1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/TableGen/Error.h" 22 #include "llvm/TableGen/Record.h" 23 #include <algorithm> 24 #include <cstdio> 25 #include <set> 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dag-patterns" 29 30 //===----------------------------------------------------------------------===// 31 // EEVT::TypeSet Implementation 32 //===----------------------------------------------------------------------===// 33 34 static inline bool isInteger(MVT::SimpleValueType VT) { 35 return MVT(VT).isInteger(); 36 } 37 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 38 return MVT(VT).isFloatingPoint(); 39 } 40 static inline bool isVector(MVT::SimpleValueType VT) { 41 return MVT(VT).isVector(); 42 } 43 static inline bool isScalar(MVT::SimpleValueType VT) { 44 return !MVT(VT).isVector(); 45 } 46 47 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 48 if (VT == MVT::iAny) 49 EnforceInteger(TP); 50 else if (VT == MVT::fAny) 51 EnforceFloatingPoint(TP); 52 else if (VT == MVT::vAny) 53 EnforceVector(TP); 54 else { 55 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 56 VT == MVT::iPTRAny) && "Not a concrete type!"); 57 TypeVec.push_back(VT); 58 } 59 } 60 61 62 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 63 assert(!VTList.empty() && "empty list?"); 64 TypeVec.append(VTList.begin(), VTList.end()); 65 66 if (!VTList.empty()) 67 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 68 VTList[0] != MVT::fAny); 69 70 // Verify no duplicates. 71 array_pod_sort(TypeVec.begin(), TypeVec.end()); 72 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 73 } 74 75 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 76 /// on completely unknown type sets. 77 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 78 bool (*Pred)(MVT::SimpleValueType), 79 const char *PredicateName) { 80 assert(isCompletelyUnknown()); 81 ArrayRef<MVT::SimpleValueType> LegalTypes = 82 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 83 84 if (TP.hasError()) 85 return false; 86 87 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 88 if (!Pred || Pred(LegalTypes[i])) 89 TypeVec.push_back(LegalTypes[i]); 90 91 // If we have nothing that matches the predicate, bail out. 92 if (TypeVec.empty()) { 93 TP.error("Type inference contradiction found, no " + 94 std::string(PredicateName) + " types found"); 95 return false; 96 } 97 // No need to sort with one element. 98 if (TypeVec.size() == 1) return true; 99 100 // Remove duplicates. 101 array_pod_sort(TypeVec.begin(), TypeVec.end()); 102 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 103 104 return true; 105 } 106 107 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 108 /// integer value type. 109 bool EEVT::TypeSet::hasIntegerTypes() const { 110 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 111 if (isInteger(TypeVec[i])) 112 return true; 113 return false; 114 } 115 116 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 117 /// a floating point value type. 118 bool EEVT::TypeSet::hasFloatingPointTypes() const { 119 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 120 if (isFloatingPoint(TypeVec[i])) 121 return true; 122 return false; 123 } 124 125 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 126 bool EEVT::TypeSet::hasScalarTypes() const { 127 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 128 if (isScalar(TypeVec[i])) 129 return true; 130 return false; 131 } 132 133 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 134 /// value type. 135 bool EEVT::TypeSet::hasVectorTypes() const { 136 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 137 if (isVector(TypeVec[i])) 138 return true; 139 return false; 140 } 141 142 143 std::string EEVT::TypeSet::getName() const { 144 if (TypeVec.empty()) return "<empty>"; 145 146 std::string Result; 147 148 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 149 std::string VTName = llvm::getEnumName(TypeVec[i]); 150 // Strip off MVT:: prefix if present. 151 if (VTName.substr(0,5) == "MVT::") 152 VTName = VTName.substr(5); 153 if (i) Result += ':'; 154 Result += VTName; 155 } 156 157 if (TypeVec.size() == 1) 158 return Result; 159 return "{" + Result + "}"; 160 } 161 162 /// MergeInTypeInfo - This merges in type information from the specified 163 /// argument. If 'this' changes, it returns true. If the two types are 164 /// contradictory (e.g. merge f32 into i32) then this flags an error. 165 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 166 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 167 return false; 168 169 if (isCompletelyUnknown()) { 170 *this = InVT; 171 return true; 172 } 173 174 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 175 176 // Handle the abstract cases, seeing if we can resolve them better. 177 switch (TypeVec[0]) { 178 default: break; 179 case MVT::iPTR: 180 case MVT::iPTRAny: 181 if (InVT.hasIntegerTypes()) { 182 EEVT::TypeSet InCopy(InVT); 183 InCopy.EnforceInteger(TP); 184 InCopy.EnforceScalar(TP); 185 186 if (InCopy.isConcrete()) { 187 // If the RHS has one integer type, upgrade iPTR to i32. 188 TypeVec[0] = InVT.TypeVec[0]; 189 return true; 190 } 191 192 // If the input has multiple scalar integers, this doesn't add any info. 193 if (!InCopy.isCompletelyUnknown()) 194 return false; 195 } 196 break; 197 } 198 199 // If the input constraint is iAny/iPTR and this is an integer type list, 200 // remove non-integer types from the list. 201 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 202 hasIntegerTypes()) { 203 bool MadeChange = EnforceInteger(TP); 204 205 // If we're merging in iPTR/iPTRAny and the node currently has a list of 206 // multiple different integer types, replace them with a single iPTR. 207 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 208 TypeVec.size() != 1) { 209 TypeVec.resize(1); 210 TypeVec[0] = InVT.TypeVec[0]; 211 MadeChange = true; 212 } 213 214 return MadeChange; 215 } 216 217 // If this is a type list and the RHS is a typelist as well, eliminate entries 218 // from this list that aren't in the other one. 219 bool MadeChange = false; 220 TypeSet InputSet(*this); 221 222 for (unsigned i = 0; i != TypeVec.size(); ++i) { 223 bool InInVT = false; 224 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 225 if (TypeVec[i] == InVT.TypeVec[j]) { 226 InInVT = true; 227 break; 228 } 229 230 if (InInVT) continue; 231 TypeVec.erase(TypeVec.begin()+i--); 232 MadeChange = true; 233 } 234 235 // If we removed all of our types, we have a type contradiction. 236 if (!TypeVec.empty()) 237 return MadeChange; 238 239 // FIXME: Really want an SMLoc here! 240 TP.error("Type inference contradiction found, merging '" + 241 InVT.getName() + "' into '" + InputSet.getName() + "'"); 242 return false; 243 } 244 245 /// EnforceInteger - Remove all non-integer types from this set. 246 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 247 if (TP.hasError()) 248 return false; 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isInteger, "integer"); 252 if (!hasFloatingPointTypes()) 253 return false; 254 255 TypeSet InputSet(*this); 256 257 // Filter out all the fp types. 258 for (unsigned i = 0; i != TypeVec.size(); ++i) 259 if (!isInteger(TypeVec[i])) 260 TypeVec.erase(TypeVec.begin()+i--); 261 262 if (TypeVec.empty()) { 263 TP.error("Type inference contradiction found, '" + 264 InputSet.getName() + "' needs to be integer"); 265 return false; 266 } 267 return true; 268 } 269 270 /// EnforceFloatingPoint - Remove all integer types from this set. 271 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 272 if (TP.hasError()) 273 return false; 274 // If we know nothing, then get the full set. 275 if (TypeVec.empty()) 276 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 277 278 if (!hasIntegerTypes()) 279 return false; 280 281 TypeSet InputSet(*this); 282 283 // Filter out all the fp types. 284 for (unsigned i = 0; i != TypeVec.size(); ++i) 285 if (!isFloatingPoint(TypeVec[i])) 286 TypeVec.erase(TypeVec.begin()+i--); 287 288 if (TypeVec.empty()) { 289 TP.error("Type inference contradiction found, '" + 290 InputSet.getName() + "' needs to be floating point"); 291 return false; 292 } 293 return true; 294 } 295 296 /// EnforceScalar - Remove all vector types from this. 297 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 298 if (TP.hasError()) 299 return false; 300 301 // If we know nothing, then get the full set. 302 if (TypeVec.empty()) 303 return FillWithPossibleTypes(TP, isScalar, "scalar"); 304 305 if (!hasVectorTypes()) 306 return false; 307 308 TypeSet InputSet(*this); 309 310 // Filter out all the vector types. 311 for (unsigned i = 0; i != TypeVec.size(); ++i) 312 if (!isScalar(TypeVec[i])) 313 TypeVec.erase(TypeVec.begin()+i--); 314 315 if (TypeVec.empty()) { 316 TP.error("Type inference contradiction found, '" + 317 InputSet.getName() + "' needs to be scalar"); 318 return false; 319 } 320 return true; 321 } 322 323 /// EnforceVector - Remove all vector types from this. 324 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 325 if (TP.hasError()) 326 return false; 327 328 // If we know nothing, then get the full set. 329 if (TypeVec.empty()) 330 return FillWithPossibleTypes(TP, isVector, "vector"); 331 332 TypeSet InputSet(*this); 333 bool MadeChange = false; 334 335 // Filter out all the scalar types. 336 for (unsigned i = 0; i != TypeVec.size(); ++i) 337 if (!isVector(TypeVec[i])) { 338 TypeVec.erase(TypeVec.begin()+i--); 339 MadeChange = true; 340 } 341 342 if (TypeVec.empty()) { 343 TP.error("Type inference contradiction found, '" + 344 InputSet.getName() + "' needs to be a vector"); 345 return false; 346 } 347 return MadeChange; 348 } 349 350 351 352 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 353 /// this shoud be based on the element type. Update this and other based on 354 /// this information. 355 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 356 if (TP.hasError()) 357 return false; 358 359 // Both operands must be integer or FP, but we don't care which. 360 bool MadeChange = false; 361 362 if (isCompletelyUnknown()) 363 MadeChange = FillWithPossibleTypes(TP); 364 365 if (Other.isCompletelyUnknown()) 366 MadeChange = Other.FillWithPossibleTypes(TP); 367 368 // If one side is known to be integer or known to be FP but the other side has 369 // no information, get at least the type integrality info in there. 370 if (!hasFloatingPointTypes()) 371 MadeChange |= Other.EnforceInteger(TP); 372 else if (!hasIntegerTypes()) 373 MadeChange |= Other.EnforceFloatingPoint(TP); 374 if (!Other.hasFloatingPointTypes()) 375 MadeChange |= EnforceInteger(TP); 376 else if (!Other.hasIntegerTypes()) 377 MadeChange |= EnforceFloatingPoint(TP); 378 379 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 380 "Should have a type list now"); 381 382 // If one contains vectors but the other doesn't pull vectors out. 383 if (!hasVectorTypes()) 384 MadeChange |= Other.EnforceScalar(TP); 385 else if (!hasScalarTypes()) 386 MadeChange |= Other.EnforceVector(TP); 387 if (!Other.hasVectorTypes()) 388 MadeChange |= EnforceScalar(TP); 389 else if (!Other.hasScalarTypes()) 390 MadeChange |= EnforceVector(TP); 391 392 // For vectors we need to ensure that smaller size doesn't produce larger 393 // vector and vice versa. 394 if (isConcrete() && isVector(getConcrete())) { 395 MVT IVT = getConcrete(); 396 unsigned Size = IVT.getSizeInBits(); 397 398 // Only keep types that have at least as many bits. 399 TypeSet InputSet(Other); 400 401 for (unsigned i = 0; i != Other.TypeVec.size(); ++i) { 402 assert(isVector(Other.TypeVec[i]) && "EnforceVector didn't work"); 403 if (MVT(Other.TypeVec[i]).getSizeInBits() < Size) { 404 Other.TypeVec.erase(Other.TypeVec.begin()+i--); 405 MadeChange = true; 406 } 407 } 408 409 if (Other.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 410 TP.error("Type inference contradiction found, forcing '" + 411 InputSet.getName() + "' to have at least as many bits as " + 412 getName() + "'"); 413 return false; 414 } 415 } else if (Other.isConcrete() && isVector(Other.getConcrete())) { 416 MVT IVT = Other.getConcrete(); 417 unsigned Size = IVT.getSizeInBits(); 418 419 // Only keep types with the same or fewer total bits 420 TypeSet InputSet(*this); 421 422 for (unsigned i = 0; i != TypeVec.size(); ++i) { 423 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 424 if (MVT(TypeVec[i]).getSizeInBits() > Size) { 425 TypeVec.erase(TypeVec.begin()+i--); 426 MadeChange = true; 427 } 428 } 429 430 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 431 TP.error("Type inference contradiction found, forcing '" + 432 InputSet.getName() + "' to have the same or fewer bits than " + 433 Other.getName() + "'"); 434 return false; 435 } 436 } 437 438 // This code does not currently handle nodes which have multiple types, 439 // where some types are integer, and some are fp. Assert that this is not 440 // the case. 441 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 442 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 443 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 444 445 if (TP.hasError()) 446 return false; 447 448 // Okay, find the smallest scalar type from the other set and remove 449 // anything the same or smaller from the current set. 450 TypeSet InputSet(Other); 451 MVT::SimpleValueType Smallest = TypeVec[0]; 452 for (unsigned i = 0; i != Other.TypeVec.size(); ++i) { 453 if (Other.TypeVec[i] <= Smallest) { 454 Other.TypeVec.erase(Other.TypeVec.begin()+i--); 455 MadeChange = true; 456 } 457 } 458 459 if (Other.TypeVec.empty()) { 460 TP.error("Type inference contradiction found, '" + InputSet.getName() + 461 "' has nothing larger than '" + getName() +"'!"); 462 return false; 463 } 464 465 // Okay, find the largest scalar type from the other set and remove 466 // anything the same or larger from the current set. 467 InputSet = TypeSet(*this); 468 MVT::SimpleValueType Largest = Other.TypeVec[Other.TypeVec.size()-1]; 469 for (unsigned i = 0; i != TypeVec.size(); ++i) { 470 if (TypeVec[i] >= Largest) { 471 TypeVec.erase(TypeVec.begin()+i--); 472 MadeChange = true; 473 } 474 } 475 476 if (TypeVec.empty()) { 477 TP.error("Type inference contradiction found, '" + InputSet.getName() + 478 "' has nothing smaller than '" + Other.getName() +"'!"); 479 return false; 480 } 481 482 return MadeChange; 483 } 484 485 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 486 /// whose element is specified by VTOperand. 487 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 488 TreePattern &TP) { 489 if (TP.hasError()) 490 return false; 491 492 // "This" must be a vector and "VTOperand" must be a scalar. 493 bool MadeChange = false; 494 MadeChange |= EnforceVector(TP); 495 MadeChange |= VTOperand.EnforceScalar(TP); 496 497 // If we know the vector type, it forces the scalar to agree. 498 if (isConcrete()) { 499 MVT IVT = getConcrete(); 500 IVT = IVT.getVectorElementType(); 501 return MadeChange | 502 VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 503 } 504 505 // If the scalar type is known, filter out vector types whose element types 506 // disagree. 507 if (!VTOperand.isConcrete()) 508 return MadeChange; 509 510 MVT::SimpleValueType VT = VTOperand.getConcrete(); 511 512 TypeSet InputSet(*this); 513 514 // Filter out all the types which don't have the right element type. 515 for (unsigned i = 0; i != TypeVec.size(); ++i) { 516 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 517 if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) { 518 TypeVec.erase(TypeVec.begin()+i--); 519 MadeChange = true; 520 } 521 } 522 523 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 524 TP.error("Type inference contradiction found, forcing '" + 525 InputSet.getName() + "' to have a vector element"); 526 return false; 527 } 528 return MadeChange; 529 } 530 531 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 532 /// vector type specified by VTOperand. 533 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 534 TreePattern &TP) { 535 if (TP.hasError()) 536 return false; 537 538 // "This" must be a vector and "VTOperand" must be a vector. 539 bool MadeChange = false; 540 MadeChange |= EnforceVector(TP); 541 MadeChange |= VTOperand.EnforceVector(TP); 542 543 // If one side is known to be integer or known to be FP but the other side has 544 // no information, get at least the type integrality info in there. 545 if (!hasFloatingPointTypes()) 546 MadeChange |= VTOperand.EnforceInteger(TP); 547 else if (!hasIntegerTypes()) 548 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 549 if (!VTOperand.hasFloatingPointTypes()) 550 MadeChange |= EnforceInteger(TP); 551 else if (!VTOperand.hasIntegerTypes()) 552 MadeChange |= EnforceFloatingPoint(TP); 553 554 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 555 "Should have a type list now"); 556 557 // If we know the vector type, it forces the scalar types to agree. 558 // Also force one vector to have more elements than the other. 559 if (isConcrete()) { 560 MVT IVT = getConcrete(); 561 unsigned NumElems = IVT.getVectorNumElements(); 562 IVT = IVT.getVectorElementType(); 563 564 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 565 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 566 567 // Only keep types that have less elements than VTOperand. 568 TypeSet InputSet(VTOperand); 569 570 for (unsigned i = 0; i != VTOperand.TypeVec.size(); ++i) { 571 assert(isVector(VTOperand.TypeVec[i]) && "EnforceVector didn't work"); 572 if (MVT(VTOperand.TypeVec[i]).getVectorNumElements() >= NumElems) { 573 VTOperand.TypeVec.erase(VTOperand.TypeVec.begin()+i--); 574 MadeChange = true; 575 } 576 } 577 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 578 TP.error("Type inference contradiction found, forcing '" + 579 InputSet.getName() + "' to have less vector elements than '" + 580 getName() + "'"); 581 return false; 582 } 583 } else if (VTOperand.isConcrete()) { 584 MVT IVT = VTOperand.getConcrete(); 585 unsigned NumElems = IVT.getVectorNumElements(); 586 IVT = IVT.getVectorElementType(); 587 588 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 589 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 590 591 // Only keep types that have more elements than 'this'. 592 TypeSet InputSet(*this); 593 594 for (unsigned i = 0; i != TypeVec.size(); ++i) { 595 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 596 if (MVT(TypeVec[i]).getVectorNumElements() <= NumElems) { 597 TypeVec.erase(TypeVec.begin()+i--); 598 MadeChange = true; 599 } 600 } 601 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 602 TP.error("Type inference contradiction found, forcing '" + 603 InputSet.getName() + "' to have more vector elements than '" + 604 VTOperand.getName() + "'"); 605 return false; 606 } 607 } 608 609 return MadeChange; 610 } 611 612 //===----------------------------------------------------------------------===// 613 // Helpers for working with extended types. 614 615 /// Dependent variable map for CodeGenDAGPattern variant generation 616 typedef std::map<std::string, int> DepVarMap; 617 618 /// Const iterator shorthand for DepVarMap 619 typedef DepVarMap::const_iterator DepVarMap_citer; 620 621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 622 if (N->isLeaf()) { 623 if (isa<DefInit>(N->getLeafValue())) 624 DepMap[N->getName()]++; 625 } else { 626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 627 FindDepVarsOf(N->getChild(i), DepMap); 628 } 629 } 630 631 /// Find dependent variables within child patterns 632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 633 DepVarMap depcounts; 634 FindDepVarsOf(N, depcounts); 635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 636 if (i->second > 1) // std::pair<std::string, int> 637 DepVars.insert(i->first); 638 } 639 } 640 641 #ifndef NDEBUG 642 /// Dump the dependent variable set: 643 static void DumpDepVars(MultipleUseVarSet &DepVars) { 644 if (DepVars.empty()) { 645 DEBUG(errs() << "<empty set>"); 646 } else { 647 DEBUG(errs() << "[ "); 648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 649 e = DepVars.end(); i != e; ++i) { 650 DEBUG(errs() << (*i) << " "); 651 } 652 DEBUG(errs() << "]"); 653 } 654 } 655 #endif 656 657 658 //===----------------------------------------------------------------------===// 659 // TreePredicateFn Implementation 660 //===----------------------------------------------------------------------===// 661 662 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 664 assert((getPredCode().empty() || getImmCode().empty()) && 665 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 666 } 667 668 std::string TreePredicateFn::getPredCode() const { 669 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 670 } 671 672 std::string TreePredicateFn::getImmCode() const { 673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 674 } 675 676 677 /// isAlwaysTrue - Return true if this is a noop predicate. 678 bool TreePredicateFn::isAlwaysTrue() const { 679 return getPredCode().empty() && getImmCode().empty(); 680 } 681 682 /// Return the name to use in the generated code to reference this, this is 683 /// "Predicate_foo" if from a pattern fragment "foo". 684 std::string TreePredicateFn::getFnName() const { 685 return "Predicate_" + PatFragRec->getRecord()->getName(); 686 } 687 688 /// getCodeToRunOnSDNode - Return the code for the function body that 689 /// evaluates this predicate. The argument is expected to be in "Node", 690 /// not N. This handles casting and conversion to a concrete node type as 691 /// appropriate. 692 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 693 // Handle immediate predicates first. 694 std::string ImmCode = getImmCode(); 695 if (!ImmCode.empty()) { 696 std::string Result = 697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 698 return Result + ImmCode; 699 } 700 701 // Handle arbitrary node predicates. 702 assert(!getPredCode().empty() && "Don't have any predicate code!"); 703 std::string ClassName; 704 if (PatFragRec->getOnlyTree()->isLeaf()) 705 ClassName = "SDNode"; 706 else { 707 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 709 } 710 std::string Result; 711 if (ClassName == "SDNode") 712 Result = " SDNode *N = Node;\n"; 713 else 714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 715 716 return Result + getPredCode(); 717 } 718 719 //===----------------------------------------------------------------------===// 720 // PatternToMatch implementation 721 // 722 723 724 /// getPatternSize - Return the 'size' of this pattern. We want to match large 725 /// patterns before small ones. This is used to determine the size of a 726 /// pattern. 727 static unsigned getPatternSize(const TreePatternNode *P, 728 const CodeGenDAGPatterns &CGP) { 729 unsigned Size = 3; // The node itself. 730 // If the root node is a ConstantSDNode, increases its size. 731 // e.g. (set R32:$dst, 0). 732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 733 Size += 2; 734 735 // FIXME: This is a hack to statically increase the priority of patterns 736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 737 // Later we can allow complexity / cost for each pattern to be (optionally) 738 // specified. To get best possible pattern match we'll need to dynamically 739 // calculate the complexity of all patterns a dag can potentially map to. 740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 741 if (AM) { 742 Size += AM->getNumOperands() * 3; 743 744 // We don't want to count any children twice, so return early. 745 return Size; 746 } 747 748 // If this node has some predicate function that must match, it adds to the 749 // complexity of this node. 750 if (!P->getPredicateFns().empty()) 751 ++Size; 752 753 // Count children in the count if they are also nodes. 754 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 755 TreePatternNode *Child = P->getChild(i); 756 if (!Child->isLeaf() && Child->getNumTypes() && 757 Child->getType(0) != MVT::Other) 758 Size += getPatternSize(Child, CGP); 759 else if (Child->isLeaf()) { 760 if (isa<IntInit>(Child->getLeafValue())) 761 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 762 else if (Child->getComplexPatternInfo(CGP)) 763 Size += getPatternSize(Child, CGP); 764 else if (!Child->getPredicateFns().empty()) 765 ++Size; 766 } 767 } 768 769 return Size; 770 } 771 772 /// Compute the complexity metric for the input pattern. This roughly 773 /// corresponds to the number of nodes that are covered. 774 unsigned PatternToMatch:: 775 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 776 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 777 } 778 779 780 /// getPredicateCheck - Return a single string containing all of this 781 /// pattern's predicates concatenated with "&&" operators. 782 /// 783 std::string PatternToMatch::getPredicateCheck() const { 784 std::string PredicateCheck; 785 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 786 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) { 787 Record *Def = Pred->getDef(); 788 if (!Def->isSubClassOf("Predicate")) { 789 #ifndef NDEBUG 790 Def->dump(); 791 #endif 792 llvm_unreachable("Unknown predicate type!"); 793 } 794 if (!PredicateCheck.empty()) 795 PredicateCheck += " && "; 796 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 797 } 798 } 799 800 return PredicateCheck; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // SDTypeConstraint implementation 805 // 806 807 SDTypeConstraint::SDTypeConstraint(Record *R) { 808 OperandNo = R->getValueAsInt("OperandNum"); 809 810 if (R->isSubClassOf("SDTCisVT")) { 811 ConstraintType = SDTCisVT; 812 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 813 if (x.SDTCisVT_Info.VT == MVT::isVoid) 814 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 815 816 } else if (R->isSubClassOf("SDTCisPtrTy")) { 817 ConstraintType = SDTCisPtrTy; 818 } else if (R->isSubClassOf("SDTCisInt")) { 819 ConstraintType = SDTCisInt; 820 } else if (R->isSubClassOf("SDTCisFP")) { 821 ConstraintType = SDTCisFP; 822 } else if (R->isSubClassOf("SDTCisVec")) { 823 ConstraintType = SDTCisVec; 824 } else if (R->isSubClassOf("SDTCisSameAs")) { 825 ConstraintType = SDTCisSameAs; 826 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 827 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 828 ConstraintType = SDTCisVTSmallerThanOp; 829 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 830 R->getValueAsInt("OtherOperandNum"); 831 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 832 ConstraintType = SDTCisOpSmallerThanOp; 833 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 834 R->getValueAsInt("BigOperandNum"); 835 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 836 ConstraintType = SDTCisEltOfVec; 837 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 838 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 839 ConstraintType = SDTCisSubVecOfVec; 840 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 841 R->getValueAsInt("OtherOpNum"); 842 } else { 843 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 844 exit(1); 845 } 846 } 847 848 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 849 /// N, and the result number in ResNo. 850 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 851 const SDNodeInfo &NodeInfo, 852 unsigned &ResNo) { 853 unsigned NumResults = NodeInfo.getNumResults(); 854 if (OpNo < NumResults) { 855 ResNo = OpNo; 856 return N; 857 } 858 859 OpNo -= NumResults; 860 861 if (OpNo >= N->getNumChildren()) { 862 errs() << "Invalid operand number in type constraint " 863 << (OpNo+NumResults) << " "; 864 N->dump(); 865 errs() << '\n'; 866 exit(1); 867 } 868 869 return N->getChild(OpNo); 870 } 871 872 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 873 /// constraint to the nodes operands. This returns true if it makes a 874 /// change, false otherwise. If a type contradiction is found, flag an error. 875 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 876 const SDNodeInfo &NodeInfo, 877 TreePattern &TP) const { 878 if (TP.hasError()) 879 return false; 880 881 unsigned ResNo = 0; // The result number being referenced. 882 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 883 884 switch (ConstraintType) { 885 case SDTCisVT: 886 // Operand must be a particular type. 887 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 888 case SDTCisPtrTy: 889 // Operand must be same as target pointer type. 890 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 891 case SDTCisInt: 892 // Require it to be one of the legal integer VTs. 893 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 894 case SDTCisFP: 895 // Require it to be one of the legal fp VTs. 896 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 897 case SDTCisVec: 898 // Require it to be one of the legal vector VTs. 899 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 900 case SDTCisSameAs: { 901 unsigned OResNo = 0; 902 TreePatternNode *OtherNode = 903 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 904 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 905 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 906 } 907 case SDTCisVTSmallerThanOp: { 908 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 909 // have an integer type that is smaller than the VT. 910 if (!NodeToApply->isLeaf() || 911 !isa<DefInit>(NodeToApply->getLeafValue()) || 912 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 913 ->isSubClassOf("ValueType")) { 914 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 915 return false; 916 } 917 MVT::SimpleValueType VT = 918 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 919 920 EEVT::TypeSet TypeListTmp(VT, TP); 921 922 unsigned OResNo = 0; 923 TreePatternNode *OtherNode = 924 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 925 OResNo); 926 927 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 928 } 929 case SDTCisOpSmallerThanOp: { 930 unsigned BResNo = 0; 931 TreePatternNode *BigOperand = 932 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 933 BResNo); 934 return NodeToApply->getExtType(ResNo). 935 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 936 } 937 case SDTCisEltOfVec: { 938 unsigned VResNo = 0; 939 TreePatternNode *VecOperand = 940 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 941 VResNo); 942 943 // Filter vector types out of VecOperand that don't have the right element 944 // type. 945 return VecOperand->getExtType(VResNo). 946 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 947 } 948 case SDTCisSubVecOfVec: { 949 unsigned VResNo = 0; 950 TreePatternNode *BigVecOperand = 951 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 952 VResNo); 953 954 // Filter vector types out of BigVecOperand that don't have the 955 // right subvector type. 956 return BigVecOperand->getExtType(VResNo). 957 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 958 } 959 } 960 llvm_unreachable("Invalid ConstraintType!"); 961 } 962 963 // Update the node type to match an instruction operand or result as specified 964 // in the ins or outs lists on the instruction definition. Return true if the 965 // type was actually changed. 966 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 967 Record *Operand, 968 TreePattern &TP) { 969 // The 'unknown' operand indicates that types should be inferred from the 970 // context. 971 if (Operand->isSubClassOf("unknown_class")) 972 return false; 973 974 // The Operand class specifies a type directly. 975 if (Operand->isSubClassOf("Operand")) 976 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 977 TP); 978 979 // PointerLikeRegClass has a type that is determined at runtime. 980 if (Operand->isSubClassOf("PointerLikeRegClass")) 981 return UpdateNodeType(ResNo, MVT::iPTR, TP); 982 983 // Both RegisterClass and RegisterOperand operands derive their types from a 984 // register class def. 985 Record *RC = nullptr; 986 if (Operand->isSubClassOf("RegisterClass")) 987 RC = Operand; 988 else if (Operand->isSubClassOf("RegisterOperand")) 989 RC = Operand->getValueAsDef("RegClass"); 990 991 assert(RC && "Unknown operand type"); 992 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 993 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 994 } 995 996 997 //===----------------------------------------------------------------------===// 998 // SDNodeInfo implementation 999 // 1000 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1001 EnumName = R->getValueAsString("Opcode"); 1002 SDClassName = R->getValueAsString("SDClass"); 1003 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1004 NumResults = TypeProfile->getValueAsInt("NumResults"); 1005 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1006 1007 // Parse the properties. 1008 Properties = 0; 1009 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 1010 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 1011 if (PropList[i]->getName() == "SDNPCommutative") { 1012 Properties |= 1 << SDNPCommutative; 1013 } else if (PropList[i]->getName() == "SDNPAssociative") { 1014 Properties |= 1 << SDNPAssociative; 1015 } else if (PropList[i]->getName() == "SDNPHasChain") { 1016 Properties |= 1 << SDNPHasChain; 1017 } else if (PropList[i]->getName() == "SDNPOutGlue") { 1018 Properties |= 1 << SDNPOutGlue; 1019 } else if (PropList[i]->getName() == "SDNPInGlue") { 1020 Properties |= 1 << SDNPInGlue; 1021 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 1022 Properties |= 1 << SDNPOptInGlue; 1023 } else if (PropList[i]->getName() == "SDNPMayStore") { 1024 Properties |= 1 << SDNPMayStore; 1025 } else if (PropList[i]->getName() == "SDNPMayLoad") { 1026 Properties |= 1 << SDNPMayLoad; 1027 } else if (PropList[i]->getName() == "SDNPSideEffect") { 1028 Properties |= 1 << SDNPSideEffect; 1029 } else if (PropList[i]->getName() == "SDNPMemOperand") { 1030 Properties |= 1 << SDNPMemOperand; 1031 } else if (PropList[i]->getName() == "SDNPVariadic") { 1032 Properties |= 1 << SDNPVariadic; 1033 } else { 1034 errs() << "Unknown SD Node property '" << PropList[i]->getName() 1035 << "' on node '" << R->getName() << "'!\n"; 1036 exit(1); 1037 } 1038 } 1039 1040 1041 // Parse the type constraints. 1042 std::vector<Record*> ConstraintList = 1043 TypeProfile->getValueAsListOfDefs("Constraints"); 1044 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1045 } 1046 1047 /// getKnownType - If the type constraints on this node imply a fixed type 1048 /// (e.g. all stores return void, etc), then return it as an 1049 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1050 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1051 unsigned NumResults = getNumResults(); 1052 assert(NumResults <= 1 && 1053 "We only work with nodes with zero or one result so far!"); 1054 assert(ResNo == 0 && "Only handles single result nodes so far"); 1055 1056 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 1057 // Make sure that this applies to the correct node result. 1058 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 1059 continue; 1060 1061 switch (TypeConstraints[i].ConstraintType) { 1062 default: break; 1063 case SDTypeConstraint::SDTCisVT: 1064 return TypeConstraints[i].x.SDTCisVT_Info.VT; 1065 case SDTypeConstraint::SDTCisPtrTy: 1066 return MVT::iPTR; 1067 } 1068 } 1069 return MVT::Other; 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // TreePatternNode implementation 1074 // 1075 1076 TreePatternNode::~TreePatternNode() { 1077 #if 0 // FIXME: implement refcounted tree nodes! 1078 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1079 delete getChild(i); 1080 #endif 1081 } 1082 1083 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1084 if (Operator->getName() == "set" || 1085 Operator->getName() == "implicit") 1086 return 0; // All return nothing. 1087 1088 if (Operator->isSubClassOf("Intrinsic")) 1089 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1090 1091 if (Operator->isSubClassOf("SDNode")) 1092 return CDP.getSDNodeInfo(Operator).getNumResults(); 1093 1094 if (Operator->isSubClassOf("PatFrag")) { 1095 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1096 // the forward reference case where one pattern fragment references another 1097 // before it is processed. 1098 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1099 return PFRec->getOnlyTree()->getNumTypes(); 1100 1101 // Get the result tree. 1102 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1103 Record *Op = nullptr; 1104 if (Tree) 1105 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1106 Op = DI->getDef(); 1107 assert(Op && "Invalid Fragment"); 1108 return GetNumNodeResults(Op, CDP); 1109 } 1110 1111 if (Operator->isSubClassOf("Instruction")) { 1112 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1113 1114 // FIXME: Should allow access to all the results here. 1115 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1116 1117 // Add on one implicit def if it has a resolvable type. 1118 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1119 ++NumDefsToAdd; 1120 return NumDefsToAdd; 1121 } 1122 1123 if (Operator->isSubClassOf("SDNodeXForm")) 1124 return 1; // FIXME: Generalize SDNodeXForm 1125 1126 if (Operator->isSubClassOf("ValueType")) 1127 return 1; // A type-cast of one result. 1128 1129 if (Operator->isSubClassOf("ComplexPattern")) 1130 return 1; 1131 1132 Operator->dump(); 1133 errs() << "Unhandled node in GetNumNodeResults\n"; 1134 exit(1); 1135 } 1136 1137 void TreePatternNode::print(raw_ostream &OS) const { 1138 if (isLeaf()) 1139 OS << *getLeafValue(); 1140 else 1141 OS << '(' << getOperator()->getName(); 1142 1143 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1144 OS << ':' << getExtType(i).getName(); 1145 1146 if (!isLeaf()) { 1147 if (getNumChildren() != 0) { 1148 OS << " "; 1149 getChild(0)->print(OS); 1150 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1151 OS << ", "; 1152 getChild(i)->print(OS); 1153 } 1154 } 1155 OS << ")"; 1156 } 1157 1158 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1159 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1160 if (TransformFn) 1161 OS << "<<X:" << TransformFn->getName() << ">>"; 1162 if (!getName().empty()) 1163 OS << ":$" << getName(); 1164 1165 } 1166 void TreePatternNode::dump() const { 1167 print(errs()); 1168 } 1169 1170 /// isIsomorphicTo - Return true if this node is recursively 1171 /// isomorphic to the specified node. For this comparison, the node's 1172 /// entire state is considered. The assigned name is ignored, since 1173 /// nodes with differing names are considered isomorphic. However, if 1174 /// the assigned name is present in the dependent variable set, then 1175 /// the assigned name is considered significant and the node is 1176 /// isomorphic if the names match. 1177 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1178 const MultipleUseVarSet &DepVars) const { 1179 if (N == this) return true; 1180 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1181 getPredicateFns() != N->getPredicateFns() || 1182 getTransformFn() != N->getTransformFn()) 1183 return false; 1184 1185 if (isLeaf()) { 1186 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1187 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1188 return ((DI->getDef() == NDI->getDef()) 1189 && (DepVars.find(getName()) == DepVars.end() 1190 || getName() == N->getName())); 1191 } 1192 } 1193 return getLeafValue() == N->getLeafValue(); 1194 } 1195 1196 if (N->getOperator() != getOperator() || 1197 N->getNumChildren() != getNumChildren()) return false; 1198 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1199 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1200 return false; 1201 return true; 1202 } 1203 1204 /// clone - Make a copy of this tree and all of its children. 1205 /// 1206 TreePatternNode *TreePatternNode::clone() const { 1207 TreePatternNode *New; 1208 if (isLeaf()) { 1209 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1210 } else { 1211 std::vector<TreePatternNode*> CChildren; 1212 CChildren.reserve(Children.size()); 1213 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1214 CChildren.push_back(getChild(i)->clone()); 1215 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1216 } 1217 New->setName(getName()); 1218 New->Types = Types; 1219 New->setPredicateFns(getPredicateFns()); 1220 New->setTransformFn(getTransformFn()); 1221 return New; 1222 } 1223 1224 /// RemoveAllTypes - Recursively strip all the types of this tree. 1225 void TreePatternNode::RemoveAllTypes() { 1226 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1227 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1228 if (isLeaf()) return; 1229 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1230 getChild(i)->RemoveAllTypes(); 1231 } 1232 1233 1234 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1235 /// with actual values specified by ArgMap. 1236 void TreePatternNode:: 1237 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1238 if (isLeaf()) return; 1239 1240 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1241 TreePatternNode *Child = getChild(i); 1242 if (Child->isLeaf()) { 1243 Init *Val = Child->getLeafValue(); 1244 // Note that, when substituting into an output pattern, Val might be an 1245 // UnsetInit. 1246 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1247 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1248 // We found a use of a formal argument, replace it with its value. 1249 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1250 assert(NewChild && "Couldn't find formal argument!"); 1251 assert((Child->getPredicateFns().empty() || 1252 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1253 "Non-empty child predicate clobbered!"); 1254 setChild(i, NewChild); 1255 } 1256 } else { 1257 getChild(i)->SubstituteFormalArguments(ArgMap); 1258 } 1259 } 1260 } 1261 1262 1263 /// InlinePatternFragments - If this pattern refers to any pattern 1264 /// fragments, inline them into place, giving us a pattern without any 1265 /// PatFrag references. 1266 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1267 if (TP.hasError()) 1268 return nullptr; 1269 1270 if (isLeaf()) 1271 return this; // nothing to do. 1272 Record *Op = getOperator(); 1273 1274 if (!Op->isSubClassOf("PatFrag")) { 1275 // Just recursively inline children nodes. 1276 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1277 TreePatternNode *Child = getChild(i); 1278 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1279 1280 assert((Child->getPredicateFns().empty() || 1281 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1282 "Non-empty child predicate clobbered!"); 1283 1284 setChild(i, NewChild); 1285 } 1286 return this; 1287 } 1288 1289 // Otherwise, we found a reference to a fragment. First, look up its 1290 // TreePattern record. 1291 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1292 1293 // Verify that we are passing the right number of operands. 1294 if (Frag->getNumArgs() != Children.size()) { 1295 TP.error("'" + Op->getName() + "' fragment requires " + 1296 utostr(Frag->getNumArgs()) + " operands!"); 1297 return nullptr; 1298 } 1299 1300 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1301 1302 TreePredicateFn PredFn(Frag); 1303 if (!PredFn.isAlwaysTrue()) 1304 FragTree->addPredicateFn(PredFn); 1305 1306 // Resolve formal arguments to their actual value. 1307 if (Frag->getNumArgs()) { 1308 // Compute the map of formal to actual arguments. 1309 std::map<std::string, TreePatternNode*> ArgMap; 1310 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1311 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1312 1313 FragTree->SubstituteFormalArguments(ArgMap); 1314 } 1315 1316 FragTree->setName(getName()); 1317 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1318 FragTree->UpdateNodeType(i, getExtType(i), TP); 1319 1320 // Transfer in the old predicates. 1321 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1322 FragTree->addPredicateFn(getPredicateFns()[i]); 1323 1324 // Get a new copy of this fragment to stitch into here. 1325 //delete this; // FIXME: implement refcounting! 1326 1327 // The fragment we inlined could have recursive inlining that is needed. See 1328 // if there are any pattern fragments in it and inline them as needed. 1329 return FragTree->InlinePatternFragments(TP); 1330 } 1331 1332 /// getImplicitType - Check to see if the specified record has an implicit 1333 /// type which should be applied to it. This will infer the type of register 1334 /// references from the register file information, for example. 1335 /// 1336 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1337 /// the F8RC register class argument in: 1338 /// 1339 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1340 /// 1341 /// When Unnamed is false, return the type of a named DAG operand such as the 1342 /// GPR:$src operand above. 1343 /// 1344 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1345 bool NotRegisters, 1346 bool Unnamed, 1347 TreePattern &TP) { 1348 // Check to see if this is a register operand. 1349 if (R->isSubClassOf("RegisterOperand")) { 1350 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1351 if (NotRegisters) 1352 return EEVT::TypeSet(); // Unknown. 1353 Record *RegClass = R->getValueAsDef("RegClass"); 1354 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1355 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1356 } 1357 1358 // Check to see if this is a register or a register class. 1359 if (R->isSubClassOf("RegisterClass")) { 1360 assert(ResNo == 0 && "Regclass ref only has one result!"); 1361 // An unnamed register class represents itself as an i32 immediate, for 1362 // example on a COPY_TO_REGCLASS instruction. 1363 if (Unnamed) 1364 return EEVT::TypeSet(MVT::i32, TP); 1365 1366 // In a named operand, the register class provides the possible set of 1367 // types. 1368 if (NotRegisters) 1369 return EEVT::TypeSet(); // Unknown. 1370 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1371 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1372 } 1373 1374 if (R->isSubClassOf("PatFrag")) { 1375 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1376 // Pattern fragment types will be resolved when they are inlined. 1377 return EEVT::TypeSet(); // Unknown. 1378 } 1379 1380 if (R->isSubClassOf("Register")) { 1381 assert(ResNo == 0 && "Registers only produce one result!"); 1382 if (NotRegisters) 1383 return EEVT::TypeSet(); // Unknown. 1384 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1385 return EEVT::TypeSet(T.getRegisterVTs(R)); 1386 } 1387 1388 if (R->isSubClassOf("SubRegIndex")) { 1389 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1390 return EEVT::TypeSet(); 1391 } 1392 1393 if (R->isSubClassOf("ValueType")) { 1394 assert(ResNo == 0 && "This node only has one result!"); 1395 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1396 // 1397 // (sext_inreg GPR:$src, i16) 1398 // ~~~ 1399 if (Unnamed) 1400 return EEVT::TypeSet(MVT::Other, TP); 1401 // With a name, the ValueType simply provides the type of the named 1402 // variable. 1403 // 1404 // (sext_inreg i32:$src, i16) 1405 // ~~~~~~~~ 1406 if (NotRegisters) 1407 return EEVT::TypeSet(); // Unknown. 1408 return EEVT::TypeSet(getValueType(R), TP); 1409 } 1410 1411 if (R->isSubClassOf("CondCode")) { 1412 assert(ResNo == 0 && "This node only has one result!"); 1413 // Using a CondCodeSDNode. 1414 return EEVT::TypeSet(MVT::Other, TP); 1415 } 1416 1417 if (R->isSubClassOf("ComplexPattern")) { 1418 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1419 if (NotRegisters) 1420 return EEVT::TypeSet(); // Unknown. 1421 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1422 TP); 1423 } 1424 if (R->isSubClassOf("PointerLikeRegClass")) { 1425 assert(ResNo == 0 && "Regclass can only have one result!"); 1426 return EEVT::TypeSet(MVT::iPTR, TP); 1427 } 1428 1429 if (R->getName() == "node" || R->getName() == "srcvalue" || 1430 R->getName() == "zero_reg") { 1431 // Placeholder. 1432 return EEVT::TypeSet(); // Unknown. 1433 } 1434 1435 if (R->isSubClassOf("Operand")) 1436 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1437 1438 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1439 return EEVT::TypeSet(MVT::Other, TP); 1440 } 1441 1442 1443 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1444 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1445 const CodeGenIntrinsic *TreePatternNode:: 1446 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1447 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1448 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1449 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1450 return nullptr; 1451 1452 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1453 return &CDP.getIntrinsicInfo(IID); 1454 } 1455 1456 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1457 /// return the ComplexPattern information, otherwise return null. 1458 const ComplexPattern * 1459 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1460 Record *Rec; 1461 if (isLeaf()) { 1462 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1463 if (!DI) 1464 return nullptr; 1465 Rec = DI->getDef(); 1466 } else 1467 Rec = getOperator(); 1468 1469 if (!Rec->isSubClassOf("ComplexPattern")) 1470 return nullptr; 1471 return &CGP.getComplexPattern(Rec); 1472 } 1473 1474 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1475 // A ComplexPattern specifically declares how many results it fills in. 1476 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1477 return CP->getNumOperands(); 1478 1479 // If MIOperandInfo is specified, that gives the count. 1480 if (isLeaf()) { 1481 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1482 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1483 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1484 if (MIOps->getNumArgs()) 1485 return MIOps->getNumArgs(); 1486 } 1487 } 1488 1489 // Otherwise there is just one result. 1490 return 1; 1491 } 1492 1493 /// NodeHasProperty - Return true if this node has the specified property. 1494 bool TreePatternNode::NodeHasProperty(SDNP Property, 1495 const CodeGenDAGPatterns &CGP) const { 1496 if (isLeaf()) { 1497 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1498 return CP->hasProperty(Property); 1499 return false; 1500 } 1501 1502 Record *Operator = getOperator(); 1503 if (!Operator->isSubClassOf("SDNode")) return false; 1504 1505 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1506 } 1507 1508 1509 1510 1511 /// TreeHasProperty - Return true if any node in this tree has the specified 1512 /// property. 1513 bool TreePatternNode::TreeHasProperty(SDNP Property, 1514 const CodeGenDAGPatterns &CGP) const { 1515 if (NodeHasProperty(Property, CGP)) 1516 return true; 1517 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1518 if (getChild(i)->TreeHasProperty(Property, CGP)) 1519 return true; 1520 return false; 1521 } 1522 1523 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1524 /// commutative intrinsic. 1525 bool 1526 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1527 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1528 return Int->isCommutative; 1529 return false; 1530 } 1531 1532 1533 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1534 /// this node and its children in the tree. This returns true if it makes a 1535 /// change, false otherwise. If a type contradiction is found, flag an error. 1536 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1537 if (TP.hasError()) 1538 return false; 1539 1540 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1541 if (isLeaf()) { 1542 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1543 // If it's a regclass or something else known, include the type. 1544 bool MadeChange = false; 1545 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1546 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1547 NotRegisters, 1548 !hasName(), TP), TP); 1549 return MadeChange; 1550 } 1551 1552 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1553 assert(Types.size() == 1 && "Invalid IntInit"); 1554 1555 // Int inits are always integers. :) 1556 bool MadeChange = Types[0].EnforceInteger(TP); 1557 1558 if (!Types[0].isConcrete()) 1559 return MadeChange; 1560 1561 MVT::SimpleValueType VT = getType(0); 1562 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1563 return MadeChange; 1564 1565 unsigned Size = MVT(VT).getSizeInBits(); 1566 // Make sure that the value is representable for this type. 1567 if (Size >= 32) return MadeChange; 1568 1569 // Check that the value doesn't use more bits than we have. It must either 1570 // be a sign- or zero-extended equivalent of the original. 1571 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1572 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1573 return MadeChange; 1574 1575 TP.error("Integer value '" + itostr(II->getValue()) + 1576 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1577 return false; 1578 } 1579 return false; 1580 } 1581 1582 // special handling for set, which isn't really an SDNode. 1583 if (getOperator()->getName() == "set") { 1584 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1585 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1586 unsigned NC = getNumChildren(); 1587 1588 TreePatternNode *SetVal = getChild(NC-1); 1589 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1590 1591 for (unsigned i = 0; i < NC-1; ++i) { 1592 TreePatternNode *Child = getChild(i); 1593 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1594 1595 // Types of operands must match. 1596 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1597 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1598 } 1599 return MadeChange; 1600 } 1601 1602 if (getOperator()->getName() == "implicit") { 1603 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1604 1605 bool MadeChange = false; 1606 for (unsigned i = 0; i < getNumChildren(); ++i) 1607 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1608 return MadeChange; 1609 } 1610 1611 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1612 bool MadeChange = false; 1613 1614 // Apply the result type to the node. 1615 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1616 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1617 1618 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1619 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1620 1621 if (getNumChildren() != NumParamVTs + 1) { 1622 TP.error("Intrinsic '" + Int->Name + "' expects " + 1623 utostr(NumParamVTs) + " operands, not " + 1624 utostr(getNumChildren() - 1) + " operands!"); 1625 return false; 1626 } 1627 1628 // Apply type info to the intrinsic ID. 1629 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1630 1631 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1632 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1633 1634 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1635 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1636 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1637 } 1638 return MadeChange; 1639 } 1640 1641 if (getOperator()->isSubClassOf("SDNode")) { 1642 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1643 1644 // Check that the number of operands is sane. Negative operands -> varargs. 1645 if (NI.getNumOperands() >= 0 && 1646 getNumChildren() != (unsigned)NI.getNumOperands()) { 1647 TP.error(getOperator()->getName() + " node requires exactly " + 1648 itostr(NI.getNumOperands()) + " operands!"); 1649 return false; 1650 } 1651 1652 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1653 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1654 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1655 return MadeChange; 1656 } 1657 1658 if (getOperator()->isSubClassOf("Instruction")) { 1659 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1660 CodeGenInstruction &InstInfo = 1661 CDP.getTargetInfo().getInstruction(getOperator()); 1662 1663 bool MadeChange = false; 1664 1665 // Apply the result types to the node, these come from the things in the 1666 // (outs) list of the instruction. 1667 // FIXME: Cap at one result so far. 1668 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1669 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1670 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1671 1672 // If the instruction has implicit defs, we apply the first one as a result. 1673 // FIXME: This sucks, it should apply all implicit defs. 1674 if (!InstInfo.ImplicitDefs.empty()) { 1675 unsigned ResNo = NumResultsToAdd; 1676 1677 // FIXME: Generalize to multiple possible types and multiple possible 1678 // ImplicitDefs. 1679 MVT::SimpleValueType VT = 1680 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1681 1682 if (VT != MVT::Other) 1683 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1684 } 1685 1686 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1687 // be the same. 1688 if (getOperator()->getName() == "INSERT_SUBREG") { 1689 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1690 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1691 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1692 } 1693 1694 unsigned ChildNo = 0; 1695 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1696 Record *OperandNode = Inst.getOperand(i); 1697 1698 // If the instruction expects a predicate or optional def operand, we 1699 // codegen this by setting the operand to it's default value if it has a 1700 // non-empty DefaultOps field. 1701 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1702 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1703 continue; 1704 1705 // Verify that we didn't run out of provided operands. 1706 if (ChildNo >= getNumChildren()) { 1707 TP.error("Instruction '" + getOperator()->getName() + 1708 "' expects more operands than were provided."); 1709 return false; 1710 } 1711 1712 TreePatternNode *Child = getChild(ChildNo++); 1713 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1714 1715 // If the operand has sub-operands, they may be provided by distinct 1716 // child patterns, so attempt to match each sub-operand separately. 1717 if (OperandNode->isSubClassOf("Operand")) { 1718 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1719 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1720 // But don't do that if the whole operand is being provided by 1721 // a single ComplexPattern-related Operand. 1722 1723 if (Child->getNumMIResults(CDP) < NumArgs) { 1724 // Match first sub-operand against the child we already have. 1725 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1726 MadeChange |= 1727 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1728 1729 // And the remaining sub-operands against subsequent children. 1730 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1731 if (ChildNo >= getNumChildren()) { 1732 TP.error("Instruction '" + getOperator()->getName() + 1733 "' expects more operands than were provided."); 1734 return false; 1735 } 1736 Child = getChild(ChildNo++); 1737 1738 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1739 MadeChange |= 1740 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1741 } 1742 continue; 1743 } 1744 } 1745 } 1746 1747 // If we didn't match by pieces above, attempt to match the whole 1748 // operand now. 1749 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1750 } 1751 1752 if (ChildNo != getNumChildren()) { 1753 TP.error("Instruction '" + getOperator()->getName() + 1754 "' was provided too many operands!"); 1755 return false; 1756 } 1757 1758 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1759 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1760 return MadeChange; 1761 } 1762 1763 if (getOperator()->isSubClassOf("ComplexPattern")) { 1764 bool MadeChange = false; 1765 1766 for (unsigned i = 0; i < getNumChildren(); ++i) 1767 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1768 1769 return MadeChange; 1770 } 1771 1772 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1773 1774 // Node transforms always take one operand. 1775 if (getNumChildren() != 1) { 1776 TP.error("Node transform '" + getOperator()->getName() + 1777 "' requires one operand!"); 1778 return false; 1779 } 1780 1781 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1782 1783 1784 // If either the output or input of the xform does not have exact 1785 // type info. We assume they must be the same. Otherwise, it is perfectly 1786 // legal to transform from one type to a completely different type. 1787 #if 0 1788 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1789 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1790 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1791 return MadeChange; 1792 } 1793 #endif 1794 return MadeChange; 1795 } 1796 1797 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1798 /// RHS of a commutative operation, not the on LHS. 1799 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1800 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1801 return true; 1802 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1803 return true; 1804 return false; 1805 } 1806 1807 1808 /// canPatternMatch - If it is impossible for this pattern to match on this 1809 /// target, fill in Reason and return false. Otherwise, return true. This is 1810 /// used as a sanity check for .td files (to prevent people from writing stuff 1811 /// that can never possibly work), and to prevent the pattern permuter from 1812 /// generating stuff that is useless. 1813 bool TreePatternNode::canPatternMatch(std::string &Reason, 1814 const CodeGenDAGPatterns &CDP) { 1815 if (isLeaf()) return true; 1816 1817 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1818 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1819 return false; 1820 1821 // If this is an intrinsic, handle cases that would make it not match. For 1822 // example, if an operand is required to be an immediate. 1823 if (getOperator()->isSubClassOf("Intrinsic")) { 1824 // TODO: 1825 return true; 1826 } 1827 1828 if (getOperator()->isSubClassOf("ComplexPattern")) 1829 return true; 1830 1831 // If this node is a commutative operator, check that the LHS isn't an 1832 // immediate. 1833 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1834 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1835 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1836 // Scan all of the operands of the node and make sure that only the last one 1837 // is a constant node, unless the RHS also is. 1838 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1839 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1840 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1841 if (OnlyOnRHSOfCommutative(getChild(i))) { 1842 Reason="Immediate value must be on the RHS of commutative operators!"; 1843 return false; 1844 } 1845 } 1846 } 1847 1848 return true; 1849 } 1850 1851 //===----------------------------------------------------------------------===// 1852 // TreePattern implementation 1853 // 1854 1855 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1856 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1857 isInputPattern(isInput), HasError(false) { 1858 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1859 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1860 } 1861 1862 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1863 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1864 isInputPattern(isInput), HasError(false) { 1865 Trees.push_back(ParseTreePattern(Pat, "")); 1866 } 1867 1868 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1869 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1870 isInputPattern(isInput), HasError(false) { 1871 Trees.push_back(Pat); 1872 } 1873 1874 void TreePattern::error(const std::string &Msg) { 1875 if (HasError) 1876 return; 1877 dump(); 1878 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1879 HasError = true; 1880 } 1881 1882 void TreePattern::ComputeNamedNodes() { 1883 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1884 ComputeNamedNodes(Trees[i]); 1885 } 1886 1887 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1888 if (!N->getName().empty()) 1889 NamedNodes[N->getName()].push_back(N); 1890 1891 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1892 ComputeNamedNodes(N->getChild(i)); 1893 } 1894 1895 1896 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1897 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 1898 Record *R = DI->getDef(); 1899 1900 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1901 // TreePatternNode of its own. For example: 1902 /// (foo GPR, imm) -> (foo GPR, (imm)) 1903 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1904 return ParseTreePattern( 1905 DagInit::get(DI, "", 1906 std::vector<std::pair<Init*, std::string> >()), 1907 OpName); 1908 1909 // Input argument? 1910 TreePatternNode *Res = new TreePatternNode(DI, 1); 1911 if (R->getName() == "node" && !OpName.empty()) { 1912 if (OpName.empty()) 1913 error("'node' argument requires a name to match with operand list"); 1914 Args.push_back(OpName); 1915 } 1916 1917 Res->setName(OpName); 1918 return Res; 1919 } 1920 1921 // ?:$name or just $name. 1922 if (TheInit == UnsetInit::get()) { 1923 if (OpName.empty()) 1924 error("'?' argument requires a name to match with operand list"); 1925 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 1926 Args.push_back(OpName); 1927 Res->setName(OpName); 1928 return Res; 1929 } 1930 1931 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 1932 if (!OpName.empty()) 1933 error("Constant int argument should not have a name!"); 1934 return new TreePatternNode(II, 1); 1935 } 1936 1937 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 1938 // Turn this into an IntInit. 1939 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1940 if (!II || !isa<IntInit>(II)) 1941 error("Bits value must be constants!"); 1942 return ParseTreePattern(II, OpName); 1943 } 1944 1945 DagInit *Dag = dyn_cast<DagInit>(TheInit); 1946 if (!Dag) { 1947 TheInit->dump(); 1948 error("Pattern has unexpected init kind!"); 1949 } 1950 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 1951 if (!OpDef) error("Pattern has unexpected operator type!"); 1952 Record *Operator = OpDef->getDef(); 1953 1954 if (Operator->isSubClassOf("ValueType")) { 1955 // If the operator is a ValueType, then this must be "type cast" of a leaf 1956 // node. 1957 if (Dag->getNumArgs() != 1) 1958 error("Type cast only takes one operand!"); 1959 1960 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1961 1962 // Apply the type cast. 1963 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1964 New->UpdateNodeType(0, getValueType(Operator), *this); 1965 1966 if (!OpName.empty()) 1967 error("ValueType cast should not have a name!"); 1968 return New; 1969 } 1970 1971 // Verify that this is something that makes sense for an operator. 1972 if (!Operator->isSubClassOf("PatFrag") && 1973 !Operator->isSubClassOf("SDNode") && 1974 !Operator->isSubClassOf("Instruction") && 1975 !Operator->isSubClassOf("SDNodeXForm") && 1976 !Operator->isSubClassOf("Intrinsic") && 1977 !Operator->isSubClassOf("ComplexPattern") && 1978 Operator->getName() != "set" && 1979 Operator->getName() != "implicit") 1980 error("Unrecognized node '" + Operator->getName() + "'!"); 1981 1982 // Check to see if this is something that is illegal in an input pattern. 1983 if (isInputPattern) { 1984 if (Operator->isSubClassOf("Instruction") || 1985 Operator->isSubClassOf("SDNodeXForm")) 1986 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1987 } else { 1988 if (Operator->isSubClassOf("Intrinsic")) 1989 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1990 1991 if (Operator->isSubClassOf("SDNode") && 1992 Operator->getName() != "imm" && 1993 Operator->getName() != "fpimm" && 1994 Operator->getName() != "tglobaltlsaddr" && 1995 Operator->getName() != "tconstpool" && 1996 Operator->getName() != "tjumptable" && 1997 Operator->getName() != "tframeindex" && 1998 Operator->getName() != "texternalsym" && 1999 Operator->getName() != "tblockaddress" && 2000 Operator->getName() != "tglobaladdr" && 2001 Operator->getName() != "bb" && 2002 Operator->getName() != "vt") 2003 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2004 } 2005 2006 std::vector<TreePatternNode*> Children; 2007 2008 // Parse all the operands. 2009 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2010 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 2011 2012 // If the operator is an intrinsic, then this is just syntactic sugar for for 2013 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2014 // convert the intrinsic name to a number. 2015 if (Operator->isSubClassOf("Intrinsic")) { 2016 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2017 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2018 2019 // If this intrinsic returns void, it must have side-effects and thus a 2020 // chain. 2021 if (Int.IS.RetVTs.empty()) 2022 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2023 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2024 // Has side-effects, requires chain. 2025 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2026 else // Otherwise, no chain. 2027 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2028 2029 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2030 Children.insert(Children.begin(), IIDNode); 2031 } 2032 2033 if (Operator->isSubClassOf("ComplexPattern")) { 2034 for (unsigned i = 0; i < Children.size(); ++i) { 2035 TreePatternNode *Child = Children[i]; 2036 2037 if (Child->getName().empty()) 2038 error("All arguments to a ComplexPattern must be named"); 2039 2040 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2041 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2042 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2043 auto OperandId = std::make_pair(Operator, i); 2044 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2045 if (PrevOp != ComplexPatternOperands.end()) { 2046 if (PrevOp->getValue() != OperandId) 2047 error("All ComplexPattern operands must appear consistently: " 2048 "in the same order in just one ComplexPattern instance."); 2049 } else 2050 ComplexPatternOperands[Child->getName()] = OperandId; 2051 } 2052 } 2053 2054 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2055 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2056 Result->setName(OpName); 2057 2058 if (!Dag->getName().empty()) { 2059 assert(Result->getName().empty()); 2060 Result->setName(Dag->getName()); 2061 } 2062 return Result; 2063 } 2064 2065 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2066 /// will never match in favor of something obvious that will. This is here 2067 /// strictly as a convenience to target authors because it allows them to write 2068 /// more type generic things and have useless type casts fold away. 2069 /// 2070 /// This returns true if any change is made. 2071 static bool SimplifyTree(TreePatternNode *&N) { 2072 if (N->isLeaf()) 2073 return false; 2074 2075 // If we have a bitconvert with a resolved type and if the source and 2076 // destination types are the same, then the bitconvert is useless, remove it. 2077 if (N->getOperator()->getName() == "bitconvert" && 2078 N->getExtType(0).isConcrete() && 2079 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2080 N->getName().empty()) { 2081 N = N->getChild(0); 2082 SimplifyTree(N); 2083 return true; 2084 } 2085 2086 // Walk all children. 2087 bool MadeChange = false; 2088 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2089 TreePatternNode *Child = N->getChild(i); 2090 MadeChange |= SimplifyTree(Child); 2091 N->setChild(i, Child); 2092 } 2093 return MadeChange; 2094 } 2095 2096 2097 2098 /// InferAllTypes - Infer/propagate as many types throughout the expression 2099 /// patterns as possible. Return true if all types are inferred, false 2100 /// otherwise. Flags an error if a type contradiction is found. 2101 bool TreePattern:: 2102 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2103 if (NamedNodes.empty()) 2104 ComputeNamedNodes(); 2105 2106 bool MadeChange = true; 2107 while (MadeChange) { 2108 MadeChange = false; 2109 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 2110 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 2111 MadeChange |= SimplifyTree(Trees[i]); 2112 } 2113 2114 // If there are constraints on our named nodes, apply them. 2115 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 2116 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 2117 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 2118 2119 // If we have input named node types, propagate their types to the named 2120 // values here. 2121 if (InNamedTypes) { 2122 // FIXME: Should be error? 2123 assert(InNamedTypes->count(I->getKey()) && 2124 "Named node in output pattern but not input pattern?"); 2125 2126 const SmallVectorImpl<TreePatternNode*> &InNodes = 2127 InNamedTypes->find(I->getKey())->second; 2128 2129 // The input types should be fully resolved by now. 2130 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 2131 // If this node is a register class, and it is the root of the pattern 2132 // then we're mapping something onto an input register. We allow 2133 // changing the type of the input register in this case. This allows 2134 // us to match things like: 2135 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2136 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 2137 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue()); 2138 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2139 DI->getDef()->isSubClassOf("RegisterOperand"))) 2140 continue; 2141 } 2142 2143 assert(Nodes[i]->getNumTypes() == 1 && 2144 InNodes[0]->getNumTypes() == 1 && 2145 "FIXME: cannot name multiple result nodes yet"); 2146 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 2147 *this); 2148 } 2149 } 2150 2151 // If there are multiple nodes with the same name, they must all have the 2152 // same type. 2153 if (I->second.size() > 1) { 2154 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2155 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2156 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2157 "FIXME: cannot name multiple result nodes yet"); 2158 2159 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2160 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2161 } 2162 } 2163 } 2164 } 2165 2166 bool HasUnresolvedTypes = false; 2167 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 2168 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 2169 return !HasUnresolvedTypes; 2170 } 2171 2172 void TreePattern::print(raw_ostream &OS) const { 2173 OS << getRecord()->getName(); 2174 if (!Args.empty()) { 2175 OS << "(" << Args[0]; 2176 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2177 OS << ", " << Args[i]; 2178 OS << ")"; 2179 } 2180 OS << ": "; 2181 2182 if (Trees.size() > 1) 2183 OS << "[\n"; 2184 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 2185 OS << "\t"; 2186 Trees[i]->print(OS); 2187 OS << "\n"; 2188 } 2189 2190 if (Trees.size() > 1) 2191 OS << "]\n"; 2192 } 2193 2194 void TreePattern::dump() const { print(errs()); } 2195 2196 //===----------------------------------------------------------------------===// 2197 // CodeGenDAGPatterns implementation 2198 // 2199 2200 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2201 Records(R), Target(R) { 2202 2203 Intrinsics = LoadIntrinsics(Records, false); 2204 TgtIntrinsics = LoadIntrinsics(Records, true); 2205 ParseNodeInfo(); 2206 ParseNodeTransforms(); 2207 ParseComplexPatterns(); 2208 ParsePatternFragments(); 2209 ParseDefaultOperands(); 2210 ParseInstructions(); 2211 ParsePatternFragments(/*OutFrags*/true); 2212 ParsePatterns(); 2213 2214 // Generate variants. For example, commutative patterns can match 2215 // multiple ways. Add them to PatternsToMatch as well. 2216 GenerateVariants(); 2217 2218 // Infer instruction flags. For example, we can detect loads, 2219 // stores, and side effects in many cases by examining an 2220 // instruction's pattern. 2221 InferInstructionFlags(); 2222 2223 // Verify that instruction flags match the patterns. 2224 VerifyInstructionFlags(); 2225 } 2226 2227 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2228 for (pf_iterator I = PatternFragments.begin(), 2229 E = PatternFragments.end(); I != E; ++I) 2230 delete I->second; 2231 } 2232 2233 2234 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2235 Record *N = Records.getDef(Name); 2236 if (!N || !N->isSubClassOf("SDNode")) { 2237 errs() << "Error getting SDNode '" << Name << "'!\n"; 2238 exit(1); 2239 } 2240 return N; 2241 } 2242 2243 // Parse all of the SDNode definitions for the target, populating SDNodes. 2244 void CodeGenDAGPatterns::ParseNodeInfo() { 2245 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2246 while (!Nodes.empty()) { 2247 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2248 Nodes.pop_back(); 2249 } 2250 2251 // Get the builtin intrinsic nodes. 2252 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2253 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2254 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2255 } 2256 2257 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2258 /// map, and emit them to the file as functions. 2259 void CodeGenDAGPatterns::ParseNodeTransforms() { 2260 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2261 while (!Xforms.empty()) { 2262 Record *XFormNode = Xforms.back(); 2263 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2264 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2265 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2266 2267 Xforms.pop_back(); 2268 } 2269 } 2270 2271 void CodeGenDAGPatterns::ParseComplexPatterns() { 2272 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2273 while (!AMs.empty()) { 2274 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2275 AMs.pop_back(); 2276 } 2277 } 2278 2279 2280 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2281 /// file, building up the PatternFragments map. After we've collected them all, 2282 /// inline fragments together as necessary, so that there are no references left 2283 /// inside a pattern fragment to a pattern fragment. 2284 /// 2285 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2286 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2287 2288 // First step, parse all of the fragments. 2289 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2290 if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag")) 2291 continue; 2292 2293 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2294 TreePattern *P = 2295 new TreePattern(Fragments[i], Tree, 2296 !Fragments[i]->isSubClassOf("OutPatFrag"), *this); 2297 PatternFragments[Fragments[i]] = P; 2298 2299 // Validate the argument list, converting it to set, to discard duplicates. 2300 std::vector<std::string> &Args = P->getArgList(); 2301 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2302 2303 if (OperandsSet.count("")) 2304 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2305 2306 // Parse the operands list. 2307 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2308 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2309 // Special cases: ops == outs == ins. Different names are used to 2310 // improve readability. 2311 if (!OpsOp || 2312 (OpsOp->getDef()->getName() != "ops" && 2313 OpsOp->getDef()->getName() != "outs" && 2314 OpsOp->getDef()->getName() != "ins")) 2315 P->error("Operands list should start with '(ops ... '!"); 2316 2317 // Copy over the arguments. 2318 Args.clear(); 2319 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2320 if (!isa<DefInit>(OpsList->getArg(j)) || 2321 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2322 P->error("Operands list should all be 'node' values."); 2323 if (OpsList->getArgName(j).empty()) 2324 P->error("Operands list should have names for each operand!"); 2325 if (!OperandsSet.count(OpsList->getArgName(j))) 2326 P->error("'" + OpsList->getArgName(j) + 2327 "' does not occur in pattern or was multiply specified!"); 2328 OperandsSet.erase(OpsList->getArgName(j)); 2329 Args.push_back(OpsList->getArgName(j)); 2330 } 2331 2332 if (!OperandsSet.empty()) 2333 P->error("Operands list does not contain an entry for operand '" + 2334 *OperandsSet.begin() + "'!"); 2335 2336 // If there is a code init for this fragment, keep track of the fact that 2337 // this fragment uses it. 2338 TreePredicateFn PredFn(P); 2339 if (!PredFn.isAlwaysTrue()) 2340 P->getOnlyTree()->addPredicateFn(PredFn); 2341 2342 // If there is a node transformation corresponding to this, keep track of 2343 // it. 2344 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2345 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2346 P->getOnlyTree()->setTransformFn(Transform); 2347 } 2348 2349 // Now that we've parsed all of the tree fragments, do a closure on them so 2350 // that there are not references to PatFrags left inside of them. 2351 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2352 if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag")) 2353 continue; 2354 2355 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2356 ThePat->InlinePatternFragments(); 2357 2358 // Infer as many types as possible. Don't worry about it if we don't infer 2359 // all of them, some may depend on the inputs of the pattern. 2360 ThePat->InferAllTypes(); 2361 ThePat->resetError(); 2362 2363 // If debugging, print out the pattern fragment result. 2364 DEBUG(ThePat->dump()); 2365 } 2366 } 2367 2368 void CodeGenDAGPatterns::ParseDefaultOperands() { 2369 std::vector<Record*> DefaultOps; 2370 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2371 2372 // Find some SDNode. 2373 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2374 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2375 2376 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2377 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2378 2379 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2380 // SomeSDnode so that we can parse this. 2381 std::vector<std::pair<Init*, std::string> > Ops; 2382 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2383 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2384 DefaultInfo->getArgName(op))); 2385 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2386 2387 // Create a TreePattern to parse this. 2388 TreePattern P(DefaultOps[i], DI, false, *this); 2389 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2390 2391 // Copy the operands over into a DAGDefaultOperand. 2392 DAGDefaultOperand DefaultOpInfo; 2393 2394 TreePatternNode *T = P.getTree(0); 2395 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2396 TreePatternNode *TPN = T->getChild(op); 2397 while (TPN->ApplyTypeConstraints(P, false)) 2398 /* Resolve all types */; 2399 2400 if (TPN->ContainsUnresolvedType()) { 2401 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2402 DefaultOps[i]->getName() + 2403 "' doesn't have a concrete type!"); 2404 } 2405 DefaultOpInfo.DefaultOps.push_back(TPN); 2406 } 2407 2408 // Insert it into the DefaultOperands map so we can find it later. 2409 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2410 } 2411 } 2412 2413 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2414 /// instruction input. Return true if this is a real use. 2415 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2416 std::map<std::string, TreePatternNode*> &InstInputs) { 2417 // No name -> not interesting. 2418 if (Pat->getName().empty()) { 2419 if (Pat->isLeaf()) { 2420 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2421 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2422 DI->getDef()->isSubClassOf("RegisterOperand"))) 2423 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2424 } 2425 return false; 2426 } 2427 2428 Record *Rec; 2429 if (Pat->isLeaf()) { 2430 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2431 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2432 Rec = DI->getDef(); 2433 } else { 2434 Rec = Pat->getOperator(); 2435 } 2436 2437 // SRCVALUE nodes are ignored. 2438 if (Rec->getName() == "srcvalue") 2439 return false; 2440 2441 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2442 if (!Slot) { 2443 Slot = Pat; 2444 return true; 2445 } 2446 Record *SlotRec; 2447 if (Slot->isLeaf()) { 2448 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2449 } else { 2450 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2451 SlotRec = Slot->getOperator(); 2452 } 2453 2454 // Ensure that the inputs agree if we've already seen this input. 2455 if (Rec != SlotRec) 2456 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2457 if (Slot->getExtTypes() != Pat->getExtTypes()) 2458 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2459 return true; 2460 } 2461 2462 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2463 /// part of "I", the instruction), computing the set of inputs and outputs of 2464 /// the pattern. Report errors if we see anything naughty. 2465 void CodeGenDAGPatterns:: 2466 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2467 std::map<std::string, TreePatternNode*> &InstInputs, 2468 std::map<std::string, TreePatternNode*>&InstResults, 2469 std::vector<Record*> &InstImpResults) { 2470 if (Pat->isLeaf()) { 2471 bool isUse = HandleUse(I, Pat, InstInputs); 2472 if (!isUse && Pat->getTransformFn()) 2473 I->error("Cannot specify a transform function for a non-input value!"); 2474 return; 2475 } 2476 2477 if (Pat->getOperator()->getName() == "implicit") { 2478 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2479 TreePatternNode *Dest = Pat->getChild(i); 2480 if (!Dest->isLeaf()) 2481 I->error("implicitly defined value should be a register!"); 2482 2483 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2484 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2485 I->error("implicitly defined value should be a register!"); 2486 InstImpResults.push_back(Val->getDef()); 2487 } 2488 return; 2489 } 2490 2491 if (Pat->getOperator()->getName() != "set") { 2492 // If this is not a set, verify that the children nodes are not void typed, 2493 // and recurse. 2494 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2495 if (Pat->getChild(i)->getNumTypes() == 0) 2496 I->error("Cannot have void nodes inside of patterns!"); 2497 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2498 InstImpResults); 2499 } 2500 2501 // If this is a non-leaf node with no children, treat it basically as if 2502 // it were a leaf. This handles nodes like (imm). 2503 bool isUse = HandleUse(I, Pat, InstInputs); 2504 2505 if (!isUse && Pat->getTransformFn()) 2506 I->error("Cannot specify a transform function for a non-input value!"); 2507 return; 2508 } 2509 2510 // Otherwise, this is a set, validate and collect instruction results. 2511 if (Pat->getNumChildren() == 0) 2512 I->error("set requires operands!"); 2513 2514 if (Pat->getTransformFn()) 2515 I->error("Cannot specify a transform function on a set node!"); 2516 2517 // Check the set destinations. 2518 unsigned NumDests = Pat->getNumChildren()-1; 2519 for (unsigned i = 0; i != NumDests; ++i) { 2520 TreePatternNode *Dest = Pat->getChild(i); 2521 if (!Dest->isLeaf()) 2522 I->error("set destination should be a register!"); 2523 2524 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2525 if (!Val) 2526 I->error("set destination should be a register!"); 2527 2528 if (Val->getDef()->isSubClassOf("RegisterClass") || 2529 Val->getDef()->isSubClassOf("ValueType") || 2530 Val->getDef()->isSubClassOf("RegisterOperand") || 2531 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2532 if (Dest->getName().empty()) 2533 I->error("set destination must have a name!"); 2534 if (InstResults.count(Dest->getName())) 2535 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2536 InstResults[Dest->getName()] = Dest; 2537 } else if (Val->getDef()->isSubClassOf("Register")) { 2538 InstImpResults.push_back(Val->getDef()); 2539 } else { 2540 I->error("set destination should be a register!"); 2541 } 2542 } 2543 2544 // Verify and collect info from the computation. 2545 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2546 InstInputs, InstResults, InstImpResults); 2547 } 2548 2549 //===----------------------------------------------------------------------===// 2550 // Instruction Analysis 2551 //===----------------------------------------------------------------------===// 2552 2553 class InstAnalyzer { 2554 const CodeGenDAGPatterns &CDP; 2555 public: 2556 bool hasSideEffects; 2557 bool mayStore; 2558 bool mayLoad; 2559 bool isBitcast; 2560 bool isVariadic; 2561 2562 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2563 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2564 isBitcast(false), isVariadic(false) {} 2565 2566 void Analyze(const TreePattern *Pat) { 2567 // Assume only the first tree is the pattern. The others are clobber nodes. 2568 AnalyzeNode(Pat->getTree(0)); 2569 } 2570 2571 void Analyze(const PatternToMatch *Pat) { 2572 AnalyzeNode(Pat->getSrcPattern()); 2573 } 2574 2575 private: 2576 bool IsNodeBitcast(const TreePatternNode *N) const { 2577 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2578 return false; 2579 2580 if (N->getNumChildren() != 2) 2581 return false; 2582 2583 const TreePatternNode *N0 = N->getChild(0); 2584 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2585 return false; 2586 2587 const TreePatternNode *N1 = N->getChild(1); 2588 if (N1->isLeaf()) 2589 return false; 2590 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2591 return false; 2592 2593 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2594 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2595 return false; 2596 return OpInfo.getEnumName() == "ISD::BITCAST"; 2597 } 2598 2599 public: 2600 void AnalyzeNode(const TreePatternNode *N) { 2601 if (N->isLeaf()) { 2602 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2603 Record *LeafRec = DI->getDef(); 2604 // Handle ComplexPattern leaves. 2605 if (LeafRec->isSubClassOf("ComplexPattern")) { 2606 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2607 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2608 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2609 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2610 } 2611 } 2612 return; 2613 } 2614 2615 // Analyze children. 2616 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2617 AnalyzeNode(N->getChild(i)); 2618 2619 // Ignore set nodes, which are not SDNodes. 2620 if (N->getOperator()->getName() == "set") { 2621 isBitcast = IsNodeBitcast(N); 2622 return; 2623 } 2624 2625 // Notice properties of the node. 2626 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2627 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2628 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2629 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2630 2631 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2632 // If this is an intrinsic, analyze it. 2633 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2634 mayLoad = true;// These may load memory. 2635 2636 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2637 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2638 2639 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2640 // WriteMem intrinsics can have other strange effects. 2641 hasSideEffects = true; 2642 } 2643 } 2644 2645 }; 2646 2647 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2648 const InstAnalyzer &PatInfo, 2649 Record *PatDef) { 2650 bool Error = false; 2651 2652 // Remember where InstInfo got its flags. 2653 if (InstInfo.hasUndefFlags()) 2654 InstInfo.InferredFrom = PatDef; 2655 2656 // Check explicitly set flags for consistency. 2657 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2658 !InstInfo.hasSideEffects_Unset) { 2659 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2660 // the pattern has no side effects. That could be useful for div/rem 2661 // instructions that may trap. 2662 if (!InstInfo.hasSideEffects) { 2663 Error = true; 2664 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2665 Twine(InstInfo.hasSideEffects)); 2666 } 2667 } 2668 2669 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2670 Error = true; 2671 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2672 Twine(InstInfo.mayStore)); 2673 } 2674 2675 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2676 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2677 // Some targets translate imediates to loads. 2678 if (!InstInfo.mayLoad) { 2679 Error = true; 2680 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2681 Twine(InstInfo.mayLoad)); 2682 } 2683 } 2684 2685 // Transfer inferred flags. 2686 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2687 InstInfo.mayStore |= PatInfo.mayStore; 2688 InstInfo.mayLoad |= PatInfo.mayLoad; 2689 2690 // These flags are silently added without any verification. 2691 InstInfo.isBitcast |= PatInfo.isBitcast; 2692 2693 // Don't infer isVariadic. This flag means something different on SDNodes and 2694 // instructions. For example, a CALL SDNode is variadic because it has the 2695 // call arguments as operands, but a CALL instruction is not variadic - it 2696 // has argument registers as implicit, not explicit uses. 2697 2698 return Error; 2699 } 2700 2701 /// hasNullFragReference - Return true if the DAG has any reference to the 2702 /// null_frag operator. 2703 static bool hasNullFragReference(DagInit *DI) { 2704 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2705 if (!OpDef) return false; 2706 Record *Operator = OpDef->getDef(); 2707 2708 // If this is the null fragment, return true. 2709 if (Operator->getName() == "null_frag") return true; 2710 // If any of the arguments reference the null fragment, return true. 2711 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2712 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2713 if (Arg && hasNullFragReference(Arg)) 2714 return true; 2715 } 2716 2717 return false; 2718 } 2719 2720 /// hasNullFragReference - Return true if any DAG in the list references 2721 /// the null_frag operator. 2722 static bool hasNullFragReference(ListInit *LI) { 2723 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { 2724 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i)); 2725 assert(DI && "non-dag in an instruction Pattern list?!"); 2726 if (hasNullFragReference(DI)) 2727 return true; 2728 } 2729 return false; 2730 } 2731 2732 /// Get all the instructions in a tree. 2733 static void 2734 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2735 if (Tree->isLeaf()) 2736 return; 2737 if (Tree->getOperator()->isSubClassOf("Instruction")) 2738 Instrs.push_back(Tree->getOperator()); 2739 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2740 getInstructionsInTree(Tree->getChild(i), Instrs); 2741 } 2742 2743 /// Check the class of a pattern leaf node against the instruction operand it 2744 /// represents. 2745 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2746 Record *Leaf) { 2747 if (OI.Rec == Leaf) 2748 return true; 2749 2750 // Allow direct value types to be used in instruction set patterns. 2751 // The type will be checked later. 2752 if (Leaf->isSubClassOf("ValueType")) 2753 return true; 2754 2755 // Patterns can also be ComplexPattern instances. 2756 if (Leaf->isSubClassOf("ComplexPattern")) 2757 return true; 2758 2759 return false; 2760 } 2761 2762 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2763 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2764 2765 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2766 2767 // Parse the instruction. 2768 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2769 // Inline pattern fragments into it. 2770 I->InlinePatternFragments(); 2771 2772 // Infer as many types as possible. If we cannot infer all of them, we can 2773 // never do anything with this instruction pattern: report it to the user. 2774 if (!I->InferAllTypes()) 2775 I->error("Could not infer all types in pattern!"); 2776 2777 // InstInputs - Keep track of all of the inputs of the instruction, along 2778 // with the record they are declared as. 2779 std::map<std::string, TreePatternNode*> InstInputs; 2780 2781 // InstResults - Keep track of all the virtual registers that are 'set' 2782 // in the instruction, including what reg class they are. 2783 std::map<std::string, TreePatternNode*> InstResults; 2784 2785 std::vector<Record*> InstImpResults; 2786 2787 // Verify that the top-level forms in the instruction are of void type, and 2788 // fill in the InstResults map. 2789 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2790 TreePatternNode *Pat = I->getTree(j); 2791 if (Pat->getNumTypes() != 0) 2792 I->error("Top-level forms in instruction pattern should have" 2793 " void types"); 2794 2795 // Find inputs and outputs, and verify the structure of the uses/defs. 2796 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2797 InstImpResults); 2798 } 2799 2800 // Now that we have inputs and outputs of the pattern, inspect the operands 2801 // list for the instruction. This determines the order that operands are 2802 // added to the machine instruction the node corresponds to. 2803 unsigned NumResults = InstResults.size(); 2804 2805 // Parse the operands list from the (ops) list, validating it. 2806 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2807 2808 // Check that all of the results occur first in the list. 2809 std::vector<Record*> Results; 2810 TreePatternNode *Res0Node = nullptr; 2811 for (unsigned i = 0; i != NumResults; ++i) { 2812 if (i == CGI.Operands.size()) 2813 I->error("'" + InstResults.begin()->first + 2814 "' set but does not appear in operand list!"); 2815 const std::string &OpName = CGI.Operands[i].Name; 2816 2817 // Check that it exists in InstResults. 2818 TreePatternNode *RNode = InstResults[OpName]; 2819 if (!RNode) 2820 I->error("Operand $" + OpName + " does not exist in operand list!"); 2821 2822 if (i == 0) 2823 Res0Node = RNode; 2824 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 2825 if (!R) 2826 I->error("Operand $" + OpName + " should be a set destination: all " 2827 "outputs must occur before inputs in operand list!"); 2828 2829 if (!checkOperandClass(CGI.Operands[i], R)) 2830 I->error("Operand $" + OpName + " class mismatch!"); 2831 2832 // Remember the return type. 2833 Results.push_back(CGI.Operands[i].Rec); 2834 2835 // Okay, this one checks out. 2836 InstResults.erase(OpName); 2837 } 2838 2839 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2840 // the copy while we're checking the inputs. 2841 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2842 2843 std::vector<TreePatternNode*> ResultNodeOperands; 2844 std::vector<Record*> Operands; 2845 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2846 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2847 const std::string &OpName = Op.Name; 2848 if (OpName.empty()) 2849 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2850 2851 if (!InstInputsCheck.count(OpName)) { 2852 // If this is an operand with a DefaultOps set filled in, we can ignore 2853 // this. When we codegen it, we will do so as always executed. 2854 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 2855 // Does it have a non-empty DefaultOps field? If so, ignore this 2856 // operand. 2857 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2858 continue; 2859 } 2860 I->error("Operand $" + OpName + 2861 " does not appear in the instruction pattern"); 2862 } 2863 TreePatternNode *InVal = InstInputsCheck[OpName]; 2864 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2865 2866 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 2867 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2868 if (!checkOperandClass(Op, InRec)) 2869 I->error("Operand $" + OpName + "'s register class disagrees" 2870 " between the operand and pattern"); 2871 } 2872 Operands.push_back(Op.Rec); 2873 2874 // Construct the result for the dest-pattern operand list. 2875 TreePatternNode *OpNode = InVal->clone(); 2876 2877 // No predicate is useful on the result. 2878 OpNode->clearPredicateFns(); 2879 2880 // Promote the xform function to be an explicit node if set. 2881 if (Record *Xform = OpNode->getTransformFn()) { 2882 OpNode->setTransformFn(nullptr); 2883 std::vector<TreePatternNode*> Children; 2884 Children.push_back(OpNode); 2885 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2886 } 2887 2888 ResultNodeOperands.push_back(OpNode); 2889 } 2890 2891 if (!InstInputsCheck.empty()) 2892 I->error("Input operand $" + InstInputsCheck.begin()->first + 2893 " occurs in pattern but not in operands list!"); 2894 2895 TreePatternNode *ResultPattern = 2896 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2897 GetNumNodeResults(I->getRecord(), *this)); 2898 // Copy fully inferred output node type to instruction result pattern. 2899 for (unsigned i = 0; i != NumResults; ++i) 2900 ResultPattern->setType(i, Res0Node->getExtType(i)); 2901 2902 // Create and insert the instruction. 2903 // FIXME: InstImpResults should not be part of DAGInstruction. 2904 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2905 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 2906 2907 // Use a temporary tree pattern to infer all types and make sure that the 2908 // constructed result is correct. This depends on the instruction already 2909 // being inserted into the DAGInsts map. 2910 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2911 Temp.InferAllTypes(&I->getNamedNodesMap()); 2912 2913 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 2914 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2915 2916 return TheInsertedInst; 2917 } 2918 2919 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2920 /// any fragments involved. This populates the Instructions list with fully 2921 /// resolved instructions. 2922 void CodeGenDAGPatterns::ParseInstructions() { 2923 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2924 2925 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2926 ListInit *LI = nullptr; 2927 2928 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern"))) 2929 LI = Instrs[i]->getValueAsListInit("Pattern"); 2930 2931 // If there is no pattern, only collect minimal information about the 2932 // instruction for its operand list. We have to assume that there is one 2933 // result, as we have no detailed info. A pattern which references the 2934 // null_frag operator is as-if no pattern were specified. Normally this 2935 // is from a multiclass expansion w/ a SDPatternOperator passed in as 2936 // null_frag. 2937 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) { 2938 std::vector<Record*> Results; 2939 std::vector<Record*> Operands; 2940 2941 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2942 2943 if (InstInfo.Operands.size() != 0) { 2944 if (InstInfo.Operands.NumDefs == 0) { 2945 // These produce no results 2946 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2947 Operands.push_back(InstInfo.Operands[j].Rec); 2948 } else { 2949 // Assume the first operand is the result. 2950 Results.push_back(InstInfo.Operands[0].Rec); 2951 2952 // The rest are inputs. 2953 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2954 Operands.push_back(InstInfo.Operands[j].Rec); 2955 } 2956 } 2957 2958 // Create and insert the instruction. 2959 std::vector<Record*> ImpResults; 2960 Instructions.insert(std::make_pair(Instrs[i], 2961 DAGInstruction(nullptr, Results, Operands, ImpResults))); 2962 continue; // no pattern. 2963 } 2964 2965 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2966 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 2967 2968 (void)DI; 2969 DEBUG(DI.getPattern()->dump()); 2970 } 2971 2972 // If we can, convert the instructions to be patterns that are matched! 2973 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II = 2974 Instructions.begin(), 2975 E = Instructions.end(); II != E; ++II) { 2976 DAGInstruction &TheInst = II->second; 2977 TreePattern *I = TheInst.getPattern(); 2978 if (!I) continue; // No pattern. 2979 2980 // FIXME: Assume only the first tree is the pattern. The others are clobber 2981 // nodes. 2982 TreePatternNode *Pattern = I->getTree(0); 2983 TreePatternNode *SrcPattern; 2984 if (Pattern->getOperator()->getName() == "set") { 2985 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2986 } else{ 2987 // Not a set (store or something?) 2988 SrcPattern = Pattern; 2989 } 2990 2991 Record *Instr = II->first; 2992 AddPatternToMatch(I, 2993 PatternToMatch(Instr, 2994 Instr->getValueAsListInit("Predicates"), 2995 SrcPattern, 2996 TheInst.getResultPattern(), 2997 TheInst.getImpResults(), 2998 Instr->getValueAsInt("AddedComplexity"), 2999 Instr->getID())); 3000 } 3001 } 3002 3003 3004 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3005 3006 static void FindNames(const TreePatternNode *P, 3007 std::map<std::string, NameRecord> &Names, 3008 TreePattern *PatternTop) { 3009 if (!P->getName().empty()) { 3010 NameRecord &Rec = Names[P->getName()]; 3011 // If this is the first instance of the name, remember the node. 3012 if (Rec.second++ == 0) 3013 Rec.first = P; 3014 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3015 PatternTop->error("repetition of value: $" + P->getName() + 3016 " where different uses have different types!"); 3017 } 3018 3019 if (!P->isLeaf()) { 3020 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3021 FindNames(P->getChild(i), Names, PatternTop); 3022 } 3023 } 3024 3025 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3026 const PatternToMatch &PTM) { 3027 // Do some sanity checking on the pattern we're about to match. 3028 std::string Reason; 3029 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3030 PrintWarning(Pattern->getRecord()->getLoc(), 3031 Twine("Pattern can never match: ") + Reason); 3032 return; 3033 } 3034 3035 // If the source pattern's root is a complex pattern, that complex pattern 3036 // must specify the nodes it can potentially match. 3037 if (const ComplexPattern *CP = 3038 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3039 if (CP->getRootNodes().empty()) 3040 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3041 " could match"); 3042 3043 3044 // Find all of the named values in the input and output, ensure they have the 3045 // same type. 3046 std::map<std::string, NameRecord> SrcNames, DstNames; 3047 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3048 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3049 3050 // Scan all of the named values in the destination pattern, rejecting them if 3051 // they don't exist in the input pattern. 3052 for (std::map<std::string, NameRecord>::iterator 3053 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 3054 if (SrcNames[I->first].first == nullptr) 3055 Pattern->error("Pattern has input without matching name in output: $" + 3056 I->first); 3057 } 3058 3059 // Scan all of the named values in the source pattern, rejecting them if the 3060 // name isn't used in the dest, and isn't used to tie two values together. 3061 for (std::map<std::string, NameRecord>::iterator 3062 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 3063 if (DstNames[I->first].first == nullptr && SrcNames[I->first].second == 1) 3064 Pattern->error("Pattern has dead named input: $" + I->first); 3065 3066 PatternsToMatch.push_back(PTM); 3067 } 3068 3069 3070 3071 void CodeGenDAGPatterns::InferInstructionFlags() { 3072 const std::vector<const CodeGenInstruction*> &Instructions = 3073 Target.getInstructionsByEnumValue(); 3074 3075 // First try to infer flags from the primary instruction pattern, if any. 3076 SmallVector<CodeGenInstruction*, 8> Revisit; 3077 unsigned Errors = 0; 3078 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3079 CodeGenInstruction &InstInfo = 3080 const_cast<CodeGenInstruction &>(*Instructions[i]); 3081 3082 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0. 3083 // This flag is obsolete and will be removed. 3084 if (InstInfo.neverHasSideEffects) { 3085 assert(!InstInfo.hasSideEffects); 3086 InstInfo.hasSideEffects_Unset = false; 3087 } 3088 3089 // Get the primary instruction pattern. 3090 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3091 if (!Pattern) { 3092 if (InstInfo.hasUndefFlags()) 3093 Revisit.push_back(&InstInfo); 3094 continue; 3095 } 3096 InstAnalyzer PatInfo(*this); 3097 PatInfo.Analyze(Pattern); 3098 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3099 } 3100 3101 // Second, look for single-instruction patterns defined outside the 3102 // instruction. 3103 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3104 const PatternToMatch &PTM = *I; 3105 3106 // We can only infer from single-instruction patterns, otherwise we won't 3107 // know which instruction should get the flags. 3108 SmallVector<Record*, 8> PatInstrs; 3109 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3110 if (PatInstrs.size() != 1) 3111 continue; 3112 3113 // Get the single instruction. 3114 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3115 3116 // Only infer properties from the first pattern. We'll verify the others. 3117 if (InstInfo.InferredFrom) 3118 continue; 3119 3120 InstAnalyzer PatInfo(*this); 3121 PatInfo.Analyze(&PTM); 3122 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3123 } 3124 3125 if (Errors) 3126 PrintFatalError("pattern conflicts"); 3127 3128 // Revisit instructions with undefined flags and no pattern. 3129 if (Target.guessInstructionProperties()) { 3130 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 3131 CodeGenInstruction &InstInfo = *Revisit[i]; 3132 if (InstInfo.InferredFrom) 3133 continue; 3134 // The mayLoad and mayStore flags default to false. 3135 // Conservatively assume hasSideEffects if it wasn't explicit. 3136 if (InstInfo.hasSideEffects_Unset) 3137 InstInfo.hasSideEffects = true; 3138 } 3139 return; 3140 } 3141 3142 // Complain about any flags that are still undefined. 3143 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 3144 CodeGenInstruction &InstInfo = *Revisit[i]; 3145 if (InstInfo.InferredFrom) 3146 continue; 3147 if (InstInfo.hasSideEffects_Unset) 3148 PrintError(InstInfo.TheDef->getLoc(), 3149 "Can't infer hasSideEffects from patterns"); 3150 if (InstInfo.mayStore_Unset) 3151 PrintError(InstInfo.TheDef->getLoc(), 3152 "Can't infer mayStore from patterns"); 3153 if (InstInfo.mayLoad_Unset) 3154 PrintError(InstInfo.TheDef->getLoc(), 3155 "Can't infer mayLoad from patterns"); 3156 } 3157 } 3158 3159 3160 /// Verify instruction flags against pattern node properties. 3161 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3162 unsigned Errors = 0; 3163 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3164 const PatternToMatch &PTM = *I; 3165 SmallVector<Record*, 8> Instrs; 3166 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3167 if (Instrs.empty()) 3168 continue; 3169 3170 // Count the number of instructions with each flag set. 3171 unsigned NumSideEffects = 0; 3172 unsigned NumStores = 0; 3173 unsigned NumLoads = 0; 3174 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 3175 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 3176 NumSideEffects += InstInfo.hasSideEffects; 3177 NumStores += InstInfo.mayStore; 3178 NumLoads += InstInfo.mayLoad; 3179 } 3180 3181 // Analyze the source pattern. 3182 InstAnalyzer PatInfo(*this); 3183 PatInfo.Analyze(&PTM); 3184 3185 // Collect error messages. 3186 SmallVector<std::string, 4> Msgs; 3187 3188 // Check for missing flags in the output. 3189 // Permit extra flags for now at least. 3190 if (PatInfo.hasSideEffects && !NumSideEffects) 3191 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3192 3193 // Don't verify store flags on instructions with side effects. At least for 3194 // intrinsics, side effects implies mayStore. 3195 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3196 Msgs.push_back("pattern may store, but mayStore isn't set"); 3197 3198 // Similarly, mayStore implies mayLoad on intrinsics. 3199 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3200 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3201 3202 // Print error messages. 3203 if (Msgs.empty()) 3204 continue; 3205 ++Errors; 3206 3207 for (unsigned i = 0, e = Msgs.size(); i != e; ++i) 3208 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + 3209 (Instrs.size() == 1 ? 3210 "instruction" : "output instructions")); 3211 // Provide the location of the relevant instruction definitions. 3212 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 3213 if (Instrs[i] != PTM.getSrcRecord()) 3214 PrintError(Instrs[i]->getLoc(), "defined here"); 3215 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 3216 if (InstInfo.InferredFrom && 3217 InstInfo.InferredFrom != InstInfo.TheDef && 3218 InstInfo.InferredFrom != PTM.getSrcRecord()) 3219 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); 3220 } 3221 } 3222 if (Errors) 3223 PrintFatalError("Errors in DAG patterns"); 3224 } 3225 3226 /// Given a pattern result with an unresolved type, see if we can find one 3227 /// instruction with an unresolved result type. Force this result type to an 3228 /// arbitrary element if it's possible types to converge results. 3229 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3230 if (N->isLeaf()) 3231 return false; 3232 3233 // Analyze children. 3234 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3235 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3236 return true; 3237 3238 if (!N->getOperator()->isSubClassOf("Instruction")) 3239 return false; 3240 3241 // If this type is already concrete or completely unknown we can't do 3242 // anything. 3243 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3244 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3245 continue; 3246 3247 // Otherwise, force its type to the first possibility (an arbitrary choice). 3248 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3249 return true; 3250 } 3251 3252 return false; 3253 } 3254 3255 void CodeGenDAGPatterns::ParsePatterns() { 3256 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3257 3258 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 3259 Record *CurPattern = Patterns[i]; 3260 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3261 3262 // If the pattern references the null_frag, there's nothing to do. 3263 if (hasNullFragReference(Tree)) 3264 continue; 3265 3266 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3267 3268 // Inline pattern fragments into it. 3269 Pattern->InlinePatternFragments(); 3270 3271 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3272 if (LI->getSize() == 0) continue; // no pattern. 3273 3274 // Parse the instruction. 3275 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 3276 3277 // Inline pattern fragments into it. 3278 Result->InlinePatternFragments(); 3279 3280 if (Result->getNumTrees() != 1) 3281 Result->error("Cannot handle instructions producing instructions " 3282 "with temporaries yet!"); 3283 3284 bool IterateInference; 3285 bool InferredAllPatternTypes, InferredAllResultTypes; 3286 do { 3287 // Infer as many types as possible. If we cannot infer all of them, we 3288 // can never do anything with this pattern: report it to the user. 3289 InferredAllPatternTypes = 3290 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3291 3292 // Infer as many types as possible. If we cannot infer all of them, we 3293 // can never do anything with this pattern: report it to the user. 3294 InferredAllResultTypes = 3295 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 3296 3297 IterateInference = false; 3298 3299 // Apply the type of the result to the source pattern. This helps us 3300 // resolve cases where the input type is known to be a pointer type (which 3301 // is considered resolved), but the result knows it needs to be 32- or 3302 // 64-bits. Infer the other way for good measure. 3303 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 3304 Pattern->getTree(0)->getNumTypes()); 3305 i != e; ++i) { 3306 IterateInference = Pattern->getTree(0)-> 3307 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 3308 IterateInference |= Result->getTree(0)-> 3309 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 3310 } 3311 3312 // If our iteration has converged and the input pattern's types are fully 3313 // resolved but the result pattern is not fully resolved, we may have a 3314 // situation where we have two instructions in the result pattern and 3315 // the instructions require a common register class, but don't care about 3316 // what actual MVT is used. This is actually a bug in our modelling: 3317 // output patterns should have register classes, not MVTs. 3318 // 3319 // In any case, to handle this, we just go through and disambiguate some 3320 // arbitrary types to the result pattern's nodes. 3321 if (!IterateInference && InferredAllPatternTypes && 3322 !InferredAllResultTypes) 3323 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 3324 *Result); 3325 } while (IterateInference); 3326 3327 // Verify that we inferred enough types that we can do something with the 3328 // pattern and result. If these fire the user has to add type casts. 3329 if (!InferredAllPatternTypes) 3330 Pattern->error("Could not infer all types in pattern!"); 3331 if (!InferredAllResultTypes) { 3332 Pattern->dump(); 3333 Result->error("Could not infer all types in pattern result!"); 3334 } 3335 3336 // Validate that the input pattern is correct. 3337 std::map<std::string, TreePatternNode*> InstInputs; 3338 std::map<std::string, TreePatternNode*> InstResults; 3339 std::vector<Record*> InstImpResults; 3340 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3341 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3342 InstInputs, InstResults, 3343 InstImpResults); 3344 3345 // Promote the xform function to be an explicit node if set. 3346 TreePatternNode *DstPattern = Result->getOnlyTree(); 3347 std::vector<TreePatternNode*> ResultNodeOperands; 3348 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3349 TreePatternNode *OpNode = DstPattern->getChild(ii); 3350 if (Record *Xform = OpNode->getTransformFn()) { 3351 OpNode->setTransformFn(nullptr); 3352 std::vector<TreePatternNode*> Children; 3353 Children.push_back(OpNode); 3354 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3355 } 3356 ResultNodeOperands.push_back(OpNode); 3357 } 3358 DstPattern = Result->getOnlyTree(); 3359 if (!DstPattern->isLeaf()) 3360 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3361 ResultNodeOperands, 3362 DstPattern->getNumTypes()); 3363 3364 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 3365 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 3366 3367 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 3368 Temp.InferAllTypes(); 3369 3370 3371 AddPatternToMatch(Pattern, 3372 PatternToMatch(CurPattern, 3373 CurPattern->getValueAsListInit("Predicates"), 3374 Pattern->getTree(0), 3375 Temp.getOnlyTree(), InstImpResults, 3376 CurPattern->getValueAsInt("AddedComplexity"), 3377 CurPattern->getID())); 3378 } 3379 } 3380 3381 /// CombineChildVariants - Given a bunch of permutations of each child of the 3382 /// 'operator' node, put them together in all possible ways. 3383 static void CombineChildVariants(TreePatternNode *Orig, 3384 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3385 std::vector<TreePatternNode*> &OutVariants, 3386 CodeGenDAGPatterns &CDP, 3387 const MultipleUseVarSet &DepVars) { 3388 // Make sure that each operand has at least one variant to choose from. 3389 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3390 if (ChildVariants[i].empty()) 3391 return; 3392 3393 // The end result is an all-pairs construction of the resultant pattern. 3394 std::vector<unsigned> Idxs; 3395 Idxs.resize(ChildVariants.size()); 3396 bool NotDone; 3397 do { 3398 #ifndef NDEBUG 3399 DEBUG(if (!Idxs.empty()) { 3400 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3401 for (unsigned i = 0; i < Idxs.size(); ++i) { 3402 errs() << Idxs[i] << " "; 3403 } 3404 errs() << "]\n"; 3405 }); 3406 #endif 3407 // Create the variant and add it to the output list. 3408 std::vector<TreePatternNode*> NewChildren; 3409 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3410 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3411 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3412 Orig->getNumTypes()); 3413 3414 // Copy over properties. 3415 R->setName(Orig->getName()); 3416 R->setPredicateFns(Orig->getPredicateFns()); 3417 R->setTransformFn(Orig->getTransformFn()); 3418 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3419 R->setType(i, Orig->getExtType(i)); 3420 3421 // If this pattern cannot match, do not include it as a variant. 3422 std::string ErrString; 3423 if (!R->canPatternMatch(ErrString, CDP)) { 3424 delete R; 3425 } else { 3426 bool AlreadyExists = false; 3427 3428 // Scan to see if this pattern has already been emitted. We can get 3429 // duplication due to things like commuting: 3430 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3431 // which are the same pattern. Ignore the dups. 3432 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3433 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3434 AlreadyExists = true; 3435 break; 3436 } 3437 3438 if (AlreadyExists) 3439 delete R; 3440 else 3441 OutVariants.push_back(R); 3442 } 3443 3444 // Increment indices to the next permutation by incrementing the 3445 // indicies from last index backward, e.g., generate the sequence 3446 // [0, 0], [0, 1], [1, 0], [1, 1]. 3447 int IdxsIdx; 3448 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3449 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3450 Idxs[IdxsIdx] = 0; 3451 else 3452 break; 3453 } 3454 NotDone = (IdxsIdx >= 0); 3455 } while (NotDone); 3456 } 3457 3458 /// CombineChildVariants - A helper function for binary operators. 3459 /// 3460 static void CombineChildVariants(TreePatternNode *Orig, 3461 const std::vector<TreePatternNode*> &LHS, 3462 const std::vector<TreePatternNode*> &RHS, 3463 std::vector<TreePatternNode*> &OutVariants, 3464 CodeGenDAGPatterns &CDP, 3465 const MultipleUseVarSet &DepVars) { 3466 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3467 ChildVariants.push_back(LHS); 3468 ChildVariants.push_back(RHS); 3469 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3470 } 3471 3472 3473 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3474 std::vector<TreePatternNode *> &Children) { 3475 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3476 Record *Operator = N->getOperator(); 3477 3478 // Only permit raw nodes. 3479 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3480 N->getTransformFn()) { 3481 Children.push_back(N); 3482 return; 3483 } 3484 3485 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3486 Children.push_back(N->getChild(0)); 3487 else 3488 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3489 3490 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3491 Children.push_back(N->getChild(1)); 3492 else 3493 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3494 } 3495 3496 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3497 /// the (potentially recursive) pattern by using algebraic laws. 3498 /// 3499 static void GenerateVariantsOf(TreePatternNode *N, 3500 std::vector<TreePatternNode*> &OutVariants, 3501 CodeGenDAGPatterns &CDP, 3502 const MultipleUseVarSet &DepVars) { 3503 // We cannot permute leaves or ComplexPattern uses. 3504 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3505 OutVariants.push_back(N); 3506 return; 3507 } 3508 3509 // Look up interesting info about the node. 3510 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3511 3512 // If this node is associative, re-associate. 3513 if (NodeInfo.hasProperty(SDNPAssociative)) { 3514 // Re-associate by pulling together all of the linked operators 3515 std::vector<TreePatternNode*> MaximalChildren; 3516 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3517 3518 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3519 // permutations. 3520 if (MaximalChildren.size() == 3) { 3521 // Find the variants of all of our maximal children. 3522 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3523 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3524 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3525 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3526 3527 // There are only two ways we can permute the tree: 3528 // (A op B) op C and A op (B op C) 3529 // Within these forms, we can also permute A/B/C. 3530 3531 // Generate legal pair permutations of A/B/C. 3532 std::vector<TreePatternNode*> ABVariants; 3533 std::vector<TreePatternNode*> BAVariants; 3534 std::vector<TreePatternNode*> ACVariants; 3535 std::vector<TreePatternNode*> CAVariants; 3536 std::vector<TreePatternNode*> BCVariants; 3537 std::vector<TreePatternNode*> CBVariants; 3538 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3539 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3540 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3541 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3542 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3543 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3544 3545 // Combine those into the result: (x op x) op x 3546 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3547 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3548 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3549 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3550 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3551 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3552 3553 // Combine those into the result: x op (x op x) 3554 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3555 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3556 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3557 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3558 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3559 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3560 return; 3561 } 3562 } 3563 3564 // Compute permutations of all children. 3565 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3566 ChildVariants.resize(N->getNumChildren()); 3567 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3568 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3569 3570 // Build all permutations based on how the children were formed. 3571 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3572 3573 // If this node is commutative, consider the commuted order. 3574 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3575 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3576 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3577 "Commutative but doesn't have 2 children!"); 3578 // Don't count children which are actually register references. 3579 unsigned NC = 0; 3580 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3581 TreePatternNode *Child = N->getChild(i); 3582 if (Child->isLeaf()) 3583 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3584 Record *RR = DI->getDef(); 3585 if (RR->isSubClassOf("Register")) 3586 continue; 3587 } 3588 NC++; 3589 } 3590 // Consider the commuted order. 3591 if (isCommIntrinsic) { 3592 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3593 // operands are the commutative operands, and there might be more operands 3594 // after those. 3595 assert(NC >= 3 && 3596 "Commutative intrinsic should have at least 3 childrean!"); 3597 std::vector<std::vector<TreePatternNode*> > Variants; 3598 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3599 Variants.push_back(ChildVariants[2]); 3600 Variants.push_back(ChildVariants[1]); 3601 for (unsigned i = 3; i != NC; ++i) 3602 Variants.push_back(ChildVariants[i]); 3603 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3604 } else if (NC == 2) 3605 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3606 OutVariants, CDP, DepVars); 3607 } 3608 } 3609 3610 3611 // GenerateVariants - Generate variants. For example, commutative patterns can 3612 // match multiple ways. Add them to PatternsToMatch as well. 3613 void CodeGenDAGPatterns::GenerateVariants() { 3614 DEBUG(errs() << "Generating instruction variants.\n"); 3615 3616 // Loop over all of the patterns we've collected, checking to see if we can 3617 // generate variants of the instruction, through the exploitation of 3618 // identities. This permits the target to provide aggressive matching without 3619 // the .td file having to contain tons of variants of instructions. 3620 // 3621 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3622 // intentionally do not reconsider these. Any variants of added patterns have 3623 // already been added. 3624 // 3625 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3626 MultipleUseVarSet DepVars; 3627 std::vector<TreePatternNode*> Variants; 3628 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3629 DEBUG(errs() << "Dependent/multiply used variables: "); 3630 DEBUG(DumpDepVars(DepVars)); 3631 DEBUG(errs() << "\n"); 3632 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3633 DepVars); 3634 3635 assert(!Variants.empty() && "Must create at least original variant!"); 3636 Variants.erase(Variants.begin()); // Remove the original pattern. 3637 3638 if (Variants.empty()) // No variants for this pattern. 3639 continue; 3640 3641 DEBUG(errs() << "FOUND VARIANTS OF: "; 3642 PatternsToMatch[i].getSrcPattern()->dump(); 3643 errs() << "\n"); 3644 3645 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3646 TreePatternNode *Variant = Variants[v]; 3647 3648 DEBUG(errs() << " VAR#" << v << ": "; 3649 Variant->dump(); 3650 errs() << "\n"); 3651 3652 // Scan to see if an instruction or explicit pattern already matches this. 3653 bool AlreadyExists = false; 3654 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3655 // Skip if the top level predicates do not match. 3656 if (PatternsToMatch[i].getPredicates() != 3657 PatternsToMatch[p].getPredicates()) 3658 continue; 3659 // Check to see if this variant already exists. 3660 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3661 DepVars)) { 3662 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3663 AlreadyExists = true; 3664 break; 3665 } 3666 } 3667 // If we already have it, ignore the variant. 3668 if (AlreadyExists) continue; 3669 3670 // Otherwise, add it to the list of patterns we have. 3671 PatternsToMatch. 3672 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3673 PatternsToMatch[i].getPredicates(), 3674 Variant, PatternsToMatch[i].getDstPattern(), 3675 PatternsToMatch[i].getDstRegs(), 3676 PatternsToMatch[i].getAddedComplexity(), 3677 Record::getNewUID())); 3678 } 3679 3680 DEBUG(errs() << "\n"); 3681 } 3682 } 3683