1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 50 template <typename Predicate> 51 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 52 bool Erased = false; 53 // It is ok to iterate over MachineValueTypeSet and remove elements from it 54 // at the same time. 55 for (MVT T : S) { 56 if (!P(T)) 57 continue; 58 Erased = true; 59 S.erase(T); 60 } 61 return Erased; 62 } 63 64 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 65 SmallVector<MVT, 4> Types(begin(), end()); 66 array_pod_sort(Types.begin(), Types.end()); 67 68 OS << '['; 69 ListSeparator LS(" "); 70 for (const MVT &T : Types) 71 OS << LS << ValueTypeByHwMode::getMVTName(T); 72 OS << ']'; 73 } 74 75 // --- TypeSetByHwMode 76 77 // This is a parameterized type-set class. For each mode there is a list 78 // of types that are currently possible for a given tree node. Type 79 // inference will apply to each mode separately. 80 81 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 82 for (const ValueTypeByHwMode &VVT : VTList) { 83 insert(VVT); 84 AddrSpaces.push_back(VVT.PtrAddrSpace); 85 } 86 } 87 88 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 89 for (const auto &I : *this) { 90 if (I.second.size() > 1) 91 return false; 92 if (!AllowEmpty && I.second.empty()) 93 return false; 94 } 95 return true; 96 } 97 98 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 99 assert(isValueTypeByHwMode(true) && 100 "The type set has multiple types for at least one HW mode"); 101 ValueTypeByHwMode VVT; 102 auto ASI = AddrSpaces.begin(); 103 104 for (const auto &I : *this) { 105 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 106 VVT.getOrCreateTypeForMode(I.first, T); 107 if (ASI != AddrSpaces.end()) 108 VVT.PtrAddrSpace = *ASI++; 109 } 110 return VVT; 111 } 112 113 bool TypeSetByHwMode::isPossible() const { 114 for (const auto &I : *this) 115 if (!I.second.empty()) 116 return true; 117 return false; 118 } 119 120 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 121 bool Changed = false; 122 bool ContainsDefault = false; 123 MVT DT = MVT::Other; 124 125 for (const auto &P : VVT) { 126 unsigned M = P.first; 127 // Make sure there exists a set for each specific mode from VVT. 128 Changed |= getOrCreate(M).insert(P.second).second; 129 // Cache VVT's default mode. 130 if (DefaultMode == M) { 131 ContainsDefault = true; 132 DT = P.second; 133 } 134 } 135 136 // If VVT has a default mode, add the corresponding type to all 137 // modes in "this" that do not exist in VVT. 138 if (ContainsDefault) 139 for (auto &I : *this) 140 if (!VVT.hasMode(I.first)) 141 Changed |= I.second.insert(DT).second; 142 143 return Changed; 144 } 145 146 // Constrain the type set to be the intersection with VTS. 147 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 148 bool Changed = false; 149 if (hasDefault()) { 150 for (const auto &I : VTS) { 151 unsigned M = I.first; 152 if (M == DefaultMode || hasMode(M)) 153 continue; 154 Map.insert({M, Map.at(DefaultMode)}); 155 Changed = true; 156 } 157 } 158 159 for (auto &I : *this) { 160 unsigned M = I.first; 161 SetType &S = I.second; 162 if (VTS.hasMode(M) || VTS.hasDefault()) { 163 Changed |= intersect(I.second, VTS.get(M)); 164 } else if (!S.empty()) { 165 S.clear(); 166 Changed = true; 167 } 168 } 169 return Changed; 170 } 171 172 template <typename Predicate> 173 bool TypeSetByHwMode::constrain(Predicate P) { 174 bool Changed = false; 175 for (auto &I : *this) 176 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 177 return Changed; 178 } 179 180 template <typename Predicate> 181 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 182 assert(empty()); 183 for (const auto &I : VTS) { 184 SetType &S = getOrCreate(I.first); 185 for (auto J : I.second) 186 if (P(J)) 187 S.insert(J); 188 } 189 return !empty(); 190 } 191 192 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 193 SmallVector<unsigned, 4> Modes; 194 Modes.reserve(Map.size()); 195 196 for (const auto &I : *this) 197 Modes.push_back(I.first); 198 if (Modes.empty()) { 199 OS << "{}"; 200 return; 201 } 202 array_pod_sort(Modes.begin(), Modes.end()); 203 204 OS << '{'; 205 for (unsigned M : Modes) { 206 OS << ' ' << getModeName(M) << ':'; 207 get(M).writeToStream(OS); 208 } 209 OS << " }"; 210 } 211 212 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 213 // The isSimple call is much quicker than hasDefault - check this first. 214 bool IsSimple = isSimple(); 215 bool VTSIsSimple = VTS.isSimple(); 216 if (IsSimple && VTSIsSimple) 217 return *begin() == *VTS.begin(); 218 219 // Speedup: We have a default if the set is simple. 220 bool HaveDefault = IsSimple || hasDefault(); 221 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 222 if (HaveDefault != VTSHaveDefault) 223 return false; 224 225 SmallSet<unsigned, 4> Modes; 226 for (auto &I : *this) 227 Modes.insert(I.first); 228 for (const auto &I : VTS) 229 Modes.insert(I.first); 230 231 if (HaveDefault) { 232 // Both sets have default mode. 233 for (unsigned M : Modes) { 234 if (get(M) != VTS.get(M)) 235 return false; 236 } 237 } else { 238 // Neither set has default mode. 239 for (unsigned M : Modes) { 240 // If there is no default mode, an empty set is equivalent to not having 241 // the corresponding mode. 242 bool NoModeThis = !hasMode(M) || get(M).empty(); 243 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 244 if (NoModeThis != NoModeVTS) 245 return false; 246 if (!NoModeThis) 247 if (get(M) != VTS.get(M)) 248 return false; 249 } 250 } 251 252 return true; 253 } 254 255 namespace llvm { 256 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 257 T.writeToStream(OS); 258 return OS; 259 } 260 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 261 T.writeToStream(OS); 262 return OS; 263 } 264 } 265 266 LLVM_DUMP_METHOD 267 void TypeSetByHwMode::dump() const { 268 dbgs() << *this << '\n'; 269 } 270 271 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 272 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 273 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 274 275 if (OutP == InP) 276 return berase_if(Out, Int); 277 278 // Compute the intersection of scalars separately to account for only 279 // one set containing iPTR. 280 // The intersection of iPTR with a set of integer scalar types that does not 281 // include iPTR will result in the most specific scalar type: 282 // - iPTR is more specific than any set with two elements or more 283 // - iPTR is less specific than any single integer scalar type. 284 // For example 285 // { iPTR } * { i32 } -> { i32 } 286 // { iPTR } * { i32 i64 } -> { iPTR } 287 // and 288 // { iPTR i32 } * { i32 } -> { i32 } 289 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 290 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 291 292 // Compute the difference between the two sets in such a way that the 293 // iPTR is in the set that is being subtracted. This is to see if there 294 // are any extra scalars in the set without iPTR that are not in the 295 // set containing iPTR. Then the iPTR could be considered a "wildcard" 296 // matching these scalars. If there is only one such scalar, it would 297 // replace the iPTR, if there are more, the iPTR would be retained. 298 SetType Diff; 299 if (InP) { 300 Diff = Out; 301 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 302 // Pre-remove these elements and rely only on InP/OutP to determine 303 // whether a change has been made. 304 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 305 } else { 306 Diff = In; 307 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 308 Out.erase(MVT::iPTR); 309 } 310 311 // The actual intersection. 312 bool Changed = berase_if(Out, Int); 313 unsigned NumD = Diff.size(); 314 if (NumD == 0) 315 return Changed; 316 317 if (NumD == 1) { 318 Out.insert(*Diff.begin()); 319 // This is a change only if Out was the one with iPTR (which is now 320 // being replaced). 321 Changed |= OutP; 322 } else { 323 // Multiple elements from Out are now replaced with iPTR. 324 Out.insert(MVT::iPTR); 325 Changed |= !OutP; 326 } 327 return Changed; 328 } 329 330 bool TypeSetByHwMode::validate() const { 331 #ifndef NDEBUG 332 if (empty()) 333 return true; 334 bool AllEmpty = true; 335 for (const auto &I : *this) 336 AllEmpty &= I.second.empty(); 337 return !AllEmpty; 338 #endif 339 return true; 340 } 341 342 // --- TypeInfer 343 344 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 345 const TypeSetByHwMode &In) { 346 ValidateOnExit _1(Out, *this); 347 In.validate(); 348 if (In.empty() || Out == In || TP.hasError()) 349 return false; 350 if (Out.empty()) { 351 Out = In; 352 return true; 353 } 354 355 bool Changed = Out.constrain(In); 356 if (Changed && Out.empty()) 357 TP.error("Type contradiction"); 358 359 return Changed; 360 } 361 362 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 363 ValidateOnExit _1(Out, *this); 364 if (TP.hasError()) 365 return false; 366 assert(!Out.empty() && "cannot pick from an empty set"); 367 368 bool Changed = false; 369 for (auto &I : Out) { 370 TypeSetByHwMode::SetType &S = I.second; 371 if (S.size() <= 1) 372 continue; 373 MVT T = *S.begin(); // Pick the first element. 374 S.clear(); 375 S.insert(T); 376 Changed = true; 377 } 378 return Changed; 379 } 380 381 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 382 ValidateOnExit _1(Out, *this); 383 if (TP.hasError()) 384 return false; 385 if (!Out.empty()) 386 return Out.constrain(isIntegerOrPtr); 387 388 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 389 } 390 391 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 392 ValidateOnExit _1(Out, *this); 393 if (TP.hasError()) 394 return false; 395 if (!Out.empty()) 396 return Out.constrain(isFloatingPoint); 397 398 return Out.assign_if(getLegalTypes(), isFloatingPoint); 399 } 400 401 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 402 ValidateOnExit _1(Out, *this); 403 if (TP.hasError()) 404 return false; 405 if (!Out.empty()) 406 return Out.constrain(isScalar); 407 408 return Out.assign_if(getLegalTypes(), isScalar); 409 } 410 411 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 412 ValidateOnExit _1(Out, *this); 413 if (TP.hasError()) 414 return false; 415 if (!Out.empty()) 416 return Out.constrain(isVector); 417 418 return Out.assign_if(getLegalTypes(), isVector); 419 } 420 421 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 422 ValidateOnExit _1(Out, *this); 423 if (TP.hasError() || !Out.empty()) 424 return false; 425 426 Out = getLegalTypes(); 427 return true; 428 } 429 430 template <typename Iter, typename Pred, typename Less> 431 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 432 if (B == E) 433 return E; 434 Iter Min = E; 435 for (Iter I = B; I != E; ++I) { 436 if (!P(*I)) 437 continue; 438 if (Min == E || L(*I, *Min)) 439 Min = I; 440 } 441 return Min; 442 } 443 444 template <typename Iter, typename Pred, typename Less> 445 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 446 if (B == E) 447 return E; 448 Iter Max = E; 449 for (Iter I = B; I != E; ++I) { 450 if (!P(*I)) 451 continue; 452 if (Max == E || L(*Max, *I)) 453 Max = I; 454 } 455 return Max; 456 } 457 458 /// Make sure that for each type in Small, there exists a larger type in Big. 459 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 460 bool SmallIsVT) { 461 ValidateOnExit _1(Small, *this), _2(Big, *this); 462 if (TP.hasError()) 463 return false; 464 bool Changed = false; 465 466 assert((!SmallIsVT || !Small.empty()) && 467 "Small should not be empty for SDTCisVTSmallerThanOp"); 468 469 if (Small.empty()) 470 Changed |= EnforceAny(Small); 471 if (Big.empty()) 472 Changed |= EnforceAny(Big); 473 474 assert(Small.hasDefault() && Big.hasDefault()); 475 476 SmallVector<unsigned, 4> Modes; 477 union_modes(Small, Big, Modes); 478 479 // 1. Only allow integer or floating point types and make sure that 480 // both sides are both integer or both floating point. 481 // 2. Make sure that either both sides have vector types, or neither 482 // of them does. 483 for (unsigned M : Modes) { 484 TypeSetByHwMode::SetType &S = Small.get(M); 485 TypeSetByHwMode::SetType &B = Big.get(M); 486 487 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 488 489 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 490 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 491 Changed |= berase_if(S, NotInt); 492 Changed |= berase_if(B, NotInt); 493 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 494 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 495 Changed |= berase_if(S, NotFP); 496 Changed |= berase_if(B, NotFP); 497 } else if (SmallIsVT && B.empty()) { 498 // B is empty and since S is a specific VT, it will never be empty. Don't 499 // report this as a change, just clear S and continue. This prevents an 500 // infinite loop. 501 S.clear(); 502 } else if (S.empty() || B.empty()) { 503 Changed = !S.empty() || !B.empty(); 504 S.clear(); 505 B.clear(); 506 } else { 507 TP.error("Incompatible types"); 508 return Changed; 509 } 510 511 if (none_of(S, isVector) || none_of(B, isVector)) { 512 Changed |= berase_if(S, isVector); 513 Changed |= berase_if(B, isVector); 514 } 515 } 516 517 auto LT = [](MVT A, MVT B) -> bool { 518 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 519 // purposes of ordering. 520 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 521 A.getSizeInBits().getKnownMinSize()); 522 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 523 B.getSizeInBits().getKnownMinSize()); 524 return ASize < BSize; 525 }; 526 auto SameKindLE = [](MVT A, MVT B) -> bool { 527 // This function is used when removing elements: when a vector is compared 528 // to a non-vector or a scalable vector to any non-scalable MVT, it should 529 // return false (to avoid removal). 530 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 531 std::make_tuple(B.isVector(), B.isScalableVector())) 532 return false; 533 534 return std::make_tuple(A.getScalarSizeInBits(), 535 A.getSizeInBits().getKnownMinSize()) <= 536 std::make_tuple(B.getScalarSizeInBits(), 537 B.getSizeInBits().getKnownMinSize()); 538 }; 539 540 for (unsigned M : Modes) { 541 TypeSetByHwMode::SetType &S = Small.get(M); 542 TypeSetByHwMode::SetType &B = Big.get(M); 543 // MinS = min scalar in Small, remove all scalars from Big that are 544 // smaller-or-equal than MinS. 545 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 546 if (MinS != S.end()) 547 Changed |= berase_if(B, std::bind(SameKindLE, 548 std::placeholders::_1, *MinS)); 549 550 // MaxS = max scalar in Big, remove all scalars from Small that are 551 // larger than MaxS. 552 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 553 if (MaxS != B.end()) 554 Changed |= berase_if(S, std::bind(SameKindLE, 555 *MaxS, std::placeholders::_1)); 556 557 // MinV = min vector in Small, remove all vectors from Big that are 558 // smaller-or-equal than MinV. 559 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 560 if (MinV != S.end()) 561 Changed |= berase_if(B, std::bind(SameKindLE, 562 std::placeholders::_1, *MinV)); 563 564 // MaxV = max vector in Big, remove all vectors from Small that are 565 // larger than MaxV. 566 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 567 if (MaxV != B.end()) 568 Changed |= berase_if(S, std::bind(SameKindLE, 569 *MaxV, std::placeholders::_1)); 570 } 571 572 return Changed; 573 } 574 575 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 576 /// for each type U in Elem, U is a scalar type. 577 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 578 /// type T in Vec, such that U is the element type of T. 579 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 580 TypeSetByHwMode &Elem) { 581 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 582 if (TP.hasError()) 583 return false; 584 bool Changed = false; 585 586 if (Vec.empty()) 587 Changed |= EnforceVector(Vec); 588 if (Elem.empty()) 589 Changed |= EnforceScalar(Elem); 590 591 SmallVector<unsigned, 4> Modes; 592 union_modes(Vec, Elem, Modes); 593 for (unsigned M : Modes) { 594 TypeSetByHwMode::SetType &V = Vec.get(M); 595 TypeSetByHwMode::SetType &E = Elem.get(M); 596 597 Changed |= berase_if(V, isScalar); // Scalar = !vector 598 Changed |= berase_if(E, isVector); // Vector = !scalar 599 assert(!V.empty() && !E.empty()); 600 601 MachineValueTypeSet VT, ST; 602 // Collect element types from the "vector" set. 603 for (MVT T : V) 604 VT.insert(T.getVectorElementType()); 605 // Collect scalar types from the "element" set. 606 for (MVT T : E) 607 ST.insert(T); 608 609 // Remove from V all (vector) types whose element type is not in S. 610 Changed |= berase_if(V, [&ST](MVT T) -> bool { 611 return !ST.count(T.getVectorElementType()); 612 }); 613 // Remove from E all (scalar) types, for which there is no corresponding 614 // type in V. 615 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 616 } 617 618 return Changed; 619 } 620 621 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 622 const ValueTypeByHwMode &VVT) { 623 TypeSetByHwMode Tmp(VVT); 624 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 625 return EnforceVectorEltTypeIs(Vec, Tmp); 626 } 627 628 /// Ensure that for each type T in Sub, T is a vector type, and there 629 /// exists a type U in Vec such that U is a vector type with the same 630 /// element type as T and at least as many elements as T. 631 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 632 TypeSetByHwMode &Sub) { 633 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 634 if (TP.hasError()) 635 return false; 636 637 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 638 auto IsSubVec = [](MVT B, MVT P) -> bool { 639 if (!B.isVector() || !P.isVector()) 640 return false; 641 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 642 // but until there are obvious use-cases for this, keep the 643 // types separate. 644 if (B.isScalableVector() != P.isScalableVector()) 645 return false; 646 if (B.getVectorElementType() != P.getVectorElementType()) 647 return false; 648 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 649 }; 650 651 /// Return true if S has no element (vector type) that T is a sub-vector of, 652 /// i.e. has the same element type as T and more elements. 653 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 654 for (auto I : S) 655 if (IsSubVec(T, I)) 656 return false; 657 return true; 658 }; 659 660 /// Return true if S has no element (vector type) that T is a super-vector 661 /// of, i.e. has the same element type as T and fewer elements. 662 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 663 for (auto I : S) 664 if (IsSubVec(I, T)) 665 return false; 666 return true; 667 }; 668 669 bool Changed = false; 670 671 if (Vec.empty()) 672 Changed |= EnforceVector(Vec); 673 if (Sub.empty()) 674 Changed |= EnforceVector(Sub); 675 676 SmallVector<unsigned, 4> Modes; 677 union_modes(Vec, Sub, Modes); 678 for (unsigned M : Modes) { 679 TypeSetByHwMode::SetType &S = Sub.get(M); 680 TypeSetByHwMode::SetType &V = Vec.get(M); 681 682 Changed |= berase_if(S, isScalar); 683 684 // Erase all types from S that are not sub-vectors of a type in V. 685 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 686 687 // Erase all types from V that are not super-vectors of a type in S. 688 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 689 } 690 691 return Changed; 692 } 693 694 /// 1. Ensure that V has a scalar type iff W has a scalar type. 695 /// 2. Ensure that for each vector type T in V, there exists a vector 696 /// type U in W, such that T and U have the same number of elements. 697 /// 3. Ensure that for each vector type U in W, there exists a vector 698 /// type T in V, such that T and U have the same number of elements 699 /// (reverse of 2). 700 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 701 ValidateOnExit _1(V, *this), _2(W, *this); 702 if (TP.hasError()) 703 return false; 704 705 bool Changed = false; 706 if (V.empty()) 707 Changed |= EnforceAny(V); 708 if (W.empty()) 709 Changed |= EnforceAny(W); 710 711 // An actual vector type cannot have 0 elements, so we can treat scalars 712 // as zero-length vectors. This way both vectors and scalars can be 713 // processed identically. 714 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 715 MVT T) -> bool { 716 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 717 : ElementCount::getNull()); 718 }; 719 720 SmallVector<unsigned, 4> Modes; 721 union_modes(V, W, Modes); 722 for (unsigned M : Modes) { 723 TypeSetByHwMode::SetType &VS = V.get(M); 724 TypeSetByHwMode::SetType &WS = W.get(M); 725 726 SmallDenseSet<ElementCount> VN, WN; 727 for (MVT T : VS) 728 VN.insert(T.isVector() ? T.getVectorElementCount() 729 : ElementCount::getNull()); 730 for (MVT T : WS) 731 WN.insert(T.isVector() ? T.getVectorElementCount() 732 : ElementCount::getNull()); 733 734 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 735 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 736 } 737 return Changed; 738 } 739 740 namespace { 741 struct TypeSizeComparator { 742 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 743 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 744 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 745 } 746 }; 747 } // end anonymous namespace 748 749 /// 1. Ensure that for each type T in A, there exists a type U in B, 750 /// such that T and U have equal size in bits. 751 /// 2. Ensure that for each type U in B, there exists a type T in A 752 /// such that T and U have equal size in bits (reverse of 1). 753 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 754 ValidateOnExit _1(A, *this), _2(B, *this); 755 if (TP.hasError()) 756 return false; 757 bool Changed = false; 758 if (A.empty()) 759 Changed |= EnforceAny(A); 760 if (B.empty()) 761 Changed |= EnforceAny(B); 762 763 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 764 765 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 766 return !Sizes.count(T.getSizeInBits()); 767 }; 768 769 SmallVector<unsigned, 4> Modes; 770 union_modes(A, B, Modes); 771 for (unsigned M : Modes) { 772 TypeSetByHwMode::SetType &AS = A.get(M); 773 TypeSetByHwMode::SetType &BS = B.get(M); 774 TypeSizeSet AN, BN; 775 776 for (MVT T : AS) 777 AN.insert(T.getSizeInBits()); 778 for (MVT T : BS) 779 BN.insert(T.getSizeInBits()); 780 781 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 782 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 783 } 784 785 return Changed; 786 } 787 788 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 789 ValidateOnExit _1(VTS, *this); 790 const TypeSetByHwMode &Legal = getLegalTypes(); 791 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 792 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 793 794 for (auto &I : VTS) 795 expandOverloads(I.second, LegalTypes); 796 } 797 798 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 799 const TypeSetByHwMode::SetType &Legal) { 800 std::set<MVT> Ovs; 801 for (MVT T : Out) { 802 if (!T.isOverloaded()) 803 continue; 804 805 Ovs.insert(T); 806 // MachineValueTypeSet allows iteration and erasing. 807 Out.erase(T); 808 } 809 810 for (MVT Ov : Ovs) { 811 switch (Ov.SimpleTy) { 812 case MVT::iPTRAny: 813 Out.insert(MVT::iPTR); 814 return; 815 case MVT::iAny: 816 for (MVT T : MVT::integer_valuetypes()) 817 if (Legal.count(T)) 818 Out.insert(T); 819 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 820 if (Legal.count(T)) 821 Out.insert(T); 822 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 823 if (Legal.count(T)) 824 Out.insert(T); 825 return; 826 case MVT::fAny: 827 for (MVT T : MVT::fp_valuetypes()) 828 if (Legal.count(T)) 829 Out.insert(T); 830 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 831 if (Legal.count(T)) 832 Out.insert(T); 833 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 834 if (Legal.count(T)) 835 Out.insert(T); 836 return; 837 case MVT::vAny: 838 for (MVT T : MVT::vector_valuetypes()) 839 if (Legal.count(T)) 840 Out.insert(T); 841 return; 842 case MVT::Any: 843 for (MVT T : MVT::all_valuetypes()) 844 if (Legal.count(T)) 845 Out.insert(T); 846 return; 847 default: 848 break; 849 } 850 } 851 } 852 853 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 854 if (!LegalTypesCached) { 855 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 856 // Stuff all types from all modes into the default mode. 857 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 858 for (const auto &I : LTS) 859 LegalTypes.insert(I.second); 860 LegalTypesCached = true; 861 } 862 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 863 return LegalCache; 864 } 865 866 #ifndef NDEBUG 867 TypeInfer::ValidateOnExit::~ValidateOnExit() { 868 if (Infer.Validate && !VTS.validate()) { 869 dbgs() << "Type set is empty for each HW mode:\n" 870 "possible type contradiction in the pattern below " 871 "(use -print-records with llvm-tblgen to see all " 872 "expanded records).\n"; 873 Infer.TP.dump(); 874 dbgs() << "Generated from record:\n"; 875 Infer.TP.getRecord()->dump(); 876 PrintFatalError(Infer.TP.getRecord()->getLoc(), 877 "Type set is empty for each HW mode in '" + 878 Infer.TP.getRecord()->getName() + "'"); 879 } 880 } 881 #endif 882 883 884 //===----------------------------------------------------------------------===// 885 // ScopedName Implementation 886 //===----------------------------------------------------------------------===// 887 888 bool ScopedName::operator==(const ScopedName &o) const { 889 return Scope == o.Scope && Identifier == o.Identifier; 890 } 891 892 bool ScopedName::operator!=(const ScopedName &o) const { 893 return !(*this == o); 894 } 895 896 897 //===----------------------------------------------------------------------===// 898 // TreePredicateFn Implementation 899 //===----------------------------------------------------------------------===// 900 901 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 902 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 903 assert( 904 (!hasPredCode() || !hasImmCode()) && 905 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 906 } 907 908 bool TreePredicateFn::hasPredCode() const { 909 return isLoad() || isStore() || isAtomic() || 910 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 911 } 912 913 std::string TreePredicateFn::getPredCode() const { 914 std::string Code; 915 916 if (!isLoad() && !isStore() && !isAtomic()) { 917 Record *MemoryVT = getMemoryVT(); 918 919 if (MemoryVT) 920 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 921 "MemoryVT requires IsLoad or IsStore"); 922 } 923 924 if (!isLoad() && !isStore()) { 925 if (isUnindexed()) 926 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 927 "IsUnindexed requires IsLoad or IsStore"); 928 929 Record *ScalarMemoryVT = getScalarMemoryVT(); 930 931 if (ScalarMemoryVT) 932 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 933 "ScalarMemoryVT requires IsLoad or IsStore"); 934 } 935 936 if (isLoad() + isStore() + isAtomic() > 1) 937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 938 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 939 940 if (isLoad()) { 941 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 942 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 943 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 944 getMinAlignment() < 1) 945 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 946 "IsLoad cannot be used by itself"); 947 } else { 948 if (isNonExtLoad()) 949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 950 "IsNonExtLoad requires IsLoad"); 951 if (isAnyExtLoad()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsAnyExtLoad requires IsLoad"); 954 if (isSignExtLoad()) 955 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 956 "IsSignExtLoad requires IsLoad"); 957 if (isZeroExtLoad()) 958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 959 "IsZeroExtLoad requires IsLoad"); 960 } 961 962 if (isStore()) { 963 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 964 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 965 getAddressSpaces() == nullptr && getMinAlignment() < 1) 966 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 967 "IsStore cannot be used by itself"); 968 } else { 969 if (isNonTruncStore()) 970 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 971 "IsNonTruncStore requires IsStore"); 972 if (isTruncStore()) 973 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 974 "IsTruncStore requires IsStore"); 975 } 976 977 if (isAtomic()) { 978 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 979 getAddressSpaces() == nullptr && 980 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 981 !isAtomicOrderingAcquireRelease() && 982 !isAtomicOrderingSequentiallyConsistent() && 983 !isAtomicOrderingAcquireOrStronger() && 984 !isAtomicOrderingReleaseOrStronger() && 985 !isAtomicOrderingWeakerThanAcquire() && 986 !isAtomicOrderingWeakerThanRelease()) 987 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 988 "IsAtomic cannot be used by itself"); 989 } else { 990 if (isAtomicOrderingMonotonic()) 991 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 992 "IsAtomicOrderingMonotonic requires IsAtomic"); 993 if (isAtomicOrderingAcquire()) 994 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 995 "IsAtomicOrderingAcquire requires IsAtomic"); 996 if (isAtomicOrderingRelease()) 997 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 998 "IsAtomicOrderingRelease requires IsAtomic"); 999 if (isAtomicOrderingAcquireRelease()) 1000 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1001 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 1002 if (isAtomicOrderingSequentiallyConsistent()) 1003 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1004 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1005 if (isAtomicOrderingAcquireOrStronger()) 1006 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1007 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1008 if (isAtomicOrderingReleaseOrStronger()) 1009 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1010 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1011 if (isAtomicOrderingWeakerThanAcquire()) 1012 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1013 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1014 } 1015 1016 if (isLoad() || isStore() || isAtomic()) { 1017 if (ListInit *AddressSpaces = getAddressSpaces()) { 1018 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1019 " if ("; 1020 1021 ListSeparator LS(" && "); 1022 for (Init *Val : AddressSpaces->getValues()) { 1023 Code += LS; 1024 1025 IntInit *IntVal = dyn_cast<IntInit>(Val); 1026 if (!IntVal) { 1027 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1028 "AddressSpaces element must be integer"); 1029 } 1030 1031 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1032 } 1033 1034 Code += ")\nreturn false;\n"; 1035 } 1036 1037 int64_t MinAlign = getMinAlignment(); 1038 if (MinAlign > 0) { 1039 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1040 Code += utostr(MinAlign); 1041 Code += "))\nreturn false;\n"; 1042 } 1043 1044 Record *MemoryVT = getMemoryVT(); 1045 1046 if (MemoryVT) 1047 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1048 MemoryVT->getName() + ") return false;\n") 1049 .str(); 1050 } 1051 1052 if (isAtomic() && isAtomicOrderingMonotonic()) 1053 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1054 "AtomicOrdering::Monotonic) return false;\n"; 1055 if (isAtomic() && isAtomicOrderingAcquire()) 1056 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1057 "AtomicOrdering::Acquire) return false;\n"; 1058 if (isAtomic() && isAtomicOrderingRelease()) 1059 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1060 "AtomicOrdering::Release) return false;\n"; 1061 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1062 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1063 "AtomicOrdering::AcquireRelease) return false;\n"; 1064 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1065 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1066 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1067 1068 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1069 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1070 "return false;\n"; 1071 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1072 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1073 "return false;\n"; 1074 1075 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1076 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1077 "return false;\n"; 1078 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1079 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1080 "return false;\n"; 1081 1082 if (isLoad() || isStore()) { 1083 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1084 1085 if (isUnindexed()) 1086 Code += ("if (cast<" + SDNodeName + 1087 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1088 "return false;\n") 1089 .str(); 1090 1091 if (isLoad()) { 1092 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1093 isZeroExtLoad()) > 1) 1094 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1095 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1096 "IsZeroExtLoad are mutually exclusive"); 1097 if (isNonExtLoad()) 1098 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1099 "ISD::NON_EXTLOAD) return false;\n"; 1100 if (isAnyExtLoad()) 1101 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1102 "return false;\n"; 1103 if (isSignExtLoad()) 1104 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1105 "return false;\n"; 1106 if (isZeroExtLoad()) 1107 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1108 "return false;\n"; 1109 } else { 1110 if ((isNonTruncStore() + isTruncStore()) > 1) 1111 PrintFatalError( 1112 getOrigPatFragRecord()->getRecord()->getLoc(), 1113 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1114 if (isNonTruncStore()) 1115 Code += 1116 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1117 if (isTruncStore()) 1118 Code += 1119 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1120 } 1121 1122 Record *ScalarMemoryVT = getScalarMemoryVT(); 1123 1124 if (ScalarMemoryVT) 1125 Code += ("if (cast<" + SDNodeName + 1126 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1127 ScalarMemoryVT->getName() + ") return false;\n") 1128 .str(); 1129 } 1130 1131 std::string PredicateCode = 1132 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1133 1134 Code += PredicateCode; 1135 1136 if (PredicateCode.empty() && !Code.empty()) 1137 Code += "return true;\n"; 1138 1139 return Code; 1140 } 1141 1142 bool TreePredicateFn::hasImmCode() const { 1143 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1144 } 1145 1146 std::string TreePredicateFn::getImmCode() const { 1147 return std::string( 1148 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1149 } 1150 1151 bool TreePredicateFn::immCodeUsesAPInt() const { 1152 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1153 } 1154 1155 bool TreePredicateFn::immCodeUsesAPFloat() const { 1156 bool Unset; 1157 // The return value will be false when IsAPFloat is unset. 1158 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1159 Unset); 1160 } 1161 1162 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1163 bool Value) const { 1164 bool Unset; 1165 bool Result = 1166 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1167 if (Unset) 1168 return false; 1169 return Result == Value; 1170 } 1171 bool TreePredicateFn::usesOperands() const { 1172 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1173 } 1174 bool TreePredicateFn::isLoad() const { 1175 return isPredefinedPredicateEqualTo("IsLoad", true); 1176 } 1177 bool TreePredicateFn::isStore() const { 1178 return isPredefinedPredicateEqualTo("IsStore", true); 1179 } 1180 bool TreePredicateFn::isAtomic() const { 1181 return isPredefinedPredicateEqualTo("IsAtomic", true); 1182 } 1183 bool TreePredicateFn::isUnindexed() const { 1184 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1185 } 1186 bool TreePredicateFn::isNonExtLoad() const { 1187 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1188 } 1189 bool TreePredicateFn::isAnyExtLoad() const { 1190 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1191 } 1192 bool TreePredicateFn::isSignExtLoad() const { 1193 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1194 } 1195 bool TreePredicateFn::isZeroExtLoad() const { 1196 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1197 } 1198 bool TreePredicateFn::isNonTruncStore() const { 1199 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1200 } 1201 bool TreePredicateFn::isTruncStore() const { 1202 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1203 } 1204 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1205 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1206 } 1207 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1208 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1209 } 1210 bool TreePredicateFn::isAtomicOrderingRelease() const { 1211 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1212 } 1213 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1214 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1215 } 1216 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1217 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1218 true); 1219 } 1220 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1221 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1222 } 1223 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1224 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1225 } 1226 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1227 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1228 } 1229 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1230 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1231 } 1232 Record *TreePredicateFn::getMemoryVT() const { 1233 Record *R = getOrigPatFragRecord()->getRecord(); 1234 if (R->isValueUnset("MemoryVT")) 1235 return nullptr; 1236 return R->getValueAsDef("MemoryVT"); 1237 } 1238 1239 ListInit *TreePredicateFn::getAddressSpaces() const { 1240 Record *R = getOrigPatFragRecord()->getRecord(); 1241 if (R->isValueUnset("AddressSpaces")) 1242 return nullptr; 1243 return R->getValueAsListInit("AddressSpaces"); 1244 } 1245 1246 int64_t TreePredicateFn::getMinAlignment() const { 1247 Record *R = getOrigPatFragRecord()->getRecord(); 1248 if (R->isValueUnset("MinAlignment")) 1249 return 0; 1250 return R->getValueAsInt("MinAlignment"); 1251 } 1252 1253 Record *TreePredicateFn::getScalarMemoryVT() const { 1254 Record *R = getOrigPatFragRecord()->getRecord(); 1255 if (R->isValueUnset("ScalarMemoryVT")) 1256 return nullptr; 1257 return R->getValueAsDef("ScalarMemoryVT"); 1258 } 1259 bool TreePredicateFn::hasGISelPredicateCode() const { 1260 return !PatFragRec->getRecord() 1261 ->getValueAsString("GISelPredicateCode") 1262 .empty(); 1263 } 1264 std::string TreePredicateFn::getGISelPredicateCode() const { 1265 return std::string( 1266 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1267 } 1268 1269 StringRef TreePredicateFn::getImmType() const { 1270 if (immCodeUsesAPInt()) 1271 return "const APInt &"; 1272 if (immCodeUsesAPFloat()) 1273 return "const APFloat &"; 1274 return "int64_t"; 1275 } 1276 1277 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1278 if (immCodeUsesAPInt()) 1279 return "APInt"; 1280 if (immCodeUsesAPFloat()) 1281 return "APFloat"; 1282 return "I64"; 1283 } 1284 1285 /// isAlwaysTrue - Return true if this is a noop predicate. 1286 bool TreePredicateFn::isAlwaysTrue() const { 1287 return !hasPredCode() && !hasImmCode(); 1288 } 1289 1290 /// Return the name to use in the generated code to reference this, this is 1291 /// "Predicate_foo" if from a pattern fragment "foo". 1292 std::string TreePredicateFn::getFnName() const { 1293 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1294 } 1295 1296 /// getCodeToRunOnSDNode - Return the code for the function body that 1297 /// evaluates this predicate. The argument is expected to be in "Node", 1298 /// not N. This handles casting and conversion to a concrete node type as 1299 /// appropriate. 1300 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1301 // Handle immediate predicates first. 1302 std::string ImmCode = getImmCode(); 1303 if (!ImmCode.empty()) { 1304 if (isLoad()) 1305 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1306 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1307 if (isStore()) 1308 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1309 "IsStore cannot be used with ImmLeaf or its subclasses"); 1310 if (isUnindexed()) 1311 PrintFatalError( 1312 getOrigPatFragRecord()->getRecord()->getLoc(), 1313 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1314 if (isNonExtLoad()) 1315 PrintFatalError( 1316 getOrigPatFragRecord()->getRecord()->getLoc(), 1317 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1318 if (isAnyExtLoad()) 1319 PrintFatalError( 1320 getOrigPatFragRecord()->getRecord()->getLoc(), 1321 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1322 if (isSignExtLoad()) 1323 PrintFatalError( 1324 getOrigPatFragRecord()->getRecord()->getLoc(), 1325 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1326 if (isZeroExtLoad()) 1327 PrintFatalError( 1328 getOrigPatFragRecord()->getRecord()->getLoc(), 1329 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1330 if (isNonTruncStore()) 1331 PrintFatalError( 1332 getOrigPatFragRecord()->getRecord()->getLoc(), 1333 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1334 if (isTruncStore()) 1335 PrintFatalError( 1336 getOrigPatFragRecord()->getRecord()->getLoc(), 1337 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1338 if (getMemoryVT()) 1339 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1340 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1341 if (getScalarMemoryVT()) 1342 PrintFatalError( 1343 getOrigPatFragRecord()->getRecord()->getLoc(), 1344 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1345 1346 std::string Result = (" " + getImmType() + " Imm = ").str(); 1347 if (immCodeUsesAPFloat()) 1348 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1349 else if (immCodeUsesAPInt()) 1350 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1351 else 1352 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1353 return Result + ImmCode; 1354 } 1355 1356 // Handle arbitrary node predicates. 1357 assert(hasPredCode() && "Don't have any predicate code!"); 1358 1359 // If this is using PatFrags, there are multiple trees to search. They should 1360 // all have the same class. FIXME: Is there a way to find a common 1361 // superclass? 1362 StringRef ClassName; 1363 for (const auto &Tree : PatFragRec->getTrees()) { 1364 StringRef TreeClassName; 1365 if (Tree->isLeaf()) 1366 TreeClassName = "SDNode"; 1367 else { 1368 Record *Op = Tree->getOperator(); 1369 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1370 TreeClassName = Info.getSDClassName(); 1371 } 1372 1373 if (ClassName.empty()) 1374 ClassName = TreeClassName; 1375 else if (ClassName != TreeClassName) { 1376 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1377 "PatFrags trees do not have consistent class"); 1378 } 1379 } 1380 1381 std::string Result; 1382 if (ClassName == "SDNode") 1383 Result = " SDNode *N = Node;\n"; 1384 else 1385 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1386 1387 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1388 } 1389 1390 //===----------------------------------------------------------------------===// 1391 // PatternToMatch implementation 1392 // 1393 1394 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1395 if (!P->isLeaf()) 1396 return false; 1397 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1398 if (!DI) 1399 return false; 1400 1401 Record *R = DI->getDef(); 1402 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1403 } 1404 1405 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1406 /// patterns before small ones. This is used to determine the size of a 1407 /// pattern. 1408 static unsigned getPatternSize(const TreePatternNode *P, 1409 const CodeGenDAGPatterns &CGP) { 1410 unsigned Size = 3; // The node itself. 1411 // If the root node is a ConstantSDNode, increases its size. 1412 // e.g. (set R32:$dst, 0). 1413 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1414 Size += 2; 1415 1416 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1417 Size += AM->getComplexity(); 1418 // We don't want to count any children twice, so return early. 1419 return Size; 1420 } 1421 1422 // If this node has some predicate function that must match, it adds to the 1423 // complexity of this node. 1424 if (!P->getPredicateCalls().empty()) 1425 ++Size; 1426 1427 // Count children in the count if they are also nodes. 1428 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1429 const TreePatternNode *Child = P->getChild(i); 1430 if (!Child->isLeaf() && Child->getNumTypes()) { 1431 const TypeSetByHwMode &T0 = Child->getExtType(0); 1432 // At this point, all variable type sets should be simple, i.e. only 1433 // have a default mode. 1434 if (T0.getMachineValueType() != MVT::Other) { 1435 Size += getPatternSize(Child, CGP); 1436 continue; 1437 } 1438 } 1439 if (Child->isLeaf()) { 1440 if (isa<IntInit>(Child->getLeafValue())) 1441 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1442 else if (Child->getComplexPatternInfo(CGP)) 1443 Size += getPatternSize(Child, CGP); 1444 else if (isImmAllOnesAllZerosMatch(Child)) 1445 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1446 else if (!Child->getPredicateCalls().empty()) 1447 ++Size; 1448 } 1449 } 1450 1451 return Size; 1452 } 1453 1454 /// Compute the complexity metric for the input pattern. This roughly 1455 /// corresponds to the number of nodes that are covered. 1456 int PatternToMatch:: 1457 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1458 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1459 } 1460 1461 void PatternToMatch::getPredicateRecords( 1462 SmallVectorImpl<Record *> &PredicateRecs) const { 1463 for (Init *I : Predicates->getValues()) { 1464 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1465 Record *Def = Pred->getDef(); 1466 if (!Def->isSubClassOf("Predicate")) { 1467 #ifndef NDEBUG 1468 Def->dump(); 1469 #endif 1470 llvm_unreachable("Unknown predicate type!"); 1471 } 1472 PredicateRecs.push_back(Def); 1473 } 1474 } 1475 // Sort so that different orders get canonicalized to the same string. 1476 llvm::sort(PredicateRecs, LessRecord()); 1477 } 1478 1479 /// getPredicateCheck - Return a single string containing all of this 1480 /// pattern's predicates concatenated with "&&" operators. 1481 /// 1482 std::string PatternToMatch::getPredicateCheck() const { 1483 SmallVector<Record *, 4> PredicateRecs; 1484 getPredicateRecords(PredicateRecs); 1485 1486 SmallString<128> PredicateCheck; 1487 for (Record *Pred : PredicateRecs) { 1488 StringRef CondString = Pred->getValueAsString("CondString"); 1489 if (CondString.empty()) 1490 continue; 1491 if (!PredicateCheck.empty()) 1492 PredicateCheck += " && "; 1493 PredicateCheck += "("; 1494 PredicateCheck += CondString; 1495 PredicateCheck += ")"; 1496 } 1497 1498 if (!HwModeFeatures.empty()) { 1499 if (!PredicateCheck.empty()) 1500 PredicateCheck += " && "; 1501 PredicateCheck += HwModeFeatures; 1502 } 1503 1504 return std::string(PredicateCheck); 1505 } 1506 1507 //===----------------------------------------------------------------------===// 1508 // SDTypeConstraint implementation 1509 // 1510 1511 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1512 OperandNo = R->getValueAsInt("OperandNum"); 1513 1514 if (R->isSubClassOf("SDTCisVT")) { 1515 ConstraintType = SDTCisVT; 1516 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1517 for (const auto &P : VVT) 1518 if (P.second == MVT::isVoid) 1519 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1520 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1521 ConstraintType = SDTCisPtrTy; 1522 } else if (R->isSubClassOf("SDTCisInt")) { 1523 ConstraintType = SDTCisInt; 1524 } else if (R->isSubClassOf("SDTCisFP")) { 1525 ConstraintType = SDTCisFP; 1526 } else if (R->isSubClassOf("SDTCisVec")) { 1527 ConstraintType = SDTCisVec; 1528 } else if (R->isSubClassOf("SDTCisSameAs")) { 1529 ConstraintType = SDTCisSameAs; 1530 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1531 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1532 ConstraintType = SDTCisVTSmallerThanOp; 1533 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1534 R->getValueAsInt("OtherOperandNum"); 1535 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1536 ConstraintType = SDTCisOpSmallerThanOp; 1537 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1538 R->getValueAsInt("BigOperandNum"); 1539 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1540 ConstraintType = SDTCisEltOfVec; 1541 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1542 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1543 ConstraintType = SDTCisSubVecOfVec; 1544 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1545 R->getValueAsInt("OtherOpNum"); 1546 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1547 ConstraintType = SDTCVecEltisVT; 1548 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1549 for (const auto &P : VVT) { 1550 MVT T = P.second; 1551 if (T.isVector()) 1552 PrintFatalError(R->getLoc(), 1553 "Cannot use vector type as SDTCVecEltisVT"); 1554 if (!T.isInteger() && !T.isFloatingPoint()) 1555 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1556 "as SDTCVecEltisVT"); 1557 } 1558 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1559 ConstraintType = SDTCisSameNumEltsAs; 1560 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1561 R->getValueAsInt("OtherOperandNum"); 1562 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1563 ConstraintType = SDTCisSameSizeAs; 1564 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1565 R->getValueAsInt("OtherOperandNum"); 1566 } else { 1567 PrintFatalError(R->getLoc(), 1568 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1569 } 1570 } 1571 1572 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1573 /// N, and the result number in ResNo. 1574 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1575 const SDNodeInfo &NodeInfo, 1576 unsigned &ResNo) { 1577 unsigned NumResults = NodeInfo.getNumResults(); 1578 if (OpNo < NumResults) { 1579 ResNo = OpNo; 1580 return N; 1581 } 1582 1583 OpNo -= NumResults; 1584 1585 if (OpNo >= N->getNumChildren()) { 1586 std::string S; 1587 raw_string_ostream OS(S); 1588 OS << "Invalid operand number in type constraint " 1589 << (OpNo+NumResults) << " "; 1590 N->print(OS); 1591 PrintFatalError(S); 1592 } 1593 1594 return N->getChild(OpNo); 1595 } 1596 1597 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1598 /// constraint to the nodes operands. This returns true if it makes a 1599 /// change, false otherwise. If a type contradiction is found, flag an error. 1600 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1601 const SDNodeInfo &NodeInfo, 1602 TreePattern &TP) const { 1603 if (TP.hasError()) 1604 return false; 1605 1606 unsigned ResNo = 0; // The result number being referenced. 1607 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1608 TypeInfer &TI = TP.getInfer(); 1609 1610 switch (ConstraintType) { 1611 case SDTCisVT: 1612 // Operand must be a particular type. 1613 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1614 case SDTCisPtrTy: 1615 // Operand must be same as target pointer type. 1616 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1617 case SDTCisInt: 1618 // Require it to be one of the legal integer VTs. 1619 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1620 case SDTCisFP: 1621 // Require it to be one of the legal fp VTs. 1622 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1623 case SDTCisVec: 1624 // Require it to be one of the legal vector VTs. 1625 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1626 case SDTCisSameAs: { 1627 unsigned OResNo = 0; 1628 TreePatternNode *OtherNode = 1629 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1630 return (int)NodeToApply->UpdateNodeType(ResNo, 1631 OtherNode->getExtType(OResNo), TP) | 1632 (int)OtherNode->UpdateNodeType(OResNo, 1633 NodeToApply->getExtType(ResNo), TP); 1634 } 1635 case SDTCisVTSmallerThanOp: { 1636 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1637 // have an integer type that is smaller than the VT. 1638 if (!NodeToApply->isLeaf() || 1639 !isa<DefInit>(NodeToApply->getLeafValue()) || 1640 !cast<DefInit>(NodeToApply->getLeafValue())->getDef() 1641 ->isSubClassOf("ValueType")) { 1642 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1643 return false; 1644 } 1645 DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue()); 1646 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1647 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1648 TypeSetByHwMode TypeListTmp(VVT); 1649 1650 unsigned OResNo = 0; 1651 TreePatternNode *OtherNode = 1652 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1653 OResNo); 1654 1655 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo), 1656 /*SmallIsVT*/ true); 1657 } 1658 case SDTCisOpSmallerThanOp: { 1659 unsigned BResNo = 0; 1660 TreePatternNode *BigOperand = 1661 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1662 BResNo); 1663 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1664 BigOperand->getExtType(BResNo)); 1665 } 1666 case SDTCisEltOfVec: { 1667 unsigned VResNo = 0; 1668 TreePatternNode *VecOperand = 1669 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1670 VResNo); 1671 // Filter vector types out of VecOperand that don't have the right element 1672 // type. 1673 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1674 NodeToApply->getExtType(ResNo)); 1675 } 1676 case SDTCisSubVecOfVec: { 1677 unsigned VResNo = 0; 1678 TreePatternNode *BigVecOperand = 1679 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1680 VResNo); 1681 1682 // Filter vector types out of BigVecOperand that don't have the 1683 // right subvector type. 1684 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1685 NodeToApply->getExtType(ResNo)); 1686 } 1687 case SDTCVecEltisVT: { 1688 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1689 } 1690 case SDTCisSameNumEltsAs: { 1691 unsigned OResNo = 0; 1692 TreePatternNode *OtherNode = 1693 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1694 N, NodeInfo, OResNo); 1695 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1696 NodeToApply->getExtType(ResNo)); 1697 } 1698 case SDTCisSameSizeAs: { 1699 unsigned OResNo = 0; 1700 TreePatternNode *OtherNode = 1701 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1702 N, NodeInfo, OResNo); 1703 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1704 NodeToApply->getExtType(ResNo)); 1705 } 1706 } 1707 llvm_unreachable("Invalid ConstraintType!"); 1708 } 1709 1710 // Update the node type to match an instruction operand or result as specified 1711 // in the ins or outs lists on the instruction definition. Return true if the 1712 // type was actually changed. 1713 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1714 Record *Operand, 1715 TreePattern &TP) { 1716 // The 'unknown' operand indicates that types should be inferred from the 1717 // context. 1718 if (Operand->isSubClassOf("unknown_class")) 1719 return false; 1720 1721 // The Operand class specifies a type directly. 1722 if (Operand->isSubClassOf("Operand")) { 1723 Record *R = Operand->getValueAsDef("Type"); 1724 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1725 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1726 } 1727 1728 // PointerLikeRegClass has a type that is determined at runtime. 1729 if (Operand->isSubClassOf("PointerLikeRegClass")) 1730 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1731 1732 // Both RegisterClass and RegisterOperand operands derive their types from a 1733 // register class def. 1734 Record *RC = nullptr; 1735 if (Operand->isSubClassOf("RegisterClass")) 1736 RC = Operand; 1737 else if (Operand->isSubClassOf("RegisterOperand")) 1738 RC = Operand->getValueAsDef("RegClass"); 1739 1740 assert(RC && "Unknown operand type"); 1741 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1742 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1743 } 1744 1745 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1746 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1747 if (!TP.getInfer().isConcrete(Types[i], true)) 1748 return true; 1749 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1750 if (getChild(i)->ContainsUnresolvedType(TP)) 1751 return true; 1752 return false; 1753 } 1754 1755 bool TreePatternNode::hasProperTypeByHwMode() const { 1756 for (const TypeSetByHwMode &S : Types) 1757 if (!S.isDefaultOnly()) 1758 return true; 1759 for (const TreePatternNodePtr &C : Children) 1760 if (C->hasProperTypeByHwMode()) 1761 return true; 1762 return false; 1763 } 1764 1765 bool TreePatternNode::hasPossibleType() const { 1766 for (const TypeSetByHwMode &S : Types) 1767 if (!S.isPossible()) 1768 return false; 1769 for (const TreePatternNodePtr &C : Children) 1770 if (!C->hasPossibleType()) 1771 return false; 1772 return true; 1773 } 1774 1775 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1776 for (TypeSetByHwMode &S : Types) { 1777 S.makeSimple(Mode); 1778 // Check if the selected mode had a type conflict. 1779 if (S.get(DefaultMode).empty()) 1780 return false; 1781 } 1782 for (const TreePatternNodePtr &C : Children) 1783 if (!C->setDefaultMode(Mode)) 1784 return false; 1785 return true; 1786 } 1787 1788 //===----------------------------------------------------------------------===// 1789 // SDNodeInfo implementation 1790 // 1791 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1792 EnumName = R->getValueAsString("Opcode"); 1793 SDClassName = R->getValueAsString("SDClass"); 1794 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1795 NumResults = TypeProfile->getValueAsInt("NumResults"); 1796 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1797 1798 // Parse the properties. 1799 Properties = parseSDPatternOperatorProperties(R); 1800 1801 // Parse the type constraints. 1802 std::vector<Record*> ConstraintList = 1803 TypeProfile->getValueAsListOfDefs("Constraints"); 1804 for (Record *R : ConstraintList) 1805 TypeConstraints.emplace_back(R, CGH); 1806 } 1807 1808 /// getKnownType - If the type constraints on this node imply a fixed type 1809 /// (e.g. all stores return void, etc), then return it as an 1810 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1811 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1812 unsigned NumResults = getNumResults(); 1813 assert(NumResults <= 1 && 1814 "We only work with nodes with zero or one result so far!"); 1815 assert(ResNo == 0 && "Only handles single result nodes so far"); 1816 1817 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1818 // Make sure that this applies to the correct node result. 1819 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1820 continue; 1821 1822 switch (Constraint.ConstraintType) { 1823 default: break; 1824 case SDTypeConstraint::SDTCisVT: 1825 if (Constraint.VVT.isSimple()) 1826 return Constraint.VVT.getSimple().SimpleTy; 1827 break; 1828 case SDTypeConstraint::SDTCisPtrTy: 1829 return MVT::iPTR; 1830 } 1831 } 1832 return MVT::Other; 1833 } 1834 1835 //===----------------------------------------------------------------------===// 1836 // TreePatternNode implementation 1837 // 1838 1839 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1840 if (Operator->getName() == "set" || 1841 Operator->getName() == "implicit") 1842 return 0; // All return nothing. 1843 1844 if (Operator->isSubClassOf("Intrinsic")) 1845 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1846 1847 if (Operator->isSubClassOf("SDNode")) 1848 return CDP.getSDNodeInfo(Operator).getNumResults(); 1849 1850 if (Operator->isSubClassOf("PatFrags")) { 1851 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1852 // the forward reference case where one pattern fragment references another 1853 // before it is processed. 1854 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1855 // The number of results of a fragment with alternative records is the 1856 // maximum number of results across all alternatives. 1857 unsigned NumResults = 0; 1858 for (const auto &T : PFRec->getTrees()) 1859 NumResults = std::max(NumResults, T->getNumTypes()); 1860 return NumResults; 1861 } 1862 1863 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1864 assert(LI && "Invalid Fragment"); 1865 unsigned NumResults = 0; 1866 for (Init *I : LI->getValues()) { 1867 Record *Op = nullptr; 1868 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1869 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1870 Op = DI->getDef(); 1871 assert(Op && "Invalid Fragment"); 1872 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1873 } 1874 return NumResults; 1875 } 1876 1877 if (Operator->isSubClassOf("Instruction")) { 1878 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1879 1880 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1881 1882 // Subtract any defaulted outputs. 1883 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1884 Record *OperandNode = InstInfo.Operands[i].Rec; 1885 1886 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1887 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1888 --NumDefsToAdd; 1889 } 1890 1891 // Add on one implicit def if it has a resolvable type. 1892 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1893 ++NumDefsToAdd; 1894 return NumDefsToAdd; 1895 } 1896 1897 if (Operator->isSubClassOf("SDNodeXForm")) 1898 return 1; // FIXME: Generalize SDNodeXForm 1899 1900 if (Operator->isSubClassOf("ValueType")) 1901 return 1; // A type-cast of one result. 1902 1903 if (Operator->isSubClassOf("ComplexPattern")) 1904 return 1; 1905 1906 errs() << *Operator; 1907 PrintFatalError("Unhandled node in GetNumNodeResults"); 1908 } 1909 1910 void TreePatternNode::print(raw_ostream &OS) const { 1911 if (isLeaf()) 1912 OS << *getLeafValue(); 1913 else 1914 OS << '(' << getOperator()->getName(); 1915 1916 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1917 OS << ':'; 1918 getExtType(i).writeToStream(OS); 1919 } 1920 1921 if (!isLeaf()) { 1922 if (getNumChildren() != 0) { 1923 OS << " "; 1924 ListSeparator LS; 1925 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1926 OS << LS; 1927 getChild(i)->print(OS); 1928 } 1929 } 1930 OS << ")"; 1931 } 1932 1933 for (const TreePredicateCall &Pred : PredicateCalls) { 1934 OS << "<<P:"; 1935 if (Pred.Scope) 1936 OS << Pred.Scope << ":"; 1937 OS << Pred.Fn.getFnName() << ">>"; 1938 } 1939 if (TransformFn) 1940 OS << "<<X:" << TransformFn->getName() << ">>"; 1941 if (!getName().empty()) 1942 OS << ":$" << getName(); 1943 1944 for (const ScopedName &Name : NamesAsPredicateArg) 1945 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1946 } 1947 void TreePatternNode::dump() const { 1948 print(errs()); 1949 } 1950 1951 /// isIsomorphicTo - Return true if this node is recursively 1952 /// isomorphic to the specified node. For this comparison, the node's 1953 /// entire state is considered. The assigned name is ignored, since 1954 /// nodes with differing names are considered isomorphic. However, if 1955 /// the assigned name is present in the dependent variable set, then 1956 /// the assigned name is considered significant and the node is 1957 /// isomorphic if the names match. 1958 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1959 const MultipleUseVarSet &DepVars) const { 1960 if (N == this) return true; 1961 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1962 getPredicateCalls() != N->getPredicateCalls() || 1963 getTransformFn() != N->getTransformFn()) 1964 return false; 1965 1966 if (isLeaf()) { 1967 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1968 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1969 return ((DI->getDef() == NDI->getDef()) 1970 && (DepVars.find(getName()) == DepVars.end() 1971 || getName() == N->getName())); 1972 } 1973 } 1974 return getLeafValue() == N->getLeafValue(); 1975 } 1976 1977 if (N->getOperator() != getOperator() || 1978 N->getNumChildren() != getNumChildren()) return false; 1979 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1980 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1981 return false; 1982 return true; 1983 } 1984 1985 /// clone - Make a copy of this tree and all of its children. 1986 /// 1987 TreePatternNodePtr TreePatternNode::clone() const { 1988 TreePatternNodePtr New; 1989 if (isLeaf()) { 1990 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1991 } else { 1992 std::vector<TreePatternNodePtr> CChildren; 1993 CChildren.reserve(Children.size()); 1994 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1995 CChildren.push_back(getChild(i)->clone()); 1996 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1997 getNumTypes()); 1998 } 1999 New->setName(getName()); 2000 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2001 New->Types = Types; 2002 New->setPredicateCalls(getPredicateCalls()); 2003 New->setTransformFn(getTransformFn()); 2004 return New; 2005 } 2006 2007 /// RemoveAllTypes - Recursively strip all the types of this tree. 2008 void TreePatternNode::RemoveAllTypes() { 2009 // Reset to unknown type. 2010 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2011 if (isLeaf()) return; 2012 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2013 getChild(i)->RemoveAllTypes(); 2014 } 2015 2016 2017 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2018 /// with actual values specified by ArgMap. 2019 void TreePatternNode::SubstituteFormalArguments( 2020 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2021 if (isLeaf()) return; 2022 2023 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2024 TreePatternNode *Child = getChild(i); 2025 if (Child->isLeaf()) { 2026 Init *Val = Child->getLeafValue(); 2027 // Note that, when substituting into an output pattern, Val might be an 2028 // UnsetInit. 2029 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 2030 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2031 // We found a use of a formal argument, replace it with its value. 2032 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 2033 assert(NewChild && "Couldn't find formal argument!"); 2034 assert((Child->getPredicateCalls().empty() || 2035 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 2036 "Non-empty child predicate clobbered!"); 2037 setChild(i, std::move(NewChild)); 2038 } 2039 } else { 2040 getChild(i)->SubstituteFormalArguments(ArgMap); 2041 } 2042 } 2043 } 2044 2045 2046 /// InlinePatternFragments - If this pattern refers to any pattern 2047 /// fragments, return the set of inlined versions (this can be more than 2048 /// one if a PatFrags record has multiple alternatives). 2049 void TreePatternNode::InlinePatternFragments( 2050 TreePatternNodePtr T, TreePattern &TP, 2051 std::vector<TreePatternNodePtr> &OutAlternatives) { 2052 2053 if (TP.hasError()) 2054 return; 2055 2056 if (isLeaf()) { 2057 OutAlternatives.push_back(T); // nothing to do. 2058 return; 2059 } 2060 2061 Record *Op = getOperator(); 2062 2063 if (!Op->isSubClassOf("PatFrags")) { 2064 if (getNumChildren() == 0) { 2065 OutAlternatives.push_back(T); 2066 return; 2067 } 2068 2069 // Recursively inline children nodes. 2070 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2071 ChildAlternatives.resize(getNumChildren()); 2072 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2073 TreePatternNodePtr Child = getChildShared(i); 2074 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2075 // If there are no alternatives for any child, there are no 2076 // alternatives for this expression as whole. 2077 if (ChildAlternatives[i].empty()) 2078 return; 2079 2080 assert((Child->getPredicateCalls().empty() || 2081 llvm::all_of(ChildAlternatives[i], 2082 [&](const TreePatternNodePtr &NewChild) { 2083 return NewChild->getPredicateCalls() == 2084 Child->getPredicateCalls(); 2085 })) && 2086 "Non-empty child predicate clobbered!"); 2087 } 2088 2089 // The end result is an all-pairs construction of the resultant pattern. 2090 std::vector<unsigned> Idxs; 2091 Idxs.resize(ChildAlternatives.size()); 2092 bool NotDone; 2093 do { 2094 // Create the variant and add it to the output list. 2095 std::vector<TreePatternNodePtr> NewChildren; 2096 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2097 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2098 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2099 getOperator(), std::move(NewChildren), getNumTypes()); 2100 2101 // Copy over properties. 2102 R->setName(getName()); 2103 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2104 R->setPredicateCalls(getPredicateCalls()); 2105 R->setTransformFn(getTransformFn()); 2106 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2107 R->setType(i, getExtType(i)); 2108 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2109 R->setResultIndex(i, getResultIndex(i)); 2110 2111 // Register alternative. 2112 OutAlternatives.push_back(R); 2113 2114 // Increment indices to the next permutation by incrementing the 2115 // indices from last index backward, e.g., generate the sequence 2116 // [0, 0], [0, 1], [1, 0], [1, 1]. 2117 int IdxsIdx; 2118 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2119 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2120 Idxs[IdxsIdx] = 0; 2121 else 2122 break; 2123 } 2124 NotDone = (IdxsIdx >= 0); 2125 } while (NotDone); 2126 2127 return; 2128 } 2129 2130 // Otherwise, we found a reference to a fragment. First, look up its 2131 // TreePattern record. 2132 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2133 2134 // Verify that we are passing the right number of operands. 2135 if (Frag->getNumArgs() != Children.size()) { 2136 TP.error("'" + Op->getName() + "' fragment requires " + 2137 Twine(Frag->getNumArgs()) + " operands!"); 2138 return; 2139 } 2140 2141 TreePredicateFn PredFn(Frag); 2142 unsigned Scope = 0; 2143 if (TreePredicateFn(Frag).usesOperands()) 2144 Scope = TP.getDAGPatterns().allocateScope(); 2145 2146 // Compute the map of formal to actual arguments. 2147 std::map<std::string, TreePatternNodePtr> ArgMap; 2148 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2149 TreePatternNodePtr Child = getChildShared(i); 2150 if (Scope != 0) { 2151 Child = Child->clone(); 2152 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2153 } 2154 ArgMap[Frag->getArgName(i)] = Child; 2155 } 2156 2157 // Loop over all fragment alternatives. 2158 for (const auto &Alternative : Frag->getTrees()) { 2159 TreePatternNodePtr FragTree = Alternative->clone(); 2160 2161 if (!PredFn.isAlwaysTrue()) 2162 FragTree->addPredicateCall(PredFn, Scope); 2163 2164 // Resolve formal arguments to their actual value. 2165 if (Frag->getNumArgs()) 2166 FragTree->SubstituteFormalArguments(ArgMap); 2167 2168 // Transfer types. Note that the resolved alternative may have fewer 2169 // (but not more) results than the PatFrags node. 2170 FragTree->setName(getName()); 2171 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2172 FragTree->UpdateNodeType(i, getExtType(i), TP); 2173 2174 // Transfer in the old predicates. 2175 for (const TreePredicateCall &Pred : getPredicateCalls()) 2176 FragTree->addPredicateCall(Pred); 2177 2178 // The fragment we inlined could have recursive inlining that is needed. See 2179 // if there are any pattern fragments in it and inline them as needed. 2180 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2181 } 2182 } 2183 2184 /// getImplicitType - Check to see if the specified record has an implicit 2185 /// type which should be applied to it. This will infer the type of register 2186 /// references from the register file information, for example. 2187 /// 2188 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2189 /// the F8RC register class argument in: 2190 /// 2191 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2192 /// 2193 /// When Unnamed is false, return the type of a named DAG operand such as the 2194 /// GPR:$src operand above. 2195 /// 2196 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2197 bool NotRegisters, 2198 bool Unnamed, 2199 TreePattern &TP) { 2200 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2201 2202 // Check to see if this is a register operand. 2203 if (R->isSubClassOf("RegisterOperand")) { 2204 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2205 if (NotRegisters) 2206 return TypeSetByHwMode(); // Unknown. 2207 Record *RegClass = R->getValueAsDef("RegClass"); 2208 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2209 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2210 } 2211 2212 // Check to see if this is a register or a register class. 2213 if (R->isSubClassOf("RegisterClass")) { 2214 assert(ResNo == 0 && "Regclass ref only has one result!"); 2215 // An unnamed register class represents itself as an i32 immediate, for 2216 // example on a COPY_TO_REGCLASS instruction. 2217 if (Unnamed) 2218 return TypeSetByHwMode(MVT::i32); 2219 2220 // In a named operand, the register class provides the possible set of 2221 // types. 2222 if (NotRegisters) 2223 return TypeSetByHwMode(); // Unknown. 2224 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2225 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2226 } 2227 2228 if (R->isSubClassOf("PatFrags")) { 2229 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2230 // Pattern fragment types will be resolved when they are inlined. 2231 return TypeSetByHwMode(); // Unknown. 2232 } 2233 2234 if (R->isSubClassOf("Register")) { 2235 assert(ResNo == 0 && "Registers only produce one result!"); 2236 if (NotRegisters) 2237 return TypeSetByHwMode(); // Unknown. 2238 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2239 return TypeSetByHwMode(T.getRegisterVTs(R)); 2240 } 2241 2242 if (R->isSubClassOf("SubRegIndex")) { 2243 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2244 return TypeSetByHwMode(MVT::i32); 2245 } 2246 2247 if (R->isSubClassOf("ValueType")) { 2248 assert(ResNo == 0 && "This node only has one result!"); 2249 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2250 // 2251 // (sext_inreg GPR:$src, i16) 2252 // ~~~ 2253 if (Unnamed) 2254 return TypeSetByHwMode(MVT::Other); 2255 // With a name, the ValueType simply provides the type of the named 2256 // variable. 2257 // 2258 // (sext_inreg i32:$src, i16) 2259 // ~~~~~~~~ 2260 if (NotRegisters) 2261 return TypeSetByHwMode(); // Unknown. 2262 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2263 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2264 } 2265 2266 if (R->isSubClassOf("CondCode")) { 2267 assert(ResNo == 0 && "This node only has one result!"); 2268 // Using a CondCodeSDNode. 2269 return TypeSetByHwMode(MVT::Other); 2270 } 2271 2272 if (R->isSubClassOf("ComplexPattern")) { 2273 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2274 if (NotRegisters) 2275 return TypeSetByHwMode(); // Unknown. 2276 Record *T = CDP.getComplexPattern(R).getValueType(); 2277 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2278 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2279 } 2280 if (R->isSubClassOf("PointerLikeRegClass")) { 2281 assert(ResNo == 0 && "Regclass can only have one result!"); 2282 TypeSetByHwMode VTS(MVT::iPTR); 2283 TP.getInfer().expandOverloads(VTS); 2284 return VTS; 2285 } 2286 2287 if (R->getName() == "node" || R->getName() == "srcvalue" || 2288 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2289 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2290 // Placeholder. 2291 return TypeSetByHwMode(); // Unknown. 2292 } 2293 2294 if (R->isSubClassOf("Operand")) { 2295 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2296 Record *T = R->getValueAsDef("Type"); 2297 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2298 } 2299 2300 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2301 return TypeSetByHwMode(MVT::Other); 2302 } 2303 2304 2305 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2306 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2307 const CodeGenIntrinsic *TreePatternNode:: 2308 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2309 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2310 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2311 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2312 return nullptr; 2313 2314 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2315 return &CDP.getIntrinsicInfo(IID); 2316 } 2317 2318 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2319 /// return the ComplexPattern information, otherwise return null. 2320 const ComplexPattern * 2321 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2322 Record *Rec; 2323 if (isLeaf()) { 2324 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2325 if (!DI) 2326 return nullptr; 2327 Rec = DI->getDef(); 2328 } else 2329 Rec = getOperator(); 2330 2331 if (!Rec->isSubClassOf("ComplexPattern")) 2332 return nullptr; 2333 return &CGP.getComplexPattern(Rec); 2334 } 2335 2336 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2337 // A ComplexPattern specifically declares how many results it fills in. 2338 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2339 return CP->getNumOperands(); 2340 2341 // If MIOperandInfo is specified, that gives the count. 2342 if (isLeaf()) { 2343 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2344 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2345 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2346 if (MIOps->getNumArgs()) 2347 return MIOps->getNumArgs(); 2348 } 2349 } 2350 2351 // Otherwise there is just one result. 2352 return 1; 2353 } 2354 2355 /// NodeHasProperty - Return true if this node has the specified property. 2356 bool TreePatternNode::NodeHasProperty(SDNP Property, 2357 const CodeGenDAGPatterns &CGP) const { 2358 if (isLeaf()) { 2359 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2360 return CP->hasProperty(Property); 2361 2362 return false; 2363 } 2364 2365 if (Property != SDNPHasChain) { 2366 // The chain proprety is already present on the different intrinsic node 2367 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2368 // on the intrinsic. Anything else is specific to the individual intrinsic. 2369 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2370 return Int->hasProperty(Property); 2371 } 2372 2373 if (!Operator->isSubClassOf("SDPatternOperator")) 2374 return false; 2375 2376 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2377 } 2378 2379 2380 2381 2382 /// TreeHasProperty - Return true if any node in this tree has the specified 2383 /// property. 2384 bool TreePatternNode::TreeHasProperty(SDNP Property, 2385 const CodeGenDAGPatterns &CGP) const { 2386 if (NodeHasProperty(Property, CGP)) 2387 return true; 2388 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2389 if (getChild(i)->TreeHasProperty(Property, CGP)) 2390 return true; 2391 return false; 2392 } 2393 2394 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2395 /// commutative intrinsic. 2396 bool 2397 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2398 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2399 return Int->isCommutative; 2400 return false; 2401 } 2402 2403 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2404 if (!N->isLeaf()) 2405 return N->getOperator()->isSubClassOf(Class); 2406 2407 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2408 if (DI && DI->getDef()->isSubClassOf(Class)) 2409 return true; 2410 2411 return false; 2412 } 2413 2414 static void emitTooManyOperandsError(TreePattern &TP, 2415 StringRef InstName, 2416 unsigned Expected, 2417 unsigned Actual) { 2418 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2419 " operands but expected only " + Twine(Expected) + "!"); 2420 } 2421 2422 static void emitTooFewOperandsError(TreePattern &TP, 2423 StringRef InstName, 2424 unsigned Actual) { 2425 TP.error("Instruction '" + InstName + 2426 "' expects more than the provided " + Twine(Actual) + " operands!"); 2427 } 2428 2429 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2430 /// this node and its children in the tree. This returns true if it makes a 2431 /// change, false otherwise. If a type contradiction is found, flag an error. 2432 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2433 if (TP.hasError()) 2434 return false; 2435 2436 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2437 if (isLeaf()) { 2438 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2439 // If it's a regclass or something else known, include the type. 2440 bool MadeChange = false; 2441 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2442 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2443 NotRegisters, 2444 !hasName(), TP), TP); 2445 return MadeChange; 2446 } 2447 2448 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2449 assert(Types.size() == 1 && "Invalid IntInit"); 2450 2451 // Int inits are always integers. :) 2452 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2453 2454 if (!TP.getInfer().isConcrete(Types[0], false)) 2455 return MadeChange; 2456 2457 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2458 for (auto &P : VVT) { 2459 MVT::SimpleValueType VT = P.second.SimpleTy; 2460 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2461 continue; 2462 unsigned Size = MVT(VT).getFixedSizeInBits(); 2463 // Make sure that the value is representable for this type. 2464 if (Size >= 32) 2465 continue; 2466 // Check that the value doesn't use more bits than we have. It must 2467 // either be a sign- or zero-extended equivalent of the original. 2468 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2469 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2470 SignBitAndAbove == 1) 2471 continue; 2472 2473 TP.error("Integer value '" + Twine(II->getValue()) + 2474 "' is out of range for type '" + getEnumName(VT) + "'!"); 2475 break; 2476 } 2477 return MadeChange; 2478 } 2479 2480 return false; 2481 } 2482 2483 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2484 bool MadeChange = false; 2485 2486 // Apply the result type to the node. 2487 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2488 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2489 2490 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2491 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2492 2493 if (getNumChildren() != NumParamVTs + 1) { 2494 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2495 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2496 return false; 2497 } 2498 2499 // Apply type info to the intrinsic ID. 2500 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2501 2502 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2503 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2504 2505 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2506 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2507 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2508 } 2509 return MadeChange; 2510 } 2511 2512 if (getOperator()->isSubClassOf("SDNode")) { 2513 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2514 2515 // Check that the number of operands is sane. Negative operands -> varargs. 2516 if (NI.getNumOperands() >= 0 && 2517 getNumChildren() != (unsigned)NI.getNumOperands()) { 2518 TP.error(getOperator()->getName() + " node requires exactly " + 2519 Twine(NI.getNumOperands()) + " operands!"); 2520 return false; 2521 } 2522 2523 bool MadeChange = false; 2524 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2525 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2526 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2527 return MadeChange; 2528 } 2529 2530 if (getOperator()->isSubClassOf("Instruction")) { 2531 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2532 CodeGenInstruction &InstInfo = 2533 CDP.getTargetInfo().getInstruction(getOperator()); 2534 2535 bool MadeChange = false; 2536 2537 // Apply the result types to the node, these come from the things in the 2538 // (outs) list of the instruction. 2539 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2540 Inst.getNumResults()); 2541 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2542 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2543 2544 // If the instruction has implicit defs, we apply the first one as a result. 2545 // FIXME: This sucks, it should apply all implicit defs. 2546 if (!InstInfo.ImplicitDefs.empty()) { 2547 unsigned ResNo = NumResultsToAdd; 2548 2549 // FIXME: Generalize to multiple possible types and multiple possible 2550 // ImplicitDefs. 2551 MVT::SimpleValueType VT = 2552 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2553 2554 if (VT != MVT::Other) 2555 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2556 } 2557 2558 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2559 // be the same. 2560 if (getOperator()->getName() == "INSERT_SUBREG") { 2561 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2562 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2563 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2564 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2565 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2566 // variadic. 2567 2568 unsigned NChild = getNumChildren(); 2569 if (NChild < 3) { 2570 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2571 return false; 2572 } 2573 2574 if (NChild % 2 == 0) { 2575 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2576 return false; 2577 } 2578 2579 if (!isOperandClass(getChild(0), "RegisterClass")) { 2580 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2581 return false; 2582 } 2583 2584 for (unsigned I = 1; I < NChild; I += 2) { 2585 TreePatternNode *SubIdxChild = getChild(I + 1); 2586 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2587 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2588 Twine(I + 1) + "!"); 2589 return false; 2590 } 2591 } 2592 } 2593 2594 unsigned NumResults = Inst.getNumResults(); 2595 unsigned NumFixedOperands = InstInfo.Operands.size(); 2596 2597 // If one or more operands with a default value appear at the end of the 2598 // formal operand list for an instruction, we allow them to be overridden 2599 // by optional operands provided in the pattern. 2600 // 2601 // But if an operand B without a default appears at any point after an 2602 // operand A with a default, then we don't allow A to be overridden, 2603 // because there would be no way to specify whether the next operand in 2604 // the pattern was intended to override A or skip it. 2605 unsigned NonOverridableOperands = NumFixedOperands; 2606 while (NonOverridableOperands > NumResults && 2607 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2608 --NonOverridableOperands; 2609 2610 unsigned ChildNo = 0; 2611 assert(NumResults <= NumFixedOperands); 2612 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2613 Record *OperandNode = InstInfo.Operands[i].Rec; 2614 2615 // If the operand has a default value, do we use it? We must use the 2616 // default if we've run out of children of the pattern DAG to consume, 2617 // or if the operand is followed by a non-defaulted one. 2618 if (CDP.operandHasDefault(OperandNode) && 2619 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2620 continue; 2621 2622 // If we have run out of child nodes and there _isn't_ a default 2623 // value we can use for the next operand, give an error. 2624 if (ChildNo >= getNumChildren()) { 2625 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2626 return false; 2627 } 2628 2629 TreePatternNode *Child = getChild(ChildNo++); 2630 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2631 2632 // If the operand has sub-operands, they may be provided by distinct 2633 // child patterns, so attempt to match each sub-operand separately. 2634 if (OperandNode->isSubClassOf("Operand")) { 2635 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2636 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2637 // But don't do that if the whole operand is being provided by 2638 // a single ComplexPattern-related Operand. 2639 2640 if (Child->getNumMIResults(CDP) < NumArgs) { 2641 // Match first sub-operand against the child we already have. 2642 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2643 MadeChange |= 2644 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2645 2646 // And the remaining sub-operands against subsequent children. 2647 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2648 if (ChildNo >= getNumChildren()) { 2649 emitTooFewOperandsError(TP, getOperator()->getName(), 2650 getNumChildren()); 2651 return false; 2652 } 2653 Child = getChild(ChildNo++); 2654 2655 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2656 MadeChange |= 2657 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2658 } 2659 continue; 2660 } 2661 } 2662 } 2663 2664 // If we didn't match by pieces above, attempt to match the whole 2665 // operand now. 2666 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2667 } 2668 2669 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2670 emitTooManyOperandsError(TP, getOperator()->getName(), 2671 ChildNo, getNumChildren()); 2672 return false; 2673 } 2674 2675 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2676 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2677 return MadeChange; 2678 } 2679 2680 if (getOperator()->isSubClassOf("ComplexPattern")) { 2681 bool MadeChange = false; 2682 2683 if (!NotRegisters) { 2684 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2685 Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2686 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2687 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2688 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2689 // exclusively use those as non-leaf nodes with explicit type casts, so 2690 // for backwards compatibility we do no inference in that case. This is 2691 // not supported when the ComplexPattern is used as a leaf value, 2692 // however; this inconsistency should be resolved, either by adding this 2693 // case there or by altering the backends to not do this (e.g. using Any 2694 // instead may work). 2695 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2696 MadeChange |= UpdateNodeType(0, VVT, TP); 2697 } 2698 2699 for (unsigned i = 0; i < getNumChildren(); ++i) 2700 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2701 2702 return MadeChange; 2703 } 2704 2705 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2706 2707 // Node transforms always take one operand. 2708 if (getNumChildren() != 1) { 2709 TP.error("Node transform '" + getOperator()->getName() + 2710 "' requires one operand!"); 2711 return false; 2712 } 2713 2714 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2715 return MadeChange; 2716 } 2717 2718 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2719 /// RHS of a commutative operation, not the on LHS. 2720 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2721 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2722 return true; 2723 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2724 return true; 2725 if (isImmAllOnesAllZerosMatch(N)) 2726 return true; 2727 return false; 2728 } 2729 2730 2731 /// canPatternMatch - If it is impossible for this pattern to match on this 2732 /// target, fill in Reason and return false. Otherwise, return true. This is 2733 /// used as a sanity check for .td files (to prevent people from writing stuff 2734 /// that can never possibly work), and to prevent the pattern permuter from 2735 /// generating stuff that is useless. 2736 bool TreePatternNode::canPatternMatch(std::string &Reason, 2737 const CodeGenDAGPatterns &CDP) { 2738 if (isLeaf()) return true; 2739 2740 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2741 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2742 return false; 2743 2744 // If this is an intrinsic, handle cases that would make it not match. For 2745 // example, if an operand is required to be an immediate. 2746 if (getOperator()->isSubClassOf("Intrinsic")) { 2747 // TODO: 2748 return true; 2749 } 2750 2751 if (getOperator()->isSubClassOf("ComplexPattern")) 2752 return true; 2753 2754 // If this node is a commutative operator, check that the LHS isn't an 2755 // immediate. 2756 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2757 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2758 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2759 // Scan all of the operands of the node and make sure that only the last one 2760 // is a constant node, unless the RHS also is. 2761 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2762 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2763 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2764 if (OnlyOnRHSOfCommutative(getChild(i))) { 2765 Reason="Immediate value must be on the RHS of commutative operators!"; 2766 return false; 2767 } 2768 } 2769 } 2770 2771 return true; 2772 } 2773 2774 //===----------------------------------------------------------------------===// 2775 // TreePattern implementation 2776 // 2777 2778 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2779 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2780 isInputPattern(isInput), HasError(false), 2781 Infer(*this) { 2782 for (Init *I : RawPat->getValues()) 2783 Trees.push_back(ParseTreePattern(I, "")); 2784 } 2785 2786 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2787 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2788 isInputPattern(isInput), HasError(false), 2789 Infer(*this) { 2790 Trees.push_back(ParseTreePattern(Pat, "")); 2791 } 2792 2793 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2794 CodeGenDAGPatterns &cdp) 2795 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2796 Infer(*this) { 2797 Trees.push_back(Pat); 2798 } 2799 2800 void TreePattern::error(const Twine &Msg) { 2801 if (HasError) 2802 return; 2803 dump(); 2804 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2805 HasError = true; 2806 } 2807 2808 void TreePattern::ComputeNamedNodes() { 2809 for (TreePatternNodePtr &Tree : Trees) 2810 ComputeNamedNodes(Tree.get()); 2811 } 2812 2813 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2814 if (!N->getName().empty()) 2815 NamedNodes[N->getName()].push_back(N); 2816 2817 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2818 ComputeNamedNodes(N->getChild(i)); 2819 } 2820 2821 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2822 StringRef OpName) { 2823 RecordKeeper &RK = TheInit->getRecordKeeper(); 2824 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2825 Record *R = DI->getDef(); 2826 2827 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2828 // TreePatternNode of its own. For example: 2829 /// (foo GPR, imm) -> (foo GPR, (imm)) 2830 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2831 return ParseTreePattern( 2832 DagInit::get(DI, nullptr, 2833 std::vector<std::pair<Init*, StringInit*> >()), 2834 OpName); 2835 2836 // Input argument? 2837 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2838 if (R->getName() == "node" && !OpName.empty()) { 2839 if (OpName.empty()) 2840 error("'node' argument requires a name to match with operand list"); 2841 Args.push_back(std::string(OpName)); 2842 } 2843 2844 Res->setName(OpName); 2845 return Res; 2846 } 2847 2848 // ?:$name or just $name. 2849 if (isa<UnsetInit>(TheInit)) { 2850 if (OpName.empty()) 2851 error("'?' argument requires a name to match with operand list"); 2852 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2853 Args.push_back(std::string(OpName)); 2854 Res->setName(OpName); 2855 return Res; 2856 } 2857 2858 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2859 if (!OpName.empty()) 2860 error("Constant int or bit argument should not have a name!"); 2861 if (isa<BitInit>(TheInit)) 2862 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2863 return std::make_shared<TreePatternNode>(TheInit, 1); 2864 } 2865 2866 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2867 // Turn this into an IntInit. 2868 Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2869 if (!II || !isa<IntInit>(II)) 2870 error("Bits value must be constants!"); 2871 return ParseTreePattern(II, OpName); 2872 } 2873 2874 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2875 if (!Dag) { 2876 TheInit->print(errs()); 2877 error("Pattern has unexpected init kind!"); 2878 } 2879 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2880 if (!OpDef) error("Pattern has unexpected operator type!"); 2881 Record *Operator = OpDef->getDef(); 2882 2883 if (Operator->isSubClassOf("ValueType")) { 2884 // If the operator is a ValueType, then this must be "type cast" of a leaf 2885 // node. 2886 if (Dag->getNumArgs() != 1) 2887 error("Type cast only takes one operand!"); 2888 2889 TreePatternNodePtr New = 2890 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2891 2892 // Apply the type cast. 2893 if (New->getNumTypes() != 1) 2894 error("Type cast can only have one type!"); 2895 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2896 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2897 2898 if (!OpName.empty()) 2899 error("ValueType cast should not have a name!"); 2900 return New; 2901 } 2902 2903 // Verify that this is something that makes sense for an operator. 2904 if (!Operator->isSubClassOf("PatFrags") && 2905 !Operator->isSubClassOf("SDNode") && 2906 !Operator->isSubClassOf("Instruction") && 2907 !Operator->isSubClassOf("SDNodeXForm") && 2908 !Operator->isSubClassOf("Intrinsic") && 2909 !Operator->isSubClassOf("ComplexPattern") && 2910 Operator->getName() != "set" && 2911 Operator->getName() != "implicit") 2912 error("Unrecognized node '" + Operator->getName() + "'!"); 2913 2914 // Check to see if this is something that is illegal in an input pattern. 2915 if (isInputPattern) { 2916 if (Operator->isSubClassOf("Instruction") || 2917 Operator->isSubClassOf("SDNodeXForm")) 2918 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2919 } else { 2920 if (Operator->isSubClassOf("Intrinsic")) 2921 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2922 2923 if (Operator->isSubClassOf("SDNode") && 2924 Operator->getName() != "imm" && 2925 Operator->getName() != "timm" && 2926 Operator->getName() != "fpimm" && 2927 Operator->getName() != "tglobaltlsaddr" && 2928 Operator->getName() != "tconstpool" && 2929 Operator->getName() != "tjumptable" && 2930 Operator->getName() != "tframeindex" && 2931 Operator->getName() != "texternalsym" && 2932 Operator->getName() != "tblockaddress" && 2933 Operator->getName() != "tglobaladdr" && 2934 Operator->getName() != "bb" && 2935 Operator->getName() != "vt" && 2936 Operator->getName() != "mcsym") 2937 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2938 } 2939 2940 std::vector<TreePatternNodePtr> Children; 2941 2942 // Parse all the operands. 2943 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2944 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2945 2946 // Get the actual number of results before Operator is converted to an intrinsic 2947 // node (which is hard-coded to have either zero or one result). 2948 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2949 2950 // If the operator is an intrinsic, then this is just syntactic sugar for 2951 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2952 // convert the intrinsic name to a number. 2953 if (Operator->isSubClassOf("Intrinsic")) { 2954 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2955 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2956 2957 // If this intrinsic returns void, it must have side-effects and thus a 2958 // chain. 2959 if (Int.IS.RetVTs.empty()) 2960 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2961 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2962 // Has side-effects, requires chain. 2963 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2964 else // Otherwise, no chain. 2965 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2966 2967 Children.insert(Children.begin(), std::make_shared<TreePatternNode>( 2968 IntInit::get(RK, IID), 1)); 2969 } 2970 2971 if (Operator->isSubClassOf("ComplexPattern")) { 2972 for (unsigned i = 0; i < Children.size(); ++i) { 2973 TreePatternNodePtr Child = Children[i]; 2974 2975 if (Child->getName().empty()) 2976 error("All arguments to a ComplexPattern must be named"); 2977 2978 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2979 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2980 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2981 auto OperandId = std::make_pair(Operator, i); 2982 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2983 if (PrevOp != ComplexPatternOperands.end()) { 2984 if (PrevOp->getValue() != OperandId) 2985 error("All ComplexPattern operands must appear consistently: " 2986 "in the same order in just one ComplexPattern instance."); 2987 } else 2988 ComplexPatternOperands[Child->getName()] = OperandId; 2989 } 2990 } 2991 2992 TreePatternNodePtr Result = 2993 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2994 NumResults); 2995 Result->setName(OpName); 2996 2997 if (Dag->getName()) { 2998 assert(Result->getName().empty()); 2999 Result->setName(Dag->getNameStr()); 3000 } 3001 return Result; 3002 } 3003 3004 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3005 /// will never match in favor of something obvious that will. This is here 3006 /// strictly as a convenience to target authors because it allows them to write 3007 /// more type generic things and have useless type casts fold away. 3008 /// 3009 /// This returns true if any change is made. 3010 static bool SimplifyTree(TreePatternNodePtr &N) { 3011 if (N->isLeaf()) 3012 return false; 3013 3014 // If we have a bitconvert with a resolved type and if the source and 3015 // destination types are the same, then the bitconvert is useless, remove it. 3016 // 3017 // We make an exception if the types are completely empty. This can come up 3018 // when the pattern being simplified is in the Fragments list of a PatFrags, 3019 // so that the operand is just an untyped "node". In that situation we leave 3020 // bitconverts unsimplified, and simplify them later once the fragment is 3021 // expanded into its true context. 3022 if (N->getOperator()->getName() == "bitconvert" && 3023 N->getExtType(0).isValueTypeByHwMode(false) && 3024 !N->getExtType(0).empty() && 3025 N->getExtType(0) == N->getChild(0)->getExtType(0) && 3026 N->getName().empty()) { 3027 N = N->getChildShared(0); 3028 SimplifyTree(N); 3029 return true; 3030 } 3031 3032 // Walk all children. 3033 bool MadeChange = false; 3034 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3035 TreePatternNodePtr Child = N->getChildShared(i); 3036 MadeChange |= SimplifyTree(Child); 3037 N->setChild(i, std::move(Child)); 3038 } 3039 return MadeChange; 3040 } 3041 3042 3043 3044 /// InferAllTypes - Infer/propagate as many types throughout the expression 3045 /// patterns as possible. Return true if all types are inferred, false 3046 /// otherwise. Flags an error if a type contradiction is found. 3047 bool TreePattern:: 3048 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 3049 if (NamedNodes.empty()) 3050 ComputeNamedNodes(); 3051 3052 bool MadeChange = true; 3053 while (MadeChange) { 3054 MadeChange = false; 3055 for (TreePatternNodePtr &Tree : Trees) { 3056 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3057 MadeChange |= SimplifyTree(Tree); 3058 } 3059 3060 // If there are constraints on our named nodes, apply them. 3061 for (auto &Entry : NamedNodes) { 3062 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 3063 3064 // If we have input named node types, propagate their types to the named 3065 // values here. 3066 if (InNamedTypes) { 3067 if (!InNamedTypes->count(Entry.getKey())) { 3068 error("Node '" + std::string(Entry.getKey()) + 3069 "' in output pattern but not input pattern"); 3070 return true; 3071 } 3072 3073 const SmallVectorImpl<TreePatternNode*> &InNodes = 3074 InNamedTypes->find(Entry.getKey())->second; 3075 3076 // The input types should be fully resolved by now. 3077 for (TreePatternNode *Node : Nodes) { 3078 // If this node is a register class, and it is the root of the pattern 3079 // then we're mapping something onto an input register. We allow 3080 // changing the type of the input register in this case. This allows 3081 // us to match things like: 3082 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3083 if (Node == Trees[0].get() && Node->isLeaf()) { 3084 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3085 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3086 DI->getDef()->isSubClassOf("RegisterOperand"))) 3087 continue; 3088 } 3089 3090 assert(Node->getNumTypes() == 1 && 3091 InNodes[0]->getNumTypes() == 1 && 3092 "FIXME: cannot name multiple result nodes yet"); 3093 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3094 *this); 3095 } 3096 } 3097 3098 // If there are multiple nodes with the same name, they must all have the 3099 // same type. 3100 if (Entry.second.size() > 1) { 3101 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3102 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3103 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3104 "FIXME: cannot name multiple result nodes yet"); 3105 3106 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3107 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3108 } 3109 } 3110 } 3111 } 3112 3113 bool HasUnresolvedTypes = false; 3114 for (const TreePatternNodePtr &Tree : Trees) 3115 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3116 return !HasUnresolvedTypes; 3117 } 3118 3119 void TreePattern::print(raw_ostream &OS) const { 3120 OS << getRecord()->getName(); 3121 if (!Args.empty()) { 3122 OS << "("; 3123 ListSeparator LS; 3124 for (const std::string &Arg : Args) 3125 OS << LS << Arg; 3126 OS << ")"; 3127 } 3128 OS << ": "; 3129 3130 if (Trees.size() > 1) 3131 OS << "[\n"; 3132 for (const TreePatternNodePtr &Tree : Trees) { 3133 OS << "\t"; 3134 Tree->print(OS); 3135 OS << "\n"; 3136 } 3137 3138 if (Trees.size() > 1) 3139 OS << "]\n"; 3140 } 3141 3142 void TreePattern::dump() const { print(errs()); } 3143 3144 //===----------------------------------------------------------------------===// 3145 // CodeGenDAGPatterns implementation 3146 // 3147 3148 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3149 PatternRewriterFn PatternRewriter) 3150 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3151 PatternRewriter(PatternRewriter) { 3152 3153 Intrinsics = CodeGenIntrinsicTable(Records); 3154 ParseNodeInfo(); 3155 ParseNodeTransforms(); 3156 ParseComplexPatterns(); 3157 ParsePatternFragments(); 3158 ParseDefaultOperands(); 3159 ParseInstructions(); 3160 ParsePatternFragments(/*OutFrags*/true); 3161 ParsePatterns(); 3162 3163 // Generate variants. For example, commutative patterns can match 3164 // multiple ways. Add them to PatternsToMatch as well. 3165 GenerateVariants(); 3166 3167 // Break patterns with parameterized types into a series of patterns, 3168 // where each one has a fixed type and is predicated on the conditions 3169 // of the associated HW mode. 3170 ExpandHwModeBasedTypes(); 3171 3172 // Infer instruction flags. For example, we can detect loads, 3173 // stores, and side effects in many cases by examining an 3174 // instruction's pattern. 3175 InferInstructionFlags(); 3176 3177 // Verify that instruction flags match the patterns. 3178 VerifyInstructionFlags(); 3179 } 3180 3181 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3182 Record *N = Records.getDef(Name); 3183 if (!N || !N->isSubClassOf("SDNode")) 3184 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3185 3186 return N; 3187 } 3188 3189 // Parse all of the SDNode definitions for the target, populating SDNodes. 3190 void CodeGenDAGPatterns::ParseNodeInfo() { 3191 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3192 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3193 3194 while (!Nodes.empty()) { 3195 Record *R = Nodes.back(); 3196 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3197 Nodes.pop_back(); 3198 } 3199 3200 // Get the builtin intrinsic nodes. 3201 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3202 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3203 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3204 } 3205 3206 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3207 /// map, and emit them to the file as functions. 3208 void CodeGenDAGPatterns::ParseNodeTransforms() { 3209 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3210 while (!Xforms.empty()) { 3211 Record *XFormNode = Xforms.back(); 3212 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3213 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3214 SDNodeXForms.insert( 3215 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3216 3217 Xforms.pop_back(); 3218 } 3219 } 3220 3221 void CodeGenDAGPatterns::ParseComplexPatterns() { 3222 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3223 while (!AMs.empty()) { 3224 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3225 AMs.pop_back(); 3226 } 3227 } 3228 3229 3230 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3231 /// file, building up the PatternFragments map. After we've collected them all, 3232 /// inline fragments together as necessary, so that there are no references left 3233 /// inside a pattern fragment to a pattern fragment. 3234 /// 3235 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3236 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3237 3238 // First step, parse all of the fragments. 3239 for (Record *Frag : Fragments) { 3240 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3241 continue; 3242 3243 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3244 TreePattern *P = 3245 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3246 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3247 *this)).get(); 3248 3249 // Validate the argument list, converting it to set, to discard duplicates. 3250 std::vector<std::string> &Args = P->getArgList(); 3251 // Copy the args so we can take StringRefs to them. 3252 auto ArgsCopy = Args; 3253 SmallDenseSet<StringRef, 4> OperandsSet; 3254 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3255 3256 if (OperandsSet.count("")) 3257 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3258 3259 // Parse the operands list. 3260 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3261 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3262 // Special cases: ops == outs == ins. Different names are used to 3263 // improve readability. 3264 if (!OpsOp || 3265 (OpsOp->getDef()->getName() != "ops" && 3266 OpsOp->getDef()->getName() != "outs" && 3267 OpsOp->getDef()->getName() != "ins")) 3268 P->error("Operands list should start with '(ops ... '!"); 3269 3270 // Copy over the arguments. 3271 Args.clear(); 3272 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3273 if (!isa<DefInit>(OpsList->getArg(j)) || 3274 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3275 P->error("Operands list should all be 'node' values."); 3276 if (!OpsList->getArgName(j)) 3277 P->error("Operands list should have names for each operand!"); 3278 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3279 if (!OperandsSet.count(ArgNameStr)) 3280 P->error("'" + ArgNameStr + 3281 "' does not occur in pattern or was multiply specified!"); 3282 OperandsSet.erase(ArgNameStr); 3283 Args.push_back(std::string(ArgNameStr)); 3284 } 3285 3286 if (!OperandsSet.empty()) 3287 P->error("Operands list does not contain an entry for operand '" + 3288 *OperandsSet.begin() + "'!"); 3289 3290 // If there is a node transformation corresponding to this, keep track of 3291 // it. 3292 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3293 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3294 for (const auto &T : P->getTrees()) 3295 T->setTransformFn(Transform); 3296 } 3297 3298 // Now that we've parsed all of the tree fragments, do a closure on them so 3299 // that there are not references to PatFrags left inside of them. 3300 for (Record *Frag : Fragments) { 3301 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3302 continue; 3303 3304 TreePattern &ThePat = *PatternFragments[Frag]; 3305 ThePat.InlinePatternFragments(); 3306 3307 // Infer as many types as possible. Don't worry about it if we don't infer 3308 // all of them, some may depend on the inputs of the pattern. Also, don't 3309 // validate type sets; validation may cause spurious failures e.g. if a 3310 // fragment needs floating-point types but the current target does not have 3311 // any (this is only an error if that fragment is ever used!). 3312 { 3313 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3314 ThePat.InferAllTypes(); 3315 ThePat.resetError(); 3316 } 3317 3318 // If debugging, print out the pattern fragment result. 3319 LLVM_DEBUG(ThePat.dump()); 3320 } 3321 } 3322 3323 void CodeGenDAGPatterns::ParseDefaultOperands() { 3324 std::vector<Record*> DefaultOps; 3325 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3326 3327 // Find some SDNode. 3328 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3329 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3330 3331 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3332 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3333 3334 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3335 // SomeSDnode so that we can parse this. 3336 std::vector<std::pair<Init*, StringInit*> > Ops; 3337 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3338 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3339 DefaultInfo->getArgName(op))); 3340 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3341 3342 // Create a TreePattern to parse this. 3343 TreePattern P(DefaultOps[i], DI, false, *this); 3344 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3345 3346 // Copy the operands over into a DAGDefaultOperand. 3347 DAGDefaultOperand DefaultOpInfo; 3348 3349 const TreePatternNodePtr &T = P.getTree(0); 3350 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3351 TreePatternNodePtr TPN = T->getChildShared(op); 3352 while (TPN->ApplyTypeConstraints(P, false)) 3353 /* Resolve all types */; 3354 3355 if (TPN->ContainsUnresolvedType(P)) { 3356 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3357 DefaultOps[i]->getName() + 3358 "' doesn't have a concrete type!"); 3359 } 3360 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3361 } 3362 3363 // Insert it into the DefaultOperands map so we can find it later. 3364 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3365 } 3366 } 3367 3368 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3369 /// instruction input. Return true if this is a real use. 3370 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3371 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3372 // No name -> not interesting. 3373 if (Pat->getName().empty()) { 3374 if (Pat->isLeaf()) { 3375 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3376 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3377 DI->getDef()->isSubClassOf("RegisterOperand"))) 3378 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3379 } 3380 return false; 3381 } 3382 3383 Record *Rec; 3384 if (Pat->isLeaf()) { 3385 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3386 if (!DI) 3387 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3388 Rec = DI->getDef(); 3389 } else { 3390 Rec = Pat->getOperator(); 3391 } 3392 3393 // SRCVALUE nodes are ignored. 3394 if (Rec->getName() == "srcvalue") 3395 return false; 3396 3397 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3398 if (!Slot) { 3399 Slot = Pat; 3400 return true; 3401 } 3402 Record *SlotRec; 3403 if (Slot->isLeaf()) { 3404 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3405 } else { 3406 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3407 SlotRec = Slot->getOperator(); 3408 } 3409 3410 // Ensure that the inputs agree if we've already seen this input. 3411 if (Rec != SlotRec) 3412 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3413 // Ensure that the types can agree as well. 3414 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3415 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3416 if (Slot->getExtTypes() != Pat->getExtTypes()) 3417 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3418 return true; 3419 } 3420 3421 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3422 /// part of "I", the instruction), computing the set of inputs and outputs of 3423 /// the pattern. Report errors if we see anything naughty. 3424 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3425 TreePattern &I, TreePatternNodePtr Pat, 3426 std::map<std::string, TreePatternNodePtr> &InstInputs, 3427 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3428 &InstResults, 3429 std::vector<Record *> &InstImpResults) { 3430 3431 // The instruction pattern still has unresolved fragments. For *named* 3432 // nodes we must resolve those here. This may not result in multiple 3433 // alternatives. 3434 if (!Pat->getName().empty()) { 3435 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3436 SrcPattern.InlinePatternFragments(); 3437 SrcPattern.InferAllTypes(); 3438 Pat = SrcPattern.getOnlyTree(); 3439 } 3440 3441 if (Pat->isLeaf()) { 3442 bool isUse = HandleUse(I, Pat, InstInputs); 3443 if (!isUse && Pat->getTransformFn()) 3444 I.error("Cannot specify a transform function for a non-input value!"); 3445 return; 3446 } 3447 3448 if (Pat->getOperator()->getName() == "implicit") { 3449 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3450 TreePatternNode *Dest = Pat->getChild(i); 3451 if (!Dest->isLeaf()) 3452 I.error("implicitly defined value should be a register!"); 3453 3454 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3455 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3456 I.error("implicitly defined value should be a register!"); 3457 InstImpResults.push_back(Val->getDef()); 3458 } 3459 return; 3460 } 3461 3462 if (Pat->getOperator()->getName() != "set") { 3463 // If this is not a set, verify that the children nodes are not void typed, 3464 // and recurse. 3465 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3466 if (Pat->getChild(i)->getNumTypes() == 0) 3467 I.error("Cannot have void nodes inside of patterns!"); 3468 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3469 InstResults, InstImpResults); 3470 } 3471 3472 // If this is a non-leaf node with no children, treat it basically as if 3473 // it were a leaf. This handles nodes like (imm). 3474 bool isUse = HandleUse(I, Pat, InstInputs); 3475 3476 if (!isUse && Pat->getTransformFn()) 3477 I.error("Cannot specify a transform function for a non-input value!"); 3478 return; 3479 } 3480 3481 // Otherwise, this is a set, validate and collect instruction results. 3482 if (Pat->getNumChildren() == 0) 3483 I.error("set requires operands!"); 3484 3485 if (Pat->getTransformFn()) 3486 I.error("Cannot specify a transform function on a set node!"); 3487 3488 // Check the set destinations. 3489 unsigned NumDests = Pat->getNumChildren()-1; 3490 for (unsigned i = 0; i != NumDests; ++i) { 3491 TreePatternNodePtr Dest = Pat->getChildShared(i); 3492 // For set destinations we also must resolve fragments here. 3493 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3494 DestPattern.InlinePatternFragments(); 3495 DestPattern.InferAllTypes(); 3496 Dest = DestPattern.getOnlyTree(); 3497 3498 if (!Dest->isLeaf()) 3499 I.error("set destination should be a register!"); 3500 3501 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3502 if (!Val) { 3503 I.error("set destination should be a register!"); 3504 continue; 3505 } 3506 3507 if (Val->getDef()->isSubClassOf("RegisterClass") || 3508 Val->getDef()->isSubClassOf("ValueType") || 3509 Val->getDef()->isSubClassOf("RegisterOperand") || 3510 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3511 if (Dest->getName().empty()) 3512 I.error("set destination must have a name!"); 3513 if (InstResults.count(Dest->getName())) 3514 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3515 InstResults[Dest->getName()] = Dest; 3516 } else if (Val->getDef()->isSubClassOf("Register")) { 3517 InstImpResults.push_back(Val->getDef()); 3518 } else { 3519 I.error("set destination should be a register!"); 3520 } 3521 } 3522 3523 // Verify and collect info from the computation. 3524 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3525 InstResults, InstImpResults); 3526 } 3527 3528 //===----------------------------------------------------------------------===// 3529 // Instruction Analysis 3530 //===----------------------------------------------------------------------===// 3531 3532 class InstAnalyzer { 3533 const CodeGenDAGPatterns &CDP; 3534 public: 3535 bool hasSideEffects; 3536 bool mayStore; 3537 bool mayLoad; 3538 bool isBitcast; 3539 bool isVariadic; 3540 bool hasChain; 3541 3542 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3543 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3544 isBitcast(false), isVariadic(false), hasChain(false) {} 3545 3546 void Analyze(const PatternToMatch &Pat) { 3547 const TreePatternNode *N = Pat.getSrcPattern(); 3548 AnalyzeNode(N); 3549 // These properties are detected only on the root node. 3550 isBitcast = IsNodeBitcast(N); 3551 } 3552 3553 private: 3554 bool IsNodeBitcast(const TreePatternNode *N) const { 3555 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3556 return false; 3557 3558 if (N->isLeaf()) 3559 return false; 3560 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3561 return false; 3562 3563 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3564 return false; 3565 3566 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3567 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3568 return false; 3569 return OpInfo.getEnumName() == "ISD::BITCAST"; 3570 } 3571 3572 public: 3573 void AnalyzeNode(const TreePatternNode *N) { 3574 if (N->isLeaf()) { 3575 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3576 Record *LeafRec = DI->getDef(); 3577 // Handle ComplexPattern leaves. 3578 if (LeafRec->isSubClassOf("ComplexPattern")) { 3579 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3580 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3581 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3582 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3583 } 3584 } 3585 return; 3586 } 3587 3588 // Analyze children. 3589 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3590 AnalyzeNode(N->getChild(i)); 3591 3592 // Notice properties of the node. 3593 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3594 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3595 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3596 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3597 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3598 3599 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3600 // If this is an intrinsic, analyze it. 3601 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3602 mayLoad = true;// These may load memory. 3603 3604 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3605 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3606 3607 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3608 IntInfo->hasSideEffects) 3609 // ReadWriteMem intrinsics can have other strange effects. 3610 hasSideEffects = true; 3611 } 3612 } 3613 3614 }; 3615 3616 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3617 const InstAnalyzer &PatInfo, 3618 Record *PatDef) { 3619 bool Error = false; 3620 3621 // Remember where InstInfo got its flags. 3622 if (InstInfo.hasUndefFlags()) 3623 InstInfo.InferredFrom = PatDef; 3624 3625 // Check explicitly set flags for consistency. 3626 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3627 !InstInfo.hasSideEffects_Unset) { 3628 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3629 // the pattern has no side effects. That could be useful for div/rem 3630 // instructions that may trap. 3631 if (!InstInfo.hasSideEffects) { 3632 Error = true; 3633 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3634 Twine(InstInfo.hasSideEffects)); 3635 } 3636 } 3637 3638 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3639 Error = true; 3640 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3641 Twine(InstInfo.mayStore)); 3642 } 3643 3644 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3645 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3646 // Some targets translate immediates to loads. 3647 if (!InstInfo.mayLoad) { 3648 Error = true; 3649 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3650 Twine(InstInfo.mayLoad)); 3651 } 3652 } 3653 3654 // Transfer inferred flags. 3655 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3656 InstInfo.mayStore |= PatInfo.mayStore; 3657 InstInfo.mayLoad |= PatInfo.mayLoad; 3658 3659 // These flags are silently added without any verification. 3660 // FIXME: To match historical behavior of TableGen, for now add those flags 3661 // only when we're inferring from the primary instruction pattern. 3662 if (PatDef->isSubClassOf("Instruction")) { 3663 InstInfo.isBitcast |= PatInfo.isBitcast; 3664 InstInfo.hasChain |= PatInfo.hasChain; 3665 InstInfo.hasChain_Inferred = true; 3666 } 3667 3668 // Don't infer isVariadic. This flag means something different on SDNodes and 3669 // instructions. For example, a CALL SDNode is variadic because it has the 3670 // call arguments as operands, but a CALL instruction is not variadic - it 3671 // has argument registers as implicit, not explicit uses. 3672 3673 return Error; 3674 } 3675 3676 /// hasNullFragReference - Return true if the DAG has any reference to the 3677 /// null_frag operator. 3678 static bool hasNullFragReference(DagInit *DI) { 3679 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3680 if (!OpDef) return false; 3681 Record *Operator = OpDef->getDef(); 3682 3683 // If this is the null fragment, return true. 3684 if (Operator->getName() == "null_frag") return true; 3685 // If any of the arguments reference the null fragment, return true. 3686 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3687 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3688 if (Arg->getDef()->getName() == "null_frag") 3689 return true; 3690 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3691 if (Arg && hasNullFragReference(Arg)) 3692 return true; 3693 } 3694 3695 return false; 3696 } 3697 3698 /// hasNullFragReference - Return true if any DAG in the list references 3699 /// the null_frag operator. 3700 static bool hasNullFragReference(ListInit *LI) { 3701 for (Init *I : LI->getValues()) { 3702 DagInit *DI = dyn_cast<DagInit>(I); 3703 assert(DI && "non-dag in an instruction Pattern list?!"); 3704 if (hasNullFragReference(DI)) 3705 return true; 3706 } 3707 return false; 3708 } 3709 3710 /// Get all the instructions in a tree. 3711 static void 3712 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3713 if (Tree->isLeaf()) 3714 return; 3715 if (Tree->getOperator()->isSubClassOf("Instruction")) 3716 Instrs.push_back(Tree->getOperator()); 3717 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3718 getInstructionsInTree(Tree->getChild(i), Instrs); 3719 } 3720 3721 /// Check the class of a pattern leaf node against the instruction operand it 3722 /// represents. 3723 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3724 Record *Leaf) { 3725 if (OI.Rec == Leaf) 3726 return true; 3727 3728 // Allow direct value types to be used in instruction set patterns. 3729 // The type will be checked later. 3730 if (Leaf->isSubClassOf("ValueType")) 3731 return true; 3732 3733 // Patterns can also be ComplexPattern instances. 3734 if (Leaf->isSubClassOf("ComplexPattern")) 3735 return true; 3736 3737 return false; 3738 } 3739 3740 void CodeGenDAGPatterns::parseInstructionPattern( 3741 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3742 3743 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3744 3745 // Parse the instruction. 3746 TreePattern I(CGI.TheDef, Pat, true, *this); 3747 3748 // InstInputs - Keep track of all of the inputs of the instruction, along 3749 // with the record they are declared as. 3750 std::map<std::string, TreePatternNodePtr> InstInputs; 3751 3752 // InstResults - Keep track of all the virtual registers that are 'set' 3753 // in the instruction, including what reg class they are. 3754 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3755 InstResults; 3756 3757 std::vector<Record*> InstImpResults; 3758 3759 // Verify that the top-level forms in the instruction are of void type, and 3760 // fill in the InstResults map. 3761 SmallString<32> TypesString; 3762 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3763 TypesString.clear(); 3764 TreePatternNodePtr Pat = I.getTree(j); 3765 if (Pat->getNumTypes() != 0) { 3766 raw_svector_ostream OS(TypesString); 3767 ListSeparator LS; 3768 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3769 OS << LS; 3770 Pat->getExtType(k).writeToStream(OS); 3771 } 3772 I.error("Top-level forms in instruction pattern should have" 3773 " void types, has types " + 3774 OS.str()); 3775 } 3776 3777 // Find inputs and outputs, and verify the structure of the uses/defs. 3778 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3779 InstImpResults); 3780 } 3781 3782 // Now that we have inputs and outputs of the pattern, inspect the operands 3783 // list for the instruction. This determines the order that operands are 3784 // added to the machine instruction the node corresponds to. 3785 unsigned NumResults = InstResults.size(); 3786 3787 // Parse the operands list from the (ops) list, validating it. 3788 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3789 3790 // Check that all of the results occur first in the list. 3791 std::vector<Record*> Results; 3792 std::vector<unsigned> ResultIndices; 3793 SmallVector<TreePatternNodePtr, 2> ResNodes; 3794 for (unsigned i = 0; i != NumResults; ++i) { 3795 if (i == CGI.Operands.size()) { 3796 const std::string &OpName = 3797 llvm::find_if( 3798 InstResults, 3799 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3800 return P.second; 3801 }) 3802 ->first; 3803 3804 I.error("'" + OpName + "' set but does not appear in operand list!"); 3805 } 3806 3807 const std::string &OpName = CGI.Operands[i].Name; 3808 3809 // Check that it exists in InstResults. 3810 auto InstResultIter = InstResults.find(OpName); 3811 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3812 I.error("Operand $" + OpName + " does not exist in operand list!"); 3813 3814 TreePatternNodePtr RNode = InstResultIter->second; 3815 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3816 ResNodes.push_back(std::move(RNode)); 3817 if (!R) 3818 I.error("Operand $" + OpName + " should be a set destination: all " 3819 "outputs must occur before inputs in operand list!"); 3820 3821 if (!checkOperandClass(CGI.Operands[i], R)) 3822 I.error("Operand $" + OpName + " class mismatch!"); 3823 3824 // Remember the return type. 3825 Results.push_back(CGI.Operands[i].Rec); 3826 3827 // Remember the result index. 3828 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3829 3830 // Okay, this one checks out. 3831 InstResultIter->second = nullptr; 3832 } 3833 3834 // Loop over the inputs next. 3835 std::vector<TreePatternNodePtr> ResultNodeOperands; 3836 std::vector<Record*> Operands; 3837 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3838 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3839 const std::string &OpName = Op.Name; 3840 if (OpName.empty()) 3841 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3842 3843 if (!InstInputs.count(OpName)) { 3844 // If this is an operand with a DefaultOps set filled in, we can ignore 3845 // this. When we codegen it, we will do so as always executed. 3846 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3847 // Does it have a non-empty DefaultOps field? If so, ignore this 3848 // operand. 3849 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3850 continue; 3851 } 3852 I.error("Operand $" + OpName + 3853 " does not appear in the instruction pattern"); 3854 } 3855 TreePatternNodePtr InVal = InstInputs[OpName]; 3856 InstInputs.erase(OpName); // It occurred, remove from map. 3857 3858 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3859 Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3860 if (!checkOperandClass(Op, InRec)) 3861 I.error("Operand $" + OpName + "'s register class disagrees" 3862 " between the operand and pattern"); 3863 } 3864 Operands.push_back(Op.Rec); 3865 3866 // Construct the result for the dest-pattern operand list. 3867 TreePatternNodePtr OpNode = InVal->clone(); 3868 3869 // No predicate is useful on the result. 3870 OpNode->clearPredicateCalls(); 3871 3872 // Promote the xform function to be an explicit node if set. 3873 if (Record *Xform = OpNode->getTransformFn()) { 3874 OpNode->setTransformFn(nullptr); 3875 std::vector<TreePatternNodePtr> Children; 3876 Children.push_back(OpNode); 3877 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3878 OpNode->getNumTypes()); 3879 } 3880 3881 ResultNodeOperands.push_back(std::move(OpNode)); 3882 } 3883 3884 if (!InstInputs.empty()) 3885 I.error("Input operand $" + InstInputs.begin()->first + 3886 " occurs in pattern but not in operands list!"); 3887 3888 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3889 I.getRecord(), std::move(ResultNodeOperands), 3890 GetNumNodeResults(I.getRecord(), *this)); 3891 // Copy fully inferred output node types to instruction result pattern. 3892 for (unsigned i = 0; i != NumResults; ++i) { 3893 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3894 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3895 ResultPattern->setResultIndex(i, ResultIndices[i]); 3896 } 3897 3898 // FIXME: Assume only the first tree is the pattern. The others are clobber 3899 // nodes. 3900 TreePatternNodePtr Pattern = I.getTree(0); 3901 TreePatternNodePtr SrcPattern; 3902 if (Pattern->getOperator()->getName() == "set") { 3903 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3904 } else{ 3905 // Not a set (store or something?) 3906 SrcPattern = Pattern; 3907 } 3908 3909 // Create and insert the instruction. 3910 // FIXME: InstImpResults should not be part of DAGInstruction. 3911 Record *R = I.getRecord(); 3912 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3913 std::forward_as_tuple(Results, Operands, InstImpResults, 3914 SrcPattern, ResultPattern)); 3915 3916 LLVM_DEBUG(I.dump()); 3917 } 3918 3919 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3920 /// any fragments involved. This populates the Instructions list with fully 3921 /// resolved instructions. 3922 void CodeGenDAGPatterns::ParseInstructions() { 3923 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3924 3925 for (Record *Instr : Instrs) { 3926 ListInit *LI = nullptr; 3927 3928 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3929 LI = Instr->getValueAsListInit("Pattern"); 3930 3931 // If there is no pattern, only collect minimal information about the 3932 // instruction for its operand list. We have to assume that there is one 3933 // result, as we have no detailed info. A pattern which references the 3934 // null_frag operator is as-if no pattern were specified. Normally this 3935 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3936 // null_frag. 3937 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3938 std::vector<Record*> Results; 3939 std::vector<Record*> Operands; 3940 3941 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3942 3943 if (InstInfo.Operands.size() != 0) { 3944 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3945 Results.push_back(InstInfo.Operands[j].Rec); 3946 3947 // The rest are inputs. 3948 for (unsigned j = InstInfo.Operands.NumDefs, 3949 e = InstInfo.Operands.size(); j < e; ++j) 3950 Operands.push_back(InstInfo.Operands[j].Rec); 3951 } 3952 3953 // Create and insert the instruction. 3954 std::vector<Record*> ImpResults; 3955 Instructions.insert(std::make_pair(Instr, 3956 DAGInstruction(Results, Operands, ImpResults))); 3957 continue; // no pattern. 3958 } 3959 3960 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3961 parseInstructionPattern(CGI, LI, Instructions); 3962 } 3963 3964 // If we can, convert the instructions to be patterns that are matched! 3965 for (auto &Entry : Instructions) { 3966 Record *Instr = Entry.first; 3967 DAGInstruction &TheInst = Entry.second; 3968 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3969 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3970 3971 if (SrcPattern && ResultPattern) { 3972 TreePattern Pattern(Instr, SrcPattern, true, *this); 3973 TreePattern Result(Instr, ResultPattern, false, *this); 3974 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3975 } 3976 } 3977 } 3978 3979 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3980 3981 static void FindNames(TreePatternNode *P, 3982 std::map<std::string, NameRecord> &Names, 3983 TreePattern *PatternTop) { 3984 if (!P->getName().empty()) { 3985 NameRecord &Rec = Names[P->getName()]; 3986 // If this is the first instance of the name, remember the node. 3987 if (Rec.second++ == 0) 3988 Rec.first = P; 3989 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3990 PatternTop->error("repetition of value: $" + P->getName() + 3991 " where different uses have different types!"); 3992 } 3993 3994 if (!P->isLeaf()) { 3995 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3996 FindNames(P->getChild(i), Names, PatternTop); 3997 } 3998 } 3999 4000 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4001 PatternToMatch &&PTM) { 4002 // Do some sanity checking on the pattern we're about to match. 4003 std::string Reason; 4004 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 4005 PrintWarning(Pattern->getRecord()->getLoc(), 4006 Twine("Pattern can never match: ") + Reason); 4007 return; 4008 } 4009 4010 // If the source pattern's root is a complex pattern, that complex pattern 4011 // must specify the nodes it can potentially match. 4012 if (const ComplexPattern *CP = 4013 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 4014 if (CP->getRootNodes().empty()) 4015 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4016 " could match"); 4017 4018 4019 // Find all of the named values in the input and output, ensure they have the 4020 // same type. 4021 std::map<std::string, NameRecord> SrcNames, DstNames; 4022 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4023 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4024 4025 // Scan all of the named values in the destination pattern, rejecting them if 4026 // they don't exist in the input pattern. 4027 for (const auto &Entry : DstNames) { 4028 if (SrcNames[Entry.first].first == nullptr) 4029 Pattern->error("Pattern has input without matching name in output: $" + 4030 Entry.first); 4031 } 4032 4033 // Scan all of the named values in the source pattern, rejecting them if the 4034 // name isn't used in the dest, and isn't used to tie two values together. 4035 for (const auto &Entry : SrcNames) 4036 if (DstNames[Entry.first].first == nullptr && 4037 SrcNames[Entry.first].second == 1) 4038 Pattern->error("Pattern has dead named input: $" + Entry.first); 4039 4040 PatternsToMatch.push_back(std::move(PTM)); 4041 } 4042 4043 void CodeGenDAGPatterns::InferInstructionFlags() { 4044 ArrayRef<const CodeGenInstruction*> Instructions = 4045 Target.getInstructionsByEnumValue(); 4046 4047 unsigned Errors = 0; 4048 4049 // Try to infer flags from all patterns in PatternToMatch. These include 4050 // both the primary instruction patterns (which always come first) and 4051 // patterns defined outside the instruction. 4052 for (const PatternToMatch &PTM : ptms()) { 4053 // We can only infer from single-instruction patterns, otherwise we won't 4054 // know which instruction should get the flags. 4055 SmallVector<Record*, 8> PatInstrs; 4056 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4057 if (PatInstrs.size() != 1) 4058 continue; 4059 4060 // Get the single instruction. 4061 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4062 4063 // Only infer properties from the first pattern. We'll verify the others. 4064 if (InstInfo.InferredFrom) 4065 continue; 4066 4067 InstAnalyzer PatInfo(*this); 4068 PatInfo.Analyze(PTM); 4069 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4070 } 4071 4072 if (Errors) 4073 PrintFatalError("pattern conflicts"); 4074 4075 // If requested by the target, guess any undefined properties. 4076 if (Target.guessInstructionProperties()) { 4077 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4078 CodeGenInstruction *InstInfo = 4079 const_cast<CodeGenInstruction *>(Instructions[i]); 4080 if (InstInfo->InferredFrom) 4081 continue; 4082 // The mayLoad and mayStore flags default to false. 4083 // Conservatively assume hasSideEffects if it wasn't explicit. 4084 if (InstInfo->hasSideEffects_Unset) 4085 InstInfo->hasSideEffects = true; 4086 } 4087 return; 4088 } 4089 4090 // Complain about any flags that are still undefined. 4091 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4092 CodeGenInstruction *InstInfo = 4093 const_cast<CodeGenInstruction *>(Instructions[i]); 4094 if (InstInfo->InferredFrom) 4095 continue; 4096 if (InstInfo->hasSideEffects_Unset) 4097 PrintError(InstInfo->TheDef->getLoc(), 4098 "Can't infer hasSideEffects from patterns"); 4099 if (InstInfo->mayStore_Unset) 4100 PrintError(InstInfo->TheDef->getLoc(), 4101 "Can't infer mayStore from patterns"); 4102 if (InstInfo->mayLoad_Unset) 4103 PrintError(InstInfo->TheDef->getLoc(), 4104 "Can't infer mayLoad from patterns"); 4105 } 4106 } 4107 4108 4109 /// Verify instruction flags against pattern node properties. 4110 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4111 unsigned Errors = 0; 4112 for (const PatternToMatch &PTM : ptms()) { 4113 SmallVector<Record*, 8> Instrs; 4114 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4115 if (Instrs.empty()) 4116 continue; 4117 4118 // Count the number of instructions with each flag set. 4119 unsigned NumSideEffects = 0; 4120 unsigned NumStores = 0; 4121 unsigned NumLoads = 0; 4122 for (const Record *Instr : Instrs) { 4123 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4124 NumSideEffects += InstInfo.hasSideEffects; 4125 NumStores += InstInfo.mayStore; 4126 NumLoads += InstInfo.mayLoad; 4127 } 4128 4129 // Analyze the source pattern. 4130 InstAnalyzer PatInfo(*this); 4131 PatInfo.Analyze(PTM); 4132 4133 // Collect error messages. 4134 SmallVector<std::string, 4> Msgs; 4135 4136 // Check for missing flags in the output. 4137 // Permit extra flags for now at least. 4138 if (PatInfo.hasSideEffects && !NumSideEffects) 4139 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4140 4141 // Don't verify store flags on instructions with side effects. At least for 4142 // intrinsics, side effects implies mayStore. 4143 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4144 Msgs.push_back("pattern may store, but mayStore isn't set"); 4145 4146 // Similarly, mayStore implies mayLoad on intrinsics. 4147 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4148 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4149 4150 // Print error messages. 4151 if (Msgs.empty()) 4152 continue; 4153 ++Errors; 4154 4155 for (const std::string &Msg : Msgs) 4156 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4157 (Instrs.size() == 1 ? 4158 "instruction" : "output instructions")); 4159 // Provide the location of the relevant instruction definitions. 4160 for (const Record *Instr : Instrs) { 4161 if (Instr != PTM.getSrcRecord()) 4162 PrintError(Instr->getLoc(), "defined here"); 4163 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4164 if (InstInfo.InferredFrom && 4165 InstInfo.InferredFrom != InstInfo.TheDef && 4166 InstInfo.InferredFrom != PTM.getSrcRecord()) 4167 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4168 } 4169 } 4170 if (Errors) 4171 PrintFatalError("Errors in DAG patterns"); 4172 } 4173 4174 /// Given a pattern result with an unresolved type, see if we can find one 4175 /// instruction with an unresolved result type. Force this result type to an 4176 /// arbitrary element if it's possible types to converge results. 4177 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4178 if (N->isLeaf()) 4179 return false; 4180 4181 // Analyze children. 4182 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4183 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4184 return true; 4185 4186 if (!N->getOperator()->isSubClassOf("Instruction")) 4187 return false; 4188 4189 // If this type is already concrete or completely unknown we can't do 4190 // anything. 4191 TypeInfer &TI = TP.getInfer(); 4192 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4193 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4194 continue; 4195 4196 // Otherwise, force its type to an arbitrary choice. 4197 if (TI.forceArbitrary(N->getExtType(i))) 4198 return true; 4199 } 4200 4201 return false; 4202 } 4203 4204 // Promote xform function to be an explicit node wherever set. 4205 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4206 if (Record *Xform = N->getTransformFn()) { 4207 N->setTransformFn(nullptr); 4208 std::vector<TreePatternNodePtr> Children; 4209 Children.push_back(PromoteXForms(N)); 4210 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4211 N->getNumTypes()); 4212 } 4213 4214 if (!N->isLeaf()) 4215 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4216 TreePatternNodePtr Child = N->getChildShared(i); 4217 N->setChild(i, PromoteXForms(Child)); 4218 } 4219 return N; 4220 } 4221 4222 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4223 TreePattern &Pattern, TreePattern &Result, 4224 const std::vector<Record *> &InstImpResults) { 4225 4226 // Inline pattern fragments and expand multiple alternatives. 4227 Pattern.InlinePatternFragments(); 4228 Result.InlinePatternFragments(); 4229 4230 if (Result.getNumTrees() != 1) 4231 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4232 4233 // Infer types. 4234 bool IterateInference; 4235 bool InferredAllPatternTypes, InferredAllResultTypes; 4236 do { 4237 // Infer as many types as possible. If we cannot infer all of them, we 4238 // can never do anything with this pattern: report it to the user. 4239 InferredAllPatternTypes = 4240 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4241 4242 // Infer as many types as possible. If we cannot infer all of them, we 4243 // can never do anything with this pattern: report it to the user. 4244 InferredAllResultTypes = 4245 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4246 4247 IterateInference = false; 4248 4249 // Apply the type of the result to the source pattern. This helps us 4250 // resolve cases where the input type is known to be a pointer type (which 4251 // is considered resolved), but the result knows it needs to be 32- or 4252 // 64-bits. Infer the other way for good measure. 4253 for (const auto &T : Pattern.getTrees()) 4254 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4255 T->getNumTypes()); 4256 i != e; ++i) { 4257 IterateInference |= T->UpdateNodeType( 4258 i, Result.getOnlyTree()->getExtType(i), Result); 4259 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4260 i, T->getExtType(i), Result); 4261 } 4262 4263 // If our iteration has converged and the input pattern's types are fully 4264 // resolved but the result pattern is not fully resolved, we may have a 4265 // situation where we have two instructions in the result pattern and 4266 // the instructions require a common register class, but don't care about 4267 // what actual MVT is used. This is actually a bug in our modelling: 4268 // output patterns should have register classes, not MVTs. 4269 // 4270 // In any case, to handle this, we just go through and disambiguate some 4271 // arbitrary types to the result pattern's nodes. 4272 if (!IterateInference && InferredAllPatternTypes && 4273 !InferredAllResultTypes) 4274 IterateInference = 4275 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4276 } while (IterateInference); 4277 4278 // Verify that we inferred enough types that we can do something with the 4279 // pattern and result. If these fire the user has to add type casts. 4280 if (!InferredAllPatternTypes) 4281 Pattern.error("Could not infer all types in pattern!"); 4282 if (!InferredAllResultTypes) { 4283 Pattern.dump(); 4284 Result.error("Could not infer all types in pattern result!"); 4285 } 4286 4287 // Promote xform function to be an explicit node wherever set. 4288 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4289 4290 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4291 Temp.InferAllTypes(); 4292 4293 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4294 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4295 4296 if (PatternRewriter) 4297 PatternRewriter(&Pattern); 4298 4299 // A pattern may end up with an "impossible" type, i.e. a situation 4300 // where all types have been eliminated for some node in this pattern. 4301 // This could occur for intrinsics that only make sense for a specific 4302 // value type, and use a specific register class. If, for some mode, 4303 // that register class does not accept that type, the type inference 4304 // will lead to a contradiction, which is not an error however, but 4305 // a sign that this pattern will simply never match. 4306 if (Temp.getOnlyTree()->hasPossibleType()) 4307 for (const auto &T : Pattern.getTrees()) 4308 if (T->hasPossibleType()) 4309 AddPatternToMatch(&Pattern, 4310 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4311 InstImpResults, Complexity, 4312 TheDef->getID())); 4313 } 4314 4315 void CodeGenDAGPatterns::ParsePatterns() { 4316 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4317 4318 for (Record *CurPattern : Patterns) { 4319 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4320 4321 // If the pattern references the null_frag, there's nothing to do. 4322 if (hasNullFragReference(Tree)) 4323 continue; 4324 4325 TreePattern Pattern(CurPattern, Tree, true, *this); 4326 4327 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4328 if (LI->empty()) continue; // no pattern. 4329 4330 // Parse the instruction. 4331 TreePattern Result(CurPattern, LI, false, *this); 4332 4333 if (Result.getNumTrees() != 1) 4334 Result.error("Cannot handle instructions producing instructions " 4335 "with temporaries yet!"); 4336 4337 // Validate that the input pattern is correct. 4338 std::map<std::string, TreePatternNodePtr> InstInputs; 4339 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4340 InstResults; 4341 std::vector<Record*> InstImpResults; 4342 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4343 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4344 InstResults, InstImpResults); 4345 4346 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4347 } 4348 } 4349 4350 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4351 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4352 for (const auto &I : VTS) 4353 Modes.insert(I.first); 4354 4355 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4356 collectModes(Modes, N->getChild(i)); 4357 } 4358 4359 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4360 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4361 std::vector<PatternToMatch> Copy; 4362 PatternsToMatch.swap(Copy); 4363 4364 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4365 StringRef Check) { 4366 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4367 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4368 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4369 return; 4370 } 4371 4372 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4373 std::move(NewSrc), std::move(NewDst), 4374 P.getDstRegs(), P.getAddedComplexity(), 4375 Record::getNewUID(Records), Mode, Check); 4376 }; 4377 4378 for (PatternToMatch &P : Copy) { 4379 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4380 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4381 SrcP = P.getSrcPatternShared(); 4382 if (P.getDstPattern()->hasProperTypeByHwMode()) 4383 DstP = P.getDstPatternShared(); 4384 if (!SrcP && !DstP) { 4385 PatternsToMatch.push_back(P); 4386 continue; 4387 } 4388 4389 std::set<unsigned> Modes; 4390 if (SrcP) 4391 collectModes(Modes, SrcP.get()); 4392 if (DstP) 4393 collectModes(Modes, DstP.get()); 4394 4395 // The predicate for the default mode needs to be constructed for each 4396 // pattern separately. 4397 // Since not all modes must be present in each pattern, if a mode m is 4398 // absent, then there is no point in constructing a check for m. If such 4399 // a check was created, it would be equivalent to checking the default 4400 // mode, except not all modes' predicates would be a part of the checking 4401 // code. The subsequently generated check for the default mode would then 4402 // have the exact same patterns, but a different predicate code. To avoid 4403 // duplicated patterns with different predicate checks, construct the 4404 // default check as a negation of all predicates that are actually present 4405 // in the source/destination patterns. 4406 SmallString<128> DefaultCheck; 4407 4408 for (unsigned M : Modes) { 4409 if (M == DefaultMode) 4410 continue; 4411 4412 // Fill the map entry for this mode. 4413 const HwMode &HM = CGH.getMode(M); 4414 AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))"); 4415 4416 // Add negations of the HM's predicates to the default predicate. 4417 if (!DefaultCheck.empty()) 4418 DefaultCheck += " && "; 4419 DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\""; 4420 DefaultCheck += HM.Features; 4421 DefaultCheck += "\")))"; 4422 } 4423 4424 bool HasDefault = Modes.count(DefaultMode); 4425 if (HasDefault) 4426 AppendPattern(P, DefaultMode, DefaultCheck); 4427 } 4428 } 4429 4430 /// Dependent variable map for CodeGenDAGPattern variant generation 4431 typedef StringMap<int> DepVarMap; 4432 4433 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4434 if (N->isLeaf()) { 4435 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4436 DepMap[N->getName()]++; 4437 } else { 4438 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4439 FindDepVarsOf(N->getChild(i), DepMap); 4440 } 4441 } 4442 4443 /// Find dependent variables within child patterns 4444 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4445 DepVarMap depcounts; 4446 FindDepVarsOf(N, depcounts); 4447 for (const auto &Pair : depcounts) { 4448 if (Pair.getValue() > 1) 4449 DepVars.insert(Pair.getKey()); 4450 } 4451 } 4452 4453 #ifndef NDEBUG 4454 /// Dump the dependent variable set: 4455 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4456 if (DepVars.empty()) { 4457 LLVM_DEBUG(errs() << "<empty set>"); 4458 } else { 4459 LLVM_DEBUG(errs() << "[ "); 4460 for (const auto &DepVar : DepVars) { 4461 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4462 } 4463 LLVM_DEBUG(errs() << "]"); 4464 } 4465 } 4466 #endif 4467 4468 4469 /// CombineChildVariants - Given a bunch of permutations of each child of the 4470 /// 'operator' node, put them together in all possible ways. 4471 static void CombineChildVariants( 4472 TreePatternNodePtr Orig, 4473 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4474 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4475 const MultipleUseVarSet &DepVars) { 4476 // Make sure that each operand has at least one variant to choose from. 4477 for (const auto &Variants : ChildVariants) 4478 if (Variants.empty()) 4479 return; 4480 4481 // The end result is an all-pairs construction of the resultant pattern. 4482 std::vector<unsigned> Idxs; 4483 Idxs.resize(ChildVariants.size()); 4484 bool NotDone; 4485 do { 4486 #ifndef NDEBUG 4487 LLVM_DEBUG(if (!Idxs.empty()) { 4488 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4489 for (unsigned Idx : Idxs) { 4490 errs() << Idx << " "; 4491 } 4492 errs() << "]\n"; 4493 }); 4494 #endif 4495 // Create the variant and add it to the output list. 4496 std::vector<TreePatternNodePtr> NewChildren; 4497 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4498 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4499 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4500 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4501 4502 // Copy over properties. 4503 R->setName(Orig->getName()); 4504 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4505 R->setPredicateCalls(Orig->getPredicateCalls()); 4506 R->setTransformFn(Orig->getTransformFn()); 4507 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4508 R->setType(i, Orig->getExtType(i)); 4509 4510 // If this pattern cannot match, do not include it as a variant. 4511 std::string ErrString; 4512 // Scan to see if this pattern has already been emitted. We can get 4513 // duplication due to things like commuting: 4514 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4515 // which are the same pattern. Ignore the dups. 4516 if (R->canPatternMatch(ErrString, CDP) && 4517 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4518 return R->isIsomorphicTo(Variant.get(), DepVars); 4519 })) 4520 OutVariants.push_back(R); 4521 4522 // Increment indices to the next permutation by incrementing the 4523 // indices from last index backward, e.g., generate the sequence 4524 // [0, 0], [0, 1], [1, 0], [1, 1]. 4525 int IdxsIdx; 4526 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4527 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4528 Idxs[IdxsIdx] = 0; 4529 else 4530 break; 4531 } 4532 NotDone = (IdxsIdx >= 0); 4533 } while (NotDone); 4534 } 4535 4536 /// CombineChildVariants - A helper function for binary operators. 4537 /// 4538 static void CombineChildVariants(TreePatternNodePtr Orig, 4539 const std::vector<TreePatternNodePtr> &LHS, 4540 const std::vector<TreePatternNodePtr> &RHS, 4541 std::vector<TreePatternNodePtr> &OutVariants, 4542 CodeGenDAGPatterns &CDP, 4543 const MultipleUseVarSet &DepVars) { 4544 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4545 ChildVariants.push_back(LHS); 4546 ChildVariants.push_back(RHS); 4547 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4548 } 4549 4550 static void 4551 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4552 std::vector<TreePatternNodePtr> &Children) { 4553 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4554 Record *Operator = N->getOperator(); 4555 4556 // Only permit raw nodes. 4557 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4558 N->getTransformFn()) { 4559 Children.push_back(N); 4560 return; 4561 } 4562 4563 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4564 Children.push_back(N->getChildShared(0)); 4565 else 4566 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4567 4568 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4569 Children.push_back(N->getChildShared(1)); 4570 else 4571 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4572 } 4573 4574 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4575 /// the (potentially recursive) pattern by using algebraic laws. 4576 /// 4577 static void GenerateVariantsOf(TreePatternNodePtr N, 4578 std::vector<TreePatternNodePtr> &OutVariants, 4579 CodeGenDAGPatterns &CDP, 4580 const MultipleUseVarSet &DepVars) { 4581 // We cannot permute leaves or ComplexPattern uses. 4582 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4583 OutVariants.push_back(N); 4584 return; 4585 } 4586 4587 // Look up interesting info about the node. 4588 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4589 4590 // If this node is associative, re-associate. 4591 if (NodeInfo.hasProperty(SDNPAssociative)) { 4592 // Re-associate by pulling together all of the linked operators 4593 std::vector<TreePatternNodePtr> MaximalChildren; 4594 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4595 4596 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4597 // permutations. 4598 if (MaximalChildren.size() == 3) { 4599 // Find the variants of all of our maximal children. 4600 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4601 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4602 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4603 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4604 4605 // There are only two ways we can permute the tree: 4606 // (A op B) op C and A op (B op C) 4607 // Within these forms, we can also permute A/B/C. 4608 4609 // Generate legal pair permutations of A/B/C. 4610 std::vector<TreePatternNodePtr> ABVariants; 4611 std::vector<TreePatternNodePtr> BAVariants; 4612 std::vector<TreePatternNodePtr> ACVariants; 4613 std::vector<TreePatternNodePtr> CAVariants; 4614 std::vector<TreePatternNodePtr> BCVariants; 4615 std::vector<TreePatternNodePtr> CBVariants; 4616 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4617 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4618 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4619 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4620 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4621 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4622 4623 // Combine those into the result: (x op x) op x 4624 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4625 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4626 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4627 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4628 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4629 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4630 4631 // Combine those into the result: x op (x op x) 4632 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4633 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4634 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4635 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4636 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4637 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4638 return; 4639 } 4640 } 4641 4642 // Compute permutations of all children. 4643 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4644 ChildVariants.resize(N->getNumChildren()); 4645 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4646 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4647 4648 // Build all permutations based on how the children were formed. 4649 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4650 4651 // If this node is commutative, consider the commuted order. 4652 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4653 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4654 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4655 assert(N->getNumChildren() >= (2 + Skip) && 4656 "Commutative but doesn't have 2 children!"); 4657 // Don't allow commuting children which are actually register references. 4658 bool NoRegisters = true; 4659 unsigned i = 0 + Skip; 4660 unsigned e = 2 + Skip; 4661 for (; i != e; ++i) { 4662 TreePatternNode *Child = N->getChild(i); 4663 if (Child->isLeaf()) 4664 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4665 Record *RR = DI->getDef(); 4666 if (RR->isSubClassOf("Register")) 4667 NoRegisters = false; 4668 } 4669 } 4670 // Consider the commuted order. 4671 if (NoRegisters) { 4672 std::vector<std::vector<TreePatternNodePtr>> Variants; 4673 unsigned i = 0; 4674 if (isCommIntrinsic) 4675 Variants.push_back(std::move(ChildVariants[i++])); // Intrinsic id. 4676 Variants.push_back(std::move(ChildVariants[i + 1])); 4677 Variants.push_back(std::move(ChildVariants[i])); 4678 i += 2; 4679 // Remaining operands are not commuted. 4680 for (; i != N->getNumChildren(); ++i) 4681 Variants.push_back(std::move(ChildVariants[i])); 4682 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4683 } 4684 } 4685 } 4686 4687 4688 // GenerateVariants - Generate variants. For example, commutative patterns can 4689 // match multiple ways. Add them to PatternsToMatch as well. 4690 void CodeGenDAGPatterns::GenerateVariants() { 4691 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4692 4693 // Loop over all of the patterns we've collected, checking to see if we can 4694 // generate variants of the instruction, through the exploitation of 4695 // identities. This permits the target to provide aggressive matching without 4696 // the .td file having to contain tons of variants of instructions. 4697 // 4698 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4699 // intentionally do not reconsider these. Any variants of added patterns have 4700 // already been added. 4701 // 4702 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4703 MultipleUseVarSet DepVars; 4704 std::vector<TreePatternNodePtr> Variants; 4705 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4706 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4707 LLVM_DEBUG(DumpDepVars(DepVars)); 4708 LLVM_DEBUG(errs() << "\n"); 4709 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4710 *this, DepVars); 4711 4712 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4713 "HwModes should not have been expanded yet!"); 4714 4715 assert(!Variants.empty() && "Must create at least original variant!"); 4716 if (Variants.size() == 1) // No additional variants for this pattern. 4717 continue; 4718 4719 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4720 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4721 4722 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4723 TreePatternNodePtr Variant = Variants[v]; 4724 4725 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4726 errs() << "\n"); 4727 4728 // Scan to see if an instruction or explicit pattern already matches this. 4729 bool AlreadyExists = false; 4730 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4731 // Skip if the top level predicates do not match. 4732 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4733 PatternsToMatch[p].getPredicates())) 4734 continue; 4735 // Check to see if this variant already exists. 4736 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4737 DepVars)) { 4738 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4739 AlreadyExists = true; 4740 break; 4741 } 4742 } 4743 // If we already have it, ignore the variant. 4744 if (AlreadyExists) continue; 4745 4746 // Otherwise, add it to the list of patterns we have. 4747 PatternsToMatch.emplace_back( 4748 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4749 Variant, PatternsToMatch[i].getDstPatternShared(), 4750 PatternsToMatch[i].getDstRegs(), 4751 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records), 4752 PatternsToMatch[i].getForceMode(), 4753 PatternsToMatch[i].getHwModeFeatures()); 4754 } 4755 4756 LLVM_DEBUG(errs() << "\n"); 4757 } 4758 } 4759