1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   SmallDenseSet<unsigned, 4> Modes;
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     Modes.insert(M);
117     // Make sure there exists a set for each specific mode from VVT.
118     Changed |= getOrCreate(M).insert(P.second).second;
119     // Cache VVT's default mode.
120     if (DefaultMode == M) {
121       ContainsDefault = true;
122       DT = P.second;
123     }
124   }
125 
126   // If VVT has a default mode, add the corresponding type to all
127   // modes in "this" that do not exist in VVT.
128   if (ContainsDefault)
129     for (auto &I : *this)
130       if (!Modes.count(I.first))
131         Changed |= I.second.insert(DT).second;
132 
133   return Changed;
134 }
135 
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138   bool Changed = false;
139   if (hasDefault()) {
140     for (const auto &I : VTS) {
141       unsigned M = I.first;
142       if (M == DefaultMode || hasMode(M))
143         continue;
144       Map.insert({M, Map.at(DefaultMode)});
145       Changed = true;
146     }
147   }
148 
149   for (auto &I : *this) {
150     unsigned M = I.first;
151     SetType &S = I.second;
152     if (VTS.hasMode(M) || VTS.hasDefault()) {
153       Changed |= intersect(I.second, VTS.get(M));
154     } else if (!S.empty()) {
155       S.clear();
156       Changed = true;
157     }
158   }
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164   bool Changed = false;
165   for (auto &I : *this)
166     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167   return Changed;
168 }
169 
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172   assert(empty());
173   for (const auto &I : VTS) {
174     SetType &S = getOrCreate(I.first);
175     for (auto J : I.second)
176       if (P(J))
177         S.insert(J);
178   }
179   return !empty();
180 }
181 
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183   SmallVector<unsigned, 4> Modes;
184   Modes.reserve(Map.size());
185 
186   for (const auto &I : *this)
187     Modes.push_back(I.first);
188   if (Modes.empty()) {
189     OS << "{}";
190     return;
191   }
192   array_pod_sort(Modes.begin(), Modes.end());
193 
194   OS << '{';
195   for (unsigned M : Modes) {
196     OS << ' ' << getModeName(M) << ':';
197     writeToStream(get(M), OS);
198   }
199   OS << " }";
200 }
201 
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203   SmallVector<MVT, 4> Types(S.begin(), S.end());
204   array_pod_sort(Types.begin(), Types.end());
205 
206   OS << '[';
207   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208     OS << ValueTypeByHwMode::getMVTName(Types[i]);
209     if (i != e-1)
210       OS << ' ';
211   }
212   OS << ']';
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallDenseSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263 }
264 
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267   dbgs() << *this << '\n';
268 }
269 
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273 
274   if (OutP == InP)
275     return berase_if(Out, Int);
276 
277   // Compute the intersection of scalars separately to account for only
278   // one set containing iPTR.
279   // The itersection of iPTR with a set of integer scalar types that does not
280   // include iPTR will result in the most specific scalar type:
281   // - iPTR is more specific than any set with two elements or more
282   // - iPTR is less specific than any single integer scalar type.
283   // For example
284   // { iPTR } * { i32 }     -> { i32 }
285   // { iPTR } * { i32 i64 } -> { iPTR }
286   // and
287   // { iPTR i32 } * { i32 }          -> { i32 }
288   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
289   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290 
291   // Compute the difference between the two sets in such a way that the
292   // iPTR is in the set that is being subtracted. This is to see if there
293   // are any extra scalars in the set without iPTR that are not in the
294   // set containing iPTR. Then the iPTR could be considered a "wildcard"
295   // matching these scalars. If there is only one such scalar, it would
296   // replace the iPTR, if there are more, the iPTR would be retained.
297   SetType Diff;
298   if (InP) {
299     Diff = Out;
300     berase_if(Diff, [&In](MVT T) { return In.count(T); });
301     // Pre-remove these elements and rely only on InP/OutP to determine
302     // whether a change has been made.
303     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304   } else {
305     Diff = In;
306     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307     Out.erase(MVT::iPTR);
308   }
309 
310   // The actual intersection.
311   bool Changed = berase_if(Out, Int);
312   unsigned NumD = Diff.size();
313   if (NumD == 0)
314     return Changed;
315 
316   if (NumD == 1) {
317     Out.insert(*Diff.begin());
318     // This is a change only if Out was the one with iPTR (which is now
319     // being replaced).
320     Changed |= OutP;
321   } else {
322     // Multiple elements from Out are now replaced with iPTR.
323     Out.insert(MVT::iPTR);
324     Changed |= !OutP;
325   }
326   return Changed;
327 }
328 
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331   if (empty())
332     return true;
333   bool AllEmpty = true;
334   for (const auto &I : *this)
335     AllEmpty &= I.second.empty();
336   return !AllEmpty;
337 #endif
338   return true;
339 }
340 
341 // --- TypeInfer
342 
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344                                 const TypeSetByHwMode &In) {
345   ValidateOnExit _1(Out, *this);
346   In.validate();
347   if (In.empty() || Out == In || TP.hasError())
348     return false;
349   if (Out.empty()) {
350     Out = In;
351     return true;
352   }
353 
354   bool Changed = Out.constrain(In);
355   if (Changed && Out.empty())
356     TP.error("Type contradiction");
357 
358   return Changed;
359 }
360 
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362   ValidateOnExit _1(Out, *this);
363   if (TP.hasError())
364     return false;
365   assert(!Out.empty() && "cannot pick from an empty set");
366 
367   bool Changed = false;
368   for (auto &I : Out) {
369     TypeSetByHwMode::SetType &S = I.second;
370     if (S.size() <= 1)
371       continue;
372     MVT T = *S.begin(); // Pick the first element.
373     S.clear();
374     S.insert(T);
375     Changed = true;
376   }
377   return Changed;
378 }
379 
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   if (!Out.empty())
385     return Out.constrain(isIntegerOrPtr);
386 
387   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388 }
389 
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391   ValidateOnExit _1(Out, *this);
392   if (TP.hasError())
393     return false;
394   if (!Out.empty())
395     return Out.constrain(isFloatingPoint);
396 
397   return Out.assign_if(getLegalTypes(), isFloatingPoint);
398 }
399 
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401   ValidateOnExit _1(Out, *this);
402   if (TP.hasError())
403     return false;
404   if (!Out.empty())
405     return Out.constrain(isScalar);
406 
407   return Out.assign_if(getLegalTypes(), isScalar);
408 }
409 
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411   ValidateOnExit _1(Out, *this);
412   if (TP.hasError())
413     return false;
414   if (!Out.empty())
415     return Out.constrain(isVector);
416 
417   return Out.assign_if(getLegalTypes(), isVector);
418 }
419 
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421   ValidateOnExit _1(Out, *this);
422   if (TP.hasError() || !Out.empty())
423     return false;
424 
425   Out = getLegalTypes();
426   return true;
427 }
428 
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431   if (B == E)
432     return E;
433   Iter Min = E;
434   for (Iter I = B; I != E; ++I) {
435     if (!P(*I))
436       continue;
437     if (Min == E || L(*I, *Min))
438       Min = I;
439   }
440   return Min;
441 }
442 
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445   if (B == E)
446     return E;
447   Iter Max = E;
448   for (Iter I = B; I != E; ++I) {
449     if (!P(*I))
450       continue;
451     if (Max == E || L(*Max, *I))
452       Max = I;
453   }
454   return Max;
455 }
456 
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459                                    TypeSetByHwMode &Big) {
460   ValidateOnExit _1(Small, *this), _2(Big, *this);
461   if (TP.hasError())
462     return false;
463   bool Changed = false;
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   std::vector<unsigned> Modes = union_modes(Small, Big);
473 
474   // 1. Only allow integer or floating point types and make sure that
475   //    both sides are both integer or both floating point.
476   // 2. Make sure that either both sides have vector types, or neither
477   //    of them does.
478   for (unsigned M : Modes) {
479     TypeSetByHwMode::SetType &S = Small.get(M);
480     TypeSetByHwMode::SetType &B = Big.get(M);
481 
482     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484       Changed |= berase_if(S, NotInt) |
485                  berase_if(B, NotInt);
486     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488       Changed |= berase_if(S, NotFP) |
489                  berase_if(B, NotFP);
490     } else if (S.empty() || B.empty()) {
491       Changed = !S.empty() || !B.empty();
492       S.clear();
493       B.clear();
494     } else {
495       TP.error("Incompatible types");
496       return Changed;
497     }
498 
499     if (none_of(S, isVector) || none_of(B, isVector)) {
500       Changed |= berase_if(S, isVector) |
501                  berase_if(B, isVector);
502     }
503   }
504 
505   auto LT = [](MVT A, MVT B) -> bool {
506     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508             A.getSizeInBits() < B.getSizeInBits());
509   };
510   auto LE = [&LT](MVT A, MVT B) -> bool {
511     // This function is used when removing elements: when a vector is compared
512     // to a non-vector, it should return false (to avoid removal).
513     if (A.isVector() != B.isVector())
514       return false;
515 
516     return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517                         A.getSizeInBits() == B.getSizeInBits());
518   };
519 
520   for (unsigned M : Modes) {
521     TypeSetByHwMode::SetType &S = Small.get(M);
522     TypeSetByHwMode::SetType &B = Big.get(M);
523     // MinS = min scalar in Small, remove all scalars from Big that are
524     // smaller-or-equal than MinS.
525     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526     if (MinS != S.end())
527       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528 
529     // MaxS = max scalar in Big, remove all scalars from Small that are
530     // larger than MaxS.
531     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532     if (MaxS != B.end())
533       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534 
535     // MinV = min vector in Small, remove all vectors from Big that are
536     // smaller-or-equal than MinV.
537     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538     if (MinV != S.end())
539       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540 
541     // MaxV = max vector in Big, remove all vectors from Small that are
542     // larger than MaxV.
543     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544     if (MaxV != B.end())
545       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546   }
547 
548   return Changed;
549 }
550 
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 ///    for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 ///    type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556                                        TypeSetByHwMode &Elem) {
557   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558   if (TP.hasError())
559     return false;
560   bool Changed = false;
561 
562   if (Vec.empty())
563     Changed |= EnforceVector(Vec);
564   if (Elem.empty())
565     Changed |= EnforceScalar(Elem);
566 
567   for (unsigned M : union_modes(Vec, Elem)) {
568     TypeSetByHwMode::SetType &V = Vec.get(M);
569     TypeSetByHwMode::SetType &E = Elem.get(M);
570 
571     Changed |= berase_if(V, isScalar);  // Scalar = !vector
572     Changed |= berase_if(E, isVector);  // Vector = !scalar
573     assert(!V.empty() && !E.empty());
574 
575     SmallSet<MVT,4> VT, ST;
576     // Collect element types from the "vector" set.
577     for (MVT T : V)
578       VT.insert(T.getVectorElementType());
579     // Collect scalar types from the "element" set.
580     for (MVT T : E)
581       ST.insert(T);
582 
583     // Remove from V all (vector) types whose element type is not in S.
584     Changed |= berase_if(V, [&ST](MVT T) -> bool {
585                               return !ST.count(T.getVectorElementType());
586                             });
587     // Remove from E all (scalar) types, for which there is no corresponding
588     // type in V.
589     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590   }
591 
592   return Changed;
593 }
594 
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596                                        const ValueTypeByHwMode &VVT) {
597   TypeSetByHwMode Tmp(VVT);
598   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599   return EnforceVectorEltTypeIs(Vec, Tmp);
600 }
601 
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606                                              TypeSetByHwMode &Sub) {
607   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608   if (TP.hasError())
609     return false;
610 
611   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612   auto IsSubVec = [](MVT B, MVT P) -> bool {
613     if (!B.isVector() || !P.isVector())
614       return false;
615     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616     // but until there are obvious use-cases for this, keep the
617     // types separate.
618     if (B.isScalableVector() != P.isScalableVector())
619       return false;
620     if (B.getVectorElementType() != P.getVectorElementType())
621       return false;
622     return B.getVectorNumElements() < P.getVectorNumElements();
623   };
624 
625   /// Return true if S has no element (vector type) that T is a sub-vector of,
626   /// i.e. has the same element type as T and more elements.
627   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(T, I))
630         return false;
631     return true;
632   };
633 
634   /// Return true if S has no element (vector type) that T is a super-vector
635   /// of, i.e. has the same element type as T and fewer elements.
636   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637     for (const auto &I : S)
638       if (IsSubVec(I, T))
639         return false;
640     return true;
641   };
642 
643   bool Changed = false;
644 
645   if (Vec.empty())
646     Changed |= EnforceVector(Vec);
647   if (Sub.empty())
648     Changed |= EnforceVector(Sub);
649 
650   for (unsigned M : union_modes(Vec, Sub)) {
651     TypeSetByHwMode::SetType &S = Sub.get(M);
652     TypeSetByHwMode::SetType &V = Vec.get(M);
653 
654     Changed |= berase_if(S, isScalar);
655 
656     // Erase all types from S that are not sub-vectors of a type in V.
657     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658 
659     // Erase all types from V that are not super-vectors of a type in S.
660     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661   }
662 
663   return Changed;
664 }
665 
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 ///    type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 ///    type T in V, such that T and U have the same number of elements
671 ///    (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673   ValidateOnExit _1(V, *this), _2(W, *this);
674   if (TP.hasError())
675     return false;
676 
677   bool Changed = false;
678   if (V.empty())
679     Changed |= EnforceAny(V);
680   if (W.empty())
681     Changed |= EnforceAny(W);
682 
683   // An actual vector type cannot have 0 elements, so we can treat scalars
684   // as zero-length vectors. This way both vectors and scalars can be
685   // processed identically.
686   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688   };
689 
690   for (unsigned M : union_modes(V, W)) {
691     TypeSetByHwMode::SetType &VS = V.get(M);
692     TypeSetByHwMode::SetType &WS = W.get(M);
693 
694     SmallSet<unsigned,2> VN, WN;
695     for (MVT T : VS)
696       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697     for (MVT T : WS)
698       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699 
700     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702   }
703   return Changed;
704 }
705 
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 ///    such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 ///    such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711   ValidateOnExit _1(A, *this), _2(B, *this);
712   if (TP.hasError())
713     return false;
714   bool Changed = false;
715   if (A.empty())
716     Changed |= EnforceAny(A);
717   if (B.empty())
718     Changed |= EnforceAny(B);
719 
720   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721     return !Sizes.count(T.getSizeInBits());
722   };
723 
724   for (unsigned M : union_modes(A, B)) {
725     TypeSetByHwMode::SetType &AS = A.get(M);
726     TypeSetByHwMode::SetType &BS = B.get(M);
727     SmallSet<unsigned,2> AN, BN;
728 
729     for (MVT T : AS)
730       AN.insert(T.getSizeInBits());
731     for (MVT T : BS)
732       BN.insert(T.getSizeInBits());
733 
734     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736   }
737 
738   return Changed;
739 }
740 
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742   ValidateOnExit _1(VTS, *this);
743   const TypeSetByHwMode &Legal = getLegalTypes();
744   assert(Legal.isDefaultOnly() && "Default-mode only expected");
745   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746 
747   for (auto &I : VTS)
748     expandOverloads(I.second, LegalTypes);
749 }
750 
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752                                 const TypeSetByHwMode::SetType &Legal) {
753   std::set<MVT> Ovs;
754   for (MVT T : Out) {
755     if (!T.isOverloaded())
756       continue;
757 
758     Ovs.insert(T);
759     // MachineValueTypeSet allows iteration and erasing.
760     Out.erase(T);
761   }
762 
763   for (MVT Ov : Ovs) {
764     switch (Ov.SimpleTy) {
765       case MVT::iPTRAny:
766         Out.insert(MVT::iPTR);
767         return;
768       case MVT::iAny:
769         for (MVT T : MVT::integer_valuetypes())
770           if (Legal.count(T))
771             Out.insert(T);
772         for (MVT T : MVT::integer_vector_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         return;
776       case MVT::fAny:
777         for (MVT T : MVT::fp_valuetypes())
778           if (Legal.count(T))
779             Out.insert(T);
780         for (MVT T : MVT::fp_vector_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         return;
784       case MVT::vAny:
785         for (MVT T : MVT::vector_valuetypes())
786           if (Legal.count(T))
787             Out.insert(T);
788         return;
789       case MVT::Any:
790         for (MVT T : MVT::all_valuetypes())
791           if (Legal.count(T))
792             Out.insert(T);
793         return;
794       default:
795         break;
796     }
797   }
798 }
799 
800 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
801   if (!LegalTypesCached) {
802     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
803     // Stuff all types from all modes into the default mode.
804     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
805     for (const auto &I : LTS)
806       LegalTypes.insert(I.second);
807     LegalTypesCached = true;
808   }
809   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
810   return LegalCache;
811 }
812 
813 #ifndef NDEBUG
814 TypeInfer::ValidateOnExit::~ValidateOnExit() {
815   if (Infer.Validate && !VTS.validate()) {
816     dbgs() << "Type set is empty for each HW mode:\n"
817               "possible type contradiction in the pattern below "
818               "(use -print-records with llvm-tblgen to see all "
819               "expanded records).\n";
820     Infer.TP.dump();
821     llvm_unreachable(nullptr);
822   }
823 }
824 #endif
825 
826 
827 //===----------------------------------------------------------------------===//
828 // ScopedName Implementation
829 //===----------------------------------------------------------------------===//
830 
831 bool ScopedName::operator==(const ScopedName &o) const {
832   return Scope == o.Scope && Identifier == o.Identifier;
833 }
834 
835 bool ScopedName::operator!=(const ScopedName &o) const {
836   return !(*this == o);
837 }
838 
839 
840 //===----------------------------------------------------------------------===//
841 // TreePredicateFn Implementation
842 //===----------------------------------------------------------------------===//
843 
844 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
845 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
846   assert(
847       (!hasPredCode() || !hasImmCode()) &&
848       ".td file corrupt: can't have a node predicate *and* an imm predicate");
849 }
850 
851 bool TreePredicateFn::hasPredCode() const {
852   return isLoad() || isStore() || isAtomic() ||
853          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
854 }
855 
856 std::string TreePredicateFn::getPredCode() const {
857   std::string Code = "";
858 
859   if (!isLoad() && !isStore() && !isAtomic()) {
860     Record *MemoryVT = getMemoryVT();
861 
862     if (MemoryVT)
863       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864                       "MemoryVT requires IsLoad or IsStore");
865   }
866 
867   if (!isLoad() && !isStore()) {
868     if (isUnindexed())
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsUnindexed requires IsLoad or IsStore");
871 
872     Record *ScalarMemoryVT = getScalarMemoryVT();
873 
874     if (ScalarMemoryVT)
875       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876                       "ScalarMemoryVT requires IsLoad or IsStore");
877   }
878 
879   if (isLoad() + isStore() + isAtomic() > 1)
880     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
882 
883   if (isLoad()) {
884     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
885         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
886         getScalarMemoryVT() == nullptr)
887       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
888                       "IsLoad cannot be used by itself");
889   } else {
890     if (isNonExtLoad())
891       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
892                       "IsNonExtLoad requires IsLoad");
893     if (isAnyExtLoad())
894       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895                       "IsAnyExtLoad requires IsLoad");
896     if (isSignExtLoad())
897       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898                       "IsSignExtLoad requires IsLoad");
899     if (isZeroExtLoad())
900       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
901                       "IsZeroExtLoad requires IsLoad");
902   }
903 
904   if (isStore()) {
905     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
906         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
907       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908                       "IsStore cannot be used by itself");
909   } else {
910     if (isNonTruncStore())
911       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
912                       "IsNonTruncStore requires IsStore");
913     if (isTruncStore())
914       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915                       "IsTruncStore requires IsStore");
916   }
917 
918   if (isAtomic()) {
919     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
920         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
921         !isAtomicOrderingAcquireRelease() &&
922         !isAtomicOrderingSequentiallyConsistent() &&
923         !isAtomicOrderingAcquireOrStronger() &&
924         !isAtomicOrderingReleaseOrStronger() &&
925         !isAtomicOrderingWeakerThanAcquire() &&
926         !isAtomicOrderingWeakerThanRelease())
927       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928                       "IsAtomic cannot be used by itself");
929   } else {
930     if (isAtomicOrderingMonotonic())
931       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932                       "IsAtomicOrderingMonotonic requires IsAtomic");
933     if (isAtomicOrderingAcquire())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAtomicOrderingAcquire requires IsAtomic");
936     if (isAtomicOrderingRelease())
937       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938                       "IsAtomicOrderingRelease requires IsAtomic");
939     if (isAtomicOrderingAcquireRelease())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
942     if (isAtomicOrderingSequentiallyConsistent())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
945     if (isAtomicOrderingAcquireOrStronger())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
948     if (isAtomicOrderingReleaseOrStronger())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
951     if (isAtomicOrderingWeakerThanAcquire())
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
954   }
955 
956   if (isLoad() || isStore() || isAtomic()) {
957     StringRef SDNodeName =
958         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
959 
960     Record *MemoryVT = getMemoryVT();
961 
962     if (MemoryVT)
963       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
964                MemoryVT->getName() + ") return false;\n")
965                   .str();
966   }
967 
968   if (isAtomic() && isAtomicOrderingMonotonic())
969     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
970             "AtomicOrdering::Monotonic) return false;\n";
971   if (isAtomic() && isAtomicOrderingAcquire())
972     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
973             "AtomicOrdering::Acquire) return false;\n";
974   if (isAtomic() && isAtomicOrderingRelease())
975     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
976             "AtomicOrdering::Release) return false;\n";
977   if (isAtomic() && isAtomicOrderingAcquireRelease())
978     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
979             "AtomicOrdering::AcquireRelease) return false;\n";
980   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
981     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
982             "AtomicOrdering::SequentiallyConsistent) return false;\n";
983 
984   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
985     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
986             "return false;\n";
987   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
988     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
989             "return false;\n";
990 
991   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
992     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
993             "return false;\n";
994   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
995     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
996             "return false;\n";
997 
998   if (isLoad() || isStore()) {
999     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1000 
1001     if (isUnindexed())
1002       Code += ("if (cast<" + SDNodeName +
1003                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1004                "return false;\n")
1005                   .str();
1006 
1007     if (isLoad()) {
1008       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1009            isZeroExtLoad()) > 1)
1010         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1011                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1012                         "IsZeroExtLoad are mutually exclusive");
1013       if (isNonExtLoad())
1014         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1015                 "ISD::NON_EXTLOAD) return false;\n";
1016       if (isAnyExtLoad())
1017         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1018                 "return false;\n";
1019       if (isSignExtLoad())
1020         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1021                 "return false;\n";
1022       if (isZeroExtLoad())
1023         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1024                 "return false;\n";
1025     } else {
1026       if ((isNonTruncStore() + isTruncStore()) > 1)
1027         PrintFatalError(
1028             getOrigPatFragRecord()->getRecord()->getLoc(),
1029             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1030       if (isNonTruncStore())
1031         Code +=
1032             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1033       if (isTruncStore())
1034         Code +=
1035             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1036     }
1037 
1038     Record *ScalarMemoryVT = getScalarMemoryVT();
1039 
1040     if (ScalarMemoryVT)
1041       Code += ("if (cast<" + SDNodeName +
1042                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1043                ScalarMemoryVT->getName() + ") return false;\n")
1044                   .str();
1045   }
1046 
1047   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1048 
1049   Code += PredicateCode;
1050 
1051   if (PredicateCode.empty() && !Code.empty())
1052     Code += "return true;\n";
1053 
1054   return Code;
1055 }
1056 
1057 bool TreePredicateFn::hasImmCode() const {
1058   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1059 }
1060 
1061 std::string TreePredicateFn::getImmCode() const {
1062   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1063 }
1064 
1065 bool TreePredicateFn::immCodeUsesAPInt() const {
1066   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1067 }
1068 
1069 bool TreePredicateFn::immCodeUsesAPFloat() const {
1070   bool Unset;
1071   // The return value will be false when IsAPFloat is unset.
1072   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1073                                                                    Unset);
1074 }
1075 
1076 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1077                                                    bool Value) const {
1078   bool Unset;
1079   bool Result =
1080       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1081   if (Unset)
1082     return false;
1083   return Result == Value;
1084 }
1085 bool TreePredicateFn::usesOperands() const {
1086   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1087 }
1088 bool TreePredicateFn::isLoad() const {
1089   return isPredefinedPredicateEqualTo("IsLoad", true);
1090 }
1091 bool TreePredicateFn::isStore() const {
1092   return isPredefinedPredicateEqualTo("IsStore", true);
1093 }
1094 bool TreePredicateFn::isAtomic() const {
1095   return isPredefinedPredicateEqualTo("IsAtomic", true);
1096 }
1097 bool TreePredicateFn::isUnindexed() const {
1098   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1099 }
1100 bool TreePredicateFn::isNonExtLoad() const {
1101   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1102 }
1103 bool TreePredicateFn::isAnyExtLoad() const {
1104   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1105 }
1106 bool TreePredicateFn::isSignExtLoad() const {
1107   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1108 }
1109 bool TreePredicateFn::isZeroExtLoad() const {
1110   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1111 }
1112 bool TreePredicateFn::isNonTruncStore() const {
1113   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1114 }
1115 bool TreePredicateFn::isTruncStore() const {
1116   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1117 }
1118 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1119   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1120 }
1121 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1122   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1123 }
1124 bool TreePredicateFn::isAtomicOrderingRelease() const {
1125   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1126 }
1127 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1128   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1129 }
1130 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1131   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1132                                       true);
1133 }
1134 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1135   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1136 }
1137 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1138   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1139 }
1140 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1141   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1142 }
1143 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1144   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1145 }
1146 Record *TreePredicateFn::getMemoryVT() const {
1147   Record *R = getOrigPatFragRecord()->getRecord();
1148   if (R->isValueUnset("MemoryVT"))
1149     return nullptr;
1150   return R->getValueAsDef("MemoryVT");
1151 }
1152 Record *TreePredicateFn::getScalarMemoryVT() const {
1153   Record *R = getOrigPatFragRecord()->getRecord();
1154   if (R->isValueUnset("ScalarMemoryVT"))
1155     return nullptr;
1156   return R->getValueAsDef("ScalarMemoryVT");
1157 }
1158 bool TreePredicateFn::hasGISelPredicateCode() const {
1159   return !PatFragRec->getRecord()
1160               ->getValueAsString("GISelPredicateCode")
1161               .empty();
1162 }
1163 std::string TreePredicateFn::getGISelPredicateCode() const {
1164   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1165 }
1166 
1167 StringRef TreePredicateFn::getImmType() const {
1168   if (immCodeUsesAPInt())
1169     return "const APInt &";
1170   if (immCodeUsesAPFloat())
1171     return "const APFloat &";
1172   return "int64_t";
1173 }
1174 
1175 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1176   if (immCodeUsesAPInt())
1177     return "APInt";
1178   else if (immCodeUsesAPFloat())
1179     return "APFloat";
1180   return "I64";
1181 }
1182 
1183 /// isAlwaysTrue - Return true if this is a noop predicate.
1184 bool TreePredicateFn::isAlwaysTrue() const {
1185   return !hasPredCode() && !hasImmCode();
1186 }
1187 
1188 /// Return the name to use in the generated code to reference this, this is
1189 /// "Predicate_foo" if from a pattern fragment "foo".
1190 std::string TreePredicateFn::getFnName() const {
1191   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1192 }
1193 
1194 /// getCodeToRunOnSDNode - Return the code for the function body that
1195 /// evaluates this predicate.  The argument is expected to be in "Node",
1196 /// not N.  This handles casting and conversion to a concrete node type as
1197 /// appropriate.
1198 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1199   // Handle immediate predicates first.
1200   std::string ImmCode = getImmCode();
1201   if (!ImmCode.empty()) {
1202     if (isLoad())
1203       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1204                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1205     if (isStore())
1206       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1207                       "IsStore cannot be used with ImmLeaf or its subclasses");
1208     if (isUnindexed())
1209       PrintFatalError(
1210           getOrigPatFragRecord()->getRecord()->getLoc(),
1211           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1212     if (isNonExtLoad())
1213       PrintFatalError(
1214           getOrigPatFragRecord()->getRecord()->getLoc(),
1215           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1216     if (isAnyExtLoad())
1217       PrintFatalError(
1218           getOrigPatFragRecord()->getRecord()->getLoc(),
1219           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1220     if (isSignExtLoad())
1221       PrintFatalError(
1222           getOrigPatFragRecord()->getRecord()->getLoc(),
1223           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1224     if (isZeroExtLoad())
1225       PrintFatalError(
1226           getOrigPatFragRecord()->getRecord()->getLoc(),
1227           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1228     if (isNonTruncStore())
1229       PrintFatalError(
1230           getOrigPatFragRecord()->getRecord()->getLoc(),
1231           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1232     if (isTruncStore())
1233       PrintFatalError(
1234           getOrigPatFragRecord()->getRecord()->getLoc(),
1235           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1236     if (getMemoryVT())
1237       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1238                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1239     if (getScalarMemoryVT())
1240       PrintFatalError(
1241           getOrigPatFragRecord()->getRecord()->getLoc(),
1242           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1243 
1244     std::string Result = ("    " + getImmType() + " Imm = ").str();
1245     if (immCodeUsesAPFloat())
1246       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1247     else if (immCodeUsesAPInt())
1248       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1249     else
1250       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1251     return Result + ImmCode;
1252   }
1253 
1254   // Handle arbitrary node predicates.
1255   assert(hasPredCode() && "Don't have any predicate code!");
1256   StringRef ClassName;
1257   if (PatFragRec->getOnlyTree()->isLeaf())
1258     ClassName = "SDNode";
1259   else {
1260     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1261     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1262   }
1263   std::string Result;
1264   if (ClassName == "SDNode")
1265     Result = "    SDNode *N = Node;\n";
1266   else
1267     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1268 
1269   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1270 }
1271 
1272 //===----------------------------------------------------------------------===//
1273 // PatternToMatch implementation
1274 //
1275 
1276 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1277   if (!P->isLeaf())
1278     return false;
1279   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1280   if (!DI)
1281     return false;
1282 
1283   Record *R = DI->getDef();
1284   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1285 }
1286 
1287 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1288 /// patterns before small ones.  This is used to determine the size of a
1289 /// pattern.
1290 static unsigned getPatternSize(const TreePatternNode *P,
1291                                const CodeGenDAGPatterns &CGP) {
1292   unsigned Size = 3;  // The node itself.
1293   // If the root node is a ConstantSDNode, increases its size.
1294   // e.g. (set R32:$dst, 0).
1295   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1296     Size += 2;
1297 
1298   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1299     Size += AM->getComplexity();
1300     // We don't want to count any children twice, so return early.
1301     return Size;
1302   }
1303 
1304   // If this node has some predicate function that must match, it adds to the
1305   // complexity of this node.
1306   if (!P->getPredicateCalls().empty())
1307     ++Size;
1308 
1309   // Count children in the count if they are also nodes.
1310   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1311     const TreePatternNode *Child = P->getChild(i);
1312     if (!Child->isLeaf() && Child->getNumTypes()) {
1313       const TypeSetByHwMode &T0 = Child->getExtType(0);
1314       // At this point, all variable type sets should be simple, i.e. only
1315       // have a default mode.
1316       if (T0.getMachineValueType() != MVT::Other) {
1317         Size += getPatternSize(Child, CGP);
1318         continue;
1319       }
1320     }
1321     if (Child->isLeaf()) {
1322       if (isa<IntInit>(Child->getLeafValue()))
1323         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1324       else if (Child->getComplexPatternInfo(CGP))
1325         Size += getPatternSize(Child, CGP);
1326       else if (isImmAllOnesAllZerosMatch(Child))
1327         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1328       else if (!Child->getPredicateCalls().empty())
1329         ++Size;
1330     }
1331   }
1332 
1333   return Size;
1334 }
1335 
1336 /// Compute the complexity metric for the input pattern.  This roughly
1337 /// corresponds to the number of nodes that are covered.
1338 int PatternToMatch::
1339 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1340   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1341 }
1342 
1343 /// getPredicateCheck - Return a single string containing all of this
1344 /// pattern's predicates concatenated with "&&" operators.
1345 ///
1346 std::string PatternToMatch::getPredicateCheck() const {
1347   SmallVector<const Predicate*,4> PredList;
1348   for (const Predicate &P : Predicates)
1349     PredList.push_back(&P);
1350   llvm::sort(PredList, deref<llvm::less>());
1351 
1352   std::string Check;
1353   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1354     if (i != 0)
1355       Check += " && ";
1356     Check += '(' + PredList[i]->getCondString() + ')';
1357   }
1358   return Check;
1359 }
1360 
1361 //===----------------------------------------------------------------------===//
1362 // SDTypeConstraint implementation
1363 //
1364 
1365 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1366   OperandNo = R->getValueAsInt("OperandNum");
1367 
1368   if (R->isSubClassOf("SDTCisVT")) {
1369     ConstraintType = SDTCisVT;
1370     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1371     for (const auto &P : VVT)
1372       if (P.second == MVT::isVoid)
1373         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1374   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1375     ConstraintType = SDTCisPtrTy;
1376   } else if (R->isSubClassOf("SDTCisInt")) {
1377     ConstraintType = SDTCisInt;
1378   } else if (R->isSubClassOf("SDTCisFP")) {
1379     ConstraintType = SDTCisFP;
1380   } else if (R->isSubClassOf("SDTCisVec")) {
1381     ConstraintType = SDTCisVec;
1382   } else if (R->isSubClassOf("SDTCisSameAs")) {
1383     ConstraintType = SDTCisSameAs;
1384     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1385   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1386     ConstraintType = SDTCisVTSmallerThanOp;
1387     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1388       R->getValueAsInt("OtherOperandNum");
1389   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1390     ConstraintType = SDTCisOpSmallerThanOp;
1391     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1392       R->getValueAsInt("BigOperandNum");
1393   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1394     ConstraintType = SDTCisEltOfVec;
1395     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1396   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1397     ConstraintType = SDTCisSubVecOfVec;
1398     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1399       R->getValueAsInt("OtherOpNum");
1400   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1401     ConstraintType = SDTCVecEltisVT;
1402     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1403     for (const auto &P : VVT) {
1404       MVT T = P.second;
1405       if (T.isVector())
1406         PrintFatalError(R->getLoc(),
1407                         "Cannot use vector type as SDTCVecEltisVT");
1408       if (!T.isInteger() && !T.isFloatingPoint())
1409         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1410                                      "as SDTCVecEltisVT");
1411     }
1412   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1413     ConstraintType = SDTCisSameNumEltsAs;
1414     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1415       R->getValueAsInt("OtherOperandNum");
1416   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1417     ConstraintType = SDTCisSameSizeAs;
1418     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1419       R->getValueAsInt("OtherOperandNum");
1420   } else {
1421     PrintFatalError(R->getLoc(),
1422                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1423   }
1424 }
1425 
1426 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1427 /// N, and the result number in ResNo.
1428 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1429                                       const SDNodeInfo &NodeInfo,
1430                                       unsigned &ResNo) {
1431   unsigned NumResults = NodeInfo.getNumResults();
1432   if (OpNo < NumResults) {
1433     ResNo = OpNo;
1434     return N;
1435   }
1436 
1437   OpNo -= NumResults;
1438 
1439   if (OpNo >= N->getNumChildren()) {
1440     std::string S;
1441     raw_string_ostream OS(S);
1442     OS << "Invalid operand number in type constraint "
1443            << (OpNo+NumResults) << " ";
1444     N->print(OS);
1445     PrintFatalError(OS.str());
1446   }
1447 
1448   return N->getChild(OpNo);
1449 }
1450 
1451 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1452 /// constraint to the nodes operands.  This returns true if it makes a
1453 /// change, false otherwise.  If a type contradiction is found, flag an error.
1454 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1455                                            const SDNodeInfo &NodeInfo,
1456                                            TreePattern &TP) const {
1457   if (TP.hasError())
1458     return false;
1459 
1460   unsigned ResNo = 0; // The result number being referenced.
1461   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1462   TypeInfer &TI = TP.getInfer();
1463 
1464   switch (ConstraintType) {
1465   case SDTCisVT:
1466     // Operand must be a particular type.
1467     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1468   case SDTCisPtrTy:
1469     // Operand must be same as target pointer type.
1470     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1471   case SDTCisInt:
1472     // Require it to be one of the legal integer VTs.
1473      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1474   case SDTCisFP:
1475     // Require it to be one of the legal fp VTs.
1476     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1477   case SDTCisVec:
1478     // Require it to be one of the legal vector VTs.
1479     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1480   case SDTCisSameAs: {
1481     unsigned OResNo = 0;
1482     TreePatternNode *OtherNode =
1483       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1484     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1485            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1486   }
1487   case SDTCisVTSmallerThanOp: {
1488     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1489     // have an integer type that is smaller than the VT.
1490     if (!NodeToApply->isLeaf() ||
1491         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1492         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1493                ->isSubClassOf("ValueType")) {
1494       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1495       return false;
1496     }
1497     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1498     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1499     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1500     TypeSetByHwMode TypeListTmp(VVT);
1501 
1502     unsigned OResNo = 0;
1503     TreePatternNode *OtherNode =
1504       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1505                     OResNo);
1506 
1507     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1508   }
1509   case SDTCisOpSmallerThanOp: {
1510     unsigned BResNo = 0;
1511     TreePatternNode *BigOperand =
1512       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1513                     BResNo);
1514     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1515                                  BigOperand->getExtType(BResNo));
1516   }
1517   case SDTCisEltOfVec: {
1518     unsigned VResNo = 0;
1519     TreePatternNode *VecOperand =
1520       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1521                     VResNo);
1522     // Filter vector types out of VecOperand that don't have the right element
1523     // type.
1524     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1525                                      NodeToApply->getExtType(ResNo));
1526   }
1527   case SDTCisSubVecOfVec: {
1528     unsigned VResNo = 0;
1529     TreePatternNode *BigVecOperand =
1530       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1531                     VResNo);
1532 
1533     // Filter vector types out of BigVecOperand that don't have the
1534     // right subvector type.
1535     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1536                                            NodeToApply->getExtType(ResNo));
1537   }
1538   case SDTCVecEltisVT: {
1539     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1540   }
1541   case SDTCisSameNumEltsAs: {
1542     unsigned OResNo = 0;
1543     TreePatternNode *OtherNode =
1544       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1545                     N, NodeInfo, OResNo);
1546     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1547                                  NodeToApply->getExtType(ResNo));
1548   }
1549   case SDTCisSameSizeAs: {
1550     unsigned OResNo = 0;
1551     TreePatternNode *OtherNode =
1552       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1553                     N, NodeInfo, OResNo);
1554     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1555                               NodeToApply->getExtType(ResNo));
1556   }
1557   }
1558   llvm_unreachable("Invalid ConstraintType!");
1559 }
1560 
1561 // Update the node type to match an instruction operand or result as specified
1562 // in the ins or outs lists on the instruction definition. Return true if the
1563 // type was actually changed.
1564 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1565                                              Record *Operand,
1566                                              TreePattern &TP) {
1567   // The 'unknown' operand indicates that types should be inferred from the
1568   // context.
1569   if (Operand->isSubClassOf("unknown_class"))
1570     return false;
1571 
1572   // The Operand class specifies a type directly.
1573   if (Operand->isSubClassOf("Operand")) {
1574     Record *R = Operand->getValueAsDef("Type");
1575     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1576     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1577   }
1578 
1579   // PointerLikeRegClass has a type that is determined at runtime.
1580   if (Operand->isSubClassOf("PointerLikeRegClass"))
1581     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1582 
1583   // Both RegisterClass and RegisterOperand operands derive their types from a
1584   // register class def.
1585   Record *RC = nullptr;
1586   if (Operand->isSubClassOf("RegisterClass"))
1587     RC = Operand;
1588   else if (Operand->isSubClassOf("RegisterOperand"))
1589     RC = Operand->getValueAsDef("RegClass");
1590 
1591   assert(RC && "Unknown operand type");
1592   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1593   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1594 }
1595 
1596 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1597   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1598     if (!TP.getInfer().isConcrete(Types[i], true))
1599       return true;
1600   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1601     if (getChild(i)->ContainsUnresolvedType(TP))
1602       return true;
1603   return false;
1604 }
1605 
1606 bool TreePatternNode::hasProperTypeByHwMode() const {
1607   for (const TypeSetByHwMode &S : Types)
1608     if (!S.isDefaultOnly())
1609       return true;
1610   for (const TreePatternNodePtr &C : Children)
1611     if (C->hasProperTypeByHwMode())
1612       return true;
1613   return false;
1614 }
1615 
1616 bool TreePatternNode::hasPossibleType() const {
1617   for (const TypeSetByHwMode &S : Types)
1618     if (!S.isPossible())
1619       return false;
1620   for (const TreePatternNodePtr &C : Children)
1621     if (!C->hasPossibleType())
1622       return false;
1623   return true;
1624 }
1625 
1626 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1627   for (TypeSetByHwMode &S : Types) {
1628     S.makeSimple(Mode);
1629     // Check if the selected mode had a type conflict.
1630     if (S.get(DefaultMode).empty())
1631       return false;
1632   }
1633   for (const TreePatternNodePtr &C : Children)
1634     if (!C->setDefaultMode(Mode))
1635       return false;
1636   return true;
1637 }
1638 
1639 //===----------------------------------------------------------------------===//
1640 // SDNodeInfo implementation
1641 //
1642 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1643   EnumName    = R->getValueAsString("Opcode");
1644   SDClassName = R->getValueAsString("SDClass");
1645   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1646   NumResults = TypeProfile->getValueAsInt("NumResults");
1647   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1648 
1649   // Parse the properties.
1650   Properties = parseSDPatternOperatorProperties(R);
1651 
1652   // Parse the type constraints.
1653   std::vector<Record*> ConstraintList =
1654     TypeProfile->getValueAsListOfDefs("Constraints");
1655   for (Record *R : ConstraintList)
1656     TypeConstraints.emplace_back(R, CGH);
1657 }
1658 
1659 /// getKnownType - If the type constraints on this node imply a fixed type
1660 /// (e.g. all stores return void, etc), then return it as an
1661 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1662 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1663   unsigned NumResults = getNumResults();
1664   assert(NumResults <= 1 &&
1665          "We only work with nodes with zero or one result so far!");
1666   assert(ResNo == 0 && "Only handles single result nodes so far");
1667 
1668   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1669     // Make sure that this applies to the correct node result.
1670     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1671       continue;
1672 
1673     switch (Constraint.ConstraintType) {
1674     default: break;
1675     case SDTypeConstraint::SDTCisVT:
1676       if (Constraint.VVT.isSimple())
1677         return Constraint.VVT.getSimple().SimpleTy;
1678       break;
1679     case SDTypeConstraint::SDTCisPtrTy:
1680       return MVT::iPTR;
1681     }
1682   }
1683   return MVT::Other;
1684 }
1685 
1686 //===----------------------------------------------------------------------===//
1687 // TreePatternNode implementation
1688 //
1689 
1690 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1691   if (Operator->getName() == "set" ||
1692       Operator->getName() == "implicit")
1693     return 0;  // All return nothing.
1694 
1695   if (Operator->isSubClassOf("Intrinsic"))
1696     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1697 
1698   if (Operator->isSubClassOf("SDNode"))
1699     return CDP.getSDNodeInfo(Operator).getNumResults();
1700 
1701   if (Operator->isSubClassOf("PatFrags")) {
1702     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1703     // the forward reference case where one pattern fragment references another
1704     // before it is processed.
1705     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1706       // The number of results of a fragment with alternative records is the
1707       // maximum number of results across all alternatives.
1708       unsigned NumResults = 0;
1709       for (auto T : PFRec->getTrees())
1710         NumResults = std::max(NumResults, T->getNumTypes());
1711       return NumResults;
1712     }
1713 
1714     ListInit *LI = Operator->getValueAsListInit("Fragments");
1715     assert(LI && "Invalid Fragment");
1716     unsigned NumResults = 0;
1717     for (Init *I : LI->getValues()) {
1718       Record *Op = nullptr;
1719       if (DagInit *Dag = dyn_cast<DagInit>(I))
1720         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1721           Op = DI->getDef();
1722       assert(Op && "Invalid Fragment");
1723       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1724     }
1725     return NumResults;
1726   }
1727 
1728   if (Operator->isSubClassOf("Instruction")) {
1729     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1730 
1731     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1732 
1733     // Subtract any defaulted outputs.
1734     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1735       Record *OperandNode = InstInfo.Operands[i].Rec;
1736 
1737       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1738           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1739         --NumDefsToAdd;
1740     }
1741 
1742     // Add on one implicit def if it has a resolvable type.
1743     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1744       ++NumDefsToAdd;
1745     return NumDefsToAdd;
1746   }
1747 
1748   if (Operator->isSubClassOf("SDNodeXForm"))
1749     return 1;  // FIXME: Generalize SDNodeXForm
1750 
1751   if (Operator->isSubClassOf("ValueType"))
1752     return 1;  // A type-cast of one result.
1753 
1754   if (Operator->isSubClassOf("ComplexPattern"))
1755     return 1;
1756 
1757   errs() << *Operator;
1758   PrintFatalError("Unhandled node in GetNumNodeResults");
1759 }
1760 
1761 void TreePatternNode::print(raw_ostream &OS) const {
1762   if (isLeaf())
1763     OS << *getLeafValue();
1764   else
1765     OS << '(' << getOperator()->getName();
1766 
1767   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1768     OS << ':';
1769     getExtType(i).writeToStream(OS);
1770   }
1771 
1772   if (!isLeaf()) {
1773     if (getNumChildren() != 0) {
1774       OS << " ";
1775       getChild(0)->print(OS);
1776       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1777         OS << ", ";
1778         getChild(i)->print(OS);
1779       }
1780     }
1781     OS << ")";
1782   }
1783 
1784   for (const TreePredicateCall &Pred : PredicateCalls) {
1785     OS << "<<P:";
1786     if (Pred.Scope)
1787       OS << Pred.Scope << ":";
1788     OS << Pred.Fn.getFnName() << ">>";
1789   }
1790   if (TransformFn)
1791     OS << "<<X:" << TransformFn->getName() << ">>";
1792   if (!getName().empty())
1793     OS << ":$" << getName();
1794 
1795   for (const ScopedName &Name : NamesAsPredicateArg)
1796     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1797 }
1798 void TreePatternNode::dump() const {
1799   print(errs());
1800 }
1801 
1802 /// isIsomorphicTo - Return true if this node is recursively
1803 /// isomorphic to the specified node.  For this comparison, the node's
1804 /// entire state is considered. The assigned name is ignored, since
1805 /// nodes with differing names are considered isomorphic. However, if
1806 /// the assigned name is present in the dependent variable set, then
1807 /// the assigned name is considered significant and the node is
1808 /// isomorphic if the names match.
1809 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1810                                      const MultipleUseVarSet &DepVars) const {
1811   if (N == this) return true;
1812   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1813       getPredicateCalls() != N->getPredicateCalls() ||
1814       getTransformFn() != N->getTransformFn())
1815     return false;
1816 
1817   if (isLeaf()) {
1818     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1819       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1820         return ((DI->getDef() == NDI->getDef())
1821                 && (DepVars.find(getName()) == DepVars.end()
1822                     || getName() == N->getName()));
1823       }
1824     }
1825     return getLeafValue() == N->getLeafValue();
1826   }
1827 
1828   if (N->getOperator() != getOperator() ||
1829       N->getNumChildren() != getNumChildren()) return false;
1830   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1831     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1832       return false;
1833   return true;
1834 }
1835 
1836 /// clone - Make a copy of this tree and all of its children.
1837 ///
1838 TreePatternNodePtr TreePatternNode::clone() const {
1839   TreePatternNodePtr New;
1840   if (isLeaf()) {
1841     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1842   } else {
1843     std::vector<TreePatternNodePtr> CChildren;
1844     CChildren.reserve(Children.size());
1845     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1846       CChildren.push_back(getChild(i)->clone());
1847     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1848                                             getNumTypes());
1849   }
1850   New->setName(getName());
1851   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1852   New->Types = Types;
1853   New->setPredicateCalls(getPredicateCalls());
1854   New->setTransformFn(getTransformFn());
1855   return New;
1856 }
1857 
1858 /// RemoveAllTypes - Recursively strip all the types of this tree.
1859 void TreePatternNode::RemoveAllTypes() {
1860   // Reset to unknown type.
1861   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1862   if (isLeaf()) return;
1863   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1864     getChild(i)->RemoveAllTypes();
1865 }
1866 
1867 
1868 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1869 /// with actual values specified by ArgMap.
1870 void TreePatternNode::SubstituteFormalArguments(
1871     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1872   if (isLeaf()) return;
1873 
1874   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1875     TreePatternNode *Child = getChild(i);
1876     if (Child->isLeaf()) {
1877       Init *Val = Child->getLeafValue();
1878       // Note that, when substituting into an output pattern, Val might be an
1879       // UnsetInit.
1880       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1881           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1882         // We found a use of a formal argument, replace it with its value.
1883         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1884         assert(NewChild && "Couldn't find formal argument!");
1885         assert((Child->getPredicateCalls().empty() ||
1886                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1887                "Non-empty child predicate clobbered!");
1888         setChild(i, std::move(NewChild));
1889       }
1890     } else {
1891       getChild(i)->SubstituteFormalArguments(ArgMap);
1892     }
1893   }
1894 }
1895 
1896 
1897 /// InlinePatternFragments - If this pattern refers to any pattern
1898 /// fragments, return the set of inlined versions (this can be more than
1899 /// one if a PatFrags record has multiple alternatives).
1900 void TreePatternNode::InlinePatternFragments(
1901   TreePatternNodePtr T, TreePattern &TP,
1902   std::vector<TreePatternNodePtr> &OutAlternatives) {
1903 
1904   if (TP.hasError())
1905     return;
1906 
1907   if (isLeaf()) {
1908     OutAlternatives.push_back(T);  // nothing to do.
1909     return;
1910   }
1911 
1912   Record *Op = getOperator();
1913 
1914   if (!Op->isSubClassOf("PatFrags")) {
1915     if (getNumChildren() == 0) {
1916       OutAlternatives.push_back(T);
1917       return;
1918     }
1919 
1920     // Recursively inline children nodes.
1921     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1922     ChildAlternatives.resize(getNumChildren());
1923     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1924       TreePatternNodePtr Child = getChildShared(i);
1925       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1926       // If there are no alternatives for any child, there are no
1927       // alternatives for this expression as whole.
1928       if (ChildAlternatives[i].empty())
1929         return;
1930 
1931       for (auto NewChild : ChildAlternatives[i])
1932         assert((Child->getPredicateCalls().empty() ||
1933                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1934                "Non-empty child predicate clobbered!");
1935     }
1936 
1937     // The end result is an all-pairs construction of the resultant pattern.
1938     std::vector<unsigned> Idxs;
1939     Idxs.resize(ChildAlternatives.size());
1940     bool NotDone;
1941     do {
1942       // Create the variant and add it to the output list.
1943       std::vector<TreePatternNodePtr> NewChildren;
1944       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1945         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1946       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1947           getOperator(), std::move(NewChildren), getNumTypes());
1948 
1949       // Copy over properties.
1950       R->setName(getName());
1951       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1952       R->setPredicateCalls(getPredicateCalls());
1953       R->setTransformFn(getTransformFn());
1954       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1955         R->setType(i, getExtType(i));
1956       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
1957         R->setResultIndex(i, getResultIndex(i));
1958 
1959       // Register alternative.
1960       OutAlternatives.push_back(R);
1961 
1962       // Increment indices to the next permutation by incrementing the
1963       // indices from last index backward, e.g., generate the sequence
1964       // [0, 0], [0, 1], [1, 0], [1, 1].
1965       int IdxsIdx;
1966       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1967         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1968           Idxs[IdxsIdx] = 0;
1969         else
1970           break;
1971       }
1972       NotDone = (IdxsIdx >= 0);
1973     } while (NotDone);
1974 
1975     return;
1976   }
1977 
1978   // Otherwise, we found a reference to a fragment.  First, look up its
1979   // TreePattern record.
1980   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1981 
1982   // Verify that we are passing the right number of operands.
1983   if (Frag->getNumArgs() != Children.size()) {
1984     TP.error("'" + Op->getName() + "' fragment requires " +
1985              Twine(Frag->getNumArgs()) + " operands!");
1986     return;
1987   }
1988 
1989   TreePredicateFn PredFn(Frag);
1990   unsigned Scope = 0;
1991   if (TreePredicateFn(Frag).usesOperands())
1992     Scope = TP.getDAGPatterns().allocateScope();
1993 
1994   // Compute the map of formal to actual arguments.
1995   std::map<std::string, TreePatternNodePtr> ArgMap;
1996   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1997     TreePatternNodePtr Child = getChildShared(i);
1998     if (Scope != 0) {
1999       Child = Child->clone();
2000       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2001     }
2002     ArgMap[Frag->getArgName(i)] = Child;
2003   }
2004 
2005   // Loop over all fragment alternatives.
2006   for (auto Alternative : Frag->getTrees()) {
2007     TreePatternNodePtr FragTree = Alternative->clone();
2008 
2009     if (!PredFn.isAlwaysTrue())
2010       FragTree->addPredicateCall(PredFn, Scope);
2011 
2012     // Resolve formal arguments to their actual value.
2013     if (Frag->getNumArgs())
2014       FragTree->SubstituteFormalArguments(ArgMap);
2015 
2016     // Transfer types.  Note that the resolved alternative may have fewer
2017     // (but not more) results than the PatFrags node.
2018     FragTree->setName(getName());
2019     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2020       FragTree->UpdateNodeType(i, getExtType(i), TP);
2021 
2022     // Transfer in the old predicates.
2023     for (const TreePredicateCall &Pred : getPredicateCalls())
2024       FragTree->addPredicateCall(Pred);
2025 
2026     // The fragment we inlined could have recursive inlining that is needed.  See
2027     // if there are any pattern fragments in it and inline them as needed.
2028     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2029   }
2030 }
2031 
2032 /// getImplicitType - Check to see if the specified record has an implicit
2033 /// type which should be applied to it.  This will infer the type of register
2034 /// references from the register file information, for example.
2035 ///
2036 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2037 /// the F8RC register class argument in:
2038 ///
2039 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2040 ///
2041 /// When Unnamed is false, return the type of a named DAG operand such as the
2042 /// GPR:$src operand above.
2043 ///
2044 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2045                                        bool NotRegisters,
2046                                        bool Unnamed,
2047                                        TreePattern &TP) {
2048   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2049 
2050   // Check to see if this is a register operand.
2051   if (R->isSubClassOf("RegisterOperand")) {
2052     assert(ResNo == 0 && "Regoperand ref only has one result!");
2053     if (NotRegisters)
2054       return TypeSetByHwMode(); // Unknown.
2055     Record *RegClass = R->getValueAsDef("RegClass");
2056     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2057     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2058   }
2059 
2060   // Check to see if this is a register or a register class.
2061   if (R->isSubClassOf("RegisterClass")) {
2062     assert(ResNo == 0 && "Regclass ref only has one result!");
2063     // An unnamed register class represents itself as an i32 immediate, for
2064     // example on a COPY_TO_REGCLASS instruction.
2065     if (Unnamed)
2066       return TypeSetByHwMode(MVT::i32);
2067 
2068     // In a named operand, the register class provides the possible set of
2069     // types.
2070     if (NotRegisters)
2071       return TypeSetByHwMode(); // Unknown.
2072     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2073     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2074   }
2075 
2076   if (R->isSubClassOf("PatFrags")) {
2077     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2078     // Pattern fragment types will be resolved when they are inlined.
2079     return TypeSetByHwMode(); // Unknown.
2080   }
2081 
2082   if (R->isSubClassOf("Register")) {
2083     assert(ResNo == 0 && "Registers only produce one result!");
2084     if (NotRegisters)
2085       return TypeSetByHwMode(); // Unknown.
2086     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2087     return TypeSetByHwMode(T.getRegisterVTs(R));
2088   }
2089 
2090   if (R->isSubClassOf("SubRegIndex")) {
2091     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2092     return TypeSetByHwMode(MVT::i32);
2093   }
2094 
2095   if (R->isSubClassOf("ValueType")) {
2096     assert(ResNo == 0 && "This node only has one result!");
2097     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2098     //
2099     //   (sext_inreg GPR:$src, i16)
2100     //                         ~~~
2101     if (Unnamed)
2102       return TypeSetByHwMode(MVT::Other);
2103     // With a name, the ValueType simply provides the type of the named
2104     // variable.
2105     //
2106     //   (sext_inreg i32:$src, i16)
2107     //               ~~~~~~~~
2108     if (NotRegisters)
2109       return TypeSetByHwMode(); // Unknown.
2110     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2111     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2112   }
2113 
2114   if (R->isSubClassOf("CondCode")) {
2115     assert(ResNo == 0 && "This node only has one result!");
2116     // Using a CondCodeSDNode.
2117     return TypeSetByHwMode(MVT::Other);
2118   }
2119 
2120   if (R->isSubClassOf("ComplexPattern")) {
2121     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2122     if (NotRegisters)
2123       return TypeSetByHwMode(); // Unknown.
2124     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2125   }
2126   if (R->isSubClassOf("PointerLikeRegClass")) {
2127     assert(ResNo == 0 && "Regclass can only have one result!");
2128     TypeSetByHwMode VTS(MVT::iPTR);
2129     TP.getInfer().expandOverloads(VTS);
2130     return VTS;
2131   }
2132 
2133   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2134       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2135       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2136     // Placeholder.
2137     return TypeSetByHwMode(); // Unknown.
2138   }
2139 
2140   if (R->isSubClassOf("Operand")) {
2141     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2142     Record *T = R->getValueAsDef("Type");
2143     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2144   }
2145 
2146   TP.error("Unknown node flavor used in pattern: " + R->getName());
2147   return TypeSetByHwMode(MVT::Other);
2148 }
2149 
2150 
2151 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2152 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2153 const CodeGenIntrinsic *TreePatternNode::
2154 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2155   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2156       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2157       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2158     return nullptr;
2159 
2160   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2161   return &CDP.getIntrinsicInfo(IID);
2162 }
2163 
2164 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2165 /// return the ComplexPattern information, otherwise return null.
2166 const ComplexPattern *
2167 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2168   Record *Rec;
2169   if (isLeaf()) {
2170     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2171     if (!DI)
2172       return nullptr;
2173     Rec = DI->getDef();
2174   } else
2175     Rec = getOperator();
2176 
2177   if (!Rec->isSubClassOf("ComplexPattern"))
2178     return nullptr;
2179   return &CGP.getComplexPattern(Rec);
2180 }
2181 
2182 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2183   // A ComplexPattern specifically declares how many results it fills in.
2184   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2185     return CP->getNumOperands();
2186 
2187   // If MIOperandInfo is specified, that gives the count.
2188   if (isLeaf()) {
2189     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2190     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2191       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2192       if (MIOps->getNumArgs())
2193         return MIOps->getNumArgs();
2194     }
2195   }
2196 
2197   // Otherwise there is just one result.
2198   return 1;
2199 }
2200 
2201 /// NodeHasProperty - Return true if this node has the specified property.
2202 bool TreePatternNode::NodeHasProperty(SDNP Property,
2203                                       const CodeGenDAGPatterns &CGP) const {
2204   if (isLeaf()) {
2205     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2206       return CP->hasProperty(Property);
2207 
2208     return false;
2209   }
2210 
2211   if (Property != SDNPHasChain) {
2212     // The chain proprety is already present on the different intrinsic node
2213     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2214     // on the intrinsic. Anything else is specific to the individual intrinsic.
2215     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2216       return Int->hasProperty(Property);
2217   }
2218 
2219   if (!Operator->isSubClassOf("SDPatternOperator"))
2220     return false;
2221 
2222   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2223 }
2224 
2225 
2226 
2227 
2228 /// TreeHasProperty - Return true if any node in this tree has the specified
2229 /// property.
2230 bool TreePatternNode::TreeHasProperty(SDNP Property,
2231                                       const CodeGenDAGPatterns &CGP) const {
2232   if (NodeHasProperty(Property, CGP))
2233     return true;
2234   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2235     if (getChild(i)->TreeHasProperty(Property, CGP))
2236       return true;
2237   return false;
2238 }
2239 
2240 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2241 /// commutative intrinsic.
2242 bool
2243 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2244   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2245     return Int->isCommutative;
2246   return false;
2247 }
2248 
2249 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2250   if (!N->isLeaf())
2251     return N->getOperator()->isSubClassOf(Class);
2252 
2253   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2254   if (DI && DI->getDef()->isSubClassOf(Class))
2255     return true;
2256 
2257   return false;
2258 }
2259 
2260 static void emitTooManyOperandsError(TreePattern &TP,
2261                                      StringRef InstName,
2262                                      unsigned Expected,
2263                                      unsigned Actual) {
2264   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2265            " operands but expected only " + Twine(Expected) + "!");
2266 }
2267 
2268 static void emitTooFewOperandsError(TreePattern &TP,
2269                                     StringRef InstName,
2270                                     unsigned Actual) {
2271   TP.error("Instruction '" + InstName +
2272            "' expects more than the provided " + Twine(Actual) + " operands!");
2273 }
2274 
2275 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2276 /// this node and its children in the tree.  This returns true if it makes a
2277 /// change, false otherwise.  If a type contradiction is found, flag an error.
2278 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2279   if (TP.hasError())
2280     return false;
2281 
2282   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2283   if (isLeaf()) {
2284     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2285       // If it's a regclass or something else known, include the type.
2286       bool MadeChange = false;
2287       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2288         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2289                                                         NotRegisters,
2290                                                         !hasName(), TP), TP);
2291       return MadeChange;
2292     }
2293 
2294     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2295       assert(Types.size() == 1 && "Invalid IntInit");
2296 
2297       // Int inits are always integers. :)
2298       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2299 
2300       if (!TP.getInfer().isConcrete(Types[0], false))
2301         return MadeChange;
2302 
2303       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2304       for (auto &P : VVT) {
2305         MVT::SimpleValueType VT = P.second.SimpleTy;
2306         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2307           continue;
2308         unsigned Size = MVT(VT).getSizeInBits();
2309         // Make sure that the value is representable for this type.
2310         if (Size >= 32)
2311           continue;
2312         // Check that the value doesn't use more bits than we have. It must
2313         // either be a sign- or zero-extended equivalent of the original.
2314         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2315         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2316             SignBitAndAbove == 1)
2317           continue;
2318 
2319         TP.error("Integer value '" + Twine(II->getValue()) +
2320                  "' is out of range for type '" + getEnumName(VT) + "'!");
2321         break;
2322       }
2323       return MadeChange;
2324     }
2325 
2326     return false;
2327   }
2328 
2329   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2330     bool MadeChange = false;
2331 
2332     // Apply the result type to the node.
2333     unsigned NumRetVTs = Int->IS.RetVTs.size();
2334     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2335 
2336     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2337       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2338 
2339     if (getNumChildren() != NumParamVTs + 1) {
2340       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2341                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2342       return false;
2343     }
2344 
2345     // Apply type info to the intrinsic ID.
2346     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2347 
2348     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2349       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2350 
2351       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2352       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2353       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2354     }
2355     return MadeChange;
2356   }
2357 
2358   if (getOperator()->isSubClassOf("SDNode")) {
2359     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2360 
2361     // Check that the number of operands is sane.  Negative operands -> varargs.
2362     if (NI.getNumOperands() >= 0 &&
2363         getNumChildren() != (unsigned)NI.getNumOperands()) {
2364       TP.error(getOperator()->getName() + " node requires exactly " +
2365                Twine(NI.getNumOperands()) + " operands!");
2366       return false;
2367     }
2368 
2369     bool MadeChange = false;
2370     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2371       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2372     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2373     return MadeChange;
2374   }
2375 
2376   if (getOperator()->isSubClassOf("Instruction")) {
2377     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2378     CodeGenInstruction &InstInfo =
2379       CDP.getTargetInfo().getInstruction(getOperator());
2380 
2381     bool MadeChange = false;
2382 
2383     // Apply the result types to the node, these come from the things in the
2384     // (outs) list of the instruction.
2385     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2386                                         Inst.getNumResults());
2387     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2388       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2389 
2390     // If the instruction has implicit defs, we apply the first one as a result.
2391     // FIXME: This sucks, it should apply all implicit defs.
2392     if (!InstInfo.ImplicitDefs.empty()) {
2393       unsigned ResNo = NumResultsToAdd;
2394 
2395       // FIXME: Generalize to multiple possible types and multiple possible
2396       // ImplicitDefs.
2397       MVT::SimpleValueType VT =
2398         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2399 
2400       if (VT != MVT::Other)
2401         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2402     }
2403 
2404     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2405     // be the same.
2406     if (getOperator()->getName() == "INSERT_SUBREG") {
2407       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2408       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2409       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2410     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2411       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2412       // variadic.
2413 
2414       unsigned NChild = getNumChildren();
2415       if (NChild < 3) {
2416         TP.error("REG_SEQUENCE requires at least 3 operands!");
2417         return false;
2418       }
2419 
2420       if (NChild % 2 == 0) {
2421         TP.error("REG_SEQUENCE requires an odd number of operands!");
2422         return false;
2423       }
2424 
2425       if (!isOperandClass(getChild(0), "RegisterClass")) {
2426         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2427         return false;
2428       }
2429 
2430       for (unsigned I = 1; I < NChild; I += 2) {
2431         TreePatternNode *SubIdxChild = getChild(I + 1);
2432         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2433           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2434                    Twine(I + 1) + "!");
2435           return false;
2436         }
2437       }
2438     }
2439 
2440     // If one or more operands with a default value appear at the end of the
2441     // formal operand list for an instruction, we allow them to be overridden
2442     // by optional operands provided in the pattern.
2443     //
2444     // But if an operand B without a default appears at any point after an
2445     // operand A with a default, then we don't allow A to be overridden,
2446     // because there would be no way to specify whether the next operand in
2447     // the pattern was intended to override A or skip it.
2448     unsigned NonOverridableOperands = Inst.getNumOperands();
2449     while (NonOverridableOperands > 0 &&
2450            CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2451       --NonOverridableOperands;
2452 
2453     unsigned ChildNo = 0;
2454     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2455       Record *OperandNode = Inst.getOperand(i);
2456 
2457       // If the operand has a default value, do we use it? We must use the
2458       // default if we've run out of children of the pattern DAG to consume,
2459       // or if the operand is followed by a non-defaulted one.
2460       if (CDP.operandHasDefault(OperandNode) &&
2461           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2462         continue;
2463 
2464       // If we have run out of child nodes and there _isn't_ a default
2465       // value we can use for the next operand, give an error.
2466       if (ChildNo >= getNumChildren()) {
2467         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2468         return false;
2469       }
2470 
2471       TreePatternNode *Child = getChild(ChildNo++);
2472       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2473 
2474       // If the operand has sub-operands, they may be provided by distinct
2475       // child patterns, so attempt to match each sub-operand separately.
2476       if (OperandNode->isSubClassOf("Operand")) {
2477         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2478         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2479           // But don't do that if the whole operand is being provided by
2480           // a single ComplexPattern-related Operand.
2481 
2482           if (Child->getNumMIResults(CDP) < NumArgs) {
2483             // Match first sub-operand against the child we already have.
2484             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2485             MadeChange |=
2486               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2487 
2488             // And the remaining sub-operands against subsequent children.
2489             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2490               if (ChildNo >= getNumChildren()) {
2491                 emitTooFewOperandsError(TP, getOperator()->getName(),
2492                                         getNumChildren());
2493                 return false;
2494               }
2495               Child = getChild(ChildNo++);
2496 
2497               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2498               MadeChange |=
2499                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2500             }
2501             continue;
2502           }
2503         }
2504       }
2505 
2506       // If we didn't match by pieces above, attempt to match the whole
2507       // operand now.
2508       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2509     }
2510 
2511     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2512       emitTooManyOperandsError(TP, getOperator()->getName(),
2513                                ChildNo, getNumChildren());
2514       return false;
2515     }
2516 
2517     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2518       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2519     return MadeChange;
2520   }
2521 
2522   if (getOperator()->isSubClassOf("ComplexPattern")) {
2523     bool MadeChange = false;
2524 
2525     for (unsigned i = 0; i < getNumChildren(); ++i)
2526       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2527 
2528     return MadeChange;
2529   }
2530 
2531   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2532 
2533   // Node transforms always take one operand.
2534   if (getNumChildren() != 1) {
2535     TP.error("Node transform '" + getOperator()->getName() +
2536              "' requires one operand!");
2537     return false;
2538   }
2539 
2540   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2541   return MadeChange;
2542 }
2543 
2544 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2545 /// RHS of a commutative operation, not the on LHS.
2546 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2547   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2548     return true;
2549   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2550     return true;
2551   return false;
2552 }
2553 
2554 
2555 /// canPatternMatch - If it is impossible for this pattern to match on this
2556 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2557 /// used as a sanity check for .td files (to prevent people from writing stuff
2558 /// that can never possibly work), and to prevent the pattern permuter from
2559 /// generating stuff that is useless.
2560 bool TreePatternNode::canPatternMatch(std::string &Reason,
2561                                       const CodeGenDAGPatterns &CDP) {
2562   if (isLeaf()) return true;
2563 
2564   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2565     if (!getChild(i)->canPatternMatch(Reason, CDP))
2566       return false;
2567 
2568   // If this is an intrinsic, handle cases that would make it not match.  For
2569   // example, if an operand is required to be an immediate.
2570   if (getOperator()->isSubClassOf("Intrinsic")) {
2571     // TODO:
2572     return true;
2573   }
2574 
2575   if (getOperator()->isSubClassOf("ComplexPattern"))
2576     return true;
2577 
2578   // If this node is a commutative operator, check that the LHS isn't an
2579   // immediate.
2580   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2581   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2582   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2583     // Scan all of the operands of the node and make sure that only the last one
2584     // is a constant node, unless the RHS also is.
2585     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2586       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2587       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2588         if (OnlyOnRHSOfCommutative(getChild(i))) {
2589           Reason="Immediate value must be on the RHS of commutative operators!";
2590           return false;
2591         }
2592     }
2593   }
2594 
2595   return true;
2596 }
2597 
2598 //===----------------------------------------------------------------------===//
2599 // TreePattern implementation
2600 //
2601 
2602 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2603                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2604                          isInputPattern(isInput), HasError(false),
2605                          Infer(*this) {
2606   for (Init *I : RawPat->getValues())
2607     Trees.push_back(ParseTreePattern(I, ""));
2608 }
2609 
2610 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2611                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2612                          isInputPattern(isInput), HasError(false),
2613                          Infer(*this) {
2614   Trees.push_back(ParseTreePattern(Pat, ""));
2615 }
2616 
2617 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2618                          CodeGenDAGPatterns &cdp)
2619     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2620       Infer(*this) {
2621   Trees.push_back(Pat);
2622 }
2623 
2624 void TreePattern::error(const Twine &Msg) {
2625   if (HasError)
2626     return;
2627   dump();
2628   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2629   HasError = true;
2630 }
2631 
2632 void TreePattern::ComputeNamedNodes() {
2633   for (TreePatternNodePtr &Tree : Trees)
2634     ComputeNamedNodes(Tree.get());
2635 }
2636 
2637 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2638   if (!N->getName().empty())
2639     NamedNodes[N->getName()].push_back(N);
2640 
2641   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2642     ComputeNamedNodes(N->getChild(i));
2643 }
2644 
2645 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2646                                                  StringRef OpName) {
2647   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2648     Record *R = DI->getDef();
2649 
2650     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2651     // TreePatternNode of its own.  For example:
2652     ///   (foo GPR, imm) -> (foo GPR, (imm))
2653     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2654       return ParseTreePattern(
2655         DagInit::get(DI, nullptr,
2656                      std::vector<std::pair<Init*, StringInit*> >()),
2657         OpName);
2658 
2659     // Input argument?
2660     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2661     if (R->getName() == "node" && !OpName.empty()) {
2662       if (OpName.empty())
2663         error("'node' argument requires a name to match with operand list");
2664       Args.push_back(OpName);
2665     }
2666 
2667     Res->setName(OpName);
2668     return Res;
2669   }
2670 
2671   // ?:$name or just $name.
2672   if (isa<UnsetInit>(TheInit)) {
2673     if (OpName.empty())
2674       error("'?' argument requires a name to match with operand list");
2675     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2676     Args.push_back(OpName);
2677     Res->setName(OpName);
2678     return Res;
2679   }
2680 
2681   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2682     if (!OpName.empty())
2683       error("Constant int or bit argument should not have a name!");
2684     if (isa<BitInit>(TheInit))
2685       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2686     return std::make_shared<TreePatternNode>(TheInit, 1);
2687   }
2688 
2689   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2690     // Turn this into an IntInit.
2691     Init *II = BI->convertInitializerTo(IntRecTy::get());
2692     if (!II || !isa<IntInit>(II))
2693       error("Bits value must be constants!");
2694     return ParseTreePattern(II, OpName);
2695   }
2696 
2697   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2698   if (!Dag) {
2699     TheInit->print(errs());
2700     error("Pattern has unexpected init kind!");
2701   }
2702   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2703   if (!OpDef) error("Pattern has unexpected operator type!");
2704   Record *Operator = OpDef->getDef();
2705 
2706   if (Operator->isSubClassOf("ValueType")) {
2707     // If the operator is a ValueType, then this must be "type cast" of a leaf
2708     // node.
2709     if (Dag->getNumArgs() != 1)
2710       error("Type cast only takes one operand!");
2711 
2712     TreePatternNodePtr New =
2713         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2714 
2715     // Apply the type cast.
2716     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2717     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2718     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2719 
2720     if (!OpName.empty())
2721       error("ValueType cast should not have a name!");
2722     return New;
2723   }
2724 
2725   // Verify that this is something that makes sense for an operator.
2726   if (!Operator->isSubClassOf("PatFrags") &&
2727       !Operator->isSubClassOf("SDNode") &&
2728       !Operator->isSubClassOf("Instruction") &&
2729       !Operator->isSubClassOf("SDNodeXForm") &&
2730       !Operator->isSubClassOf("Intrinsic") &&
2731       !Operator->isSubClassOf("ComplexPattern") &&
2732       Operator->getName() != "set" &&
2733       Operator->getName() != "implicit")
2734     error("Unrecognized node '" + Operator->getName() + "'!");
2735 
2736   //  Check to see if this is something that is illegal in an input pattern.
2737   if (isInputPattern) {
2738     if (Operator->isSubClassOf("Instruction") ||
2739         Operator->isSubClassOf("SDNodeXForm"))
2740       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2741   } else {
2742     if (Operator->isSubClassOf("Intrinsic"))
2743       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2744 
2745     if (Operator->isSubClassOf("SDNode") &&
2746         Operator->getName() != "imm" &&
2747         Operator->getName() != "fpimm" &&
2748         Operator->getName() != "tglobaltlsaddr" &&
2749         Operator->getName() != "tconstpool" &&
2750         Operator->getName() != "tjumptable" &&
2751         Operator->getName() != "tframeindex" &&
2752         Operator->getName() != "texternalsym" &&
2753         Operator->getName() != "tblockaddress" &&
2754         Operator->getName() != "tglobaladdr" &&
2755         Operator->getName() != "bb" &&
2756         Operator->getName() != "vt" &&
2757         Operator->getName() != "mcsym")
2758       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2759   }
2760 
2761   std::vector<TreePatternNodePtr> Children;
2762 
2763   // Parse all the operands.
2764   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2765     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2766 
2767   // Get the actual number of results before Operator is converted to an intrinsic
2768   // node (which is hard-coded to have either zero or one result).
2769   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2770 
2771   // If the operator is an intrinsic, then this is just syntactic sugar for
2772   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2773   // convert the intrinsic name to a number.
2774   if (Operator->isSubClassOf("Intrinsic")) {
2775     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2776     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2777 
2778     // If this intrinsic returns void, it must have side-effects and thus a
2779     // chain.
2780     if (Int.IS.RetVTs.empty())
2781       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2782     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2783       // Has side-effects, requires chain.
2784       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2785     else // Otherwise, no chain.
2786       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2787 
2788     Children.insert(Children.begin(),
2789                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2790   }
2791 
2792   if (Operator->isSubClassOf("ComplexPattern")) {
2793     for (unsigned i = 0; i < Children.size(); ++i) {
2794       TreePatternNodePtr Child = Children[i];
2795 
2796       if (Child->getName().empty())
2797         error("All arguments to a ComplexPattern must be named");
2798 
2799       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2800       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2801       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2802       auto OperandId = std::make_pair(Operator, i);
2803       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2804       if (PrevOp != ComplexPatternOperands.end()) {
2805         if (PrevOp->getValue() != OperandId)
2806           error("All ComplexPattern operands must appear consistently: "
2807                 "in the same order in just one ComplexPattern instance.");
2808       } else
2809         ComplexPatternOperands[Child->getName()] = OperandId;
2810     }
2811   }
2812 
2813   TreePatternNodePtr Result =
2814       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2815                                         NumResults);
2816   Result->setName(OpName);
2817 
2818   if (Dag->getName()) {
2819     assert(Result->getName().empty());
2820     Result->setName(Dag->getNameStr());
2821   }
2822   return Result;
2823 }
2824 
2825 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2826 /// will never match in favor of something obvious that will.  This is here
2827 /// strictly as a convenience to target authors because it allows them to write
2828 /// more type generic things and have useless type casts fold away.
2829 ///
2830 /// This returns true if any change is made.
2831 static bool SimplifyTree(TreePatternNodePtr &N) {
2832   if (N->isLeaf())
2833     return false;
2834 
2835   // If we have a bitconvert with a resolved type and if the source and
2836   // destination types are the same, then the bitconvert is useless, remove it.
2837   if (N->getOperator()->getName() == "bitconvert" &&
2838       N->getExtType(0).isValueTypeByHwMode(false) &&
2839       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2840       N->getName().empty()) {
2841     N = N->getChildShared(0);
2842     SimplifyTree(N);
2843     return true;
2844   }
2845 
2846   // Walk all children.
2847   bool MadeChange = false;
2848   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2849     TreePatternNodePtr Child = N->getChildShared(i);
2850     MadeChange |= SimplifyTree(Child);
2851     N->setChild(i, std::move(Child));
2852   }
2853   return MadeChange;
2854 }
2855 
2856 
2857 
2858 /// InferAllTypes - Infer/propagate as many types throughout the expression
2859 /// patterns as possible.  Return true if all types are inferred, false
2860 /// otherwise.  Flags an error if a type contradiction is found.
2861 bool TreePattern::
2862 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2863   if (NamedNodes.empty())
2864     ComputeNamedNodes();
2865 
2866   bool MadeChange = true;
2867   while (MadeChange) {
2868     MadeChange = false;
2869     for (TreePatternNodePtr &Tree : Trees) {
2870       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2871       MadeChange |= SimplifyTree(Tree);
2872     }
2873 
2874     // If there are constraints on our named nodes, apply them.
2875     for (auto &Entry : NamedNodes) {
2876       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2877 
2878       // If we have input named node types, propagate their types to the named
2879       // values here.
2880       if (InNamedTypes) {
2881         if (!InNamedTypes->count(Entry.getKey())) {
2882           error("Node '" + std::string(Entry.getKey()) +
2883                 "' in output pattern but not input pattern");
2884           return true;
2885         }
2886 
2887         const SmallVectorImpl<TreePatternNode*> &InNodes =
2888           InNamedTypes->find(Entry.getKey())->second;
2889 
2890         // The input types should be fully resolved by now.
2891         for (TreePatternNode *Node : Nodes) {
2892           // If this node is a register class, and it is the root of the pattern
2893           // then we're mapping something onto an input register.  We allow
2894           // changing the type of the input register in this case.  This allows
2895           // us to match things like:
2896           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2897           if (Node == Trees[0].get() && Node->isLeaf()) {
2898             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2899             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2900                        DI->getDef()->isSubClassOf("RegisterOperand")))
2901               continue;
2902           }
2903 
2904           assert(Node->getNumTypes() == 1 &&
2905                  InNodes[0]->getNumTypes() == 1 &&
2906                  "FIXME: cannot name multiple result nodes yet");
2907           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2908                                              *this);
2909         }
2910       }
2911 
2912       // If there are multiple nodes with the same name, they must all have the
2913       // same type.
2914       if (Entry.second.size() > 1) {
2915         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2916           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2917           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2918                  "FIXME: cannot name multiple result nodes yet");
2919 
2920           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2921           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2922         }
2923       }
2924     }
2925   }
2926 
2927   bool HasUnresolvedTypes = false;
2928   for (const TreePatternNodePtr &Tree : Trees)
2929     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2930   return !HasUnresolvedTypes;
2931 }
2932 
2933 void TreePattern::print(raw_ostream &OS) const {
2934   OS << getRecord()->getName();
2935   if (!Args.empty()) {
2936     OS << "(" << Args[0];
2937     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2938       OS << ", " << Args[i];
2939     OS << ")";
2940   }
2941   OS << ": ";
2942 
2943   if (Trees.size() > 1)
2944     OS << "[\n";
2945   for (const TreePatternNodePtr &Tree : Trees) {
2946     OS << "\t";
2947     Tree->print(OS);
2948     OS << "\n";
2949   }
2950 
2951   if (Trees.size() > 1)
2952     OS << "]\n";
2953 }
2954 
2955 void TreePattern::dump() const { print(errs()); }
2956 
2957 //===----------------------------------------------------------------------===//
2958 // CodeGenDAGPatterns implementation
2959 //
2960 
2961 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2962                                        PatternRewriterFn PatternRewriter)
2963     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2964       PatternRewriter(PatternRewriter) {
2965 
2966   Intrinsics = CodeGenIntrinsicTable(Records, false);
2967   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2968   ParseNodeInfo();
2969   ParseNodeTransforms();
2970   ParseComplexPatterns();
2971   ParsePatternFragments();
2972   ParseDefaultOperands();
2973   ParseInstructions();
2974   ParsePatternFragments(/*OutFrags*/true);
2975   ParsePatterns();
2976 
2977   // Break patterns with parameterized types into a series of patterns,
2978   // where each one has a fixed type and is predicated on the conditions
2979   // of the associated HW mode.
2980   ExpandHwModeBasedTypes();
2981 
2982   // Generate variants.  For example, commutative patterns can match
2983   // multiple ways.  Add them to PatternsToMatch as well.
2984   GenerateVariants();
2985 
2986   // Infer instruction flags.  For example, we can detect loads,
2987   // stores, and side effects in many cases by examining an
2988   // instruction's pattern.
2989   InferInstructionFlags();
2990 
2991   // Verify that instruction flags match the patterns.
2992   VerifyInstructionFlags();
2993 }
2994 
2995 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2996   Record *N = Records.getDef(Name);
2997   if (!N || !N->isSubClassOf("SDNode"))
2998     PrintFatalError("Error getting SDNode '" + Name + "'!");
2999 
3000   return N;
3001 }
3002 
3003 // Parse all of the SDNode definitions for the target, populating SDNodes.
3004 void CodeGenDAGPatterns::ParseNodeInfo() {
3005   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3006   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3007 
3008   while (!Nodes.empty()) {
3009     Record *R = Nodes.back();
3010     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3011     Nodes.pop_back();
3012   }
3013 
3014   // Get the builtin intrinsic nodes.
3015   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3016   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3017   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3018 }
3019 
3020 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3021 /// map, and emit them to the file as functions.
3022 void CodeGenDAGPatterns::ParseNodeTransforms() {
3023   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3024   while (!Xforms.empty()) {
3025     Record *XFormNode = Xforms.back();
3026     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3027     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3028     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3029 
3030     Xforms.pop_back();
3031   }
3032 }
3033 
3034 void CodeGenDAGPatterns::ParseComplexPatterns() {
3035   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3036   while (!AMs.empty()) {
3037     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3038     AMs.pop_back();
3039   }
3040 }
3041 
3042 
3043 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3044 /// file, building up the PatternFragments map.  After we've collected them all,
3045 /// inline fragments together as necessary, so that there are no references left
3046 /// inside a pattern fragment to a pattern fragment.
3047 ///
3048 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3049   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3050 
3051   // First step, parse all of the fragments.
3052   for (Record *Frag : Fragments) {
3053     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3054       continue;
3055 
3056     ListInit *LI = Frag->getValueAsListInit("Fragments");
3057     TreePattern *P =
3058         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
3059              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3060              *this)).get();
3061 
3062     // Validate the argument list, converting it to set, to discard duplicates.
3063     std::vector<std::string> &Args = P->getArgList();
3064     // Copy the args so we can take StringRefs to them.
3065     auto ArgsCopy = Args;
3066     SmallDenseSet<StringRef, 4> OperandsSet;
3067     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3068 
3069     if (OperandsSet.count(""))
3070       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3071 
3072     // Parse the operands list.
3073     DagInit *OpsList = Frag->getValueAsDag("Operands");
3074     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3075     // Special cases: ops == outs == ins. Different names are used to
3076     // improve readability.
3077     if (!OpsOp ||
3078         (OpsOp->getDef()->getName() != "ops" &&
3079          OpsOp->getDef()->getName() != "outs" &&
3080          OpsOp->getDef()->getName() != "ins"))
3081       P->error("Operands list should start with '(ops ... '!");
3082 
3083     // Copy over the arguments.
3084     Args.clear();
3085     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3086       if (!isa<DefInit>(OpsList->getArg(j)) ||
3087           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3088         P->error("Operands list should all be 'node' values.");
3089       if (!OpsList->getArgName(j))
3090         P->error("Operands list should have names for each operand!");
3091       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3092       if (!OperandsSet.count(ArgNameStr))
3093         P->error("'" + ArgNameStr +
3094                  "' does not occur in pattern or was multiply specified!");
3095       OperandsSet.erase(ArgNameStr);
3096       Args.push_back(ArgNameStr);
3097     }
3098 
3099     if (!OperandsSet.empty())
3100       P->error("Operands list does not contain an entry for operand '" +
3101                *OperandsSet.begin() + "'!");
3102 
3103     // If there is a node transformation corresponding to this, keep track of
3104     // it.
3105     Record *Transform = Frag->getValueAsDef("OperandTransform");
3106     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3107       for (auto T : P->getTrees())
3108         T->setTransformFn(Transform);
3109   }
3110 
3111   // Now that we've parsed all of the tree fragments, do a closure on them so
3112   // that there are not references to PatFrags left inside of them.
3113   for (Record *Frag : Fragments) {
3114     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3115       continue;
3116 
3117     TreePattern &ThePat = *PatternFragments[Frag];
3118     ThePat.InlinePatternFragments();
3119 
3120     // Infer as many types as possible.  Don't worry about it if we don't infer
3121     // all of them, some may depend on the inputs of the pattern.  Also, don't
3122     // validate type sets; validation may cause spurious failures e.g. if a
3123     // fragment needs floating-point types but the current target does not have
3124     // any (this is only an error if that fragment is ever used!).
3125     {
3126       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3127       ThePat.InferAllTypes();
3128       ThePat.resetError();
3129     }
3130 
3131     // If debugging, print out the pattern fragment result.
3132     LLVM_DEBUG(ThePat.dump());
3133   }
3134 }
3135 
3136 void CodeGenDAGPatterns::ParseDefaultOperands() {
3137   std::vector<Record*> DefaultOps;
3138   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3139 
3140   // Find some SDNode.
3141   assert(!SDNodes.empty() && "No SDNodes parsed?");
3142   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3143 
3144   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3145     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3146 
3147     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3148     // SomeSDnode so that we can parse this.
3149     std::vector<std::pair<Init*, StringInit*> > Ops;
3150     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3151       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3152                                    DefaultInfo->getArgName(op)));
3153     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3154 
3155     // Create a TreePattern to parse this.
3156     TreePattern P(DefaultOps[i], DI, false, *this);
3157     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3158 
3159     // Copy the operands over into a DAGDefaultOperand.
3160     DAGDefaultOperand DefaultOpInfo;
3161 
3162     const TreePatternNodePtr &T = P.getTree(0);
3163     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3164       TreePatternNodePtr TPN = T->getChildShared(op);
3165       while (TPN->ApplyTypeConstraints(P, false))
3166         /* Resolve all types */;
3167 
3168       if (TPN->ContainsUnresolvedType(P)) {
3169         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3170                         DefaultOps[i]->getName() +
3171                         "' doesn't have a concrete type!");
3172       }
3173       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3174     }
3175 
3176     // Insert it into the DefaultOperands map so we can find it later.
3177     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3178   }
3179 }
3180 
3181 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3182 /// instruction input.  Return true if this is a real use.
3183 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3184                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3185   // No name -> not interesting.
3186   if (Pat->getName().empty()) {
3187     if (Pat->isLeaf()) {
3188       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3189       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3190                  DI->getDef()->isSubClassOf("RegisterOperand")))
3191         I.error("Input " + DI->getDef()->getName() + " must be named!");
3192     }
3193     return false;
3194   }
3195 
3196   Record *Rec;
3197   if (Pat->isLeaf()) {
3198     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3199     if (!DI)
3200       I.error("Input $" + Pat->getName() + " must be an identifier!");
3201     Rec = DI->getDef();
3202   } else {
3203     Rec = Pat->getOperator();
3204   }
3205 
3206   // SRCVALUE nodes are ignored.
3207   if (Rec->getName() == "srcvalue")
3208     return false;
3209 
3210   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3211   if (!Slot) {
3212     Slot = Pat;
3213     return true;
3214   }
3215   Record *SlotRec;
3216   if (Slot->isLeaf()) {
3217     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3218   } else {
3219     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3220     SlotRec = Slot->getOperator();
3221   }
3222 
3223   // Ensure that the inputs agree if we've already seen this input.
3224   if (Rec != SlotRec)
3225     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3226   // Ensure that the types can agree as well.
3227   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3228   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3229   if (Slot->getExtTypes() != Pat->getExtTypes())
3230     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3231   return true;
3232 }
3233 
3234 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3235 /// part of "I", the instruction), computing the set of inputs and outputs of
3236 /// the pattern.  Report errors if we see anything naughty.
3237 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3238     TreePattern &I, TreePatternNodePtr Pat,
3239     std::map<std::string, TreePatternNodePtr> &InstInputs,
3240     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3241         &InstResults,
3242     std::vector<Record *> &InstImpResults) {
3243 
3244   // The instruction pattern still has unresolved fragments.  For *named*
3245   // nodes we must resolve those here.  This may not result in multiple
3246   // alternatives.
3247   if (!Pat->getName().empty()) {
3248     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3249     SrcPattern.InlinePatternFragments();
3250     SrcPattern.InferAllTypes();
3251     Pat = SrcPattern.getOnlyTree();
3252   }
3253 
3254   if (Pat->isLeaf()) {
3255     bool isUse = HandleUse(I, Pat, InstInputs);
3256     if (!isUse && Pat->getTransformFn())
3257       I.error("Cannot specify a transform function for a non-input value!");
3258     return;
3259   }
3260 
3261   if (Pat->getOperator()->getName() == "implicit") {
3262     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3263       TreePatternNode *Dest = Pat->getChild(i);
3264       if (!Dest->isLeaf())
3265         I.error("implicitly defined value should be a register!");
3266 
3267       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3268       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3269         I.error("implicitly defined value should be a register!");
3270       InstImpResults.push_back(Val->getDef());
3271     }
3272     return;
3273   }
3274 
3275   if (Pat->getOperator()->getName() != "set") {
3276     // If this is not a set, verify that the children nodes are not void typed,
3277     // and recurse.
3278     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3279       if (Pat->getChild(i)->getNumTypes() == 0)
3280         I.error("Cannot have void nodes inside of patterns!");
3281       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3282                                   InstResults, InstImpResults);
3283     }
3284 
3285     // If this is a non-leaf node with no children, treat it basically as if
3286     // it were a leaf.  This handles nodes like (imm).
3287     bool isUse = HandleUse(I, Pat, InstInputs);
3288 
3289     if (!isUse && Pat->getTransformFn())
3290       I.error("Cannot specify a transform function for a non-input value!");
3291     return;
3292   }
3293 
3294   // Otherwise, this is a set, validate and collect instruction results.
3295   if (Pat->getNumChildren() == 0)
3296     I.error("set requires operands!");
3297 
3298   if (Pat->getTransformFn())
3299     I.error("Cannot specify a transform function on a set node!");
3300 
3301   // Check the set destinations.
3302   unsigned NumDests = Pat->getNumChildren()-1;
3303   for (unsigned i = 0; i != NumDests; ++i) {
3304     TreePatternNodePtr Dest = Pat->getChildShared(i);
3305     // For set destinations we also must resolve fragments here.
3306     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3307     DestPattern.InlinePatternFragments();
3308     DestPattern.InferAllTypes();
3309     Dest = DestPattern.getOnlyTree();
3310 
3311     if (!Dest->isLeaf())
3312       I.error("set destination should be a register!");
3313 
3314     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3315     if (!Val) {
3316       I.error("set destination should be a register!");
3317       continue;
3318     }
3319 
3320     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3321         Val->getDef()->isSubClassOf("ValueType") ||
3322         Val->getDef()->isSubClassOf("RegisterOperand") ||
3323         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3324       if (Dest->getName().empty())
3325         I.error("set destination must have a name!");
3326       if (InstResults.count(Dest->getName()))
3327         I.error("cannot set '" + Dest->getName() + "' multiple times");
3328       InstResults[Dest->getName()] = Dest;
3329     } else if (Val->getDef()->isSubClassOf("Register")) {
3330       InstImpResults.push_back(Val->getDef());
3331     } else {
3332       I.error("set destination should be a register!");
3333     }
3334   }
3335 
3336   // Verify and collect info from the computation.
3337   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3338                               InstResults, InstImpResults);
3339 }
3340 
3341 //===----------------------------------------------------------------------===//
3342 // Instruction Analysis
3343 //===----------------------------------------------------------------------===//
3344 
3345 class InstAnalyzer {
3346   const CodeGenDAGPatterns &CDP;
3347 public:
3348   bool hasSideEffects;
3349   bool mayStore;
3350   bool mayLoad;
3351   bool isBitcast;
3352   bool isVariadic;
3353   bool hasChain;
3354 
3355   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3356     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3357       isBitcast(false), isVariadic(false), hasChain(false) {}
3358 
3359   void Analyze(const PatternToMatch &Pat) {
3360     const TreePatternNode *N = Pat.getSrcPattern();
3361     AnalyzeNode(N);
3362     // These properties are detected only on the root node.
3363     isBitcast = IsNodeBitcast(N);
3364   }
3365 
3366 private:
3367   bool IsNodeBitcast(const TreePatternNode *N) const {
3368     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3369       return false;
3370 
3371     if (N->isLeaf())
3372       return false;
3373     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3374       return false;
3375 
3376     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3377     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3378       return false;
3379     return OpInfo.getEnumName() == "ISD::BITCAST";
3380   }
3381 
3382 public:
3383   void AnalyzeNode(const TreePatternNode *N) {
3384     if (N->isLeaf()) {
3385       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3386         Record *LeafRec = DI->getDef();
3387         // Handle ComplexPattern leaves.
3388         if (LeafRec->isSubClassOf("ComplexPattern")) {
3389           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3390           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3391           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3392           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3393         }
3394       }
3395       return;
3396     }
3397 
3398     // Analyze children.
3399     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3400       AnalyzeNode(N->getChild(i));
3401 
3402     // Notice properties of the node.
3403     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3404     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3405     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3406     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3407     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3408 
3409     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3410       // If this is an intrinsic, analyze it.
3411       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3412         mayLoad = true;// These may load memory.
3413 
3414       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3415         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3416 
3417       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3418           IntInfo->hasSideEffects)
3419         // ReadWriteMem intrinsics can have other strange effects.
3420         hasSideEffects = true;
3421     }
3422   }
3423 
3424 };
3425 
3426 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3427                              const InstAnalyzer &PatInfo,
3428                              Record *PatDef) {
3429   bool Error = false;
3430 
3431   // Remember where InstInfo got its flags.
3432   if (InstInfo.hasUndefFlags())
3433       InstInfo.InferredFrom = PatDef;
3434 
3435   // Check explicitly set flags for consistency.
3436   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3437       !InstInfo.hasSideEffects_Unset) {
3438     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3439     // the pattern has no side effects. That could be useful for div/rem
3440     // instructions that may trap.
3441     if (!InstInfo.hasSideEffects) {
3442       Error = true;
3443       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3444                  Twine(InstInfo.hasSideEffects));
3445     }
3446   }
3447 
3448   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3449     Error = true;
3450     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3451                Twine(InstInfo.mayStore));
3452   }
3453 
3454   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3455     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3456     // Some targets translate immediates to loads.
3457     if (!InstInfo.mayLoad) {
3458       Error = true;
3459       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3460                  Twine(InstInfo.mayLoad));
3461     }
3462   }
3463 
3464   // Transfer inferred flags.
3465   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3466   InstInfo.mayStore |= PatInfo.mayStore;
3467   InstInfo.mayLoad |= PatInfo.mayLoad;
3468 
3469   // These flags are silently added without any verification.
3470   // FIXME: To match historical behavior of TableGen, for now add those flags
3471   // only when we're inferring from the primary instruction pattern.
3472   if (PatDef->isSubClassOf("Instruction")) {
3473     InstInfo.isBitcast |= PatInfo.isBitcast;
3474     InstInfo.hasChain |= PatInfo.hasChain;
3475     InstInfo.hasChain_Inferred = true;
3476   }
3477 
3478   // Don't infer isVariadic. This flag means something different on SDNodes and
3479   // instructions. For example, a CALL SDNode is variadic because it has the
3480   // call arguments as operands, but a CALL instruction is not variadic - it
3481   // has argument registers as implicit, not explicit uses.
3482 
3483   return Error;
3484 }
3485 
3486 /// hasNullFragReference - Return true if the DAG has any reference to the
3487 /// null_frag operator.
3488 static bool hasNullFragReference(DagInit *DI) {
3489   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3490   if (!OpDef) return false;
3491   Record *Operator = OpDef->getDef();
3492 
3493   // If this is the null fragment, return true.
3494   if (Operator->getName() == "null_frag") return true;
3495   // If any of the arguments reference the null fragment, return true.
3496   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3497     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3498     if (Arg && hasNullFragReference(Arg))
3499       return true;
3500   }
3501 
3502   return false;
3503 }
3504 
3505 /// hasNullFragReference - Return true if any DAG in the list references
3506 /// the null_frag operator.
3507 static bool hasNullFragReference(ListInit *LI) {
3508   for (Init *I : LI->getValues()) {
3509     DagInit *DI = dyn_cast<DagInit>(I);
3510     assert(DI && "non-dag in an instruction Pattern list?!");
3511     if (hasNullFragReference(DI))
3512       return true;
3513   }
3514   return false;
3515 }
3516 
3517 /// Get all the instructions in a tree.
3518 static void
3519 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3520   if (Tree->isLeaf())
3521     return;
3522   if (Tree->getOperator()->isSubClassOf("Instruction"))
3523     Instrs.push_back(Tree->getOperator());
3524   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3525     getInstructionsInTree(Tree->getChild(i), Instrs);
3526 }
3527 
3528 /// Check the class of a pattern leaf node against the instruction operand it
3529 /// represents.
3530 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3531                               Record *Leaf) {
3532   if (OI.Rec == Leaf)
3533     return true;
3534 
3535   // Allow direct value types to be used in instruction set patterns.
3536   // The type will be checked later.
3537   if (Leaf->isSubClassOf("ValueType"))
3538     return true;
3539 
3540   // Patterns can also be ComplexPattern instances.
3541   if (Leaf->isSubClassOf("ComplexPattern"))
3542     return true;
3543 
3544   return false;
3545 }
3546 
3547 void CodeGenDAGPatterns::parseInstructionPattern(
3548     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3549 
3550   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3551 
3552   // Parse the instruction.
3553   TreePattern I(CGI.TheDef, Pat, true, *this);
3554 
3555   // InstInputs - Keep track of all of the inputs of the instruction, along
3556   // with the record they are declared as.
3557   std::map<std::string, TreePatternNodePtr> InstInputs;
3558 
3559   // InstResults - Keep track of all the virtual registers that are 'set'
3560   // in the instruction, including what reg class they are.
3561   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3562       InstResults;
3563 
3564   std::vector<Record*> InstImpResults;
3565 
3566   // Verify that the top-level forms in the instruction are of void type, and
3567   // fill in the InstResults map.
3568   SmallString<32> TypesString;
3569   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3570     TypesString.clear();
3571     TreePatternNodePtr Pat = I.getTree(j);
3572     if (Pat->getNumTypes() != 0) {
3573       raw_svector_ostream OS(TypesString);
3574       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3575         if (k > 0)
3576           OS << ", ";
3577         Pat->getExtType(k).writeToStream(OS);
3578       }
3579       I.error("Top-level forms in instruction pattern should have"
3580                " void types, has types " +
3581                OS.str());
3582     }
3583 
3584     // Find inputs and outputs, and verify the structure of the uses/defs.
3585     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3586                                 InstImpResults);
3587   }
3588 
3589   // Now that we have inputs and outputs of the pattern, inspect the operands
3590   // list for the instruction.  This determines the order that operands are
3591   // added to the machine instruction the node corresponds to.
3592   unsigned NumResults = InstResults.size();
3593 
3594   // Parse the operands list from the (ops) list, validating it.
3595   assert(I.getArgList().empty() && "Args list should still be empty here!");
3596 
3597   // Check that all of the results occur first in the list.
3598   std::vector<Record*> Results;
3599   std::vector<unsigned> ResultIndices;
3600   SmallVector<TreePatternNodePtr, 2> ResNodes;
3601   for (unsigned i = 0; i != NumResults; ++i) {
3602     if (i == CGI.Operands.size()) {
3603       const std::string &OpName =
3604           std::find_if(InstResults.begin(), InstResults.end(),
3605                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3606                          return P.second;
3607                        })
3608               ->first;
3609 
3610       I.error("'" + OpName + "' set but does not appear in operand list!");
3611     }
3612 
3613     const std::string &OpName = CGI.Operands[i].Name;
3614 
3615     // Check that it exists in InstResults.
3616     auto InstResultIter = InstResults.find(OpName);
3617     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3618       I.error("Operand $" + OpName + " does not exist in operand list!");
3619 
3620     TreePatternNodePtr RNode = InstResultIter->second;
3621     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3622     ResNodes.push_back(std::move(RNode));
3623     if (!R)
3624       I.error("Operand $" + OpName + " should be a set destination: all "
3625                "outputs must occur before inputs in operand list!");
3626 
3627     if (!checkOperandClass(CGI.Operands[i], R))
3628       I.error("Operand $" + OpName + " class mismatch!");
3629 
3630     // Remember the return type.
3631     Results.push_back(CGI.Operands[i].Rec);
3632 
3633     // Remember the result index.
3634     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3635 
3636     // Okay, this one checks out.
3637     InstResultIter->second = nullptr;
3638   }
3639 
3640   // Loop over the inputs next.
3641   std::vector<TreePatternNodePtr> ResultNodeOperands;
3642   std::vector<Record*> Operands;
3643   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3644     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3645     const std::string &OpName = Op.Name;
3646     if (OpName.empty())
3647       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3648 
3649     if (!InstInputs.count(OpName)) {
3650       // If this is an operand with a DefaultOps set filled in, we can ignore
3651       // this.  When we codegen it, we will do so as always executed.
3652       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3653         // Does it have a non-empty DefaultOps field?  If so, ignore this
3654         // operand.
3655         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3656           continue;
3657       }
3658       I.error("Operand $" + OpName +
3659                " does not appear in the instruction pattern");
3660     }
3661     TreePatternNodePtr InVal = InstInputs[OpName];
3662     InstInputs.erase(OpName);   // It occurred, remove from map.
3663 
3664     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3665       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3666       if (!checkOperandClass(Op, InRec))
3667         I.error("Operand $" + OpName + "'s register class disagrees"
3668                  " between the operand and pattern");
3669     }
3670     Operands.push_back(Op.Rec);
3671 
3672     // Construct the result for the dest-pattern operand list.
3673     TreePatternNodePtr OpNode = InVal->clone();
3674 
3675     // No predicate is useful on the result.
3676     OpNode->clearPredicateCalls();
3677 
3678     // Promote the xform function to be an explicit node if set.
3679     if (Record *Xform = OpNode->getTransformFn()) {
3680       OpNode->setTransformFn(nullptr);
3681       std::vector<TreePatternNodePtr> Children;
3682       Children.push_back(OpNode);
3683       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3684                                                  OpNode->getNumTypes());
3685     }
3686 
3687     ResultNodeOperands.push_back(std::move(OpNode));
3688   }
3689 
3690   if (!InstInputs.empty())
3691     I.error("Input operand $" + InstInputs.begin()->first +
3692             " occurs in pattern but not in operands list!");
3693 
3694   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3695       I.getRecord(), std::move(ResultNodeOperands),
3696       GetNumNodeResults(I.getRecord(), *this));
3697   // Copy fully inferred output node types to instruction result pattern.
3698   for (unsigned i = 0; i != NumResults; ++i) {
3699     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3700     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3701     ResultPattern->setResultIndex(i, ResultIndices[i]);
3702   }
3703 
3704   // FIXME: Assume only the first tree is the pattern. The others are clobber
3705   // nodes.
3706   TreePatternNodePtr Pattern = I.getTree(0);
3707   TreePatternNodePtr SrcPattern;
3708   if (Pattern->getOperator()->getName() == "set") {
3709     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3710   } else{
3711     // Not a set (store or something?)
3712     SrcPattern = Pattern;
3713   }
3714 
3715   // Create and insert the instruction.
3716   // FIXME: InstImpResults should not be part of DAGInstruction.
3717   Record *R = I.getRecord();
3718   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3719                    std::forward_as_tuple(Results, Operands, InstImpResults,
3720                                          SrcPattern, ResultPattern));
3721 
3722   LLVM_DEBUG(I.dump());
3723 }
3724 
3725 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3726 /// any fragments involved.  This populates the Instructions list with fully
3727 /// resolved instructions.
3728 void CodeGenDAGPatterns::ParseInstructions() {
3729   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3730 
3731   for (Record *Instr : Instrs) {
3732     ListInit *LI = nullptr;
3733 
3734     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3735       LI = Instr->getValueAsListInit("Pattern");
3736 
3737     // If there is no pattern, only collect minimal information about the
3738     // instruction for its operand list.  We have to assume that there is one
3739     // result, as we have no detailed info. A pattern which references the
3740     // null_frag operator is as-if no pattern were specified. Normally this
3741     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3742     // null_frag.
3743     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3744       std::vector<Record*> Results;
3745       std::vector<Record*> Operands;
3746 
3747       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3748 
3749       if (InstInfo.Operands.size() != 0) {
3750         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3751           Results.push_back(InstInfo.Operands[j].Rec);
3752 
3753         // The rest are inputs.
3754         for (unsigned j = InstInfo.Operands.NumDefs,
3755                e = InstInfo.Operands.size(); j < e; ++j)
3756           Operands.push_back(InstInfo.Operands[j].Rec);
3757       }
3758 
3759       // Create and insert the instruction.
3760       std::vector<Record*> ImpResults;
3761       Instructions.insert(std::make_pair(Instr,
3762                             DAGInstruction(Results, Operands, ImpResults)));
3763       continue;  // no pattern.
3764     }
3765 
3766     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3767     parseInstructionPattern(CGI, LI, Instructions);
3768   }
3769 
3770   // If we can, convert the instructions to be patterns that are matched!
3771   for (auto &Entry : Instructions) {
3772     Record *Instr = Entry.first;
3773     DAGInstruction &TheInst = Entry.second;
3774     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3775     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3776 
3777     if (SrcPattern && ResultPattern) {
3778       TreePattern Pattern(Instr, SrcPattern, true, *this);
3779       TreePattern Result(Instr, ResultPattern, false, *this);
3780       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3781     }
3782   }
3783 }
3784 
3785 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3786 
3787 static void FindNames(TreePatternNode *P,
3788                       std::map<std::string, NameRecord> &Names,
3789                       TreePattern *PatternTop) {
3790   if (!P->getName().empty()) {
3791     NameRecord &Rec = Names[P->getName()];
3792     // If this is the first instance of the name, remember the node.
3793     if (Rec.second++ == 0)
3794       Rec.first = P;
3795     else if (Rec.first->getExtTypes() != P->getExtTypes())
3796       PatternTop->error("repetition of value: $" + P->getName() +
3797                         " where different uses have different types!");
3798   }
3799 
3800   if (!P->isLeaf()) {
3801     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3802       FindNames(P->getChild(i), Names, PatternTop);
3803   }
3804 }
3805 
3806 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3807   std::vector<Predicate> Preds;
3808   for (Init *I : L->getValues()) {
3809     if (DefInit *Pred = dyn_cast<DefInit>(I))
3810       Preds.push_back(Pred->getDef());
3811     else
3812       llvm_unreachable("Non-def on the list");
3813   }
3814 
3815   // Sort so that different orders get canonicalized to the same string.
3816   llvm::sort(Preds);
3817   return Preds;
3818 }
3819 
3820 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3821                                            PatternToMatch &&PTM) {
3822   // Do some sanity checking on the pattern we're about to match.
3823   std::string Reason;
3824   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3825     PrintWarning(Pattern->getRecord()->getLoc(),
3826       Twine("Pattern can never match: ") + Reason);
3827     return;
3828   }
3829 
3830   // If the source pattern's root is a complex pattern, that complex pattern
3831   // must specify the nodes it can potentially match.
3832   if (const ComplexPattern *CP =
3833         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3834     if (CP->getRootNodes().empty())
3835       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3836                      " could match");
3837 
3838 
3839   // Find all of the named values in the input and output, ensure they have the
3840   // same type.
3841   std::map<std::string, NameRecord> SrcNames, DstNames;
3842   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3843   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3844 
3845   // Scan all of the named values in the destination pattern, rejecting them if
3846   // they don't exist in the input pattern.
3847   for (const auto &Entry : DstNames) {
3848     if (SrcNames[Entry.first].first == nullptr)
3849       Pattern->error("Pattern has input without matching name in output: $" +
3850                      Entry.first);
3851   }
3852 
3853   // Scan all of the named values in the source pattern, rejecting them if the
3854   // name isn't used in the dest, and isn't used to tie two values together.
3855   for (const auto &Entry : SrcNames)
3856     if (DstNames[Entry.first].first == nullptr &&
3857         SrcNames[Entry.first].second == 1)
3858       Pattern->error("Pattern has dead named input: $" + Entry.first);
3859 
3860   PatternsToMatch.push_back(PTM);
3861 }
3862 
3863 void CodeGenDAGPatterns::InferInstructionFlags() {
3864   ArrayRef<const CodeGenInstruction*> Instructions =
3865     Target.getInstructionsByEnumValue();
3866 
3867   unsigned Errors = 0;
3868 
3869   // Try to infer flags from all patterns in PatternToMatch.  These include
3870   // both the primary instruction patterns (which always come first) and
3871   // patterns defined outside the instruction.
3872   for (const PatternToMatch &PTM : ptms()) {
3873     // We can only infer from single-instruction patterns, otherwise we won't
3874     // know which instruction should get the flags.
3875     SmallVector<Record*, 8> PatInstrs;
3876     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3877     if (PatInstrs.size() != 1)
3878       continue;
3879 
3880     // Get the single instruction.
3881     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3882 
3883     // Only infer properties from the first pattern. We'll verify the others.
3884     if (InstInfo.InferredFrom)
3885       continue;
3886 
3887     InstAnalyzer PatInfo(*this);
3888     PatInfo.Analyze(PTM);
3889     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3890   }
3891 
3892   if (Errors)
3893     PrintFatalError("pattern conflicts");
3894 
3895   // If requested by the target, guess any undefined properties.
3896   if (Target.guessInstructionProperties()) {
3897     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3898       CodeGenInstruction *InstInfo =
3899         const_cast<CodeGenInstruction *>(Instructions[i]);
3900       if (InstInfo->InferredFrom)
3901         continue;
3902       // The mayLoad and mayStore flags default to false.
3903       // Conservatively assume hasSideEffects if it wasn't explicit.
3904       if (InstInfo->hasSideEffects_Unset)
3905         InstInfo->hasSideEffects = true;
3906     }
3907     return;
3908   }
3909 
3910   // Complain about any flags that are still undefined.
3911   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3912     CodeGenInstruction *InstInfo =
3913       const_cast<CodeGenInstruction *>(Instructions[i]);
3914     if (InstInfo->InferredFrom)
3915       continue;
3916     if (InstInfo->hasSideEffects_Unset)
3917       PrintError(InstInfo->TheDef->getLoc(),
3918                  "Can't infer hasSideEffects from patterns");
3919     if (InstInfo->mayStore_Unset)
3920       PrintError(InstInfo->TheDef->getLoc(),
3921                  "Can't infer mayStore from patterns");
3922     if (InstInfo->mayLoad_Unset)
3923       PrintError(InstInfo->TheDef->getLoc(),
3924                  "Can't infer mayLoad from patterns");
3925   }
3926 }
3927 
3928 
3929 /// Verify instruction flags against pattern node properties.
3930 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3931   unsigned Errors = 0;
3932   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3933     const PatternToMatch &PTM = *I;
3934     SmallVector<Record*, 8> Instrs;
3935     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3936     if (Instrs.empty())
3937       continue;
3938 
3939     // Count the number of instructions with each flag set.
3940     unsigned NumSideEffects = 0;
3941     unsigned NumStores = 0;
3942     unsigned NumLoads = 0;
3943     for (const Record *Instr : Instrs) {
3944       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3945       NumSideEffects += InstInfo.hasSideEffects;
3946       NumStores += InstInfo.mayStore;
3947       NumLoads += InstInfo.mayLoad;
3948     }
3949 
3950     // Analyze the source pattern.
3951     InstAnalyzer PatInfo(*this);
3952     PatInfo.Analyze(PTM);
3953 
3954     // Collect error messages.
3955     SmallVector<std::string, 4> Msgs;
3956 
3957     // Check for missing flags in the output.
3958     // Permit extra flags for now at least.
3959     if (PatInfo.hasSideEffects && !NumSideEffects)
3960       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3961 
3962     // Don't verify store flags on instructions with side effects. At least for
3963     // intrinsics, side effects implies mayStore.
3964     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3965       Msgs.push_back("pattern may store, but mayStore isn't set");
3966 
3967     // Similarly, mayStore implies mayLoad on intrinsics.
3968     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3969       Msgs.push_back("pattern may load, but mayLoad isn't set");
3970 
3971     // Print error messages.
3972     if (Msgs.empty())
3973       continue;
3974     ++Errors;
3975 
3976     for (const std::string &Msg : Msgs)
3977       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3978                  (Instrs.size() == 1 ?
3979                   "instruction" : "output instructions"));
3980     // Provide the location of the relevant instruction definitions.
3981     for (const Record *Instr : Instrs) {
3982       if (Instr != PTM.getSrcRecord())
3983         PrintError(Instr->getLoc(), "defined here");
3984       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3985       if (InstInfo.InferredFrom &&
3986           InstInfo.InferredFrom != InstInfo.TheDef &&
3987           InstInfo.InferredFrom != PTM.getSrcRecord())
3988         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3989     }
3990   }
3991   if (Errors)
3992     PrintFatalError("Errors in DAG patterns");
3993 }
3994 
3995 /// Given a pattern result with an unresolved type, see if we can find one
3996 /// instruction with an unresolved result type.  Force this result type to an
3997 /// arbitrary element if it's possible types to converge results.
3998 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3999   if (N->isLeaf())
4000     return false;
4001 
4002   // Analyze children.
4003   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4004     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4005       return true;
4006 
4007   if (!N->getOperator()->isSubClassOf("Instruction"))
4008     return false;
4009 
4010   // If this type is already concrete or completely unknown we can't do
4011   // anything.
4012   TypeInfer &TI = TP.getInfer();
4013   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4014     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4015       continue;
4016 
4017     // Otherwise, force its type to an arbitrary choice.
4018     if (TI.forceArbitrary(N->getExtType(i)))
4019       return true;
4020   }
4021 
4022   return false;
4023 }
4024 
4025 // Promote xform function to be an explicit node wherever set.
4026 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4027   if (Record *Xform = N->getTransformFn()) {
4028       N->setTransformFn(nullptr);
4029       std::vector<TreePatternNodePtr> Children;
4030       Children.push_back(PromoteXForms(N));
4031       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4032                                                N->getNumTypes());
4033   }
4034 
4035   if (!N->isLeaf())
4036     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4037       TreePatternNodePtr Child = N->getChildShared(i);
4038       N->setChild(i, PromoteXForms(Child));
4039     }
4040   return N;
4041 }
4042 
4043 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4044        TreePattern &Pattern, TreePattern &Result,
4045        const std::vector<Record *> &InstImpResults) {
4046 
4047   // Inline pattern fragments and expand multiple alternatives.
4048   Pattern.InlinePatternFragments();
4049   Result.InlinePatternFragments();
4050 
4051   if (Result.getNumTrees() != 1)
4052     Result.error("Cannot use multi-alternative fragments in result pattern!");
4053 
4054   // Infer types.
4055   bool IterateInference;
4056   bool InferredAllPatternTypes, InferredAllResultTypes;
4057   do {
4058     // Infer as many types as possible.  If we cannot infer all of them, we
4059     // can never do anything with this pattern: report it to the user.
4060     InferredAllPatternTypes =
4061         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4062 
4063     // Infer as many types as possible.  If we cannot infer all of them, we
4064     // can never do anything with this pattern: report it to the user.
4065     InferredAllResultTypes =
4066         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4067 
4068     IterateInference = false;
4069 
4070     // Apply the type of the result to the source pattern.  This helps us
4071     // resolve cases where the input type is known to be a pointer type (which
4072     // is considered resolved), but the result knows it needs to be 32- or
4073     // 64-bits.  Infer the other way for good measure.
4074     for (auto T : Pattern.getTrees())
4075       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4076                                         T->getNumTypes());
4077          i != e; ++i) {
4078         IterateInference |= T->UpdateNodeType(
4079             i, Result.getOnlyTree()->getExtType(i), Result);
4080         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4081             i, T->getExtType(i), Result);
4082       }
4083 
4084     // If our iteration has converged and the input pattern's types are fully
4085     // resolved but the result pattern is not fully resolved, we may have a
4086     // situation where we have two instructions in the result pattern and
4087     // the instructions require a common register class, but don't care about
4088     // what actual MVT is used.  This is actually a bug in our modelling:
4089     // output patterns should have register classes, not MVTs.
4090     //
4091     // In any case, to handle this, we just go through and disambiguate some
4092     // arbitrary types to the result pattern's nodes.
4093     if (!IterateInference && InferredAllPatternTypes &&
4094         !InferredAllResultTypes)
4095       IterateInference =
4096           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4097   } while (IterateInference);
4098 
4099   // Verify that we inferred enough types that we can do something with the
4100   // pattern and result.  If these fire the user has to add type casts.
4101   if (!InferredAllPatternTypes)
4102     Pattern.error("Could not infer all types in pattern!");
4103   if (!InferredAllResultTypes) {
4104     Pattern.dump();
4105     Result.error("Could not infer all types in pattern result!");
4106   }
4107 
4108   // Promote xform function to be an explicit node wherever set.
4109   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4110 
4111   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4112   Temp.InferAllTypes();
4113 
4114   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4115   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4116 
4117   if (PatternRewriter)
4118     PatternRewriter(&Pattern);
4119 
4120   // A pattern may end up with an "impossible" type, i.e. a situation
4121   // where all types have been eliminated for some node in this pattern.
4122   // This could occur for intrinsics that only make sense for a specific
4123   // value type, and use a specific register class. If, for some mode,
4124   // that register class does not accept that type, the type inference
4125   // will lead to a contradiction, which is not an error however, but
4126   // a sign that this pattern will simply never match.
4127   if (Temp.getOnlyTree()->hasPossibleType())
4128     for (auto T : Pattern.getTrees())
4129       if (T->hasPossibleType())
4130         AddPatternToMatch(&Pattern,
4131                           PatternToMatch(TheDef, makePredList(Preds),
4132                                          T, Temp.getOnlyTree(),
4133                                          InstImpResults, Complexity,
4134                                          TheDef->getID()));
4135 }
4136 
4137 void CodeGenDAGPatterns::ParsePatterns() {
4138   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4139 
4140   for (Record *CurPattern : Patterns) {
4141     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4142 
4143     // If the pattern references the null_frag, there's nothing to do.
4144     if (hasNullFragReference(Tree))
4145       continue;
4146 
4147     TreePattern Pattern(CurPattern, Tree, true, *this);
4148 
4149     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4150     if (LI->empty()) continue;  // no pattern.
4151 
4152     // Parse the instruction.
4153     TreePattern Result(CurPattern, LI, false, *this);
4154 
4155     if (Result.getNumTrees() != 1)
4156       Result.error("Cannot handle instructions producing instructions "
4157                    "with temporaries yet!");
4158 
4159     // Validate that the input pattern is correct.
4160     std::map<std::string, TreePatternNodePtr> InstInputs;
4161     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4162         InstResults;
4163     std::vector<Record*> InstImpResults;
4164     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4165       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4166                                   InstResults, InstImpResults);
4167 
4168     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4169   }
4170 }
4171 
4172 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4173   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4174     for (const auto &I : VTS)
4175       Modes.insert(I.first);
4176 
4177   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4178     collectModes(Modes, N->getChild(i));
4179 }
4180 
4181 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4182   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4183   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4184   std::vector<PatternToMatch> Copy = PatternsToMatch;
4185   PatternsToMatch.clear();
4186 
4187   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4188     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4189     TreePatternNodePtr NewDst = P.DstPattern->clone();
4190     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4191       return;
4192     }
4193 
4194     std::vector<Predicate> Preds = P.Predicates;
4195     const std::vector<Predicate> &MC = ModeChecks[Mode];
4196     Preds.insert(Preds.end(), MC.begin(), MC.end());
4197     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4198                                  std::move(NewDst), P.getDstRegs(),
4199                                  P.getAddedComplexity(), Record::getNewUID(),
4200                                  Mode);
4201   };
4202 
4203   for (PatternToMatch &P : Copy) {
4204     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4205     if (P.SrcPattern->hasProperTypeByHwMode())
4206       SrcP = P.SrcPattern;
4207     if (P.DstPattern->hasProperTypeByHwMode())
4208       DstP = P.DstPattern;
4209     if (!SrcP && !DstP) {
4210       PatternsToMatch.push_back(P);
4211       continue;
4212     }
4213 
4214     std::set<unsigned> Modes;
4215     if (SrcP)
4216       collectModes(Modes, SrcP.get());
4217     if (DstP)
4218       collectModes(Modes, DstP.get());
4219 
4220     // The predicate for the default mode needs to be constructed for each
4221     // pattern separately.
4222     // Since not all modes must be present in each pattern, if a mode m is
4223     // absent, then there is no point in constructing a check for m. If such
4224     // a check was created, it would be equivalent to checking the default
4225     // mode, except not all modes' predicates would be a part of the checking
4226     // code. The subsequently generated check for the default mode would then
4227     // have the exact same patterns, but a different predicate code. To avoid
4228     // duplicated patterns with different predicate checks, construct the
4229     // default check as a negation of all predicates that are actually present
4230     // in the source/destination patterns.
4231     std::vector<Predicate> DefaultPred;
4232 
4233     for (unsigned M : Modes) {
4234       if (M == DefaultMode)
4235         continue;
4236       if (ModeChecks.find(M) != ModeChecks.end())
4237         continue;
4238 
4239       // Fill the map entry for this mode.
4240       const HwMode &HM = CGH.getMode(M);
4241       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4242 
4243       // Add negations of the HM's predicates to the default predicate.
4244       DefaultPred.emplace_back(Predicate(HM.Features, false));
4245     }
4246 
4247     for (unsigned M : Modes) {
4248       if (M == DefaultMode)
4249         continue;
4250       AppendPattern(P, M);
4251     }
4252 
4253     bool HasDefault = Modes.count(DefaultMode);
4254     if (HasDefault)
4255       AppendPattern(P, DefaultMode);
4256   }
4257 }
4258 
4259 /// Dependent variable map for CodeGenDAGPattern variant generation
4260 typedef StringMap<int> DepVarMap;
4261 
4262 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4263   if (N->isLeaf()) {
4264     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4265       DepMap[N->getName()]++;
4266   } else {
4267     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4268       FindDepVarsOf(N->getChild(i), DepMap);
4269   }
4270 }
4271 
4272 /// Find dependent variables within child patterns
4273 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4274   DepVarMap depcounts;
4275   FindDepVarsOf(N, depcounts);
4276   for (const auto &Pair : depcounts) {
4277     if (Pair.getValue() > 1)
4278       DepVars.insert(Pair.getKey());
4279   }
4280 }
4281 
4282 #ifndef NDEBUG
4283 /// Dump the dependent variable set:
4284 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4285   if (DepVars.empty()) {
4286     LLVM_DEBUG(errs() << "<empty set>");
4287   } else {
4288     LLVM_DEBUG(errs() << "[ ");
4289     for (const auto &DepVar : DepVars) {
4290       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4291     }
4292     LLVM_DEBUG(errs() << "]");
4293   }
4294 }
4295 #endif
4296 
4297 
4298 /// CombineChildVariants - Given a bunch of permutations of each child of the
4299 /// 'operator' node, put them together in all possible ways.
4300 static void CombineChildVariants(
4301     TreePatternNodePtr Orig,
4302     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4303     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4304     const MultipleUseVarSet &DepVars) {
4305   // Make sure that each operand has at least one variant to choose from.
4306   for (const auto &Variants : ChildVariants)
4307     if (Variants.empty())
4308       return;
4309 
4310   // The end result is an all-pairs construction of the resultant pattern.
4311   std::vector<unsigned> Idxs;
4312   Idxs.resize(ChildVariants.size());
4313   bool NotDone;
4314   do {
4315 #ifndef NDEBUG
4316     LLVM_DEBUG(if (!Idxs.empty()) {
4317       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4318       for (unsigned Idx : Idxs) {
4319         errs() << Idx << " ";
4320       }
4321       errs() << "]\n";
4322     });
4323 #endif
4324     // Create the variant and add it to the output list.
4325     std::vector<TreePatternNodePtr> NewChildren;
4326     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4327       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4328     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4329         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4330 
4331     // Copy over properties.
4332     R->setName(Orig->getName());
4333     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4334     R->setPredicateCalls(Orig->getPredicateCalls());
4335     R->setTransformFn(Orig->getTransformFn());
4336     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4337       R->setType(i, Orig->getExtType(i));
4338 
4339     // If this pattern cannot match, do not include it as a variant.
4340     std::string ErrString;
4341     // Scan to see if this pattern has already been emitted.  We can get
4342     // duplication due to things like commuting:
4343     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4344     // which are the same pattern.  Ignore the dups.
4345     if (R->canPatternMatch(ErrString, CDP) &&
4346         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4347           return R->isIsomorphicTo(Variant.get(), DepVars);
4348         }))
4349       OutVariants.push_back(R);
4350 
4351     // Increment indices to the next permutation by incrementing the
4352     // indices from last index backward, e.g., generate the sequence
4353     // [0, 0], [0, 1], [1, 0], [1, 1].
4354     int IdxsIdx;
4355     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4356       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4357         Idxs[IdxsIdx] = 0;
4358       else
4359         break;
4360     }
4361     NotDone = (IdxsIdx >= 0);
4362   } while (NotDone);
4363 }
4364 
4365 /// CombineChildVariants - A helper function for binary operators.
4366 ///
4367 static void CombineChildVariants(TreePatternNodePtr Orig,
4368                                  const std::vector<TreePatternNodePtr> &LHS,
4369                                  const std::vector<TreePatternNodePtr> &RHS,
4370                                  std::vector<TreePatternNodePtr> &OutVariants,
4371                                  CodeGenDAGPatterns &CDP,
4372                                  const MultipleUseVarSet &DepVars) {
4373   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4374   ChildVariants.push_back(LHS);
4375   ChildVariants.push_back(RHS);
4376   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4377 }
4378 
4379 static void
4380 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4381                                   std::vector<TreePatternNodePtr> &Children) {
4382   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4383   Record *Operator = N->getOperator();
4384 
4385   // Only permit raw nodes.
4386   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4387       N->getTransformFn()) {
4388     Children.push_back(N);
4389     return;
4390   }
4391 
4392   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4393     Children.push_back(N->getChildShared(0));
4394   else
4395     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4396 
4397   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4398     Children.push_back(N->getChildShared(1));
4399   else
4400     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4401 }
4402 
4403 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4404 /// the (potentially recursive) pattern by using algebraic laws.
4405 ///
4406 static void GenerateVariantsOf(TreePatternNodePtr N,
4407                                std::vector<TreePatternNodePtr> &OutVariants,
4408                                CodeGenDAGPatterns &CDP,
4409                                const MultipleUseVarSet &DepVars) {
4410   // We cannot permute leaves or ComplexPattern uses.
4411   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4412     OutVariants.push_back(N);
4413     return;
4414   }
4415 
4416   // Look up interesting info about the node.
4417   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4418 
4419   // If this node is associative, re-associate.
4420   if (NodeInfo.hasProperty(SDNPAssociative)) {
4421     // Re-associate by pulling together all of the linked operators
4422     std::vector<TreePatternNodePtr> MaximalChildren;
4423     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4424 
4425     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4426     // permutations.
4427     if (MaximalChildren.size() == 3) {
4428       // Find the variants of all of our maximal children.
4429       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4430       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4431       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4432       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4433 
4434       // There are only two ways we can permute the tree:
4435       //   (A op B) op C    and    A op (B op C)
4436       // Within these forms, we can also permute A/B/C.
4437 
4438       // Generate legal pair permutations of A/B/C.
4439       std::vector<TreePatternNodePtr> ABVariants;
4440       std::vector<TreePatternNodePtr> BAVariants;
4441       std::vector<TreePatternNodePtr> ACVariants;
4442       std::vector<TreePatternNodePtr> CAVariants;
4443       std::vector<TreePatternNodePtr> BCVariants;
4444       std::vector<TreePatternNodePtr> CBVariants;
4445       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4446       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4447       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4448       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4449       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4450       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4451 
4452       // Combine those into the result: (x op x) op x
4453       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4454       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4455       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4456       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4457       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4458       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4459 
4460       // Combine those into the result: x op (x op x)
4461       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4462       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4463       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4464       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4465       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4466       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4467       return;
4468     }
4469   }
4470 
4471   // Compute permutations of all children.
4472   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4473   ChildVariants.resize(N->getNumChildren());
4474   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4475     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4476 
4477   // Build all permutations based on how the children were formed.
4478   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4479 
4480   // If this node is commutative, consider the commuted order.
4481   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4482   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4483     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4484            "Commutative but doesn't have 2 children!");
4485     // Don't count children which are actually register references.
4486     unsigned NC = 0;
4487     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4488       TreePatternNode *Child = N->getChild(i);
4489       if (Child->isLeaf())
4490         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4491           Record *RR = DI->getDef();
4492           if (RR->isSubClassOf("Register"))
4493             continue;
4494         }
4495       NC++;
4496     }
4497     // Consider the commuted order.
4498     if (isCommIntrinsic) {
4499       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4500       // operands are the commutative operands, and there might be more operands
4501       // after those.
4502       assert(NC >= 3 &&
4503              "Commutative intrinsic should have at least 3 children!");
4504       std::vector<std::vector<TreePatternNodePtr>> Variants;
4505       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4506       Variants.push_back(std::move(ChildVariants[2]));
4507       Variants.push_back(std::move(ChildVariants[1]));
4508       for (unsigned i = 3; i != NC; ++i)
4509         Variants.push_back(std::move(ChildVariants[i]));
4510       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4511     } else if (NC == N->getNumChildren()) {
4512       std::vector<std::vector<TreePatternNodePtr>> Variants;
4513       Variants.push_back(std::move(ChildVariants[1]));
4514       Variants.push_back(std::move(ChildVariants[0]));
4515       for (unsigned i = 2; i != NC; ++i)
4516         Variants.push_back(std::move(ChildVariants[i]));
4517       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4518     }
4519   }
4520 }
4521 
4522 
4523 // GenerateVariants - Generate variants.  For example, commutative patterns can
4524 // match multiple ways.  Add them to PatternsToMatch as well.
4525 void CodeGenDAGPatterns::GenerateVariants() {
4526   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4527 
4528   // Loop over all of the patterns we've collected, checking to see if we can
4529   // generate variants of the instruction, through the exploitation of
4530   // identities.  This permits the target to provide aggressive matching without
4531   // the .td file having to contain tons of variants of instructions.
4532   //
4533   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4534   // intentionally do not reconsider these.  Any variants of added patterns have
4535   // already been added.
4536   //
4537   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4538   BitVector MatchedPatterns(NumOriginalPatterns);
4539   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4540                                            BitVector(NumOriginalPatterns));
4541 
4542   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4543       DepsAndVariants;
4544   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4545 
4546   // Collect patterns with more than one variant.
4547   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4548     MultipleUseVarSet DepVars;
4549     std::vector<TreePatternNodePtr> Variants;
4550     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4551     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4552     LLVM_DEBUG(DumpDepVars(DepVars));
4553     LLVM_DEBUG(errs() << "\n");
4554     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4555                        *this, DepVars);
4556 
4557     assert(!Variants.empty() && "Must create at least original variant!");
4558     if (Variants.size() == 1) // No additional variants for this pattern.
4559       continue;
4560 
4561     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4562                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4563 
4564     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4565 
4566     // Cache matching predicates.
4567     if (MatchedPatterns[i])
4568       continue;
4569 
4570     const std::vector<Predicate> &Predicates =
4571         PatternsToMatch[i].getPredicates();
4572 
4573     BitVector &Matches = MatchedPredicates[i];
4574     MatchedPatterns.set(i);
4575     Matches.set(i);
4576 
4577     // Don't test patterns that have already been cached - it won't match.
4578     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4579       if (!MatchedPatterns[p])
4580         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4581 
4582     // Copy this to all the matching patterns.
4583     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4584       if (p != (int)i) {
4585         MatchedPatterns.set(p);
4586         MatchedPredicates[p] = Matches;
4587       }
4588   }
4589 
4590   for (auto it : PatternsWithVariants) {
4591     unsigned i = it.first;
4592     const MultipleUseVarSet &DepVars = it.second.first;
4593     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4594 
4595     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4596       TreePatternNodePtr Variant = Variants[v];
4597       BitVector &Matches = MatchedPredicates[i];
4598 
4599       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4600                  errs() << "\n");
4601 
4602       // Scan to see if an instruction or explicit pattern already matches this.
4603       bool AlreadyExists = false;
4604       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4605         // Skip if the top level predicates do not match.
4606         if (!Matches[p])
4607           continue;
4608         // Check to see if this variant already exists.
4609         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4610                                     DepVars)) {
4611           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4612           AlreadyExists = true;
4613           break;
4614         }
4615       }
4616       // If we already have it, ignore the variant.
4617       if (AlreadyExists) continue;
4618 
4619       // Otherwise, add it to the list of patterns we have.
4620       PatternsToMatch.push_back(PatternToMatch(
4621           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4622           Variant, PatternsToMatch[i].getDstPatternShared(),
4623           PatternsToMatch[i].getDstRegs(),
4624           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4625       MatchedPredicates.push_back(Matches);
4626 
4627       // Add a new match the same as this pattern.
4628       for (auto &P : MatchedPredicates)
4629         P.push_back(P[i]);
4630     }
4631 
4632     LLVM_DEBUG(errs() << "\n");
4633   }
4634 }
4635