1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/TableGen/Error.h" 26 #include "llvm/TableGen/Record.h" 27 #include <algorithm> 28 #include <cstdio> 29 #include <set> 30 using namespace llvm; 31 32 #define DEBUG_TYPE "dag-patterns" 33 34 static inline bool isIntegerOrPtr(MVT VT) { 35 return VT.isInteger() || VT == MVT::iPTR; 36 } 37 static inline bool isFloatingPoint(MVT VT) { 38 return VT.isFloatingPoint(); 39 } 40 static inline bool isVector(MVT VT) { 41 return VT.isVector(); 42 } 43 static inline bool isScalar(MVT VT) { 44 return !VT.isVector(); 45 } 46 47 template <typename Predicate> 48 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 49 bool Erased = false; 50 // It is ok to iterate over MachineValueTypeSet and remove elements from it 51 // at the same time. 52 for (MVT T : S) { 53 if (!P(T)) 54 continue; 55 Erased = true; 56 S.erase(T); 57 } 58 return Erased; 59 } 60 61 // --- TypeSetByHwMode 62 63 // This is a parameterized type-set class. For each mode there is a list 64 // of types that are currently possible for a given tree node. Type 65 // inference will apply to each mode separately. 66 67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 68 for (const ValueTypeByHwMode &VVT : VTList) 69 insert(VVT); 70 } 71 72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 73 for (const auto &I : *this) { 74 if (I.second.size() > 1) 75 return false; 76 if (!AllowEmpty && I.second.empty()) 77 return false; 78 } 79 return true; 80 } 81 82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 83 assert(isValueTypeByHwMode(true) && 84 "The type set has multiple types for at least one HW mode"); 85 ValueTypeByHwMode VVT; 86 for (const auto &I : *this) { 87 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 88 VVT.getOrCreateTypeForMode(I.first, T); 89 } 90 return VVT; 91 } 92 93 bool TypeSetByHwMode::isPossible() const { 94 for (const auto &I : *this) 95 if (!I.second.empty()) 96 return true; 97 return false; 98 } 99 100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 101 bool Changed = false; 102 SmallDenseSet<unsigned, 4> Modes; 103 for (const auto &P : VVT) { 104 unsigned M = P.first; 105 Modes.insert(M); 106 // Make sure there exists a set for each specific mode from VVT. 107 Changed |= getOrCreate(M).insert(P.second).second; 108 } 109 110 // If VVT has a default mode, add the corresponding type to all 111 // modes in "this" that do not exist in VVT. 112 if (Modes.count(DefaultMode)) { 113 MVT DT = VVT.getType(DefaultMode); 114 for (auto &I : *this) 115 if (!Modes.count(I.first)) 116 Changed |= I.second.insert(DT).second; 117 } 118 return Changed; 119 } 120 121 // Constrain the type set to be the intersection with VTS. 122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 123 bool Changed = false; 124 if (hasDefault()) { 125 for (const auto &I : VTS) { 126 unsigned M = I.first; 127 if (M == DefaultMode || hasMode(M)) 128 continue; 129 Map.insert({M, Map.at(DefaultMode)}); 130 Changed = true; 131 } 132 } 133 134 for (auto &I : *this) { 135 unsigned M = I.first; 136 SetType &S = I.second; 137 if (VTS.hasMode(M) || VTS.hasDefault()) { 138 Changed |= intersect(I.second, VTS.get(M)); 139 } else if (!S.empty()) { 140 S.clear(); 141 Changed = true; 142 } 143 } 144 return Changed; 145 } 146 147 template <typename Predicate> 148 bool TypeSetByHwMode::constrain(Predicate P) { 149 bool Changed = false; 150 for (auto &I : *this) 151 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 152 return Changed; 153 } 154 155 template <typename Predicate> 156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 157 assert(empty()); 158 for (const auto &I : VTS) { 159 SetType &S = getOrCreate(I.first); 160 for (auto J : I.second) 161 if (P(J)) 162 S.insert(J); 163 } 164 return !empty(); 165 } 166 167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 168 SmallVector<unsigned, 4> Modes; 169 Modes.reserve(Map.size()); 170 171 for (const auto &I : *this) 172 Modes.push_back(I.first); 173 if (Modes.empty()) { 174 OS << "{}"; 175 return; 176 } 177 array_pod_sort(Modes.begin(), Modes.end()); 178 179 OS << '{'; 180 for (unsigned M : Modes) { 181 OS << ' ' << getModeName(M) << ':'; 182 writeToStream(get(M), OS); 183 } 184 OS << " }"; 185 } 186 187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 188 SmallVector<MVT, 4> Types(S.begin(), S.end()); 189 array_pod_sort(Types.begin(), Types.end()); 190 191 OS << '['; 192 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 193 OS << ValueTypeByHwMode::getMVTName(Types[i]); 194 if (i != e-1) 195 OS << ' '; 196 } 197 OS << ']'; 198 } 199 200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 201 bool HaveDefault = hasDefault(); 202 if (HaveDefault != VTS.hasDefault()) 203 return false; 204 205 if (isSimple()) { 206 if (VTS.isSimple()) 207 return *begin() == *VTS.begin(); 208 return false; 209 } 210 211 SmallDenseSet<unsigned, 4> Modes; 212 for (auto &I : *this) 213 Modes.insert(I.first); 214 for (const auto &I : VTS) 215 Modes.insert(I.first); 216 217 if (HaveDefault) { 218 // Both sets have default mode. 219 for (unsigned M : Modes) { 220 if (get(M) != VTS.get(M)) 221 return false; 222 } 223 } else { 224 // Neither set has default mode. 225 for (unsigned M : Modes) { 226 // If there is no default mode, an empty set is equivalent to not having 227 // the corresponding mode. 228 bool NoModeThis = !hasMode(M) || get(M).empty(); 229 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 230 if (NoModeThis != NoModeVTS) 231 return false; 232 if (!NoModeThis) 233 if (get(M) != VTS.get(M)) 234 return false; 235 } 236 } 237 238 return true; 239 } 240 241 namespace llvm { 242 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 243 T.writeToStream(OS); 244 return OS; 245 } 246 } 247 248 LLVM_DUMP_METHOD 249 void TypeSetByHwMode::dump() const { 250 dbgs() << *this << '\n'; 251 } 252 253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 254 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 255 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 256 257 if (OutP == InP) 258 return berase_if(Out, Int); 259 260 // Compute the intersection of scalars separately to account for only 261 // one set containing iPTR. 262 // The itersection of iPTR with a set of integer scalar types that does not 263 // include iPTR will result in the most specific scalar type: 264 // - iPTR is more specific than any set with two elements or more 265 // - iPTR is less specific than any single integer scalar type. 266 // For example 267 // { iPTR } * { i32 } -> { i32 } 268 // { iPTR } * { i32 i64 } -> { iPTR } 269 // and 270 // { iPTR i32 } * { i32 } -> { i32 } 271 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 272 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 273 274 // Compute the difference between the two sets in such a way that the 275 // iPTR is in the set that is being subtracted. This is to see if there 276 // are any extra scalars in the set without iPTR that are not in the 277 // set containing iPTR. Then the iPTR could be considered a "wildcard" 278 // matching these scalars. If there is only one such scalar, it would 279 // replace the iPTR, if there are more, the iPTR would be retained. 280 SetType Diff; 281 if (InP) { 282 Diff = Out; 283 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 284 // Pre-remove these elements and rely only on InP/OutP to determine 285 // whether a change has been made. 286 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 287 } else { 288 Diff = In; 289 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 290 Out.erase(MVT::iPTR); 291 } 292 293 // The actual intersection. 294 bool Changed = berase_if(Out, Int); 295 unsigned NumD = Diff.size(); 296 if (NumD == 0) 297 return Changed; 298 299 if (NumD == 1) { 300 Out.insert(*Diff.begin()); 301 // This is a change only if Out was the one with iPTR (which is now 302 // being replaced). 303 Changed |= OutP; 304 } else { 305 // Multiple elements from Out are now replaced with iPTR. 306 Out.insert(MVT::iPTR); 307 Changed |= !OutP; 308 } 309 return Changed; 310 } 311 312 void TypeSetByHwMode::validate() const { 313 #ifndef NDEBUG 314 if (empty()) 315 return; 316 bool AllEmpty = true; 317 for (const auto &I : *this) 318 AllEmpty &= I.second.empty(); 319 assert(!AllEmpty && 320 "type set is empty for each HW mode: type contradiction?"); 321 #endif 322 } 323 324 // --- TypeInfer 325 326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 327 const TypeSetByHwMode &In) { 328 ValidateOnExit _1(Out); 329 In.validate(); 330 if (In.empty() || Out == In || TP.hasError()) 331 return false; 332 if (Out.empty()) { 333 Out = In; 334 return true; 335 } 336 337 bool Changed = Out.constrain(In); 338 if (Changed && Out.empty()) 339 TP.error("Type contradiction"); 340 341 return Changed; 342 } 343 344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 345 ValidateOnExit _1(Out); 346 if (TP.hasError()) 347 return false; 348 assert(!Out.empty() && "cannot pick from an empty set"); 349 350 bool Changed = false; 351 for (auto &I : Out) { 352 TypeSetByHwMode::SetType &S = I.second; 353 if (S.size() <= 1) 354 continue; 355 MVT T = *S.begin(); // Pick the first element. 356 S.clear(); 357 S.insert(T); 358 Changed = true; 359 } 360 return Changed; 361 } 362 363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 364 ValidateOnExit _1(Out); 365 if (TP.hasError()) 366 return false; 367 if (!Out.empty()) 368 return Out.constrain(isIntegerOrPtr); 369 370 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 371 } 372 373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 374 ValidateOnExit _1(Out); 375 if (TP.hasError()) 376 return false; 377 if (!Out.empty()) 378 return Out.constrain(isFloatingPoint); 379 380 return Out.assign_if(getLegalTypes(), isFloatingPoint); 381 } 382 383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 384 ValidateOnExit _1(Out); 385 if (TP.hasError()) 386 return false; 387 if (!Out.empty()) 388 return Out.constrain(isScalar); 389 390 return Out.assign_if(getLegalTypes(), isScalar); 391 } 392 393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 394 ValidateOnExit _1(Out); 395 if (TP.hasError()) 396 return false; 397 if (!Out.empty()) 398 return Out.constrain(isVector); 399 400 return Out.assign_if(getLegalTypes(), isVector); 401 } 402 403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 404 ValidateOnExit _1(Out); 405 if (TP.hasError() || !Out.empty()) 406 return false; 407 408 Out = getLegalTypes(); 409 return true; 410 } 411 412 template <typename Iter, typename Pred, typename Less> 413 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 414 if (B == E) 415 return E; 416 Iter Min = E; 417 for (Iter I = B; I != E; ++I) { 418 if (!P(*I)) 419 continue; 420 if (Min == E || L(*I, *Min)) 421 Min = I; 422 } 423 return Min; 424 } 425 426 template <typename Iter, typename Pred, typename Less> 427 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 428 if (B == E) 429 return E; 430 Iter Max = E; 431 for (Iter I = B; I != E; ++I) { 432 if (!P(*I)) 433 continue; 434 if (Max == E || L(*Max, *I)) 435 Max = I; 436 } 437 return Max; 438 } 439 440 /// Make sure that for each type in Small, there exists a larger type in Big. 441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 442 TypeSetByHwMode &Big) { 443 ValidateOnExit _1(Small), _2(Big); 444 if (TP.hasError()) 445 return false; 446 bool Changed = false; 447 448 if (Small.empty()) 449 Changed |= EnforceAny(Small); 450 if (Big.empty()) 451 Changed |= EnforceAny(Big); 452 453 assert(Small.hasDefault() && Big.hasDefault()); 454 455 std::vector<unsigned> Modes = union_modes(Small, Big); 456 457 // 1. Only allow integer or floating point types and make sure that 458 // both sides are both integer or both floating point. 459 // 2. Make sure that either both sides have vector types, or neither 460 // of them does. 461 for (unsigned M : Modes) { 462 TypeSetByHwMode::SetType &S = Small.get(M); 463 TypeSetByHwMode::SetType &B = Big.get(M); 464 465 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 466 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 467 Changed |= berase_if(S, NotInt) | 468 berase_if(B, NotInt); 469 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 470 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 471 Changed |= berase_if(S, NotFP) | 472 berase_if(B, NotFP); 473 } else if (S.empty() || B.empty()) { 474 Changed = !S.empty() || !B.empty(); 475 S.clear(); 476 B.clear(); 477 } else { 478 TP.error("Incompatible types"); 479 return Changed; 480 } 481 482 if (none_of(S, isVector) || none_of(B, isVector)) { 483 Changed |= berase_if(S, isVector) | 484 berase_if(B, isVector); 485 } 486 } 487 488 auto LT = [](MVT A, MVT B) -> bool { 489 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 490 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 491 A.getSizeInBits() < B.getSizeInBits()); 492 }; 493 auto LE = [](MVT A, MVT B) -> bool { 494 // This function is used when removing elements: when a vector is compared 495 // to a non-vector, it should return false (to avoid removal). 496 if (A.isVector() != B.isVector()) 497 return false; 498 499 // Note on the < comparison below: 500 // X86 has patterns like 501 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))), 502 // where the truncated vector is given a type v16i8, while the source 503 // vector has type v4i32. They both have the same size in bits. 504 // The minimal type in the result is obviously v16i8, and when we remove 505 // all types from the source that are smaller-or-equal than v8i16, the 506 // only source type would also be removed (since it's equal in size). 507 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() || 508 A.getSizeInBits() < B.getSizeInBits(); 509 }; 510 511 for (unsigned M : Modes) { 512 TypeSetByHwMode::SetType &S = Small.get(M); 513 TypeSetByHwMode::SetType &B = Big.get(M); 514 // MinS = min scalar in Small, remove all scalars from Big that are 515 // smaller-or-equal than MinS. 516 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 517 if (MinS != S.end()) 518 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 519 520 // MaxS = max scalar in Big, remove all scalars from Small that are 521 // larger than MaxS. 522 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 523 if (MaxS != B.end()) 524 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 525 526 // MinV = min vector in Small, remove all vectors from Big that are 527 // smaller-or-equal than MinV. 528 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 529 if (MinV != S.end()) 530 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 531 532 // MaxV = max vector in Big, remove all vectors from Small that are 533 // larger than MaxV. 534 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 535 if (MaxV != B.end()) 536 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 537 } 538 539 return Changed; 540 } 541 542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 543 /// for each type U in Elem, U is a scalar type. 544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 545 /// type T in Vec, such that U is the element type of T. 546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 547 TypeSetByHwMode &Elem) { 548 ValidateOnExit _1(Vec), _2(Elem); 549 if (TP.hasError()) 550 return false; 551 bool Changed = false; 552 553 if (Vec.empty()) 554 Changed |= EnforceVector(Vec); 555 if (Elem.empty()) 556 Changed |= EnforceScalar(Elem); 557 558 for (unsigned M : union_modes(Vec, Elem)) { 559 TypeSetByHwMode::SetType &V = Vec.get(M); 560 TypeSetByHwMode::SetType &E = Elem.get(M); 561 562 Changed |= berase_if(V, isScalar); // Scalar = !vector 563 Changed |= berase_if(E, isVector); // Vector = !scalar 564 assert(!V.empty() && !E.empty()); 565 566 SmallSet<MVT,4> VT, ST; 567 // Collect element types from the "vector" set. 568 for (MVT T : V) 569 VT.insert(T.getVectorElementType()); 570 // Collect scalar types from the "element" set. 571 for (MVT T : E) 572 ST.insert(T); 573 574 // Remove from V all (vector) types whose element type is not in S. 575 Changed |= berase_if(V, [&ST](MVT T) -> bool { 576 return !ST.count(T.getVectorElementType()); 577 }); 578 // Remove from E all (scalar) types, for which there is no corresponding 579 // type in V. 580 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 581 } 582 583 return Changed; 584 } 585 586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 587 const ValueTypeByHwMode &VVT) { 588 TypeSetByHwMode Tmp(VVT); 589 ValidateOnExit _1(Vec), _2(Tmp); 590 return EnforceVectorEltTypeIs(Vec, Tmp); 591 } 592 593 /// Ensure that for each type T in Sub, T is a vector type, and there 594 /// exists a type U in Vec such that U is a vector type with the same 595 /// element type as T and at least as many elements as T. 596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 597 TypeSetByHwMode &Sub) { 598 ValidateOnExit _1(Vec), _2(Sub); 599 if (TP.hasError()) 600 return false; 601 602 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 603 auto IsSubVec = [](MVT B, MVT P) -> bool { 604 if (!B.isVector() || !P.isVector()) 605 return false; 606 if (B.getVectorElementType() != P.getVectorElementType()) 607 return false; 608 return B.getVectorNumElements() < P.getVectorNumElements(); 609 }; 610 611 /// Return true if S has no element (vector type) that T is a sub-vector of, 612 /// i.e. has the same element type as T and more elements. 613 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 614 for (const auto &I : S) 615 if (IsSubVec(T, I)) 616 return false; 617 return true; 618 }; 619 620 /// Return true if S has no element (vector type) that T is a super-vector 621 /// of, i.e. has the same element type as T and fewer elements. 622 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 623 for (const auto &I : S) 624 if (IsSubVec(I, T)) 625 return false; 626 return true; 627 }; 628 629 bool Changed = false; 630 631 if (Vec.empty()) 632 Changed |= EnforceVector(Vec); 633 if (Sub.empty()) 634 Changed |= EnforceVector(Sub); 635 636 for (unsigned M : union_modes(Vec, Sub)) { 637 TypeSetByHwMode::SetType &S = Sub.get(M); 638 TypeSetByHwMode::SetType &V = Vec.get(M); 639 640 Changed |= berase_if(S, isScalar); 641 642 // Erase all types from S that are not sub-vectors of a type in V. 643 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 644 645 // Erase all types from V that are not super-vectors of a type in S. 646 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 647 } 648 649 return Changed; 650 } 651 652 /// 1. Ensure that V has a scalar type iff W has a scalar type. 653 /// 2. Ensure that for each vector type T in V, there exists a vector 654 /// type U in W, such that T and U have the same number of elements. 655 /// 3. Ensure that for each vector type U in W, there exists a vector 656 /// type T in V, such that T and U have the same number of elements 657 /// (reverse of 2). 658 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 659 ValidateOnExit _1(V), _2(W); 660 if (TP.hasError()) 661 return false; 662 663 bool Changed = false; 664 if (V.empty()) 665 Changed |= EnforceAny(V); 666 if (W.empty()) 667 Changed |= EnforceAny(W); 668 669 // An actual vector type cannot have 0 elements, so we can treat scalars 670 // as zero-length vectors. This way both vectors and scalars can be 671 // processed identically. 672 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 673 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 674 }; 675 676 for (unsigned M : union_modes(V, W)) { 677 TypeSetByHwMode::SetType &VS = V.get(M); 678 TypeSetByHwMode::SetType &WS = W.get(M); 679 680 SmallSet<unsigned,2> VN, WN; 681 for (MVT T : VS) 682 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 683 for (MVT T : WS) 684 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 685 686 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 687 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 688 } 689 return Changed; 690 } 691 692 /// 1. Ensure that for each type T in A, there exists a type U in B, 693 /// such that T and U have equal size in bits. 694 /// 2. Ensure that for each type U in B, there exists a type T in A 695 /// such that T and U have equal size in bits (reverse of 1). 696 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 697 ValidateOnExit _1(A), _2(B); 698 if (TP.hasError()) 699 return false; 700 bool Changed = false; 701 if (A.empty()) 702 Changed |= EnforceAny(A); 703 if (B.empty()) 704 Changed |= EnforceAny(B); 705 706 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 707 return !Sizes.count(T.getSizeInBits()); 708 }; 709 710 for (unsigned M : union_modes(A, B)) { 711 TypeSetByHwMode::SetType &AS = A.get(M); 712 TypeSetByHwMode::SetType &BS = B.get(M); 713 SmallSet<unsigned,2> AN, BN; 714 715 for (MVT T : AS) 716 AN.insert(T.getSizeInBits()); 717 for (MVT T : BS) 718 BN.insert(T.getSizeInBits()); 719 720 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 721 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 722 } 723 724 return Changed; 725 } 726 727 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 728 ValidateOnExit _1(VTS); 729 TypeSetByHwMode Legal = getLegalTypes(); 730 bool HaveLegalDef = Legal.hasDefault(); 731 732 for (auto &I : VTS) { 733 unsigned M = I.first; 734 if (!Legal.hasMode(M) && !HaveLegalDef) { 735 TP.error("Invalid mode " + Twine(M)); 736 return; 737 } 738 expandOverloads(I.second, Legal.get(M)); 739 } 740 } 741 742 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 743 const TypeSetByHwMode::SetType &Legal) { 744 std::set<MVT> Ovs; 745 for (MVT T : Out) { 746 if (!T.isOverloaded()) 747 continue; 748 749 Ovs.insert(T); 750 // MachineValueTypeSet allows iteration and erasing. 751 Out.erase(T); 752 } 753 754 for (MVT Ov : Ovs) { 755 switch (Ov.SimpleTy) { 756 case MVT::iPTRAny: 757 Out.insert(MVT::iPTR); 758 return; 759 case MVT::iAny: 760 for (MVT T : MVT::integer_valuetypes()) 761 if (Legal.count(T)) 762 Out.insert(T); 763 for (MVT T : MVT::integer_vector_valuetypes()) 764 if (Legal.count(T)) 765 Out.insert(T); 766 return; 767 case MVT::fAny: 768 for (MVT T : MVT::fp_valuetypes()) 769 if (Legal.count(T)) 770 Out.insert(T); 771 for (MVT T : MVT::fp_vector_valuetypes()) 772 if (Legal.count(T)) 773 Out.insert(T); 774 return; 775 case MVT::vAny: 776 for (MVT T : MVT::vector_valuetypes()) 777 if (Legal.count(T)) 778 Out.insert(T); 779 return; 780 case MVT::Any: 781 for (MVT T : MVT::all_valuetypes()) 782 if (Legal.count(T)) 783 Out.insert(T); 784 return; 785 default: 786 break; 787 } 788 } 789 } 790 791 TypeSetByHwMode TypeInfer::getLegalTypes() { 792 if (!LegalTypesCached) { 793 // Stuff all types from all modes into the default mode. 794 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 795 for (const auto &I : LTS) 796 LegalCache.insert(I.second); 797 LegalTypesCached = true; 798 } 799 TypeSetByHwMode VTS; 800 VTS.getOrCreate(DefaultMode) = LegalCache; 801 return VTS; 802 } 803 804 //===----------------------------------------------------------------------===// 805 // TreePredicateFn Implementation 806 //===----------------------------------------------------------------------===// 807 808 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 809 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 810 assert( 811 (!hasPredCode() || !hasImmCode()) && 812 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 813 } 814 815 bool TreePredicateFn::hasPredCode() const { 816 return isLoad() || isStore() || 817 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 818 } 819 820 std::string TreePredicateFn::getPredCode() const { 821 std::string Code = ""; 822 823 if (!isLoad() && !isStore()) { 824 if (isUnindexed()) 825 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 826 "IsUnindexed requires IsLoad or IsStore"); 827 828 Record *MemoryVT = getMemoryVT(); 829 Record *ScalarMemoryVT = getScalarMemoryVT(); 830 831 if (MemoryVT) 832 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 833 "MemoryVT requires IsLoad or IsStore"); 834 if (ScalarMemoryVT) 835 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 836 "ScalarMemoryVT requires IsLoad or IsStore"); 837 } 838 839 if (isLoad() && isStore()) 840 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 841 "IsLoad and IsStore are mutually exclusive"); 842 843 if (isLoad()) { 844 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 845 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 846 getScalarMemoryVT() == nullptr) 847 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 848 "IsLoad cannot be used by itself"); 849 } else { 850 if (isNonExtLoad()) 851 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 852 "IsNonExtLoad requires IsLoad"); 853 if (isAnyExtLoad()) 854 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 855 "IsAnyExtLoad requires IsLoad"); 856 if (isSignExtLoad()) 857 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 858 "IsSignExtLoad requires IsLoad"); 859 if (isZeroExtLoad()) 860 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 861 "IsZeroExtLoad requires IsLoad"); 862 } 863 864 if (isStore()) { 865 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 866 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 867 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 868 "IsStore cannot be used by itself"); 869 } else { 870 if (isNonTruncStore()) 871 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 872 "IsNonTruncStore requires IsStore"); 873 if (isTruncStore()) 874 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 875 "IsTruncStore requires IsStore"); 876 } 877 878 if (isLoad() || isStore()) { 879 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 880 881 if (isUnindexed()) 882 Code += ("if (cast<" + SDNodeName + 883 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 884 "return false;\n") 885 .str(); 886 887 if (isLoad()) { 888 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 889 isZeroExtLoad()) > 1) 890 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 891 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 892 "IsZeroExtLoad are mutually exclusive"); 893 if (isNonExtLoad()) 894 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 895 "ISD::NON_EXTLOAD) return false;\n"; 896 if (isAnyExtLoad()) 897 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 898 "return false;\n"; 899 if (isSignExtLoad()) 900 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 901 "return false;\n"; 902 if (isZeroExtLoad()) 903 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 904 "return false;\n"; 905 } else { 906 if ((isNonTruncStore() + isTruncStore()) > 1) 907 PrintFatalError( 908 getOrigPatFragRecord()->getRecord()->getLoc(), 909 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 910 if (isNonTruncStore()) 911 Code += 912 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 913 if (isTruncStore()) 914 Code += 915 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 916 } 917 918 Record *MemoryVT = getMemoryVT(); 919 Record *ScalarMemoryVT = getScalarMemoryVT(); 920 921 if (MemoryVT) 922 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" + 923 MemoryVT->getName() + ") return false;\n") 924 .str(); 925 if (ScalarMemoryVT) 926 Code += ("if (cast<" + SDNodeName + 927 ">(N)->getMemoryVT().getScalarType() != MVT::" + 928 ScalarMemoryVT->getName() + ") return false;\n") 929 .str(); 930 } 931 932 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 933 934 Code += PredicateCode; 935 936 if (PredicateCode.empty() && !Code.empty()) 937 Code += "return true;\n"; 938 939 return Code; 940 } 941 942 bool TreePredicateFn::hasImmCode() const { 943 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 944 } 945 946 std::string TreePredicateFn::getImmCode() const { 947 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 948 } 949 950 bool TreePredicateFn::immCodeUsesAPInt() const { 951 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 952 } 953 954 bool TreePredicateFn::immCodeUsesAPFloat() const { 955 bool Unset; 956 // The return value will be false when IsAPFloat is unset. 957 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 958 Unset); 959 } 960 961 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 962 bool Value) const { 963 bool Unset; 964 bool Result = 965 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 966 if (Unset) 967 return false; 968 return Result == Value; 969 } 970 bool TreePredicateFn::isLoad() const { 971 return isPredefinedPredicateEqualTo("IsLoad", true); 972 } 973 bool TreePredicateFn::isStore() const { 974 return isPredefinedPredicateEqualTo("IsStore", true); 975 } 976 bool TreePredicateFn::isUnindexed() const { 977 return isPredefinedPredicateEqualTo("IsUnindexed", true); 978 } 979 bool TreePredicateFn::isNonExtLoad() const { 980 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 981 } 982 bool TreePredicateFn::isAnyExtLoad() const { 983 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 984 } 985 bool TreePredicateFn::isSignExtLoad() const { 986 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 987 } 988 bool TreePredicateFn::isZeroExtLoad() const { 989 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 990 } 991 bool TreePredicateFn::isNonTruncStore() const { 992 return isPredefinedPredicateEqualTo("IsTruncStore", false); 993 } 994 bool TreePredicateFn::isTruncStore() const { 995 return isPredefinedPredicateEqualTo("IsTruncStore", true); 996 } 997 Record *TreePredicateFn::getMemoryVT() const { 998 Record *R = getOrigPatFragRecord()->getRecord(); 999 if (R->isValueUnset("MemoryVT")) 1000 return nullptr; 1001 return R->getValueAsDef("MemoryVT"); 1002 } 1003 Record *TreePredicateFn::getScalarMemoryVT() const { 1004 Record *R = getOrigPatFragRecord()->getRecord(); 1005 if (R->isValueUnset("ScalarMemoryVT")) 1006 return nullptr; 1007 return R->getValueAsDef("ScalarMemoryVT"); 1008 } 1009 1010 StringRef TreePredicateFn::getImmType() const { 1011 if (immCodeUsesAPInt()) 1012 return "const APInt &"; 1013 if (immCodeUsesAPFloat()) 1014 return "const APFloat &"; 1015 return "int64_t"; 1016 } 1017 1018 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1019 if (immCodeUsesAPInt()) 1020 return "APInt"; 1021 else if (immCodeUsesAPFloat()) 1022 return "APFloat"; 1023 return "I64"; 1024 } 1025 1026 /// isAlwaysTrue - Return true if this is a noop predicate. 1027 bool TreePredicateFn::isAlwaysTrue() const { 1028 return !hasPredCode() && !hasImmCode(); 1029 } 1030 1031 /// Return the name to use in the generated code to reference this, this is 1032 /// "Predicate_foo" if from a pattern fragment "foo". 1033 std::string TreePredicateFn::getFnName() const { 1034 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1035 } 1036 1037 /// getCodeToRunOnSDNode - Return the code for the function body that 1038 /// evaluates this predicate. The argument is expected to be in "Node", 1039 /// not N. This handles casting and conversion to a concrete node type as 1040 /// appropriate. 1041 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1042 // Handle immediate predicates first. 1043 std::string ImmCode = getImmCode(); 1044 if (!ImmCode.empty()) { 1045 if (isLoad()) 1046 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1047 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1048 if (isStore()) 1049 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1050 "IsStore cannot be used with ImmLeaf or its subclasses"); 1051 if (isUnindexed()) 1052 PrintFatalError( 1053 getOrigPatFragRecord()->getRecord()->getLoc(), 1054 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1055 if (isNonExtLoad()) 1056 PrintFatalError( 1057 getOrigPatFragRecord()->getRecord()->getLoc(), 1058 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1059 if (isAnyExtLoad()) 1060 PrintFatalError( 1061 getOrigPatFragRecord()->getRecord()->getLoc(), 1062 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1063 if (isSignExtLoad()) 1064 PrintFatalError( 1065 getOrigPatFragRecord()->getRecord()->getLoc(), 1066 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1067 if (isZeroExtLoad()) 1068 PrintFatalError( 1069 getOrigPatFragRecord()->getRecord()->getLoc(), 1070 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1071 if (isNonTruncStore()) 1072 PrintFatalError( 1073 getOrigPatFragRecord()->getRecord()->getLoc(), 1074 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1075 if (isTruncStore()) 1076 PrintFatalError( 1077 getOrigPatFragRecord()->getRecord()->getLoc(), 1078 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1079 if (getMemoryVT()) 1080 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1081 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1082 if (getScalarMemoryVT()) 1083 PrintFatalError( 1084 getOrigPatFragRecord()->getRecord()->getLoc(), 1085 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1086 1087 std::string Result = (" " + getImmType() + " Imm = ").str(); 1088 if (immCodeUsesAPFloat()) 1089 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1090 else if (immCodeUsesAPInt()) 1091 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1092 else 1093 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1094 return Result + ImmCode; 1095 } 1096 1097 // Handle arbitrary node predicates. 1098 assert(hasPredCode() && "Don't have any predicate code!"); 1099 StringRef ClassName; 1100 if (PatFragRec->getOnlyTree()->isLeaf()) 1101 ClassName = "SDNode"; 1102 else { 1103 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1104 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1105 } 1106 std::string Result; 1107 if (ClassName == "SDNode") 1108 Result = " SDNode *N = Node;\n"; 1109 else 1110 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1111 1112 return Result + getPredCode(); 1113 } 1114 1115 //===----------------------------------------------------------------------===// 1116 // PatternToMatch implementation 1117 // 1118 1119 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1120 /// patterns before small ones. This is used to determine the size of a 1121 /// pattern. 1122 static unsigned getPatternSize(const TreePatternNode *P, 1123 const CodeGenDAGPatterns &CGP) { 1124 unsigned Size = 3; // The node itself. 1125 // If the root node is a ConstantSDNode, increases its size. 1126 // e.g. (set R32:$dst, 0). 1127 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1128 Size += 2; 1129 1130 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1131 Size += AM->getComplexity(); 1132 // We don't want to count any children twice, so return early. 1133 return Size; 1134 } 1135 1136 // If this node has some predicate function that must match, it adds to the 1137 // complexity of this node. 1138 if (!P->getPredicateFns().empty()) 1139 ++Size; 1140 1141 // Count children in the count if they are also nodes. 1142 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1143 const TreePatternNode *Child = P->getChild(i); 1144 if (!Child->isLeaf() && Child->getNumTypes()) { 1145 const TypeSetByHwMode &T0 = Child->getType(0); 1146 // At this point, all variable type sets should be simple, i.e. only 1147 // have a default mode. 1148 if (T0.getMachineValueType() != MVT::Other) { 1149 Size += getPatternSize(Child, CGP); 1150 continue; 1151 } 1152 } 1153 if (Child->isLeaf()) { 1154 if (isa<IntInit>(Child->getLeafValue())) 1155 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1156 else if (Child->getComplexPatternInfo(CGP)) 1157 Size += getPatternSize(Child, CGP); 1158 else if (!Child->getPredicateFns().empty()) 1159 ++Size; 1160 } 1161 } 1162 1163 return Size; 1164 } 1165 1166 /// Compute the complexity metric for the input pattern. This roughly 1167 /// corresponds to the number of nodes that are covered. 1168 int PatternToMatch:: 1169 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1170 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1171 } 1172 1173 /// getPredicateCheck - Return a single string containing all of this 1174 /// pattern's predicates concatenated with "&&" operators. 1175 /// 1176 std::string PatternToMatch::getPredicateCheck() const { 1177 SmallVector<const Predicate*,4> PredList; 1178 for (const Predicate &P : Predicates) 1179 PredList.push_back(&P); 1180 std::sort(PredList.begin(), PredList.end(), deref<llvm::less>()); 1181 1182 std::string Check; 1183 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1184 if (i != 0) 1185 Check += " && "; 1186 Check += '(' + PredList[i]->getCondString() + ')'; 1187 } 1188 return Check; 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // SDTypeConstraint implementation 1193 // 1194 1195 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1196 OperandNo = R->getValueAsInt("OperandNum"); 1197 1198 if (R->isSubClassOf("SDTCisVT")) { 1199 ConstraintType = SDTCisVT; 1200 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1201 for (const auto &P : VVT) 1202 if (P.second == MVT::isVoid) 1203 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1204 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1205 ConstraintType = SDTCisPtrTy; 1206 } else if (R->isSubClassOf("SDTCisInt")) { 1207 ConstraintType = SDTCisInt; 1208 } else if (R->isSubClassOf("SDTCisFP")) { 1209 ConstraintType = SDTCisFP; 1210 } else if (R->isSubClassOf("SDTCisVec")) { 1211 ConstraintType = SDTCisVec; 1212 } else if (R->isSubClassOf("SDTCisSameAs")) { 1213 ConstraintType = SDTCisSameAs; 1214 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1215 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1216 ConstraintType = SDTCisVTSmallerThanOp; 1217 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1218 R->getValueAsInt("OtherOperandNum"); 1219 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1220 ConstraintType = SDTCisOpSmallerThanOp; 1221 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1222 R->getValueAsInt("BigOperandNum"); 1223 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1224 ConstraintType = SDTCisEltOfVec; 1225 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1226 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1227 ConstraintType = SDTCisSubVecOfVec; 1228 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1229 R->getValueAsInt("OtherOpNum"); 1230 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1231 ConstraintType = SDTCVecEltisVT; 1232 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1233 for (const auto &P : VVT) { 1234 MVT T = P.second; 1235 if (T.isVector()) 1236 PrintFatalError(R->getLoc(), 1237 "Cannot use vector type as SDTCVecEltisVT"); 1238 if (!T.isInteger() && !T.isFloatingPoint()) 1239 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1240 "as SDTCVecEltisVT"); 1241 } 1242 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1243 ConstraintType = SDTCisSameNumEltsAs; 1244 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1245 R->getValueAsInt("OtherOperandNum"); 1246 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1247 ConstraintType = SDTCisSameSizeAs; 1248 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1249 R->getValueAsInt("OtherOperandNum"); 1250 } else { 1251 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1252 } 1253 } 1254 1255 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1256 /// N, and the result number in ResNo. 1257 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1258 const SDNodeInfo &NodeInfo, 1259 unsigned &ResNo) { 1260 unsigned NumResults = NodeInfo.getNumResults(); 1261 if (OpNo < NumResults) { 1262 ResNo = OpNo; 1263 return N; 1264 } 1265 1266 OpNo -= NumResults; 1267 1268 if (OpNo >= N->getNumChildren()) { 1269 std::string S; 1270 raw_string_ostream OS(S); 1271 OS << "Invalid operand number in type constraint " 1272 << (OpNo+NumResults) << " "; 1273 N->print(OS); 1274 PrintFatalError(OS.str()); 1275 } 1276 1277 return N->getChild(OpNo); 1278 } 1279 1280 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1281 /// constraint to the nodes operands. This returns true if it makes a 1282 /// change, false otherwise. If a type contradiction is found, flag an error. 1283 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1284 const SDNodeInfo &NodeInfo, 1285 TreePattern &TP) const { 1286 if (TP.hasError()) 1287 return false; 1288 1289 unsigned ResNo = 0; // The result number being referenced. 1290 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1291 TypeInfer &TI = TP.getInfer(); 1292 1293 switch (ConstraintType) { 1294 case SDTCisVT: 1295 // Operand must be a particular type. 1296 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1297 case SDTCisPtrTy: 1298 // Operand must be same as target pointer type. 1299 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1300 case SDTCisInt: 1301 // Require it to be one of the legal integer VTs. 1302 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1303 case SDTCisFP: 1304 // Require it to be one of the legal fp VTs. 1305 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1306 case SDTCisVec: 1307 // Require it to be one of the legal vector VTs. 1308 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1309 case SDTCisSameAs: { 1310 unsigned OResNo = 0; 1311 TreePatternNode *OtherNode = 1312 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1313 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1314 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1315 } 1316 case SDTCisVTSmallerThanOp: { 1317 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1318 // have an integer type that is smaller than the VT. 1319 if (!NodeToApply->isLeaf() || 1320 !isa<DefInit>(NodeToApply->getLeafValue()) || 1321 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1322 ->isSubClassOf("ValueType")) { 1323 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1324 return false; 1325 } 1326 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1327 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1328 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1329 TypeSetByHwMode TypeListTmp(VVT); 1330 1331 unsigned OResNo = 0; 1332 TreePatternNode *OtherNode = 1333 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1334 OResNo); 1335 1336 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1337 } 1338 case SDTCisOpSmallerThanOp: { 1339 unsigned BResNo = 0; 1340 TreePatternNode *BigOperand = 1341 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1342 BResNo); 1343 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1344 BigOperand->getExtType(BResNo)); 1345 } 1346 case SDTCisEltOfVec: { 1347 unsigned VResNo = 0; 1348 TreePatternNode *VecOperand = 1349 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1350 VResNo); 1351 // Filter vector types out of VecOperand that don't have the right element 1352 // type. 1353 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1354 NodeToApply->getExtType(ResNo)); 1355 } 1356 case SDTCisSubVecOfVec: { 1357 unsigned VResNo = 0; 1358 TreePatternNode *BigVecOperand = 1359 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1360 VResNo); 1361 1362 // Filter vector types out of BigVecOperand that don't have the 1363 // right subvector type. 1364 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1365 NodeToApply->getExtType(ResNo)); 1366 } 1367 case SDTCVecEltisVT: { 1368 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1369 } 1370 case SDTCisSameNumEltsAs: { 1371 unsigned OResNo = 0; 1372 TreePatternNode *OtherNode = 1373 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1374 N, NodeInfo, OResNo); 1375 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1376 NodeToApply->getExtType(ResNo)); 1377 } 1378 case SDTCisSameSizeAs: { 1379 unsigned OResNo = 0; 1380 TreePatternNode *OtherNode = 1381 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1382 N, NodeInfo, OResNo); 1383 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1384 NodeToApply->getExtType(ResNo)); 1385 } 1386 } 1387 llvm_unreachable("Invalid ConstraintType!"); 1388 } 1389 1390 // Update the node type to match an instruction operand or result as specified 1391 // in the ins or outs lists on the instruction definition. Return true if the 1392 // type was actually changed. 1393 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1394 Record *Operand, 1395 TreePattern &TP) { 1396 // The 'unknown' operand indicates that types should be inferred from the 1397 // context. 1398 if (Operand->isSubClassOf("unknown_class")) 1399 return false; 1400 1401 // The Operand class specifies a type directly. 1402 if (Operand->isSubClassOf("Operand")) { 1403 Record *R = Operand->getValueAsDef("Type"); 1404 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1405 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1406 } 1407 1408 // PointerLikeRegClass has a type that is determined at runtime. 1409 if (Operand->isSubClassOf("PointerLikeRegClass")) 1410 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1411 1412 // Both RegisterClass and RegisterOperand operands derive their types from a 1413 // register class def. 1414 Record *RC = nullptr; 1415 if (Operand->isSubClassOf("RegisterClass")) 1416 RC = Operand; 1417 else if (Operand->isSubClassOf("RegisterOperand")) 1418 RC = Operand->getValueAsDef("RegClass"); 1419 1420 assert(RC && "Unknown operand type"); 1421 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1422 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1423 } 1424 1425 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1426 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1427 if (!TP.getInfer().isConcrete(Types[i], true)) 1428 return true; 1429 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1430 if (getChild(i)->ContainsUnresolvedType(TP)) 1431 return true; 1432 return false; 1433 } 1434 1435 bool TreePatternNode::hasProperTypeByHwMode() const { 1436 for (const TypeSetByHwMode &S : Types) 1437 if (!S.isDefaultOnly()) 1438 return true; 1439 for (TreePatternNode *C : Children) 1440 if (C->hasProperTypeByHwMode()) 1441 return true; 1442 return false; 1443 } 1444 1445 bool TreePatternNode::hasPossibleType() const { 1446 for (const TypeSetByHwMode &S : Types) 1447 if (!S.isPossible()) 1448 return false; 1449 for (TreePatternNode *C : Children) 1450 if (!C->hasPossibleType()) 1451 return false; 1452 return true; 1453 } 1454 1455 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1456 for (TypeSetByHwMode &S : Types) { 1457 S.makeSimple(Mode); 1458 // Check if the selected mode had a type conflict. 1459 if (S.get(DefaultMode).empty()) 1460 return false; 1461 } 1462 for (TreePatternNode *C : Children) 1463 if (!C->setDefaultMode(Mode)) 1464 return false; 1465 return true; 1466 } 1467 1468 //===----------------------------------------------------------------------===// 1469 // SDNodeInfo implementation 1470 // 1471 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1472 EnumName = R->getValueAsString("Opcode"); 1473 SDClassName = R->getValueAsString("SDClass"); 1474 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1475 NumResults = TypeProfile->getValueAsInt("NumResults"); 1476 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1477 1478 // Parse the properties. 1479 Properties = 0; 1480 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1481 if (Property->getName() == "SDNPCommutative") { 1482 Properties |= 1 << SDNPCommutative; 1483 } else if (Property->getName() == "SDNPAssociative") { 1484 Properties |= 1 << SDNPAssociative; 1485 } else if (Property->getName() == "SDNPHasChain") { 1486 Properties |= 1 << SDNPHasChain; 1487 } else if (Property->getName() == "SDNPOutGlue") { 1488 Properties |= 1 << SDNPOutGlue; 1489 } else if (Property->getName() == "SDNPInGlue") { 1490 Properties |= 1 << SDNPInGlue; 1491 } else if (Property->getName() == "SDNPOptInGlue") { 1492 Properties |= 1 << SDNPOptInGlue; 1493 } else if (Property->getName() == "SDNPMayStore") { 1494 Properties |= 1 << SDNPMayStore; 1495 } else if (Property->getName() == "SDNPMayLoad") { 1496 Properties |= 1 << SDNPMayLoad; 1497 } else if (Property->getName() == "SDNPSideEffect") { 1498 Properties |= 1 << SDNPSideEffect; 1499 } else if (Property->getName() == "SDNPMemOperand") { 1500 Properties |= 1 << SDNPMemOperand; 1501 } else if (Property->getName() == "SDNPVariadic") { 1502 Properties |= 1 << SDNPVariadic; 1503 } else { 1504 PrintFatalError("Unknown SD Node property '" + 1505 Property->getName() + "' on node '" + 1506 R->getName() + "'!"); 1507 } 1508 } 1509 1510 1511 // Parse the type constraints. 1512 std::vector<Record*> ConstraintList = 1513 TypeProfile->getValueAsListOfDefs("Constraints"); 1514 for (Record *R : ConstraintList) 1515 TypeConstraints.emplace_back(R, CGH); 1516 } 1517 1518 /// getKnownType - If the type constraints on this node imply a fixed type 1519 /// (e.g. all stores return void, etc), then return it as an 1520 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1521 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1522 unsigned NumResults = getNumResults(); 1523 assert(NumResults <= 1 && 1524 "We only work with nodes with zero or one result so far!"); 1525 assert(ResNo == 0 && "Only handles single result nodes so far"); 1526 1527 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1528 // Make sure that this applies to the correct node result. 1529 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1530 continue; 1531 1532 switch (Constraint.ConstraintType) { 1533 default: break; 1534 case SDTypeConstraint::SDTCisVT: 1535 if (Constraint.VVT.isSimple()) 1536 return Constraint.VVT.getSimple().SimpleTy; 1537 break; 1538 case SDTypeConstraint::SDTCisPtrTy: 1539 return MVT::iPTR; 1540 } 1541 } 1542 return MVT::Other; 1543 } 1544 1545 //===----------------------------------------------------------------------===// 1546 // TreePatternNode implementation 1547 // 1548 1549 TreePatternNode::~TreePatternNode() { 1550 #if 0 // FIXME: implement refcounted tree nodes! 1551 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1552 delete getChild(i); 1553 #endif 1554 } 1555 1556 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1557 if (Operator->getName() == "set" || 1558 Operator->getName() == "implicit") 1559 return 0; // All return nothing. 1560 1561 if (Operator->isSubClassOf("Intrinsic")) 1562 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1563 1564 if (Operator->isSubClassOf("SDNode")) 1565 return CDP.getSDNodeInfo(Operator).getNumResults(); 1566 1567 if (Operator->isSubClassOf("PatFrag")) { 1568 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1569 // the forward reference case where one pattern fragment references another 1570 // before it is processed. 1571 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1572 return PFRec->getOnlyTree()->getNumTypes(); 1573 1574 // Get the result tree. 1575 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1576 Record *Op = nullptr; 1577 if (Tree) 1578 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1579 Op = DI->getDef(); 1580 assert(Op && "Invalid Fragment"); 1581 return GetNumNodeResults(Op, CDP); 1582 } 1583 1584 if (Operator->isSubClassOf("Instruction")) { 1585 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1586 1587 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1588 1589 // Subtract any defaulted outputs. 1590 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1591 Record *OperandNode = InstInfo.Operands[i].Rec; 1592 1593 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1594 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1595 --NumDefsToAdd; 1596 } 1597 1598 // Add on one implicit def if it has a resolvable type. 1599 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1600 ++NumDefsToAdd; 1601 return NumDefsToAdd; 1602 } 1603 1604 if (Operator->isSubClassOf("SDNodeXForm")) 1605 return 1; // FIXME: Generalize SDNodeXForm 1606 1607 if (Operator->isSubClassOf("ValueType")) 1608 return 1; // A type-cast of one result. 1609 1610 if (Operator->isSubClassOf("ComplexPattern")) 1611 return 1; 1612 1613 errs() << *Operator; 1614 PrintFatalError("Unhandled node in GetNumNodeResults"); 1615 } 1616 1617 void TreePatternNode::print(raw_ostream &OS) const { 1618 if (isLeaf()) 1619 OS << *getLeafValue(); 1620 else 1621 OS << '(' << getOperator()->getName(); 1622 1623 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1624 OS << ':'; 1625 getExtType(i).writeToStream(OS); 1626 } 1627 1628 if (!isLeaf()) { 1629 if (getNumChildren() != 0) { 1630 OS << " "; 1631 getChild(0)->print(OS); 1632 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1633 OS << ", "; 1634 getChild(i)->print(OS); 1635 } 1636 } 1637 OS << ")"; 1638 } 1639 1640 for (const TreePredicateFn &Pred : PredicateFns) 1641 OS << "<<P:" << Pred.getFnName() << ">>"; 1642 if (TransformFn) 1643 OS << "<<X:" << TransformFn->getName() << ">>"; 1644 if (!getName().empty()) 1645 OS << ":$" << getName(); 1646 1647 } 1648 void TreePatternNode::dump() const { 1649 print(errs()); 1650 } 1651 1652 /// isIsomorphicTo - Return true if this node is recursively 1653 /// isomorphic to the specified node. For this comparison, the node's 1654 /// entire state is considered. The assigned name is ignored, since 1655 /// nodes with differing names are considered isomorphic. However, if 1656 /// the assigned name is present in the dependent variable set, then 1657 /// the assigned name is considered significant and the node is 1658 /// isomorphic if the names match. 1659 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1660 const MultipleUseVarSet &DepVars) const { 1661 if (N == this) return true; 1662 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1663 getPredicateFns() != N->getPredicateFns() || 1664 getTransformFn() != N->getTransformFn()) 1665 return false; 1666 1667 if (isLeaf()) { 1668 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1669 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1670 return ((DI->getDef() == NDI->getDef()) 1671 && (DepVars.find(getName()) == DepVars.end() 1672 || getName() == N->getName())); 1673 } 1674 } 1675 return getLeafValue() == N->getLeafValue(); 1676 } 1677 1678 if (N->getOperator() != getOperator() || 1679 N->getNumChildren() != getNumChildren()) return false; 1680 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1681 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1682 return false; 1683 return true; 1684 } 1685 1686 /// clone - Make a copy of this tree and all of its children. 1687 /// 1688 TreePatternNode *TreePatternNode::clone() const { 1689 TreePatternNode *New; 1690 if (isLeaf()) { 1691 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1692 } else { 1693 std::vector<TreePatternNode*> CChildren; 1694 CChildren.reserve(Children.size()); 1695 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1696 CChildren.push_back(getChild(i)->clone()); 1697 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1698 } 1699 New->setName(getName()); 1700 New->Types = Types; 1701 New->setPredicateFns(getPredicateFns()); 1702 New->setTransformFn(getTransformFn()); 1703 return New; 1704 } 1705 1706 /// RemoveAllTypes - Recursively strip all the types of this tree. 1707 void TreePatternNode::RemoveAllTypes() { 1708 // Reset to unknown type. 1709 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1710 if (isLeaf()) return; 1711 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1712 getChild(i)->RemoveAllTypes(); 1713 } 1714 1715 1716 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1717 /// with actual values specified by ArgMap. 1718 void TreePatternNode:: 1719 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1720 if (isLeaf()) return; 1721 1722 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1723 TreePatternNode *Child = getChild(i); 1724 if (Child->isLeaf()) { 1725 Init *Val = Child->getLeafValue(); 1726 // Note that, when substituting into an output pattern, Val might be an 1727 // UnsetInit. 1728 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1729 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1730 // We found a use of a formal argument, replace it with its value. 1731 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1732 assert(NewChild && "Couldn't find formal argument!"); 1733 assert((Child->getPredicateFns().empty() || 1734 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1735 "Non-empty child predicate clobbered!"); 1736 setChild(i, NewChild); 1737 } 1738 } else { 1739 getChild(i)->SubstituteFormalArguments(ArgMap); 1740 } 1741 } 1742 } 1743 1744 1745 /// InlinePatternFragments - If this pattern refers to any pattern 1746 /// fragments, inline them into place, giving us a pattern without any 1747 /// PatFrag references. 1748 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1749 if (TP.hasError()) 1750 return nullptr; 1751 1752 if (isLeaf()) 1753 return this; // nothing to do. 1754 Record *Op = getOperator(); 1755 1756 if (!Op->isSubClassOf("PatFrag")) { 1757 // Just recursively inline children nodes. 1758 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1759 TreePatternNode *Child = getChild(i); 1760 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1761 1762 assert((Child->getPredicateFns().empty() || 1763 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1764 "Non-empty child predicate clobbered!"); 1765 1766 setChild(i, NewChild); 1767 } 1768 return this; 1769 } 1770 1771 // Otherwise, we found a reference to a fragment. First, look up its 1772 // TreePattern record. 1773 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1774 1775 // Verify that we are passing the right number of operands. 1776 if (Frag->getNumArgs() != Children.size()) { 1777 TP.error("'" + Op->getName() + "' fragment requires " + 1778 utostr(Frag->getNumArgs()) + " operands!"); 1779 return nullptr; 1780 } 1781 1782 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1783 1784 TreePredicateFn PredFn(Frag); 1785 if (!PredFn.isAlwaysTrue()) 1786 FragTree->addPredicateFn(PredFn); 1787 1788 // Resolve formal arguments to their actual value. 1789 if (Frag->getNumArgs()) { 1790 // Compute the map of formal to actual arguments. 1791 std::map<std::string, TreePatternNode*> ArgMap; 1792 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1793 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1794 1795 FragTree->SubstituteFormalArguments(ArgMap); 1796 } 1797 1798 FragTree->setName(getName()); 1799 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1800 FragTree->UpdateNodeType(i, getExtType(i), TP); 1801 1802 // Transfer in the old predicates. 1803 for (const TreePredicateFn &Pred : getPredicateFns()) 1804 FragTree->addPredicateFn(Pred); 1805 1806 // Get a new copy of this fragment to stitch into here. 1807 //delete this; // FIXME: implement refcounting! 1808 1809 // The fragment we inlined could have recursive inlining that is needed. See 1810 // if there are any pattern fragments in it and inline them as needed. 1811 return FragTree->InlinePatternFragments(TP); 1812 } 1813 1814 /// getImplicitType - Check to see if the specified record has an implicit 1815 /// type which should be applied to it. This will infer the type of register 1816 /// references from the register file information, for example. 1817 /// 1818 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1819 /// the F8RC register class argument in: 1820 /// 1821 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1822 /// 1823 /// When Unnamed is false, return the type of a named DAG operand such as the 1824 /// GPR:$src operand above. 1825 /// 1826 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 1827 bool NotRegisters, 1828 bool Unnamed, 1829 TreePattern &TP) { 1830 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1831 1832 // Check to see if this is a register operand. 1833 if (R->isSubClassOf("RegisterOperand")) { 1834 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1835 if (NotRegisters) 1836 return TypeSetByHwMode(); // Unknown. 1837 Record *RegClass = R->getValueAsDef("RegClass"); 1838 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1839 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 1840 } 1841 1842 // Check to see if this is a register or a register class. 1843 if (R->isSubClassOf("RegisterClass")) { 1844 assert(ResNo == 0 && "Regclass ref only has one result!"); 1845 // An unnamed register class represents itself as an i32 immediate, for 1846 // example on a COPY_TO_REGCLASS instruction. 1847 if (Unnamed) 1848 return TypeSetByHwMode(MVT::i32); 1849 1850 // In a named operand, the register class provides the possible set of 1851 // types. 1852 if (NotRegisters) 1853 return TypeSetByHwMode(); // Unknown. 1854 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1855 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 1856 } 1857 1858 if (R->isSubClassOf("PatFrag")) { 1859 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1860 // Pattern fragment types will be resolved when they are inlined. 1861 return TypeSetByHwMode(); // Unknown. 1862 } 1863 1864 if (R->isSubClassOf("Register")) { 1865 assert(ResNo == 0 && "Registers only produce one result!"); 1866 if (NotRegisters) 1867 return TypeSetByHwMode(); // Unknown. 1868 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1869 return TypeSetByHwMode(T.getRegisterVTs(R)); 1870 } 1871 1872 if (R->isSubClassOf("SubRegIndex")) { 1873 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1874 return TypeSetByHwMode(MVT::i32); 1875 } 1876 1877 if (R->isSubClassOf("ValueType")) { 1878 assert(ResNo == 0 && "This node only has one result!"); 1879 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1880 // 1881 // (sext_inreg GPR:$src, i16) 1882 // ~~~ 1883 if (Unnamed) 1884 return TypeSetByHwMode(MVT::Other); 1885 // With a name, the ValueType simply provides the type of the named 1886 // variable. 1887 // 1888 // (sext_inreg i32:$src, i16) 1889 // ~~~~~~~~ 1890 if (NotRegisters) 1891 return TypeSetByHwMode(); // Unknown. 1892 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 1893 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 1894 } 1895 1896 if (R->isSubClassOf("CondCode")) { 1897 assert(ResNo == 0 && "This node only has one result!"); 1898 // Using a CondCodeSDNode. 1899 return TypeSetByHwMode(MVT::Other); 1900 } 1901 1902 if (R->isSubClassOf("ComplexPattern")) { 1903 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1904 if (NotRegisters) 1905 return TypeSetByHwMode(); // Unknown. 1906 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 1907 } 1908 if (R->isSubClassOf("PointerLikeRegClass")) { 1909 assert(ResNo == 0 && "Regclass can only have one result!"); 1910 TypeSetByHwMode VTS(MVT::iPTR); 1911 TP.getInfer().expandOverloads(VTS); 1912 return VTS; 1913 } 1914 1915 if (R->getName() == "node" || R->getName() == "srcvalue" || 1916 R->getName() == "zero_reg") { 1917 // Placeholder. 1918 return TypeSetByHwMode(); // Unknown. 1919 } 1920 1921 if (R->isSubClassOf("Operand")) { 1922 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 1923 Record *T = R->getValueAsDef("Type"); 1924 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 1925 } 1926 1927 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1928 return TypeSetByHwMode(MVT::Other); 1929 } 1930 1931 1932 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1933 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1934 const CodeGenIntrinsic *TreePatternNode:: 1935 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1936 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1937 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1938 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1939 return nullptr; 1940 1941 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1942 return &CDP.getIntrinsicInfo(IID); 1943 } 1944 1945 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1946 /// return the ComplexPattern information, otherwise return null. 1947 const ComplexPattern * 1948 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1949 Record *Rec; 1950 if (isLeaf()) { 1951 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1952 if (!DI) 1953 return nullptr; 1954 Rec = DI->getDef(); 1955 } else 1956 Rec = getOperator(); 1957 1958 if (!Rec->isSubClassOf("ComplexPattern")) 1959 return nullptr; 1960 return &CGP.getComplexPattern(Rec); 1961 } 1962 1963 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1964 // A ComplexPattern specifically declares how many results it fills in. 1965 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1966 return CP->getNumOperands(); 1967 1968 // If MIOperandInfo is specified, that gives the count. 1969 if (isLeaf()) { 1970 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1971 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1972 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1973 if (MIOps->getNumArgs()) 1974 return MIOps->getNumArgs(); 1975 } 1976 } 1977 1978 // Otherwise there is just one result. 1979 return 1; 1980 } 1981 1982 /// NodeHasProperty - Return true if this node has the specified property. 1983 bool TreePatternNode::NodeHasProperty(SDNP Property, 1984 const CodeGenDAGPatterns &CGP) const { 1985 if (isLeaf()) { 1986 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1987 return CP->hasProperty(Property); 1988 return false; 1989 } 1990 1991 Record *Operator = getOperator(); 1992 if (!Operator->isSubClassOf("SDNode")) return false; 1993 1994 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1995 } 1996 1997 1998 1999 2000 /// TreeHasProperty - Return true if any node in this tree has the specified 2001 /// property. 2002 bool TreePatternNode::TreeHasProperty(SDNP Property, 2003 const CodeGenDAGPatterns &CGP) const { 2004 if (NodeHasProperty(Property, CGP)) 2005 return true; 2006 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2007 if (getChild(i)->TreeHasProperty(Property, CGP)) 2008 return true; 2009 return false; 2010 } 2011 2012 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2013 /// commutative intrinsic. 2014 bool 2015 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2016 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2017 return Int->isCommutative; 2018 return false; 2019 } 2020 2021 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2022 if (!N->isLeaf()) 2023 return N->getOperator()->isSubClassOf(Class); 2024 2025 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2026 if (DI && DI->getDef()->isSubClassOf(Class)) 2027 return true; 2028 2029 return false; 2030 } 2031 2032 static void emitTooManyOperandsError(TreePattern &TP, 2033 StringRef InstName, 2034 unsigned Expected, 2035 unsigned Actual) { 2036 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2037 " operands but expected only " + Twine(Expected) + "!"); 2038 } 2039 2040 static void emitTooFewOperandsError(TreePattern &TP, 2041 StringRef InstName, 2042 unsigned Actual) { 2043 TP.error("Instruction '" + InstName + 2044 "' expects more than the provided " + Twine(Actual) + " operands!"); 2045 } 2046 2047 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2048 /// this node and its children in the tree. This returns true if it makes a 2049 /// change, false otherwise. If a type contradiction is found, flag an error. 2050 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2051 if (TP.hasError()) 2052 return false; 2053 2054 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2055 if (isLeaf()) { 2056 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2057 // If it's a regclass or something else known, include the type. 2058 bool MadeChange = false; 2059 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2060 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2061 NotRegisters, 2062 !hasName(), TP), TP); 2063 return MadeChange; 2064 } 2065 2066 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2067 assert(Types.size() == 1 && "Invalid IntInit"); 2068 2069 // Int inits are always integers. :) 2070 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2071 2072 if (!TP.getInfer().isConcrete(Types[0], false)) 2073 return MadeChange; 2074 2075 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2076 for (auto &P : VVT) { 2077 MVT::SimpleValueType VT = P.second.SimpleTy; 2078 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2079 continue; 2080 unsigned Size = MVT(VT).getSizeInBits(); 2081 // Make sure that the value is representable for this type. 2082 if (Size >= 32) 2083 continue; 2084 // Check that the value doesn't use more bits than we have. It must 2085 // either be a sign- or zero-extended equivalent of the original. 2086 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2087 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2088 SignBitAndAbove == 1) 2089 continue; 2090 2091 TP.error("Integer value '" + itostr(II->getValue()) + 2092 "' is out of range for type '" + getEnumName(VT) + "'!"); 2093 break; 2094 } 2095 return MadeChange; 2096 } 2097 2098 return false; 2099 } 2100 2101 // special handling for set, which isn't really an SDNode. 2102 if (getOperator()->getName() == "set") { 2103 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 2104 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 2105 unsigned NC = getNumChildren(); 2106 2107 TreePatternNode *SetVal = getChild(NC-1); 2108 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 2109 2110 for (unsigned i = 0; i < NC-1; ++i) { 2111 TreePatternNode *Child = getChild(i); 2112 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 2113 2114 // Types of operands must match. 2115 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 2116 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 2117 } 2118 return MadeChange; 2119 } 2120 2121 if (getOperator()->getName() == "implicit") { 2122 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 2123 2124 bool MadeChange = false; 2125 for (unsigned i = 0; i < getNumChildren(); ++i) 2126 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2127 return MadeChange; 2128 } 2129 2130 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2131 bool MadeChange = false; 2132 2133 // Apply the result type to the node. 2134 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2135 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2136 2137 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2138 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2139 2140 if (getNumChildren() != NumParamVTs + 1) { 2141 TP.error("Intrinsic '" + Int->Name + "' expects " + 2142 utostr(NumParamVTs) + " operands, not " + 2143 utostr(getNumChildren() - 1) + " operands!"); 2144 return false; 2145 } 2146 2147 // Apply type info to the intrinsic ID. 2148 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2149 2150 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2151 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2152 2153 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2154 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2155 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2156 } 2157 return MadeChange; 2158 } 2159 2160 if (getOperator()->isSubClassOf("SDNode")) { 2161 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2162 2163 // Check that the number of operands is sane. Negative operands -> varargs. 2164 if (NI.getNumOperands() >= 0 && 2165 getNumChildren() != (unsigned)NI.getNumOperands()) { 2166 TP.error(getOperator()->getName() + " node requires exactly " + 2167 itostr(NI.getNumOperands()) + " operands!"); 2168 return false; 2169 } 2170 2171 bool MadeChange = false; 2172 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2173 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2174 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2175 return MadeChange; 2176 } 2177 2178 if (getOperator()->isSubClassOf("Instruction")) { 2179 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2180 CodeGenInstruction &InstInfo = 2181 CDP.getTargetInfo().getInstruction(getOperator()); 2182 2183 bool MadeChange = false; 2184 2185 // Apply the result types to the node, these come from the things in the 2186 // (outs) list of the instruction. 2187 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2188 Inst.getNumResults()); 2189 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2190 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2191 2192 // If the instruction has implicit defs, we apply the first one as a result. 2193 // FIXME: This sucks, it should apply all implicit defs. 2194 if (!InstInfo.ImplicitDefs.empty()) { 2195 unsigned ResNo = NumResultsToAdd; 2196 2197 // FIXME: Generalize to multiple possible types and multiple possible 2198 // ImplicitDefs. 2199 MVT::SimpleValueType VT = 2200 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2201 2202 if (VT != MVT::Other) 2203 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2204 } 2205 2206 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2207 // be the same. 2208 if (getOperator()->getName() == "INSERT_SUBREG") { 2209 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2210 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2211 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2212 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2213 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2214 // variadic. 2215 2216 unsigned NChild = getNumChildren(); 2217 if (NChild < 3) { 2218 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2219 return false; 2220 } 2221 2222 if (NChild % 2 == 0) { 2223 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2224 return false; 2225 } 2226 2227 if (!isOperandClass(getChild(0), "RegisterClass")) { 2228 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2229 return false; 2230 } 2231 2232 for (unsigned I = 1; I < NChild; I += 2) { 2233 TreePatternNode *SubIdxChild = getChild(I + 1); 2234 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2235 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2236 itostr(I + 1) + "!"); 2237 return false; 2238 } 2239 } 2240 } 2241 2242 unsigned ChildNo = 0; 2243 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2244 Record *OperandNode = Inst.getOperand(i); 2245 2246 // If the instruction expects a predicate or optional def operand, we 2247 // codegen this by setting the operand to it's default value if it has a 2248 // non-empty DefaultOps field. 2249 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 2250 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 2251 continue; 2252 2253 // Verify that we didn't run out of provided operands. 2254 if (ChildNo >= getNumChildren()) { 2255 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2256 return false; 2257 } 2258 2259 TreePatternNode *Child = getChild(ChildNo++); 2260 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2261 2262 // If the operand has sub-operands, they may be provided by distinct 2263 // child patterns, so attempt to match each sub-operand separately. 2264 if (OperandNode->isSubClassOf("Operand")) { 2265 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2266 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2267 // But don't do that if the whole operand is being provided by 2268 // a single ComplexPattern-related Operand. 2269 2270 if (Child->getNumMIResults(CDP) < NumArgs) { 2271 // Match first sub-operand against the child we already have. 2272 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2273 MadeChange |= 2274 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2275 2276 // And the remaining sub-operands against subsequent children. 2277 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2278 if (ChildNo >= getNumChildren()) { 2279 emitTooFewOperandsError(TP, getOperator()->getName(), 2280 getNumChildren()); 2281 return false; 2282 } 2283 Child = getChild(ChildNo++); 2284 2285 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2286 MadeChange |= 2287 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2288 } 2289 continue; 2290 } 2291 } 2292 } 2293 2294 // If we didn't match by pieces above, attempt to match the whole 2295 // operand now. 2296 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2297 } 2298 2299 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2300 emitTooManyOperandsError(TP, getOperator()->getName(), 2301 ChildNo, getNumChildren()); 2302 return false; 2303 } 2304 2305 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2306 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2307 return MadeChange; 2308 } 2309 2310 if (getOperator()->isSubClassOf("ComplexPattern")) { 2311 bool MadeChange = false; 2312 2313 for (unsigned i = 0; i < getNumChildren(); ++i) 2314 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2315 2316 return MadeChange; 2317 } 2318 2319 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2320 2321 // Node transforms always take one operand. 2322 if (getNumChildren() != 1) { 2323 TP.error("Node transform '" + getOperator()->getName() + 2324 "' requires one operand!"); 2325 return false; 2326 } 2327 2328 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2329 return MadeChange; 2330 } 2331 2332 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2333 /// RHS of a commutative operation, not the on LHS. 2334 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2335 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2336 return true; 2337 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2338 return true; 2339 return false; 2340 } 2341 2342 2343 /// canPatternMatch - If it is impossible for this pattern to match on this 2344 /// target, fill in Reason and return false. Otherwise, return true. This is 2345 /// used as a sanity check for .td files (to prevent people from writing stuff 2346 /// that can never possibly work), and to prevent the pattern permuter from 2347 /// generating stuff that is useless. 2348 bool TreePatternNode::canPatternMatch(std::string &Reason, 2349 const CodeGenDAGPatterns &CDP) { 2350 if (isLeaf()) return true; 2351 2352 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2353 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2354 return false; 2355 2356 // If this is an intrinsic, handle cases that would make it not match. For 2357 // example, if an operand is required to be an immediate. 2358 if (getOperator()->isSubClassOf("Intrinsic")) { 2359 // TODO: 2360 return true; 2361 } 2362 2363 if (getOperator()->isSubClassOf("ComplexPattern")) 2364 return true; 2365 2366 // If this node is a commutative operator, check that the LHS isn't an 2367 // immediate. 2368 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2369 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2370 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2371 // Scan all of the operands of the node and make sure that only the last one 2372 // is a constant node, unless the RHS also is. 2373 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2374 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2375 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2376 if (OnlyOnRHSOfCommutative(getChild(i))) { 2377 Reason="Immediate value must be on the RHS of commutative operators!"; 2378 return false; 2379 } 2380 } 2381 } 2382 2383 return true; 2384 } 2385 2386 //===----------------------------------------------------------------------===// 2387 // TreePattern implementation 2388 // 2389 2390 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2391 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2392 isInputPattern(isInput), HasError(false), 2393 Infer(*this) { 2394 for (Init *I : RawPat->getValues()) 2395 Trees.push_back(ParseTreePattern(I, "")); 2396 } 2397 2398 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2399 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2400 isInputPattern(isInput), HasError(false), 2401 Infer(*this) { 2402 Trees.push_back(ParseTreePattern(Pat, "")); 2403 } 2404 2405 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2406 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2407 isInputPattern(isInput), HasError(false), 2408 Infer(*this) { 2409 Trees.push_back(Pat); 2410 } 2411 2412 void TreePattern::error(const Twine &Msg) { 2413 if (HasError) 2414 return; 2415 dump(); 2416 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2417 HasError = true; 2418 } 2419 2420 void TreePattern::ComputeNamedNodes() { 2421 for (TreePatternNode *Tree : Trees) 2422 ComputeNamedNodes(Tree); 2423 } 2424 2425 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2426 if (!N->getName().empty()) 2427 NamedNodes[N->getName()].push_back(N); 2428 2429 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2430 ComputeNamedNodes(N->getChild(i)); 2431 } 2432 2433 2434 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2435 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2436 Record *R = DI->getDef(); 2437 2438 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2439 // TreePatternNode of its own. For example: 2440 /// (foo GPR, imm) -> (foo GPR, (imm)) 2441 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2442 return ParseTreePattern( 2443 DagInit::get(DI, nullptr, 2444 std::vector<std::pair<Init*, StringInit*> >()), 2445 OpName); 2446 2447 // Input argument? 2448 TreePatternNode *Res = new TreePatternNode(DI, 1); 2449 if (R->getName() == "node" && !OpName.empty()) { 2450 if (OpName.empty()) 2451 error("'node' argument requires a name to match with operand list"); 2452 Args.push_back(OpName); 2453 } 2454 2455 Res->setName(OpName); 2456 return Res; 2457 } 2458 2459 // ?:$name or just $name. 2460 if (isa<UnsetInit>(TheInit)) { 2461 if (OpName.empty()) 2462 error("'?' argument requires a name to match with operand list"); 2463 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2464 Args.push_back(OpName); 2465 Res->setName(OpName); 2466 return Res; 2467 } 2468 2469 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2470 if (!OpName.empty()) 2471 error("Constant int argument should not have a name!"); 2472 return new TreePatternNode(II, 1); 2473 } 2474 2475 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2476 // Turn this into an IntInit. 2477 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2478 if (!II || !isa<IntInit>(II)) 2479 error("Bits value must be constants!"); 2480 return ParseTreePattern(II, OpName); 2481 } 2482 2483 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2484 if (!Dag) { 2485 TheInit->print(errs()); 2486 error("Pattern has unexpected init kind!"); 2487 } 2488 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2489 if (!OpDef) error("Pattern has unexpected operator type!"); 2490 Record *Operator = OpDef->getDef(); 2491 2492 if (Operator->isSubClassOf("ValueType")) { 2493 // If the operator is a ValueType, then this must be "type cast" of a leaf 2494 // node. 2495 if (Dag->getNumArgs() != 1) 2496 error("Type cast only takes one operand!"); 2497 2498 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), 2499 Dag->getArgNameStr(0)); 2500 2501 // Apply the type cast. 2502 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2503 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2504 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2505 2506 if (!OpName.empty()) 2507 error("ValueType cast should not have a name!"); 2508 return New; 2509 } 2510 2511 // Verify that this is something that makes sense for an operator. 2512 if (!Operator->isSubClassOf("PatFrag") && 2513 !Operator->isSubClassOf("SDNode") && 2514 !Operator->isSubClassOf("Instruction") && 2515 !Operator->isSubClassOf("SDNodeXForm") && 2516 !Operator->isSubClassOf("Intrinsic") && 2517 !Operator->isSubClassOf("ComplexPattern") && 2518 Operator->getName() != "set" && 2519 Operator->getName() != "implicit") 2520 error("Unrecognized node '" + Operator->getName() + "'!"); 2521 2522 // Check to see if this is something that is illegal in an input pattern. 2523 if (isInputPattern) { 2524 if (Operator->isSubClassOf("Instruction") || 2525 Operator->isSubClassOf("SDNodeXForm")) 2526 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2527 } else { 2528 if (Operator->isSubClassOf("Intrinsic")) 2529 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2530 2531 if (Operator->isSubClassOf("SDNode") && 2532 Operator->getName() != "imm" && 2533 Operator->getName() != "fpimm" && 2534 Operator->getName() != "tglobaltlsaddr" && 2535 Operator->getName() != "tconstpool" && 2536 Operator->getName() != "tjumptable" && 2537 Operator->getName() != "tframeindex" && 2538 Operator->getName() != "texternalsym" && 2539 Operator->getName() != "tblockaddress" && 2540 Operator->getName() != "tglobaladdr" && 2541 Operator->getName() != "bb" && 2542 Operator->getName() != "vt" && 2543 Operator->getName() != "mcsym") 2544 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2545 } 2546 2547 std::vector<TreePatternNode*> Children; 2548 2549 // Parse all the operands. 2550 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2551 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2552 2553 // If the operator is an intrinsic, then this is just syntactic sugar for for 2554 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2555 // convert the intrinsic name to a number. 2556 if (Operator->isSubClassOf("Intrinsic")) { 2557 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2558 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2559 2560 // If this intrinsic returns void, it must have side-effects and thus a 2561 // chain. 2562 if (Int.IS.RetVTs.empty()) 2563 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2564 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2565 // Has side-effects, requires chain. 2566 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2567 else // Otherwise, no chain. 2568 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2569 2570 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2571 Children.insert(Children.begin(), IIDNode); 2572 } 2573 2574 if (Operator->isSubClassOf("ComplexPattern")) { 2575 for (unsigned i = 0; i < Children.size(); ++i) { 2576 TreePatternNode *Child = Children[i]; 2577 2578 if (Child->getName().empty()) 2579 error("All arguments to a ComplexPattern must be named"); 2580 2581 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2582 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2583 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2584 auto OperandId = std::make_pair(Operator, i); 2585 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2586 if (PrevOp != ComplexPatternOperands.end()) { 2587 if (PrevOp->getValue() != OperandId) 2588 error("All ComplexPattern operands must appear consistently: " 2589 "in the same order in just one ComplexPattern instance."); 2590 } else 2591 ComplexPatternOperands[Child->getName()] = OperandId; 2592 } 2593 } 2594 2595 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2596 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2597 Result->setName(OpName); 2598 2599 if (Dag->getName()) { 2600 assert(Result->getName().empty()); 2601 Result->setName(Dag->getNameStr()); 2602 } 2603 return Result; 2604 } 2605 2606 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2607 /// will never match in favor of something obvious that will. This is here 2608 /// strictly as a convenience to target authors because it allows them to write 2609 /// more type generic things and have useless type casts fold away. 2610 /// 2611 /// This returns true if any change is made. 2612 static bool SimplifyTree(TreePatternNode *&N) { 2613 if (N->isLeaf()) 2614 return false; 2615 2616 // If we have a bitconvert with a resolved type and if the source and 2617 // destination types are the same, then the bitconvert is useless, remove it. 2618 if (N->getOperator()->getName() == "bitconvert" && 2619 N->getExtType(0).isValueTypeByHwMode(false) && 2620 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2621 N->getName().empty()) { 2622 N = N->getChild(0); 2623 SimplifyTree(N); 2624 return true; 2625 } 2626 2627 // Walk all children. 2628 bool MadeChange = false; 2629 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2630 TreePatternNode *Child = N->getChild(i); 2631 MadeChange |= SimplifyTree(Child); 2632 N->setChild(i, Child); 2633 } 2634 return MadeChange; 2635 } 2636 2637 2638 2639 /// InferAllTypes - Infer/propagate as many types throughout the expression 2640 /// patterns as possible. Return true if all types are inferred, false 2641 /// otherwise. Flags an error if a type contradiction is found. 2642 bool TreePattern:: 2643 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2644 if (NamedNodes.empty()) 2645 ComputeNamedNodes(); 2646 2647 bool MadeChange = true; 2648 while (MadeChange) { 2649 MadeChange = false; 2650 for (TreePatternNode *&Tree : Trees) { 2651 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2652 MadeChange |= SimplifyTree(Tree); 2653 } 2654 2655 // If there are constraints on our named nodes, apply them. 2656 for (auto &Entry : NamedNodes) { 2657 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2658 2659 // If we have input named node types, propagate their types to the named 2660 // values here. 2661 if (InNamedTypes) { 2662 if (!InNamedTypes->count(Entry.getKey())) { 2663 error("Node '" + std::string(Entry.getKey()) + 2664 "' in output pattern but not input pattern"); 2665 return true; 2666 } 2667 2668 const SmallVectorImpl<TreePatternNode*> &InNodes = 2669 InNamedTypes->find(Entry.getKey())->second; 2670 2671 // The input types should be fully resolved by now. 2672 for (TreePatternNode *Node : Nodes) { 2673 // If this node is a register class, and it is the root of the pattern 2674 // then we're mapping something onto an input register. We allow 2675 // changing the type of the input register in this case. This allows 2676 // us to match things like: 2677 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2678 if (Node == Trees[0] && Node->isLeaf()) { 2679 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2680 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2681 DI->getDef()->isSubClassOf("RegisterOperand"))) 2682 continue; 2683 } 2684 2685 assert(Node->getNumTypes() == 1 && 2686 InNodes[0]->getNumTypes() == 1 && 2687 "FIXME: cannot name multiple result nodes yet"); 2688 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2689 *this); 2690 } 2691 } 2692 2693 // If there are multiple nodes with the same name, they must all have the 2694 // same type. 2695 if (Entry.second.size() > 1) { 2696 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2697 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2698 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2699 "FIXME: cannot name multiple result nodes yet"); 2700 2701 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2702 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2703 } 2704 } 2705 } 2706 } 2707 2708 bool HasUnresolvedTypes = false; 2709 for (const TreePatternNode *Tree : Trees) 2710 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2711 return !HasUnresolvedTypes; 2712 } 2713 2714 void TreePattern::print(raw_ostream &OS) const { 2715 OS << getRecord()->getName(); 2716 if (!Args.empty()) { 2717 OS << "(" << Args[0]; 2718 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2719 OS << ", " << Args[i]; 2720 OS << ")"; 2721 } 2722 OS << ": "; 2723 2724 if (Trees.size() > 1) 2725 OS << "[\n"; 2726 for (const TreePatternNode *Tree : Trees) { 2727 OS << "\t"; 2728 Tree->print(OS); 2729 OS << "\n"; 2730 } 2731 2732 if (Trees.size() > 1) 2733 OS << "]\n"; 2734 } 2735 2736 void TreePattern::dump() const { print(errs()); } 2737 2738 //===----------------------------------------------------------------------===// 2739 // CodeGenDAGPatterns implementation 2740 // 2741 2742 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2743 Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()) { 2744 2745 Intrinsics = CodeGenIntrinsicTable(Records, false); 2746 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2747 ParseNodeInfo(); 2748 ParseNodeTransforms(); 2749 ParseComplexPatterns(); 2750 ParsePatternFragments(); 2751 ParseDefaultOperands(); 2752 ParseInstructions(); 2753 ParsePatternFragments(/*OutFrags*/true); 2754 ParsePatterns(); 2755 2756 // Break patterns with parameterized types into a series of patterns, 2757 // where each one has a fixed type and is predicated on the conditions 2758 // of the associated HW mode. 2759 ExpandHwModeBasedTypes(); 2760 2761 // Generate variants. For example, commutative patterns can match 2762 // multiple ways. Add them to PatternsToMatch as well. 2763 GenerateVariants(); 2764 2765 // Infer instruction flags. For example, we can detect loads, 2766 // stores, and side effects in many cases by examining an 2767 // instruction's pattern. 2768 InferInstructionFlags(); 2769 2770 // Verify that instruction flags match the patterns. 2771 VerifyInstructionFlags(); 2772 } 2773 2774 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2775 Record *N = Records.getDef(Name); 2776 if (!N || !N->isSubClassOf("SDNode")) 2777 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2778 2779 return N; 2780 } 2781 2782 // Parse all of the SDNode definitions for the target, populating SDNodes. 2783 void CodeGenDAGPatterns::ParseNodeInfo() { 2784 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2785 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 2786 2787 while (!Nodes.empty()) { 2788 Record *R = Nodes.back(); 2789 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 2790 Nodes.pop_back(); 2791 } 2792 2793 // Get the builtin intrinsic nodes. 2794 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2795 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2796 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2797 } 2798 2799 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2800 /// map, and emit them to the file as functions. 2801 void CodeGenDAGPatterns::ParseNodeTransforms() { 2802 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2803 while (!Xforms.empty()) { 2804 Record *XFormNode = Xforms.back(); 2805 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2806 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 2807 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2808 2809 Xforms.pop_back(); 2810 } 2811 } 2812 2813 void CodeGenDAGPatterns::ParseComplexPatterns() { 2814 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2815 while (!AMs.empty()) { 2816 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2817 AMs.pop_back(); 2818 } 2819 } 2820 2821 2822 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2823 /// file, building up the PatternFragments map. After we've collected them all, 2824 /// inline fragments together as necessary, so that there are no references left 2825 /// inside a pattern fragment to a pattern fragment. 2826 /// 2827 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2828 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2829 2830 // First step, parse all of the fragments. 2831 for (Record *Frag : Fragments) { 2832 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2833 continue; 2834 2835 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2836 TreePattern *P = 2837 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2838 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2839 *this)).get(); 2840 2841 // Validate the argument list, converting it to set, to discard duplicates. 2842 std::vector<std::string> &Args = P->getArgList(); 2843 // Copy the args so we can take StringRefs to them. 2844 auto ArgsCopy = Args; 2845 SmallDenseSet<StringRef, 4> OperandsSet; 2846 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 2847 2848 if (OperandsSet.count("")) 2849 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2850 2851 // Parse the operands list. 2852 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2853 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2854 // Special cases: ops == outs == ins. Different names are used to 2855 // improve readability. 2856 if (!OpsOp || 2857 (OpsOp->getDef()->getName() != "ops" && 2858 OpsOp->getDef()->getName() != "outs" && 2859 OpsOp->getDef()->getName() != "ins")) 2860 P->error("Operands list should start with '(ops ... '!"); 2861 2862 // Copy over the arguments. 2863 Args.clear(); 2864 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2865 if (!isa<DefInit>(OpsList->getArg(j)) || 2866 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2867 P->error("Operands list should all be 'node' values."); 2868 if (!OpsList->getArgName(j)) 2869 P->error("Operands list should have names for each operand!"); 2870 StringRef ArgNameStr = OpsList->getArgNameStr(j); 2871 if (!OperandsSet.count(ArgNameStr)) 2872 P->error("'" + ArgNameStr + 2873 "' does not occur in pattern or was multiply specified!"); 2874 OperandsSet.erase(ArgNameStr); 2875 Args.push_back(ArgNameStr); 2876 } 2877 2878 if (!OperandsSet.empty()) 2879 P->error("Operands list does not contain an entry for operand '" + 2880 *OperandsSet.begin() + "'!"); 2881 2882 // If there is a code init for this fragment, keep track of the fact that 2883 // this fragment uses it. 2884 TreePredicateFn PredFn(P); 2885 if (!PredFn.isAlwaysTrue()) 2886 P->getOnlyTree()->addPredicateFn(PredFn); 2887 2888 // If there is a node transformation corresponding to this, keep track of 2889 // it. 2890 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2891 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2892 P->getOnlyTree()->setTransformFn(Transform); 2893 } 2894 2895 // Now that we've parsed all of the tree fragments, do a closure on them so 2896 // that there are not references to PatFrags left inside of them. 2897 for (Record *Frag : Fragments) { 2898 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2899 continue; 2900 2901 TreePattern &ThePat = *PatternFragments[Frag]; 2902 ThePat.InlinePatternFragments(); 2903 2904 // Infer as many types as possible. Don't worry about it if we don't infer 2905 // all of them, some may depend on the inputs of the pattern. 2906 ThePat.InferAllTypes(); 2907 ThePat.resetError(); 2908 2909 // If debugging, print out the pattern fragment result. 2910 DEBUG(ThePat.dump()); 2911 } 2912 } 2913 2914 void CodeGenDAGPatterns::ParseDefaultOperands() { 2915 std::vector<Record*> DefaultOps; 2916 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2917 2918 // Find some SDNode. 2919 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2920 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2921 2922 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2923 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2924 2925 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2926 // SomeSDnode so that we can parse this. 2927 std::vector<std::pair<Init*, StringInit*> > Ops; 2928 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2929 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2930 DefaultInfo->getArgName(op))); 2931 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 2932 2933 // Create a TreePattern to parse this. 2934 TreePattern P(DefaultOps[i], DI, false, *this); 2935 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2936 2937 // Copy the operands over into a DAGDefaultOperand. 2938 DAGDefaultOperand DefaultOpInfo; 2939 2940 TreePatternNode *T = P.getTree(0); 2941 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2942 TreePatternNode *TPN = T->getChild(op); 2943 while (TPN->ApplyTypeConstraints(P, false)) 2944 /* Resolve all types */; 2945 2946 if (TPN->ContainsUnresolvedType(P)) { 2947 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2948 DefaultOps[i]->getName() + 2949 "' doesn't have a concrete type!"); 2950 } 2951 DefaultOpInfo.DefaultOps.push_back(TPN); 2952 } 2953 2954 // Insert it into the DefaultOperands map so we can find it later. 2955 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2956 } 2957 } 2958 2959 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2960 /// instruction input. Return true if this is a real use. 2961 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2962 std::map<std::string, TreePatternNode*> &InstInputs) { 2963 // No name -> not interesting. 2964 if (Pat->getName().empty()) { 2965 if (Pat->isLeaf()) { 2966 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2967 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2968 DI->getDef()->isSubClassOf("RegisterOperand"))) 2969 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2970 } 2971 return false; 2972 } 2973 2974 Record *Rec; 2975 if (Pat->isLeaf()) { 2976 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2977 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2978 Rec = DI->getDef(); 2979 } else { 2980 Rec = Pat->getOperator(); 2981 } 2982 2983 // SRCVALUE nodes are ignored. 2984 if (Rec->getName() == "srcvalue") 2985 return false; 2986 2987 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2988 if (!Slot) { 2989 Slot = Pat; 2990 return true; 2991 } 2992 Record *SlotRec; 2993 if (Slot->isLeaf()) { 2994 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2995 } else { 2996 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2997 SlotRec = Slot->getOperator(); 2998 } 2999 3000 // Ensure that the inputs agree if we've already seen this input. 3001 if (Rec != SlotRec) 3002 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 3003 if (Slot->getExtTypes() != Pat->getExtTypes()) 3004 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 3005 return true; 3006 } 3007 3008 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3009 /// part of "I", the instruction), computing the set of inputs and outputs of 3010 /// the pattern. Report errors if we see anything naughty. 3011 void CodeGenDAGPatterns:: 3012 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 3013 std::map<std::string, TreePatternNode*> &InstInputs, 3014 std::map<std::string, TreePatternNode*>&InstResults, 3015 std::vector<Record*> &InstImpResults) { 3016 if (Pat->isLeaf()) { 3017 bool isUse = HandleUse(I, Pat, InstInputs); 3018 if (!isUse && Pat->getTransformFn()) 3019 I->error("Cannot specify a transform function for a non-input value!"); 3020 return; 3021 } 3022 3023 if (Pat->getOperator()->getName() == "implicit") { 3024 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3025 TreePatternNode *Dest = Pat->getChild(i); 3026 if (!Dest->isLeaf()) 3027 I->error("implicitly defined value should be a register!"); 3028 3029 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3030 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3031 I->error("implicitly defined value should be a register!"); 3032 InstImpResults.push_back(Val->getDef()); 3033 } 3034 return; 3035 } 3036 3037 if (Pat->getOperator()->getName() != "set") { 3038 // If this is not a set, verify that the children nodes are not void typed, 3039 // and recurse. 3040 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3041 if (Pat->getChild(i)->getNumTypes() == 0) 3042 I->error("Cannot have void nodes inside of patterns!"); 3043 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 3044 InstImpResults); 3045 } 3046 3047 // If this is a non-leaf node with no children, treat it basically as if 3048 // it were a leaf. This handles nodes like (imm). 3049 bool isUse = HandleUse(I, Pat, InstInputs); 3050 3051 if (!isUse && Pat->getTransformFn()) 3052 I->error("Cannot specify a transform function for a non-input value!"); 3053 return; 3054 } 3055 3056 // Otherwise, this is a set, validate and collect instruction results. 3057 if (Pat->getNumChildren() == 0) 3058 I->error("set requires operands!"); 3059 3060 if (Pat->getTransformFn()) 3061 I->error("Cannot specify a transform function on a set node!"); 3062 3063 // Check the set destinations. 3064 unsigned NumDests = Pat->getNumChildren()-1; 3065 for (unsigned i = 0; i != NumDests; ++i) { 3066 TreePatternNode *Dest = Pat->getChild(i); 3067 if (!Dest->isLeaf()) 3068 I->error("set destination should be a register!"); 3069 3070 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3071 if (!Val) { 3072 I->error("set destination should be a register!"); 3073 continue; 3074 } 3075 3076 if (Val->getDef()->isSubClassOf("RegisterClass") || 3077 Val->getDef()->isSubClassOf("ValueType") || 3078 Val->getDef()->isSubClassOf("RegisterOperand") || 3079 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3080 if (Dest->getName().empty()) 3081 I->error("set destination must have a name!"); 3082 if (InstResults.count(Dest->getName())) 3083 I->error("cannot set '" + Dest->getName() +"' multiple times"); 3084 InstResults[Dest->getName()] = Dest; 3085 } else if (Val->getDef()->isSubClassOf("Register")) { 3086 InstImpResults.push_back(Val->getDef()); 3087 } else { 3088 I->error("set destination should be a register!"); 3089 } 3090 } 3091 3092 // Verify and collect info from the computation. 3093 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 3094 InstInputs, InstResults, InstImpResults); 3095 } 3096 3097 //===----------------------------------------------------------------------===// 3098 // Instruction Analysis 3099 //===----------------------------------------------------------------------===// 3100 3101 class InstAnalyzer { 3102 const CodeGenDAGPatterns &CDP; 3103 public: 3104 bool hasSideEffects; 3105 bool mayStore; 3106 bool mayLoad; 3107 bool isBitcast; 3108 bool isVariadic; 3109 3110 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3111 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3112 isBitcast(false), isVariadic(false) {} 3113 3114 void Analyze(const TreePattern *Pat) { 3115 // Assume only the first tree is the pattern. The others are clobber nodes. 3116 AnalyzeNode(Pat->getTree(0)); 3117 } 3118 3119 void Analyze(const PatternToMatch &Pat) { 3120 AnalyzeNode(Pat.getSrcPattern()); 3121 } 3122 3123 private: 3124 bool IsNodeBitcast(const TreePatternNode *N) const { 3125 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3126 return false; 3127 3128 if (N->getNumChildren() != 2) 3129 return false; 3130 3131 const TreePatternNode *N0 = N->getChild(0); 3132 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 3133 return false; 3134 3135 const TreePatternNode *N1 = N->getChild(1); 3136 if (N1->isLeaf()) 3137 return false; 3138 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 3139 return false; 3140 3141 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 3142 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3143 return false; 3144 return OpInfo.getEnumName() == "ISD::BITCAST"; 3145 } 3146 3147 public: 3148 void AnalyzeNode(const TreePatternNode *N) { 3149 if (N->isLeaf()) { 3150 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3151 Record *LeafRec = DI->getDef(); 3152 // Handle ComplexPattern leaves. 3153 if (LeafRec->isSubClassOf("ComplexPattern")) { 3154 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3155 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3156 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3157 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3158 } 3159 } 3160 return; 3161 } 3162 3163 // Analyze children. 3164 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3165 AnalyzeNode(N->getChild(i)); 3166 3167 // Ignore set nodes, which are not SDNodes. 3168 if (N->getOperator()->getName() == "set") { 3169 isBitcast = IsNodeBitcast(N); 3170 return; 3171 } 3172 3173 // Notice properties of the node. 3174 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3175 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3176 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3177 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3178 3179 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3180 // If this is an intrinsic, analyze it. 3181 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3182 mayLoad = true;// These may load memory. 3183 3184 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3185 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3186 3187 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3188 IntInfo->hasSideEffects) 3189 // ReadWriteMem intrinsics can have other strange effects. 3190 hasSideEffects = true; 3191 } 3192 } 3193 3194 }; 3195 3196 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3197 const InstAnalyzer &PatInfo, 3198 Record *PatDef) { 3199 bool Error = false; 3200 3201 // Remember where InstInfo got its flags. 3202 if (InstInfo.hasUndefFlags()) 3203 InstInfo.InferredFrom = PatDef; 3204 3205 // Check explicitly set flags for consistency. 3206 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3207 !InstInfo.hasSideEffects_Unset) { 3208 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3209 // the pattern has no side effects. That could be useful for div/rem 3210 // instructions that may trap. 3211 if (!InstInfo.hasSideEffects) { 3212 Error = true; 3213 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3214 Twine(InstInfo.hasSideEffects)); 3215 } 3216 } 3217 3218 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3219 Error = true; 3220 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3221 Twine(InstInfo.mayStore)); 3222 } 3223 3224 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3225 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3226 // Some targets translate immediates to loads. 3227 if (!InstInfo.mayLoad) { 3228 Error = true; 3229 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3230 Twine(InstInfo.mayLoad)); 3231 } 3232 } 3233 3234 // Transfer inferred flags. 3235 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3236 InstInfo.mayStore |= PatInfo.mayStore; 3237 InstInfo.mayLoad |= PatInfo.mayLoad; 3238 3239 // These flags are silently added without any verification. 3240 InstInfo.isBitcast |= PatInfo.isBitcast; 3241 3242 // Don't infer isVariadic. This flag means something different on SDNodes and 3243 // instructions. For example, a CALL SDNode is variadic because it has the 3244 // call arguments as operands, but a CALL instruction is not variadic - it 3245 // has argument registers as implicit, not explicit uses. 3246 3247 return Error; 3248 } 3249 3250 /// hasNullFragReference - Return true if the DAG has any reference to the 3251 /// null_frag operator. 3252 static bool hasNullFragReference(DagInit *DI) { 3253 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3254 if (!OpDef) return false; 3255 Record *Operator = OpDef->getDef(); 3256 3257 // If this is the null fragment, return true. 3258 if (Operator->getName() == "null_frag") return true; 3259 // If any of the arguments reference the null fragment, return true. 3260 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3261 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3262 if (Arg && hasNullFragReference(Arg)) 3263 return true; 3264 } 3265 3266 return false; 3267 } 3268 3269 /// hasNullFragReference - Return true if any DAG in the list references 3270 /// the null_frag operator. 3271 static bool hasNullFragReference(ListInit *LI) { 3272 for (Init *I : LI->getValues()) { 3273 DagInit *DI = dyn_cast<DagInit>(I); 3274 assert(DI && "non-dag in an instruction Pattern list?!"); 3275 if (hasNullFragReference(DI)) 3276 return true; 3277 } 3278 return false; 3279 } 3280 3281 /// Get all the instructions in a tree. 3282 static void 3283 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3284 if (Tree->isLeaf()) 3285 return; 3286 if (Tree->getOperator()->isSubClassOf("Instruction")) 3287 Instrs.push_back(Tree->getOperator()); 3288 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3289 getInstructionsInTree(Tree->getChild(i), Instrs); 3290 } 3291 3292 /// Check the class of a pattern leaf node against the instruction operand it 3293 /// represents. 3294 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3295 Record *Leaf) { 3296 if (OI.Rec == Leaf) 3297 return true; 3298 3299 // Allow direct value types to be used in instruction set patterns. 3300 // The type will be checked later. 3301 if (Leaf->isSubClassOf("ValueType")) 3302 return true; 3303 3304 // Patterns can also be ComplexPattern instances. 3305 if (Leaf->isSubClassOf("ComplexPattern")) 3306 return true; 3307 3308 return false; 3309 } 3310 3311 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 3312 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3313 3314 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3315 3316 // Parse the instruction. 3317 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 3318 // Inline pattern fragments into it. 3319 I->InlinePatternFragments(); 3320 3321 // Infer as many types as possible. If we cannot infer all of them, we can 3322 // never do anything with this instruction pattern: report it to the user. 3323 if (!I->InferAllTypes()) 3324 I->error("Could not infer all types in pattern!"); 3325 3326 // InstInputs - Keep track of all of the inputs of the instruction, along 3327 // with the record they are declared as. 3328 std::map<std::string, TreePatternNode*> InstInputs; 3329 3330 // InstResults - Keep track of all the virtual registers that are 'set' 3331 // in the instruction, including what reg class they are. 3332 std::map<std::string, TreePatternNode*> InstResults; 3333 3334 std::vector<Record*> InstImpResults; 3335 3336 // Verify that the top-level forms in the instruction are of void type, and 3337 // fill in the InstResults map. 3338 SmallString<32> TypesString; 3339 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 3340 TypesString.clear(); 3341 TreePatternNode *Pat = I->getTree(j); 3342 if (Pat->getNumTypes() != 0) { 3343 raw_svector_ostream OS(TypesString); 3344 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3345 if (k > 0) 3346 OS << ", "; 3347 Pat->getExtType(k).writeToStream(OS); 3348 } 3349 I->error("Top-level forms in instruction pattern should have" 3350 " void types, has types " + 3351 OS.str()); 3352 } 3353 3354 // Find inputs and outputs, and verify the structure of the uses/defs. 3355 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3356 InstImpResults); 3357 } 3358 3359 // Now that we have inputs and outputs of the pattern, inspect the operands 3360 // list for the instruction. This determines the order that operands are 3361 // added to the machine instruction the node corresponds to. 3362 unsigned NumResults = InstResults.size(); 3363 3364 // Parse the operands list from the (ops) list, validating it. 3365 assert(I->getArgList().empty() && "Args list should still be empty here!"); 3366 3367 // Check that all of the results occur first in the list. 3368 std::vector<Record*> Results; 3369 SmallVector<TreePatternNode *, 2> ResNodes; 3370 for (unsigned i = 0; i != NumResults; ++i) { 3371 if (i == CGI.Operands.size()) 3372 I->error("'" + InstResults.begin()->first + 3373 "' set but does not appear in operand list!"); 3374 const std::string &OpName = CGI.Operands[i].Name; 3375 3376 // Check that it exists in InstResults. 3377 TreePatternNode *RNode = InstResults[OpName]; 3378 if (!RNode) 3379 I->error("Operand $" + OpName + " does not exist in operand list!"); 3380 3381 ResNodes.push_back(RNode); 3382 3383 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3384 if (!R) 3385 I->error("Operand $" + OpName + " should be a set destination: all " 3386 "outputs must occur before inputs in operand list!"); 3387 3388 if (!checkOperandClass(CGI.Operands[i], R)) 3389 I->error("Operand $" + OpName + " class mismatch!"); 3390 3391 // Remember the return type. 3392 Results.push_back(CGI.Operands[i].Rec); 3393 3394 // Okay, this one checks out. 3395 InstResults.erase(OpName); 3396 } 3397 3398 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3399 // the copy while we're checking the inputs. 3400 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3401 3402 std::vector<TreePatternNode*> ResultNodeOperands; 3403 std::vector<Record*> Operands; 3404 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3405 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3406 const std::string &OpName = Op.Name; 3407 if (OpName.empty()) 3408 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 3409 3410 if (!InstInputsCheck.count(OpName)) { 3411 // If this is an operand with a DefaultOps set filled in, we can ignore 3412 // this. When we codegen it, we will do so as always executed. 3413 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3414 // Does it have a non-empty DefaultOps field? If so, ignore this 3415 // operand. 3416 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3417 continue; 3418 } 3419 I->error("Operand $" + OpName + 3420 " does not appear in the instruction pattern"); 3421 } 3422 TreePatternNode *InVal = InstInputsCheck[OpName]; 3423 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3424 3425 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3426 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3427 if (!checkOperandClass(Op, InRec)) 3428 I->error("Operand $" + OpName + "'s register class disagrees" 3429 " between the operand and pattern"); 3430 } 3431 Operands.push_back(Op.Rec); 3432 3433 // Construct the result for the dest-pattern operand list. 3434 TreePatternNode *OpNode = InVal->clone(); 3435 3436 // No predicate is useful on the result. 3437 OpNode->clearPredicateFns(); 3438 3439 // Promote the xform function to be an explicit node if set. 3440 if (Record *Xform = OpNode->getTransformFn()) { 3441 OpNode->setTransformFn(nullptr); 3442 std::vector<TreePatternNode*> Children; 3443 Children.push_back(OpNode); 3444 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3445 } 3446 3447 ResultNodeOperands.push_back(OpNode); 3448 } 3449 3450 if (!InstInputsCheck.empty()) 3451 I->error("Input operand $" + InstInputsCheck.begin()->first + 3452 " occurs in pattern but not in operands list!"); 3453 3454 TreePatternNode *ResultPattern = 3455 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3456 GetNumNodeResults(I->getRecord(), *this)); 3457 // Copy fully inferred output node types to instruction result pattern. 3458 for (unsigned i = 0; i != NumResults; ++i) { 3459 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3460 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3461 } 3462 3463 // Create and insert the instruction. 3464 // FIXME: InstImpResults should not be part of DAGInstruction. 3465 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3466 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3467 3468 // Use a temporary tree pattern to infer all types and make sure that the 3469 // constructed result is correct. This depends on the instruction already 3470 // being inserted into the DAGInsts map. 3471 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3472 Temp.InferAllTypes(&I->getNamedNodesMap()); 3473 3474 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3475 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3476 3477 return TheInsertedInst; 3478 } 3479 3480 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3481 /// any fragments involved. This populates the Instructions list with fully 3482 /// resolved instructions. 3483 void CodeGenDAGPatterns::ParseInstructions() { 3484 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3485 3486 for (Record *Instr : Instrs) { 3487 ListInit *LI = nullptr; 3488 3489 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3490 LI = Instr->getValueAsListInit("Pattern"); 3491 3492 // If there is no pattern, only collect minimal information about the 3493 // instruction for its operand list. We have to assume that there is one 3494 // result, as we have no detailed info. A pattern which references the 3495 // null_frag operator is as-if no pattern were specified. Normally this 3496 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3497 // null_frag. 3498 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3499 std::vector<Record*> Results; 3500 std::vector<Record*> Operands; 3501 3502 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3503 3504 if (InstInfo.Operands.size() != 0) { 3505 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3506 Results.push_back(InstInfo.Operands[j].Rec); 3507 3508 // The rest are inputs. 3509 for (unsigned j = InstInfo.Operands.NumDefs, 3510 e = InstInfo.Operands.size(); j < e; ++j) 3511 Operands.push_back(InstInfo.Operands[j].Rec); 3512 } 3513 3514 // Create and insert the instruction. 3515 std::vector<Record*> ImpResults; 3516 Instructions.insert(std::make_pair(Instr, 3517 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3518 continue; // no pattern. 3519 } 3520 3521 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3522 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3523 3524 (void)DI; 3525 DEBUG(DI.getPattern()->dump()); 3526 } 3527 3528 // If we can, convert the instructions to be patterns that are matched! 3529 for (auto &Entry : Instructions) { 3530 DAGInstruction &TheInst = Entry.second; 3531 TreePattern *I = TheInst.getPattern(); 3532 if (!I) continue; // No pattern. 3533 3534 // FIXME: Assume only the first tree is the pattern. The others are clobber 3535 // nodes. 3536 TreePatternNode *Pattern = I->getTree(0); 3537 TreePatternNode *SrcPattern; 3538 if (Pattern->getOperator()->getName() == "set") { 3539 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3540 } else{ 3541 // Not a set (store or something?) 3542 SrcPattern = Pattern; 3543 } 3544 3545 Record *Instr = Entry.first; 3546 ListInit *Preds = Instr->getValueAsListInit("Predicates"); 3547 int Complexity = Instr->getValueAsInt("AddedComplexity"); 3548 AddPatternToMatch( 3549 I, 3550 PatternToMatch(Instr, makePredList(Preds), SrcPattern, 3551 TheInst.getResultPattern(), TheInst.getImpResults(), 3552 Complexity, Instr->getID())); 3553 } 3554 } 3555 3556 3557 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3558 3559 static void FindNames(const TreePatternNode *P, 3560 std::map<std::string, NameRecord> &Names, 3561 TreePattern *PatternTop) { 3562 if (!P->getName().empty()) { 3563 NameRecord &Rec = Names[P->getName()]; 3564 // If this is the first instance of the name, remember the node. 3565 if (Rec.second++ == 0) 3566 Rec.first = P; 3567 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3568 PatternTop->error("repetition of value: $" + P->getName() + 3569 " where different uses have different types!"); 3570 } 3571 3572 if (!P->isLeaf()) { 3573 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3574 FindNames(P->getChild(i), Names, PatternTop); 3575 } 3576 } 3577 3578 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3579 std::vector<Predicate> Preds; 3580 for (Init *I : L->getValues()) { 3581 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3582 Preds.push_back(Pred->getDef()); 3583 else 3584 llvm_unreachable("Non-def on the list"); 3585 } 3586 3587 // Sort so that different orders get canonicalized to the same string. 3588 std::sort(Preds.begin(), Preds.end()); 3589 return Preds; 3590 } 3591 3592 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3593 PatternToMatch &&PTM) { 3594 // Do some sanity checking on the pattern we're about to match. 3595 std::string Reason; 3596 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3597 PrintWarning(Pattern->getRecord()->getLoc(), 3598 Twine("Pattern can never match: ") + Reason); 3599 return; 3600 } 3601 3602 // If the source pattern's root is a complex pattern, that complex pattern 3603 // must specify the nodes it can potentially match. 3604 if (const ComplexPattern *CP = 3605 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3606 if (CP->getRootNodes().empty()) 3607 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3608 " could match"); 3609 3610 3611 // Find all of the named values in the input and output, ensure they have the 3612 // same type. 3613 std::map<std::string, NameRecord> SrcNames, DstNames; 3614 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3615 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3616 3617 // Scan all of the named values in the destination pattern, rejecting them if 3618 // they don't exist in the input pattern. 3619 for (const auto &Entry : DstNames) { 3620 if (SrcNames[Entry.first].first == nullptr) 3621 Pattern->error("Pattern has input without matching name in output: $" + 3622 Entry.first); 3623 } 3624 3625 // Scan all of the named values in the source pattern, rejecting them if the 3626 // name isn't used in the dest, and isn't used to tie two values together. 3627 for (const auto &Entry : SrcNames) 3628 if (DstNames[Entry.first].first == nullptr && 3629 SrcNames[Entry.first].second == 1) 3630 Pattern->error("Pattern has dead named input: $" + Entry.first); 3631 3632 PatternsToMatch.push_back(std::move(PTM)); 3633 } 3634 3635 void CodeGenDAGPatterns::InferInstructionFlags() { 3636 ArrayRef<const CodeGenInstruction*> Instructions = 3637 Target.getInstructionsByEnumValue(); 3638 3639 // First try to infer flags from the primary instruction pattern, if any. 3640 SmallVector<CodeGenInstruction*, 8> Revisit; 3641 unsigned Errors = 0; 3642 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3643 CodeGenInstruction &InstInfo = 3644 const_cast<CodeGenInstruction &>(*Instructions[i]); 3645 3646 // Get the primary instruction pattern. 3647 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3648 if (!Pattern) { 3649 if (InstInfo.hasUndefFlags()) 3650 Revisit.push_back(&InstInfo); 3651 continue; 3652 } 3653 InstAnalyzer PatInfo(*this); 3654 PatInfo.Analyze(Pattern); 3655 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3656 } 3657 3658 // Second, look for single-instruction patterns defined outside the 3659 // instruction. 3660 for (const PatternToMatch &PTM : ptms()) { 3661 // We can only infer from single-instruction patterns, otherwise we won't 3662 // know which instruction should get the flags. 3663 SmallVector<Record*, 8> PatInstrs; 3664 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3665 if (PatInstrs.size() != 1) 3666 continue; 3667 3668 // Get the single instruction. 3669 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3670 3671 // Only infer properties from the first pattern. We'll verify the others. 3672 if (InstInfo.InferredFrom) 3673 continue; 3674 3675 InstAnalyzer PatInfo(*this); 3676 PatInfo.Analyze(PTM); 3677 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3678 } 3679 3680 if (Errors) 3681 PrintFatalError("pattern conflicts"); 3682 3683 // Revisit instructions with undefined flags and no pattern. 3684 if (Target.guessInstructionProperties()) { 3685 for (CodeGenInstruction *InstInfo : Revisit) { 3686 if (InstInfo->InferredFrom) 3687 continue; 3688 // The mayLoad and mayStore flags default to false. 3689 // Conservatively assume hasSideEffects if it wasn't explicit. 3690 if (InstInfo->hasSideEffects_Unset) 3691 InstInfo->hasSideEffects = true; 3692 } 3693 return; 3694 } 3695 3696 // Complain about any flags that are still undefined. 3697 for (CodeGenInstruction *InstInfo : Revisit) { 3698 if (InstInfo->InferredFrom) 3699 continue; 3700 if (InstInfo->hasSideEffects_Unset) 3701 PrintError(InstInfo->TheDef->getLoc(), 3702 "Can't infer hasSideEffects from patterns"); 3703 if (InstInfo->mayStore_Unset) 3704 PrintError(InstInfo->TheDef->getLoc(), 3705 "Can't infer mayStore from patterns"); 3706 if (InstInfo->mayLoad_Unset) 3707 PrintError(InstInfo->TheDef->getLoc(), 3708 "Can't infer mayLoad from patterns"); 3709 } 3710 } 3711 3712 3713 /// Verify instruction flags against pattern node properties. 3714 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3715 unsigned Errors = 0; 3716 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3717 const PatternToMatch &PTM = *I; 3718 SmallVector<Record*, 8> Instrs; 3719 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3720 if (Instrs.empty()) 3721 continue; 3722 3723 // Count the number of instructions with each flag set. 3724 unsigned NumSideEffects = 0; 3725 unsigned NumStores = 0; 3726 unsigned NumLoads = 0; 3727 for (const Record *Instr : Instrs) { 3728 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3729 NumSideEffects += InstInfo.hasSideEffects; 3730 NumStores += InstInfo.mayStore; 3731 NumLoads += InstInfo.mayLoad; 3732 } 3733 3734 // Analyze the source pattern. 3735 InstAnalyzer PatInfo(*this); 3736 PatInfo.Analyze(PTM); 3737 3738 // Collect error messages. 3739 SmallVector<std::string, 4> Msgs; 3740 3741 // Check for missing flags in the output. 3742 // Permit extra flags for now at least. 3743 if (PatInfo.hasSideEffects && !NumSideEffects) 3744 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3745 3746 // Don't verify store flags on instructions with side effects. At least for 3747 // intrinsics, side effects implies mayStore. 3748 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3749 Msgs.push_back("pattern may store, but mayStore isn't set"); 3750 3751 // Similarly, mayStore implies mayLoad on intrinsics. 3752 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3753 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3754 3755 // Print error messages. 3756 if (Msgs.empty()) 3757 continue; 3758 ++Errors; 3759 3760 for (const std::string &Msg : Msgs) 3761 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3762 (Instrs.size() == 1 ? 3763 "instruction" : "output instructions")); 3764 // Provide the location of the relevant instruction definitions. 3765 for (const Record *Instr : Instrs) { 3766 if (Instr != PTM.getSrcRecord()) 3767 PrintError(Instr->getLoc(), "defined here"); 3768 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3769 if (InstInfo.InferredFrom && 3770 InstInfo.InferredFrom != InstInfo.TheDef && 3771 InstInfo.InferredFrom != PTM.getSrcRecord()) 3772 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3773 } 3774 } 3775 if (Errors) 3776 PrintFatalError("Errors in DAG patterns"); 3777 } 3778 3779 /// Given a pattern result with an unresolved type, see if we can find one 3780 /// instruction with an unresolved result type. Force this result type to an 3781 /// arbitrary element if it's possible types to converge results. 3782 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3783 if (N->isLeaf()) 3784 return false; 3785 3786 // Analyze children. 3787 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3788 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3789 return true; 3790 3791 if (!N->getOperator()->isSubClassOf("Instruction")) 3792 return false; 3793 3794 // If this type is already concrete or completely unknown we can't do 3795 // anything. 3796 TypeInfer &TI = TP.getInfer(); 3797 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3798 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 3799 continue; 3800 3801 // Otherwise, force its type to an arbitrary choice. 3802 if (TI.forceArbitrary(N->getExtType(i))) 3803 return true; 3804 } 3805 3806 return false; 3807 } 3808 3809 void CodeGenDAGPatterns::ParsePatterns() { 3810 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3811 3812 for (Record *CurPattern : Patterns) { 3813 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3814 3815 // If the pattern references the null_frag, there's nothing to do. 3816 if (hasNullFragReference(Tree)) 3817 continue; 3818 3819 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3820 3821 // Inline pattern fragments into it. 3822 Pattern->InlinePatternFragments(); 3823 3824 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3825 if (LI->empty()) continue; // no pattern. 3826 3827 // Parse the instruction. 3828 TreePattern Result(CurPattern, LI, false, *this); 3829 3830 // Inline pattern fragments into it. 3831 Result.InlinePatternFragments(); 3832 3833 if (Result.getNumTrees() != 1) 3834 Result.error("Cannot handle instructions producing instructions " 3835 "with temporaries yet!"); 3836 3837 bool IterateInference; 3838 bool InferredAllPatternTypes, InferredAllResultTypes; 3839 do { 3840 // Infer as many types as possible. If we cannot infer all of them, we 3841 // can never do anything with this pattern: report it to the user. 3842 InferredAllPatternTypes = 3843 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3844 3845 // Infer as many types as possible. If we cannot infer all of them, we 3846 // can never do anything with this pattern: report it to the user. 3847 InferredAllResultTypes = 3848 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3849 3850 IterateInference = false; 3851 3852 // Apply the type of the result to the source pattern. This helps us 3853 // resolve cases where the input type is known to be a pointer type (which 3854 // is considered resolved), but the result knows it needs to be 32- or 3855 // 64-bits. Infer the other way for good measure. 3856 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3857 Pattern->getTree(0)->getNumTypes()); 3858 i != e; ++i) { 3859 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3860 i, Result.getTree(0)->getExtType(i), Result); 3861 IterateInference |= Result.getTree(0)->UpdateNodeType( 3862 i, Pattern->getTree(0)->getExtType(i), Result); 3863 } 3864 3865 // If our iteration has converged and the input pattern's types are fully 3866 // resolved but the result pattern is not fully resolved, we may have a 3867 // situation where we have two instructions in the result pattern and 3868 // the instructions require a common register class, but don't care about 3869 // what actual MVT is used. This is actually a bug in our modelling: 3870 // output patterns should have register classes, not MVTs. 3871 // 3872 // In any case, to handle this, we just go through and disambiguate some 3873 // arbitrary types to the result pattern's nodes. 3874 if (!IterateInference && InferredAllPatternTypes && 3875 !InferredAllResultTypes) 3876 IterateInference = 3877 ForceArbitraryInstResultType(Result.getTree(0), Result); 3878 } while (IterateInference); 3879 3880 // Verify that we inferred enough types that we can do something with the 3881 // pattern and result. If these fire the user has to add type casts. 3882 if (!InferredAllPatternTypes) 3883 Pattern->error("Could not infer all types in pattern!"); 3884 if (!InferredAllResultTypes) { 3885 Pattern->dump(); 3886 Result.error("Could not infer all types in pattern result!"); 3887 } 3888 3889 // Validate that the input pattern is correct. 3890 std::map<std::string, TreePatternNode*> InstInputs; 3891 std::map<std::string, TreePatternNode*> InstResults; 3892 std::vector<Record*> InstImpResults; 3893 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3894 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3895 InstInputs, InstResults, 3896 InstImpResults); 3897 3898 // Promote the xform function to be an explicit node if set. 3899 TreePatternNode *DstPattern = Result.getOnlyTree(); 3900 std::vector<TreePatternNode*> ResultNodeOperands; 3901 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3902 TreePatternNode *OpNode = DstPattern->getChild(ii); 3903 if (Record *Xform = OpNode->getTransformFn()) { 3904 OpNode->setTransformFn(nullptr); 3905 std::vector<TreePatternNode*> Children; 3906 Children.push_back(OpNode); 3907 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3908 } 3909 ResultNodeOperands.push_back(OpNode); 3910 } 3911 DstPattern = Result.getOnlyTree(); 3912 if (!DstPattern->isLeaf()) 3913 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3914 ResultNodeOperands, 3915 DstPattern->getNumTypes()); 3916 3917 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3918 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3919 3920 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3921 Temp.InferAllTypes(); 3922 3923 // A pattern may end up with an "impossible" type, i.e. a situation 3924 // where all types have been eliminated for some node in this pattern. 3925 // This could occur for intrinsics that only make sense for a specific 3926 // value type, and use a specific register class. If, for some mode, 3927 // that register class does not accept that type, the type inference 3928 // will lead to a contradiction, which is not an error however, but 3929 // a sign that this pattern will simply never match. 3930 if (Pattern->getTree(0)->hasPossibleType() && 3931 Temp.getOnlyTree()->hasPossibleType()) { 3932 ListInit *Preds = CurPattern->getValueAsListInit("Predicates"); 3933 int Complexity = CurPattern->getValueAsInt("AddedComplexity"); 3934 AddPatternToMatch( 3935 Pattern, 3936 PatternToMatch( 3937 CurPattern, makePredList(Preds), Pattern->getTree(0), 3938 Temp.getOnlyTree(), std::move(InstImpResults), Complexity, 3939 CurPattern->getID())); 3940 } 3941 } 3942 } 3943 3944 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 3945 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 3946 for (const auto &I : VTS) 3947 Modes.insert(I.first); 3948 3949 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3950 collectModes(Modes, N->getChild(i)); 3951 } 3952 3953 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 3954 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3955 std::map<unsigned,std::vector<Predicate>> ModeChecks; 3956 std::vector<PatternToMatch> Copy = PatternsToMatch; 3957 PatternsToMatch.clear(); 3958 3959 auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) { 3960 TreePatternNode *NewSrc = P.SrcPattern->clone(); 3961 TreePatternNode *NewDst = P.DstPattern->clone(); 3962 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 3963 delete NewSrc; 3964 delete NewDst; 3965 return; 3966 } 3967 3968 std::vector<Predicate> Preds = P.Predicates; 3969 const std::vector<Predicate> &MC = ModeChecks[Mode]; 3970 Preds.insert(Preds.end(), MC.begin(), MC.end()); 3971 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst, 3972 P.getDstRegs(), P.getAddedComplexity(), 3973 Record::getNewUID(), Mode); 3974 }; 3975 3976 for (PatternToMatch &P : Copy) { 3977 TreePatternNode *SrcP = nullptr, *DstP = nullptr; 3978 if (P.SrcPattern->hasProperTypeByHwMode()) 3979 SrcP = P.SrcPattern; 3980 if (P.DstPattern->hasProperTypeByHwMode()) 3981 DstP = P.DstPattern; 3982 if (!SrcP && !DstP) { 3983 PatternsToMatch.push_back(P); 3984 continue; 3985 } 3986 3987 std::set<unsigned> Modes; 3988 if (SrcP) 3989 collectModes(Modes, SrcP); 3990 if (DstP) 3991 collectModes(Modes, DstP); 3992 3993 // The predicate for the default mode needs to be constructed for each 3994 // pattern separately. 3995 // Since not all modes must be present in each pattern, if a mode m is 3996 // absent, then there is no point in constructing a check for m. If such 3997 // a check was created, it would be equivalent to checking the default 3998 // mode, except not all modes' predicates would be a part of the checking 3999 // code. The subsequently generated check for the default mode would then 4000 // have the exact same patterns, but a different predicate code. To avoid 4001 // duplicated patterns with different predicate checks, construct the 4002 // default check as a negation of all predicates that are actually present 4003 // in the source/destination patterns. 4004 std::vector<Predicate> DefaultPred; 4005 4006 for (unsigned M : Modes) { 4007 if (M == DefaultMode) 4008 continue; 4009 if (ModeChecks.find(M) != ModeChecks.end()) 4010 continue; 4011 4012 // Fill the map entry for this mode. 4013 const HwMode &HM = CGH.getMode(M); 4014 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4015 4016 // Add negations of the HM's predicates to the default predicate. 4017 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4018 } 4019 4020 for (unsigned M : Modes) { 4021 if (M == DefaultMode) 4022 continue; 4023 AppendPattern(P, M); 4024 } 4025 4026 bool HasDefault = Modes.count(DefaultMode); 4027 if (HasDefault) 4028 AppendPattern(P, DefaultMode); 4029 } 4030 } 4031 4032 /// Dependent variable map for CodeGenDAGPattern variant generation 4033 typedef StringMap<int> DepVarMap; 4034 4035 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4036 if (N->isLeaf()) { 4037 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4038 DepMap[N->getName()]++; 4039 } else { 4040 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4041 FindDepVarsOf(N->getChild(i), DepMap); 4042 } 4043 } 4044 4045 /// Find dependent variables within child patterns 4046 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4047 DepVarMap depcounts; 4048 FindDepVarsOf(N, depcounts); 4049 for (const auto &Pair : depcounts) { 4050 if (Pair.getValue() > 1) 4051 DepVars.insert(Pair.getKey()); 4052 } 4053 } 4054 4055 #ifndef NDEBUG 4056 /// Dump the dependent variable set: 4057 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4058 if (DepVars.empty()) { 4059 DEBUG(errs() << "<empty set>"); 4060 } else { 4061 DEBUG(errs() << "[ "); 4062 for (const auto &DepVar : DepVars) { 4063 DEBUG(errs() << DepVar.getKey() << " "); 4064 } 4065 DEBUG(errs() << "]"); 4066 } 4067 } 4068 #endif 4069 4070 4071 /// CombineChildVariants - Given a bunch of permutations of each child of the 4072 /// 'operator' node, put them together in all possible ways. 4073 static void CombineChildVariants(TreePatternNode *Orig, 4074 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 4075 std::vector<TreePatternNode*> &OutVariants, 4076 CodeGenDAGPatterns &CDP, 4077 const MultipleUseVarSet &DepVars) { 4078 // Make sure that each operand has at least one variant to choose from. 4079 for (const auto &Variants : ChildVariants) 4080 if (Variants.empty()) 4081 return; 4082 4083 // The end result is an all-pairs construction of the resultant pattern. 4084 std::vector<unsigned> Idxs; 4085 Idxs.resize(ChildVariants.size()); 4086 bool NotDone; 4087 do { 4088 #ifndef NDEBUG 4089 DEBUG(if (!Idxs.empty()) { 4090 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4091 for (unsigned Idx : Idxs) { 4092 errs() << Idx << " "; 4093 } 4094 errs() << "]\n"; 4095 }); 4096 #endif 4097 // Create the variant and add it to the output list. 4098 std::vector<TreePatternNode*> NewChildren; 4099 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4100 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4101 auto R = llvm::make_unique<TreePatternNode>( 4102 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 4103 4104 // Copy over properties. 4105 R->setName(Orig->getName()); 4106 R->setPredicateFns(Orig->getPredicateFns()); 4107 R->setTransformFn(Orig->getTransformFn()); 4108 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4109 R->setType(i, Orig->getExtType(i)); 4110 4111 // If this pattern cannot match, do not include it as a variant. 4112 std::string ErrString; 4113 // Scan to see if this pattern has already been emitted. We can get 4114 // duplication due to things like commuting: 4115 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4116 // which are the same pattern. Ignore the dups. 4117 if (R->canPatternMatch(ErrString, CDP) && 4118 none_of(OutVariants, [&](TreePatternNode *Variant) { 4119 return R->isIsomorphicTo(Variant, DepVars); 4120 })) 4121 OutVariants.push_back(R.release()); 4122 4123 // Increment indices to the next permutation by incrementing the 4124 // indices from last index backward, e.g., generate the sequence 4125 // [0, 0], [0, 1], [1, 0], [1, 1]. 4126 int IdxsIdx; 4127 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4128 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4129 Idxs[IdxsIdx] = 0; 4130 else 4131 break; 4132 } 4133 NotDone = (IdxsIdx >= 0); 4134 } while (NotDone); 4135 } 4136 4137 /// CombineChildVariants - A helper function for binary operators. 4138 /// 4139 static void CombineChildVariants(TreePatternNode *Orig, 4140 const std::vector<TreePatternNode*> &LHS, 4141 const std::vector<TreePatternNode*> &RHS, 4142 std::vector<TreePatternNode*> &OutVariants, 4143 CodeGenDAGPatterns &CDP, 4144 const MultipleUseVarSet &DepVars) { 4145 std::vector<std::vector<TreePatternNode*> > ChildVariants; 4146 ChildVariants.push_back(LHS); 4147 ChildVariants.push_back(RHS); 4148 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4149 } 4150 4151 4152 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 4153 std::vector<TreePatternNode *> &Children) { 4154 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4155 Record *Operator = N->getOperator(); 4156 4157 // Only permit raw nodes. 4158 if (!N->getName().empty() || !N->getPredicateFns().empty() || 4159 N->getTransformFn()) { 4160 Children.push_back(N); 4161 return; 4162 } 4163 4164 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4165 Children.push_back(N->getChild(0)); 4166 else 4167 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 4168 4169 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4170 Children.push_back(N->getChild(1)); 4171 else 4172 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 4173 } 4174 4175 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4176 /// the (potentially recursive) pattern by using algebraic laws. 4177 /// 4178 static void GenerateVariantsOf(TreePatternNode *N, 4179 std::vector<TreePatternNode*> &OutVariants, 4180 CodeGenDAGPatterns &CDP, 4181 const MultipleUseVarSet &DepVars) { 4182 // We cannot permute leaves or ComplexPattern uses. 4183 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4184 OutVariants.push_back(N); 4185 return; 4186 } 4187 4188 // Look up interesting info about the node. 4189 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4190 4191 // If this node is associative, re-associate. 4192 if (NodeInfo.hasProperty(SDNPAssociative)) { 4193 // Re-associate by pulling together all of the linked operators 4194 std::vector<TreePatternNode*> MaximalChildren; 4195 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4196 4197 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4198 // permutations. 4199 if (MaximalChildren.size() == 3) { 4200 // Find the variants of all of our maximal children. 4201 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 4202 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4203 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4204 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4205 4206 // There are only two ways we can permute the tree: 4207 // (A op B) op C and A op (B op C) 4208 // Within these forms, we can also permute A/B/C. 4209 4210 // Generate legal pair permutations of A/B/C. 4211 std::vector<TreePatternNode*> ABVariants; 4212 std::vector<TreePatternNode*> BAVariants; 4213 std::vector<TreePatternNode*> ACVariants; 4214 std::vector<TreePatternNode*> CAVariants; 4215 std::vector<TreePatternNode*> BCVariants; 4216 std::vector<TreePatternNode*> CBVariants; 4217 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4218 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4219 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4220 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4221 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4222 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4223 4224 // Combine those into the result: (x op x) op x 4225 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4226 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4227 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4228 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4229 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4230 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4231 4232 // Combine those into the result: x op (x op x) 4233 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4234 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4235 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4236 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4237 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4238 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4239 return; 4240 } 4241 } 4242 4243 // Compute permutations of all children. 4244 std::vector<std::vector<TreePatternNode*> > ChildVariants; 4245 ChildVariants.resize(N->getNumChildren()); 4246 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4247 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 4248 4249 // Build all permutations based on how the children were formed. 4250 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4251 4252 // If this node is commutative, consider the commuted order. 4253 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4254 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4255 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4256 "Commutative but doesn't have 2 children!"); 4257 // Don't count children which are actually register references. 4258 unsigned NC = 0; 4259 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4260 TreePatternNode *Child = N->getChild(i); 4261 if (Child->isLeaf()) 4262 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4263 Record *RR = DI->getDef(); 4264 if (RR->isSubClassOf("Register")) 4265 continue; 4266 } 4267 NC++; 4268 } 4269 // Consider the commuted order. 4270 if (isCommIntrinsic) { 4271 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4272 // operands are the commutative operands, and there might be more operands 4273 // after those. 4274 assert(NC >= 3 && 4275 "Commutative intrinsic should have at least 3 children!"); 4276 std::vector<std::vector<TreePatternNode*> > Variants; 4277 Variants.push_back(ChildVariants[0]); // Intrinsic id. 4278 Variants.push_back(ChildVariants[2]); 4279 Variants.push_back(ChildVariants[1]); 4280 for (unsigned i = 3; i != NC; ++i) 4281 Variants.push_back(ChildVariants[i]); 4282 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4283 } else if (NC == N->getNumChildren()) { 4284 std::vector<std::vector<TreePatternNode*> > Variants; 4285 Variants.push_back(ChildVariants[1]); 4286 Variants.push_back(ChildVariants[0]); 4287 for (unsigned i = 2; i != NC; ++i) 4288 Variants.push_back(ChildVariants[i]); 4289 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4290 } 4291 } 4292 } 4293 4294 4295 // GenerateVariants - Generate variants. For example, commutative patterns can 4296 // match multiple ways. Add them to PatternsToMatch as well. 4297 void CodeGenDAGPatterns::GenerateVariants() { 4298 DEBUG(errs() << "Generating instruction variants.\n"); 4299 4300 // Loop over all of the patterns we've collected, checking to see if we can 4301 // generate variants of the instruction, through the exploitation of 4302 // identities. This permits the target to provide aggressive matching without 4303 // the .td file having to contain tons of variants of instructions. 4304 // 4305 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4306 // intentionally do not reconsider these. Any variants of added patterns have 4307 // already been added. 4308 // 4309 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4310 MultipleUseVarSet DepVars; 4311 std::vector<TreePatternNode*> Variants; 4312 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4313 DEBUG(errs() << "Dependent/multiply used variables: "); 4314 DEBUG(DumpDepVars(DepVars)); 4315 DEBUG(errs() << "\n"); 4316 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 4317 DepVars); 4318 4319 assert(!Variants.empty() && "Must create at least original variant!"); 4320 if (Variants.size() == 1) // No additional variants for this pattern. 4321 continue; 4322 4323 DEBUG(errs() << "FOUND VARIANTS OF: "; 4324 PatternsToMatch[i].getSrcPattern()->dump(); 4325 errs() << "\n"); 4326 4327 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4328 TreePatternNode *Variant = Variants[v]; 4329 4330 DEBUG(errs() << " VAR#" << v << ": "; 4331 Variant->dump(); 4332 errs() << "\n"); 4333 4334 // Scan to see if an instruction or explicit pattern already matches this. 4335 bool AlreadyExists = false; 4336 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4337 // Skip if the top level predicates do not match. 4338 if (PatternsToMatch[i].getPredicates() != 4339 PatternsToMatch[p].getPredicates()) 4340 continue; 4341 // Check to see if this variant already exists. 4342 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4343 DepVars)) { 4344 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4345 AlreadyExists = true; 4346 break; 4347 } 4348 } 4349 // If we already have it, ignore the variant. 4350 if (AlreadyExists) continue; 4351 4352 // Otherwise, add it to the list of patterns we have. 4353 PatternsToMatch.push_back(PatternToMatch( 4354 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4355 Variant, PatternsToMatch[i].getDstPattern(), 4356 PatternsToMatch[i].getDstRegs(), 4357 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4358 } 4359 4360 DEBUG(errs() << "\n"); 4361 } 4362 } 4363