; 1527 return N; 1528 } 1529 1530 OpNo -= NumResults; 1531 1532 if (OpNo >= N->getNumChildren()) { 1533 std::string S; 1534 raw_string_ostream OS(S); 1535 OS << "Invalid operand number in type constraint " 1536 << (OpNo+NumResults) << " "; 1537 N->print(OS); 1538 PrintFatalError(OS.str()); 1539 } 1540 1541 return N->getChild(OpNo); 1542 } 1543 1544 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1545 /// constraint to the nodes operands. This returns true if it makes a 1546 /// change, false otherwise. If a type contradiction is found, flag an error. 1547 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1548 const SDNodeInfo &NodeInfo, 1549 TreePattern &TP) const { 1550 if (TP.hasError()) 1551 return false; 1552 1553 unsigned ResNo = 0; // The result number being referenced. 1554 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1555 TypeInfer &TI = TP.getInfer(); 1556 1557 switch (ConstraintType) { 1558 case SDTCisVT: 1559 // Operand must be a particular type. 1560 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1561 case SDTCisPtrTy: 1562 // Operand must be same as target pointer type. 1563 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1564 case SDTCisInt: 1565 // Require it to be one of the legal integer VTs. 1566 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1567 case SDTCisFP: 1568 // Require it to be one of the legal fp VTs. 1569 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1570 case SDTCisVec: 1571 // Require it to be one of the legal vector VTs. 1572 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1573 case SDTCisSameAs: { 1574 unsigned OResNo = 0; 1575 TreePatternNode *OtherNode = 1576 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1577 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1578 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1579 } 1580 case SDTCisVTSmallerThanOp: { 1581 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1582 // have an integer type that is smaller than the VT. 1583 if (!NodeToApply->isLeaf() || 1584 !isa<DefInit>(NodeToApply->getLeafValue()) || 1585 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1586 ->isSubClassOf("ValueType")) { 1587 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1588 return false; 1589 } 1590 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1591 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1592 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1593 TypeSetByHwMode TypeListTmp(VVT); 1594 1595 unsigned OResNo = 0; 1596 TreePatternNode *OtherNode = 1597 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1598 OResNo); 1599 1600 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1601 } 1602 case SDTCisOpSmallerThanOp: { 1603 unsigned BResNo = 0; 1604 TreePatternNode *BigOperand = 1605 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1606 BResNo); 1607 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1608 BigOperand->getExtType(BResNo)); 1609 } 1610 case SDTCisEltOfVec: { 1611 unsigned VResNo = 0; 1612 TreePatternNode *VecOperand = 1613 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1614 VResNo); 1615 // Filter vector types out of VecOperand that don't have the right element 1616 // type. 1617 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1618 NodeToApply->getExtType(ResNo)); 1619 } 1620 case SDTCisSubVecOfVec: { 1621 unsigned VResNo = 0; 1622 TreePatternNode *BigVecOperand = 1623 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1624 VResNo); 1625 1626 // Filter vector types out of BigVecOperand that don't have the 1627 // right subvector type. 1628 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1629 NodeToApply->getExtType(ResNo)); 1630 } 1631 case SDTCVecEltisVT: { 1632 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1633 } 1634 case SDTCisSameNumEltsAs: { 1635 unsigned OResNo = 0; 1636 TreePatternNode *OtherNode = 1637 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1638 N, NodeInfo, OResNo); 1639 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1640 NodeToApply->getExtType(ResNo)); 1641 } 1642 case SDTCisSameSizeAs: { 1643 unsigned OResNo = 0; 1644 TreePatternNode *OtherNode = 1645 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1646 N, NodeInfo, OResNo); 1647 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1648 NodeToApply->getExtType(ResNo)); 1649 } 1650 } 1651 llvm_unreachable("Invalid ConstraintType!"); 1652 } 1653 1654 // Update the node type to match an instruction operand or result as specified 1655 // in the ins or outs lists on the instruction definition. Return true if the 1656 // type was actually changed. 1657 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1658 Record *Operand, 1659 TreePattern &TP) { 1660 // The 'unknown' operand indicates that types should be inferred from the 1661 // context. 1662 if (Operand->isSubClassOf("unknown_class")) 1663 return false; 1664 1665 // The Operand class specifies a type directly. 1666 if (Operand->isSubClassOf("Operand")) { 1667 Record *R = Operand->getValueAsDef("Type"); 1668 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1669 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1670 } 1671 1672 // PointerLikeRegClass has a type that is determined at runtime. 1673 if (Operand->isSubClassOf("PointerLikeRegClass")) 1674 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1675 1676 // Both RegisterClass and RegisterOperand operands derive their types from a 1677 // register class def. 1678 Record *RC = nullptr; 1679 if (Operand->isSubClassOf("RegisterClass")) 1680 RC = Operand; 1681 else if (Operand->isSubClassOf("RegisterOperand")) 1682 RC = Operand->getValueAsDef("RegClass"); 1683 1684 assert(RC && "Unknown operand type"); 1685 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1686 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1687 } 1688 1689 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1690 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1691 if (!TP.getInfer().isConcrete(Types[i], true)) 1692 return true; 1693 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1694 if (getChild(i)->ContainsUnresolvedType(TP)) 1695 return true; 1696 return false; 1697 } 1698 1699 bool TreePatternNode::hasProperTypeByHwMode() const { 1700 for (const TypeSetByHwMode &S : Types) 1701 if (!S.isDefaultOnly()) 1702 return true; 1703 for (const TreePatternNodePtr &C : Children) 1704 if (C->hasProperTypeByHwMode()) 1705 return true; 1706 return false; 1707 } 1708 1709 bool TreePatternNode::hasPossibleType() const { 1710 for (const TypeSetByHwMode &S : Types) 1711 if (!S.isPossible()) 1712 return false; 1713 for (const TreePatternNodePtr &C : Children) 1714 if (!C->hasPossibleType()) 1715 return false; 1716 return true; 1717 } 1718 1719 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1720 for (TypeSetByHwMode &S : Types) { 1721 S.makeSimple(Mode); 1722 // Check if the selected mode had a type conflict. 1723 if (S.get(DefaultMode).empty()) 1724 return false; 1725 } 1726 for (const TreePatternNodePtr &C : Children) 1727 if (!C->setDefaultMode(Mode)) 1728 return false; 1729 return true; 1730 } 1731 1732 //===----------------------------------------------------------------------===// 1733 // SDNodeInfo implementation 1734 // 1735 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1736 EnumName = R->getValueAsString("Opcode"); 1737 SDClassName = R->getValueAsString("SDClass"); 1738 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1739 NumResults = TypeProfile->getValueAsInt("NumResults"); 1740 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1741 1742 // Parse the properties. 1743 Properties = parseSDPatternOperatorProperties(R); 1744 1745 // Parse the type constraints. 1746 std::vector<Record*> ConstraintList = 1747 TypeProfile->getValueAsListOfDefs("Constraints"); 1748 for (Record *R : ConstraintList) 1749 TypeConstraints.emplace_back(R, CGH); 1750 } 1751 1752 /// getKnownType - If the type constraints on this node imply a fixed type 1753 /// (e.g. all stores return void, etc), then return it as an 1754 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1755 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1756 unsigned NumResults = getNumResults(); 1757 assert(NumResults <= 1 && 1758 "We only work with nodes with zero or one result so far!"); 1759 assert(ResNo == 0 && "Only handles single result nodes so far"); 1760 1761 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1762 // Make sure that this applies to the correct node result. 1763 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1764 continue; 1765 1766 switch (Constraint.ConstraintType) { 1767 default: break; 1768 case SDTypeConstraint::SDTCisVT: 1769 if (Constraint.VVT.isSimple()) 1770 return Constraint.VVT.getSimple().SimpleTy; 1771 break; 1772 case SDTypeConstraint::SDTCisPtrTy: 1773 return MVT::iPTR; 1774 } 1775 } 1776 return MVT::Other; 1777 } 1778 1779 //===----------------------------------------------------------------------===// 1780 // TreePatternNode implementation 1781 // 1782 1783 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1784 if (Operator->getName() == "set" || 1785 Operator->getName() == "implicit") 1786 return 0; // All return nothing. 1787 1788 if (Operator->isSubClassOf("Intrinsic")) 1789 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1790 1791 if (Operator->isSubClassOf("SDNode")) 1792 return CDP.getSDNodeInfo(Operator).getNumResults(); 1793 1794 if (Operator->isSubClassOf("PatFrags")) { 1795 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1796 // the forward reference case where one pattern fragment references another 1797 // before it is processed. 1798 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1799 // The number of results of a fragment with alternative records is the 1800 // maximum number of results across all alternatives. 1801 unsigned NumResults = 0; 1802 for (const auto &T : PFRec->getTrees()) 1803 NumResults = std::max(NumResults, T->getNumTypes()); 1804 return NumResults; 1805 } 1806 1807 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1808 assert(LI && "Invalid Fragment"); 1809 unsigned NumResults = 0; 1810 for (Init *I : LI->getValues()) { 1811 Record *Op = nullptr; 1812 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1813 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1814 Op = DI->getDef(); 1815 assert(Op && "Invalid Fragment"); 1816 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1817 } 1818 return NumResults; 1819 } 1820 1821 if (Operator->isSubClassOf("Instruction")) { 1822 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1823 1824 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1825 1826 // Subtract any defaulted outputs. 1827 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1828 Record *OperandNode = InstInfo.Operands[i].Rec; 1829 1830 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1831 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1832 --NumDefsToAdd; 1833 } 1834 1835 // Add on one implicit def if it has a resolvable type. 1836 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1837 ++NumDefsToAdd; 1838 return NumDefsToAdd; 1839 } 1840 1841 if (Operator->isSubClassOf("SDNodeXForm")) 1842 return 1; // FIXME: Generalize SDNodeXForm 1843 1844 if (Operator->isSubClassOf("ValueType")) 1845 return 1; // A type-cast of one result. 1846 1847 if (Operator->isSubClassOf("ComplexPattern")) 1848 return 1; 1849 1850 errs() << *Operator; 1851 PrintFatalError("Unhandled node in GetNumNodeResults"); 1852 } 1853 1854 void TreePatternNode::print(raw_ostream &OS) const { 1855 if (isLeaf()) 1856 OS << *getLeafValue(); 1857 else 1858 OS << '(' << getOperator()->getName(); 1859 1860 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1861 OS << ':'; 1862 getExtType(i).writeToStream(OS); 1863 } 1864 1865 if (!isLeaf()) { 1866 if (getNumChildren() != 0) { 1867 OS << " "; 1868 ListSeparator LS; 1869 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1870 OS << LS; 1871 getChild(i)->print(OS); 1872 } 1873 } 1874 OS << ")"; 1875 } 1876 1877 for (const TreePredicateCall &Pred : PredicateCalls) { 1878 OS << "<<P:"; 1879 if (Pred.Scope) 1880 OS << Pred.Scope << ":"; 1881 OS << Pred.Fn.getFnName() << ">>"; 1882 } 1883 if (TransformFn) 1884 OS << "<<X:" << TransformFn->getName() << ">>"; 1885 if (!getName().empty()) 1886 OS << ":$" << getName(); 1887 1888 for (const ScopedName &Name : NamesAsPredicateArg) 1889 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1890 } 1891 void TreePatternNode::dump() const { 1892 print(errs()); 1893 } 1894 1895 /// isIsomorphicTo - Return true if this node is recursively 1896 /// isomorphic to the specified node. For this comparison, the node's 1897 /// entire state is considered. The assigned name is ignored, since 1898 /// nodes with differing names are considered isomorphic. However, if 1899 /// the assigned name is present in the dependent variable set, then 1900 /// the assigned name is considered significant and the node is 1901 /// isomorphic if the names match. 1902 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1903 const MultipleUseVarSet &DepVars) const { 1904 if (N == this) return true; 1905 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1906 getPredicateCalls() != N->getPredicateCalls() || 1907 getTransformFn() != N->getTransformFn()) 1908 return false; 1909 1910 if (isLeaf()) { 1911 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1912 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1913 return ((DI->getDef() == NDI->getDef()) 1914 && (DepVars.find(getName()) == DepVars.end() 1915 || getName() == N->getName())); 1916 } 1917 } 1918 return getLeafValue() == N->getLeafValue(); 1919 } 1920 1921 if (N->getOperator() != getOperator() || 1922 N->getNumChildren() != getNumChildren()) return false; 1923 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1924 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1925 return false; 1926 return true; 1927 } 1928 1929 /// clone - Make a copy of this tree and all of its children. 1930 /// 1931 TreePatternNodePtr TreePatternNode::clone() const { 1932 TreePatternNodePtr New; 1933 if (isLeaf()) { 1934 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1935 } else { 1936 std::vector<TreePatternNodePtr> CChildren; 1937 CChildren.reserve(Children.size()); 1938 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1939 CChildren.push_back(getChild(i)->clone()); 1940 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1941 getNumTypes()); 1942 } 1943 New->setName(getName()); 1944 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1945 New->Types = Types; 1946 New->setPredicateCalls(getPredicateCalls()); 1947 New->setTransformFn(getTransformFn()); 1948 return New; 1949 } 1950 1951 /// RemoveAllTypes - Recursively strip all the types of this tree. 1952 void TreePatternNode::RemoveAllTypes() { 1953 // Reset to unknown type. 1954 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1955 if (isLeaf()) return; 1956 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1957 getChild(i)->RemoveAllTypes(); 1958 } 1959 1960 1961 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1962 /// with actual values specified by ArgMap. 1963 void TreePatternNode::SubstituteFormalArguments( 1964 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1965 if (isLeaf()) return; 1966 1967 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1968 TreePatternNode *Child = getChild(i); 1969 if (Child->isLeaf()) { 1970 Init *Val = Child->getLeafValue(); 1971 // Note that, when substituting into an output pattern, Val might be an 1972 // UnsetInit. 1973 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1974 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1975 // We found a use of a formal argument, replace it with its value. 1976 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1977 assert(NewChild && "Couldn't find formal argument!"); 1978 assert((Child->getPredicateCalls().empty() || 1979 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1980 "Non-empty child predicate clobbered!"); 1981 setChild(i, std::move(NewChild)); 1982 } 1983 } else { 1984 getChild(i)->SubstituteFormalArguments(ArgMap); 1985 } 1986 } 1987 } 1988 1989 1990 /// InlinePatternFragments - If this pattern refers to any pattern 1991 /// fragments, return the set of inlined versions (this can be more than 1992 /// one if a PatFrags record has multiple alternatives). 1993 void TreePatternNode::InlinePatternFragments( 1994 TreePatternNodePtr T, TreePattern &TP, 1995 std::vector<TreePatternNodePtr> &OutAlternatives) { 1996 1997 if (TP.hasError()) 1998 return; 1999 2000 if (isLeaf()) { 2001 OutAlternatives.push_back(T); // nothing to do. 2002 return; 2003 } 2004 2005 Record *Op = getOperator(); 2006 2007 if (!Op->isSubClassOf("PatFrags")) { 2008 if (getNumChildren() == 0) { 2009 OutAlternatives.push_back(T); 2010 return; 2011 } 2012 2013 // Recursively inline children nodes. 2014 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2015 ChildAlternatives.resize(getNumChildren()); 2016 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2017 TreePatternNodePtr Child = getChildShared(i); 2018 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2019 // If there are no alternatives for any child, there are no 2020 // alternatives for this expression as whole. 2021 if (ChildAlternatives[i].empty()) 2022 return; 2023 2024 assert((Child->getPredicateCalls().empty() || 2025 llvm::all_of(ChildAlternatives[i], 2026 [&](const TreePatternNodePtr &NewChild) { 2027 return NewChild->getPredicateCalls() == 2028 Child->getPredicateCalls(); 2029 })) && 2030 "Non-empty child predicate clobbered!"); 2031 } 2032 2033 // The end result is an all-pairs construction of the resultant pattern. 2034 std::vector<unsigned> Idxs; 2035 Idxs.resize(ChildAlternatives.size()); 2036 bool NotDone; 2037 do { 2038 // Create the variant and add it to the output list. 2039 std::vector<TreePatternNodePtr> NewChildren; 2040 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2041 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2042 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2043 getOperator(), std::move(NewChildren), getNumTypes()); 2044 2045 // Copy over properties. 2046 R->setName(getName()); 2047 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2048 R->setPredicateCalls(getPredicateCalls()); 2049 R->setTransformFn(getTransformFn()); 2050 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2051 R->setType(i, getExtType(i)); 2052 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2053 R->setResultIndex(i, getResultIndex(i)); 2054 2055 // Register alternative. 2056 OutAlternatives.push_back(R); 2057 2058 // Increment indices to the next permutation by incrementing the 2059 // indices from last index backward, e.g., generate the sequence 2060 // [0, 0], [0, 1], [1, 0], [1, 1]. 2061 int IdxsIdx; 2062 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2063 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2064 Idxs[IdxsIdx] = 0; 2065 else 2066 break; 2067 } 2068 NotDone = (IdxsIdx >= 0); 2069 } while (NotDone); 2070 2071 return; 2072 } 2073 2074 // Otherwise, we found a reference to a fragment. First, look up its 2075 // TreePattern record. 2076 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2077 2078 // Verify that we are passing the right number of operands. 2079 if (Frag->getNumArgs() != Children.size()) { 2080 TP.error("'" + Op->getName() + "' fragment requires " + 2081 Twine(Frag->getNumArgs()) + " operands!"); 2082 return; 2083 } 2084 2085 TreePredicateFn PredFn(Frag); 2086 unsigned Scope = 0; 2087 if (TreePredicateFn(Frag).usesOperands()) 2088 Scope = TP.getDAGPatterns().allocateScope(); 2089 2090 // Compute the map of formal to actual arguments. 2091 std::map<std::string, TreePatternNodePtr> ArgMap; 2092 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2093 TreePatternNodePtr Child = getChildShared(i); 2094 if (Scope != 0) { 2095 Child = Child->clone(); 2096 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2097 } 2098 ArgMap[Frag->getArgName(i)] = Child; 2099 } 2100 2101 // Loop over all fragment alternatives. 2102 for (const auto &Alternative : Frag->getTrees()) { 2103 TreePatternNodePtr FragTree = Alternative->clone(); 2104 2105 if (!PredFn.isAlwaysTrue()) 2106 FragTree->addPredicateCall(PredFn, Scope); 2107 2108 // Resolve formal arguments to their actual value. 2109 if (Frag->getNumArgs()) 2110 FragTree->SubstituteFormalArguments(ArgMap); 2111 2112 // Transfer types. Note that the resolved alternative may have fewer 2113 // (but not more) results than the PatFrags node. 2114 FragTree->setName(getName()); 2115 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2116 FragTree->UpdateNodeType(i, getExtType(i), TP); 2117 2118 // Transfer in the old predicates. 2119 for (const TreePredicateCall &Pred : getPredicateCalls()) 2120 FragTree->addPredicateCall(Pred); 2121 2122 // The fragment we inlined could have recursive inlining that is needed. See 2123 // if there are any pattern fragments in it and inline them as needed. 2124 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2125 } 2126 } 2127 2128 /// getImplicitType - Check to see if the specified record has an implicit 2129 /// type which should be applied to it. This will infer the type of register 2130 /// references from the register file information, for example. 2131 /// 2132 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2133 /// the F8RC register class argument in: 2134 /// 2135 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2136 /// 2137 /// When Unnamed is false, return the type of a named DAG operand such as the 2138 /// GPR:$src operand above. 2139 /// 2140 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2141 bool NotRegisters, 2142 bool Unnamed, 2143 TreePattern &TP) { 2144 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2145 2146 // Check to see if this is a register operand. 2147 if (R->isSubClassOf("RegisterOperand")) { 2148 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2149 if (NotRegisters) 2150 return TypeSetByHwMode(); // Unknown. 2151 Record *RegClass = R->getValueAsDef("RegClass"); 2152 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2153 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2154 } 2155 2156 // Check to see if this is a register or a register class. 2157 if (R->isSubClassOf("RegisterClass")) { 2158 assert(ResNo == 0 && "Regclass ref only has one result!"); 2159 // An unnamed register class represents itself as an i32 immediate, for 2160 // example on a COPY_TO_REGCLASS instruction. 2161 if (Unnamed) 2162 return TypeSetByHwMode(MVT::i32); 2163 2164 // In a named operand, the register class provides the possible set of 2165 // types. 2166 if (NotRegisters) 2167 return TypeSetByHwMode(); // Unknown. 2168 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2169 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2170 } 2171 2172 if (R->isSubClassOf("PatFrags")) { 2173 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2174 // Pattern fragment types will be resolved when they are inlined. 2175 return TypeSetByHwMode(); // Unknown. 2176 } 2177 2178 if (R->isSubClassOf("Register")) { 2179 assert(ResNo == 0 && "Registers only produce one result!"); 2180 if (NotRegisters) 2181 return TypeSetByHwMode(); // Unknown. 2182 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2183 return TypeSetByHwMode(T.getRegisterVTs(R)); 2184 } 2185 2186 if (R->isSubClassOf("SubRegIndex")) { 2187 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2188 return TypeSetByHwMode(MVT::i32); 2189 } 2190 2191 if (R->isSubClassOf("ValueType")) { 2192 assert(ResNo == 0 && "This node only has one result!"); 2193 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2194 // 2195 // (sext_inreg GPR:$src, i16) 2196 // ~~~ 2197 if (Unnamed) 2198 return TypeSetByHwMode(MVT::Other); 2199 // With a name, the ValueType simply provides the type of the named 2200 // variable. 2201 // 2202 // (sext_inreg i32:$src, i16) 2203 // ~~~~~~~~ 2204 if (NotRegisters) 2205 return TypeSetByHwMode(); // Unknown. 2206 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2207 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2208 } 2209 2210 if (R->isSubClassOf("CondCode")) { 2211 assert(ResNo == 0 && "This node only has one result!"); 2212 // Using a CondCodeSDNode. 2213 return TypeSetByHwMode(MVT::Other); 2214 } 2215 2216 if (R->isSubClassOf("ComplexPattern")) { 2217 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2218 if (NotRegisters) 2219 return TypeSetByHwMode(); // Unknown. 2220 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2221 } 2222 if (R->isSubClassOf("PointerLikeRegClass")) { 2223 assert(ResNo == 0 && "Regclass can only have one result!"); 2224 TypeSetByHwMode VTS(MVT::iPTR); 2225 TP.getInfer().expandOverloads(VTS); 2226 return VTS; 2227 } 2228 2229 if (R->getName() == "node" || R->getName() == "srcvalue" || 2230 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2231 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2232 // Placeholder. 2233 return TypeSetByHwMode(); // Unknown. 2234 } 2235 2236 if (R->isSubClassOf("Operand")) { 2237 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2238 Record *T = R->getValueAsDef("Type"); 2239 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2240 } 2241 2242 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2243 return TypeSetByHwMode(MVT::Other); 2244 } 2245 2246 2247 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2248 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2249 const CodeGenIntrinsic *TreePatternNode:: 2250 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2251 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2252 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2253 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2254 return nullptr; 2255 2256 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2257 return &CDP.getIntrinsicInfo(IID); 2258 } 2259 2260 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2261 /// return the ComplexPattern information, otherwise return null. 2262 const ComplexPattern * 2263 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2264 Record *Rec; 2265 if (isLeaf()) { 2266 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2267 if (!DI) 2268 return nullptr; 2269 Rec = DI->getDef(); 2270 } else 2271 Rec = getOperator(); 2272 2273 if (!Rec->isSubClassOf("ComplexPattern")) 2274 return nullptr; 2275 return &CGP.getComplexPattern(Rec); 2276 } 2277 2278 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2279 // A ComplexPattern specifically declares how many results it fills in. 2280 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2281 return CP->getNumOperands(); 2282 2283 // If MIOperandInfo is specified, that gives the count. 2284 if (isLeaf()) { 2285 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2286 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2287 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2288 if (MIOps->getNumArgs()) 2289 return MIOps->getNumArgs(); 2290 } 2291 } 2292 2293 // Otherwise there is just one result. 2294 return 1; 2295 } 2296 2297 /// NodeHasProperty - Return true if this node has the specified property. 2298 bool TreePatternNode::NodeHasProperty(SDNP Property, 2299 const CodeGenDAGPatterns &CGP) const { 2300 if (isLeaf()) { 2301 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2302 return CP->hasProperty(Property); 2303 2304 return false; 2305 } 2306 2307 if (Property != SDNPHasChain) { 2308 // The chain proprety is already present on the different intrinsic node 2309 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2310 // on the intrinsic. Anything else is specific to the individual intrinsic. 2311 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2312 return Int->hasProperty(Property); 2313 } 2314 2315 if (!Operator->isSubClassOf("SDPatternOperator")) 2316 return false; 2317 2318 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2319 } 2320 2321 2322 2323 2324 /// TreeHasProperty - Return true if any node in this tree has the specified 2325 /// property. 2326 bool TreePatternNode::TreeHasProperty(SDNP Property, 2327 const CodeGenDAGPatterns &CGP) const { 2328 if (NodeHasProperty(Property, CGP)) 2329 return true; 2330 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2331 if (getChild(i)->TreeHasProperty(Property, CGP)) 2332 return true; 2333 return false; 2334 } 2335 2336 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2337 /// commutative intrinsic. 2338 bool 2339 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2340 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2341 return Int->isCommutative; 2342 return false; 2343 } 2344 2345 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2346 if (!N->isLeaf()) 2347 return N->getOperator()->isSubClassOf(Class); 2348 2349 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2350 if (DI && DI->getDef()->isSubClassOf(Class)) 2351 return true; 2352 2353 return false; 2354 } 2355 2356 static void emitTooManyOperandsError(TreePattern &TP, 2357 StringRef InstName, 2358 unsigned Expected, 2359 unsigned Actual) { 2360 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2361 " operands but expected only " + Twine(Expected) + "!"); 2362 } 2363 2364 static void emitTooFewOperandsError(TreePattern &TP, 2365 StringRef InstName, 2366 unsigned Actual) { 2367 TP.error("Instruction '" + InstName + 2368 "' expects more than the provided " + Twine(Actual) + " operands!"); 2369 } 2370 2371 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2372 /// this node and its children in the tree. This returns true if it makes a 2373 /// change, false otherwise. If a type contradiction is found, flag an error. 2374 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2375 if (TP.hasError()) 2376 return false; 2377 2378 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2379 if (isLeaf()) { 2380 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2381 // If it's a regclass or something else known, include the type. 2382 bool MadeChange = false; 2383 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2384 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2385 NotRegisters, 2386 !hasName(), TP), TP); 2387 return MadeChange; 2388 } 2389 2390 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2391 assert(Types.size() == 1 && "Invalid IntInit"); 2392 2393 // Int inits are always integers. :) 2394 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2395 2396 if (!TP.getInfer().isConcrete(Types[0], false)) 2397 return MadeChange; 2398 2399 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2400 for (auto &P : VVT) { 2401 MVT::SimpleValueType VT = P.second.SimpleTy; 2402 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2403 continue; 2404 unsigned Size = MVT(VT).getFixedSizeInBits(); 2405 // Make sure that the value is representable for this type. 2406 if (Size >= 32) 2407 continue; 2408 // Check that the value doesn't use more bits than we have. It must 2409 // either be a sign- or zero-extended equivalent of the original. 2410 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2411 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2412 SignBitAndAbove == 1) 2413 continue; 2414 2415 TP.error("Integer value '" + Twine(II->getValue()) + 2416 "' is out of range for type '" + getEnumName(VT) + "'!"); 2417 break; 2418 } 2419 return MadeChange; 2420 } 2421 2422 return false; 2423 } 2424 2425 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2426 bool MadeChange = false; 2427 2428 // Apply the result type to the node. 2429 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2430 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2431 2432 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2433 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2434 2435 if (getNumChildren() != NumParamVTs + 1) { 2436 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2437 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2438 return false; 2439 } 2440 2441 // Apply type info to the intrinsic ID. 2442 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2443 2444 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2445 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2446 2447 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2448 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2449 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2450 } 2451 return MadeChange; 2452 } 2453 2454 if (getOperator()->isSubClassOf("SDNode")) { 2455 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2456 2457 // Check that the number of operands is sane. Negative operands -> varargs. 2458 if (NI.getNumOperands() >= 0 && 2459 getNumChildren() != (unsigned)NI.getNumOperands()) { 2460 TP.error(getOperator()->getName() + " node requires exactly " + 2461 Twine(NI.getNumOperands()) + " operands!"); 2462 return false; 2463 } 2464 2465 bool MadeChange = false; 2466 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2467 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2468 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2469 return MadeChange; 2470 } 2471 2472 if (getOperator()->isSubClassOf("Instruction")) { 2473 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2474 CodeGenInstruction &InstInfo = 2475 CDP.getTargetInfo().getInstruction(getOperator()); 2476 2477 bool MadeChange = false; 2478 2479 // Apply the result types to the node, these come from the things in the 2480 // (outs) list of the instruction. 2481 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2482 Inst.getNumResults()); 2483 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2484 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2485 2486 // If the instruction has implicit defs, we apply the first one as a result. 2487 // FIXME: This sucks, it should apply all implicit defs. 2488 if (!InstInfo.ImplicitDefs.empty()) { 2489 unsigned ResNo = NumResultsToAdd; 2490 2491 // FIXME: Generalize to multiple possible types and multiple possible 2492 // ImplicitDefs. 2493 MVT::SimpleValueType VT = 2494 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2495 2496 if (VT != MVT::Other) 2497 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2498 } 2499 2500 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2501 // be the same. 2502 if (getOperator()->getName() == "INSERT_SUBREG") { 2503 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2504 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2505 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2506 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2507 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2508 // variadic. 2509 2510 unsigned NChild = getNumChildren(); 2511 if (NChild < 3) { 2512 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2513 return false; 2514 } 2515 2516 if (NChild % 2 == 0) { 2517 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2518 return false; 2519 } 2520 2521 if (!isOperandClass(getChild(0), "RegisterClass")) { 2522 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2523 return false; 2524 } 2525 2526 for (unsigned I = 1; I < NChild; I += 2) { 2527 TreePatternNode *SubIdxChild = getChild(I + 1); 2528 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2529 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2530 Twine(I + 1) + "!"); 2531 return false; 2532 } 2533 } 2534 } 2535 2536 unsigned NumResults = Inst.getNumResults(); 2537 unsigned NumFixedOperands = InstInfo.Operands.size(); 2538 2539 // If one or more operands with a default value appear at the end of the 2540 // formal operand list for an instruction, we allow them to be overridden 2541 // by optional operands provided in the pattern. 2542 // 2543 // But if an operand B without a default appears at any point after an 2544 // operand A with a default, then we don't allow A to be overridden, 2545 // because there would be no way to specify whether the next operand in 2546 // the pattern was intended to override A or skip it. 2547 unsigned NonOverridableOperands = NumFixedOperands; 2548 while (NonOverridableOperands > NumResults && 2549 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2550 --NonOverridableOperands; 2551 2552 unsigned ChildNo = 0; 2553 assert(NumResults <= NumFixedOperands); 2554 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2555 Record *OperandNode = InstInfo.Operands[i].Rec; 2556 2557 // If the operand has a default value, do we use it? We must use the 2558 // default if we've run out of children of the pattern DAG to consume, 2559 // or if the operand is followed by a non-defaulted one. 2560 if (CDP.operandHasDefault(OperandNode) && 2561 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2562 continue; 2563 2564 // If we have run out of child nodes and there _isn't_ a default 2565 // value we can use for the next operand, give an error. 2566 if (ChildNo >= getNumChildren()) { 2567 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2568 return false; 2569 } 2570 2571 TreePatternNode *Child = getChild(ChildNo++); 2572 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2573 2574 // If the operand has sub-operands, they may be provided by distinct 2575 // child patterns, so attempt to match each sub-operand separately. 2576 if (OperandNode->isSubClassOf("Operand")) { 2577 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2578 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2579 // But don't do that if the whole operand is being provided by 2580 // a single ComplexPattern-related Operand. 2581 2582 if (Child->getNumMIResults(CDP) < NumArgs) { 2583 // Match first sub-operand against the child we already have. 2584 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2585 MadeChange |= 2586 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2587 2588 // And the remaining sub-operands against subsequent children. 2589 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2590 if (ChildNo >= getNumChildren()) { 2591 emitTooFewOperandsError(TP, getOperator()->getName(), 2592 getNumChildren()); 2593 return false; 2594 } 2595 Child = getChild(ChildNo++); 2596 2597 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2598 MadeChange |= 2599 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2600 } 2601 continue; 2602 } 2603 } 2604 } 2605 2606 // If we didn't match by pieces above, attempt to match the whole 2607 // operand now. 2608 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2609 } 2610 2611 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2612 emitTooManyOperandsError(TP, getOperator()->getName(), 2613 ChildNo, getNumChildren()); 2614 return false; 2615 } 2616 2617 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2618 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2619 return MadeChange; 2620 } 2621 2622 if (getOperator()->isSubClassOf("ComplexPattern")) { 2623 bool MadeChange = false; 2624 2625 for (unsigned i = 0; i < getNumChildren(); ++i) 2626 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2627 2628 return MadeChange; 2629 } 2630 2631 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2632 2633 // Node transforms always take one operand. 2634 if (getNumChildren() != 1) { 2635 TP.error("Node transform '" + getOperator()->getName() + 2636 "' requires one operand!"); 2637 return false; 2638 } 2639 2640 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2641 return MadeChange; 2642 } 2643 2644 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2645 /// RHS of a commutative operation, not the on LHS. 2646 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2647 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2648 return true; 2649 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2650 return true; 2651 if (isImmAllOnesAllZerosMatch(N)) 2652 return true; 2653 return false; 2654 } 2655 2656 2657 /// canPatternMatch - If it is impossible for this pattern to match on this 2658 /// target, fill in Reason and return false. Otherwise, return true. This is 2659 /// used as a sanity check for .td files (to prevent people from writing stuff 2660 /// that can never possibly work), and to prevent the pattern permuter from 2661 /// generating stuff that is useless. 2662 bool TreePatternNode::canPatternMatch(std::string &Reason, 2663 const CodeGenDAGPatterns &CDP) { 2664 if (isLeaf()) return true; 2665 2666 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2667 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2668 return false; 2669 2670 // If this is an intrinsic, handle cases that would make it not match. For 2671 // example, if an operand is required to be an immediate. 2672 if (getOperator()->isSubClassOf("Intrinsic")) { 2673 // TODO: 2674 return true; 2675 } 2676 2677 if (getOperator()->isSubClassOf("ComplexPattern")) 2678 return true; 2679 2680 // If this node is a commutative operator, check that the LHS isn't an 2681 // immediate. 2682 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2683 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2684 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2685 // Scan all of the operands of the node and make sure that only the last one 2686 // is a constant node, unless the RHS also is. 2687 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2688 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2689 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2690 if (OnlyOnRHSOfCommutative(getChild(i))) { 2691 Reason="Immediate value must be on the RHS of commutative operators!"; 2692 return false; 2693 } 2694 } 2695 } 2696 2697 return true; 2698 } 2699 2700 //===----------------------------------------------------------------------===// 2701 // TreePattern implementation 2702 // 2703 2704 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2705 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2706 isInputPattern(isInput), HasError(false), 2707 Infer(*this) { 2708 for (Init *I : RawPat->getValues()) 2709 Trees.push_back(ParseTreePattern(I, "")); 2710 } 2711 2712 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2713 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2714 isInputPattern(isInput), HasError(false), 2715 Infer(*this) { 2716 Trees.push_back(ParseTreePattern(Pat, "")); 2717 } 2718 2719 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2720 CodeGenDAGPatterns &cdp) 2721 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2722 Infer(*this) { 2723 Trees.push_back(Pat); 2724 } 2725 2726 void TreePattern::error(const Twine &Msg) { 2727 if (HasError) 2728 return; 2729 dump(); 2730 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2731 HasError = true; 2732 } 2733 2734 void TreePattern::ComputeNamedNodes() { 2735 for (TreePatternNodePtr &Tree : Trees) 2736 ComputeNamedNodes(Tree.get()); 2737 } 2738 2739 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2740 if (!N->getName().empty()) 2741 NamedNodes[N->getName()].push_back(N); 2742 2743 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2744 ComputeNamedNodes(N->getChild(i)); 2745 } 2746 2747 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2748 StringRef OpName) { 2749 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2750 Record *R = DI->getDef(); 2751 2752 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2753 // TreePatternNode of its own. For example: 2754 /// (foo GPR, imm) -> (foo GPR, (imm)) 2755 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2756 return ParseTreePattern( 2757 DagInit::get(DI, nullptr, 2758 std::vector<std::pair<Init*, StringInit*> >()), 2759 OpName); 2760 2761 // Input argument? 2762 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2763 if (R->getName() == "node" && !OpName.empty()) { 2764 if (OpName.empty()) 2765 error("'node' argument requires a name to match with operand list"); 2766 Args.push_back(std::string(OpName)); 2767 } 2768 2769 Res->setName(OpName); 2770 return Res; 2771 } 2772 2773 // ?:$name or just $name. 2774 if (isa<UnsetInit>(TheInit)) { 2775 if (OpName.empty()) 2776 error("'?' argument requires a name to match with operand list"); 2777 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2778 Args.push_back(std::string(OpName)); 2779 Res->setName(OpName); 2780 return Res; 2781 } 2782 2783 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2784 if (!OpName.empty()) 2785 error("Constant int or bit argument should not have a name!"); 2786 if (isa<BitInit>(TheInit)) 2787 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2788 return std::make_shared<TreePatternNode>(TheInit, 1); 2789 } 2790 2791 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2792 // Turn this into an IntInit. 2793 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2794 if (!II || !isa<IntInit>(II)) 2795 error("Bits value must be constants!"); 2796 return ParseTreePattern(II, OpName); 2797 } 2798 2799 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2800 if (!Dag) { 2801 TheInit->print(errs()); 2802 error("Pattern has unexpected init kind!"); 2803 } 2804 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2805 if (!OpDef) error("Pattern has unexpected operator type!"); 2806 Record *Operator = OpDef->getDef(); 2807 2808 if (Operator->isSubClassOf("ValueType")) { 2809 // If the operator is a ValueType, then this must be "type cast" of a leaf 2810 // node. 2811 if (Dag->getNumArgs() != 1) 2812 error("Type cast only takes one operand!"); 2813 2814 TreePatternNodePtr New = 2815 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2816 2817 // Apply the type cast. 2818 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2819 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2820 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2821 2822 if (!OpName.empty()) 2823 error("ValueType cast should not have a name!"); 2824 return New; 2825 } 2826 2827 // Verify that this is something that makes sense for an operator. 2828 if (!Operator->isSubClassOf("PatFrags") && 2829 !Operator->isSubClassOf("SDNode") && 2830 !Operator->isSubClassOf("Instruction") && 2831 !Operator->isSubClassOf("SDNodeXForm") && 2832 !Operator->isSubClassOf("Intrinsic") && 2833 !Operator->isSubClassOf("ComplexPattern") && 2834 Operator->getName() != "set" && 2835 Operator->getName() != "implicit") 2836 error("Unrecognized node '" + Operator->getName() + "'!"); 2837 2838 // Check to see if this is something that is illegal in an input pattern. 2839 if (isInputPattern) { 2840 if (Operator->isSubClassOf("Instruction") || 2841 Operator->isSubClassOf("SDNodeXForm")) 2842 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2843 } else { 2844 if (Operator->isSubClassOf("Intrinsic")) 2845 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2846 2847 if (Operator->isSubClassOf("SDNode") && 2848 Operator->getName() != "imm" && 2849 Operator->getName() != "timm" && 2850 Operator->getName() != "fpimm" && 2851 Operator->getName() != "tglobaltlsaddr" && 2852 Operator->getName() != "tconstpool" && 2853 Operator->getName() != "tjumptable" && 2854 Operator->getName() != "tframeindex" && 2855 Operator->getName() != "texternalsym" && 2856 Operator->getName() != "tblockaddress" && 2857 Operator->getName() != "tglobaladdr" && 2858 Operator->getName() != "bb" && 2859 Operator->getName() != "vt" && 2860 Operator->getName() != "mcsym") 2861 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2862 } 2863 2864 std::vector<TreePatternNodePtr> Children; 2865 2866 // Parse all the operands. 2867 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2868 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2869 2870 // Get the actual number of results before Operator is converted to an intrinsic 2871 // node (which is hard-coded to have either zero or one result). 2872 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2873 2874 // If the operator is an intrinsic, then this is just syntactic sugar for 2875 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2876 // convert the intrinsic name to a number. 2877 if (Operator->isSubClassOf("Intrinsic")) { 2878 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2879 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2880 2881 // If this intrinsic returns void, it must have side-effects and thus a 2882 // chain. 2883 if (Int.IS.RetVTs.empty()) 2884 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2885 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2886 // Has side-effects, requires chain. 2887 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2888 else // Otherwise, no chain. 2889 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2890 2891 Children.insert(Children.begin(), 2892 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2893 } 2894 2895 if (Operator->isSubClassOf("ComplexPattern")) { 2896 for (unsigned i = 0; i < Children.size(); ++i) { 2897 TreePatternNodePtr Child = Children[i]; 2898 2899 if (Child->getName().empty()) 2900 error("All arguments to a ComplexPattern must be named"); 2901 2902 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2903 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2904 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2905 auto OperandId = std::make_pair(Operator, i); 2906 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2907 if (PrevOp != ComplexPatternOperands.end()) { 2908 if (PrevOp->getValue() != OperandId) 2909 error("All ComplexPattern operands must appear consistently: " 2910 "in the same order in just one ComplexPattern instance."); 2911 } else 2912 ComplexPatternOperands[Child->getName()] = OperandId; 2913 } 2914 } 2915 2916 TreePatternNodePtr Result = 2917 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2918 NumResults); 2919 Result->setName(OpName); 2920 2921 if (Dag->getName()) { 2922 assert(Result->getName().empty()); 2923 Result->setName(Dag->getNameStr()); 2924 } 2925 return Result; 2926 } 2927 2928 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2929 /// will never match in favor of something obvious that will. This is here 2930 /// strictly as a convenience to target authors because it allows them to write 2931 /// more type generic things and have useless type casts fold away. 2932 /// 2933 /// This returns true if any change is made. 2934 static bool SimplifyTree(TreePatternNodePtr &N) { 2935 if (N->isLeaf()) 2936 return false; 2937 2938 // If we have a bitconvert with a resolved type and if the source and 2939 // destination types are the same, then the bitconvert is useless, remove it. 2940 // 2941 // We make an exception if the types are completely empty. This can come up 2942 // when the pattern being simplified is in the Fragments list of a PatFrags, 2943 // so that the operand is just an untyped "node". In that situation we leave 2944 // bitconverts unsimplified, and simplify them later once the fragment is 2945 // expanded into its true context. 2946 if (N->getOperator()->getName() == "bitconvert" && 2947 N->getExtType(0).isValueTypeByHwMode(false) && 2948 !N->getExtType(0).empty() && 2949 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2950 N->getName().empty()) { 2951 N = N->getChildShared(0); 2952 SimplifyTree(N); 2953 return true; 2954 } 2955 2956 // Walk all children. 2957 bool MadeChange = false; 2958 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2959 TreePatternNodePtr Child = N->getChildShared(i); 2960 MadeChange |= SimplifyTree(Child); 2961 N->setChild(i, std::move(Child)); 2962 } 2963 return MadeChange; 2964 } 2965 2966 2967 2968 /// InferAllTypes - Infer/propagate as many types throughout the expression 2969 /// patterns as possible. Return true if all types are inferred, false 2970 /// otherwise. Flags an error if a type contradiction is found. 2971 bool TreePattern:: 2972 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2973 if (NamedNodes.empty()) 2974 ComputeNamedNodes(); 2975 2976 bool MadeChange = true; 2977 while (MadeChange) { 2978 MadeChange = false; 2979 for (TreePatternNodePtr &Tree : Trees) { 2980 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2981 MadeChange |= SimplifyTree(Tree); 2982 } 2983 2984 // If there are constraints on our named nodes, apply them. 2985 for (auto &Entry : NamedNodes) { 2986 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2987 2988 // If we have input named node types, propagate their types to the named 2989 // values here. 2990 if (InNamedTypes) { 2991 if (!InNamedTypes->count(Entry.getKey())) { 2992 error("Node '" + std::string(Entry.getKey()) + 2993 "' in output pattern but not input pattern"); 2994 return true; 2995 } 2996 2997 const SmallVectorImpl<TreePatternNode*> &InNodes = 2998 InNamedTypes->find(Entry.getKey())->second; 2999 3000 // The input types should be fully resolved by now. 3001 for (TreePatternNode *Node : Nodes) { 3002 // If this node is a register class, and it is the root of the pattern 3003 // then we're mapping something onto an input register. We allow 3004 // changing the type of the input register in this case. This allows 3005 // us to match things like: 3006 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3007 if (Node == Trees[0].get() && Node->isLeaf()) { 3008 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3009 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3010 DI->getDef()->isSubClassOf("RegisterOperand"))) 3011 continue; 3012 } 3013 3014 assert(Node->getNumTypes() == 1 && 3015 InNodes[0]->getNumTypes() == 1 && 3016 "FIXME: cannot name multiple result nodes yet"); 3017 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3018 *this); 3019 } 3020 } 3021 3022 // If there are multiple nodes with the same name, they must all have the 3023 // same type. 3024 if (Entry.second.size() > 1) { 3025 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3026 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3027 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3028 "FIXME: cannot name multiple result nodes yet"); 3029 3030 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3031 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3032 } 3033 } 3034 } 3035 } 3036 3037 bool HasUnresolvedTypes = false; 3038 for (const TreePatternNodePtr &Tree : Trees) 3039 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3040 return !HasUnresolvedTypes; 3041 } 3042 3043 void TreePattern::print(raw_ostream &OS) const { 3044 OS << getRecord()->getName(); 3045 if (!Args.empty()) { 3046 OS << "("; 3047 ListSeparator LS; 3048 for (const std::string &Arg : Args) 3049 OS << LS << Arg; 3050 OS << ")"; 3051 } 3052 OS << ": "; 3053 3054 if (Trees.size() > 1) 3055 OS << "[\n"; 3056 for (const TreePatternNodePtr &Tree : Trees) { 3057 OS << "\t"; 3058 Tree->print(OS); 3059 OS << "\n"; 3060 } 3061 3062 if (Trees.size() > 1) 3063 OS << "]\n"; 3064 } 3065 3066 void TreePattern::dump() const { print(errs()); } 3067 3068 //===----------------------------------------------------------------------===// 3069 // CodeGenDAGPatterns implementation 3070 // 3071 3072 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3073 PatternRewriterFn PatternRewriter) 3074 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3075 PatternRewriter(PatternRewriter) { 3076 3077 Intrinsics = CodeGenIntrinsicTable(Records); 3078 ParseNodeInfo(); 3079 ParseNodeTransforms(); 3080 ParseComplexPatterns(); 3081 ParsePatternFragments(); 3082 ParseDefaultOperands(); 3083 ParseInstructions(); 3084 ParsePatternFragments(/*OutFrags*/true); 3085 ParsePatterns(); 3086 3087 // Generate variants. For example, commutative patterns can match 3088 // multiple ways. Add them to PatternsToMatch as well. 3089 GenerateVariants(); 3090 3091 // Break patterns with parameterized types into a series of patterns, 3092 // where each one has a fixed type and is predicated on the conditions 3093 // of the associated HW mode. 3094 ExpandHwModeBasedTypes(); 3095 3096 // Infer instruction flags. For example, we can detect loads, 3097 // stores, and side effects in many cases by examining an 3098 // instruction's pattern. 3099 InferInstructionFlags(); 3100 3101 // Verify that instruction flags match the patterns. 3102 VerifyInstructionFlags(); 3103 } 3104 3105 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3106 Record *N = Records.getDef(Name); 3107 if (!N || !N->isSubClassOf("SDNode")) 3108 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3109 3110 return N; 3111 } 3112 3113 // Parse all of the SDNode definitions for the target, populating SDNodes. 3114 void CodeGenDAGPatterns::ParseNodeInfo() { 3115 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3116 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3117 3118 while (!Nodes.empty()) { 3119 Record *R = Nodes.back(); 3120 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3121 Nodes.pop_back(); 3122 } 3123 3124 // Get the builtin intrinsic nodes. 3125 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3126 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3127 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3128 } 3129 3130 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3131 /// map, and emit them to the file as functions. 3132 void CodeGenDAGPatterns::ParseNodeTransforms() { 3133 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3134 while (!Xforms.empty()) { 3135 Record *XFormNode = Xforms.back(); 3136 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3137 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3138 SDNodeXForms.insert( 3139 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3140 3141 Xforms.pop_back(); 3142 } 3143 } 3144 3145 void CodeGenDAGPatterns::ParseComplexPatterns() { 3146 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3147 while (!AMs.empty()) { 3148 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3149 AMs.pop_back(); 3150 } 3151 } 3152 3153 3154 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3155 /// file, building up the PatternFragments map. After we've collected them all, 3156 /// inline fragments together as necessary, so that there are no references left 3157 /// inside a pattern fragment to a pattern fragment. 3158 /// 3159 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3160 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3161 3162 // First step, parse all of the fragments. 3163 for (Record *Frag : Fragments) { 3164 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3165 continue; 3166 3167 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3168 TreePattern *P = 3169 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3170 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3171 *this)).get(); 3172 3173 // Validate the argument list, converting it to set, to discard duplicates. 3174 std::vector<std::string> &Args = P->getArgList(); 3175 // Copy the args so we can take StringRefs to them. 3176 auto ArgsCopy = Args; 3177 SmallDenseSet<StringRef, 4> OperandsSet; 3178 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3179 3180 if (OperandsSet.count("")) 3181 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3182 3183 // Parse the operands list. 3184 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3185 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3186 // Special cases: ops == outs == ins. Different names are used to 3187 // improve readability. 3188 if (!OpsOp || 3189 (OpsOp->getDef()->getName() != "ops" && 3190 OpsOp->getDef()->getName() != "outs" && 3191 OpsOp->getDef()->getName() != "ins")) 3192 P->error("Operands list should start with '(ops ... '!"); 3193 3194 // Copy over the arguments. 3195 Args.clear(); 3196 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3197 if (!isa<DefInit>(OpsList->getArg(j)) || 3198 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3199 P->error("Operands list should all be 'node' values."); 3200 if (!OpsList->getArgName(j)) 3201 P->error("Operands list should have names for each operand!"); 3202 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3203 if (!OperandsSet.count(ArgNameStr)) 3204 P->error("'" + ArgNameStr + 3205 "' does not occur in pattern or was multiply specified!"); 3206 OperandsSet.erase(ArgNameStr); 3207 Args.push_back(std::string(ArgNameStr)); 3208 } 3209 3210 if (!OperandsSet.empty()) 3211 P->error("Operands list does not contain an entry for operand '" + 3212 *OperandsSet.begin() + "'!"); 3213 3214 // If there is a node transformation corresponding to this, keep track of 3215 // it. 3216 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3217 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3218 for (const auto &T : P->getTrees()) 3219 T->setTransformFn(Transform); 3220 } 3221 3222 // Now that we've parsed all of the tree fragments, do a closure on them so 3223 // that there are not references to PatFrags left inside of them. 3224 for (Record *Frag : Fragments) { 3225 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3226 continue; 3227 3228 TreePattern &ThePat = *PatternFragments[Frag]; 3229 ThePat.InlinePatternFragments(); 3230 3231 // Infer as many types as possible. Don't worry about it if we don't infer 3232 // all of them, some may depend on the inputs of the pattern. Also, don't 3233 // validate type sets; validation may cause spurious failures e.g. if a 3234 // fragment needs floating-point types but the current target does not have 3235 // any (this is only an error if that fragment is ever used!). 3236 { 3237 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3238 ThePat.InferAllTypes(); 3239 ThePat.resetError(); 3240 } 3241 3242 // If debugging, print out the pattern fragment result. 3243 LLVM_DEBUG(ThePat.dump()); 3244 } 3245 } 3246 3247 void CodeGenDAGPatterns::ParseDefaultOperands() { 3248 std::vector<Record*> DefaultOps; 3249 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3250 3251 // Find some SDNode. 3252 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3253 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3254 3255 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3256 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3257 3258 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3259 // SomeSDnode so that we can parse this. 3260 std::vector<std::pair<Init*, StringInit*> > Ops; 3261 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3262 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3263 DefaultInfo->getArgName(op))); 3264 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3265 3266 // Create a TreePattern to parse this. 3267 TreePattern P(DefaultOps[i], DI, false, *this); 3268 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3269 3270 // Copy the operands over into a DAGDefaultOperand. 3271 DAGDefaultOperand DefaultOpInfo; 3272 3273 const TreePatternNodePtr &T = P.getTree(0); 3274 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3275 TreePatternNodePtr TPN = T->getChildShared(op); 3276 while (TPN->ApplyTypeConstraints(P, false)) 3277 /* Resolve all types */; 3278 3279 if (TPN->ContainsUnresolvedType(P)) { 3280 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3281 DefaultOps[i]->getName() + 3282 "' doesn't have a concrete type!"); 3283 } 3284 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3285 } 3286 3287 // Insert it into the DefaultOperands map so we can find it later. 3288 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3289 } 3290 } 3291 3292 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3293 /// instruction input. Return true if this is a real use. 3294 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3295 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3296 // No name -> not interesting. 3297 if (Pat->getName().empty()) { 3298 if (Pat->isLeaf()) { 3299 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3300 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3301 DI->getDef()->isSubClassOf("RegisterOperand"))) 3302 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3303 } 3304 return false; 3305 } 3306 3307 Record *Rec; 3308 if (Pat->isLeaf()) { 3309 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3310 if (!DI) 3311 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3312 Rec = DI->getDef(); 3313 } else { 3314 Rec = Pat->getOperator(); 3315 } 3316 3317 // SRCVALUE nodes are ignored. 3318 if (Rec->getName() == "srcvalue") 3319 return false; 3320 3321 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3322 if (!Slot) { 3323 Slot = Pat; 3324 return true; 3325 } 3326 Record *SlotRec; 3327 if (Slot->isLeaf()) { 3328 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3329 } else { 3330 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3331 SlotRec = Slot->getOperator(); 3332 } 3333 3334 // Ensure that the inputs agree if we've already seen this input. 3335 if (Rec != SlotRec) 3336 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3337 // Ensure that the types can agree as well. 3338 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3339 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3340 if (Slot->getExtTypes() != Pat->getExtTypes()) 3341 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3342 return true; 3343 } 3344 3345 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3346 /// part of "I", the instruction), computing the set of inputs and outputs of 3347 /// the pattern. Report errors if we see anything naughty. 3348 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3349 TreePattern &I, TreePatternNodePtr Pat, 3350 std::map<std::string, TreePatternNodePtr> &InstInputs, 3351 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3352 &InstResults, 3353 std::vector<Record *> &InstImpResults) { 3354 3355 // The instruction pattern still has unresolved fragments. For *named* 3356 // nodes we must resolve those here. This may not result in multiple 3357 // alternatives. 3358 if (!Pat->getName().empty()) { 3359 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3360 SrcPattern.InlinePatternFragments(); 3361 SrcPattern.InferAllTypes(); 3362 Pat = SrcPattern.getOnlyTree(); 3363 } 3364 3365 if (Pat->isLeaf()) { 3366 bool isUse = HandleUse(I, Pat, InstInputs); 3367 if (!isUse && Pat->getTransformFn()) 3368 I.error("Cannot specify a transform function for a non-input value!"); 3369 return; 3370 } 3371 3372 if (Pat->getOperator()->getName() == "implicit") { 3373 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3374 TreePatternNode *Dest = Pat->getChild(i); 3375 if (!Dest->isLeaf()) 3376 I.error("implicitly defined value should be a register!"); 3377 3378 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3379 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3380 I.error("implicitly defined value should be a register!"); 3381 InstImpResults.push_back(Val->getDef()); 3382 } 3383 return; 3384 } 3385 3386 if (Pat->getOperator()->getName() != "set") { 3387 // If this is not a set, verify that the children nodes are not void typed, 3388 // and recurse. 3389 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3390 if (Pat->getChild(i)->getNumTypes() == 0) 3391 I.error("Cannot have void nodes inside of patterns!"); 3392 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3393 InstResults, InstImpResults); 3394 } 3395 3396 // If this is a non-leaf node with no children, treat it basically as if 3397 // it were a leaf. This handles nodes like (imm). 3398 bool isUse = HandleUse(I, Pat, InstInputs); 3399 3400 if (!isUse && Pat->getTransformFn()) 3401 I.error("Cannot specify a transform function for a non-input value!"); 3402 return; 3403 } 3404 3405 // Otherwise, this is a set, validate and collect instruction results. 3406 if (Pat->getNumChildren() == 0) 3407 I.error("set requires operands!"); 3408 3409 if (Pat->getTransformFn()) 3410 I.error("Cannot specify a transform function on a set node!"); 3411 3412 // Check the set destinations. 3413 unsigned NumDests = Pat->getNumChildren()-1; 3414 for (unsigned i = 0; i != NumDests; ++i) { 3415 TreePatternNodePtr Dest = Pat->getChildShared(i); 3416 // For set destinations we also must resolve fragments here. 3417 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3418 DestPattern.InlinePatternFragments(); 3419 DestPattern.InferAllTypes(); 3420 Dest = DestPattern.getOnlyTree(); 3421 3422 if (!Dest->isLeaf()) 3423 I.error("set destination should be a register!"); 3424 3425 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3426 if (!Val) { 3427 I.error("set destination should be a register!"); 3428 continue; 3429 } 3430 3431 if (Val->getDef()->isSubClassOf("RegisterClass") || 3432 Val->getDef()->isSubClassOf("ValueType") || 3433 Val->getDef()->isSubClassOf("RegisterOperand") || 3434 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3435 if (Dest->getName().empty()) 3436 I.error("set destination must have a name!"); 3437 if (InstResults.count(Dest->getName())) 3438 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3439 InstResults[Dest->getName()] = Dest; 3440 } else if (Val->getDef()->isSubClassOf("Register")) { 3441 InstImpResults.push_back(Val->getDef()); 3442 } else { 3443 I.error("set destination should be a register!"); 3444 } 3445 } 3446 3447 // Verify and collect info from the computation. 3448 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3449 InstResults, InstImpResults); 3450 } 3451 3452 //===----------------------------------------------------------------------===// 3453 // Instruction Analysis 3454 //===----------------------------------------------------------------------===// 3455 3456 class InstAnalyzer { 3457 const CodeGenDAGPatterns &CDP; 3458 public: 3459 bool hasSideEffects; 3460 bool mayStore; 3461 bool mayLoad; 3462 bool isBitcast; 3463 bool isVariadic; 3464 bool hasChain; 3465 3466 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3467 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3468 isBitcast(false), isVariadic(false), hasChain(false) {} 3469 3470 void Analyze(const PatternToMatch &Pat) { 3471 const TreePatternNode *N = Pat.getSrcPattern(); 3472 AnalyzeNode(N); 3473 // These properties are detected only on the root node. 3474 isBitcast = IsNodeBitcast(N); 3475 } 3476 3477 private: 3478 bool IsNodeBitcast(const TreePatternNode *N) const { 3479 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3480 return false; 3481 3482 if (N->isLeaf()) 3483 return false; 3484 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3485 return false; 3486 3487 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3488 return false; 3489 3490 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3491 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3492 return false; 3493 return OpInfo.getEnumName() == "ISD::BITCAST"; 3494 } 3495 3496 public: 3497 void AnalyzeNode(const TreePatternNode *N) { 3498 if (N->isLeaf()) { 3499 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3500 Record *LeafRec = DI->getDef(); 3501 // Handle ComplexPattern leaves. 3502 if (LeafRec->isSubClassOf("ComplexPattern")) { 3503 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3504 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3505 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3506 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3507 } 3508 } 3509 return; 3510 } 3511 3512 // Analyze children. 3513 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3514 AnalyzeNode(N->getChild(i)); 3515 3516 // Notice properties of the node. 3517 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3518 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3519 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3520 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3521 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3522 3523 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3524 // If this is an intrinsic, analyze it. 3525 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3526 mayLoad = true;// These may load memory. 3527 3528 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3529 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3530 3531 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3532 IntInfo->hasSideEffects) 3533 // ReadWriteMem intrinsics can have other strange effects. 3534 hasSideEffects = true; 3535 } 3536 } 3537 3538 }; 3539 3540 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3541 const InstAnalyzer &PatInfo, 3542 Record *PatDef) { 3543 bool Error = false; 3544 3545 // Remember where InstInfo got its flags. 3546 if (InstInfo.hasUndefFlags()) 3547 InstInfo.InferredFrom = PatDef; 3548 3549 // Check explicitly set flags for consistency. 3550 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3551 !InstInfo.hasSideEffects_Unset) { 3552 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3553 // the pattern has no side effects. That could be useful for div/rem 3554 // instructions that may trap. 3555 if (!InstInfo.hasSideEffects) { 3556 Error = true; 3557 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3558 Twine(InstInfo.hasSideEffects)); 3559 } 3560 } 3561 3562 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3563 Error = true; 3564 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3565 Twine(InstInfo.mayStore)); 3566 } 3567 3568 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3569 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3570 // Some targets translate immediates to loads. 3571 if (!InstInfo.mayLoad) { 3572 Error = true; 3573 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3574 Twine(InstInfo.mayLoad)); 3575 } 3576 } 3577 3578 // Transfer inferred flags. 3579 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3580 InstInfo.mayStore |= PatInfo.mayStore; 3581 InstInfo.mayLoad |= PatInfo.mayLoad; 3582 3583 // These flags are silently added without any verification. 3584 // FIXME: To match historical behavior of TableGen, for now add those flags 3585 // only when we're inferring from the primary instruction pattern. 3586 if (PatDef->isSubClassOf("Instruction")) { 3587 InstInfo.isBitcast |= PatInfo.isBitcast; 3588 InstInfo.hasChain |= PatInfo.hasChain; 3589 InstInfo.hasChain_Inferred = true; 3590 } 3591 3592 // Don't infer isVariadic. This flag means something different on SDNodes and 3593 // instructions. For example, a CALL SDNode is variadic because it has the 3594 // call arguments as operands, but a CALL instruction is not variadic - it 3595 // has argument registers as implicit, not explicit uses. 3596 3597 return Error; 3598 } 3599 3600 /// hasNullFragReference - Return true if the DAG has any reference to the 3601 /// null_frag operator. 3602 static bool hasNullFragReference(DagInit *DI) { 3603 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3604 if (!OpDef) return false; 3605 Record *Operator = OpDef->getDef(); 3606 3607 // If this is the null fragment, return true. 3608 if (Operator->getName() == "null_frag") return true; 3609 // If any of the arguments reference the null fragment, return true. 3610 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3611 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3612 if (Arg->getDef()->getName() == "null_frag") 3613 return true; 3614 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3615 if (Arg && hasNullFragReference(Arg)) 3616 return true; 3617 } 3618 3619 return false; 3620 } 3621 3622 /// hasNullFragReference - Return true if any DAG in the list references 3623 /// the null_frag operator. 3624 static bool hasNullFragReference(ListInit *LI) { 3625 for (Init *I : LI->getValues()) { 3626 DagInit *DI = dyn_cast<DagInit>(I); 3627 assert(DI && "non-dag in an instruction Pattern list?!"); 3628 if (hasNullFragReference(DI)) 3629 return true; 3630 } 3631 return false; 3632 } 3633 3634 /// Get all the instructions in a tree. 3635 static void 3636 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3637 if (Tree->isLeaf()) 3638 return; 3639 if (Tree->getOperator()->isSubClassOf("Instruction")) 3640 Instrs.push_back(Tree->getOperator()); 3641 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3642 getInstructionsInTree(Tree->getChild(i), Instrs); 3643 } 3644 3645 /// Check the class of a pattern leaf node against the instruction operand it 3646 /// represents. 3647 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3648 Record *Leaf) { 3649 if (OI.Rec == Leaf) 3650 return true; 3651 3652 // Allow direct value types to be used in instruction set patterns. 3653 // The type will be checked later. 3654 if (Leaf->isSubClassOf("ValueType")) 3655 return true; 3656 3657 // Patterns can also be ComplexPattern instances. 3658 if (Leaf->isSubClassOf("ComplexPattern")) 3659 return true; 3660 3661 return false; 3662 } 3663 3664 void CodeGenDAGPatterns::parseInstructionPattern( 3665 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3666 3667 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3668 3669 // Parse the instruction. 3670 TreePattern I(CGI.TheDef, Pat, true, *this); 3671 3672 // InstInputs - Keep track of all of the inputs of the instruction, along 3673 // with the record they are declared as. 3674 std::map<std::string, TreePatternNodePtr> InstInputs; 3675 3676 // InstResults - Keep track of all the virtual registers that are 'set' 3677 // in the instruction, including what reg class they are. 3678 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3679 InstResults; 3680 3681 std::vector<Record*> InstImpResults; 3682 3683 // Verify that the top-level forms in the instruction are of void type, and 3684 // fill in the InstResults map. 3685 SmallString<32> TypesString; 3686 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3687 TypesString.clear(); 3688 TreePatternNodePtr Pat = I.getTree(j); 3689 if (Pat->getNumTypes() != 0) { 3690 raw_svector_ostream OS(TypesString); 3691 ListSeparator LS; 3692 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3693 OS << LS; 3694 Pat->getExtType(k).writeToStream(OS); 3695 } 3696 I.error("Top-level forms in instruction pattern should have" 3697 " void types, has types " + 3698 OS.str()); 3699 } 3700 3701 // Find inputs and outputs, and verify the structure of the uses/defs. 3702 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3703 InstImpResults); 3704 } 3705 3706 // Now that we have inputs and outputs of the pattern, inspect the operands 3707 // list for the instruction. This determines the order that operands are 3708 // added to the machine instruction the node corresponds to. 3709 unsigned NumResults = InstResults.size(); 3710 3711 // Parse the operands list from the (ops) list, validating it. 3712 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3713 3714 // Check that all of the results occur first in the list. 3715 std::vector<Record*> Results; 3716 std::vector<unsigned> ResultIndices; 3717 SmallVector<TreePatternNodePtr, 2> ResNodes; 3718 for (unsigned i = 0; i != NumResults; ++i) { 3719 if (i == CGI.Operands.size()) { 3720 const std::string &OpName = 3721 llvm::find_if( 3722 InstResults, 3723 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3724 return P.second; 3725 }) 3726 ->first; 3727 3728 I.error("'" + OpName + "' set but does not appear in operand list!"); 3729 } 3730 3731 const std::string &OpName = CGI.Operands[i].Name; 3732 3733 // Check that it exists in InstResults. 3734 auto InstResultIter = InstResults.find(OpName); 3735 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3736 I.error("Operand $" + OpName + " does not exist in operand list!"); 3737 3738 TreePatternNodePtr RNode = InstResultIter->second; 3739 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3740 ResNodes.push_back(std::move(RNode)); 3741 if (!R) 3742 I.error("Operand $" + OpName + " should be a set destination: all " 3743 "outputs must occur before inputs in operand list!"); 3744 3745 if (!checkOperandClass(CGI.Operands[i], R)) 3746 I.error("Operand $" + OpName + " class mismatch!"); 3747 3748 // Remember the return type. 3749 Results.push_back(CGI.Operands[i].Rec); 3750 3751 // Remember the result index. 3752 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3753 3754 // Okay, this one checks out. 3755 InstResultIter->second = nullptr; 3756 } 3757 3758 // Loop over the inputs next. 3759 std::vector<TreePatternNodePtr> ResultNodeOperands; 3760 std::vector<Record*> Operands; 3761 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3762 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3763 const std::string &OpName = Op.Name; 3764 if (OpName.empty()) 3765 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3766 3767 if (!InstInputs.count(OpName)) { 3768 // If this is an operand with a DefaultOps set filled in, we can ignore 3769 // this. When we codegen it, we will do so as always executed. 3770 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3771 // Does it have a non-empty DefaultOps field? If so, ignore this 3772 // operand. 3773 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3774 continue; 3775 } 3776 I.error("Operand $" + OpName + 3777 " does not appear in the instruction pattern"); 3778 } 3779 TreePatternNodePtr InVal = InstInputs[OpName]; 3780 InstInputs.erase(OpName); // It occurred, remove from map. 3781 3782 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3783 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3784 if (!checkOperandClass(Op, InRec)) 3785 I.error("Operand $" + OpName + "'s register class disagrees" 3786 " between the operand and pattern"); 3787 } 3788 Operands.push_back(Op.Rec); 3789 3790 // Construct the result for the dest-pattern operand list. 3791 TreePatternNodePtr OpNode = InVal->clone(); 3792 3793 // No predicate is useful on the result. 3794 OpNode->clearPredicateCalls(); 3795 3796 // Promote the xform function to be an explicit node if set. 3797 if (Record *Xform = OpNode->getTransformFn()) { 3798 OpNode->setTransformFn(nullptr); 3799 std::vector<TreePatternNodePtr> Children; 3800 Children.push_back(OpNode); 3801 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3802 OpNode->getNumTypes()); 3803 } 3804 3805 ResultNodeOperands.push_back(std::move(OpNode)); 3806 } 3807 3808 if (!InstInputs.empty()) 3809 I.error("Input operand $" + InstInputs.begin()->first + 3810 " occurs in pattern but not in operands list!"); 3811 3812 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3813 I.getRecord(), std::move(ResultNodeOperands), 3814 GetNumNodeResults(I.getRecord(), *this)); 3815 // Copy fully inferred output node types to instruction result pattern. 3816 for (unsigned i = 0; i != NumResults; ++i) { 3817 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3818 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3819 ResultPattern->setResultIndex(i, ResultIndices[i]); 3820 } 3821 3822 // FIXME: Assume only the first tree is the pattern. The others are clobber 3823 // nodes. 3824 TreePatternNodePtr Pattern = I.getTree(0); 3825 TreePatternNodePtr SrcPattern; 3826 if (Pattern->getOperator()->getName() == "set") { 3827 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3828 } else{ 3829 // Not a set (store or something?) 3830 SrcPattern = Pattern; 3831 } 3832 3833 // Create and insert the instruction. 3834 // FIXME: InstImpResults should not be part of DAGInstruction. 3835 Record *R = I.getRecord(); 3836 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3837 std::forward_as_tuple(Results, Operands, InstImpResults, 3838 SrcPattern, ResultPattern)); 3839 3840 LLVM_DEBUG(I.dump()); 3841 } 3842 3843 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3844 /// any fragments involved. This populates the Instructions list with fully 3845 /// resolved instructions. 3846 void CodeGenDAGPatterns::ParseInstructions() { 3847 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3848 3849 for (Record *Instr : Instrs) { 3850 ListInit *LI = nullptr; 3851 3852 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3853 LI = Instr->getValueAsListInit("Pattern"); 3854 3855 // If there is no pattern, only collect minimal information about the 3856 // instruction for its operand list. We have to assume that there is one 3857 // result, as we have no detailed info. A pattern which references the 3858 // null_frag operator is as-if no pattern were specified. Normally this 3859 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3860 // null_frag. 3861 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3862 std::vector<Record*> Results; 3863 std::vector<Record*> Operands; 3864 3865 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3866 3867 if (InstInfo.Operands.size() != 0) { 3868 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3869 Results.push_back(InstInfo.Operands[j].Rec); 3870 3871 // The rest are inputs. 3872 for (unsigned j = InstInfo.Operands.NumDefs, 3873 e = InstInfo.Operands.size(); j < e; ++j) 3874 Operands.push_back(InstInfo.Operands[j].Rec); 3875 } 3876 3877 // Create and insert the instruction. 3878 std::vector<Record*> ImpResults; 3879 Instructions.insert(std::make_pair(Instr, 3880 DAGInstruction(Results, Operands, ImpResults))); 3881 continue; // no pattern. 3882 } 3883 3884 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3885 parseInstructionPattern(CGI, LI, Instructions); 3886 } 3887 3888 // If we can, convert the instructions to be patterns that are matched! 3889 for (auto &Entry : Instructions) { 3890 Record *Instr = Entry.first; 3891 DAGInstruction &TheInst = Entry.second; 3892 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3893 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3894 3895 if (SrcPattern && ResultPattern) { 3896 TreePattern Pattern(Instr, SrcPattern, true, *this); 3897 TreePattern Result(Instr, ResultPattern, false, *this); 3898 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3899 } 3900 } 3901 } 3902 3903 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3904 3905 static void FindNames(TreePatternNode *P, 3906 std::map<std::string, NameRecord> &Names, 3907 TreePattern *PatternTop) { 3908 if (!P->getName().empty()) { 3909 NameRecord &Rec = Names[P->getName()]; 3910 // If this is the first instance of the name, remember the node. 3911 if (Rec.second++ == 0) 3912 Rec.first = P; 3913 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3914 PatternTop->error("repetition of value: $" + P->getName() + 3915 " where different uses have different types!"); 3916 } 3917 3918 if (!P->isLeaf()) { 3919 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3920 FindNames(P->getChild(i), Names, PatternTop); 3921 } 3922 } 3923 3924 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3925 std::vector<Predicate> Preds; 3926 for (Init *I : L->getValues()) { 3927 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3928 Preds.push_back(Pred->getDef()); 3929 else 3930 llvm_unreachable("Non-def on the list"); 3931 } 3932 3933 // Sort so that different orders get canonicalized to the same string. 3934 llvm::sort(Preds); 3935 return Preds; 3936 } 3937 3938 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3939 PatternToMatch &&PTM) { 3940 // Do some sanity checking on the pattern we're about to match. 3941 std::string Reason; 3942 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3943 PrintWarning(Pattern->getRecord()->getLoc(), 3944 Twine("Pattern can never match: ") + Reason); 3945 return; 3946 } 3947 3948 // If the source pattern's root is a complex pattern, that complex pattern 3949 // must specify the nodes it can potentially match. 3950 if (const ComplexPattern *CP = 3951 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3952 if (CP->getRootNodes().empty()) 3953 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3954 " could match"); 3955 3956 3957 // Find all of the named values in the input and output, ensure they have the 3958 // same type. 3959 std::map<std::string, NameRecord> SrcNames, DstNames; 3960 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3961 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3962 3963 // Scan all of the named values in the destination pattern, rejecting them if 3964 // they don't exist in the input pattern. 3965 for (const auto &Entry : DstNames) { 3966 if (SrcNames[Entry.first].first == nullptr) 3967 Pattern->error("Pattern has input without matching name in output: $" + 3968 Entry.first); 3969 } 3970 3971 // Scan all of the named values in the source pattern, rejecting them if the 3972 // name isn't used in the dest, and isn't used to tie two values together. 3973 for (const auto &Entry : SrcNames) 3974 if (DstNames[Entry.first].first == nullptr && 3975 SrcNames[Entry.first].second == 1) 3976 Pattern->error("Pattern has dead named input: $" + Entry.first); 3977 3978 PatternsToMatch.push_back(std::move(PTM)); 3979 } 3980 3981 void CodeGenDAGPatterns::InferInstructionFlags() { 3982 ArrayRef<const CodeGenInstruction*> Instructions = 3983 Target.getInstructionsByEnumValue(); 3984 3985 unsigned Errors = 0; 3986 3987 // Try to infer flags from all patterns in PatternToMatch. These include 3988 // both the primary instruction patterns (which always come first) and 3989 // patterns defined outside the instruction. 3990 for (const PatternToMatch &PTM : ptms()) { 3991 // We can only infer from single-instruction patterns, otherwise we won't 3992 // know which instruction should get the flags. 3993 SmallVector<Record*, 8> PatInstrs; 3994 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3995 if (PatInstrs.size() != 1) 3996 continue; 3997 3998 // Get the single instruction. 3999 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4000 4001 // Only infer properties from the first pattern. We'll verify the others. 4002 if (InstInfo.InferredFrom) 4003 continue; 4004 4005 InstAnalyzer PatInfo(*this); 4006 PatInfo.Analyze(PTM); 4007 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4008 } 4009 4010 if (Errors) 4011 PrintFatalError("pattern conflicts"); 4012 4013 // If requested by the target, guess any undefined properties. 4014 if (Target.guessInstructionProperties()) { 4015 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4016 CodeGenInstruction *InstInfo = 4017 const_cast<CodeGenInstruction *>(Instructions[i]); 4018 if (InstInfo->InferredFrom) 4019 continue; 4020 // The mayLoad and mayStore flags default to false. 4021 // Conservatively assume hasSideEffects if it wasn't explicit. 4022 if (InstInfo->hasSideEffects_Unset) 4023 InstInfo->hasSideEffects = true; 4024 } 4025 return; 4026 } 4027 4028 // Complain about any flags that are still undefined. 4029 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4030 CodeGenInstruction *InstInfo = 4031 const_cast<CodeGenInstruction *>(Instructions[i]); 4032 if (InstInfo->InferredFrom) 4033 continue; 4034 if (InstInfo->hasSideEffects_Unset) 4035 PrintError(InstInfo->TheDef->getLoc(), 4036 "Can't infer hasSideEffects from patterns"); 4037 if (InstInfo->mayStore_Unset) 4038 PrintError(InstInfo->TheDef->getLoc(), 4039 "Can't infer mayStore from patterns"); 4040 if (InstInfo->mayLoad_Unset) 4041 PrintError(InstInfo->TheDef->getLoc(), 4042 "Can't infer mayLoad from patterns"); 4043 } 4044 } 4045 4046 4047 /// Verify instruction flags against pattern node properties. 4048 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4049 unsigned Errors = 0; 4050 for (const PatternToMatch &PTM : ptms()) { 4051 SmallVector<Record*, 8> Instrs; 4052 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4053 if (Instrs.empty()) 4054 continue; 4055 4056 // Count the number of instructions with each flag set. 4057 unsigned NumSideEffects = 0; 4058 unsigned NumStores = 0; 4059 unsigned NumLoads = 0; 4060 for (const Record *Instr : Instrs) { 4061 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4062 NumSideEffects += InstInfo.hasSideEffects; 4063 NumStores += InstInfo.mayStore; 4064 NumLoads += InstInfo.mayLoad; 4065 } 4066 4067 // Analyze the source pattern. 4068 InstAnalyzer PatInfo(*this); 4069 PatInfo.Analyze(PTM); 4070 4071 // Collect error messages. 4072 SmallVector<std::string, 4> Msgs; 4073 4074 // Check for missing flags in the output. 4075 // Permit extra flags for now at least. 4076 if (PatInfo.hasSideEffects && !NumSideEffects) 4077 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4078 4079 // Don't verify store flags on instructions with side effects. At least for 4080 // intrinsics, side effects implies mayStore. 4081 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4082 Msgs.push_back("pattern may store, but mayStore isn't set"); 4083 4084 // Similarly, mayStore implies mayLoad on intrinsics. 4085 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4086 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4087 4088 // Print error messages. 4089 if (Msgs.empty()) 4090 continue; 4091 ++Errors; 4092 4093 for (const std::string &Msg : Msgs) 4094 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4095 (Instrs.size() == 1 ? 4096 "instruction" : "output instructions")); 4097 // Provide the location of the relevant instruction definitions. 4098 for (const Record *Instr : Instrs) { 4099 if (Instr != PTM.getSrcRecord()) 4100 PrintError(Instr->getLoc(), "defined here"); 4101 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4102 if (InstInfo.InferredFrom && 4103 InstInfo.InferredFrom != InstInfo.TheDef && 4104 InstInfo.InferredFrom != PTM.getSrcRecord()) 4105 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4106 } 4107 } 4108 if (Errors) 4109 PrintFatalError("Errors in DAG patterns"); 4110 } 4111 4112 /// Given a pattern result with an unresolved type, see if we can find one 4113 /// instruction with an unresolved result type. Force this result type to an 4114 /// arbitrary element if it's possible types to converge results. 4115 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4116 if (N->isLeaf()) 4117 return false; 4118 4119 // Analyze children. 4120 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4121 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4122 return true; 4123 4124 if (!N->getOperator()->isSubClassOf("Instruction")) 4125 return false; 4126 4127 // If this type is already concrete or completely unknown we can't do 4128 // anything. 4129 TypeInfer &TI = TP.getInfer(); 4130 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4131 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4132 continue; 4133 4134 // Otherwise, force its type to an arbitrary choice. 4135 if (TI.forceArbitrary(N->getExtType(i))) 4136 return true; 4137 } 4138 4139 return false; 4140 } 4141 4142 // Promote xform function to be an explicit node wherever set. 4143 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4144 if (Record *Xform = N->getTransformFn()) { 4145 N->setTransformFn(nullptr); 4146 std::vector<TreePatternNodePtr> Children; 4147 Children.push_back(PromoteXForms(N)); 4148 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4149 N->getNumTypes()); 4150 } 4151 4152 if (!N->isLeaf()) 4153 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4154 TreePatternNodePtr Child = N->getChildShared(i); 4155 N->setChild(i, PromoteXForms(Child)); 4156 } 4157 return N; 4158 } 4159 4160 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4161 TreePattern &Pattern, TreePattern &Result, 4162 const std::vector<Record *> &InstImpResults) { 4163 4164 // Inline pattern fragments and expand multiple alternatives. 4165 Pattern.InlinePatternFragments(); 4166 Result.InlinePatternFragments(); 4167 4168 if (Result.getNumTrees() != 1) 4169 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4170 4171 // Infer types. 4172 bool IterateInference; 4173 bool InferredAllPatternTypes, InferredAllResultTypes; 4174 do { 4175 // Infer as many types as possible. If we cannot infer all of them, we 4176 // can never do anything with this pattern: report it to the user. 4177 InferredAllPatternTypes = 4178 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4179 4180 // Infer as many types as possible. If we cannot infer all of them, we 4181 // can never do anything with this pattern: report it to the user. 4182 InferredAllResultTypes = 4183 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4184 4185 IterateInference = false; 4186 4187 // Apply the type of the result to the source pattern. This helps us 4188 // resolve cases where the input type is known to be a pointer type (which 4189 // is considered resolved), but the result knows it needs to be 32- or 4190 // 64-bits. Infer the other way for good measure. 4191 for (const auto &T : Pattern.getTrees()) 4192 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4193 T->getNumTypes()); 4194 i != e; ++i) { 4195 IterateInference |= T->UpdateNodeType( 4196 i, Result.getOnlyTree()->getExtType(i), Result); 4197 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4198 i, T->getExtType(i), Result); 4199 } 4200 4201 // If our iteration has converged and the input pattern's types are fully 4202 // resolved but the result pattern is not fully resolved, we may have a 4203 // situation where we have two instructions in the result pattern and 4204 // the instructions require a common register class, but don't care about 4205 // what actual MVT is used. This is actually a bug in our modelling: 4206 // output patterns should have register classes, not MVTs. 4207 // 4208 // In any case, to handle this, we just go through and disambiguate some 4209 // arbitrary types to the result pattern's nodes. 4210 if (!IterateInference && InferredAllPatternTypes && 4211 !InferredAllResultTypes) 4212 IterateInference = 4213 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4214 } while (IterateInference); 4215 4216 // Verify that we inferred enough types that we can do something with the 4217 // pattern and result. If these fire the user has to add type casts. 4218 if (!InferredAllPatternTypes) 4219 Pattern.error("Could not infer all types in pattern!"); 4220 if (!InferredAllResultTypes) { 4221 Pattern.dump(); 4222 Result.error("Could not infer all types in pattern result!"); 4223 } 4224 4225 // Promote xform function to be an explicit node wherever set. 4226 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4227 4228 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4229 Temp.InferAllTypes(); 4230 4231 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4232 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4233 4234 if (PatternRewriter) 4235 PatternRewriter(&Pattern); 4236 4237 // A pattern may end up with an "impossible" type, i.e. a situation 4238 // where all types have been eliminated for some node in this pattern. 4239 // This could occur for intrinsics that only make sense for a specific 4240 // value type, and use a specific register class. If, for some mode, 4241 // that register class does not accept that type, the type inference 4242 // will lead to a contradiction, which is not an error however, but 4243 // a sign that this pattern will simply never match. 4244 if (Temp.getOnlyTree()->hasPossibleType()) 4245 for (const auto &T : Pattern.getTrees()) 4246 if (T->hasPossibleType()) 4247 AddPatternToMatch(&Pattern, 4248 PatternToMatch(TheDef, makePredList(Preds), 4249 T, Temp.getOnlyTree(), 4250 InstImpResults, Complexity, 4251 TheDef->getID())); 4252 } 4253 4254 void CodeGenDAGPatterns::ParsePatterns() { 4255 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4256 4257 for (Record *CurPattern : Patterns) { 4258 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4259 4260 // If the pattern references the null_frag, there's nothing to do. 4261 if (hasNullFragReference(Tree)) 4262 continue; 4263 4264 TreePattern Pattern(CurPattern, Tree, true, *this); 4265 4266 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4267 if (LI->empty()) continue; // no pattern. 4268 4269 // Parse the instruction. 4270 TreePattern Result(CurPattern, LI, false, *this); 4271 4272 if (Result.getNumTrees() != 1) 4273 Result.error("Cannot handle instructions producing instructions " 4274 "with temporaries yet!"); 4275 4276 // Validate that the input pattern is correct. 4277 std::map<std::string, TreePatternNodePtr> InstInputs; 4278 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4279 InstResults; 4280 std::vector<Record*> InstImpResults; 4281 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4282 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4283 InstResults, InstImpResults); 4284 4285 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4286 } 4287 } 4288 4289 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4290 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4291 for (const auto &I : VTS) 4292 Modes.insert(I.first); 4293 4294 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4295 collectModes(Modes, N->getChild(i)); 4296 } 4297 4298 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4299 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4300 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4301 std::vector<PatternToMatch> Copy; 4302 PatternsToMatch.swap(Copy); 4303 4304 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4305 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4306 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4307 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4308 return; 4309 } 4310 4311 std::vector<Predicate> Preds = P.getPredicates(); 4312 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4313 llvm::append_range(Preds, MC); 4314 PatternsToMatch.emplace_back(P.getSrcRecord(), std::move(Preds), 4315 std::move(NewSrc), std::move(NewDst), 4316 P.getDstRegs(), 4317 P.getAddedComplexity(), Record::getNewUID(), 4318 Mode); 4319 }; 4320 4321 for (PatternToMatch &P : Copy) { 4322 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4323 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4324 SrcP = P.getSrcPatternShared(); 4325 if (P.getDstPattern()->hasProperTypeByHwMode()) 4326 DstP = P.getDstPatternShared(); 4327 if (!SrcP && !DstP) { 4328 PatternsToMatch.push_back(P); 4329 continue; 4330 } 4331 4332 std::set<unsigned> Modes; 4333 if (SrcP) 4334 collectModes(Modes, SrcP.get()); 4335 if (DstP) 4336 collectModes(Modes, DstP.get()); 4337 4338 // The predicate for the default mode needs to be constructed for each 4339 // pattern separately. 4340 // Since not all modes must be present in each pattern, if a mode m is 4341 // absent, then there is no point in constructing a check for m. If such 4342 // a check was created, it would be equivalent to checking the default 4343 // mode, except not all modes' predicates would be a part of the checking 4344 // code. The subsequently generated check for the default mode would then 4345 // have the exact same patterns, but a different predicate code. To avoid 4346 // duplicated patterns with different predicate checks, construct the 4347 // default check as a negation of all predicates that are actually present 4348 // in the source/destination patterns. 4349 std::vector<Predicate> DefaultPred; 4350 4351 for (unsigned M : Modes) { 4352 if (M == DefaultMode) 4353 continue; 4354 if (ModeChecks.find(M) != ModeChecks.end()) 4355 continue; 4356 4357 // Fill the map entry for this mode. 4358 const HwMode &HM = CGH.getMode(M); 4359 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4360 4361 // Add negations of the HM's predicates to the default predicate. 4362 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4363 } 4364 4365 for (unsigned M : Modes) { 4366 if (M == DefaultMode) 4367 continue; 4368 AppendPattern(P, M); 4369 } 4370 4371 bool HasDefault = Modes.count(DefaultMode); 4372 if (HasDefault) 4373 AppendPattern(P, DefaultMode); 4374 } 4375 } 4376 4377 /// Dependent variable map for CodeGenDAGPattern variant generation 4378 typedef StringMap<int> DepVarMap; 4379 4380 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4381 if (N->isLeaf()) { 4382 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4383 DepMap[N->getName()]++; 4384 } else { 4385 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4386 FindDepVarsOf(N->getChild(i), DepMap); 4387 } 4388 } 4389 4390 /// Find dependent variables within child patterns 4391 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4392 DepVarMap depcounts; 4393 FindDepVarsOf(N, depcounts); 4394 for (const auto &Pair : depcounts) { 4395 if (Pair.getValue() > 1) 4396 DepVars.insert(Pair.getKey()); 4397 } 4398 } 4399 4400 #ifndef NDEBUG 4401 /// Dump the dependent variable set: 4402 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4403 if (DepVars.empty()) { 4404 LLVM_DEBUG(errs() << "<empty set>"); 4405 } else { 4406 LLVM_DEBUG(errs() << "[ "); 4407 for (const auto &DepVar : DepVars) { 4408 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4409 } 4410 LLVM_DEBUG(errs() << "]"); 4411 } 4412 } 4413 #endif 4414 4415 4416 /// CombineChildVariants - Given a bunch of permutations of each child of the 4417 /// 'operator' node, put them together in all possible ways. 4418 static void CombineChildVariants( 4419 TreePatternNodePtr Orig, 4420 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4421 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4422 const MultipleUseVarSet &DepVars) { 4423 // Make sure that each operand has at least one variant to choose from. 4424 for (const auto &Variants : ChildVariants) 4425 if (Variants.empty()) 4426 return; 4427 4428 // The end result is an all-pairs construction of the resultant pattern. 4429 std::vector<unsigned> Idxs; 4430 Idxs.resize(ChildVariants.size()); 4431 bool NotDone; 4432 do { 4433 #ifndef NDEBUG 4434 LLVM_DEBUG(if (!Idxs.empty()) { 4435 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4436 for (unsigned Idx : Idxs) { 4437 errs() << Idx << " "; 4438 } 4439 errs() << "]\n"; 4440 }); 4441 #endif 4442 // Create the variant and add it to the output list. 4443 std::vector<TreePatternNodePtr> NewChildren; 4444 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4445 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4446 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4447 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4448 4449 // Copy over properties. 4450 R->setName(Orig->getName()); 4451 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4452 R->setPredicateCalls(Orig->getPredicateCalls()); 4453 R->setTransformFn(Orig->getTransformFn()); 4454 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4455 R->setType(i, Orig->getExtType(i)); 4456 4457 // If this pattern cannot match, do not include it as a variant. 4458 std::string ErrString; 4459 // Scan to see if this pattern has already been emitted. We can get 4460 // duplication due to things like commuting: 4461 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4462 // which are the same pattern. Ignore the dups. 4463 if (R->canPatternMatch(ErrString, CDP) && 4464 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4465 return R->isIsomorphicTo(Variant.get(), DepVars); 4466 })) 4467 OutVariants.push_back(R); 4468 4469 // Increment indices to the next permutation by incrementing the 4470 // indices from last index backward, e.g., generate the sequence 4471 // [0, 0], [0, 1], [1, 0], [1, 1]. 4472 int IdxsIdx; 4473 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4474 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4475 Idxs[IdxsIdx] = 0; 4476 else 4477 break; 4478 } 4479 NotDone = (IdxsIdx >= 0); 4480 } while (NotDone); 4481 } 4482 4483 /// CombineChildVariants - A helper function for binary operators. 4484 /// 4485 static void CombineChildVariants(TreePatternNodePtr Orig, 4486 const std::vector<TreePatternNodePtr> &LHS, 4487 const std::vector<TreePatternNodePtr> &RHS, 4488 std::vector<TreePatternNodePtr> &OutVariants, 4489 CodeGenDAGPatterns &CDP, 4490 const MultipleUseVarSet &DepVars) { 4491 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4492 ChildVariants.push_back(LHS); 4493 ChildVariants.push_back(RHS); 4494 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4495 } 4496 4497 static void 4498 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4499 std::vector<TreePatternNodePtr> &Children) { 4500 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4501 Record *Operator = N->getOperator(); 4502 4503 // Only permit raw nodes. 4504 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4505 N->getTransformFn()) { 4506 Children.push_back(N); 4507 return; 4508 } 4509 4510 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4511 Children.push_back(N->getChildShared(0)); 4512 else 4513 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4514 4515 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4516 Children.push_back(N->getChildShared(1)); 4517 else 4518 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4519 } 4520 4521 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4522 /// the (potentially recursive) pattern by using algebraic laws. 4523 /// 4524 static void GenerateVariantsOf(TreePatternNodePtr N, 4525 std::vector<TreePatternNodePtr> &OutVariants, 4526 CodeGenDAGPatterns &CDP, 4527 const MultipleUseVarSet &DepVars) { 4528 // We cannot permute leaves or ComplexPattern uses. 4529 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4530 OutVariants.push_back(N); 4531 return; 4532 } 4533 4534 // Look up interesting info about the node. 4535 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4536 4537 // If this node is associative, re-associate. 4538 if (NodeInfo.hasProperty(SDNPAssociative)) { 4539 // Re-associate by pulling together all of the linked operators 4540 std::vector<TreePatternNodePtr> MaximalChildren; 4541 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4542 4543 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4544 // permutations. 4545 if (MaximalChildren.size() == 3) { 4546 // Find the variants of all of our maximal children. 4547 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4548 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4549 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4550 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4551 4552 // There are only two ways we can permute the tree: 4553 // (A op B) op C and A op (B op C) 4554 // Within these forms, we can also permute A/B/C. 4555 4556 // Generate legal pair permutations of A/B/C. 4557 std::vector<TreePatternNodePtr> ABVariants; 4558 std::vector<TreePatternNodePtr> BAVariants; 4559 std::vector<TreePatternNodePtr> ACVariants; 4560 std::vector<TreePatternNodePtr> CAVariants; 4561 std::vector<TreePatternNodePtr> BCVariants; 4562 std::vector<TreePatternNodePtr> CBVariants; 4563 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4564 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4565 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4566 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4567 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4568 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4569 4570 // Combine those into the result: (x op x) op x 4571 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4572 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4573 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4574 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4575 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4576 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4577 4578 // Combine those into the result: x op (x op x) 4579 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4580 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4581 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4582 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4583 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4584 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4585 return; 4586 } 4587 } 4588 4589 // Compute permutations of all children. 4590 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4591 ChildVariants.resize(N->getNumChildren()); 4592 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4593 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4594 4595 // Build all permutations based on how the children were formed. 4596 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4597 4598 // If this node is commutative, consider the commuted order. 4599 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4600 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4601 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4602 "Commutative but doesn't have 2 children!"); 4603 // Don't count children which are actually register references. 4604 unsigned NC = 0; 4605 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4606 TreePatternNode *Child = N->getChild(i); 4607 if (Child->isLeaf()) 4608 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4609 Record *RR = DI->getDef(); 4610 if (RR->isSubClassOf("Register")) 4611 continue; 4612 } 4613 NC++; 4614 } 4615 // Consider the commuted order. 4616 if (isCommIntrinsic) { 4617 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4618 // operands are the commutative operands, and there might be more operands 4619 // after those. 4620 assert(NC >= 3 && 4621 "Commutative intrinsic should have at least 3 children!"); 4622 std::vector<std::vector<TreePatternNodePtr>> Variants; 4623 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4624 Variants.push_back(std::move(ChildVariants[2])); 4625 Variants.push_back(std::move(ChildVariants[1])); 4626 for (unsigned i = 3; i != NC; ++i) 4627 Variants.push_back(std::move(ChildVariants[i])); 4628 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4629 } else if (NC == N->getNumChildren()) { 4630 std::vector<std::vector<TreePatternNodePtr>> Variants; 4631 Variants.push_back(std::move(ChildVariants[1])); 4632 Variants.push_back(std::move(ChildVariants[0])); 4633 for (unsigned i = 2; i != NC; ++i) 4634 Variants.push_back(std::move(ChildVariants[i])); 4635 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4636 } 4637 } 4638 } 4639 4640 4641 // GenerateVariants - Generate variants. For example, commutative patterns can 4642 // match multiple ways. Add them to PatternsToMatch as well. 4643 void CodeGenDAGPatterns::GenerateVariants() { 4644 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4645 4646 // Loop over all of the patterns we've collected, checking to see if we can 4647 // generate variants of the instruction, through the exploitation of 4648 // identities. This permits the target to provide aggressive matching without 4649 // the .td file having to contain tons of variants of instructions. 4650 // 4651 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4652 // intentionally do not reconsider these. Any variants of added patterns have 4653 // already been added. 4654 // 4655 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4656 BitVector MatchedPatterns(NumOriginalPatterns); 4657 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4658 BitVector(NumOriginalPatterns)); 4659 4660 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4661 DepsAndVariants; 4662 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4663 4664 // Collect patterns with more than one variant. 4665 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4666 MultipleUseVarSet DepVars; 4667 std::vector<TreePatternNodePtr> Variants; 4668 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4669 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4670 LLVM_DEBUG(DumpDepVars(DepVars)); 4671 LLVM_DEBUG(errs() << "\n"); 4672 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4673 *this, DepVars); 4674 4675 assert(!Variants.empty() && "Must create at least original variant!"); 4676 if (Variants.size() == 1) // No additional variants for this pattern. 4677 continue; 4678 4679 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4680 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4681 4682 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4683 4684 // Cache matching predicates. 4685 if (MatchedPatterns[i]) 4686 continue; 4687 4688 const std::vector<Predicate> &Predicates = 4689 PatternsToMatch[i].getPredicates(); 4690 4691 BitVector &Matches = MatchedPredicates[i]; 4692 MatchedPatterns.set(i); 4693 Matches.set(i); 4694 4695 // Don't test patterns that have already been cached - it won't match. 4696 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4697 if (!MatchedPatterns[p]) 4698 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4699 4700 // Copy this to all the matching patterns. 4701 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4702 if (p != (int)i) { 4703 MatchedPatterns.set(p); 4704 MatchedPredicates[p] = Matches; 4705 } 4706 } 4707 4708 for (const auto &it : PatternsWithVariants) { 4709 unsigned i = it.first; 4710 const MultipleUseVarSet &DepVars = it.second.first; 4711 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4712 4713 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4714 TreePatternNodePtr Variant = Variants[v]; 4715 BitVector &Matches = MatchedPredicates[i]; 4716 4717 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4718 errs() << "\n"); 4719 4720 // Scan to see if an instruction or explicit pattern already matches this. 4721 bool AlreadyExists = false; 4722 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4723 // Skip if the top level predicates do not match. 4724 if (!Matches[p]) 4725 continue; 4726 // Check to see if this variant already exists. 4727 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4728 DepVars)) { 4729 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4730 AlreadyExists = true; 4731 break; 4732 } 4733 } 4734 // If we already have it, ignore the variant. 4735 if (AlreadyExists) continue; 4736 4737 // Otherwise, add it to the list of patterns we have. 4738 PatternsToMatch.emplace_back( 4739 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4740 Variant, PatternsToMatch[i].getDstPatternShared(), 4741 PatternsToMatch[i].getDstRegs(), 4742 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 4743 MatchedPredicates.push_back(Matches); 4744 4745 // Add a new match the same as this pattern. 4746 for (auto &P : MatchedPredicates) 4747 P.push_back(P[i]); 4748 } 4749 4750 LLVM_DEBUG(errs() << "\n"); 4751 } 4752 } 4753