1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Support/Debug.h" 20 #include <set> 21 #include <algorithm> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // EEVT::TypeSet Implementation 26 //===----------------------------------------------------------------------===// 27 28 static inline bool isInteger(MVT::SimpleValueType VT) { 29 return EVT(VT).isInteger(); 30 } 31 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 32 return EVT(VT).isFloatingPoint(); 33 } 34 static inline bool isVector(MVT::SimpleValueType VT) { 35 return EVT(VT).isVector(); 36 } 37 static inline bool isScalar(MVT::SimpleValueType VT) { 38 return !EVT(VT).isVector(); 39 } 40 41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 42 if (VT == MVT::iAny) 43 EnforceInteger(TP); 44 else if (VT == MVT::fAny) 45 EnforceFloatingPoint(TP); 46 else if (VT == MVT::vAny) 47 EnforceVector(TP); 48 else { 49 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 50 VT == MVT::iPTRAny) && "Not a concrete type!"); 51 TypeVec.push_back(VT); 52 } 53 } 54 55 56 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 57 assert(!VTList.empty() && "empty list?"); 58 TypeVec.append(VTList.begin(), VTList.end()); 59 60 if (!VTList.empty()) 61 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 62 VTList[0] != MVT::fAny); 63 64 // Verify no duplicates. 65 array_pod_sort(TypeVec.begin(), TypeVec.end()); 66 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 67 } 68 69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 70 /// on completely unknown type sets. 71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 72 bool (*Pred)(MVT::SimpleValueType), 73 const char *PredicateName) { 74 assert(isCompletelyUnknown()); 75 const std::vector<MVT::SimpleValueType> &LegalTypes = 76 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 77 78 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 79 if (Pred == 0 || Pred(LegalTypes[i])) 80 TypeVec.push_back(LegalTypes[i]); 81 82 // If we have nothing that matches the predicate, bail out. 83 if (TypeVec.empty()) 84 TP.error("Type inference contradiction found, no " + 85 std::string(PredicateName) + " types found"); 86 // No need to sort with one element. 87 if (TypeVec.size() == 1) return true; 88 89 // Remove duplicates. 90 array_pod_sort(TypeVec.begin(), TypeVec.end()); 91 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 92 93 return true; 94 } 95 96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 97 /// integer value type. 98 bool EEVT::TypeSet::hasIntegerTypes() const { 99 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 100 if (isInteger(TypeVec[i])) 101 return true; 102 return false; 103 } 104 105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 106 /// a floating point value type. 107 bool EEVT::TypeSet::hasFloatingPointTypes() const { 108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 109 if (isFloatingPoint(TypeVec[i])) 110 return true; 111 return false; 112 } 113 114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 115 /// value type. 116 bool EEVT::TypeSet::hasVectorTypes() const { 117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 118 if (isVector(TypeVec[i])) 119 return true; 120 return false; 121 } 122 123 124 std::string EEVT::TypeSet::getName() const { 125 if (TypeVec.empty()) return "<empty>"; 126 127 std::string Result; 128 129 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 130 std::string VTName = llvm::getEnumName(TypeVec[i]); 131 // Strip off MVT:: prefix if present. 132 if (VTName.substr(0,5) == "MVT::") 133 VTName = VTName.substr(5); 134 if (i) Result += ':'; 135 Result += VTName; 136 } 137 138 if (TypeVec.size() == 1) 139 return Result; 140 return "{" + Result + "}"; 141 } 142 143 /// MergeInTypeInfo - This merges in type information from the specified 144 /// argument. If 'this' changes, it returns true. If the two types are 145 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 147 if (InVT.isCompletelyUnknown() || *this == InVT) 148 return false; 149 150 if (isCompletelyUnknown()) { 151 *this = InVT; 152 return true; 153 } 154 155 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 156 157 // Handle the abstract cases, seeing if we can resolve them better. 158 switch (TypeVec[0]) { 159 default: break; 160 case MVT::iPTR: 161 case MVT::iPTRAny: 162 if (InVT.hasIntegerTypes()) { 163 EEVT::TypeSet InCopy(InVT); 164 InCopy.EnforceInteger(TP); 165 InCopy.EnforceScalar(TP); 166 167 if (InCopy.isConcrete()) { 168 // If the RHS has one integer type, upgrade iPTR to i32. 169 TypeVec[0] = InVT.TypeVec[0]; 170 return true; 171 } 172 173 // If the input has multiple scalar integers, this doesn't add any info. 174 if (!InCopy.isCompletelyUnknown()) 175 return false; 176 } 177 break; 178 } 179 180 // If the input constraint is iAny/iPTR and this is an integer type list, 181 // remove non-integer types from the list. 182 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 183 hasIntegerTypes()) { 184 bool MadeChange = EnforceInteger(TP); 185 186 // If we're merging in iPTR/iPTRAny and the node currently has a list of 187 // multiple different integer types, replace them with a single iPTR. 188 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 189 TypeVec.size() != 1) { 190 TypeVec.resize(1); 191 TypeVec[0] = InVT.TypeVec[0]; 192 MadeChange = true; 193 } 194 195 return MadeChange; 196 } 197 198 // If this is a type list and the RHS is a typelist as well, eliminate entries 199 // from this list that aren't in the other one. 200 bool MadeChange = false; 201 TypeSet InputSet(*this); 202 203 for (unsigned i = 0; i != TypeVec.size(); ++i) { 204 bool InInVT = false; 205 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 206 if (TypeVec[i] == InVT.TypeVec[j]) { 207 InInVT = true; 208 break; 209 } 210 211 if (InInVT) continue; 212 TypeVec.erase(TypeVec.begin()+i--); 213 MadeChange = true; 214 } 215 216 // If we removed all of our types, we have a type contradiction. 217 if (!TypeVec.empty()) 218 return MadeChange; 219 220 // FIXME: Really want an SMLoc here! 221 TP.error("Type inference contradiction found, merging '" + 222 InVT.getName() + "' into '" + InputSet.getName() + "'"); 223 return true; // unreachable 224 } 225 226 /// EnforceInteger - Remove all non-integer types from this set. 227 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 228 // If we know nothing, then get the full set. 229 if (TypeVec.empty()) 230 return FillWithPossibleTypes(TP, isInteger, "integer"); 231 if (!hasFloatingPointTypes()) 232 return false; 233 234 TypeSet InputSet(*this); 235 236 // Filter out all the fp types. 237 for (unsigned i = 0; i != TypeVec.size(); ++i) 238 if (!isInteger(TypeVec[i])) 239 TypeVec.erase(TypeVec.begin()+i--); 240 241 if (TypeVec.empty()) 242 TP.error("Type inference contradiction found, '" + 243 InputSet.getName() + "' needs to be integer"); 244 return true; 245 } 246 247 /// EnforceFloatingPoint - Remove all integer types from this set. 248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 252 253 if (!hasIntegerTypes()) 254 return false; 255 256 TypeSet InputSet(*this); 257 258 // Filter out all the fp types. 259 for (unsigned i = 0; i != TypeVec.size(); ++i) 260 if (!isFloatingPoint(TypeVec[i])) 261 TypeVec.erase(TypeVec.begin()+i--); 262 263 if (TypeVec.empty()) 264 TP.error("Type inference contradiction found, '" + 265 InputSet.getName() + "' needs to be floating point"); 266 return true; 267 } 268 269 /// EnforceScalar - Remove all vector types from this. 270 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 271 // If we know nothing, then get the full set. 272 if (TypeVec.empty()) 273 return FillWithPossibleTypes(TP, isScalar, "scalar"); 274 275 if (!hasVectorTypes()) 276 return false; 277 278 TypeSet InputSet(*this); 279 280 // Filter out all the vector types. 281 for (unsigned i = 0; i != TypeVec.size(); ++i) 282 if (!isScalar(TypeVec[i])) 283 TypeVec.erase(TypeVec.begin()+i--); 284 285 if (TypeVec.empty()) 286 TP.error("Type inference contradiction found, '" + 287 InputSet.getName() + "' needs to be scalar"); 288 return true; 289 } 290 291 /// EnforceVector - Remove all vector types from this. 292 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 293 // If we know nothing, then get the full set. 294 if (TypeVec.empty()) 295 return FillWithPossibleTypes(TP, isVector, "vector"); 296 297 TypeSet InputSet(*this); 298 bool MadeChange = false; 299 300 // Filter out all the scalar types. 301 for (unsigned i = 0; i != TypeVec.size(); ++i) 302 if (!isVector(TypeVec[i])) { 303 TypeVec.erase(TypeVec.begin()+i--); 304 MadeChange = true; 305 } 306 307 if (TypeVec.empty()) 308 TP.error("Type inference contradiction found, '" + 309 InputSet.getName() + "' needs to be a vector"); 310 return MadeChange; 311 } 312 313 314 315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 316 /// this an other based on this information. 317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 318 // Both operands must be integer or FP, but we don't care which. 319 bool MadeChange = false; 320 321 if (isCompletelyUnknown()) 322 MadeChange = FillWithPossibleTypes(TP); 323 324 if (Other.isCompletelyUnknown()) 325 MadeChange = Other.FillWithPossibleTypes(TP); 326 327 // If one side is known to be integer or known to be FP but the other side has 328 // no information, get at least the type integrality info in there. 329 if (!hasFloatingPointTypes()) 330 MadeChange |= Other.EnforceInteger(TP); 331 else if (!hasIntegerTypes()) 332 MadeChange |= Other.EnforceFloatingPoint(TP); 333 if (!Other.hasFloatingPointTypes()) 334 MadeChange |= EnforceInteger(TP); 335 else if (!Other.hasIntegerTypes()) 336 MadeChange |= EnforceFloatingPoint(TP); 337 338 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 339 "Should have a type list now"); 340 341 // If one contains vectors but the other doesn't pull vectors out. 342 if (!hasVectorTypes()) 343 MadeChange |= Other.EnforceScalar(TP); 344 if (!hasVectorTypes()) 345 MadeChange |= EnforceScalar(TP); 346 347 // This code does not currently handle nodes which have multiple types, 348 // where some types are integer, and some are fp. Assert that this is not 349 // the case. 350 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 351 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 352 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 353 354 // Okay, find the smallest type from the current set and remove it from the 355 // largest set. 356 MVT::SimpleValueType Smallest = TypeVec[0]; 357 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 358 if (TypeVec[i] < Smallest) 359 Smallest = TypeVec[i]; 360 361 // If this is the only type in the large set, the constraint can never be 362 // satisfied. 363 if (Other.TypeVec.size() == 1 && Other.TypeVec[0] == Smallest) 364 TP.error("Type inference contradiction found, '" + 365 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 366 367 SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 368 std::find(Other.TypeVec.begin(), Other.TypeVec.end(), Smallest); 369 if (TVI != Other.TypeVec.end()) { 370 Other.TypeVec.erase(TVI); 371 MadeChange = true; 372 } 373 374 // Okay, find the largest type in the Other set and remove it from the 375 // current set. 376 MVT::SimpleValueType Largest = Other.TypeVec[0]; 377 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 378 if (Other.TypeVec[i] > Largest) 379 Largest = Other.TypeVec[i]; 380 381 // If this is the only type in the small set, the constraint can never be 382 // satisfied. 383 if (TypeVec.size() == 1 && TypeVec[0] == Largest) 384 TP.error("Type inference contradiction found, '" + 385 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 386 387 TVI = std::find(TypeVec.begin(), TypeVec.end(), Largest); 388 if (TVI != TypeVec.end()) { 389 TypeVec.erase(TVI); 390 MadeChange = true; 391 } 392 393 return MadeChange; 394 } 395 396 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 397 /// whose element is specified by VTOperand. 398 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 399 TreePattern &TP) { 400 // "This" must be a vector and "VTOperand" must be a scalar. 401 bool MadeChange = false; 402 MadeChange |= EnforceVector(TP); 403 MadeChange |= VTOperand.EnforceScalar(TP); 404 405 // If we know the vector type, it forces the scalar to agree. 406 if (isConcrete()) { 407 EVT IVT = getConcrete(); 408 IVT = IVT.getVectorElementType(); 409 return MadeChange | 410 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 411 } 412 413 // If the scalar type is known, filter out vector types whose element types 414 // disagree. 415 if (!VTOperand.isConcrete()) 416 return MadeChange; 417 418 MVT::SimpleValueType VT = VTOperand.getConcrete(); 419 420 TypeSet InputSet(*this); 421 422 // Filter out all the types which don't have the right element type. 423 for (unsigned i = 0; i != TypeVec.size(); ++i) { 424 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 425 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 426 TypeVec.erase(TypeVec.begin()+i--); 427 MadeChange = true; 428 } 429 } 430 431 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 432 TP.error("Type inference contradiction found, forcing '" + 433 InputSet.getName() + "' to have a vector element"); 434 return MadeChange; 435 } 436 437 //===----------------------------------------------------------------------===// 438 // Helpers for working with extended types. 439 440 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 441 return LHS->getID() < RHS->getID(); 442 } 443 444 /// Dependent variable map for CodeGenDAGPattern variant generation 445 typedef std::map<std::string, int> DepVarMap; 446 447 /// Const iterator shorthand for DepVarMap 448 typedef DepVarMap::const_iterator DepVarMap_citer; 449 450 namespace { 451 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 452 if (N->isLeaf()) { 453 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 454 DepMap[N->getName()]++; 455 } 456 } else { 457 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 458 FindDepVarsOf(N->getChild(i), DepMap); 459 } 460 } 461 462 //! Find dependent variables within child patterns 463 /*! 464 */ 465 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 466 DepVarMap depcounts; 467 FindDepVarsOf(N, depcounts); 468 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 469 if (i->second > 1) { // std::pair<std::string, int> 470 DepVars.insert(i->first); 471 } 472 } 473 } 474 475 //! Dump the dependent variable set: 476 void DumpDepVars(MultipleUseVarSet &DepVars) { 477 if (DepVars.empty()) { 478 DEBUG(errs() << "<empty set>"); 479 } else { 480 DEBUG(errs() << "[ "); 481 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); 482 i != e; ++i) { 483 DEBUG(errs() << (*i) << " "); 484 } 485 DEBUG(errs() << "]"); 486 } 487 } 488 } 489 490 //===----------------------------------------------------------------------===// 491 // PatternToMatch implementation 492 // 493 494 495 /// getPatternSize - Return the 'size' of this pattern. We want to match large 496 /// patterns before small ones. This is used to determine the size of a 497 /// pattern. 498 static unsigned getPatternSize(const TreePatternNode *P, 499 const CodeGenDAGPatterns &CGP) { 500 unsigned Size = 3; // The node itself. 501 // If the root node is a ConstantSDNode, increases its size. 502 // e.g. (set R32:$dst, 0). 503 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 504 Size += 2; 505 506 // FIXME: This is a hack to statically increase the priority of patterns 507 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 508 // Later we can allow complexity / cost for each pattern to be (optionally) 509 // specified. To get best possible pattern match we'll need to dynamically 510 // calculate the complexity of all patterns a dag can potentially map to. 511 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 512 if (AM) 513 Size += AM->getNumOperands() * 3; 514 515 // If this node has some predicate function that must match, it adds to the 516 // complexity of this node. 517 if (!P->getPredicateFns().empty()) 518 ++Size; 519 520 // Count children in the count if they are also nodes. 521 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 522 TreePatternNode *Child = P->getChild(i); 523 if (!Child->isLeaf() && Child->getNumTypes() && 524 Child->getType(0) != MVT::Other) 525 Size += getPatternSize(Child, CGP); 526 else if (Child->isLeaf()) { 527 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 528 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 529 else if (Child->getComplexPatternInfo(CGP)) 530 Size += getPatternSize(Child, CGP); 531 else if (!Child->getPredicateFns().empty()) 532 ++Size; 533 } 534 } 535 536 return Size; 537 } 538 539 /// Compute the complexity metric for the input pattern. This roughly 540 /// corresponds to the number of nodes that are covered. 541 unsigned PatternToMatch:: 542 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 543 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 544 } 545 546 547 /// getPredicateCheck - Return a single string containing all of this 548 /// pattern's predicates concatenated with "&&" operators. 549 /// 550 std::string PatternToMatch::getPredicateCheck() const { 551 std::string PredicateCheck; 552 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 553 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 554 Record *Def = Pred->getDef(); 555 if (!Def->isSubClassOf("Predicate")) { 556 #ifndef NDEBUG 557 Def->dump(); 558 #endif 559 assert(0 && "Unknown predicate type!"); 560 } 561 if (!PredicateCheck.empty()) 562 PredicateCheck += " && "; 563 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 564 } 565 } 566 567 return PredicateCheck; 568 } 569 570 //===----------------------------------------------------------------------===// 571 // SDTypeConstraint implementation 572 // 573 574 SDTypeConstraint::SDTypeConstraint(Record *R) { 575 OperandNo = R->getValueAsInt("OperandNum"); 576 577 if (R->isSubClassOf("SDTCisVT")) { 578 ConstraintType = SDTCisVT; 579 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 580 if (x.SDTCisVT_Info.VT == MVT::isVoid) 581 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 582 583 } else if (R->isSubClassOf("SDTCisPtrTy")) { 584 ConstraintType = SDTCisPtrTy; 585 } else if (R->isSubClassOf("SDTCisInt")) { 586 ConstraintType = SDTCisInt; 587 } else if (R->isSubClassOf("SDTCisFP")) { 588 ConstraintType = SDTCisFP; 589 } else if (R->isSubClassOf("SDTCisVec")) { 590 ConstraintType = SDTCisVec; 591 } else if (R->isSubClassOf("SDTCisSameAs")) { 592 ConstraintType = SDTCisSameAs; 593 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 594 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 595 ConstraintType = SDTCisVTSmallerThanOp; 596 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 597 R->getValueAsInt("OtherOperandNum"); 598 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 599 ConstraintType = SDTCisOpSmallerThanOp; 600 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 601 R->getValueAsInt("BigOperandNum"); 602 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 603 ConstraintType = SDTCisEltOfVec; 604 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 605 } else { 606 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 607 exit(1); 608 } 609 } 610 611 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 612 /// N, and the result number in ResNo. 613 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 614 const SDNodeInfo &NodeInfo, 615 unsigned &ResNo) { 616 unsigned NumResults = NodeInfo.getNumResults(); 617 if (OpNo < NumResults) { 618 ResNo = OpNo; 619 return N; 620 } 621 622 OpNo -= NumResults; 623 624 if (OpNo >= N->getNumChildren()) { 625 errs() << "Invalid operand number in type constraint " 626 << (OpNo+NumResults) << " "; 627 N->dump(); 628 errs() << '\n'; 629 exit(1); 630 } 631 632 return N->getChild(OpNo); 633 } 634 635 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 636 /// constraint to the nodes operands. This returns true if it makes a 637 /// change, false otherwise. If a type contradiction is found, throw an 638 /// exception. 639 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 640 const SDNodeInfo &NodeInfo, 641 TreePattern &TP) const { 642 unsigned ResNo = 0; // The result number being referenced. 643 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 644 645 switch (ConstraintType) { 646 default: assert(0 && "Unknown constraint type!"); 647 case SDTCisVT: 648 // Operand must be a particular type. 649 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 650 case SDTCisPtrTy: 651 // Operand must be same as target pointer type. 652 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 653 case SDTCisInt: 654 // Require it to be one of the legal integer VTs. 655 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 656 case SDTCisFP: 657 // Require it to be one of the legal fp VTs. 658 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 659 case SDTCisVec: 660 // Require it to be one of the legal vector VTs. 661 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 662 case SDTCisSameAs: { 663 unsigned OResNo = 0; 664 TreePatternNode *OtherNode = 665 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 666 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 667 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 668 } 669 case SDTCisVTSmallerThanOp: { 670 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 671 // have an integer type that is smaller than the VT. 672 if (!NodeToApply->isLeaf() || 673 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 674 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 675 ->isSubClassOf("ValueType")) 676 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 677 MVT::SimpleValueType VT = 678 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 679 680 EEVT::TypeSet TypeListTmp(VT, TP); 681 682 unsigned OResNo = 0; 683 TreePatternNode *OtherNode = 684 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 685 OResNo); 686 687 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 688 } 689 case SDTCisOpSmallerThanOp: { 690 unsigned BResNo = 0; 691 TreePatternNode *BigOperand = 692 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 693 BResNo); 694 return NodeToApply->getExtType(ResNo). 695 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 696 } 697 case SDTCisEltOfVec: { 698 unsigned VResNo = 0; 699 TreePatternNode *VecOperand = 700 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 701 VResNo); 702 703 // Filter vector types out of VecOperand that don't have the right element 704 // type. 705 return VecOperand->getExtType(VResNo). 706 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 707 } 708 } 709 return false; 710 } 711 712 //===----------------------------------------------------------------------===// 713 // SDNodeInfo implementation 714 // 715 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 716 EnumName = R->getValueAsString("Opcode"); 717 SDClassName = R->getValueAsString("SDClass"); 718 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 719 NumResults = TypeProfile->getValueAsInt("NumResults"); 720 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 721 722 // Parse the properties. 723 Properties = 0; 724 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 725 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 726 if (PropList[i]->getName() == "SDNPCommutative") { 727 Properties |= 1 << SDNPCommutative; 728 } else if (PropList[i]->getName() == "SDNPAssociative") { 729 Properties |= 1 << SDNPAssociative; 730 } else if (PropList[i]->getName() == "SDNPHasChain") { 731 Properties |= 1 << SDNPHasChain; 732 } else if (PropList[i]->getName() == "SDNPOutFlag") { 733 Properties |= 1 << SDNPOutFlag; 734 } else if (PropList[i]->getName() == "SDNPInFlag") { 735 Properties |= 1 << SDNPInFlag; 736 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 737 Properties |= 1 << SDNPOptInFlag; 738 } else if (PropList[i]->getName() == "SDNPMayStore") { 739 Properties |= 1 << SDNPMayStore; 740 } else if (PropList[i]->getName() == "SDNPMayLoad") { 741 Properties |= 1 << SDNPMayLoad; 742 } else if (PropList[i]->getName() == "SDNPSideEffect") { 743 Properties |= 1 << SDNPSideEffect; 744 } else if (PropList[i]->getName() == "SDNPMemOperand") { 745 Properties |= 1 << SDNPMemOperand; 746 } else if (PropList[i]->getName() == "SDNPVariadic") { 747 Properties |= 1 << SDNPVariadic; 748 } else { 749 errs() << "Unknown SD Node property '" << PropList[i]->getName() 750 << "' on node '" << R->getName() << "'!\n"; 751 exit(1); 752 } 753 } 754 755 756 // Parse the type constraints. 757 std::vector<Record*> ConstraintList = 758 TypeProfile->getValueAsListOfDefs("Constraints"); 759 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 760 } 761 762 /// getKnownType - If the type constraints on this node imply a fixed type 763 /// (e.g. all stores return void, etc), then return it as an 764 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 765 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 766 unsigned NumResults = getNumResults(); 767 assert(NumResults <= 1 && 768 "We only work with nodes with zero or one result so far!"); 769 assert(ResNo == 0 && "Only handles single result nodes so far"); 770 771 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 772 // Make sure that this applies to the correct node result. 773 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 774 continue; 775 776 switch (TypeConstraints[i].ConstraintType) { 777 default: break; 778 case SDTypeConstraint::SDTCisVT: 779 return TypeConstraints[i].x.SDTCisVT_Info.VT; 780 case SDTypeConstraint::SDTCisPtrTy: 781 return MVT::iPTR; 782 } 783 } 784 return MVT::Other; 785 } 786 787 //===----------------------------------------------------------------------===// 788 // TreePatternNode implementation 789 // 790 791 TreePatternNode::~TreePatternNode() { 792 #if 0 // FIXME: implement refcounted tree nodes! 793 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 794 delete getChild(i); 795 #endif 796 } 797 798 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 799 if (Operator->getName() == "set" || 800 Operator->getName() == "implicit") 801 return 0; // All return nothing. 802 803 if (Operator->isSubClassOf("Intrinsic")) 804 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 805 806 if (Operator->isSubClassOf("SDNode")) 807 return CDP.getSDNodeInfo(Operator).getNumResults(); 808 809 if (Operator->isSubClassOf("PatFrag")) { 810 // If we've already parsed this pattern fragment, get it. Otherwise, handle 811 // the forward reference case where one pattern fragment references another 812 // before it is processed. 813 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 814 return PFRec->getOnlyTree()->getNumTypes(); 815 816 // Get the result tree. 817 DagInit *Tree = Operator->getValueAsDag("Fragment"); 818 Record *Op = 0; 819 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 820 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 821 assert(Op && "Invalid Fragment"); 822 return GetNumNodeResults(Op, CDP); 823 } 824 825 if (Operator->isSubClassOf("Instruction")) { 826 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 827 828 // FIXME: Should allow access to all the results here. 829 unsigned NumDefsToAdd = InstInfo.NumDefs ? 1 : 0; 830 831 // Add on one implicit def if it has a resolvable type. 832 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 833 ++NumDefsToAdd; 834 return NumDefsToAdd; 835 } 836 837 if (Operator->isSubClassOf("SDNodeXForm")) 838 return 1; // FIXME: Generalize SDNodeXForm 839 840 Operator->dump(); 841 errs() << "Unhandled node in GetNumNodeResults\n"; 842 exit(1); 843 } 844 845 void TreePatternNode::print(raw_ostream &OS) const { 846 if (isLeaf()) 847 OS << *getLeafValue(); 848 else 849 OS << '(' << getOperator()->getName(); 850 851 for (unsigned i = 0, e = Types.size(); i != e; ++i) 852 OS << ':' << getExtType(i).getName(); 853 854 if (!isLeaf()) { 855 if (getNumChildren() != 0) { 856 OS << " "; 857 getChild(0)->print(OS); 858 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 859 OS << ", "; 860 getChild(i)->print(OS); 861 } 862 } 863 OS << ")"; 864 } 865 866 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 867 OS << "<<P:" << PredicateFns[i] << ">>"; 868 if (TransformFn) 869 OS << "<<X:" << TransformFn->getName() << ">>"; 870 if (!getName().empty()) 871 OS << ":$" << getName(); 872 873 } 874 void TreePatternNode::dump() const { 875 print(errs()); 876 } 877 878 /// isIsomorphicTo - Return true if this node is recursively 879 /// isomorphic to the specified node. For this comparison, the node's 880 /// entire state is considered. The assigned name is ignored, since 881 /// nodes with differing names are considered isomorphic. However, if 882 /// the assigned name is present in the dependent variable set, then 883 /// the assigned name is considered significant and the node is 884 /// isomorphic if the names match. 885 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 886 const MultipleUseVarSet &DepVars) const { 887 if (N == this) return true; 888 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 889 getPredicateFns() != N->getPredicateFns() || 890 getTransformFn() != N->getTransformFn()) 891 return false; 892 893 if (isLeaf()) { 894 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 895 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 896 return ((DI->getDef() == NDI->getDef()) 897 && (DepVars.find(getName()) == DepVars.end() 898 || getName() == N->getName())); 899 } 900 } 901 return getLeafValue() == N->getLeafValue(); 902 } 903 904 if (N->getOperator() != getOperator() || 905 N->getNumChildren() != getNumChildren()) return false; 906 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 907 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 908 return false; 909 return true; 910 } 911 912 /// clone - Make a copy of this tree and all of its children. 913 /// 914 TreePatternNode *TreePatternNode::clone() const { 915 TreePatternNode *New; 916 if (isLeaf()) { 917 New = new TreePatternNode(getLeafValue(), getNumTypes()); 918 } else { 919 std::vector<TreePatternNode*> CChildren; 920 CChildren.reserve(Children.size()); 921 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 922 CChildren.push_back(getChild(i)->clone()); 923 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 924 } 925 New->setName(getName()); 926 New->Types = Types; 927 New->setPredicateFns(getPredicateFns()); 928 New->setTransformFn(getTransformFn()); 929 return New; 930 } 931 932 /// RemoveAllTypes - Recursively strip all the types of this tree. 933 void TreePatternNode::RemoveAllTypes() { 934 for (unsigned i = 0, e = Types.size(); i != e; ++i) 935 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 936 if (isLeaf()) return; 937 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 938 getChild(i)->RemoveAllTypes(); 939 } 940 941 942 /// SubstituteFormalArguments - Replace the formal arguments in this tree 943 /// with actual values specified by ArgMap. 944 void TreePatternNode:: 945 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 946 if (isLeaf()) return; 947 948 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 949 TreePatternNode *Child = getChild(i); 950 if (Child->isLeaf()) { 951 Init *Val = Child->getLeafValue(); 952 if (dynamic_cast<DefInit*>(Val) && 953 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 954 // We found a use of a formal argument, replace it with its value. 955 TreePatternNode *NewChild = ArgMap[Child->getName()]; 956 assert(NewChild && "Couldn't find formal argument!"); 957 assert((Child->getPredicateFns().empty() || 958 NewChild->getPredicateFns() == Child->getPredicateFns()) && 959 "Non-empty child predicate clobbered!"); 960 setChild(i, NewChild); 961 } 962 } else { 963 getChild(i)->SubstituteFormalArguments(ArgMap); 964 } 965 } 966 } 967 968 969 /// InlinePatternFragments - If this pattern refers to any pattern 970 /// fragments, inline them into place, giving us a pattern without any 971 /// PatFrag references. 972 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 973 if (isLeaf()) return this; // nothing to do. 974 Record *Op = getOperator(); 975 976 if (!Op->isSubClassOf("PatFrag")) { 977 // Just recursively inline children nodes. 978 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 979 TreePatternNode *Child = getChild(i); 980 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 981 982 assert((Child->getPredicateFns().empty() || 983 NewChild->getPredicateFns() == Child->getPredicateFns()) && 984 "Non-empty child predicate clobbered!"); 985 986 setChild(i, NewChild); 987 } 988 return this; 989 } 990 991 // Otherwise, we found a reference to a fragment. First, look up its 992 // TreePattern record. 993 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 994 995 // Verify that we are passing the right number of operands. 996 if (Frag->getNumArgs() != Children.size()) 997 TP.error("'" + Op->getName() + "' fragment requires " + 998 utostr(Frag->getNumArgs()) + " operands!"); 999 1000 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1001 1002 std::string Code = Op->getValueAsCode("Predicate"); 1003 if (!Code.empty()) 1004 FragTree->addPredicateFn("Predicate_"+Op->getName()); 1005 1006 // Resolve formal arguments to their actual value. 1007 if (Frag->getNumArgs()) { 1008 // Compute the map of formal to actual arguments. 1009 std::map<std::string, TreePatternNode*> ArgMap; 1010 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1011 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1012 1013 FragTree->SubstituteFormalArguments(ArgMap); 1014 } 1015 1016 FragTree->setName(getName()); 1017 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1018 FragTree->UpdateNodeType(i, getExtType(i), TP); 1019 1020 // Transfer in the old predicates. 1021 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1022 FragTree->addPredicateFn(getPredicateFns()[i]); 1023 1024 // Get a new copy of this fragment to stitch into here. 1025 //delete this; // FIXME: implement refcounting! 1026 1027 // The fragment we inlined could have recursive inlining that is needed. See 1028 // if there are any pattern fragments in it and inline them as needed. 1029 return FragTree->InlinePatternFragments(TP); 1030 } 1031 1032 /// getImplicitType - Check to see if the specified record has an implicit 1033 /// type which should be applied to it. This will infer the type of register 1034 /// references from the register file information, for example. 1035 /// 1036 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1037 bool NotRegisters, TreePattern &TP) { 1038 // Check to see if this is a register or a register class. 1039 if (R->isSubClassOf("RegisterClass")) { 1040 assert(ResNo == 0 && "Regclass ref only has one result!"); 1041 if (NotRegisters) 1042 return EEVT::TypeSet(); // Unknown. 1043 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1044 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1045 } 1046 1047 if (R->isSubClassOf("PatFrag")) { 1048 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1049 // Pattern fragment types will be resolved when they are inlined. 1050 return EEVT::TypeSet(); // Unknown. 1051 } 1052 1053 if (R->isSubClassOf("Register")) { 1054 assert(ResNo == 0 && "Registers only produce one result!"); 1055 if (NotRegisters) 1056 return EEVT::TypeSet(); // Unknown. 1057 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1058 return EEVT::TypeSet(T.getRegisterVTs(R)); 1059 } 1060 1061 if (R->isSubClassOf("SubRegIndex")) { 1062 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1063 return EEVT::TypeSet(); 1064 } 1065 1066 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1067 assert(ResNo == 0 && "This node only has one result!"); 1068 // Using a VTSDNode or CondCodeSDNode. 1069 return EEVT::TypeSet(MVT::Other, TP); 1070 } 1071 1072 if (R->isSubClassOf("ComplexPattern")) { 1073 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1074 if (NotRegisters) 1075 return EEVT::TypeSet(); // Unknown. 1076 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1077 TP); 1078 } 1079 if (R->isSubClassOf("PointerLikeRegClass")) { 1080 assert(ResNo == 0 && "Regclass can only have one result!"); 1081 return EEVT::TypeSet(MVT::iPTR, TP); 1082 } 1083 1084 if (R->getName() == "node" || R->getName() == "srcvalue" || 1085 R->getName() == "zero_reg") { 1086 // Placeholder. 1087 return EEVT::TypeSet(); // Unknown. 1088 } 1089 1090 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1091 return EEVT::TypeSet(MVT::Other, TP); 1092 } 1093 1094 1095 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1096 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1097 const CodeGenIntrinsic *TreePatternNode:: 1098 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1099 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1100 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1101 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1102 return 0; 1103 1104 unsigned IID = 1105 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1106 return &CDP.getIntrinsicInfo(IID); 1107 } 1108 1109 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1110 /// return the ComplexPattern information, otherwise return null. 1111 const ComplexPattern * 1112 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1113 if (!isLeaf()) return 0; 1114 1115 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1116 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1117 return &CGP.getComplexPattern(DI->getDef()); 1118 return 0; 1119 } 1120 1121 /// NodeHasProperty - Return true if this node has the specified property. 1122 bool TreePatternNode::NodeHasProperty(SDNP Property, 1123 const CodeGenDAGPatterns &CGP) const { 1124 if (isLeaf()) { 1125 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1126 return CP->hasProperty(Property); 1127 return false; 1128 } 1129 1130 Record *Operator = getOperator(); 1131 if (!Operator->isSubClassOf("SDNode")) return false; 1132 1133 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1134 } 1135 1136 1137 1138 1139 /// TreeHasProperty - Return true if any node in this tree has the specified 1140 /// property. 1141 bool TreePatternNode::TreeHasProperty(SDNP Property, 1142 const CodeGenDAGPatterns &CGP) const { 1143 if (NodeHasProperty(Property, CGP)) 1144 return true; 1145 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1146 if (getChild(i)->TreeHasProperty(Property, CGP)) 1147 return true; 1148 return false; 1149 } 1150 1151 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1152 /// commutative intrinsic. 1153 bool 1154 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1155 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1156 return Int->isCommutative; 1157 return false; 1158 } 1159 1160 1161 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1162 /// this node and its children in the tree. This returns true if it makes a 1163 /// change, false otherwise. If a type contradiction is found, throw an 1164 /// exception. 1165 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1166 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1167 if (isLeaf()) { 1168 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1169 // If it's a regclass or something else known, include the type. 1170 bool MadeChange = false; 1171 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1172 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1173 NotRegisters, TP), TP); 1174 return MadeChange; 1175 } 1176 1177 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1178 assert(Types.size() == 1 && "Invalid IntInit"); 1179 1180 // Int inits are always integers. :) 1181 bool MadeChange = Types[0].EnforceInteger(TP); 1182 1183 if (!Types[0].isConcrete()) 1184 return MadeChange; 1185 1186 MVT::SimpleValueType VT = getType(0); 1187 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1188 return MadeChange; 1189 1190 unsigned Size = EVT(VT).getSizeInBits(); 1191 // Make sure that the value is representable for this type. 1192 if (Size >= 32) return MadeChange; 1193 1194 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1195 if (Val == II->getValue()) return MadeChange; 1196 1197 // If sign-extended doesn't fit, does it fit as unsigned? 1198 unsigned ValueMask; 1199 unsigned UnsignedVal; 1200 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1201 UnsignedVal = unsigned(II->getValue()); 1202 1203 if ((ValueMask & UnsignedVal) == UnsignedVal) 1204 return MadeChange; 1205 1206 TP.error("Integer value '" + itostr(II->getValue())+ 1207 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1208 return MadeChange; 1209 } 1210 return false; 1211 } 1212 1213 // special handling for set, which isn't really an SDNode. 1214 if (getOperator()->getName() == "set") { 1215 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1216 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1217 unsigned NC = getNumChildren(); 1218 1219 TreePatternNode *SetVal = getChild(NC-1); 1220 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1221 1222 for (unsigned i = 0; i < NC-1; ++i) { 1223 TreePatternNode *Child = getChild(i); 1224 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1225 1226 // Types of operands must match. 1227 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1228 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1229 } 1230 return MadeChange; 1231 } 1232 1233 if (getOperator()->getName() == "implicit") { 1234 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1235 1236 bool MadeChange = false; 1237 for (unsigned i = 0; i < getNumChildren(); ++i) 1238 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1239 return MadeChange; 1240 } 1241 1242 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1243 bool MadeChange = false; 1244 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1245 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1246 1247 assert(getChild(0)->getNumTypes() == 1 && 1248 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1249 1250 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1251 // what type it gets, so if it didn't get a concrete type just give it the 1252 // first viable type from the reg class. 1253 if (!getChild(1)->hasTypeSet(0) && 1254 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1255 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1256 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1257 } 1258 return MadeChange; 1259 } 1260 1261 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1262 bool MadeChange = false; 1263 1264 // Apply the result type to the node. 1265 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1266 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1267 1268 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1269 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1270 1271 if (getNumChildren() != NumParamVTs + 1) 1272 TP.error("Intrinsic '" + Int->Name + "' expects " + 1273 utostr(NumParamVTs) + " operands, not " + 1274 utostr(getNumChildren() - 1) + " operands!"); 1275 1276 // Apply type info to the intrinsic ID. 1277 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1278 1279 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1280 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1281 1282 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1283 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1284 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1285 } 1286 return MadeChange; 1287 } 1288 1289 if (getOperator()->isSubClassOf("SDNode")) { 1290 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1291 1292 // Check that the number of operands is sane. Negative operands -> varargs. 1293 if (NI.getNumOperands() >= 0 && 1294 getNumChildren() != (unsigned)NI.getNumOperands()) 1295 TP.error(getOperator()->getName() + " node requires exactly " + 1296 itostr(NI.getNumOperands()) + " operands!"); 1297 1298 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1299 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1300 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1301 return MadeChange; 1302 } 1303 1304 if (getOperator()->isSubClassOf("Instruction")) { 1305 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1306 CodeGenInstruction &InstInfo = 1307 CDP.getTargetInfo().getInstruction(getOperator()); 1308 1309 bool MadeChange = false; 1310 1311 // Apply the result types to the node, these come from the things in the 1312 // (outs) list of the instruction. 1313 // FIXME: Cap at one result so far. 1314 unsigned NumResultsToAdd = InstInfo.NumDefs ? 1 : 0; 1315 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1316 Record *ResultNode = Inst.getResult(ResNo); 1317 1318 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1319 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1320 } else if (ResultNode->getName() == "unknown") { 1321 // Nothing to do. 1322 } else { 1323 assert(ResultNode->isSubClassOf("RegisterClass") && 1324 "Operands should be register classes!"); 1325 const CodeGenRegisterClass &RC = 1326 CDP.getTargetInfo().getRegisterClass(ResultNode); 1327 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1328 } 1329 } 1330 1331 // If the instruction has implicit defs, we apply the first one as a result. 1332 // FIXME: This sucks, it should apply all implicit defs. 1333 if (!InstInfo.ImplicitDefs.empty()) { 1334 unsigned ResNo = NumResultsToAdd; 1335 1336 // FIXME: Generalize to multiple possible types and multiple possible 1337 // ImplicitDefs. 1338 MVT::SimpleValueType VT = 1339 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1340 1341 if (VT != MVT::Other) 1342 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1343 } 1344 1345 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1346 // be the same. 1347 if (getOperator()->getName() == "INSERT_SUBREG") { 1348 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1349 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1350 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1351 } 1352 1353 unsigned ChildNo = 0; 1354 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1355 Record *OperandNode = Inst.getOperand(i); 1356 1357 // If the instruction expects a predicate or optional def operand, we 1358 // codegen this by setting the operand to it's default value if it has a 1359 // non-empty DefaultOps field. 1360 if ((OperandNode->isSubClassOf("PredicateOperand") || 1361 OperandNode->isSubClassOf("OptionalDefOperand")) && 1362 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1363 continue; 1364 1365 // Verify that we didn't run out of provided operands. 1366 if (ChildNo >= getNumChildren()) 1367 TP.error("Instruction '" + getOperator()->getName() + 1368 "' expects more operands than were provided."); 1369 1370 MVT::SimpleValueType VT; 1371 TreePatternNode *Child = getChild(ChildNo++); 1372 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1373 1374 if (OperandNode->isSubClassOf("RegisterClass")) { 1375 const CodeGenRegisterClass &RC = 1376 CDP.getTargetInfo().getRegisterClass(OperandNode); 1377 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1378 } else if (OperandNode->isSubClassOf("Operand")) { 1379 VT = getValueType(OperandNode->getValueAsDef("Type")); 1380 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1381 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1382 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1383 } else if (OperandNode->getName() == "unknown") { 1384 // Nothing to do. 1385 } else { 1386 assert(0 && "Unknown operand type!"); 1387 abort(); 1388 } 1389 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1390 } 1391 1392 if (ChildNo != getNumChildren()) 1393 TP.error("Instruction '" + getOperator()->getName() + 1394 "' was provided too many operands!"); 1395 1396 return MadeChange; 1397 } 1398 1399 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1400 1401 // Node transforms always take one operand. 1402 if (getNumChildren() != 1) 1403 TP.error("Node transform '" + getOperator()->getName() + 1404 "' requires one operand!"); 1405 1406 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1407 1408 1409 // If either the output or input of the xform does not have exact 1410 // type info. We assume they must be the same. Otherwise, it is perfectly 1411 // legal to transform from one type to a completely different type. 1412 #if 0 1413 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1414 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1415 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1416 return MadeChange; 1417 } 1418 #endif 1419 return MadeChange; 1420 } 1421 1422 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1423 /// RHS of a commutative operation, not the on LHS. 1424 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1425 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1426 return true; 1427 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1428 return true; 1429 return false; 1430 } 1431 1432 1433 /// canPatternMatch - If it is impossible for this pattern to match on this 1434 /// target, fill in Reason and return false. Otherwise, return true. This is 1435 /// used as a sanity check for .td files (to prevent people from writing stuff 1436 /// that can never possibly work), and to prevent the pattern permuter from 1437 /// generating stuff that is useless. 1438 bool TreePatternNode::canPatternMatch(std::string &Reason, 1439 const CodeGenDAGPatterns &CDP) { 1440 if (isLeaf()) return true; 1441 1442 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1443 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1444 return false; 1445 1446 // If this is an intrinsic, handle cases that would make it not match. For 1447 // example, if an operand is required to be an immediate. 1448 if (getOperator()->isSubClassOf("Intrinsic")) { 1449 // TODO: 1450 return true; 1451 } 1452 1453 // If this node is a commutative operator, check that the LHS isn't an 1454 // immediate. 1455 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1456 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1457 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1458 // Scan all of the operands of the node and make sure that only the last one 1459 // is a constant node, unless the RHS also is. 1460 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1461 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1462 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1463 if (OnlyOnRHSOfCommutative(getChild(i))) { 1464 Reason="Immediate value must be on the RHS of commutative operators!"; 1465 return false; 1466 } 1467 } 1468 } 1469 1470 return true; 1471 } 1472 1473 //===----------------------------------------------------------------------===// 1474 // TreePattern implementation 1475 // 1476 1477 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1478 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1479 isInputPattern = isInput; 1480 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1481 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1482 } 1483 1484 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1485 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1486 isInputPattern = isInput; 1487 Trees.push_back(ParseTreePattern(Pat, "")); 1488 } 1489 1490 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1491 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1492 isInputPattern = isInput; 1493 Trees.push_back(Pat); 1494 } 1495 1496 void TreePattern::error(const std::string &Msg) const { 1497 dump(); 1498 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1499 } 1500 1501 void TreePattern::ComputeNamedNodes() { 1502 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1503 ComputeNamedNodes(Trees[i]); 1504 } 1505 1506 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1507 if (!N->getName().empty()) 1508 NamedNodes[N->getName()].push_back(N); 1509 1510 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1511 ComputeNamedNodes(N->getChild(i)); 1512 } 1513 1514 1515 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1516 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1517 Record *R = DI->getDef(); 1518 1519 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1520 // TreePatternNode if its own. For example: 1521 /// (foo GPR, imm) -> (foo GPR, (imm)) 1522 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1523 return ParseTreePattern(new DagInit(DI, "", 1524 std::vector<std::pair<Init*, std::string> >()), 1525 OpName); 1526 1527 // Input argument? 1528 TreePatternNode *Res = new TreePatternNode(DI, 1); 1529 if (R->getName() == "node" && !OpName.empty()) { 1530 if (OpName.empty()) 1531 error("'node' argument requires a name to match with operand list"); 1532 Args.push_back(OpName); 1533 } 1534 1535 Res->setName(OpName); 1536 return Res; 1537 } 1538 1539 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1540 if (!OpName.empty()) 1541 error("Constant int argument should not have a name!"); 1542 return new TreePatternNode(II, 1); 1543 } 1544 1545 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1546 // Turn this into an IntInit. 1547 Init *II = BI->convertInitializerTo(new IntRecTy()); 1548 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1549 error("Bits value must be constants!"); 1550 return ParseTreePattern(II, OpName); 1551 } 1552 1553 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1554 if (!Dag) { 1555 TheInit->dump(); 1556 error("Pattern has unexpected init kind!"); 1557 } 1558 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1559 if (!OpDef) error("Pattern has unexpected operator type!"); 1560 Record *Operator = OpDef->getDef(); 1561 1562 if (Operator->isSubClassOf("ValueType")) { 1563 // If the operator is a ValueType, then this must be "type cast" of a leaf 1564 // node. 1565 if (Dag->getNumArgs() != 1) 1566 error("Type cast only takes one operand!"); 1567 1568 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1569 1570 // Apply the type cast. 1571 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1572 New->UpdateNodeType(0, getValueType(Operator), *this); 1573 1574 if (!OpName.empty()) 1575 error("ValueType cast should not have a name!"); 1576 return New; 1577 } 1578 1579 // Verify that this is something that makes sense for an operator. 1580 if (!Operator->isSubClassOf("PatFrag") && 1581 !Operator->isSubClassOf("SDNode") && 1582 !Operator->isSubClassOf("Instruction") && 1583 !Operator->isSubClassOf("SDNodeXForm") && 1584 !Operator->isSubClassOf("Intrinsic") && 1585 Operator->getName() != "set" && 1586 Operator->getName() != "implicit") 1587 error("Unrecognized node '" + Operator->getName() + "'!"); 1588 1589 // Check to see if this is something that is illegal in an input pattern. 1590 if (isInputPattern) { 1591 if (Operator->isSubClassOf("Instruction") || 1592 Operator->isSubClassOf("SDNodeXForm")) 1593 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1594 } else { 1595 if (Operator->isSubClassOf("Intrinsic")) 1596 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1597 1598 if (Operator->isSubClassOf("SDNode") && 1599 Operator->getName() != "imm" && 1600 Operator->getName() != "fpimm" && 1601 Operator->getName() != "tglobaltlsaddr" && 1602 Operator->getName() != "tconstpool" && 1603 Operator->getName() != "tjumptable" && 1604 Operator->getName() != "tframeindex" && 1605 Operator->getName() != "texternalsym" && 1606 Operator->getName() != "tblockaddress" && 1607 Operator->getName() != "tglobaladdr" && 1608 Operator->getName() != "bb" && 1609 Operator->getName() != "vt") 1610 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1611 } 1612 1613 std::vector<TreePatternNode*> Children; 1614 1615 // Parse all the operands. 1616 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1617 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1618 1619 // If the operator is an intrinsic, then this is just syntactic sugar for for 1620 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1621 // convert the intrinsic name to a number. 1622 if (Operator->isSubClassOf("Intrinsic")) { 1623 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1624 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1625 1626 // If this intrinsic returns void, it must have side-effects and thus a 1627 // chain. 1628 if (Int.IS.RetVTs.empty()) 1629 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1630 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1631 // Has side-effects, requires chain. 1632 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1633 else // Otherwise, no chain. 1634 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1635 1636 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); 1637 Children.insert(Children.begin(), IIDNode); 1638 } 1639 1640 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1641 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1642 Result->setName(OpName); 1643 1644 if (!Dag->getName().empty()) { 1645 assert(Result->getName().empty()); 1646 Result->setName(Dag->getName()); 1647 } 1648 return Result; 1649 } 1650 1651 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1652 /// will never match in favor of something obvious that will. This is here 1653 /// strictly as a convenience to target authors because it allows them to write 1654 /// more type generic things and have useless type casts fold away. 1655 /// 1656 /// This returns true if any change is made. 1657 static bool SimplifyTree(TreePatternNode *&N) { 1658 if (N->isLeaf()) 1659 return false; 1660 1661 // If we have a bitconvert with a resolved type and if the source and 1662 // destination types are the same, then the bitconvert is useless, remove it. 1663 if (N->getOperator()->getName() == "bitconvert" && 1664 N->getExtType(0).isConcrete() && 1665 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1666 N->getName().empty()) { 1667 N = N->getChild(0); 1668 SimplifyTree(N); 1669 return true; 1670 } 1671 1672 // Walk all children. 1673 bool MadeChange = false; 1674 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1675 TreePatternNode *Child = N->getChild(i); 1676 MadeChange |= SimplifyTree(Child); 1677 N->setChild(i, Child); 1678 } 1679 return MadeChange; 1680 } 1681 1682 1683 1684 /// InferAllTypes - Infer/propagate as many types throughout the expression 1685 /// patterns as possible. Return true if all types are inferred, false 1686 /// otherwise. Throw an exception if a type contradiction is found. 1687 bool TreePattern:: 1688 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1689 if (NamedNodes.empty()) 1690 ComputeNamedNodes(); 1691 1692 bool MadeChange = true; 1693 while (MadeChange) { 1694 MadeChange = false; 1695 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1696 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1697 MadeChange |= SimplifyTree(Trees[i]); 1698 } 1699 1700 // If there are constraints on our named nodes, apply them. 1701 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1702 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1703 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1704 1705 // If we have input named node types, propagate their types to the named 1706 // values here. 1707 if (InNamedTypes) { 1708 // FIXME: Should be error? 1709 assert(InNamedTypes->count(I->getKey()) && 1710 "Named node in output pattern but not input pattern?"); 1711 1712 const SmallVectorImpl<TreePatternNode*> &InNodes = 1713 InNamedTypes->find(I->getKey())->second; 1714 1715 // The input types should be fully resolved by now. 1716 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1717 // If this node is a register class, and it is the root of the pattern 1718 // then we're mapping something onto an input register. We allow 1719 // changing the type of the input register in this case. This allows 1720 // us to match things like: 1721 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1722 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1723 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1724 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1725 continue; 1726 } 1727 1728 assert(Nodes[i]->getNumTypes() == 1 && 1729 InNodes[0]->getNumTypes() == 1 && 1730 "FIXME: cannot name multiple result nodes yet"); 1731 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1732 *this); 1733 } 1734 } 1735 1736 // If there are multiple nodes with the same name, they must all have the 1737 // same type. 1738 if (I->second.size() > 1) { 1739 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1740 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1741 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1742 "FIXME: cannot name multiple result nodes yet"); 1743 1744 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1745 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1746 } 1747 } 1748 } 1749 } 1750 1751 bool HasUnresolvedTypes = false; 1752 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1753 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1754 return !HasUnresolvedTypes; 1755 } 1756 1757 void TreePattern::print(raw_ostream &OS) const { 1758 OS << getRecord()->getName(); 1759 if (!Args.empty()) { 1760 OS << "(" << Args[0]; 1761 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1762 OS << ", " << Args[i]; 1763 OS << ")"; 1764 } 1765 OS << ": "; 1766 1767 if (Trees.size() > 1) 1768 OS << "[\n"; 1769 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1770 OS << "\t"; 1771 Trees[i]->print(OS); 1772 OS << "\n"; 1773 } 1774 1775 if (Trees.size() > 1) 1776 OS << "]\n"; 1777 } 1778 1779 void TreePattern::dump() const { print(errs()); } 1780 1781 //===----------------------------------------------------------------------===// 1782 // CodeGenDAGPatterns implementation 1783 // 1784 1785 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { 1786 Intrinsics = LoadIntrinsics(Records, false); 1787 TgtIntrinsics = LoadIntrinsics(Records, true); 1788 ParseNodeInfo(); 1789 ParseNodeTransforms(); 1790 ParseComplexPatterns(); 1791 ParsePatternFragments(); 1792 ParseDefaultOperands(); 1793 ParseInstructions(); 1794 ParsePatterns(); 1795 1796 // Generate variants. For example, commutative patterns can match 1797 // multiple ways. Add them to PatternsToMatch as well. 1798 GenerateVariants(); 1799 1800 // Infer instruction flags. For example, we can detect loads, 1801 // stores, and side effects in many cases by examining an 1802 // instruction's pattern. 1803 InferInstructionFlags(); 1804 } 1805 1806 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1807 for (pf_iterator I = PatternFragments.begin(), 1808 E = PatternFragments.end(); I != E; ++I) 1809 delete I->second; 1810 } 1811 1812 1813 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1814 Record *N = Records.getDef(Name); 1815 if (!N || !N->isSubClassOf("SDNode")) { 1816 errs() << "Error getting SDNode '" << Name << "'!\n"; 1817 exit(1); 1818 } 1819 return N; 1820 } 1821 1822 // Parse all of the SDNode definitions for the target, populating SDNodes. 1823 void CodeGenDAGPatterns::ParseNodeInfo() { 1824 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1825 while (!Nodes.empty()) { 1826 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1827 Nodes.pop_back(); 1828 } 1829 1830 // Get the builtin intrinsic nodes. 1831 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1832 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1833 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1834 } 1835 1836 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1837 /// map, and emit them to the file as functions. 1838 void CodeGenDAGPatterns::ParseNodeTransforms() { 1839 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1840 while (!Xforms.empty()) { 1841 Record *XFormNode = Xforms.back(); 1842 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1843 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1844 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1845 1846 Xforms.pop_back(); 1847 } 1848 } 1849 1850 void CodeGenDAGPatterns::ParseComplexPatterns() { 1851 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 1852 while (!AMs.empty()) { 1853 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 1854 AMs.pop_back(); 1855 } 1856 } 1857 1858 1859 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 1860 /// file, building up the PatternFragments map. After we've collected them all, 1861 /// inline fragments together as necessary, so that there are no references left 1862 /// inside a pattern fragment to a pattern fragment. 1863 /// 1864 void CodeGenDAGPatterns::ParsePatternFragments() { 1865 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 1866 1867 // First step, parse all of the fragments. 1868 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1869 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 1870 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 1871 PatternFragments[Fragments[i]] = P; 1872 1873 // Validate the argument list, converting it to set, to discard duplicates. 1874 std::vector<std::string> &Args = P->getArgList(); 1875 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 1876 1877 if (OperandsSet.count("")) 1878 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 1879 1880 // Parse the operands list. 1881 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 1882 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 1883 // Special cases: ops == outs == ins. Different names are used to 1884 // improve readability. 1885 if (!OpsOp || 1886 (OpsOp->getDef()->getName() != "ops" && 1887 OpsOp->getDef()->getName() != "outs" && 1888 OpsOp->getDef()->getName() != "ins")) 1889 P->error("Operands list should start with '(ops ... '!"); 1890 1891 // Copy over the arguments. 1892 Args.clear(); 1893 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 1894 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 1895 static_cast<DefInit*>(OpsList->getArg(j))-> 1896 getDef()->getName() != "node") 1897 P->error("Operands list should all be 'node' values."); 1898 if (OpsList->getArgName(j).empty()) 1899 P->error("Operands list should have names for each operand!"); 1900 if (!OperandsSet.count(OpsList->getArgName(j))) 1901 P->error("'" + OpsList->getArgName(j) + 1902 "' does not occur in pattern or was multiply specified!"); 1903 OperandsSet.erase(OpsList->getArgName(j)); 1904 Args.push_back(OpsList->getArgName(j)); 1905 } 1906 1907 if (!OperandsSet.empty()) 1908 P->error("Operands list does not contain an entry for operand '" + 1909 *OperandsSet.begin() + "'!"); 1910 1911 // If there is a code init for this fragment, keep track of the fact that 1912 // this fragment uses it. 1913 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 1914 if (!Code.empty()) 1915 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 1916 1917 // If there is a node transformation corresponding to this, keep track of 1918 // it. 1919 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 1920 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 1921 P->getOnlyTree()->setTransformFn(Transform); 1922 } 1923 1924 // Now that we've parsed all of the tree fragments, do a closure on them so 1925 // that there are not references to PatFrags left inside of them. 1926 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1927 TreePattern *ThePat = PatternFragments[Fragments[i]]; 1928 ThePat->InlinePatternFragments(); 1929 1930 // Infer as many types as possible. Don't worry about it if we don't infer 1931 // all of them, some may depend on the inputs of the pattern. 1932 try { 1933 ThePat->InferAllTypes(); 1934 } catch (...) { 1935 // If this pattern fragment is not supported by this target (no types can 1936 // satisfy its constraints), just ignore it. If the bogus pattern is 1937 // actually used by instructions, the type consistency error will be 1938 // reported there. 1939 } 1940 1941 // If debugging, print out the pattern fragment result. 1942 DEBUG(ThePat->dump()); 1943 } 1944 } 1945 1946 void CodeGenDAGPatterns::ParseDefaultOperands() { 1947 std::vector<Record*> DefaultOps[2]; 1948 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 1949 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 1950 1951 // Find some SDNode. 1952 assert(!SDNodes.empty() && "No SDNodes parsed?"); 1953 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 1954 1955 for (unsigned iter = 0; iter != 2; ++iter) { 1956 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 1957 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 1958 1959 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 1960 // SomeSDnode so that we can parse this. 1961 std::vector<std::pair<Init*, std::string> > Ops; 1962 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 1963 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 1964 DefaultInfo->getArgName(op))); 1965 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 1966 1967 // Create a TreePattern to parse this. 1968 TreePattern P(DefaultOps[iter][i], DI, false, *this); 1969 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 1970 1971 // Copy the operands over into a DAGDefaultOperand. 1972 DAGDefaultOperand DefaultOpInfo; 1973 1974 TreePatternNode *T = P.getTree(0); 1975 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 1976 TreePatternNode *TPN = T->getChild(op); 1977 while (TPN->ApplyTypeConstraints(P, false)) 1978 /* Resolve all types */; 1979 1980 if (TPN->ContainsUnresolvedType()) { 1981 if (iter == 0) 1982 throw "Value #" + utostr(i) + " of PredicateOperand '" + 1983 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 1984 else 1985 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 1986 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 1987 } 1988 DefaultOpInfo.DefaultOps.push_back(TPN); 1989 } 1990 1991 // Insert it into the DefaultOperands map so we can find it later. 1992 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 1993 } 1994 } 1995 } 1996 1997 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 1998 /// instruction input. Return true if this is a real use. 1999 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2000 std::map<std::string, TreePatternNode*> &InstInputs) { 2001 // No name -> not interesting. 2002 if (Pat->getName().empty()) { 2003 if (Pat->isLeaf()) { 2004 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2005 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 2006 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2007 } 2008 return false; 2009 } 2010 2011 Record *Rec; 2012 if (Pat->isLeaf()) { 2013 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2014 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2015 Rec = DI->getDef(); 2016 } else { 2017 Rec = Pat->getOperator(); 2018 } 2019 2020 // SRCVALUE nodes are ignored. 2021 if (Rec->getName() == "srcvalue") 2022 return false; 2023 2024 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2025 if (!Slot) { 2026 Slot = Pat; 2027 return true; 2028 } 2029 Record *SlotRec; 2030 if (Slot->isLeaf()) { 2031 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2032 } else { 2033 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2034 SlotRec = Slot->getOperator(); 2035 } 2036 2037 // Ensure that the inputs agree if we've already seen this input. 2038 if (Rec != SlotRec) 2039 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2040 if (Slot->getExtTypes() != Pat->getExtTypes()) 2041 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2042 return true; 2043 } 2044 2045 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2046 /// part of "I", the instruction), computing the set of inputs and outputs of 2047 /// the pattern. Report errors if we see anything naughty. 2048 void CodeGenDAGPatterns:: 2049 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2050 std::map<std::string, TreePatternNode*> &InstInputs, 2051 std::map<std::string, TreePatternNode*>&InstResults, 2052 std::vector<Record*> &InstImpResults) { 2053 if (Pat->isLeaf()) { 2054 bool isUse = HandleUse(I, Pat, InstInputs); 2055 if (!isUse && Pat->getTransformFn()) 2056 I->error("Cannot specify a transform function for a non-input value!"); 2057 return; 2058 } 2059 2060 if (Pat->getOperator()->getName() == "implicit") { 2061 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2062 TreePatternNode *Dest = Pat->getChild(i); 2063 if (!Dest->isLeaf()) 2064 I->error("implicitly defined value should be a register!"); 2065 2066 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2067 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2068 I->error("implicitly defined value should be a register!"); 2069 InstImpResults.push_back(Val->getDef()); 2070 } 2071 return; 2072 } 2073 2074 if (Pat->getOperator()->getName() != "set") { 2075 // If this is not a set, verify that the children nodes are not void typed, 2076 // and recurse. 2077 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2078 if (Pat->getChild(i)->getNumTypes() == 0) 2079 I->error("Cannot have void nodes inside of patterns!"); 2080 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2081 InstImpResults); 2082 } 2083 2084 // If this is a non-leaf node with no children, treat it basically as if 2085 // it were a leaf. This handles nodes like (imm). 2086 bool isUse = HandleUse(I, Pat, InstInputs); 2087 2088 if (!isUse && Pat->getTransformFn()) 2089 I->error("Cannot specify a transform function for a non-input value!"); 2090 return; 2091 } 2092 2093 // Otherwise, this is a set, validate and collect instruction results. 2094 if (Pat->getNumChildren() == 0) 2095 I->error("set requires operands!"); 2096 2097 if (Pat->getTransformFn()) 2098 I->error("Cannot specify a transform function on a set node!"); 2099 2100 // Check the set destinations. 2101 unsigned NumDests = Pat->getNumChildren()-1; 2102 for (unsigned i = 0; i != NumDests; ++i) { 2103 TreePatternNode *Dest = Pat->getChild(i); 2104 if (!Dest->isLeaf()) 2105 I->error("set destination should be a register!"); 2106 2107 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2108 if (!Val) 2109 I->error("set destination should be a register!"); 2110 2111 if (Val->getDef()->isSubClassOf("RegisterClass") || 2112 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2113 if (Dest->getName().empty()) 2114 I->error("set destination must have a name!"); 2115 if (InstResults.count(Dest->getName())) 2116 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2117 InstResults[Dest->getName()] = Dest; 2118 } else if (Val->getDef()->isSubClassOf("Register")) { 2119 InstImpResults.push_back(Val->getDef()); 2120 } else { 2121 I->error("set destination should be a register!"); 2122 } 2123 } 2124 2125 // Verify and collect info from the computation. 2126 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2127 InstInputs, InstResults, InstImpResults); 2128 } 2129 2130 //===----------------------------------------------------------------------===// 2131 // Instruction Analysis 2132 //===----------------------------------------------------------------------===// 2133 2134 class InstAnalyzer { 2135 const CodeGenDAGPatterns &CDP; 2136 bool &mayStore; 2137 bool &mayLoad; 2138 bool &HasSideEffects; 2139 bool &IsVariadic; 2140 public: 2141 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2142 bool &maystore, bool &mayload, bool &hse, bool &isv) 2143 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse), 2144 IsVariadic(isv) { 2145 } 2146 2147 /// Analyze - Analyze the specified instruction, returning true if the 2148 /// instruction had a pattern. 2149 bool Analyze(Record *InstRecord) { 2150 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2151 if (Pattern == 0) { 2152 HasSideEffects = 1; 2153 return false; // No pattern. 2154 } 2155 2156 // FIXME: Assume only the first tree is the pattern. The others are clobber 2157 // nodes. 2158 AnalyzeNode(Pattern->getTree(0)); 2159 return true; 2160 } 2161 2162 private: 2163 void AnalyzeNode(const TreePatternNode *N) { 2164 if (N->isLeaf()) { 2165 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2166 Record *LeafRec = DI->getDef(); 2167 // Handle ComplexPattern leaves. 2168 if (LeafRec->isSubClassOf("ComplexPattern")) { 2169 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2170 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2171 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2172 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2173 } 2174 } 2175 return; 2176 } 2177 2178 // Analyze children. 2179 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2180 AnalyzeNode(N->getChild(i)); 2181 2182 // Ignore set nodes, which are not SDNodes. 2183 if (N->getOperator()->getName() == "set") 2184 return; 2185 2186 // Get information about the SDNode for the operator. 2187 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2188 2189 // Notice properties of the node. 2190 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2191 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2192 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2193 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2194 2195 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2196 // If this is an intrinsic, analyze it. 2197 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2198 mayLoad = true;// These may load memory. 2199 2200 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) 2201 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2202 2203 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem) 2204 // WriteMem intrinsics can have other strange effects. 2205 HasSideEffects = true; 2206 } 2207 } 2208 2209 }; 2210 2211 static void InferFromPattern(const CodeGenInstruction &Inst, 2212 bool &MayStore, bool &MayLoad, 2213 bool &HasSideEffects, bool &IsVariadic, 2214 const CodeGenDAGPatterns &CDP) { 2215 MayStore = MayLoad = HasSideEffects = IsVariadic = false; 2216 2217 bool HadPattern = 2218 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects, IsVariadic) 2219 .Analyze(Inst.TheDef); 2220 2221 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2222 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2223 // If we decided that this is a store from the pattern, then the .td file 2224 // entry is redundant. 2225 if (MayStore) 2226 fprintf(stderr, 2227 "Warning: mayStore flag explicitly set on instruction '%s'" 2228 " but flag already inferred from pattern.\n", 2229 Inst.TheDef->getName().c_str()); 2230 MayStore = true; 2231 } 2232 2233 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2234 // If we decided that this is a load from the pattern, then the .td file 2235 // entry is redundant. 2236 if (MayLoad) 2237 fprintf(stderr, 2238 "Warning: mayLoad flag explicitly set on instruction '%s'" 2239 " but flag already inferred from pattern.\n", 2240 Inst.TheDef->getName().c_str()); 2241 MayLoad = true; 2242 } 2243 2244 if (Inst.neverHasSideEffects) { 2245 if (HadPattern) 2246 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2247 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2248 HasSideEffects = false; 2249 } 2250 2251 if (Inst.hasSideEffects) { 2252 if (HasSideEffects) 2253 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2254 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2255 HasSideEffects = true; 2256 } 2257 2258 if (Inst.isVariadic) 2259 IsVariadic = true; // Can warn if we want. 2260 } 2261 2262 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2263 /// any fragments involved. This populates the Instructions list with fully 2264 /// resolved instructions. 2265 void CodeGenDAGPatterns::ParseInstructions() { 2266 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2267 2268 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2269 ListInit *LI = 0; 2270 2271 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2272 LI = Instrs[i]->getValueAsListInit("Pattern"); 2273 2274 // If there is no pattern, only collect minimal information about the 2275 // instruction for its operand list. We have to assume that there is one 2276 // result, as we have no detailed info. 2277 if (!LI || LI->getSize() == 0) { 2278 std::vector<Record*> Results; 2279 std::vector<Record*> Operands; 2280 2281 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2282 2283 if (InstInfo.OperandList.size() != 0) { 2284 if (InstInfo.NumDefs == 0) { 2285 // These produce no results 2286 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) 2287 Operands.push_back(InstInfo.OperandList[j].Rec); 2288 } else { 2289 // Assume the first operand is the result. 2290 Results.push_back(InstInfo.OperandList[0].Rec); 2291 2292 // The rest are inputs. 2293 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) 2294 Operands.push_back(InstInfo.OperandList[j].Rec); 2295 } 2296 } 2297 2298 // Create and insert the instruction. 2299 std::vector<Record*> ImpResults; 2300 Instructions.insert(std::make_pair(Instrs[i], 2301 DAGInstruction(0, Results, Operands, ImpResults))); 2302 continue; // no pattern. 2303 } 2304 2305 // Parse the instruction. 2306 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2307 // Inline pattern fragments into it. 2308 I->InlinePatternFragments(); 2309 2310 // Infer as many types as possible. If we cannot infer all of them, we can 2311 // never do anything with this instruction pattern: report it to the user. 2312 if (!I->InferAllTypes()) 2313 I->error("Could not infer all types in pattern!"); 2314 2315 // InstInputs - Keep track of all of the inputs of the instruction, along 2316 // with the record they are declared as. 2317 std::map<std::string, TreePatternNode*> InstInputs; 2318 2319 // InstResults - Keep track of all the virtual registers that are 'set' 2320 // in the instruction, including what reg class they are. 2321 std::map<std::string, TreePatternNode*> InstResults; 2322 2323 std::vector<Record*> InstImpResults; 2324 2325 // Verify that the top-level forms in the instruction are of void type, and 2326 // fill in the InstResults map. 2327 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2328 TreePatternNode *Pat = I->getTree(j); 2329 if (Pat->getNumTypes() != 0) 2330 I->error("Top-level forms in instruction pattern should have" 2331 " void types"); 2332 2333 // Find inputs and outputs, and verify the structure of the uses/defs. 2334 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2335 InstImpResults); 2336 } 2337 2338 // Now that we have inputs and outputs of the pattern, inspect the operands 2339 // list for the instruction. This determines the order that operands are 2340 // added to the machine instruction the node corresponds to. 2341 unsigned NumResults = InstResults.size(); 2342 2343 // Parse the operands list from the (ops) list, validating it. 2344 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2345 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2346 2347 // Check that all of the results occur first in the list. 2348 std::vector<Record*> Results; 2349 TreePatternNode *Res0Node = 0; 2350 for (unsigned i = 0; i != NumResults; ++i) { 2351 if (i == CGI.OperandList.size()) 2352 I->error("'" + InstResults.begin()->first + 2353 "' set but does not appear in operand list!"); 2354 const std::string &OpName = CGI.OperandList[i].Name; 2355 2356 // Check that it exists in InstResults. 2357 TreePatternNode *RNode = InstResults[OpName]; 2358 if (RNode == 0) 2359 I->error("Operand $" + OpName + " does not exist in operand list!"); 2360 2361 if (i == 0) 2362 Res0Node = RNode; 2363 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2364 if (R == 0) 2365 I->error("Operand $" + OpName + " should be a set destination: all " 2366 "outputs must occur before inputs in operand list!"); 2367 2368 if (CGI.OperandList[i].Rec != R) 2369 I->error("Operand $" + OpName + " class mismatch!"); 2370 2371 // Remember the return type. 2372 Results.push_back(CGI.OperandList[i].Rec); 2373 2374 // Okay, this one checks out. 2375 InstResults.erase(OpName); 2376 } 2377 2378 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2379 // the copy while we're checking the inputs. 2380 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2381 2382 std::vector<TreePatternNode*> ResultNodeOperands; 2383 std::vector<Record*> Operands; 2384 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { 2385 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; 2386 const std::string &OpName = Op.Name; 2387 if (OpName.empty()) 2388 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2389 2390 if (!InstInputsCheck.count(OpName)) { 2391 // If this is an predicate operand or optional def operand with an 2392 // DefaultOps set filled in, we can ignore this. When we codegen it, 2393 // we will do so as always executed. 2394 if (Op.Rec->isSubClassOf("PredicateOperand") || 2395 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2396 // Does it have a non-empty DefaultOps field? If so, ignore this 2397 // operand. 2398 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2399 continue; 2400 } 2401 I->error("Operand $" + OpName + 2402 " does not appear in the instruction pattern"); 2403 } 2404 TreePatternNode *InVal = InstInputsCheck[OpName]; 2405 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2406 2407 if (InVal->isLeaf() && 2408 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2409 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2410 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2411 I->error("Operand $" + OpName + "'s register class disagrees" 2412 " between the operand and pattern"); 2413 } 2414 Operands.push_back(Op.Rec); 2415 2416 // Construct the result for the dest-pattern operand list. 2417 TreePatternNode *OpNode = InVal->clone(); 2418 2419 // No predicate is useful on the result. 2420 OpNode->clearPredicateFns(); 2421 2422 // Promote the xform function to be an explicit node if set. 2423 if (Record *Xform = OpNode->getTransformFn()) { 2424 OpNode->setTransformFn(0); 2425 std::vector<TreePatternNode*> Children; 2426 Children.push_back(OpNode); 2427 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2428 } 2429 2430 ResultNodeOperands.push_back(OpNode); 2431 } 2432 2433 if (!InstInputsCheck.empty()) 2434 I->error("Input operand $" + InstInputsCheck.begin()->first + 2435 " occurs in pattern but not in operands list!"); 2436 2437 TreePatternNode *ResultPattern = 2438 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2439 GetNumNodeResults(I->getRecord(), *this)); 2440 // Copy fully inferred output node type to instruction result pattern. 2441 for (unsigned i = 0; i != NumResults; ++i) 2442 ResultPattern->setType(i, Res0Node->getExtType(i)); 2443 2444 // Create and insert the instruction. 2445 // FIXME: InstImpResults should not be part of DAGInstruction. 2446 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2447 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2448 2449 // Use a temporary tree pattern to infer all types and make sure that the 2450 // constructed result is correct. This depends on the instruction already 2451 // being inserted into the Instructions map. 2452 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2453 Temp.InferAllTypes(&I->getNamedNodesMap()); 2454 2455 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2456 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2457 2458 DEBUG(I->dump()); 2459 } 2460 2461 // If we can, convert the instructions to be patterns that are matched! 2462 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2463 Instructions.begin(), 2464 E = Instructions.end(); II != E; ++II) { 2465 DAGInstruction &TheInst = II->second; 2466 const TreePattern *I = TheInst.getPattern(); 2467 if (I == 0) continue; // No pattern. 2468 2469 // FIXME: Assume only the first tree is the pattern. The others are clobber 2470 // nodes. 2471 TreePatternNode *Pattern = I->getTree(0); 2472 TreePatternNode *SrcPattern; 2473 if (Pattern->getOperator()->getName() == "set") { 2474 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2475 } else{ 2476 // Not a set (store or something?) 2477 SrcPattern = Pattern; 2478 } 2479 2480 Record *Instr = II->first; 2481 AddPatternToMatch(I, 2482 PatternToMatch(Instr->getValueAsListInit("Predicates"), 2483 SrcPattern, 2484 TheInst.getResultPattern(), 2485 TheInst.getImpResults(), 2486 Instr->getValueAsInt("AddedComplexity"), 2487 Instr->getID())); 2488 } 2489 } 2490 2491 2492 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2493 2494 static void FindNames(const TreePatternNode *P, 2495 std::map<std::string, NameRecord> &Names, 2496 const TreePattern *PatternTop) { 2497 if (!P->getName().empty()) { 2498 NameRecord &Rec = Names[P->getName()]; 2499 // If this is the first instance of the name, remember the node. 2500 if (Rec.second++ == 0) 2501 Rec.first = P; 2502 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2503 PatternTop->error("repetition of value: $" + P->getName() + 2504 " where different uses have different types!"); 2505 } 2506 2507 if (!P->isLeaf()) { 2508 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2509 FindNames(P->getChild(i), Names, PatternTop); 2510 } 2511 } 2512 2513 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2514 const PatternToMatch &PTM) { 2515 // Do some sanity checking on the pattern we're about to match. 2516 std::string Reason; 2517 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2518 Pattern->error("Pattern can never match: " + Reason); 2519 2520 // If the source pattern's root is a complex pattern, that complex pattern 2521 // must specify the nodes it can potentially match. 2522 if (const ComplexPattern *CP = 2523 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2524 if (CP->getRootNodes().empty()) 2525 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2526 " could match"); 2527 2528 2529 // Find all of the named values in the input and output, ensure they have the 2530 // same type. 2531 std::map<std::string, NameRecord> SrcNames, DstNames; 2532 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2533 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2534 2535 // Scan all of the named values in the destination pattern, rejecting them if 2536 // they don't exist in the input pattern. 2537 for (std::map<std::string, NameRecord>::iterator 2538 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2539 if (SrcNames[I->first].first == 0) 2540 Pattern->error("Pattern has input without matching name in output: $" + 2541 I->first); 2542 } 2543 2544 // Scan all of the named values in the source pattern, rejecting them if the 2545 // name isn't used in the dest, and isn't used to tie two values together. 2546 for (std::map<std::string, NameRecord>::iterator 2547 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2548 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2549 Pattern->error("Pattern has dead named input: $" + I->first); 2550 2551 PatternsToMatch.push_back(PTM); 2552 } 2553 2554 2555 2556 void CodeGenDAGPatterns::InferInstructionFlags() { 2557 const std::vector<const CodeGenInstruction*> &Instructions = 2558 Target.getInstructionsByEnumValue(); 2559 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2560 CodeGenInstruction &InstInfo = 2561 const_cast<CodeGenInstruction &>(*Instructions[i]); 2562 // Determine properties of the instruction from its pattern. 2563 bool MayStore, MayLoad, HasSideEffects, IsVariadic; 2564 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, IsVariadic, 2565 *this); 2566 InstInfo.mayStore = MayStore; 2567 InstInfo.mayLoad = MayLoad; 2568 InstInfo.hasSideEffects = HasSideEffects; 2569 InstInfo.isVariadic = IsVariadic; 2570 } 2571 } 2572 2573 /// Given a pattern result with an unresolved type, see if we can find one 2574 /// instruction with an unresolved result type. Force this result type to an 2575 /// arbitrary element if it's possible types to converge results. 2576 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2577 if (N->isLeaf()) 2578 return false; 2579 2580 // Analyze children. 2581 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2582 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2583 return true; 2584 2585 if (!N->getOperator()->isSubClassOf("Instruction")) 2586 return false; 2587 2588 // If this type is already concrete or completely unknown we can't do 2589 // anything. 2590 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2591 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2592 continue; 2593 2594 // Otherwise, force its type to the first possibility (an arbitrary choice). 2595 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2596 return true; 2597 } 2598 2599 return false; 2600 } 2601 2602 void CodeGenDAGPatterns::ParsePatterns() { 2603 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2604 2605 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2606 Record *CurPattern = Patterns[i]; 2607 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2608 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2609 2610 // Inline pattern fragments into it. 2611 Pattern->InlinePatternFragments(); 2612 2613 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2614 if (LI->getSize() == 0) continue; // no pattern. 2615 2616 // Parse the instruction. 2617 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2618 2619 // Inline pattern fragments into it. 2620 Result->InlinePatternFragments(); 2621 2622 if (Result->getNumTrees() != 1) 2623 Result->error("Cannot handle instructions producing instructions " 2624 "with temporaries yet!"); 2625 2626 bool IterateInference; 2627 bool InferredAllPatternTypes, InferredAllResultTypes; 2628 do { 2629 // Infer as many types as possible. If we cannot infer all of them, we 2630 // can never do anything with this pattern: report it to the user. 2631 InferredAllPatternTypes = 2632 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2633 2634 // Infer as many types as possible. If we cannot infer all of them, we 2635 // can never do anything with this pattern: report it to the user. 2636 InferredAllResultTypes = 2637 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2638 2639 IterateInference = false; 2640 2641 // Apply the type of the result to the source pattern. This helps us 2642 // resolve cases where the input type is known to be a pointer type (which 2643 // is considered resolved), but the result knows it needs to be 32- or 2644 // 64-bits. Infer the other way for good measure. 2645 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2646 Pattern->getTree(0)->getNumTypes()); 2647 i != e; ++i) { 2648 IterateInference = Pattern->getTree(0)-> 2649 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2650 IterateInference |= Result->getTree(0)-> 2651 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2652 } 2653 2654 // If our iteration has converged and the input pattern's types are fully 2655 // resolved but the result pattern is not fully resolved, we may have a 2656 // situation where we have two instructions in the result pattern and 2657 // the instructions require a common register class, but don't care about 2658 // what actual MVT is used. This is actually a bug in our modelling: 2659 // output patterns should have register classes, not MVTs. 2660 // 2661 // In any case, to handle this, we just go through and disambiguate some 2662 // arbitrary types to the result pattern's nodes. 2663 if (!IterateInference && InferredAllPatternTypes && 2664 !InferredAllResultTypes) 2665 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2666 *Result); 2667 } while (IterateInference); 2668 2669 // Verify that we inferred enough types that we can do something with the 2670 // pattern and result. If these fire the user has to add type casts. 2671 if (!InferredAllPatternTypes) 2672 Pattern->error("Could not infer all types in pattern!"); 2673 if (!InferredAllResultTypes) { 2674 Pattern->dump(); 2675 Result->error("Could not infer all types in pattern result!"); 2676 } 2677 2678 // Validate that the input pattern is correct. 2679 std::map<std::string, TreePatternNode*> InstInputs; 2680 std::map<std::string, TreePatternNode*> InstResults; 2681 std::vector<Record*> InstImpResults; 2682 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2683 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2684 InstInputs, InstResults, 2685 InstImpResults); 2686 2687 // Promote the xform function to be an explicit node if set. 2688 TreePatternNode *DstPattern = Result->getOnlyTree(); 2689 std::vector<TreePatternNode*> ResultNodeOperands; 2690 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2691 TreePatternNode *OpNode = DstPattern->getChild(ii); 2692 if (Record *Xform = OpNode->getTransformFn()) { 2693 OpNode->setTransformFn(0); 2694 std::vector<TreePatternNode*> Children; 2695 Children.push_back(OpNode); 2696 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2697 } 2698 ResultNodeOperands.push_back(OpNode); 2699 } 2700 DstPattern = Result->getOnlyTree(); 2701 if (!DstPattern->isLeaf()) 2702 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2703 ResultNodeOperands, 2704 DstPattern->getNumTypes()); 2705 2706 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2707 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2708 2709 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2710 Temp.InferAllTypes(); 2711 2712 2713 AddPatternToMatch(Pattern, 2714 PatternToMatch(CurPattern->getValueAsListInit("Predicates"), 2715 Pattern->getTree(0), 2716 Temp.getOnlyTree(), InstImpResults, 2717 CurPattern->getValueAsInt("AddedComplexity"), 2718 CurPattern->getID())); 2719 } 2720 } 2721 2722 /// CombineChildVariants - Given a bunch of permutations of each child of the 2723 /// 'operator' node, put them together in all possible ways. 2724 static void CombineChildVariants(TreePatternNode *Orig, 2725 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2726 std::vector<TreePatternNode*> &OutVariants, 2727 CodeGenDAGPatterns &CDP, 2728 const MultipleUseVarSet &DepVars) { 2729 // Make sure that each operand has at least one variant to choose from. 2730 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2731 if (ChildVariants[i].empty()) 2732 return; 2733 2734 // The end result is an all-pairs construction of the resultant pattern. 2735 std::vector<unsigned> Idxs; 2736 Idxs.resize(ChildVariants.size()); 2737 bool NotDone; 2738 do { 2739 #ifndef NDEBUG 2740 DEBUG(if (!Idxs.empty()) { 2741 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2742 for (unsigned i = 0; i < Idxs.size(); ++i) { 2743 errs() << Idxs[i] << " "; 2744 } 2745 errs() << "]\n"; 2746 }); 2747 #endif 2748 // Create the variant and add it to the output list. 2749 std::vector<TreePatternNode*> NewChildren; 2750 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2751 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2752 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 2753 Orig->getNumTypes()); 2754 2755 // Copy over properties. 2756 R->setName(Orig->getName()); 2757 R->setPredicateFns(Orig->getPredicateFns()); 2758 R->setTransformFn(Orig->getTransformFn()); 2759 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 2760 R->setType(i, Orig->getExtType(i)); 2761 2762 // If this pattern cannot match, do not include it as a variant. 2763 std::string ErrString; 2764 if (!R->canPatternMatch(ErrString, CDP)) { 2765 delete R; 2766 } else { 2767 bool AlreadyExists = false; 2768 2769 // Scan to see if this pattern has already been emitted. We can get 2770 // duplication due to things like commuting: 2771 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2772 // which are the same pattern. Ignore the dups. 2773 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2774 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2775 AlreadyExists = true; 2776 break; 2777 } 2778 2779 if (AlreadyExists) 2780 delete R; 2781 else 2782 OutVariants.push_back(R); 2783 } 2784 2785 // Increment indices to the next permutation by incrementing the 2786 // indicies from last index backward, e.g., generate the sequence 2787 // [0, 0], [0, 1], [1, 0], [1, 1]. 2788 int IdxsIdx; 2789 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2790 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2791 Idxs[IdxsIdx] = 0; 2792 else 2793 break; 2794 } 2795 NotDone = (IdxsIdx >= 0); 2796 } while (NotDone); 2797 } 2798 2799 /// CombineChildVariants - A helper function for binary operators. 2800 /// 2801 static void CombineChildVariants(TreePatternNode *Orig, 2802 const std::vector<TreePatternNode*> &LHS, 2803 const std::vector<TreePatternNode*> &RHS, 2804 std::vector<TreePatternNode*> &OutVariants, 2805 CodeGenDAGPatterns &CDP, 2806 const MultipleUseVarSet &DepVars) { 2807 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2808 ChildVariants.push_back(LHS); 2809 ChildVariants.push_back(RHS); 2810 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2811 } 2812 2813 2814 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2815 std::vector<TreePatternNode *> &Children) { 2816 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 2817 Record *Operator = N->getOperator(); 2818 2819 // Only permit raw nodes. 2820 if (!N->getName().empty() || !N->getPredicateFns().empty() || 2821 N->getTransformFn()) { 2822 Children.push_back(N); 2823 return; 2824 } 2825 2826 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 2827 Children.push_back(N->getChild(0)); 2828 else 2829 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 2830 2831 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 2832 Children.push_back(N->getChild(1)); 2833 else 2834 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 2835 } 2836 2837 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 2838 /// the (potentially recursive) pattern by using algebraic laws. 2839 /// 2840 static void GenerateVariantsOf(TreePatternNode *N, 2841 std::vector<TreePatternNode*> &OutVariants, 2842 CodeGenDAGPatterns &CDP, 2843 const MultipleUseVarSet &DepVars) { 2844 // We cannot permute leaves. 2845 if (N->isLeaf()) { 2846 OutVariants.push_back(N); 2847 return; 2848 } 2849 2850 // Look up interesting info about the node. 2851 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 2852 2853 // If this node is associative, re-associate. 2854 if (NodeInfo.hasProperty(SDNPAssociative)) { 2855 // Re-associate by pulling together all of the linked operators 2856 std::vector<TreePatternNode*> MaximalChildren; 2857 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 2858 2859 // Only handle child sizes of 3. Otherwise we'll end up trying too many 2860 // permutations. 2861 if (MaximalChildren.size() == 3) { 2862 // Find the variants of all of our maximal children. 2863 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 2864 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 2865 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 2866 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 2867 2868 // There are only two ways we can permute the tree: 2869 // (A op B) op C and A op (B op C) 2870 // Within these forms, we can also permute A/B/C. 2871 2872 // Generate legal pair permutations of A/B/C. 2873 std::vector<TreePatternNode*> ABVariants; 2874 std::vector<TreePatternNode*> BAVariants; 2875 std::vector<TreePatternNode*> ACVariants; 2876 std::vector<TreePatternNode*> CAVariants; 2877 std::vector<TreePatternNode*> BCVariants; 2878 std::vector<TreePatternNode*> CBVariants; 2879 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 2880 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 2881 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 2882 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 2883 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 2884 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 2885 2886 // Combine those into the result: (x op x) op x 2887 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 2888 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 2889 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 2890 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 2891 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 2892 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 2893 2894 // Combine those into the result: x op (x op x) 2895 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 2896 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 2897 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 2898 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 2899 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 2900 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 2901 return; 2902 } 2903 } 2904 2905 // Compute permutations of all children. 2906 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2907 ChildVariants.resize(N->getNumChildren()); 2908 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2909 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 2910 2911 // Build all permutations based on how the children were formed. 2912 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 2913 2914 // If this node is commutative, consider the commuted order. 2915 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 2916 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2917 assert((N->getNumChildren()==2 || isCommIntrinsic) && 2918 "Commutative but doesn't have 2 children!"); 2919 // Don't count children which are actually register references. 2920 unsigned NC = 0; 2921 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2922 TreePatternNode *Child = N->getChild(i); 2923 if (Child->isLeaf()) 2924 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 2925 Record *RR = DI->getDef(); 2926 if (RR->isSubClassOf("Register")) 2927 continue; 2928 } 2929 NC++; 2930 } 2931 // Consider the commuted order. 2932 if (isCommIntrinsic) { 2933 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 2934 // operands are the commutative operands, and there might be more operands 2935 // after those. 2936 assert(NC >= 3 && 2937 "Commutative intrinsic should have at least 3 childrean!"); 2938 std::vector<std::vector<TreePatternNode*> > Variants; 2939 Variants.push_back(ChildVariants[0]); // Intrinsic id. 2940 Variants.push_back(ChildVariants[2]); 2941 Variants.push_back(ChildVariants[1]); 2942 for (unsigned i = 3; i != NC; ++i) 2943 Variants.push_back(ChildVariants[i]); 2944 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 2945 } else if (NC == 2) 2946 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 2947 OutVariants, CDP, DepVars); 2948 } 2949 } 2950 2951 2952 // GenerateVariants - Generate variants. For example, commutative patterns can 2953 // match multiple ways. Add them to PatternsToMatch as well. 2954 void CodeGenDAGPatterns::GenerateVariants() { 2955 DEBUG(errs() << "Generating instruction variants.\n"); 2956 2957 // Loop over all of the patterns we've collected, checking to see if we can 2958 // generate variants of the instruction, through the exploitation of 2959 // identities. This permits the target to provide aggressive matching without 2960 // the .td file having to contain tons of variants of instructions. 2961 // 2962 // Note that this loop adds new patterns to the PatternsToMatch list, but we 2963 // intentionally do not reconsider these. Any variants of added patterns have 2964 // already been added. 2965 // 2966 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 2967 MultipleUseVarSet DepVars; 2968 std::vector<TreePatternNode*> Variants; 2969 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 2970 DEBUG(errs() << "Dependent/multiply used variables: "); 2971 DEBUG(DumpDepVars(DepVars)); 2972 DEBUG(errs() << "\n"); 2973 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); 2974 2975 assert(!Variants.empty() && "Must create at least original variant!"); 2976 Variants.erase(Variants.begin()); // Remove the original pattern. 2977 2978 if (Variants.empty()) // No variants for this pattern. 2979 continue; 2980 2981 DEBUG(errs() << "FOUND VARIANTS OF: "; 2982 PatternsToMatch[i].getSrcPattern()->dump(); 2983 errs() << "\n"); 2984 2985 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 2986 TreePatternNode *Variant = Variants[v]; 2987 2988 DEBUG(errs() << " VAR#" << v << ": "; 2989 Variant->dump(); 2990 errs() << "\n"); 2991 2992 // Scan to see if an instruction or explicit pattern already matches this. 2993 bool AlreadyExists = false; 2994 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 2995 // Skip if the top level predicates do not match. 2996 if (PatternsToMatch[i].getPredicates() != 2997 PatternsToMatch[p].getPredicates()) 2998 continue; 2999 // Check to see if this variant already exists. 3000 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { 3001 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3002 AlreadyExists = true; 3003 break; 3004 } 3005 } 3006 // If we already have it, ignore the variant. 3007 if (AlreadyExists) continue; 3008 3009 // Otherwise, add it to the list of patterns we have. 3010 PatternsToMatch. 3011 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), 3012 Variant, PatternsToMatch[i].getDstPattern(), 3013 PatternsToMatch[i].getDstRegs(), 3014 PatternsToMatch[i].getAddedComplexity(), 3015 Record::getNewUID())); 3016 } 3017 3018 DEBUG(errs() << "\n"); 3019 } 3020 } 3021 3022