1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Support/Debug.h" 20 #include <set> 21 #include <algorithm> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // EEVT::TypeSet Implementation 26 //===----------------------------------------------------------------------===// 27 28 static inline bool isInteger(MVT::SimpleValueType VT) { 29 return EVT(VT).isInteger(); 30 } 31 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 32 return EVT(VT).isFloatingPoint(); 33 } 34 static inline bool isVector(MVT::SimpleValueType VT) { 35 return EVT(VT).isVector(); 36 } 37 static inline bool isScalar(MVT::SimpleValueType VT) { 38 return !EVT(VT).isVector(); 39 } 40 41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 42 if (VT == MVT::iAny) 43 EnforceInteger(TP); 44 else if (VT == MVT::fAny) 45 EnforceFloatingPoint(TP); 46 else if (VT == MVT::vAny) 47 EnforceVector(TP); 48 else { 49 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 50 VT == MVT::iPTRAny) && "Not a concrete type!"); 51 TypeVec.push_back(VT); 52 } 53 } 54 55 56 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 57 assert(!VTList.empty() && "empty list?"); 58 TypeVec.append(VTList.begin(), VTList.end()); 59 60 if (!VTList.empty()) 61 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 62 VTList[0] != MVT::fAny); 63 64 // Verify no duplicates. 65 array_pod_sort(TypeVec.begin(), TypeVec.end()); 66 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 67 } 68 69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 70 /// on completely unknown type sets. 71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 72 bool (*Pred)(MVT::SimpleValueType), 73 const char *PredicateName) { 74 assert(isCompletelyUnknown()); 75 const std::vector<MVT::SimpleValueType> &LegalTypes = 76 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 77 78 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 79 if (Pred == 0 || Pred(LegalTypes[i])) 80 TypeVec.push_back(LegalTypes[i]); 81 82 // If we have nothing that matches the predicate, bail out. 83 if (TypeVec.empty()) 84 TP.error("Type inference contradiction found, no " + 85 std::string(PredicateName) + " types found"); 86 // No need to sort with one element. 87 if (TypeVec.size() == 1) return true; 88 89 // Remove duplicates. 90 array_pod_sort(TypeVec.begin(), TypeVec.end()); 91 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 92 93 return true; 94 } 95 96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 97 /// integer value type. 98 bool EEVT::TypeSet::hasIntegerTypes() const { 99 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 100 if (isInteger(TypeVec[i])) 101 return true; 102 return false; 103 } 104 105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 106 /// a floating point value type. 107 bool EEVT::TypeSet::hasFloatingPointTypes() const { 108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 109 if (isFloatingPoint(TypeVec[i])) 110 return true; 111 return false; 112 } 113 114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 115 /// value type. 116 bool EEVT::TypeSet::hasVectorTypes() const { 117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 118 if (isVector(TypeVec[i])) 119 return true; 120 return false; 121 } 122 123 124 std::string EEVT::TypeSet::getName() const { 125 if (TypeVec.empty()) return "<empty>"; 126 127 std::string Result; 128 129 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 130 std::string VTName = llvm::getEnumName(TypeVec[i]); 131 // Strip off MVT:: prefix if present. 132 if (VTName.substr(0,5) == "MVT::") 133 VTName = VTName.substr(5); 134 if (i) Result += ':'; 135 Result += VTName; 136 } 137 138 if (TypeVec.size() == 1) 139 return Result; 140 return "{" + Result + "}"; 141 } 142 143 /// MergeInTypeInfo - This merges in type information from the specified 144 /// argument. If 'this' changes, it returns true. If the two types are 145 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 147 if (InVT.isCompletelyUnknown() || *this == InVT) 148 return false; 149 150 if (isCompletelyUnknown()) { 151 *this = InVT; 152 return true; 153 } 154 155 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 156 157 // Handle the abstract cases, seeing if we can resolve them better. 158 switch (TypeVec[0]) { 159 default: break; 160 case MVT::iPTR: 161 case MVT::iPTRAny: 162 if (InVT.hasIntegerTypes()) { 163 EEVT::TypeSet InCopy(InVT); 164 InCopy.EnforceInteger(TP); 165 InCopy.EnforceScalar(TP); 166 167 if (InCopy.isConcrete()) { 168 // If the RHS has one integer type, upgrade iPTR to i32. 169 TypeVec[0] = InVT.TypeVec[0]; 170 return true; 171 } 172 173 // If the input has multiple scalar integers, this doesn't add any info. 174 if (!InCopy.isCompletelyUnknown()) 175 return false; 176 } 177 break; 178 } 179 180 // If the input constraint is iAny/iPTR and this is an integer type list, 181 // remove non-integer types from the list. 182 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 183 hasIntegerTypes()) { 184 bool MadeChange = EnforceInteger(TP); 185 186 // If we're merging in iPTR/iPTRAny and the node currently has a list of 187 // multiple different integer types, replace them with a single iPTR. 188 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 189 TypeVec.size() != 1) { 190 TypeVec.resize(1); 191 TypeVec[0] = InVT.TypeVec[0]; 192 MadeChange = true; 193 } 194 195 return MadeChange; 196 } 197 198 // If this is a type list and the RHS is a typelist as well, eliminate entries 199 // from this list that aren't in the other one. 200 bool MadeChange = false; 201 TypeSet InputSet(*this); 202 203 for (unsigned i = 0; i != TypeVec.size(); ++i) { 204 bool InInVT = false; 205 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 206 if (TypeVec[i] == InVT.TypeVec[j]) { 207 InInVT = true; 208 break; 209 } 210 211 if (InInVT) continue; 212 TypeVec.erase(TypeVec.begin()+i--); 213 MadeChange = true; 214 } 215 216 // If we removed all of our types, we have a type contradiction. 217 if (!TypeVec.empty()) 218 return MadeChange; 219 220 // FIXME: Really want an SMLoc here! 221 TP.error("Type inference contradiction found, merging '" + 222 InVT.getName() + "' into '" + InputSet.getName() + "'"); 223 return true; // unreachable 224 } 225 226 /// EnforceInteger - Remove all non-integer types from this set. 227 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 228 // If we know nothing, then get the full set. 229 if (TypeVec.empty()) 230 return FillWithPossibleTypes(TP, isInteger, "integer"); 231 if (!hasFloatingPointTypes()) 232 return false; 233 234 TypeSet InputSet(*this); 235 236 // Filter out all the fp types. 237 for (unsigned i = 0; i != TypeVec.size(); ++i) 238 if (!isInteger(TypeVec[i])) 239 TypeVec.erase(TypeVec.begin()+i--); 240 241 if (TypeVec.empty()) 242 TP.error("Type inference contradiction found, '" + 243 InputSet.getName() + "' needs to be integer"); 244 return true; 245 } 246 247 /// EnforceFloatingPoint - Remove all integer types from this set. 248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 252 253 if (!hasIntegerTypes()) 254 return false; 255 256 TypeSet InputSet(*this); 257 258 // Filter out all the fp types. 259 for (unsigned i = 0; i != TypeVec.size(); ++i) 260 if (!isFloatingPoint(TypeVec[i])) 261 TypeVec.erase(TypeVec.begin()+i--); 262 263 if (TypeVec.empty()) 264 TP.error("Type inference contradiction found, '" + 265 InputSet.getName() + "' needs to be floating point"); 266 return true; 267 } 268 269 /// EnforceScalar - Remove all vector types from this. 270 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 271 // If we know nothing, then get the full set. 272 if (TypeVec.empty()) 273 return FillWithPossibleTypes(TP, isScalar, "scalar"); 274 275 if (!hasVectorTypes()) 276 return false; 277 278 TypeSet InputSet(*this); 279 280 // Filter out all the vector types. 281 for (unsigned i = 0; i != TypeVec.size(); ++i) 282 if (!isScalar(TypeVec[i])) 283 TypeVec.erase(TypeVec.begin()+i--); 284 285 if (TypeVec.empty()) 286 TP.error("Type inference contradiction found, '" + 287 InputSet.getName() + "' needs to be scalar"); 288 return true; 289 } 290 291 /// EnforceVector - Remove all vector types from this. 292 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 293 // If we know nothing, then get the full set. 294 if (TypeVec.empty()) 295 return FillWithPossibleTypes(TP, isVector, "vector"); 296 297 TypeSet InputSet(*this); 298 bool MadeChange = false; 299 300 // Filter out all the scalar types. 301 for (unsigned i = 0; i != TypeVec.size(); ++i) 302 if (!isVector(TypeVec[i])) { 303 TypeVec.erase(TypeVec.begin()+i--); 304 MadeChange = true; 305 } 306 307 if (TypeVec.empty()) 308 TP.error("Type inference contradiction found, '" + 309 InputSet.getName() + "' needs to be a vector"); 310 return MadeChange; 311 } 312 313 314 315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 316 /// this an other based on this information. 317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 318 // Both operands must be integer or FP, but we don't care which. 319 bool MadeChange = false; 320 321 if (isCompletelyUnknown()) 322 MadeChange = FillWithPossibleTypes(TP); 323 324 if (Other.isCompletelyUnknown()) 325 MadeChange = Other.FillWithPossibleTypes(TP); 326 327 // If one side is known to be integer or known to be FP but the other side has 328 // no information, get at least the type integrality info in there. 329 if (!hasFloatingPointTypes()) 330 MadeChange |= Other.EnforceInteger(TP); 331 else if (!hasIntegerTypes()) 332 MadeChange |= Other.EnforceFloatingPoint(TP); 333 if (!Other.hasFloatingPointTypes()) 334 MadeChange |= EnforceInteger(TP); 335 else if (!Other.hasIntegerTypes()) 336 MadeChange |= EnforceFloatingPoint(TP); 337 338 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 339 "Should have a type list now"); 340 341 // If one contains vectors but the other doesn't pull vectors out. 342 if (!hasVectorTypes()) 343 MadeChange |= Other.EnforceScalar(TP); 344 if (!hasVectorTypes()) 345 MadeChange |= EnforceScalar(TP); 346 347 // This code does not currently handle nodes which have multiple types, 348 // where some types are integer, and some are fp. Assert that this is not 349 // the case. 350 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 351 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 352 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 353 354 // Okay, find the smallest type from the current set and remove it from the 355 // largest set. 356 MVT::SimpleValueType Smallest = TypeVec[0]; 357 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 358 if (TypeVec[i] < Smallest) 359 Smallest = TypeVec[i]; 360 361 // If this is the only type in the large set, the constraint can never be 362 // satisfied. 363 if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest) 364 TP.error("Type inference contradiction found, '" + 365 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 366 367 SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 368 std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest); 369 if (TVI != Other.TypeVec.end()) { 370 Other.TypeVec.erase(TVI); 371 MadeChange = true; 372 } 373 374 // Okay, find the largest type in the Other set and remove it from the 375 // current set. 376 MVT::SimpleValueType Largest = Other.TypeVec[0]; 377 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 378 if (Other.TypeVec[i] > Largest) 379 Largest = Other.TypeVec[i]; 380 381 // If this is the only type in the small set, the constraint can never be 382 // satisfied. 383 if (TypeVec.size() == 1 && TypeVec[0] == Largest) 384 TP.error("Type inference contradiction found, '" + 385 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 386 387 TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest); 388 if (TVI != TypeVec.end()) { 389 TypeVec.erase(TVI); 390 MadeChange = true; 391 } 392 393 return MadeChange; 394 } 395 396 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 397 /// whose element is specified by VTOperand. 398 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 399 TreePattern &TP) { 400 // "This" must be a vector and "VTOperand" must be a scalar. 401 bool MadeChange = false; 402 MadeChange |= EnforceVector(TP); 403 MadeChange |= VTOperand.EnforceScalar(TP); 404 405 // If we know the vector type, it forces the scalar to agree. 406 if (isConcrete()) { 407 EVT IVT = getConcrete(); 408 IVT = IVT.getVectorElementType(); 409 return MadeChange | 410 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 411 } 412 413 // If the scalar type is known, filter out vector types whose element types 414 // disagree. 415 if (!VTOperand.isConcrete()) 416 return MadeChange; 417 418 MVT::SimpleValueType VT = VTOperand.getConcrete(); 419 420 TypeSet InputSet(*this); 421 422 // Filter out all the types which don't have the right element type. 423 for (unsigned i = 0; i != TypeVec.size(); ++i) { 424 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 425 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 426 TypeVec.erase(TypeVec.begin()+i--); 427 MadeChange = true; 428 } 429 } 430 431 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 432 TP.error("Type inference contradiction found, forcing '" + 433 InputSet.getName() + "' to have a vector element"); 434 return MadeChange; 435 } 436 437 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 438 /// vector type specified by VTOperand. 439 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 440 TreePattern &TP) { 441 // "This" must be a vector and "VTOperand" must be a vector. 442 bool MadeChange = false; 443 MadeChange |= EnforceVector(TP); 444 MadeChange |= VTOperand.EnforceVector(TP); 445 446 // "This" must be larger than "VTOperand." 447 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 448 449 // If we know the vector type, it forces the scalar types to agree. 450 if (isConcrete()) { 451 EVT IVT = getConcrete(); 452 IVT = IVT.getVectorElementType(); 453 454 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 455 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 456 } else if (VTOperand.isConcrete()) { 457 EVT IVT = VTOperand.getConcrete(); 458 IVT = IVT.getVectorElementType(); 459 460 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 461 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 462 } 463 464 return MadeChange; 465 } 466 467 //===----------------------------------------------------------------------===// 468 // Helpers for working with extended types. 469 470 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 471 return LHS->getID() < RHS->getID(); 472 } 473 474 /// Dependent variable map for CodeGenDAGPattern variant generation 475 typedef std::map<std::string, int> DepVarMap; 476 477 /// Const iterator shorthand for DepVarMap 478 typedef DepVarMap::const_iterator DepVarMap_citer; 479 480 namespace { 481 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 482 if (N->isLeaf()) { 483 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 484 DepMap[N->getName()]++; 485 } 486 } else { 487 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 488 FindDepVarsOf(N->getChild(i), DepMap); 489 } 490 } 491 492 //! Find dependent variables within child patterns 493 /*! 494 */ 495 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 496 DepVarMap depcounts; 497 FindDepVarsOf(N, depcounts); 498 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 499 if (i->second > 1) { // std::pair<std::string, int> 500 DepVars.insert(i->first); 501 } 502 } 503 } 504 505 //! Dump the dependent variable set: 506 #ifndef NDEBUG 507 void DumpDepVars(MultipleUseVarSet &DepVars) { 508 if (DepVars.empty()) { 509 DEBUG(errs() << "<empty set>"); 510 } else { 511 DEBUG(errs() << "[ "); 512 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 513 e = DepVars.end(); i != e; ++i) { 514 DEBUG(errs() << (*i) << " "); 515 } 516 DEBUG(errs() << "]"); 517 } 518 } 519 #endif 520 521 } 522 523 //===----------------------------------------------------------------------===// 524 // PatternToMatch implementation 525 // 526 527 528 /// getPatternSize - Return the 'size' of this pattern. We want to match large 529 /// patterns before small ones. This is used to determine the size of a 530 /// pattern. 531 static unsigned getPatternSize(const TreePatternNode *P, 532 const CodeGenDAGPatterns &CGP) { 533 unsigned Size = 3; // The node itself. 534 // If the root node is a ConstantSDNode, increases its size. 535 // e.g. (set R32:$dst, 0). 536 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 537 Size += 2; 538 539 // FIXME: This is a hack to statically increase the priority of patterns 540 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 541 // Later we can allow complexity / cost for each pattern to be (optionally) 542 // specified. To get best possible pattern match we'll need to dynamically 543 // calculate the complexity of all patterns a dag can potentially map to. 544 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 545 if (AM) 546 Size += AM->getNumOperands() * 3; 547 548 // If this node has some predicate function that must match, it adds to the 549 // complexity of this node. 550 if (!P->getPredicateFns().empty()) 551 ++Size; 552 553 // Count children in the count if they are also nodes. 554 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 555 TreePatternNode *Child = P->getChild(i); 556 if (!Child->isLeaf() && Child->getNumTypes() && 557 Child->getType(0) != MVT::Other) 558 Size += getPatternSize(Child, CGP); 559 else if (Child->isLeaf()) { 560 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 561 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 562 else if (Child->getComplexPatternInfo(CGP)) 563 Size += getPatternSize(Child, CGP); 564 else if (!Child->getPredicateFns().empty()) 565 ++Size; 566 } 567 } 568 569 return Size; 570 } 571 572 /// Compute the complexity metric for the input pattern. This roughly 573 /// corresponds to the number of nodes that are covered. 574 unsigned PatternToMatch:: 575 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 576 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 577 } 578 579 580 /// getPredicateCheck - Return a single string containing all of this 581 /// pattern's predicates concatenated with "&&" operators. 582 /// 583 std::string PatternToMatch::getPredicateCheck() const { 584 std::string PredicateCheck; 585 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 586 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 587 Record *Def = Pred->getDef(); 588 if (!Def->isSubClassOf("Predicate")) { 589 #ifndef NDEBUG 590 Def->dump(); 591 #endif 592 assert(0 && "Unknown predicate type!"); 593 } 594 if (!PredicateCheck.empty()) 595 PredicateCheck += " && "; 596 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 597 } 598 } 599 600 return PredicateCheck; 601 } 602 603 //===----------------------------------------------------------------------===// 604 // SDTypeConstraint implementation 605 // 606 607 SDTypeConstraint::SDTypeConstraint(Record *R) { 608 OperandNo = R->getValueAsInt("OperandNum"); 609 610 if (R->isSubClassOf("SDTCisVT")) { 611 ConstraintType = SDTCisVT; 612 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 613 if (x.SDTCisVT_Info.VT == MVT::isVoid) 614 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 615 616 } else if (R->isSubClassOf("SDTCisPtrTy")) { 617 ConstraintType = SDTCisPtrTy; 618 } else if (R->isSubClassOf("SDTCisInt")) { 619 ConstraintType = SDTCisInt; 620 } else if (R->isSubClassOf("SDTCisFP")) { 621 ConstraintType = SDTCisFP; 622 } else if (R->isSubClassOf("SDTCisVec")) { 623 ConstraintType = SDTCisVec; 624 } else if (R->isSubClassOf("SDTCisSameAs")) { 625 ConstraintType = SDTCisSameAs; 626 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 627 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 628 ConstraintType = SDTCisVTSmallerThanOp; 629 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 630 R->getValueAsInt("OtherOperandNum"); 631 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 632 ConstraintType = SDTCisOpSmallerThanOp; 633 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 634 R->getValueAsInt("BigOperandNum"); 635 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 636 ConstraintType = SDTCisEltOfVec; 637 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 638 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 639 ConstraintType = SDTCisSubVecOfVec; 640 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 641 R->getValueAsInt("OtherOpNum"); 642 } else { 643 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 644 exit(1); 645 } 646 } 647 648 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 649 /// N, and the result number in ResNo. 650 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 651 const SDNodeInfo &NodeInfo, 652 unsigned &ResNo) { 653 unsigned NumResults = NodeInfo.getNumResults(); 654 if (OpNo < NumResults) { 655 ResNo = OpNo; 656 return N; 657 } 658 659 OpNo -= NumResults; 660 661 if (OpNo >= N->getNumChildren()) { 662 errs() << "Invalid operand number in type constraint " 663 << (OpNo+NumResults) << " "; 664 N->dump(); 665 errs() << '\n'; 666 exit(1); 667 } 668 669 return N->getChild(OpNo); 670 } 671 672 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 673 /// constraint to the nodes operands. This returns true if it makes a 674 /// change, false otherwise. If a type contradiction is found, throw an 675 /// exception. 676 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 677 const SDNodeInfo &NodeInfo, 678 TreePattern &TP) const { 679 unsigned ResNo = 0; // The result number being referenced. 680 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 681 682 switch (ConstraintType) { 683 default: assert(0 && "Unknown constraint type!"); 684 case SDTCisVT: 685 // Operand must be a particular type. 686 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 687 case SDTCisPtrTy: 688 // Operand must be same as target pointer type. 689 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 690 case SDTCisInt: 691 // Require it to be one of the legal integer VTs. 692 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 693 case SDTCisFP: 694 // Require it to be one of the legal fp VTs. 695 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 696 case SDTCisVec: 697 // Require it to be one of the legal vector VTs. 698 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 699 case SDTCisSameAs: { 700 unsigned OResNo = 0; 701 TreePatternNode *OtherNode = 702 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 703 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 704 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 705 } 706 case SDTCisVTSmallerThanOp: { 707 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 708 // have an integer type that is smaller than the VT. 709 if (!NodeToApply->isLeaf() || 710 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 711 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 712 ->isSubClassOf("ValueType")) 713 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 714 MVT::SimpleValueType VT = 715 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 716 717 EEVT::TypeSet TypeListTmp(VT, TP); 718 719 unsigned OResNo = 0; 720 TreePatternNode *OtherNode = 721 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 722 OResNo); 723 724 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 725 } 726 case SDTCisOpSmallerThanOp: { 727 unsigned BResNo = 0; 728 TreePatternNode *BigOperand = 729 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 730 BResNo); 731 return NodeToApply->getExtType(ResNo). 732 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 733 } 734 case SDTCisEltOfVec: { 735 unsigned VResNo = 0; 736 TreePatternNode *VecOperand = 737 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 738 VResNo); 739 740 // Filter vector types out of VecOperand that don't have the right element 741 // type. 742 return VecOperand->getExtType(VResNo). 743 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 744 } 745 case SDTCisSubVecOfVec: { 746 unsigned VResNo = 0; 747 TreePatternNode *BigVecOperand = 748 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 749 VResNo); 750 751 // Filter vector types out of BigVecOperand that don't have the 752 // right subvector type. 753 return BigVecOperand->getExtType(VResNo). 754 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 755 } 756 } 757 return false; 758 } 759 760 //===----------------------------------------------------------------------===// 761 // SDNodeInfo implementation 762 // 763 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 764 EnumName = R->getValueAsString("Opcode"); 765 SDClassName = R->getValueAsString("SDClass"); 766 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 767 NumResults = TypeProfile->getValueAsInt("NumResults"); 768 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 769 770 // Parse the properties. 771 Properties = 0; 772 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 773 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 774 if (PropList[i]->getName() == "SDNPCommutative") { 775 Properties |= 1 << SDNPCommutative; 776 } else if (PropList[i]->getName() == "SDNPAssociative") { 777 Properties |= 1 << SDNPAssociative; 778 } else if (PropList[i]->getName() == "SDNPHasChain") { 779 Properties |= 1 << SDNPHasChain; 780 } else if (PropList[i]->getName() == "SDNPOutGlue") { 781 Properties |= 1 << SDNPOutGlue; 782 } else if (PropList[i]->getName() == "SDNPInGlue") { 783 Properties |= 1 << SDNPInGlue; 784 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 785 Properties |= 1 << SDNPOptInGlue; 786 } else if (PropList[i]->getName() == "SDNPMayStore") { 787 Properties |= 1 << SDNPMayStore; 788 } else if (PropList[i]->getName() == "SDNPMayLoad") { 789 Properties |= 1 << SDNPMayLoad; 790 } else if (PropList[i]->getName() == "SDNPSideEffect") { 791 Properties |= 1 << SDNPSideEffect; 792 } else if (PropList[i]->getName() == "SDNPMemOperand") { 793 Properties |= 1 << SDNPMemOperand; 794 } else if (PropList[i]->getName() == "SDNPVariadic") { 795 Properties |= 1 << SDNPVariadic; 796 } else { 797 errs() << "Unknown SD Node property '" << PropList[i]->getName() 798 << "' on node '" << R->getName() << "'!\n"; 799 exit(1); 800 } 801 } 802 803 804 // Parse the type constraints. 805 std::vector<Record*> ConstraintList = 806 TypeProfile->getValueAsListOfDefs("Constraints"); 807 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 808 } 809 810 /// getKnownType - If the type constraints on this node imply a fixed type 811 /// (e.g. all stores return void, etc), then return it as an 812 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 813 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 814 unsigned NumResults = getNumResults(); 815 assert(NumResults <= 1 && 816 "We only work with nodes with zero or one result so far!"); 817 assert(ResNo == 0 && "Only handles single result nodes so far"); 818 819 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 820 // Make sure that this applies to the correct node result. 821 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 822 continue; 823 824 switch (TypeConstraints[i].ConstraintType) { 825 default: break; 826 case SDTypeConstraint::SDTCisVT: 827 return TypeConstraints[i].x.SDTCisVT_Info.VT; 828 case SDTypeConstraint::SDTCisPtrTy: 829 return MVT::iPTR; 830 } 831 } 832 return MVT::Other; 833 } 834 835 //===----------------------------------------------------------------------===// 836 // TreePatternNode implementation 837 // 838 839 TreePatternNode::~TreePatternNode() { 840 #if 0 // FIXME: implement refcounted tree nodes! 841 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 842 delete getChild(i); 843 #endif 844 } 845 846 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 847 if (Operator->getName() == "set" || 848 Operator->getName() == "implicit") 849 return 0; // All return nothing. 850 851 if (Operator->isSubClassOf("Intrinsic")) 852 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 853 854 if (Operator->isSubClassOf("SDNode")) 855 return CDP.getSDNodeInfo(Operator).getNumResults(); 856 857 if (Operator->isSubClassOf("PatFrag")) { 858 // If we've already parsed this pattern fragment, get it. Otherwise, handle 859 // the forward reference case where one pattern fragment references another 860 // before it is processed. 861 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 862 return PFRec->getOnlyTree()->getNumTypes(); 863 864 // Get the result tree. 865 DagInit *Tree = Operator->getValueAsDag("Fragment"); 866 Record *Op = 0; 867 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 868 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 869 assert(Op && "Invalid Fragment"); 870 return GetNumNodeResults(Op, CDP); 871 } 872 873 if (Operator->isSubClassOf("Instruction")) { 874 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 875 876 // FIXME: Should allow access to all the results here. 877 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 878 879 // Add on one implicit def if it has a resolvable type. 880 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 881 ++NumDefsToAdd; 882 return NumDefsToAdd; 883 } 884 885 if (Operator->isSubClassOf("SDNodeXForm")) 886 return 1; // FIXME: Generalize SDNodeXForm 887 888 Operator->dump(); 889 errs() << "Unhandled node in GetNumNodeResults\n"; 890 exit(1); 891 } 892 893 void TreePatternNode::print(raw_ostream &OS) const { 894 if (isLeaf()) 895 OS << *getLeafValue(); 896 else 897 OS << '(' << getOperator()->getName(); 898 899 for (unsigned i = 0, e = Types.size(); i != e; ++i) 900 OS << ':' << getExtType(i).getName(); 901 902 if (!isLeaf()) { 903 if (getNumChildren() != 0) { 904 OS << " "; 905 getChild(0)->print(OS); 906 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 907 OS << ", "; 908 getChild(i)->print(OS); 909 } 910 } 911 OS << ")"; 912 } 913 914 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 915 OS << "<<P:" << PredicateFns[i] << ">>"; 916 if (TransformFn) 917 OS << "<<X:" << TransformFn->getName() << ">>"; 918 if (!getName().empty()) 919 OS << ":$" << getName(); 920 921 } 922 void TreePatternNode::dump() const { 923 print(errs()); 924 } 925 926 /// isIsomorphicTo - Return true if this node is recursively 927 /// isomorphic to the specified node. For this comparison, the node's 928 /// entire state is considered. The assigned name is ignored, since 929 /// nodes with differing names are considered isomorphic. However, if 930 /// the assigned name is present in the dependent variable set, then 931 /// the assigned name is considered significant and the node is 932 /// isomorphic if the names match. 933 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 934 const MultipleUseVarSet &DepVars) const { 935 if (N == this) return true; 936 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 937 getPredicateFns() != N->getPredicateFns() || 938 getTransformFn() != N->getTransformFn()) 939 return false; 940 941 if (isLeaf()) { 942 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 943 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 944 return ((DI->getDef() == NDI->getDef()) 945 && (DepVars.find(getName()) == DepVars.end() 946 || getName() == N->getName())); 947 } 948 } 949 return getLeafValue() == N->getLeafValue(); 950 } 951 952 if (N->getOperator() != getOperator() || 953 N->getNumChildren() != getNumChildren()) return false; 954 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 955 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 956 return false; 957 return true; 958 } 959 960 /// clone - Make a copy of this tree and all of its children. 961 /// 962 TreePatternNode *TreePatternNode::clone() const { 963 TreePatternNode *New; 964 if (isLeaf()) { 965 New = new TreePatternNode(getLeafValue(), getNumTypes()); 966 } else { 967 std::vector<TreePatternNode*> CChildren; 968 CChildren.reserve(Children.size()); 969 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 970 CChildren.push_back(getChild(i)->clone()); 971 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 972 } 973 New->setName(getName()); 974 New->Types = Types; 975 New->setPredicateFns(getPredicateFns()); 976 New->setTransformFn(getTransformFn()); 977 return New; 978 } 979 980 /// RemoveAllTypes - Recursively strip all the types of this tree. 981 void TreePatternNode::RemoveAllTypes() { 982 for (unsigned i = 0, e = Types.size(); i != e; ++i) 983 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 984 if (isLeaf()) return; 985 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 986 getChild(i)->RemoveAllTypes(); 987 } 988 989 990 /// SubstituteFormalArguments - Replace the formal arguments in this tree 991 /// with actual values specified by ArgMap. 992 void TreePatternNode:: 993 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 994 if (isLeaf()) return; 995 996 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 997 TreePatternNode *Child = getChild(i); 998 if (Child->isLeaf()) { 999 Init *Val = Child->getLeafValue(); 1000 if (dynamic_cast<DefInit*>(Val) && 1001 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 1002 // We found a use of a formal argument, replace it with its value. 1003 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1004 assert(NewChild && "Couldn't find formal argument!"); 1005 assert((Child->getPredicateFns().empty() || 1006 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1007 "Non-empty child predicate clobbered!"); 1008 setChild(i, NewChild); 1009 } 1010 } else { 1011 getChild(i)->SubstituteFormalArguments(ArgMap); 1012 } 1013 } 1014 } 1015 1016 1017 /// InlinePatternFragments - If this pattern refers to any pattern 1018 /// fragments, inline them into place, giving us a pattern without any 1019 /// PatFrag references. 1020 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1021 if (isLeaf()) return this; // nothing to do. 1022 Record *Op = getOperator(); 1023 1024 if (!Op->isSubClassOf("PatFrag")) { 1025 // Just recursively inline children nodes. 1026 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1027 TreePatternNode *Child = getChild(i); 1028 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1029 1030 assert((Child->getPredicateFns().empty() || 1031 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1032 "Non-empty child predicate clobbered!"); 1033 1034 setChild(i, NewChild); 1035 } 1036 return this; 1037 } 1038 1039 // Otherwise, we found a reference to a fragment. First, look up its 1040 // TreePattern record. 1041 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1042 1043 // Verify that we are passing the right number of operands. 1044 if (Frag->getNumArgs() != Children.size()) 1045 TP.error("'" + Op->getName() + "' fragment requires " + 1046 utostr(Frag->getNumArgs()) + " operands!"); 1047 1048 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1049 1050 std::string Code = Op->getValueAsCode("Predicate"); 1051 if (!Code.empty()) 1052 FragTree->addPredicateFn("Predicate_"+Op->getName()); 1053 1054 // Resolve formal arguments to their actual value. 1055 if (Frag->getNumArgs()) { 1056 // Compute the map of formal to actual arguments. 1057 std::map<std::string, TreePatternNode*> ArgMap; 1058 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1059 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1060 1061 FragTree->SubstituteFormalArguments(ArgMap); 1062 } 1063 1064 FragTree->setName(getName()); 1065 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1066 FragTree->UpdateNodeType(i, getExtType(i), TP); 1067 1068 // Transfer in the old predicates. 1069 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1070 FragTree->addPredicateFn(getPredicateFns()[i]); 1071 1072 // Get a new copy of this fragment to stitch into here. 1073 //delete this; // FIXME: implement refcounting! 1074 1075 // The fragment we inlined could have recursive inlining that is needed. See 1076 // if there are any pattern fragments in it and inline them as needed. 1077 return FragTree->InlinePatternFragments(TP); 1078 } 1079 1080 /// getImplicitType - Check to see if the specified record has an implicit 1081 /// type which should be applied to it. This will infer the type of register 1082 /// references from the register file information, for example. 1083 /// 1084 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1085 bool NotRegisters, TreePattern &TP) { 1086 // Check to see if this is a register or a register class. 1087 if (R->isSubClassOf("RegisterClass")) { 1088 assert(ResNo == 0 && "Regclass ref only has one result!"); 1089 if (NotRegisters) 1090 return EEVT::TypeSet(); // Unknown. 1091 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1092 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1093 } 1094 1095 if (R->isSubClassOf("PatFrag")) { 1096 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1097 // Pattern fragment types will be resolved when they are inlined. 1098 return EEVT::TypeSet(); // Unknown. 1099 } 1100 1101 if (R->isSubClassOf("Register")) { 1102 assert(ResNo == 0 && "Registers only produce one result!"); 1103 if (NotRegisters) 1104 return EEVT::TypeSet(); // Unknown. 1105 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1106 return EEVT::TypeSet(T.getRegisterVTs(R)); 1107 } 1108 1109 if (R->isSubClassOf("SubRegIndex")) { 1110 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1111 return EEVT::TypeSet(); 1112 } 1113 1114 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1115 assert(ResNo == 0 && "This node only has one result!"); 1116 // Using a VTSDNode or CondCodeSDNode. 1117 return EEVT::TypeSet(MVT::Other, TP); 1118 } 1119 1120 if (R->isSubClassOf("ComplexPattern")) { 1121 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1122 if (NotRegisters) 1123 return EEVT::TypeSet(); // Unknown. 1124 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1125 TP); 1126 } 1127 if (R->isSubClassOf("PointerLikeRegClass")) { 1128 assert(ResNo == 0 && "Regclass can only have one result!"); 1129 return EEVT::TypeSet(MVT::iPTR, TP); 1130 } 1131 1132 if (R->getName() == "node" || R->getName() == "srcvalue" || 1133 R->getName() == "zero_reg") { 1134 // Placeholder. 1135 return EEVT::TypeSet(); // Unknown. 1136 } 1137 1138 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1139 return EEVT::TypeSet(MVT::Other, TP); 1140 } 1141 1142 1143 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1144 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1145 const CodeGenIntrinsic *TreePatternNode:: 1146 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1147 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1148 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1149 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1150 return 0; 1151 1152 unsigned IID = 1153 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1154 return &CDP.getIntrinsicInfo(IID); 1155 } 1156 1157 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1158 /// return the ComplexPattern information, otherwise return null. 1159 const ComplexPattern * 1160 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1161 if (!isLeaf()) return 0; 1162 1163 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1164 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1165 return &CGP.getComplexPattern(DI->getDef()); 1166 return 0; 1167 } 1168 1169 /// NodeHasProperty - Return true if this node has the specified property. 1170 bool TreePatternNode::NodeHasProperty(SDNP Property, 1171 const CodeGenDAGPatterns &CGP) const { 1172 if (isLeaf()) { 1173 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1174 return CP->hasProperty(Property); 1175 return false; 1176 } 1177 1178 Record *Operator = getOperator(); 1179 if (!Operator->isSubClassOf("SDNode")) return false; 1180 1181 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1182 } 1183 1184 1185 1186 1187 /// TreeHasProperty - Return true if any node in this tree has the specified 1188 /// property. 1189 bool TreePatternNode::TreeHasProperty(SDNP Property, 1190 const CodeGenDAGPatterns &CGP) const { 1191 if (NodeHasProperty(Property, CGP)) 1192 return true; 1193 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1194 if (getChild(i)->TreeHasProperty(Property, CGP)) 1195 return true; 1196 return false; 1197 } 1198 1199 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1200 /// commutative intrinsic. 1201 bool 1202 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1203 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1204 return Int->isCommutative; 1205 return false; 1206 } 1207 1208 1209 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1210 /// this node and its children in the tree. This returns true if it makes a 1211 /// change, false otherwise. If a type contradiction is found, throw an 1212 /// exception. 1213 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1214 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1215 if (isLeaf()) { 1216 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1217 // If it's a regclass or something else known, include the type. 1218 bool MadeChange = false; 1219 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1220 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1221 NotRegisters, TP), TP); 1222 return MadeChange; 1223 } 1224 1225 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1226 assert(Types.size() == 1 && "Invalid IntInit"); 1227 1228 // Int inits are always integers. :) 1229 bool MadeChange = Types[0].EnforceInteger(TP); 1230 1231 if (!Types[0].isConcrete()) 1232 return MadeChange; 1233 1234 MVT::SimpleValueType VT = getType(0); 1235 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1236 return MadeChange; 1237 1238 unsigned Size = EVT(VT).getSizeInBits(); 1239 // Make sure that the value is representable for this type. 1240 if (Size >= 32) return MadeChange; 1241 1242 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1243 if (Val == II->getValue()) return MadeChange; 1244 1245 // If sign-extended doesn't fit, does it fit as unsigned? 1246 unsigned ValueMask; 1247 unsigned UnsignedVal; 1248 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1249 UnsignedVal = unsigned(II->getValue()); 1250 1251 if ((ValueMask & UnsignedVal) == UnsignedVal) 1252 return MadeChange; 1253 1254 TP.error("Integer value '" + itostr(II->getValue())+ 1255 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1256 return MadeChange; 1257 } 1258 return false; 1259 } 1260 1261 // special handling for set, which isn't really an SDNode. 1262 if (getOperator()->getName() == "set") { 1263 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1264 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1265 unsigned NC = getNumChildren(); 1266 1267 TreePatternNode *SetVal = getChild(NC-1); 1268 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1269 1270 for (unsigned i = 0; i < NC-1; ++i) { 1271 TreePatternNode *Child = getChild(i); 1272 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1273 1274 // Types of operands must match. 1275 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1276 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1277 } 1278 return MadeChange; 1279 } 1280 1281 if (getOperator()->getName() == "implicit") { 1282 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1283 1284 bool MadeChange = false; 1285 for (unsigned i = 0; i < getNumChildren(); ++i) 1286 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1287 return MadeChange; 1288 } 1289 1290 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1291 bool MadeChange = false; 1292 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1293 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1294 1295 assert(getChild(0)->getNumTypes() == 1 && 1296 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1297 1298 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1299 // what type it gets, so if it didn't get a concrete type just give it the 1300 // first viable type from the reg class. 1301 if (!getChild(1)->hasTypeSet(0) && 1302 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1303 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1304 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1305 } 1306 return MadeChange; 1307 } 1308 1309 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1310 bool MadeChange = false; 1311 1312 // Apply the result type to the node. 1313 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1314 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1315 1316 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1317 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1318 1319 if (getNumChildren() != NumParamVTs + 1) 1320 TP.error("Intrinsic '" + Int->Name + "' expects " + 1321 utostr(NumParamVTs) + " operands, not " + 1322 utostr(getNumChildren() - 1) + " operands!"); 1323 1324 // Apply type info to the intrinsic ID. 1325 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1326 1327 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1328 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1329 1330 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1331 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1332 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1333 } 1334 return MadeChange; 1335 } 1336 1337 if (getOperator()->isSubClassOf("SDNode")) { 1338 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1339 1340 // Check that the number of operands is sane. Negative operands -> varargs. 1341 if (NI.getNumOperands() >= 0 && 1342 getNumChildren() != (unsigned)NI.getNumOperands()) 1343 TP.error(getOperator()->getName() + " node requires exactly " + 1344 itostr(NI.getNumOperands()) + " operands!"); 1345 1346 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1347 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1348 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1349 return MadeChange; 1350 } 1351 1352 if (getOperator()->isSubClassOf("Instruction")) { 1353 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1354 CodeGenInstruction &InstInfo = 1355 CDP.getTargetInfo().getInstruction(getOperator()); 1356 1357 bool MadeChange = false; 1358 1359 // Apply the result types to the node, these come from the things in the 1360 // (outs) list of the instruction. 1361 // FIXME: Cap at one result so far. 1362 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1363 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1364 Record *ResultNode = Inst.getResult(ResNo); 1365 1366 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1367 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1368 } else if (ResultNode->getName() == "unknown") { 1369 // Nothing to do. 1370 } else { 1371 assert(ResultNode->isSubClassOf("RegisterClass") && 1372 "Operands should be register classes!"); 1373 const CodeGenRegisterClass &RC = 1374 CDP.getTargetInfo().getRegisterClass(ResultNode); 1375 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1376 } 1377 } 1378 1379 // If the instruction has implicit defs, we apply the first one as a result. 1380 // FIXME: This sucks, it should apply all implicit defs. 1381 if (!InstInfo.ImplicitDefs.empty()) { 1382 unsigned ResNo = NumResultsToAdd; 1383 1384 // FIXME: Generalize to multiple possible types and multiple possible 1385 // ImplicitDefs. 1386 MVT::SimpleValueType VT = 1387 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1388 1389 if (VT != MVT::Other) 1390 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1391 } 1392 1393 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1394 // be the same. 1395 if (getOperator()->getName() == "INSERT_SUBREG") { 1396 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1397 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1398 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1399 } 1400 1401 unsigned ChildNo = 0; 1402 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1403 Record *OperandNode = Inst.getOperand(i); 1404 1405 // If the instruction expects a predicate or optional def operand, we 1406 // codegen this by setting the operand to it's default value if it has a 1407 // non-empty DefaultOps field. 1408 if ((OperandNode->isSubClassOf("PredicateOperand") || 1409 OperandNode->isSubClassOf("OptionalDefOperand")) && 1410 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1411 continue; 1412 1413 // Verify that we didn't run out of provided operands. 1414 if (ChildNo >= getNumChildren()) 1415 TP.error("Instruction '" + getOperator()->getName() + 1416 "' expects more operands than were provided."); 1417 1418 MVT::SimpleValueType VT; 1419 TreePatternNode *Child = getChild(ChildNo++); 1420 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1421 1422 if (OperandNode->isSubClassOf("RegisterClass")) { 1423 const CodeGenRegisterClass &RC = 1424 CDP.getTargetInfo().getRegisterClass(OperandNode); 1425 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1426 } else if (OperandNode->isSubClassOf("Operand")) { 1427 VT = getValueType(OperandNode->getValueAsDef("Type")); 1428 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1429 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1430 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1431 } else if (OperandNode->getName() == "unknown") { 1432 // Nothing to do. 1433 } else { 1434 assert(0 && "Unknown operand type!"); 1435 abort(); 1436 } 1437 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1438 } 1439 1440 if (ChildNo != getNumChildren()) 1441 TP.error("Instruction '" + getOperator()->getName() + 1442 "' was provided too many operands!"); 1443 1444 return MadeChange; 1445 } 1446 1447 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1448 1449 // Node transforms always take one operand. 1450 if (getNumChildren() != 1) 1451 TP.error("Node transform '" + getOperator()->getName() + 1452 "' requires one operand!"); 1453 1454 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1455 1456 1457 // If either the output or input of the xform does not have exact 1458 // type info. We assume they must be the same. Otherwise, it is perfectly 1459 // legal to transform from one type to a completely different type. 1460 #if 0 1461 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1462 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1463 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1464 return MadeChange; 1465 } 1466 #endif 1467 return MadeChange; 1468 } 1469 1470 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1471 /// RHS of a commutative operation, not the on LHS. 1472 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1473 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1474 return true; 1475 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1476 return true; 1477 return false; 1478 } 1479 1480 1481 /// canPatternMatch - If it is impossible for this pattern to match on this 1482 /// target, fill in Reason and return false. Otherwise, return true. This is 1483 /// used as a sanity check for .td files (to prevent people from writing stuff 1484 /// that can never possibly work), and to prevent the pattern permuter from 1485 /// generating stuff that is useless. 1486 bool TreePatternNode::canPatternMatch(std::string &Reason, 1487 const CodeGenDAGPatterns &CDP) { 1488 if (isLeaf()) return true; 1489 1490 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1491 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1492 return false; 1493 1494 // If this is an intrinsic, handle cases that would make it not match. For 1495 // example, if an operand is required to be an immediate. 1496 if (getOperator()->isSubClassOf("Intrinsic")) { 1497 // TODO: 1498 return true; 1499 } 1500 1501 // If this node is a commutative operator, check that the LHS isn't an 1502 // immediate. 1503 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1504 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1505 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1506 // Scan all of the operands of the node and make sure that only the last one 1507 // is a constant node, unless the RHS also is. 1508 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1509 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1510 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1511 if (OnlyOnRHSOfCommutative(getChild(i))) { 1512 Reason="Immediate value must be on the RHS of commutative operators!"; 1513 return false; 1514 } 1515 } 1516 } 1517 1518 return true; 1519 } 1520 1521 //===----------------------------------------------------------------------===// 1522 // TreePattern implementation 1523 // 1524 1525 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1526 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1527 isInputPattern = isInput; 1528 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1529 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1530 } 1531 1532 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1533 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1534 isInputPattern = isInput; 1535 Trees.push_back(ParseTreePattern(Pat, "")); 1536 } 1537 1538 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1539 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1540 isInputPattern = isInput; 1541 Trees.push_back(Pat); 1542 } 1543 1544 void TreePattern::error(const std::string &Msg) const { 1545 dump(); 1546 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1547 } 1548 1549 void TreePattern::ComputeNamedNodes() { 1550 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1551 ComputeNamedNodes(Trees[i]); 1552 } 1553 1554 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1555 if (!N->getName().empty()) 1556 NamedNodes[N->getName()].push_back(N); 1557 1558 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1559 ComputeNamedNodes(N->getChild(i)); 1560 } 1561 1562 1563 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1564 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1565 Record *R = DI->getDef(); 1566 1567 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1568 // TreePatternNode if its own. For example: 1569 /// (foo GPR, imm) -> (foo GPR, (imm)) 1570 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1571 return ParseTreePattern(new DagInit(DI, "", 1572 std::vector<std::pair<Init*, std::string> >()), 1573 OpName); 1574 1575 // Input argument? 1576 TreePatternNode *Res = new TreePatternNode(DI, 1); 1577 if (R->getName() == "node" && !OpName.empty()) { 1578 if (OpName.empty()) 1579 error("'node' argument requires a name to match with operand list"); 1580 Args.push_back(OpName); 1581 } 1582 1583 Res->setName(OpName); 1584 return Res; 1585 } 1586 1587 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1588 if (!OpName.empty()) 1589 error("Constant int argument should not have a name!"); 1590 return new TreePatternNode(II, 1); 1591 } 1592 1593 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1594 // Turn this into an IntInit. 1595 Init *II = BI->convertInitializerTo(new IntRecTy()); 1596 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1597 error("Bits value must be constants!"); 1598 return ParseTreePattern(II, OpName); 1599 } 1600 1601 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1602 if (!Dag) { 1603 TheInit->dump(); 1604 error("Pattern has unexpected init kind!"); 1605 } 1606 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1607 if (!OpDef) error("Pattern has unexpected operator type!"); 1608 Record *Operator = OpDef->getDef(); 1609 1610 if (Operator->isSubClassOf("ValueType")) { 1611 // If the operator is a ValueType, then this must be "type cast" of a leaf 1612 // node. 1613 if (Dag->getNumArgs() != 1) 1614 error("Type cast only takes one operand!"); 1615 1616 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1617 1618 // Apply the type cast. 1619 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1620 New->UpdateNodeType(0, getValueType(Operator), *this); 1621 1622 if (!OpName.empty()) 1623 error("ValueType cast should not have a name!"); 1624 return New; 1625 } 1626 1627 // Verify that this is something that makes sense for an operator. 1628 if (!Operator->isSubClassOf("PatFrag") && 1629 !Operator->isSubClassOf("SDNode") && 1630 !Operator->isSubClassOf("Instruction") && 1631 !Operator->isSubClassOf("SDNodeXForm") && 1632 !Operator->isSubClassOf("Intrinsic") && 1633 Operator->getName() != "set" && 1634 Operator->getName() != "implicit") 1635 error("Unrecognized node '" + Operator->getName() + "'!"); 1636 1637 // Check to see if this is something that is illegal in an input pattern. 1638 if (isInputPattern) { 1639 if (Operator->isSubClassOf("Instruction") || 1640 Operator->isSubClassOf("SDNodeXForm")) 1641 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1642 } else { 1643 if (Operator->isSubClassOf("Intrinsic")) 1644 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1645 1646 if (Operator->isSubClassOf("SDNode") && 1647 Operator->getName() != "imm" && 1648 Operator->getName() != "fpimm" && 1649 Operator->getName() != "tglobaltlsaddr" && 1650 Operator->getName() != "tconstpool" && 1651 Operator->getName() != "tjumptable" && 1652 Operator->getName() != "tframeindex" && 1653 Operator->getName() != "texternalsym" && 1654 Operator->getName() != "tblockaddress" && 1655 Operator->getName() != "tglobaladdr" && 1656 Operator->getName() != "bb" && 1657 Operator->getName() != "vt") 1658 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1659 } 1660 1661 std::vector<TreePatternNode*> Children; 1662 1663 // Parse all the operands. 1664 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1665 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1666 1667 // If the operator is an intrinsic, then this is just syntactic sugar for for 1668 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1669 // convert the intrinsic name to a number. 1670 if (Operator->isSubClassOf("Intrinsic")) { 1671 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1672 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1673 1674 // If this intrinsic returns void, it must have side-effects and thus a 1675 // chain. 1676 if (Int.IS.RetVTs.empty()) 1677 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1678 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1679 // Has side-effects, requires chain. 1680 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1681 else // Otherwise, no chain. 1682 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1683 1684 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); 1685 Children.insert(Children.begin(), IIDNode); 1686 } 1687 1688 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1689 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1690 Result->setName(OpName); 1691 1692 if (!Dag->getName().empty()) { 1693 assert(Result->getName().empty()); 1694 Result->setName(Dag->getName()); 1695 } 1696 return Result; 1697 } 1698 1699 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1700 /// will never match in favor of something obvious that will. This is here 1701 /// strictly as a convenience to target authors because it allows them to write 1702 /// more type generic things and have useless type casts fold away. 1703 /// 1704 /// This returns true if any change is made. 1705 static bool SimplifyTree(TreePatternNode *&N) { 1706 if (N->isLeaf()) 1707 return false; 1708 1709 // If we have a bitconvert with a resolved type and if the source and 1710 // destination types are the same, then the bitconvert is useless, remove it. 1711 if (N->getOperator()->getName() == "bitconvert" && 1712 N->getExtType(0).isConcrete() && 1713 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1714 N->getName().empty()) { 1715 N = N->getChild(0); 1716 SimplifyTree(N); 1717 return true; 1718 } 1719 1720 // Walk all children. 1721 bool MadeChange = false; 1722 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1723 TreePatternNode *Child = N->getChild(i); 1724 MadeChange |= SimplifyTree(Child); 1725 N->setChild(i, Child); 1726 } 1727 return MadeChange; 1728 } 1729 1730 1731 1732 /// InferAllTypes - Infer/propagate as many types throughout the expression 1733 /// patterns as possible. Return true if all types are inferred, false 1734 /// otherwise. Throw an exception if a type contradiction is found. 1735 bool TreePattern:: 1736 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1737 if (NamedNodes.empty()) 1738 ComputeNamedNodes(); 1739 1740 bool MadeChange = true; 1741 while (MadeChange) { 1742 MadeChange = false; 1743 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1744 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1745 MadeChange |= SimplifyTree(Trees[i]); 1746 } 1747 1748 // If there are constraints on our named nodes, apply them. 1749 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1750 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1751 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1752 1753 // If we have input named node types, propagate their types to the named 1754 // values here. 1755 if (InNamedTypes) { 1756 // FIXME: Should be error? 1757 assert(InNamedTypes->count(I->getKey()) && 1758 "Named node in output pattern but not input pattern?"); 1759 1760 const SmallVectorImpl<TreePatternNode*> &InNodes = 1761 InNamedTypes->find(I->getKey())->second; 1762 1763 // The input types should be fully resolved by now. 1764 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1765 // If this node is a register class, and it is the root of the pattern 1766 // then we're mapping something onto an input register. We allow 1767 // changing the type of the input register in this case. This allows 1768 // us to match things like: 1769 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1770 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1771 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1772 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1773 continue; 1774 } 1775 1776 assert(Nodes[i]->getNumTypes() == 1 && 1777 InNodes[0]->getNumTypes() == 1 && 1778 "FIXME: cannot name multiple result nodes yet"); 1779 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1780 *this); 1781 } 1782 } 1783 1784 // If there are multiple nodes with the same name, they must all have the 1785 // same type. 1786 if (I->second.size() > 1) { 1787 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1788 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1789 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1790 "FIXME: cannot name multiple result nodes yet"); 1791 1792 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1793 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1794 } 1795 } 1796 } 1797 } 1798 1799 bool HasUnresolvedTypes = false; 1800 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1801 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1802 return !HasUnresolvedTypes; 1803 } 1804 1805 void TreePattern::print(raw_ostream &OS) const { 1806 OS << getRecord()->getName(); 1807 if (!Args.empty()) { 1808 OS << "(" << Args[0]; 1809 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1810 OS << ", " << Args[i]; 1811 OS << ")"; 1812 } 1813 OS << ": "; 1814 1815 if (Trees.size() > 1) 1816 OS << "[\n"; 1817 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1818 OS << "\t"; 1819 Trees[i]->print(OS); 1820 OS << "\n"; 1821 } 1822 1823 if (Trees.size() > 1) 1824 OS << "]\n"; 1825 } 1826 1827 void TreePattern::dump() const { print(errs()); } 1828 1829 //===----------------------------------------------------------------------===// 1830 // CodeGenDAGPatterns implementation 1831 // 1832 1833 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 1834 Records(R), Target(R) { 1835 1836 Intrinsics = LoadIntrinsics(Records, false); 1837 TgtIntrinsics = LoadIntrinsics(Records, true); 1838 ParseNodeInfo(); 1839 ParseNodeTransforms(); 1840 ParseComplexPatterns(); 1841 ParsePatternFragments(); 1842 ParseDefaultOperands(); 1843 ParseInstructions(); 1844 ParsePatterns(); 1845 1846 // Generate variants. For example, commutative patterns can match 1847 // multiple ways. Add them to PatternsToMatch as well. 1848 GenerateVariants(); 1849 1850 // Infer instruction flags. For example, we can detect loads, 1851 // stores, and side effects in many cases by examining an 1852 // instruction's pattern. 1853 InferInstructionFlags(); 1854 } 1855 1856 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1857 for (pf_iterator I = PatternFragments.begin(), 1858 E = PatternFragments.end(); I != E; ++I) 1859 delete I->second; 1860 } 1861 1862 1863 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1864 Record *N = Records.getDef(Name); 1865 if (!N || !N->isSubClassOf("SDNode")) { 1866 errs() << "Error getting SDNode '" << Name << "'!\n"; 1867 exit(1); 1868 } 1869 return N; 1870 } 1871 1872 // Parse all of the SDNode definitions for the target, populating SDNodes. 1873 void CodeGenDAGPatterns::ParseNodeInfo() { 1874 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1875 while (!Nodes.empty()) { 1876 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1877 Nodes.pop_back(); 1878 } 1879 1880 // Get the builtin intrinsic nodes. 1881 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1882 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1883 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1884 } 1885 1886 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1887 /// map, and emit them to the file as functions. 1888 void CodeGenDAGPatterns::ParseNodeTransforms() { 1889 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1890 while (!Xforms.empty()) { 1891 Record *XFormNode = Xforms.back(); 1892 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1893 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1894 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1895 1896 Xforms.pop_back(); 1897 } 1898 } 1899 1900 void CodeGenDAGPatterns::ParseComplexPatterns() { 1901 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 1902 while (!AMs.empty()) { 1903 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 1904 AMs.pop_back(); 1905 } 1906 } 1907 1908 1909 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 1910 /// file, building up the PatternFragments map. After we've collected them all, 1911 /// inline fragments together as necessary, so that there are no references left 1912 /// inside a pattern fragment to a pattern fragment. 1913 /// 1914 void CodeGenDAGPatterns::ParsePatternFragments() { 1915 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 1916 1917 // First step, parse all of the fragments. 1918 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1919 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 1920 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 1921 PatternFragments[Fragments[i]] = P; 1922 1923 // Validate the argument list, converting it to set, to discard duplicates. 1924 std::vector<std::string> &Args = P->getArgList(); 1925 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 1926 1927 if (OperandsSet.count("")) 1928 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 1929 1930 // Parse the operands list. 1931 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 1932 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 1933 // Special cases: ops == outs == ins. Different names are used to 1934 // improve readability. 1935 if (!OpsOp || 1936 (OpsOp->getDef()->getName() != "ops" && 1937 OpsOp->getDef()->getName() != "outs" && 1938 OpsOp->getDef()->getName() != "ins")) 1939 P->error("Operands list should start with '(ops ... '!"); 1940 1941 // Copy over the arguments. 1942 Args.clear(); 1943 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 1944 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 1945 static_cast<DefInit*>(OpsList->getArg(j))-> 1946 getDef()->getName() != "node") 1947 P->error("Operands list should all be 'node' values."); 1948 if (OpsList->getArgName(j).empty()) 1949 P->error("Operands list should have names for each operand!"); 1950 if (!OperandsSet.count(OpsList->getArgName(j))) 1951 P->error("'" + OpsList->getArgName(j) + 1952 "' does not occur in pattern or was multiply specified!"); 1953 OperandsSet.erase(OpsList->getArgName(j)); 1954 Args.push_back(OpsList->getArgName(j)); 1955 } 1956 1957 if (!OperandsSet.empty()) 1958 P->error("Operands list does not contain an entry for operand '" + 1959 *OperandsSet.begin() + "'!"); 1960 1961 // If there is a code init for this fragment, keep track of the fact that 1962 // this fragment uses it. 1963 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 1964 if (!Code.empty()) 1965 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 1966 1967 // If there is a node transformation corresponding to this, keep track of 1968 // it. 1969 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 1970 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 1971 P->getOnlyTree()->setTransformFn(Transform); 1972 } 1973 1974 // Now that we've parsed all of the tree fragments, do a closure on them so 1975 // that there are not references to PatFrags left inside of them. 1976 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1977 TreePattern *ThePat = PatternFragments[Fragments[i]]; 1978 ThePat->InlinePatternFragments(); 1979 1980 // Infer as many types as possible. Don't worry about it if we don't infer 1981 // all of them, some may depend on the inputs of the pattern. 1982 try { 1983 ThePat->InferAllTypes(); 1984 } catch (...) { 1985 // If this pattern fragment is not supported by this target (no types can 1986 // satisfy its constraints), just ignore it. If the bogus pattern is 1987 // actually used by instructions, the type consistency error will be 1988 // reported there. 1989 } 1990 1991 // If debugging, print out the pattern fragment result. 1992 DEBUG(ThePat->dump()); 1993 } 1994 } 1995 1996 void CodeGenDAGPatterns::ParseDefaultOperands() { 1997 std::vector<Record*> DefaultOps[2]; 1998 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 1999 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 2000 2001 // Find some SDNode. 2002 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2003 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 2004 2005 for (unsigned iter = 0; iter != 2; ++iter) { 2006 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 2007 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 2008 2009 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2010 // SomeSDnode so that we can parse this. 2011 std::vector<std::pair<Init*, std::string> > Ops; 2012 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2013 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2014 DefaultInfo->getArgName(op))); 2015 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 2016 2017 // Create a TreePattern to parse this. 2018 TreePattern P(DefaultOps[iter][i], DI, false, *this); 2019 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2020 2021 // Copy the operands over into a DAGDefaultOperand. 2022 DAGDefaultOperand DefaultOpInfo; 2023 2024 TreePatternNode *T = P.getTree(0); 2025 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2026 TreePatternNode *TPN = T->getChild(op); 2027 while (TPN->ApplyTypeConstraints(P, false)) 2028 /* Resolve all types */; 2029 2030 if (TPN->ContainsUnresolvedType()) { 2031 if (iter == 0) 2032 throw "Value #" + utostr(i) + " of PredicateOperand '" + 2033 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2034 else 2035 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 2036 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2037 } 2038 DefaultOpInfo.DefaultOps.push_back(TPN); 2039 } 2040 2041 // Insert it into the DefaultOperands map so we can find it later. 2042 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 2043 } 2044 } 2045 } 2046 2047 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2048 /// instruction input. Return true if this is a real use. 2049 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2050 std::map<std::string, TreePatternNode*> &InstInputs) { 2051 // No name -> not interesting. 2052 if (Pat->getName().empty()) { 2053 if (Pat->isLeaf()) { 2054 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2055 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 2056 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2057 } 2058 return false; 2059 } 2060 2061 Record *Rec; 2062 if (Pat->isLeaf()) { 2063 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2064 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2065 Rec = DI->getDef(); 2066 } else { 2067 Rec = Pat->getOperator(); 2068 } 2069 2070 // SRCVALUE nodes are ignored. 2071 if (Rec->getName() == "srcvalue") 2072 return false; 2073 2074 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2075 if (!Slot) { 2076 Slot = Pat; 2077 return true; 2078 } 2079 Record *SlotRec; 2080 if (Slot->isLeaf()) { 2081 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2082 } else { 2083 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2084 SlotRec = Slot->getOperator(); 2085 } 2086 2087 // Ensure that the inputs agree if we've already seen this input. 2088 if (Rec != SlotRec) 2089 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2090 if (Slot->getExtTypes() != Pat->getExtTypes()) 2091 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2092 return true; 2093 } 2094 2095 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2096 /// part of "I", the instruction), computing the set of inputs and outputs of 2097 /// the pattern. Report errors if we see anything naughty. 2098 void CodeGenDAGPatterns:: 2099 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2100 std::map<std::string, TreePatternNode*> &InstInputs, 2101 std::map<std::string, TreePatternNode*>&InstResults, 2102 std::vector<Record*> &InstImpResults) { 2103 if (Pat->isLeaf()) { 2104 bool isUse = HandleUse(I, Pat, InstInputs); 2105 if (!isUse && Pat->getTransformFn()) 2106 I->error("Cannot specify a transform function for a non-input value!"); 2107 return; 2108 } 2109 2110 if (Pat->getOperator()->getName() == "implicit") { 2111 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2112 TreePatternNode *Dest = Pat->getChild(i); 2113 if (!Dest->isLeaf()) 2114 I->error("implicitly defined value should be a register!"); 2115 2116 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2117 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2118 I->error("implicitly defined value should be a register!"); 2119 InstImpResults.push_back(Val->getDef()); 2120 } 2121 return; 2122 } 2123 2124 if (Pat->getOperator()->getName() != "set") { 2125 // If this is not a set, verify that the children nodes are not void typed, 2126 // and recurse. 2127 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2128 if (Pat->getChild(i)->getNumTypes() == 0) 2129 I->error("Cannot have void nodes inside of patterns!"); 2130 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2131 InstImpResults); 2132 } 2133 2134 // If this is a non-leaf node with no children, treat it basically as if 2135 // it were a leaf. This handles nodes like (imm). 2136 bool isUse = HandleUse(I, Pat, InstInputs); 2137 2138 if (!isUse && Pat->getTransformFn()) 2139 I->error("Cannot specify a transform function for a non-input value!"); 2140 return; 2141 } 2142 2143 // Otherwise, this is a set, validate and collect instruction results. 2144 if (Pat->getNumChildren() == 0) 2145 I->error("set requires operands!"); 2146 2147 if (Pat->getTransformFn()) 2148 I->error("Cannot specify a transform function on a set node!"); 2149 2150 // Check the set destinations. 2151 unsigned NumDests = Pat->getNumChildren()-1; 2152 for (unsigned i = 0; i != NumDests; ++i) { 2153 TreePatternNode *Dest = Pat->getChild(i); 2154 if (!Dest->isLeaf()) 2155 I->error("set destination should be a register!"); 2156 2157 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2158 if (!Val) 2159 I->error("set destination should be a register!"); 2160 2161 if (Val->getDef()->isSubClassOf("RegisterClass") || 2162 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2163 if (Dest->getName().empty()) 2164 I->error("set destination must have a name!"); 2165 if (InstResults.count(Dest->getName())) 2166 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2167 InstResults[Dest->getName()] = Dest; 2168 } else if (Val->getDef()->isSubClassOf("Register")) { 2169 InstImpResults.push_back(Val->getDef()); 2170 } else { 2171 I->error("set destination should be a register!"); 2172 } 2173 } 2174 2175 // Verify and collect info from the computation. 2176 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2177 InstInputs, InstResults, InstImpResults); 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // Instruction Analysis 2182 //===----------------------------------------------------------------------===// 2183 2184 class InstAnalyzer { 2185 const CodeGenDAGPatterns &CDP; 2186 bool &mayStore; 2187 bool &mayLoad; 2188 bool &HasSideEffects; 2189 bool &IsVariadic; 2190 public: 2191 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2192 bool &maystore, bool &mayload, bool &hse, bool &isv) 2193 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse), 2194 IsVariadic(isv) { 2195 } 2196 2197 /// Analyze - Analyze the specified instruction, returning true if the 2198 /// instruction had a pattern. 2199 bool Analyze(Record *InstRecord) { 2200 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2201 if (Pattern == 0) { 2202 HasSideEffects = 1; 2203 return false; // No pattern. 2204 } 2205 2206 // FIXME: Assume only the first tree is the pattern. The others are clobber 2207 // nodes. 2208 AnalyzeNode(Pattern->getTree(0)); 2209 return true; 2210 } 2211 2212 private: 2213 void AnalyzeNode(const TreePatternNode *N) { 2214 if (N->isLeaf()) { 2215 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2216 Record *LeafRec = DI->getDef(); 2217 // Handle ComplexPattern leaves. 2218 if (LeafRec->isSubClassOf("ComplexPattern")) { 2219 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2220 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2221 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2222 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2223 } 2224 } 2225 return; 2226 } 2227 2228 // Analyze children. 2229 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2230 AnalyzeNode(N->getChild(i)); 2231 2232 // Ignore set nodes, which are not SDNodes. 2233 if (N->getOperator()->getName() == "set") 2234 return; 2235 2236 // Get information about the SDNode for the operator. 2237 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2238 2239 // Notice properties of the node. 2240 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2241 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2242 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2243 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2244 2245 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2246 // If this is an intrinsic, analyze it. 2247 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2248 mayLoad = true;// These may load memory. 2249 2250 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2251 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2252 2253 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2254 // WriteMem intrinsics can have other strange effects. 2255 HasSideEffects = true; 2256 } 2257 } 2258 2259 }; 2260 2261 static void InferFromPattern(const CodeGenInstruction &Inst, 2262 bool &MayStore, bool &MayLoad, 2263 bool &HasSideEffects, bool &IsVariadic, 2264 const CodeGenDAGPatterns &CDP) { 2265 MayStore = MayLoad = HasSideEffects = IsVariadic = false; 2266 2267 bool HadPattern = 2268 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic) 2269 .Analyze(Inst.TheDef); 2270 2271 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2272 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2273 // If we decided that this is a store from the pattern, then the .td file 2274 // entry is redundant. 2275 if (MayStore) 2276 fprintf(stderr, 2277 "Warning: mayStore flag explicitly set on instruction '%s'" 2278 " but flag already inferred from pattern.\n", 2279 Inst.TheDef->getName().c_str()); 2280 MayStore = true; 2281 } 2282 2283 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2284 // If we decided that this is a load from the pattern, then the .td file 2285 // entry is redundant. 2286 if (MayLoad) 2287 fprintf(stderr, 2288 "Warning: mayLoad flag explicitly set on instruction '%s'" 2289 " but flag already inferred from pattern.\n", 2290 Inst.TheDef->getName().c_str()); 2291 MayLoad = true; 2292 } 2293 2294 if (Inst.neverHasSideEffects) { 2295 if (HadPattern) 2296 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2297 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2298 HasSideEffects = false; 2299 } 2300 2301 if (Inst.hasSideEffects) { 2302 if (HasSideEffects) 2303 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2304 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2305 HasSideEffects = true; 2306 } 2307 2308 if (Inst.Operands.isVariadic) 2309 IsVariadic = true; // Can warn if we want. 2310 } 2311 2312 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2313 /// any fragments involved. This populates the Instructions list with fully 2314 /// resolved instructions. 2315 void CodeGenDAGPatterns::ParseInstructions() { 2316 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2317 2318 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2319 ListInit *LI = 0; 2320 2321 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2322 LI = Instrs[i]->getValueAsListInit("Pattern"); 2323 2324 // If there is no pattern, only collect minimal information about the 2325 // instruction for its operand list. We have to assume that there is one 2326 // result, as we have no detailed info. 2327 if (!LI || LI->getSize() == 0) { 2328 std::vector<Record*> Results; 2329 std::vector<Record*> Operands; 2330 2331 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2332 2333 if (InstInfo.Operands.size() != 0) { 2334 if (InstInfo.Operands.NumDefs == 0) { 2335 // These produce no results 2336 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2337 Operands.push_back(InstInfo.Operands[j].Rec); 2338 } else { 2339 // Assume the first operand is the result. 2340 Results.push_back(InstInfo.Operands[0].Rec); 2341 2342 // The rest are inputs. 2343 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2344 Operands.push_back(InstInfo.Operands[j].Rec); 2345 } 2346 } 2347 2348 // Create and insert the instruction. 2349 std::vector<Record*> ImpResults; 2350 Instructions.insert(std::make_pair(Instrs[i], 2351 DAGInstruction(0, Results, Operands, ImpResults))); 2352 continue; // no pattern. 2353 } 2354 2355 // Parse the instruction. 2356 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2357 // Inline pattern fragments into it. 2358 I->InlinePatternFragments(); 2359 2360 // Infer as many types as possible. If we cannot infer all of them, we can 2361 // never do anything with this instruction pattern: report it to the user. 2362 if (!I->InferAllTypes()) 2363 I->error("Could not infer all types in pattern!"); 2364 2365 // InstInputs - Keep track of all of the inputs of the instruction, along 2366 // with the record they are declared as. 2367 std::map<std::string, TreePatternNode*> InstInputs; 2368 2369 // InstResults - Keep track of all the virtual registers that are 'set' 2370 // in the instruction, including what reg class they are. 2371 std::map<std::string, TreePatternNode*> InstResults; 2372 2373 std::vector<Record*> InstImpResults; 2374 2375 // Verify that the top-level forms in the instruction are of void type, and 2376 // fill in the InstResults map. 2377 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2378 TreePatternNode *Pat = I->getTree(j); 2379 if (Pat->getNumTypes() != 0) 2380 I->error("Top-level forms in instruction pattern should have" 2381 " void types"); 2382 2383 // Find inputs and outputs, and verify the structure of the uses/defs. 2384 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2385 InstImpResults); 2386 } 2387 2388 // Now that we have inputs and outputs of the pattern, inspect the operands 2389 // list for the instruction. This determines the order that operands are 2390 // added to the machine instruction the node corresponds to. 2391 unsigned NumResults = InstResults.size(); 2392 2393 // Parse the operands list from the (ops) list, validating it. 2394 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2395 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2396 2397 // Check that all of the results occur first in the list. 2398 std::vector<Record*> Results; 2399 TreePatternNode *Res0Node = 0; 2400 for (unsigned i = 0; i != NumResults; ++i) { 2401 if (i == CGI.Operands.size()) 2402 I->error("'" + InstResults.begin()->first + 2403 "' set but does not appear in operand list!"); 2404 const std::string &OpName = CGI.Operands[i].Name; 2405 2406 // Check that it exists in InstResults. 2407 TreePatternNode *RNode = InstResults[OpName]; 2408 if (RNode == 0) 2409 I->error("Operand $" + OpName + " does not exist in operand list!"); 2410 2411 if (i == 0) 2412 Res0Node = RNode; 2413 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2414 if (R == 0) 2415 I->error("Operand $" + OpName + " should be a set destination: all " 2416 "outputs must occur before inputs in operand list!"); 2417 2418 if (CGI.Operands[i].Rec != R) 2419 I->error("Operand $" + OpName + " class mismatch!"); 2420 2421 // Remember the return type. 2422 Results.push_back(CGI.Operands[i].Rec); 2423 2424 // Okay, this one checks out. 2425 InstResults.erase(OpName); 2426 } 2427 2428 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2429 // the copy while we're checking the inputs. 2430 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2431 2432 std::vector<TreePatternNode*> ResultNodeOperands; 2433 std::vector<Record*> Operands; 2434 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2435 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2436 const std::string &OpName = Op.Name; 2437 if (OpName.empty()) 2438 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2439 2440 if (!InstInputsCheck.count(OpName)) { 2441 // If this is an predicate operand or optional def operand with an 2442 // DefaultOps set filled in, we can ignore this. When we codegen it, 2443 // we will do so as always executed. 2444 if (Op.Rec->isSubClassOf("PredicateOperand") || 2445 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2446 // Does it have a non-empty DefaultOps field? If so, ignore this 2447 // operand. 2448 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2449 continue; 2450 } 2451 I->error("Operand $" + OpName + 2452 " does not appear in the instruction pattern"); 2453 } 2454 TreePatternNode *InVal = InstInputsCheck[OpName]; 2455 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2456 2457 if (InVal->isLeaf() && 2458 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2459 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2460 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2461 I->error("Operand $" + OpName + "'s register class disagrees" 2462 " between the operand and pattern"); 2463 } 2464 Operands.push_back(Op.Rec); 2465 2466 // Construct the result for the dest-pattern operand list. 2467 TreePatternNode *OpNode = InVal->clone(); 2468 2469 // No predicate is useful on the result. 2470 OpNode->clearPredicateFns(); 2471 2472 // Promote the xform function to be an explicit node if set. 2473 if (Record *Xform = OpNode->getTransformFn()) { 2474 OpNode->setTransformFn(0); 2475 std::vector<TreePatternNode*> Children; 2476 Children.push_back(OpNode); 2477 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2478 } 2479 2480 ResultNodeOperands.push_back(OpNode); 2481 } 2482 2483 if (!InstInputsCheck.empty()) 2484 I->error("Input operand $" + InstInputsCheck.begin()->first + 2485 " occurs in pattern but not in operands list!"); 2486 2487 TreePatternNode *ResultPattern = 2488 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2489 GetNumNodeResults(I->getRecord(), *this)); 2490 // Copy fully inferred output node type to instruction result pattern. 2491 for (unsigned i = 0; i != NumResults; ++i) 2492 ResultPattern->setType(i, Res0Node->getExtType(i)); 2493 2494 // Create and insert the instruction. 2495 // FIXME: InstImpResults should not be part of DAGInstruction. 2496 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2497 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2498 2499 // Use a temporary tree pattern to infer all types and make sure that the 2500 // constructed result is correct. This depends on the instruction already 2501 // being inserted into the Instructions map. 2502 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2503 Temp.InferAllTypes(&I->getNamedNodesMap()); 2504 2505 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2506 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2507 2508 DEBUG(I->dump()); 2509 } 2510 2511 // If we can, convert the instructions to be patterns that are matched! 2512 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2513 Instructions.begin(), 2514 E = Instructions.end(); II != E; ++II) { 2515 DAGInstruction &TheInst = II->second; 2516 const TreePattern *I = TheInst.getPattern(); 2517 if (I == 0) continue; // No pattern. 2518 2519 // FIXME: Assume only the first tree is the pattern. The others are clobber 2520 // nodes. 2521 TreePatternNode *Pattern = I->getTree(0); 2522 TreePatternNode *SrcPattern; 2523 if (Pattern->getOperator()->getName() == "set") { 2524 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2525 } else{ 2526 // Not a set (store or something?) 2527 SrcPattern = Pattern; 2528 } 2529 2530 Record *Instr = II->first; 2531 AddPatternToMatch(I, 2532 PatternToMatch(Instr, 2533 Instr->getValueAsListInit("Predicates"), 2534 SrcPattern, 2535 TheInst.getResultPattern(), 2536 TheInst.getImpResults(), 2537 Instr->getValueAsInt("AddedComplexity"), 2538 Instr->getID())); 2539 } 2540 } 2541 2542 2543 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2544 2545 static void FindNames(const TreePatternNode *P, 2546 std::map<std::string, NameRecord> &Names, 2547 const TreePattern *PatternTop) { 2548 if (!P->getName().empty()) { 2549 NameRecord &Rec = Names[P->getName()]; 2550 // If this is the first instance of the name, remember the node. 2551 if (Rec.second++ == 0) 2552 Rec.first = P; 2553 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2554 PatternTop->error("repetition of value: $" + P->getName() + 2555 " where different uses have different types!"); 2556 } 2557 2558 if (!P->isLeaf()) { 2559 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2560 FindNames(P->getChild(i), Names, PatternTop); 2561 } 2562 } 2563 2564 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2565 const PatternToMatch &PTM) { 2566 // Do some sanity checking on the pattern we're about to match. 2567 std::string Reason; 2568 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2569 Pattern->error("Pattern can never match: " + Reason); 2570 2571 // If the source pattern's root is a complex pattern, that complex pattern 2572 // must specify the nodes it can potentially match. 2573 if (const ComplexPattern *CP = 2574 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2575 if (CP->getRootNodes().empty()) 2576 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2577 " could match"); 2578 2579 2580 // Find all of the named values in the input and output, ensure they have the 2581 // same type. 2582 std::map<std::string, NameRecord> SrcNames, DstNames; 2583 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2584 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2585 2586 // Scan all of the named values in the destination pattern, rejecting them if 2587 // they don't exist in the input pattern. 2588 for (std::map<std::string, NameRecord>::iterator 2589 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2590 if (SrcNames[I->first].first == 0) 2591 Pattern->error("Pattern has input without matching name in output: $" + 2592 I->first); 2593 } 2594 2595 // Scan all of the named values in the source pattern, rejecting them if the 2596 // name isn't used in the dest, and isn't used to tie two values together. 2597 for (std::map<std::string, NameRecord>::iterator 2598 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2599 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2600 Pattern->error("Pattern has dead named input: $" + I->first); 2601 2602 PatternsToMatch.push_back(PTM); 2603 } 2604 2605 2606 2607 void CodeGenDAGPatterns::InferInstructionFlags() { 2608 const std::vector<const CodeGenInstruction*> &Instructions = 2609 Target.getInstructionsByEnumValue(); 2610 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2611 CodeGenInstruction &InstInfo = 2612 const_cast<CodeGenInstruction &>(*Instructions[i]); 2613 // Determine properties of the instruction from its pattern. 2614 bool MayStore, MayLoad, HasSideEffects, IsVariadic; 2615 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic, 2616 *this); 2617 InstInfo.mayStore = MayStore; 2618 InstInfo.mayLoad = MayLoad; 2619 InstInfo.hasSideEffects = HasSideEffects; 2620 InstInfo.Operands.isVariadic = IsVariadic; 2621 } 2622 } 2623 2624 /// Given a pattern result with an unresolved type, see if we can find one 2625 /// instruction with an unresolved result type. Force this result type to an 2626 /// arbitrary element if it's possible types to converge results. 2627 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2628 if (N->isLeaf()) 2629 return false; 2630 2631 // Analyze children. 2632 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2633 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2634 return true; 2635 2636 if (!N->getOperator()->isSubClassOf("Instruction")) 2637 return false; 2638 2639 // If this type is already concrete or completely unknown we can't do 2640 // anything. 2641 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2642 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2643 continue; 2644 2645 // Otherwise, force its type to the first possibility (an arbitrary choice). 2646 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2647 return true; 2648 } 2649 2650 return false; 2651 } 2652 2653 void CodeGenDAGPatterns::ParsePatterns() { 2654 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2655 2656 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2657 Record *CurPattern = Patterns[i]; 2658 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2659 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2660 2661 // Inline pattern fragments into it. 2662 Pattern->InlinePatternFragments(); 2663 2664 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2665 if (LI->getSize() == 0) continue; // no pattern. 2666 2667 // Parse the instruction. 2668 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2669 2670 // Inline pattern fragments into it. 2671 Result->InlinePatternFragments(); 2672 2673 if (Result->getNumTrees() != 1) 2674 Result->error("Cannot handle instructions producing instructions " 2675 "with temporaries yet!"); 2676 2677 bool IterateInference; 2678 bool InferredAllPatternTypes, InferredAllResultTypes; 2679 do { 2680 // Infer as many types as possible. If we cannot infer all of them, we 2681 // can never do anything with this pattern: report it to the user. 2682 InferredAllPatternTypes = 2683 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2684 2685 // Infer as many types as possible. If we cannot infer all of them, we 2686 // can never do anything with this pattern: report it to the user. 2687 InferredAllResultTypes = 2688 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2689 2690 IterateInference = false; 2691 2692 // Apply the type of the result to the source pattern. This helps us 2693 // resolve cases where the input type is known to be a pointer type (which 2694 // is considered resolved), but the result knows it needs to be 32- or 2695 // 64-bits. Infer the other way for good measure. 2696 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2697 Pattern->getTree(0)->getNumTypes()); 2698 i != e; ++i) { 2699 IterateInference = Pattern->getTree(0)-> 2700 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2701 IterateInference |= Result->getTree(0)-> 2702 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2703 } 2704 2705 // If our iteration has converged and the input pattern's types are fully 2706 // resolved but the result pattern is not fully resolved, we may have a 2707 // situation where we have two instructions in the result pattern and 2708 // the instructions require a common register class, but don't care about 2709 // what actual MVT is used. This is actually a bug in our modelling: 2710 // output patterns should have register classes, not MVTs. 2711 // 2712 // In any case, to handle this, we just go through and disambiguate some 2713 // arbitrary types to the result pattern's nodes. 2714 if (!IterateInference && InferredAllPatternTypes && 2715 !InferredAllResultTypes) 2716 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2717 *Result); 2718 } while (IterateInference); 2719 2720 // Verify that we inferred enough types that we can do something with the 2721 // pattern and result. If these fire the user has to add type casts. 2722 if (!InferredAllPatternTypes) 2723 Pattern->error("Could not infer all types in pattern!"); 2724 if (!InferredAllResultTypes) { 2725 Pattern->dump(); 2726 Result->error("Could not infer all types in pattern result!"); 2727 } 2728 2729 // Validate that the input pattern is correct. 2730 std::map<std::string, TreePatternNode*> InstInputs; 2731 std::map<std::string, TreePatternNode*> InstResults; 2732 std::vector<Record*> InstImpResults; 2733 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2734 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2735 InstInputs, InstResults, 2736 InstImpResults); 2737 2738 // Promote the xform function to be an explicit node if set. 2739 TreePatternNode *DstPattern = Result->getOnlyTree(); 2740 std::vector<TreePatternNode*> ResultNodeOperands; 2741 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2742 TreePatternNode *OpNode = DstPattern->getChild(ii); 2743 if (Record *Xform = OpNode->getTransformFn()) { 2744 OpNode->setTransformFn(0); 2745 std::vector<TreePatternNode*> Children; 2746 Children.push_back(OpNode); 2747 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2748 } 2749 ResultNodeOperands.push_back(OpNode); 2750 } 2751 DstPattern = Result->getOnlyTree(); 2752 if (!DstPattern->isLeaf()) 2753 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2754 ResultNodeOperands, 2755 DstPattern->getNumTypes()); 2756 2757 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2758 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2759 2760 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2761 Temp.InferAllTypes(); 2762 2763 2764 AddPatternToMatch(Pattern, 2765 PatternToMatch(CurPattern, 2766 CurPattern->getValueAsListInit("Predicates"), 2767 Pattern->getTree(0), 2768 Temp.getOnlyTree(), InstImpResults, 2769 CurPattern->getValueAsInt("AddedComplexity"), 2770 CurPattern->getID())); 2771 } 2772 } 2773 2774 /// CombineChildVariants - Given a bunch of permutations of each child of the 2775 /// 'operator' node, put them together in all possible ways. 2776 static void CombineChildVariants(TreePatternNode *Orig, 2777 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2778 std::vector<TreePatternNode*> &OutVariants, 2779 CodeGenDAGPatterns &CDP, 2780 const MultipleUseVarSet &DepVars) { 2781 // Make sure that each operand has at least one variant to choose from. 2782 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2783 if (ChildVariants[i].empty()) 2784 return; 2785 2786 // The end result is an all-pairs construction of the resultant pattern. 2787 std::vector<unsigned> Idxs; 2788 Idxs.resize(ChildVariants.size()); 2789 bool NotDone; 2790 do { 2791 #ifndef NDEBUG 2792 DEBUG(if (!Idxs.empty()) { 2793 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2794 for (unsigned i = 0; i < Idxs.size(); ++i) { 2795 errs() << Idxs[i] << " "; 2796 } 2797 errs() << "]\n"; 2798 }); 2799 #endif 2800 // Create the variant and add it to the output list. 2801 std::vector<TreePatternNode*> NewChildren; 2802 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2803 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2804 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 2805 Orig->getNumTypes()); 2806 2807 // Copy over properties. 2808 R->setName(Orig->getName()); 2809 R->setPredicateFns(Orig->getPredicateFns()); 2810 R->setTransformFn(Orig->getTransformFn()); 2811 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 2812 R->setType(i, Orig->getExtType(i)); 2813 2814 // If this pattern cannot match, do not include it as a variant. 2815 std::string ErrString; 2816 if (!R->canPatternMatch(ErrString, CDP)) { 2817 delete R; 2818 } else { 2819 bool AlreadyExists = false; 2820 2821 // Scan to see if this pattern has already been emitted. We can get 2822 // duplication due to things like commuting: 2823 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2824 // which are the same pattern. Ignore the dups. 2825 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2826 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2827 AlreadyExists = true; 2828 break; 2829 } 2830 2831 if (AlreadyExists) 2832 delete R; 2833 else 2834 OutVariants.push_back(R); 2835 } 2836 2837 // Increment indices to the next permutation by incrementing the 2838 // indicies from last index backward, e.g., generate the sequence 2839 // [0, 0], [0, 1], [1, 0], [1, 1]. 2840 int IdxsIdx; 2841 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2842 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2843 Idxs[IdxsIdx] = 0; 2844 else 2845 break; 2846 } 2847 NotDone = (IdxsIdx >= 0); 2848 } while (NotDone); 2849 } 2850 2851 /// CombineChildVariants - A helper function for binary operators. 2852 /// 2853 static void CombineChildVariants(TreePatternNode *Orig, 2854 const std::vector<TreePatternNode*> &LHS, 2855 const std::vector<TreePatternNode*> &RHS, 2856 std::vector<TreePatternNode*> &OutVariants, 2857 CodeGenDAGPatterns &CDP, 2858 const MultipleUseVarSet &DepVars) { 2859 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2860 ChildVariants.push_back(LHS); 2861 ChildVariants.push_back(RHS); 2862 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2863 } 2864 2865 2866 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2867 std::vector<TreePatternNode *> &Children) { 2868 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 2869 Record *Operator = N->getOperator(); 2870 2871 // Only permit raw nodes. 2872 if (!N->getName().empty() || !N->getPredicateFns().empty() || 2873 N->getTransformFn()) { 2874 Children.push_back(N); 2875 return; 2876 } 2877 2878 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 2879 Children.push_back(N->getChild(0)); 2880 else 2881 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 2882 2883 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 2884 Children.push_back(N->getChild(1)); 2885 else 2886 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 2887 } 2888 2889 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 2890 /// the (potentially recursive) pattern by using algebraic laws. 2891 /// 2892 static void GenerateVariantsOf(TreePatternNode *N, 2893 std::vector<TreePatternNode*> &OutVariants, 2894 CodeGenDAGPatterns &CDP, 2895 const MultipleUseVarSet &DepVars) { 2896 // We cannot permute leaves. 2897 if (N->isLeaf()) { 2898 OutVariants.push_back(N); 2899 return; 2900 } 2901 2902 // Look up interesting info about the node. 2903 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 2904 2905 // If this node is associative, re-associate. 2906 if (NodeInfo.hasProperty(SDNPAssociative)) { 2907 // Re-associate by pulling together all of the linked operators 2908 std::vector<TreePatternNode*> MaximalChildren; 2909 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 2910 2911 // Only handle child sizes of 3. Otherwise we'll end up trying too many 2912 // permutations. 2913 if (MaximalChildren.size() == 3) { 2914 // Find the variants of all of our maximal children. 2915 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 2916 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 2917 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 2918 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 2919 2920 // There are only two ways we can permute the tree: 2921 // (A op B) op C and A op (B op C) 2922 // Within these forms, we can also permute A/B/C. 2923 2924 // Generate legal pair permutations of A/B/C. 2925 std::vector<TreePatternNode*> ABVariants; 2926 std::vector<TreePatternNode*> BAVariants; 2927 std::vector<TreePatternNode*> ACVariants; 2928 std::vector<TreePatternNode*> CAVariants; 2929 std::vector<TreePatternNode*> BCVariants; 2930 std::vector<TreePatternNode*> CBVariants; 2931 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 2932 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 2933 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 2934 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 2935 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 2936 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 2937 2938 // Combine those into the result: (x op x) op x 2939 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 2940 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 2941 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 2942 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 2943 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 2944 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 2945 2946 // Combine those into the result: x op (x op x) 2947 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 2948 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 2949 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 2950 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 2951 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 2952 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 2953 return; 2954 } 2955 } 2956 2957 // Compute permutations of all children. 2958 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2959 ChildVariants.resize(N->getNumChildren()); 2960 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2961 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 2962 2963 // Build all permutations based on how the children were formed. 2964 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 2965 2966 // If this node is commutative, consider the commuted order. 2967 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 2968 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2969 assert((N->getNumChildren()==2 || isCommIntrinsic) && 2970 "Commutative but doesn't have 2 children!"); 2971 // Don't count children which are actually register references. 2972 unsigned NC = 0; 2973 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2974 TreePatternNode *Child = N->getChild(i); 2975 if (Child->isLeaf()) 2976 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 2977 Record *RR = DI->getDef(); 2978 if (RR->isSubClassOf("Register")) 2979 continue; 2980 } 2981 NC++; 2982 } 2983 // Consider the commuted order. 2984 if (isCommIntrinsic) { 2985 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 2986 // operands are the commutative operands, and there might be more operands 2987 // after those. 2988 assert(NC >= 3 && 2989 "Commutative intrinsic should have at least 3 childrean!"); 2990 std::vector<std::vector<TreePatternNode*> > Variants; 2991 Variants.push_back(ChildVariants[0]); // Intrinsic id. 2992 Variants.push_back(ChildVariants[2]); 2993 Variants.push_back(ChildVariants[1]); 2994 for (unsigned i = 3; i != NC; ++i) 2995 Variants.push_back(ChildVariants[i]); 2996 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 2997 } else if (NC == 2) 2998 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 2999 OutVariants, CDP, DepVars); 3000 } 3001 } 3002 3003 3004 // GenerateVariants - Generate variants. For example, commutative patterns can 3005 // match multiple ways. Add them to PatternsToMatch as well. 3006 void CodeGenDAGPatterns::GenerateVariants() { 3007 DEBUG(errs() << "Generating instruction variants.\n"); 3008 3009 // Loop over all of the patterns we've collected, checking to see if we can 3010 // generate variants of the instruction, through the exploitation of 3011 // identities. This permits the target to provide aggressive matching without 3012 // the .td file having to contain tons of variants of instructions. 3013 // 3014 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3015 // intentionally do not reconsider these. Any variants of added patterns have 3016 // already been added. 3017 // 3018 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3019 MultipleUseVarSet DepVars; 3020 std::vector<TreePatternNode*> Variants; 3021 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3022 DEBUG(errs() << "Dependent/multiply used variables: "); 3023 DEBUG(DumpDepVars(DepVars)); 3024 DEBUG(errs() << "\n"); 3025 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3026 DepVars); 3027 3028 assert(!Variants.empty() && "Must create at least original variant!"); 3029 Variants.erase(Variants.begin()); // Remove the original pattern. 3030 3031 if (Variants.empty()) // No variants for this pattern. 3032 continue; 3033 3034 DEBUG(errs() << "FOUND VARIANTS OF: "; 3035 PatternsToMatch[i].getSrcPattern()->dump(); 3036 errs() << "\n"); 3037 3038 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3039 TreePatternNode *Variant = Variants[v]; 3040 3041 DEBUG(errs() << " VAR#" << v << ": "; 3042 Variant->dump(); 3043 errs() << "\n"); 3044 3045 // Scan to see if an instruction or explicit pattern already matches this. 3046 bool AlreadyExists = false; 3047 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3048 // Skip if the top level predicates do not match. 3049 if (PatternsToMatch[i].getPredicates() != 3050 PatternsToMatch[p].getPredicates()) 3051 continue; 3052 // Check to see if this variant already exists. 3053 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3054 DepVars)) { 3055 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3056 AlreadyExists = true; 3057 break; 3058 } 3059 } 3060 // If we already have it, ignore the variant. 3061 if (AlreadyExists) continue; 3062 3063 // Otherwise, add it to the list of patterns we have. 3064 PatternsToMatch. 3065 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3066 PatternsToMatch[i].getPredicates(), 3067 Variant, PatternsToMatch[i].getDstPattern(), 3068 PatternsToMatch[i].getDstRegs(), 3069 PatternsToMatch[i].getAddedComplexity(), 3070 Record::getNewUID())); 3071 } 3072 3073 DEBUG(errs() << "\n"); 3074 } 3075 } 3076 3077