1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/TypeSize.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <iterator> 31 #include <set> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "dag-patterns" 35 36 static inline bool isIntegerOrPtr(MVT VT) { 37 return VT.isInteger() || VT == MVT::iPTR; 38 } 39 static inline bool isFloatingPoint(MVT VT) { 40 return VT.isFloatingPoint(); 41 } 42 static inline bool isVector(MVT VT) { 43 return VT.isVector(); 44 } 45 static inline bool isScalar(MVT VT) { 46 return !VT.isVector(); 47 } 48 49 template <typename Predicate> 50 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 51 bool Erased = false; 52 // It is ok to iterate over MachineValueTypeSet and remove elements from it 53 // at the same time. 54 for (MVT T : S) { 55 if (!P(T)) 56 continue; 57 Erased = true; 58 S.erase(T); 59 } 60 return Erased; 61 } 62 63 // --- TypeSetByHwMode 64 65 // This is a parameterized type-set class. For each mode there is a list 66 // of types that are currently possible for a given tree node. Type 67 // inference will apply to each mode separately. 68 69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 70 for (const ValueTypeByHwMode &VVT : VTList) { 71 insert(VVT); 72 AddrSpaces.push_back(VVT.PtrAddrSpace); 73 } 74 } 75 76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 77 for (const auto &I : *this) { 78 if (I.second.size() > 1) 79 return false; 80 if (!AllowEmpty && I.second.empty()) 81 return false; 82 } 83 return true; 84 } 85 86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 87 assert(isValueTypeByHwMode(true) && 88 "The type set has multiple types for at least one HW mode"); 89 ValueTypeByHwMode VVT; 90 auto ASI = AddrSpaces.begin(); 91 92 for (const auto &I : *this) { 93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 94 VVT.getOrCreateTypeForMode(I.first, T); 95 if (ASI != AddrSpaces.end()) 96 VVT.PtrAddrSpace = *ASI++; 97 } 98 return VVT; 99 } 100 101 bool TypeSetByHwMode::isPossible() const { 102 for (const auto &I : *this) 103 if (!I.second.empty()) 104 return true; 105 return false; 106 } 107 108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 109 bool Changed = false; 110 bool ContainsDefault = false; 111 MVT DT = MVT::Other; 112 113 for (const auto &P : VVT) { 114 unsigned M = P.first; 115 // Make sure there exists a set for each specific mode from VVT. 116 Changed |= getOrCreate(M).insert(P.second).second; 117 // Cache VVT's default mode. 118 if (DefaultMode == M) { 119 ContainsDefault = true; 120 DT = P.second; 121 } 122 } 123 124 // If VVT has a default mode, add the corresponding type to all 125 // modes in "this" that do not exist in VVT. 126 if (ContainsDefault) 127 for (auto &I : *this) 128 if (!VVT.hasMode(I.first)) 129 Changed |= I.second.insert(DT).second; 130 131 return Changed; 132 } 133 134 // Constrain the type set to be the intersection with VTS. 135 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 136 bool Changed = false; 137 if (hasDefault()) { 138 for (const auto &I : VTS) { 139 unsigned M = I.first; 140 if (M == DefaultMode || hasMode(M)) 141 continue; 142 Map.insert({M, Map.at(DefaultMode)}); 143 Changed = true; 144 } 145 } 146 147 for (auto &I : *this) { 148 unsigned M = I.first; 149 SetType &S = I.second; 150 if (VTS.hasMode(M) || VTS.hasDefault()) { 151 Changed |= intersect(I.second, VTS.get(M)); 152 } else if (!S.empty()) { 153 S.clear(); 154 Changed = true; 155 } 156 } 157 return Changed; 158 } 159 160 template <typename Predicate> 161 bool TypeSetByHwMode::constrain(Predicate P) { 162 bool Changed = false; 163 for (auto &I : *this) 164 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 165 return Changed; 166 } 167 168 template <typename Predicate> 169 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 170 assert(empty()); 171 for (const auto &I : VTS) { 172 SetType &S = getOrCreate(I.first); 173 for (auto J : I.second) 174 if (P(J)) 175 S.insert(J); 176 } 177 return !empty(); 178 } 179 180 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 181 SmallVector<unsigned, 4> Modes; 182 Modes.reserve(Map.size()); 183 184 for (const auto &I : *this) 185 Modes.push_back(I.first); 186 if (Modes.empty()) { 187 OS << "{}"; 188 return; 189 } 190 array_pod_sort(Modes.begin(), Modes.end()); 191 192 OS << '{'; 193 for (unsigned M : Modes) { 194 OS << ' ' << getModeName(M) << ':'; 195 writeToStream(get(M), OS); 196 } 197 OS << " }"; 198 } 199 200 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 201 SmallVector<MVT, 4> Types(S.begin(), S.end()); 202 array_pod_sort(Types.begin(), Types.end()); 203 204 OS << '['; 205 ListSeparator LS(" "); 206 for (const MVT &T : Types) 207 OS << LS << ValueTypeByHwMode::getMVTName(T); 208 OS << ']'; 209 } 210 211 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 212 // The isSimple call is much quicker than hasDefault - check this first. 213 bool IsSimple = isSimple(); 214 bool VTSIsSimple = VTS.isSimple(); 215 if (IsSimple && VTSIsSimple) 216 return *begin() == *VTS.begin(); 217 218 // Speedup: We have a default if the set is simple. 219 bool HaveDefault = IsSimple || hasDefault(); 220 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 221 if (HaveDefault != VTSHaveDefault) 222 return false; 223 224 SmallSet<unsigned, 4> Modes; 225 for (auto &I : *this) 226 Modes.insert(I.first); 227 for (const auto &I : VTS) 228 Modes.insert(I.first); 229 230 if (HaveDefault) { 231 // Both sets have default mode. 232 for (unsigned M : Modes) { 233 if (get(M) != VTS.get(M)) 234 return false; 235 } 236 } else { 237 // Neither set has default mode. 238 for (unsigned M : Modes) { 239 // If there is no default mode, an empty set is equivalent to not having 240 // the corresponding mode. 241 bool NoModeThis = !hasMode(M) || get(M).empty(); 242 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 243 if (NoModeThis != NoModeVTS) 244 return false; 245 if (!NoModeThis) 246 if (get(M) != VTS.get(M)) 247 return false; 248 } 249 } 250 251 return true; 252 } 253 254 namespace llvm { 255 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 256 T.writeToStream(OS); 257 return OS; 258 } 259 } 260 261 LLVM_DUMP_METHOD 262 void TypeSetByHwMode::dump() const { 263 dbgs() << *this << '\n'; 264 } 265 266 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 267 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 268 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 269 270 if (OutP == InP) 271 return berase_if(Out, Int); 272 273 // Compute the intersection of scalars separately to account for only 274 // one set containing iPTR. 275 // The intersection of iPTR with a set of integer scalar types that does not 276 // include iPTR will result in the most specific scalar type: 277 // - iPTR is more specific than any set with two elements or more 278 // - iPTR is less specific than any single integer scalar type. 279 // For example 280 // { iPTR } * { i32 } -> { i32 } 281 // { iPTR } * { i32 i64 } -> { iPTR } 282 // and 283 // { iPTR i32 } * { i32 } -> { i32 } 284 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 285 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 286 287 // Compute the difference between the two sets in such a way that the 288 // iPTR is in the set that is being subtracted. This is to see if there 289 // are any extra scalars in the set without iPTR that are not in the 290 // set containing iPTR. Then the iPTR could be considered a "wildcard" 291 // matching these scalars. If there is only one such scalar, it would 292 // replace the iPTR, if there are more, the iPTR would be retained. 293 SetType Diff; 294 if (InP) { 295 Diff = Out; 296 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 297 // Pre-remove these elements and rely only on InP/OutP to determine 298 // whether a change has been made. 299 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 300 } else { 301 Diff = In; 302 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 303 Out.erase(MVT::iPTR); 304 } 305 306 // The actual intersection. 307 bool Changed = berase_if(Out, Int); 308 unsigned NumD = Diff.size(); 309 if (NumD == 0) 310 return Changed; 311 312 if (NumD == 1) { 313 Out.insert(*Diff.begin()); 314 // This is a change only if Out was the one with iPTR (which is now 315 // being replaced). 316 Changed |= OutP; 317 } else { 318 // Multiple elements from Out are now replaced with iPTR. 319 Out.insert(MVT::iPTR); 320 Changed |= !OutP; 321 } 322 return Changed; 323 } 324 325 bool TypeSetByHwMode::validate() const { 326 #ifndef NDEBUG 327 if (empty()) 328 return true; 329 bool AllEmpty = true; 330 for (const auto &I : *this) 331 AllEmpty &= I.second.empty(); 332 return !AllEmpty; 333 #endif 334 return true; 335 } 336 337 // --- TypeInfer 338 339 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 340 const TypeSetByHwMode &In) { 341 ValidateOnExit _1(Out, *this); 342 In.validate(); 343 if (In.empty() || Out == In || TP.hasError()) 344 return false; 345 if (Out.empty()) { 346 Out = In; 347 return true; 348 } 349 350 bool Changed = Out.constrain(In); 351 if (Changed && Out.empty()) 352 TP.error("Type contradiction"); 353 354 return Changed; 355 } 356 357 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 358 ValidateOnExit _1(Out, *this); 359 if (TP.hasError()) 360 return false; 361 assert(!Out.empty() && "cannot pick from an empty set"); 362 363 bool Changed = false; 364 for (auto &I : Out) { 365 TypeSetByHwMode::SetType &S = I.second; 366 if (S.size() <= 1) 367 continue; 368 MVT T = *S.begin(); // Pick the first element. 369 S.clear(); 370 S.insert(T); 371 Changed = true; 372 } 373 return Changed; 374 } 375 376 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 377 ValidateOnExit _1(Out, *this); 378 if (TP.hasError()) 379 return false; 380 if (!Out.empty()) 381 return Out.constrain(isIntegerOrPtr); 382 383 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 384 } 385 386 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 387 ValidateOnExit _1(Out, *this); 388 if (TP.hasError()) 389 return false; 390 if (!Out.empty()) 391 return Out.constrain(isFloatingPoint); 392 393 return Out.assign_if(getLegalTypes(), isFloatingPoint); 394 } 395 396 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 397 ValidateOnExit _1(Out, *this); 398 if (TP.hasError()) 399 return false; 400 if (!Out.empty()) 401 return Out.constrain(isScalar); 402 403 return Out.assign_if(getLegalTypes(), isScalar); 404 } 405 406 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 407 ValidateOnExit _1(Out, *this); 408 if (TP.hasError()) 409 return false; 410 if (!Out.empty()) 411 return Out.constrain(isVector); 412 413 return Out.assign_if(getLegalTypes(), isVector); 414 } 415 416 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 417 ValidateOnExit _1(Out, *this); 418 if (TP.hasError() || !Out.empty()) 419 return false; 420 421 Out = getLegalTypes(); 422 return true; 423 } 424 425 template <typename Iter, typename Pred, typename Less> 426 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 427 if (B == E) 428 return E; 429 Iter Min = E; 430 for (Iter I = B; I != E; ++I) { 431 if (!P(*I)) 432 continue; 433 if (Min == E || L(*I, *Min)) 434 Min = I; 435 } 436 return Min; 437 } 438 439 template <typename Iter, typename Pred, typename Less> 440 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 441 if (B == E) 442 return E; 443 Iter Max = E; 444 for (Iter I = B; I != E; ++I) { 445 if (!P(*I)) 446 continue; 447 if (Max == E || L(*Max, *I)) 448 Max = I; 449 } 450 return Max; 451 } 452 453 /// Make sure that for each type in Small, there exists a larger type in Big. 454 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 455 TypeSetByHwMode &Big) { 456 ValidateOnExit _1(Small, *this), _2(Big, *this); 457 if (TP.hasError()) 458 return false; 459 bool Changed = false; 460 461 if (Small.empty()) 462 Changed |= EnforceAny(Small); 463 if (Big.empty()) 464 Changed |= EnforceAny(Big); 465 466 assert(Small.hasDefault() && Big.hasDefault()); 467 468 SmallVector<unsigned, 4> Modes; 469 union_modes(Small, Big, Modes); 470 471 // 1. Only allow integer or floating point types and make sure that 472 // both sides are both integer or both floating point. 473 // 2. Make sure that either both sides have vector types, or neither 474 // of them does. 475 for (unsigned M : Modes) { 476 TypeSetByHwMode::SetType &S = Small.get(M); 477 TypeSetByHwMode::SetType &B = Big.get(M); 478 479 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 480 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 481 Changed |= berase_if(S, NotInt); 482 Changed |= berase_if(B, NotInt); 483 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 484 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 485 Changed |= berase_if(S, NotFP); 486 Changed |= berase_if(B, NotFP); 487 } else if (S.empty() || B.empty()) { 488 Changed = !S.empty() || !B.empty(); 489 S.clear(); 490 B.clear(); 491 } else { 492 TP.error("Incompatible types"); 493 return Changed; 494 } 495 496 if (none_of(S, isVector) || none_of(B, isVector)) { 497 Changed |= berase_if(S, isVector); 498 Changed |= berase_if(B, isVector); 499 } 500 } 501 502 auto LT = [](MVT A, MVT B) -> bool { 503 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 504 // purposes of ordering. 505 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 506 A.getSizeInBits().getKnownMinSize()); 507 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 508 B.getSizeInBits().getKnownMinSize()); 509 return ASize < BSize; 510 }; 511 auto SameKindLE = [](MVT A, MVT B) -> bool { 512 // This function is used when removing elements: when a vector is compared 513 // to a non-vector or a scalable vector to any non-scalable MVT, it should 514 // return false (to avoid removal). 515 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 516 std::make_tuple(B.isVector(), B.isScalableVector())) 517 return false; 518 519 return std::make_tuple(A.getScalarSizeInBits(), 520 A.getSizeInBits().getKnownMinSize()) <= 521 std::make_tuple(B.getScalarSizeInBits(), 522 B.getSizeInBits().getKnownMinSize()); 523 }; 524 525 for (unsigned M : Modes) { 526 TypeSetByHwMode::SetType &S = Small.get(M); 527 TypeSetByHwMode::SetType &B = Big.get(M); 528 // MinS = min scalar in Small, remove all scalars from Big that are 529 // smaller-or-equal than MinS. 530 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 531 if (MinS != S.end()) 532 Changed |= berase_if(B, std::bind(SameKindLE, 533 std::placeholders::_1, *MinS)); 534 535 // MaxS = max scalar in Big, remove all scalars from Small that are 536 // larger than MaxS. 537 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 538 if (MaxS != B.end()) 539 Changed |= berase_if(S, std::bind(SameKindLE, 540 *MaxS, std::placeholders::_1)); 541 542 // MinV = min vector in Small, remove all vectors from Big that are 543 // smaller-or-equal than MinV. 544 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 545 if (MinV != S.end()) 546 Changed |= berase_if(B, std::bind(SameKindLE, 547 std::placeholders::_1, *MinV)); 548 549 // MaxV = max vector in Big, remove all vectors from Small that are 550 // larger than MaxV. 551 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 552 if (MaxV != B.end()) 553 Changed |= berase_if(S, std::bind(SameKindLE, 554 *MaxV, std::placeholders::_1)); 555 } 556 557 return Changed; 558 } 559 560 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 561 /// for each type U in Elem, U is a scalar type. 562 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 563 /// type T in Vec, such that U is the element type of T. 564 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 565 TypeSetByHwMode &Elem) { 566 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 567 if (TP.hasError()) 568 return false; 569 bool Changed = false; 570 571 if (Vec.empty()) 572 Changed |= EnforceVector(Vec); 573 if (Elem.empty()) 574 Changed |= EnforceScalar(Elem); 575 576 SmallVector<unsigned, 4> Modes; 577 union_modes(Vec, Elem, Modes); 578 for (unsigned M : Modes) { 579 TypeSetByHwMode::SetType &V = Vec.get(M); 580 TypeSetByHwMode::SetType &E = Elem.get(M); 581 582 Changed |= berase_if(V, isScalar); // Scalar = !vector 583 Changed |= berase_if(E, isVector); // Vector = !scalar 584 assert(!V.empty() && !E.empty()); 585 586 MachineValueTypeSet VT, ST; 587 // Collect element types from the "vector" set. 588 for (MVT T : V) 589 VT.insert(T.getVectorElementType()); 590 // Collect scalar types from the "element" set. 591 for (MVT T : E) 592 ST.insert(T); 593 594 // Remove from V all (vector) types whose element type is not in S. 595 Changed |= berase_if(V, [&ST](MVT T) -> bool { 596 return !ST.count(T.getVectorElementType()); 597 }); 598 // Remove from E all (scalar) types, for which there is no corresponding 599 // type in V. 600 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 601 } 602 603 return Changed; 604 } 605 606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 607 const ValueTypeByHwMode &VVT) { 608 TypeSetByHwMode Tmp(VVT); 609 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 610 return EnforceVectorEltTypeIs(Vec, Tmp); 611 } 612 613 /// Ensure that for each type T in Sub, T is a vector type, and there 614 /// exists a type U in Vec such that U is a vector type with the same 615 /// element type as T and at least as many elements as T. 616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 617 TypeSetByHwMode &Sub) { 618 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 619 if (TP.hasError()) 620 return false; 621 622 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 623 auto IsSubVec = [](MVT B, MVT P) -> bool { 624 if (!B.isVector() || !P.isVector()) 625 return false; 626 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 627 // but until there are obvious use-cases for this, keep the 628 // types separate. 629 if (B.isScalableVector() != P.isScalableVector()) 630 return false; 631 if (B.getVectorElementType() != P.getVectorElementType()) 632 return false; 633 return B.getVectorNumElements() < P.getVectorNumElements(); 634 }; 635 636 /// Return true if S has no element (vector type) that T is a sub-vector of, 637 /// i.e. has the same element type as T and more elements. 638 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 639 for (auto I : S) 640 if (IsSubVec(T, I)) 641 return false; 642 return true; 643 }; 644 645 /// Return true if S has no element (vector type) that T is a super-vector 646 /// of, i.e. has the same element type as T and fewer elements. 647 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 648 for (auto I : S) 649 if (IsSubVec(I, T)) 650 return false; 651 return true; 652 }; 653 654 bool Changed = false; 655 656 if (Vec.empty()) 657 Changed |= EnforceVector(Vec); 658 if (Sub.empty()) 659 Changed |= EnforceVector(Sub); 660 661 SmallVector<unsigned, 4> Modes; 662 union_modes(Vec, Sub, Modes); 663 for (unsigned M : Modes) { 664 TypeSetByHwMode::SetType &S = Sub.get(M); 665 TypeSetByHwMode::SetType &V = Vec.get(M); 666 667 Changed |= berase_if(S, isScalar); 668 669 // Erase all types from S that are not sub-vectors of a type in V. 670 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 671 672 // Erase all types from V that are not super-vectors of a type in S. 673 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 674 } 675 676 return Changed; 677 } 678 679 /// 1. Ensure that V has a scalar type iff W has a scalar type. 680 /// 2. Ensure that for each vector type T in V, there exists a vector 681 /// type U in W, such that T and U have the same number of elements. 682 /// 3. Ensure that for each vector type U in W, there exists a vector 683 /// type T in V, such that T and U have the same number of elements 684 /// (reverse of 2). 685 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 686 ValidateOnExit _1(V, *this), _2(W, *this); 687 if (TP.hasError()) 688 return false; 689 690 bool Changed = false; 691 if (V.empty()) 692 Changed |= EnforceAny(V); 693 if (W.empty()) 694 Changed |= EnforceAny(W); 695 696 // An actual vector type cannot have 0 elements, so we can treat scalars 697 // as zero-length vectors. This way both vectors and scalars can be 698 // processed identically. 699 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 700 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 701 }; 702 703 SmallVector<unsigned, 4> Modes; 704 union_modes(V, W, Modes); 705 for (unsigned M : Modes) { 706 TypeSetByHwMode::SetType &VS = V.get(M); 707 TypeSetByHwMode::SetType &WS = W.get(M); 708 709 SmallSet<unsigned,2> VN, WN; 710 for (MVT T : VS) 711 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 712 for (MVT T : WS) 713 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 714 715 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 716 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 717 } 718 return Changed; 719 } 720 721 namespace { 722 struct TypeSizeComparator { 723 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 724 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 725 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 726 } 727 }; 728 } // end anonymous namespace 729 730 /// 1. Ensure that for each type T in A, there exists a type U in B, 731 /// such that T and U have equal size in bits. 732 /// 2. Ensure that for each type U in B, there exists a type T in A 733 /// such that T and U have equal size in bits (reverse of 1). 734 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 735 ValidateOnExit _1(A, *this), _2(B, *this); 736 if (TP.hasError()) 737 return false; 738 bool Changed = false; 739 if (A.empty()) 740 Changed |= EnforceAny(A); 741 if (B.empty()) 742 Changed |= EnforceAny(B); 743 744 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 745 746 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 747 return !Sizes.count(T.getSizeInBits()); 748 }; 749 750 SmallVector<unsigned, 4> Modes; 751 union_modes(A, B, Modes); 752 for (unsigned M : Modes) { 753 TypeSetByHwMode::SetType &AS = A.get(M); 754 TypeSetByHwMode::SetType &BS = B.get(M); 755 TypeSizeSet AN, BN; 756 757 for (MVT T : AS) 758 AN.insert(T.getSizeInBits()); 759 for (MVT T : BS) 760 BN.insert(T.getSizeInBits()); 761 762 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 763 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 764 } 765 766 return Changed; 767 } 768 769 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 770 ValidateOnExit _1(VTS, *this); 771 const TypeSetByHwMode &Legal = getLegalTypes(); 772 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 773 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 774 775 for (auto &I : VTS) 776 expandOverloads(I.second, LegalTypes); 777 } 778 779 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 780 const TypeSetByHwMode::SetType &Legal) { 781 std::set<MVT> Ovs; 782 for (MVT T : Out) { 783 if (!T.isOverloaded()) 784 continue; 785 786 Ovs.insert(T); 787 // MachineValueTypeSet allows iteration and erasing. 788 Out.erase(T); 789 } 790 791 for (MVT Ov : Ovs) { 792 switch (Ov.SimpleTy) { 793 case MVT::iPTRAny: 794 Out.insert(MVT::iPTR); 795 return; 796 case MVT::iAny: 797 for (MVT T : MVT::integer_valuetypes()) 798 if (Legal.count(T)) 799 Out.insert(T); 800 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 801 if (Legal.count(T)) 802 Out.insert(T); 803 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 804 if (Legal.count(T)) 805 Out.insert(T); 806 return; 807 case MVT::fAny: 808 for (MVT T : MVT::fp_valuetypes()) 809 if (Legal.count(T)) 810 Out.insert(T); 811 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 812 if (Legal.count(T)) 813 Out.insert(T); 814 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 815 if (Legal.count(T)) 816 Out.insert(T); 817 return; 818 case MVT::vAny: 819 for (MVT T : MVT::vector_valuetypes()) 820 if (Legal.count(T)) 821 Out.insert(T); 822 return; 823 case MVT::Any: 824 for (MVT T : MVT::all_valuetypes()) 825 if (Legal.count(T)) 826 Out.insert(T); 827 return; 828 default: 829 break; 830 } 831 } 832 } 833 834 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 835 if (!LegalTypesCached) { 836 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 837 // Stuff all types from all modes into the default mode. 838 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 839 for (const auto &I : LTS) 840 LegalTypes.insert(I.second); 841 LegalTypesCached = true; 842 } 843 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 844 return LegalCache; 845 } 846 847 #ifndef NDEBUG 848 TypeInfer::ValidateOnExit::~ValidateOnExit() { 849 if (Infer.Validate && !VTS.validate()) { 850 dbgs() << "Type set is empty for each HW mode:\n" 851 "possible type contradiction in the pattern below " 852 "(use -print-records with llvm-tblgen to see all " 853 "expanded records).\n"; 854 Infer.TP.dump(); 855 dbgs() << "Generated from record:\n"; 856 Infer.TP.getRecord()->dump(); 857 PrintFatalError(Infer.TP.getRecord()->getLoc(), 858 "Type set is empty for each HW mode in '" + 859 Infer.TP.getRecord()->getName() + "'"); 860 } 861 } 862 #endif 863 864 865 //===----------------------------------------------------------------------===// 866 // ScopedName Implementation 867 //===----------------------------------------------------------------------===// 868 869 bool ScopedName::operator==(const ScopedName &o) const { 870 return Scope == o.Scope && Identifier == o.Identifier; 871 } 872 873 bool ScopedName::operator!=(const ScopedName &o) const { 874 return !(*this == o); 875 } 876 877 878 //===----------------------------------------------------------------------===// 879 // TreePredicateFn Implementation 880 //===----------------------------------------------------------------------===// 881 882 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 883 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 884 assert( 885 (!hasPredCode() || !hasImmCode()) && 886 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 887 } 888 889 bool TreePredicateFn::hasPredCode() const { 890 return isLoad() || isStore() || isAtomic() || 891 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 892 } 893 894 std::string TreePredicateFn::getPredCode() const { 895 std::string Code; 896 897 if (!isLoad() && !isStore() && !isAtomic()) { 898 Record *MemoryVT = getMemoryVT(); 899 900 if (MemoryVT) 901 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 902 "MemoryVT requires IsLoad or IsStore"); 903 } 904 905 if (!isLoad() && !isStore()) { 906 if (isUnindexed()) 907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 908 "IsUnindexed requires IsLoad or IsStore"); 909 910 Record *ScalarMemoryVT = getScalarMemoryVT(); 911 912 if (ScalarMemoryVT) 913 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 914 "ScalarMemoryVT requires IsLoad or IsStore"); 915 } 916 917 if (isLoad() + isStore() + isAtomic() > 1) 918 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 919 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 920 921 if (isLoad()) { 922 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 923 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 924 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 925 getMinAlignment() < 1) 926 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 927 "IsLoad cannot be used by itself"); 928 } else { 929 if (isNonExtLoad()) 930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 931 "IsNonExtLoad requires IsLoad"); 932 if (isAnyExtLoad()) 933 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 934 "IsAnyExtLoad requires IsLoad"); 935 if (isSignExtLoad()) 936 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 937 "IsSignExtLoad requires IsLoad"); 938 if (isZeroExtLoad()) 939 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 940 "IsZeroExtLoad requires IsLoad"); 941 } 942 943 if (isStore()) { 944 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 945 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 946 getAddressSpaces() == nullptr && getMinAlignment() < 1) 947 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 948 "IsStore cannot be used by itself"); 949 } else { 950 if (isNonTruncStore()) 951 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 952 "IsNonTruncStore requires IsStore"); 953 if (isTruncStore()) 954 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 955 "IsTruncStore requires IsStore"); 956 } 957 958 if (isAtomic()) { 959 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 960 getAddressSpaces() == nullptr && 961 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 962 !isAtomicOrderingAcquireRelease() && 963 !isAtomicOrderingSequentiallyConsistent() && 964 !isAtomicOrderingAcquireOrStronger() && 965 !isAtomicOrderingReleaseOrStronger() && 966 !isAtomicOrderingWeakerThanAcquire() && 967 !isAtomicOrderingWeakerThanRelease()) 968 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 969 "IsAtomic cannot be used by itself"); 970 } else { 971 if (isAtomicOrderingMonotonic()) 972 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 973 "IsAtomicOrderingMonotonic requires IsAtomic"); 974 if (isAtomicOrderingAcquire()) 975 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 976 "IsAtomicOrderingAcquire requires IsAtomic"); 977 if (isAtomicOrderingRelease()) 978 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 979 "IsAtomicOrderingRelease requires IsAtomic"); 980 if (isAtomicOrderingAcquireRelease()) 981 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 982 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 983 if (isAtomicOrderingSequentiallyConsistent()) 984 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 985 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 986 if (isAtomicOrderingAcquireOrStronger()) 987 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 988 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 989 if (isAtomicOrderingReleaseOrStronger()) 990 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 991 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 992 if (isAtomicOrderingWeakerThanAcquire()) 993 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 994 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 995 } 996 997 if (isLoad() || isStore() || isAtomic()) { 998 if (ListInit *AddressSpaces = getAddressSpaces()) { 999 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1000 " if ("; 1001 1002 ListSeparator LS(" && "); 1003 for (Init *Val : AddressSpaces->getValues()) { 1004 Code += LS; 1005 1006 IntInit *IntVal = dyn_cast<IntInit>(Val); 1007 if (!IntVal) { 1008 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1009 "AddressSpaces element must be integer"); 1010 } 1011 1012 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1013 } 1014 1015 Code += ")\nreturn false;\n"; 1016 } 1017 1018 int64_t MinAlign = getMinAlignment(); 1019 if (MinAlign > 0) { 1020 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1021 Code += utostr(MinAlign); 1022 Code += "))\nreturn false;\n"; 1023 } 1024 1025 Record *MemoryVT = getMemoryVT(); 1026 1027 if (MemoryVT) 1028 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1029 MemoryVT->getName() + ") return false;\n") 1030 .str(); 1031 } 1032 1033 if (isAtomic() && isAtomicOrderingMonotonic()) 1034 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1035 "AtomicOrdering::Monotonic) return false;\n"; 1036 if (isAtomic() && isAtomicOrderingAcquire()) 1037 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1038 "AtomicOrdering::Acquire) return false;\n"; 1039 if (isAtomic() && isAtomicOrderingRelease()) 1040 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1041 "AtomicOrdering::Release) return false;\n"; 1042 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1043 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1044 "AtomicOrdering::AcquireRelease) return false;\n"; 1045 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1046 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1047 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1048 1049 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1050 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1051 "return false;\n"; 1052 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1053 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1054 "return false;\n"; 1055 1056 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1057 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1058 "return false;\n"; 1059 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1060 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1061 "return false;\n"; 1062 1063 if (isLoad() || isStore()) { 1064 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1065 1066 if (isUnindexed()) 1067 Code += ("if (cast<" + SDNodeName + 1068 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1069 "return false;\n") 1070 .str(); 1071 1072 if (isLoad()) { 1073 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1074 isZeroExtLoad()) > 1) 1075 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1076 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1077 "IsZeroExtLoad are mutually exclusive"); 1078 if (isNonExtLoad()) 1079 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1080 "ISD::NON_EXTLOAD) return false;\n"; 1081 if (isAnyExtLoad()) 1082 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1083 "return false;\n"; 1084 if (isSignExtLoad()) 1085 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1086 "return false;\n"; 1087 if (isZeroExtLoad()) 1088 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1089 "return false;\n"; 1090 } else { 1091 if ((isNonTruncStore() + isTruncStore()) > 1) 1092 PrintFatalError( 1093 getOrigPatFragRecord()->getRecord()->getLoc(), 1094 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1095 if (isNonTruncStore()) 1096 Code += 1097 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1098 if (isTruncStore()) 1099 Code += 1100 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1101 } 1102 1103 Record *ScalarMemoryVT = getScalarMemoryVT(); 1104 1105 if (ScalarMemoryVT) 1106 Code += ("if (cast<" + SDNodeName + 1107 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1108 ScalarMemoryVT->getName() + ") return false;\n") 1109 .str(); 1110 } 1111 1112 std::string PredicateCode = 1113 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1114 1115 Code += PredicateCode; 1116 1117 if (PredicateCode.empty() && !Code.empty()) 1118 Code += "return true;\n"; 1119 1120 return Code; 1121 } 1122 1123 bool TreePredicateFn::hasImmCode() const { 1124 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1125 } 1126 1127 std::string TreePredicateFn::getImmCode() const { 1128 return std::string( 1129 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1130 } 1131 1132 bool TreePredicateFn::immCodeUsesAPInt() const { 1133 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1134 } 1135 1136 bool TreePredicateFn::immCodeUsesAPFloat() const { 1137 bool Unset; 1138 // The return value will be false when IsAPFloat is unset. 1139 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1140 Unset); 1141 } 1142 1143 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1144 bool Value) const { 1145 bool Unset; 1146 bool Result = 1147 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1148 if (Unset) 1149 return false; 1150 return Result == Value; 1151 } 1152 bool TreePredicateFn::usesOperands() const { 1153 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1154 } 1155 bool TreePredicateFn::isLoad() const { 1156 return isPredefinedPredicateEqualTo("IsLoad", true); 1157 } 1158 bool TreePredicateFn::isStore() const { 1159 return isPredefinedPredicateEqualTo("IsStore", true); 1160 } 1161 bool TreePredicateFn::isAtomic() const { 1162 return isPredefinedPredicateEqualTo("IsAtomic", true); 1163 } 1164 bool TreePredicateFn::isUnindexed() const { 1165 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1166 } 1167 bool TreePredicateFn::isNonExtLoad() const { 1168 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1169 } 1170 bool TreePredicateFn::isAnyExtLoad() const { 1171 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1172 } 1173 bool TreePredicateFn::isSignExtLoad() const { 1174 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1175 } 1176 bool TreePredicateFn::isZeroExtLoad() const { 1177 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1178 } 1179 bool TreePredicateFn::isNonTruncStore() const { 1180 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1181 } 1182 bool TreePredicateFn::isTruncStore() const { 1183 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1184 } 1185 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1186 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1187 } 1188 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1189 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1190 } 1191 bool TreePredicateFn::isAtomicOrderingRelease() const { 1192 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1193 } 1194 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1195 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1196 } 1197 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1198 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1199 true); 1200 } 1201 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1202 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1203 } 1204 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1205 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1206 } 1207 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1208 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1209 } 1210 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1211 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1212 } 1213 Record *TreePredicateFn::getMemoryVT() const { 1214 Record *R = getOrigPatFragRecord()->getRecord(); 1215 if (R->isValueUnset("MemoryVT")) 1216 return nullptr; 1217 return R->getValueAsDef("MemoryVT"); 1218 } 1219 1220 ListInit *TreePredicateFn::getAddressSpaces() const { 1221 Record *R = getOrigPatFragRecord()->getRecord(); 1222 if (R->isValueUnset("AddressSpaces")) 1223 return nullptr; 1224 return R->getValueAsListInit("AddressSpaces"); 1225 } 1226 1227 int64_t TreePredicateFn::getMinAlignment() const { 1228 Record *R = getOrigPatFragRecord()->getRecord(); 1229 if (R->isValueUnset("MinAlignment")) 1230 return 0; 1231 return R->getValueAsInt("MinAlignment"); 1232 } 1233 1234 Record *TreePredicateFn::getScalarMemoryVT() const { 1235 Record *R = getOrigPatFragRecord()->getRecord(); 1236 if (R->isValueUnset("ScalarMemoryVT")) 1237 return nullptr; 1238 return R->getValueAsDef("ScalarMemoryVT"); 1239 } 1240 bool TreePredicateFn::hasGISelPredicateCode() const { 1241 return !PatFragRec->getRecord() 1242 ->getValueAsString("GISelPredicateCode") 1243 .empty(); 1244 } 1245 std::string TreePredicateFn::getGISelPredicateCode() const { 1246 return std::string( 1247 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1248 } 1249 1250 StringRef TreePredicateFn::getImmType() const { 1251 if (immCodeUsesAPInt()) 1252 return "const APInt &"; 1253 if (immCodeUsesAPFloat()) 1254 return "const APFloat &"; 1255 return "int64_t"; 1256 } 1257 1258 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1259 if (immCodeUsesAPInt()) 1260 return "APInt"; 1261 if (immCodeUsesAPFloat()) 1262 return "APFloat"; 1263 return "I64"; 1264 } 1265 1266 /// isAlwaysTrue - Return true if this is a noop predicate. 1267 bool TreePredicateFn::isAlwaysTrue() const { 1268 return !hasPredCode() && !hasImmCode(); 1269 } 1270 1271 /// Return the name to use in the generated code to reference this, this is 1272 /// "Predicate_foo" if from a pattern fragment "foo". 1273 std::string TreePredicateFn::getFnName() const { 1274 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1275 } 1276 1277 /// getCodeToRunOnSDNode - Return the code for the function body that 1278 /// evaluates this predicate. The argument is expected to be in "Node", 1279 /// not N. This handles casting and conversion to a concrete node type as 1280 /// appropriate. 1281 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1282 // Handle immediate predicates first. 1283 std::string ImmCode = getImmCode(); 1284 if (!ImmCode.empty()) { 1285 if (isLoad()) 1286 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1287 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1288 if (isStore()) 1289 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1290 "IsStore cannot be used with ImmLeaf or its subclasses"); 1291 if (isUnindexed()) 1292 PrintFatalError( 1293 getOrigPatFragRecord()->getRecord()->getLoc(), 1294 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1295 if (isNonExtLoad()) 1296 PrintFatalError( 1297 getOrigPatFragRecord()->getRecord()->getLoc(), 1298 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1299 if (isAnyExtLoad()) 1300 PrintFatalError( 1301 getOrigPatFragRecord()->getRecord()->getLoc(), 1302 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1303 if (isSignExtLoad()) 1304 PrintFatalError( 1305 getOrigPatFragRecord()->getRecord()->getLoc(), 1306 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1307 if (isZeroExtLoad()) 1308 PrintFatalError( 1309 getOrigPatFragRecord()->getRecord()->getLoc(), 1310 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1311 if (isNonTruncStore()) 1312 PrintFatalError( 1313 getOrigPatFragRecord()->getRecord()->getLoc(), 1314 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1315 if (isTruncStore()) 1316 PrintFatalError( 1317 getOrigPatFragRecord()->getRecord()->getLoc(), 1318 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1319 if (getMemoryVT()) 1320 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1321 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1322 if (getScalarMemoryVT()) 1323 PrintFatalError( 1324 getOrigPatFragRecord()->getRecord()->getLoc(), 1325 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1326 1327 std::string Result = (" " + getImmType() + " Imm = ").str(); 1328 if (immCodeUsesAPFloat()) 1329 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1330 else if (immCodeUsesAPInt()) 1331 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1332 else 1333 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1334 return Result + ImmCode; 1335 } 1336 1337 // Handle arbitrary node predicates. 1338 assert(hasPredCode() && "Don't have any predicate code!"); 1339 1340 // If this is using PatFrags, there are multiple trees to search. They should 1341 // all have the same class. FIXME: Is there a way to find a common 1342 // superclass? 1343 StringRef ClassName; 1344 for (const auto &Tree : PatFragRec->getTrees()) { 1345 StringRef TreeClassName; 1346 if (Tree->isLeaf()) 1347 TreeClassName = "SDNode"; 1348 else { 1349 Record *Op = Tree->getOperator(); 1350 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1351 TreeClassName = Info.getSDClassName(); 1352 } 1353 1354 if (ClassName.empty()) 1355 ClassName = TreeClassName; 1356 else if (ClassName != TreeClassName) { 1357 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1358 "PatFrags trees do not have consistent class"); 1359 } 1360 } 1361 1362 std::string Result; 1363 if (ClassName == "SDNode") 1364 Result = " SDNode *N = Node;\n"; 1365 else 1366 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1367 1368 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1369 } 1370 1371 //===----------------------------------------------------------------------===// 1372 // PatternToMatch implementation 1373 // 1374 1375 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1376 if (!P->isLeaf()) 1377 return false; 1378 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1379 if (!DI) 1380 return false; 1381 1382 Record *R = DI->getDef(); 1383 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1384 } 1385 1386 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1387 /// patterns before small ones. This is used to determine the size of a 1388 /// pattern. 1389 static unsigned getPatternSize(const TreePatternNode *P, 1390 const CodeGenDAGPatterns &CGP) { 1391 unsigned Size = 3; // The node itself. 1392 // If the root node is a ConstantSDNode, increases its size. 1393 // e.g. (set R32:$dst, 0). 1394 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1395 Size += 2; 1396 1397 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1398 Size += AM->getComplexity(); 1399 // We don't want to count any children twice, so return early. 1400 return Size; 1401 } 1402 1403 // If this node has some predicate function that must match, it adds to the 1404 // complexity of this node. 1405 if (!P->getPredicateCalls().empty()) 1406 ++Size; 1407 1408 // Count children in the count if they are also nodes. 1409 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1410 const TreePatternNode *Child = P->getChild(i); 1411 if (!Child->isLeaf() && Child->getNumTypes()) { 1412 const TypeSetByHwMode &T0 = Child->getExtType(0); 1413 // At this point, all variable type sets should be simple, i.e. only 1414 // have a default mode. 1415 if (T0.getMachineValueType() != MVT::Other) { 1416 Size += getPatternSize(Child, CGP); 1417 continue; 1418 } 1419 } 1420 if (Child->isLeaf()) { 1421 if (isa<IntInit>(Child->getLeafValue())) 1422 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1423 else if (Child->getComplexPatternInfo(CGP)) 1424 Size += getPatternSize(Child, CGP); 1425 else if (isImmAllOnesAllZerosMatch(Child)) 1426 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1427 else if (!Child->getPredicateCalls().empty()) 1428 ++Size; 1429 } 1430 } 1431 1432 return Size; 1433 } 1434 1435 /// Compute the complexity metric for the input pattern. This roughly 1436 /// corresponds to the number of nodes that are covered. 1437 int PatternToMatch:: 1438 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1439 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1440 } 1441 1442 void PatternToMatch::getPredicateRecords( 1443 SmallVectorImpl<Record *> &PredicateRecs) const { 1444 for (Init *I : Predicates->getValues()) { 1445 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1446 Record *Def = Pred->getDef(); 1447 if (!Def->isSubClassOf("Predicate")) { 1448 #ifndef NDEBUG 1449 Def->dump(); 1450 #endif 1451 llvm_unreachable("Unknown predicate type!"); 1452 } 1453 PredicateRecs.push_back(Def); 1454 } 1455 } 1456 // Sort so that different orders get canonicalized to the same string. 1457 llvm::sort(PredicateRecs, LessRecord()); 1458 } 1459 1460 /// getPredicateCheck - Return a single string containing all of this 1461 /// pattern's predicates concatenated with "&&" operators. 1462 /// 1463 std::string PatternToMatch::getPredicateCheck() const { 1464 SmallVector<Record *, 4> PredicateRecs; 1465 getPredicateRecords(PredicateRecs); 1466 1467 SmallString<128> PredicateCheck; 1468 for (Record *Pred : PredicateRecs) { 1469 StringRef CondString = Pred->getValueAsString("CondString"); 1470 if (CondString.empty()) 1471 continue; 1472 if (!PredicateCheck.empty()) 1473 PredicateCheck += " && "; 1474 PredicateCheck += "("; 1475 PredicateCheck += CondString; 1476 PredicateCheck += ")"; 1477 } 1478 1479 if (!HwModeFeatures.empty()) { 1480 if (!PredicateCheck.empty()) 1481 PredicateCheck += " && "; 1482 PredicateCheck += HwModeFeatures; 1483 } 1484 1485 return std::string(PredicateCheck); 1486 } 1487 1488 //===----------------------------------------------------------------------===// 1489 // SDTypeConstraint implementation 1490 // 1491 1492 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1493 OperandNo = R->getValueAsInt("OperandNum"); 1494 1495 if (R->isSubClassOf("SDTCisVT")) { 1496 ConstraintType = SDTCisVT; 1497 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1498 for (const auto &P : VVT) 1499 if (P.second == MVT::isVoid) 1500 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1501 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1502 ConstraintType = SDTCisPtrTy; 1503 } else if (R->isSubClassOf("SDTCisInt")) { 1504 ConstraintType = SDTCisInt; 1505 } else if (R->isSubClassOf("SDTCisFP")) { 1506 ConstraintType = SDTCisFP; 1507 } else if (R->isSubClassOf("SDTCisVec")) { 1508 ConstraintType = SDTCisVec; 1509 } else if (R->isSubClassOf("SDTCisSameAs")) { 1510 ConstraintType = SDTCisSameAs; 1511 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1512 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1513 ConstraintType = SDTCisVTSmallerThanOp; 1514 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1515 R->getValueAsInt("OtherOperandNum"); 1516 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1517 ConstraintType = SDTCisOpSmallerThanOp; 1518 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1519 R->getValueAsInt("BigOperandNum"); 1520 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1521 ConstraintType = SDTCisEltOfVec; 1522 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1523 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1524 ConstraintType = SDTCisSubVecOfVec; 1525 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1526 R->getValueAsInt("OtherOpNum"); 1527 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1528 ConstraintType = SDTCVecEltisVT; 1529 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1530 for (const auto &P : VVT) { 1531 MVT T = P.second; 1532 if (T.isVector()) 1533 PrintFatalError(R->getLoc(), 1534 "Cannot use vector type as SDTCVecEltisVT"); 1535 if (!T.isInteger() && !T.isFloatingPoint()) 1536 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1537 "as SDTCVecEltisVT"); 1538 } 1539 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1540 ConstraintType = SDTCisSameNumEltsAs; 1541 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1542 R->getValueAsInt("OtherOperandNum"); 1543 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1544 ConstraintType = SDTCisSameSizeAs; 1545 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1546 R->getValueAsInt("OtherOperandNum"); 1547 } else { 1548 PrintFatalError(R->getLoc(), 1549 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1550 } 1551 } 1552 1553 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1554 /// N, and the result number in ResNo. 1555 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1556 const SDNodeInfo &NodeInfo, 1557 unsigned &ResNo) { 1558 unsigned NumResults = NodeInfo.getNumResults(); 1559 if (OpNo < NumResults) { 1560 ResNo = OpNo; 1561 return N; 1562 } 1563 1564 OpNo -= NumResults; 1565 1566 if (OpNo >= N->getNumChildren()) { 1567 std::string S; 1568 raw_string_ostream OS(S); 1569 OS << "Invalid operand number in type constraint " 1570 << (OpNo+NumResults) << " "; 1571 N->print(OS); 1572 PrintFatalError(OS.str()); 1573 } 1574 1575 return N->getChild(OpNo); 1576 } 1577 1578 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1579 /// constraint to the nodes operands. This returns true if it makes a 1580 /// change, false otherwise. If a type contradiction is found, flag an error. 1581 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1582 const SDNodeInfo &NodeInfo, 1583 TreePattern &TP) const { 1584 if (TP.hasError()) 1585 return false; 1586 1587 unsigned ResNo = 0; // The result number being referenced. 1588 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1589 TypeInfer &TI = TP.getInfer(); 1590 1591 switch (ConstraintType) { 1592 case SDTCisVT: 1593 // Operand must be a particular type. 1594 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1595 case SDTCisPtrTy: 1596 // Operand must be same as target pointer type. 1597 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1598 case SDTCisInt: 1599 // Require it to be one of the legal integer VTs. 1600 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1601 case SDTCisFP: 1602 // Require it to be one of the legal fp VTs. 1603 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1604 case SDTCisVec: 1605 // Require it to be one of the legal vector VTs. 1606 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1607 case SDTCisSameAs: { 1608 unsigned OResNo = 0; 1609 TreePatternNode *OtherNode = 1610 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1611 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1612 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1613 } 1614 case SDTCisVTSmallerThanOp: { 1615 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1616 // have an integer type that is smaller than the VT. 1617 if (!NodeToApply->isLeaf() || 1618 !isa<DefInit>(NodeToApply->getLeafValue()) || 1619 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1620 ->isSubClassOf("ValueType")) { 1621 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1622 return false; 1623 } 1624 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1625 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1626 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1627 TypeSetByHwMode TypeListTmp(VVT); 1628 1629 unsigned OResNo = 0; 1630 TreePatternNode *OtherNode = 1631 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1632 OResNo); 1633 1634 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1635 } 1636 case SDTCisOpSmallerThanOp: { 1637 unsigned BResNo = 0; 1638 TreePatternNode *BigOperand = 1639 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1640 BResNo); 1641 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1642 BigOperand->getExtType(BResNo)); 1643 } 1644 case SDTCisEltOfVec: { 1645 unsigned VResNo = 0; 1646 TreePatternNode *VecOperand = 1647 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1648 VResNo); 1649 // Filter vector types out of VecOperand that don't have the right element 1650 // type. 1651 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1652 NodeToApply->getExtType(ResNo)); 1653 } 1654 case SDTCisSubVecOfVec: { 1655 unsigned VResNo = 0; 1656 TreePatternNode *BigVecOperand = 1657 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1658 VResNo); 1659 1660 // Filter vector types out of BigVecOperand that don't have the 1661 // right subvector type. 1662 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1663 NodeToApply->getExtType(ResNo)); 1664 } 1665 case SDTCVecEltisVT: { 1666 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1667 } 1668 case SDTCisSameNumEltsAs: { 1669 unsigned OResNo = 0; 1670 TreePatternNode *OtherNode = 1671 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1672 N, NodeInfo, OResNo); 1673 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1674 NodeToApply->getExtType(ResNo)); 1675 } 1676 case SDTCisSameSizeAs: { 1677 unsigned OResNo = 0; 1678 TreePatternNode *OtherNode = 1679 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1680 N, NodeInfo, OResNo); 1681 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1682 NodeToApply->getExtType(ResNo)); 1683 } 1684 } 1685 llvm_unreachable("Invalid ConstraintType!"); 1686 } 1687 1688 // Update the node type to match an instruction operand or result as specified 1689 // in the ins or outs lists on the instruction definition. Return true if the 1690 // type was actually changed. 1691 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1692 Record *Operand, 1693 TreePattern &TP) { 1694 // The 'unknown' operand indicates that types should be inferred from the 1695 // context. 1696 if (Operand->isSubClassOf("unknown_class")) 1697 return false; 1698 1699 // The Operand class specifies a type directly. 1700 if (Operand->isSubClassOf("Operand")) { 1701 Record *R = Operand->getValueAsDef("Type"); 1702 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1703 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1704 } 1705 1706 // PointerLikeRegClass has a type that is determined at runtime. 1707 if (Operand->isSubClassOf("PointerLikeRegClass")) 1708 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1709 1710 // Both RegisterClass and RegisterOperand operands derive their types from a 1711 // register class def. 1712 Record *RC = nullptr; 1713 if (Operand->isSubClassOf("RegisterClass")) 1714 RC = Operand; 1715 else if (Operand->isSubClassOf("RegisterOperand")) 1716 RC = Operand->getValueAsDef("RegClass"); 1717 1718 assert(RC && "Unknown operand type"); 1719 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1720 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1721 } 1722 1723 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1724 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1725 if (!TP.getInfer().isConcrete(Types[i], true)) 1726 return true; 1727 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1728 if (getChild(i)->ContainsUnresolvedType(TP)) 1729 return true; 1730 return false; 1731 } 1732 1733 bool TreePatternNode::hasProperTypeByHwMode() const { 1734 for (const TypeSetByHwMode &S : Types) 1735 if (!S.isDefaultOnly()) 1736 return true; 1737 for (const TreePatternNodePtr &C : Children) 1738 if (C->hasProperTypeByHwMode()) 1739 return true; 1740 return false; 1741 } 1742 1743 bool TreePatternNode::hasPossibleType() const { 1744 for (const TypeSetByHwMode &S : Types) 1745 if (!S.isPossible()) 1746 return false; 1747 for (const TreePatternNodePtr &C : Children) 1748 if (!C->hasPossibleType()) 1749 return false; 1750 return true; 1751 } 1752 1753 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1754 for (TypeSetByHwMode &S : Types) { 1755 S.makeSimple(Mode); 1756 // Check if the selected mode had a type conflict. 1757 if (S.get(DefaultMode).empty()) 1758 return false; 1759 } 1760 for (const TreePatternNodePtr &C : Children) 1761 if (!C->setDefaultMode(Mode)) 1762 return false; 1763 return true; 1764 } 1765 1766 //===----------------------------------------------------------------------===// 1767 // SDNodeInfo implementation 1768 // 1769 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1770 EnumName = R->getValueAsString("Opcode"); 1771 SDClassName = R->getValueAsString("SDClass"); 1772 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1773 NumResults = TypeProfile->getValueAsInt("NumResults"); 1774 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1775 1776 // Parse the properties. 1777 Properties = parseSDPatternOperatorProperties(R); 1778 1779 // Parse the type constraints. 1780 std::vector<Record*> ConstraintList = 1781 TypeProfile->getValueAsListOfDefs("Constraints"); 1782 for (Record *R : ConstraintList) 1783 TypeConstraints.emplace_back(R, CGH); 1784 } 1785 1786 /// getKnownType - If the type constraints on this node imply a fixed type 1787 /// (e.g. all stores return void, etc), then return it as an 1788 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1789 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1790 unsigned NumResults = getNumResults(); 1791 assert(NumResults <= 1 && 1792 "We only work with nodes with zero or one result so far!"); 1793 assert(ResNo == 0 && "Only handles single result nodes so far"); 1794 1795 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1796 // Make sure that this applies to the correct node result. 1797 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1798 continue; 1799 1800 switch (Constraint.ConstraintType) { 1801 default: break; 1802 case SDTypeConstraint::SDTCisVT: 1803 if (Constraint.VVT.isSimple()) 1804 return Constraint.VVT.getSimple().SimpleTy; 1805 break; 1806 case SDTypeConstraint::SDTCisPtrTy: 1807 return MVT::iPTR; 1808 } 1809 } 1810 return MVT::Other; 1811 } 1812 1813 //===----------------------------------------------------------------------===// 1814 // TreePatternNode implementation 1815 // 1816 1817 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1818 if (Operator->getName() == "set" || 1819 Operator->getName() == "implicit") 1820 return 0; // All return nothing. 1821 1822 if (Operator->isSubClassOf("Intrinsic")) 1823 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1824 1825 if (Operator->isSubClassOf("SDNode")) 1826 return CDP.getSDNodeInfo(Operator).getNumResults(); 1827 1828 if (Operator->isSubClassOf("PatFrags")) { 1829 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1830 // the forward reference case where one pattern fragment references another 1831 // before it is processed. 1832 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1833 // The number of results of a fragment with alternative records is the 1834 // maximum number of results across all alternatives. 1835 unsigned NumResults = 0; 1836 for (const auto &T : PFRec->getTrees()) 1837 NumResults = std::max(NumResults, T->getNumTypes()); 1838 return NumResults; 1839 } 1840 1841 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1842 assert(LI && "Invalid Fragment"); 1843 unsigned NumResults = 0; 1844 for (Init *I : LI->getValues()) { 1845 Record *Op = nullptr; 1846 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1847 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1848 Op = DI->getDef(); 1849 assert(Op && "Invalid Fragment"); 1850 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1851 } 1852 return NumResults; 1853 } 1854 1855 if (Operator->isSubClassOf("Instruction")) { 1856 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1857 1858 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1859 1860 // Subtract any defaulted outputs. 1861 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1862 Record *OperandNode = InstInfo.Operands[i].Rec; 1863 1864 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1865 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1866 --NumDefsToAdd; 1867 } 1868 1869 // Add on one implicit def if it has a resolvable type. 1870 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1871 ++NumDefsToAdd; 1872 return NumDefsToAdd; 1873 } 1874 1875 if (Operator->isSubClassOf("SDNodeXForm")) 1876 return 1; // FIXME: Generalize SDNodeXForm 1877 1878 if (Operator->isSubClassOf("ValueType")) 1879 return 1; // A type-cast of one result. 1880 1881 if (Operator->isSubClassOf("ComplexPattern")) 1882 return 1; 1883 1884 errs() << *Operator; 1885 PrintFatalError("Unhandled node in GetNumNodeResults"); 1886 } 1887 1888 void TreePatternNode::print(raw_ostream &OS) const { 1889 if (isLeaf()) 1890 OS << *getLeafValue(); 1891 else 1892 OS << '(' << getOperator()->getName(); 1893 1894 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1895 OS << ':'; 1896 getExtType(i).writeToStream(OS); 1897 } 1898 1899 if (!isLeaf()) { 1900 if (getNumChildren() != 0) { 1901 OS << " "; 1902 ListSeparator LS; 1903 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1904 OS << LS; 1905 getChild(i)->print(OS); 1906 } 1907 } 1908 OS << ")"; 1909 } 1910 1911 for (const TreePredicateCall &Pred : PredicateCalls) { 1912 OS << "<<P:"; 1913 if (Pred.Scope) 1914 OS << Pred.Scope << ":"; 1915 OS << Pred.Fn.getFnName() << ">>"; 1916 } 1917 if (TransformFn) 1918 OS << "<<X:" << TransformFn->getName() << ">>"; 1919 if (!getName().empty()) 1920 OS << ":$" << getName(); 1921 1922 for (const ScopedName &Name : NamesAsPredicateArg) 1923 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1924 } 1925 void TreePatternNode::dump() const { 1926 print(errs()); 1927 } 1928 1929 /// isIsomorphicTo - Return true if this node is recursively 1930 /// isomorphic to the specified node. For this comparison, the node's 1931 /// entire state is considered. The assigned name is ignored, since 1932 /// nodes with differing names are considered isomorphic. However, if 1933 /// the assigned name is present in the dependent variable set, then 1934 /// the assigned name is considered significant and the node is 1935 /// isomorphic if the names match. 1936 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1937 const MultipleUseVarSet &DepVars) const { 1938 if (N == this) return true; 1939 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1940 getPredicateCalls() != N->getPredicateCalls() || 1941 getTransformFn() != N->getTransformFn()) 1942 return false; 1943 1944 if (isLeaf()) { 1945 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1946 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1947 return ((DI->getDef() == NDI->getDef()) 1948 && (DepVars.find(getName()) == DepVars.end() 1949 || getName() == N->getName())); 1950 } 1951 } 1952 return getLeafValue() == N->getLeafValue(); 1953 } 1954 1955 if (N->getOperator() != getOperator() || 1956 N->getNumChildren() != getNumChildren()) return false; 1957 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1958 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1959 return false; 1960 return true; 1961 } 1962 1963 /// clone - Make a copy of this tree and all of its children. 1964 /// 1965 TreePatternNodePtr TreePatternNode::clone() const { 1966 TreePatternNodePtr New; 1967 if (isLeaf()) { 1968 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1969 } else { 1970 std::vector<TreePatternNodePtr> CChildren; 1971 CChildren.reserve(Children.size()); 1972 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1973 CChildren.push_back(getChild(i)->clone()); 1974 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1975 getNumTypes()); 1976 } 1977 New->setName(getName()); 1978 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1979 New->Types = Types; 1980 New->setPredicateCalls(getPredicateCalls()); 1981 New->setTransformFn(getTransformFn()); 1982 return New; 1983 } 1984 1985 /// RemoveAllTypes - Recursively strip all the types of this tree. 1986 void TreePatternNode::RemoveAllTypes() { 1987 // Reset to unknown type. 1988 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1989 if (isLeaf()) return; 1990 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1991 getChild(i)->RemoveAllTypes(); 1992 } 1993 1994 1995 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1996 /// with actual values specified by ArgMap. 1997 void TreePatternNode::SubstituteFormalArguments( 1998 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1999 if (isLeaf()) return; 2000 2001 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2002 TreePatternNode *Child = getChild(i); 2003 if (Child->isLeaf()) { 2004 Init *Val = Child->getLeafValue(); 2005 // Note that, when substituting into an output pattern, Val might be an 2006 // UnsetInit. 2007 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 2008 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2009 // We found a use of a formal argument, replace it with its value. 2010 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 2011 assert(NewChild && "Couldn't find formal argument!"); 2012 assert((Child->getPredicateCalls().empty() || 2013 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 2014 "Non-empty child predicate clobbered!"); 2015 setChild(i, std::move(NewChild)); 2016 } 2017 } else { 2018 getChild(i)->SubstituteFormalArguments(ArgMap); 2019 } 2020 } 2021 } 2022 2023 2024 /// InlinePatternFragments - If this pattern refers to any pattern 2025 /// fragments, return the set of inlined versions (this can be more than 2026 /// one if a PatFrags record has multiple alternatives). 2027 void TreePatternNode::InlinePatternFragments( 2028 TreePatternNodePtr T, TreePattern &TP, 2029 std::vector<TreePatternNodePtr> &OutAlternatives) { 2030 2031 if (TP.hasError()) 2032 return; 2033 2034 if (isLeaf()) { 2035 OutAlternatives.push_back(T); // nothing to do. 2036 return; 2037 } 2038 2039 Record *Op = getOperator(); 2040 2041 if (!Op->isSubClassOf("PatFrags")) { 2042 if (getNumChildren() == 0) { 2043 OutAlternatives.push_back(T); 2044 return; 2045 } 2046 2047 // Recursively inline children nodes. 2048 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2049 ChildAlternatives.resize(getNumChildren()); 2050 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2051 TreePatternNodePtr Child = getChildShared(i); 2052 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2053 // If there are no alternatives for any child, there are no 2054 // alternatives for this expression as whole. 2055 if (ChildAlternatives[i].empty()) 2056 return; 2057 2058 assert((Child->getPredicateCalls().empty() || 2059 llvm::all_of(ChildAlternatives[i], 2060 [&](const TreePatternNodePtr &NewChild) { 2061 return NewChild->getPredicateCalls() == 2062 Child->getPredicateCalls(); 2063 })) && 2064 "Non-empty child predicate clobbered!"); 2065 } 2066 2067 // The end result is an all-pairs construction of the resultant pattern. 2068 std::vector<unsigned> Idxs; 2069 Idxs.resize(ChildAlternatives.size()); 2070 bool NotDone; 2071 do { 2072 // Create the variant and add it to the output list. 2073 std::vector<TreePatternNodePtr> NewChildren; 2074 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2075 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2076 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2077 getOperator(), std::move(NewChildren), getNumTypes()); 2078 2079 // Copy over properties. 2080 R->setName(getName()); 2081 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2082 R->setPredicateCalls(getPredicateCalls()); 2083 R->setTransformFn(getTransformFn()); 2084 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2085 R->setType(i, getExtType(i)); 2086 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2087 R->setResultIndex(i, getResultIndex(i)); 2088 2089 // Register alternative. 2090 OutAlternatives.push_back(R); 2091 2092 // Increment indices to the next permutation by incrementing the 2093 // indices from last index backward, e.g., generate the sequence 2094 // [0, 0], [0, 1], [1, 0], [1, 1]. 2095 int IdxsIdx; 2096 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2097 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2098 Idxs[IdxsIdx] = 0; 2099 else 2100 break; 2101 } 2102 NotDone = (IdxsIdx >= 0); 2103 } while (NotDone); 2104 2105 return; 2106 } 2107 2108 // Otherwise, we found a reference to a fragment. First, look up its 2109 // TreePattern record. 2110 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2111 2112 // Verify that we are passing the right number of operands. 2113 if (Frag->getNumArgs() != Children.size()) { 2114 TP.error("'" + Op->getName() + "' fragment requires " + 2115 Twine(Frag->getNumArgs()) + " operands!"); 2116 return; 2117 } 2118 2119 TreePredicateFn PredFn(Frag); 2120 unsigned Scope = 0; 2121 if (TreePredicateFn(Frag).usesOperands()) 2122 Scope = TP.getDAGPatterns().allocateScope(); 2123 2124 // Compute the map of formal to actual arguments. 2125 std::map<std::string, TreePatternNodePtr> ArgMap; 2126 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2127 TreePatternNodePtr Child = getChildShared(i); 2128 if (Scope != 0) { 2129 Child = Child->clone(); 2130 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2131 } 2132 ArgMap[Frag->getArgName(i)] = Child; 2133 } 2134 2135 // Loop over all fragment alternatives. 2136 for (const auto &Alternative : Frag->getTrees()) { 2137 TreePatternNodePtr FragTree = Alternative->clone(); 2138 2139 if (!PredFn.isAlwaysTrue()) 2140 FragTree->addPredicateCall(PredFn, Scope); 2141 2142 // Resolve formal arguments to their actual value. 2143 if (Frag->getNumArgs()) 2144 FragTree->SubstituteFormalArguments(ArgMap); 2145 2146 // Transfer types. Note that the resolved alternative may have fewer 2147 // (but not more) results than the PatFrags node. 2148 FragTree->setName(getName()); 2149 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2150 FragTree->UpdateNodeType(i, getExtType(i), TP); 2151 2152 // Transfer in the old predicates. 2153 for (const TreePredicateCall &Pred : getPredicateCalls()) 2154 FragTree->addPredicateCall(Pred); 2155 2156 // The fragment we inlined could have recursive inlining that is needed. See 2157 // if there are any pattern fragments in it and inline them as needed. 2158 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2159 } 2160 } 2161 2162 /// getImplicitType - Check to see if the specified record has an implicit 2163 /// type which should be applied to it. This will infer the type of register 2164 /// references from the register file information, for example. 2165 /// 2166 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2167 /// the F8RC register class argument in: 2168 /// 2169 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2170 /// 2171 /// When Unnamed is false, return the type of a named DAG operand such as the 2172 /// GPR:$src operand above. 2173 /// 2174 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2175 bool NotRegisters, 2176 bool Unnamed, 2177 TreePattern &TP) { 2178 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2179 2180 // Check to see if this is a register operand. 2181 if (R->isSubClassOf("RegisterOperand")) { 2182 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2183 if (NotRegisters) 2184 return TypeSetByHwMode(); // Unknown. 2185 Record *RegClass = R->getValueAsDef("RegClass"); 2186 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2187 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2188 } 2189 2190 // Check to see if this is a register or a register class. 2191 if (R->isSubClassOf("RegisterClass")) { 2192 assert(ResNo == 0 && "Regclass ref only has one result!"); 2193 // An unnamed register class represents itself as an i32 immediate, for 2194 // example on a COPY_TO_REGCLASS instruction. 2195 if (Unnamed) 2196 return TypeSetByHwMode(MVT::i32); 2197 2198 // In a named operand, the register class provides the possible set of 2199 // types. 2200 if (NotRegisters) 2201 return TypeSetByHwMode(); // Unknown. 2202 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2203 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2204 } 2205 2206 if (R->isSubClassOf("PatFrags")) { 2207 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2208 // Pattern fragment types will be resolved when they are inlined. 2209 return TypeSetByHwMode(); // Unknown. 2210 } 2211 2212 if (R->isSubClassOf("Register")) { 2213 assert(ResNo == 0 && "Registers only produce one result!"); 2214 if (NotRegisters) 2215 return TypeSetByHwMode(); // Unknown. 2216 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2217 return TypeSetByHwMode(T.getRegisterVTs(R)); 2218 } 2219 2220 if (R->isSubClassOf("SubRegIndex")) { 2221 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2222 return TypeSetByHwMode(MVT::i32); 2223 } 2224 2225 if (R->isSubClassOf("ValueType")) { 2226 assert(ResNo == 0 && "This node only has one result!"); 2227 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2228 // 2229 // (sext_inreg GPR:$src, i16) 2230 // ~~~ 2231 if (Unnamed) 2232 return TypeSetByHwMode(MVT::Other); 2233 // With a name, the ValueType simply provides the type of the named 2234 // variable. 2235 // 2236 // (sext_inreg i32:$src, i16) 2237 // ~~~~~~~~ 2238 if (NotRegisters) 2239 return TypeSetByHwMode(); // Unknown. 2240 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2241 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2242 } 2243 2244 if (R->isSubClassOf("CondCode")) { 2245 assert(ResNo == 0 && "This node only has one result!"); 2246 // Using a CondCodeSDNode. 2247 return TypeSetByHwMode(MVT::Other); 2248 } 2249 2250 if (R->isSubClassOf("ComplexPattern")) { 2251 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2252 if (NotRegisters) 2253 return TypeSetByHwMode(); // Unknown. 2254 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2255 } 2256 if (R->isSubClassOf("PointerLikeRegClass")) { 2257 assert(ResNo == 0 && "Regclass can only have one result!"); 2258 TypeSetByHwMode VTS(MVT::iPTR); 2259 TP.getInfer().expandOverloads(VTS); 2260 return VTS; 2261 } 2262 2263 if (R->getName() == "node" || R->getName() == "srcvalue" || 2264 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2265 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2266 // Placeholder. 2267 return TypeSetByHwMode(); // Unknown. 2268 } 2269 2270 if (R->isSubClassOf("Operand")) { 2271 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2272 Record *T = R->getValueAsDef("Type"); 2273 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2274 } 2275 2276 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2277 return TypeSetByHwMode(MVT::Other); 2278 } 2279 2280 2281 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2282 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2283 const CodeGenIntrinsic *TreePatternNode:: 2284 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2285 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2286 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2287 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2288 return nullptr; 2289 2290 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2291 return &CDP.getIntrinsicInfo(IID); 2292 } 2293 2294 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2295 /// return the ComplexPattern information, otherwise return null. 2296 const ComplexPattern * 2297 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2298 Record *Rec; 2299 if (isLeaf()) { 2300 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2301 if (!DI) 2302 return nullptr; 2303 Rec = DI->getDef(); 2304 } else 2305 Rec = getOperator(); 2306 2307 if (!Rec->isSubClassOf("ComplexPattern")) 2308 return nullptr; 2309 return &CGP.getComplexPattern(Rec); 2310 } 2311 2312 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2313 // A ComplexPattern specifically declares how many results it fills in. 2314 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2315 return CP->getNumOperands(); 2316 2317 // If MIOperandInfo is specified, that gives the count. 2318 if (isLeaf()) { 2319 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2320 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2321 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2322 if (MIOps->getNumArgs()) 2323 return MIOps->getNumArgs(); 2324 } 2325 } 2326 2327 // Otherwise there is just one result. 2328 return 1; 2329 } 2330 2331 /// NodeHasProperty - Return true if this node has the specified property. 2332 bool TreePatternNode::NodeHasProperty(SDNP Property, 2333 const CodeGenDAGPatterns &CGP) const { 2334 if (isLeaf()) { 2335 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2336 return CP->hasProperty(Property); 2337 2338 return false; 2339 } 2340 2341 if (Property != SDNPHasChain) { 2342 // The chain proprety is already present on the different intrinsic node 2343 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2344 // on the intrinsic. Anything else is specific to the individual intrinsic. 2345 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2346 return Int->hasProperty(Property); 2347 } 2348 2349 if (!Operator->isSubClassOf("SDPatternOperator")) 2350 return false; 2351 2352 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2353 } 2354 2355 2356 2357 2358 /// TreeHasProperty - Return true if any node in this tree has the specified 2359 /// property. 2360 bool TreePatternNode::TreeHasProperty(SDNP Property, 2361 const CodeGenDAGPatterns &CGP) const { 2362 if (NodeHasProperty(Property, CGP)) 2363 return true; 2364 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2365 if (getChild(i)->TreeHasProperty(Property, CGP)) 2366 return true; 2367 return false; 2368 } 2369 2370 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2371 /// commutative intrinsic. 2372 bool 2373 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2374 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2375 return Int->isCommutative; 2376 return false; 2377 } 2378 2379 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2380 if (!N->isLeaf()) 2381 return N->getOperator()->isSubClassOf(Class); 2382 2383 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2384 if (DI && DI->getDef()->isSubClassOf(Class)) 2385 return true; 2386 2387 return false; 2388 } 2389 2390 static void emitTooManyOperandsError(TreePattern &TP, 2391 StringRef InstName, 2392 unsigned Expected, 2393 unsigned Actual) { 2394 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2395 " operands but expected only " + Twine(Expected) + "!"); 2396 } 2397 2398 static void emitTooFewOperandsError(TreePattern &TP, 2399 StringRef InstName, 2400 unsigned Actual) { 2401 TP.error("Instruction '" + InstName + 2402 "' expects more than the provided " + Twine(Actual) + " operands!"); 2403 } 2404 2405 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2406 /// this node and its children in the tree. This returns true if it makes a 2407 /// change, false otherwise. If a type contradiction is found, flag an error. 2408 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2409 if (TP.hasError()) 2410 return false; 2411 2412 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2413 if (isLeaf()) { 2414 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2415 // If it's a regclass or something else known, include the type. 2416 bool MadeChange = false; 2417 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2418 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2419 NotRegisters, 2420 !hasName(), TP), TP); 2421 return MadeChange; 2422 } 2423 2424 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2425 assert(Types.size() == 1 && "Invalid IntInit"); 2426 2427 // Int inits are always integers. :) 2428 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2429 2430 if (!TP.getInfer().isConcrete(Types[0], false)) 2431 return MadeChange; 2432 2433 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2434 for (auto &P : VVT) { 2435 MVT::SimpleValueType VT = P.second.SimpleTy; 2436 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2437 continue; 2438 unsigned Size = MVT(VT).getFixedSizeInBits(); 2439 // Make sure that the value is representable for this type. 2440 if (Size >= 32) 2441 continue; 2442 // Check that the value doesn't use more bits than we have. It must 2443 // either be a sign- or zero-extended equivalent of the original. 2444 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2445 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2446 SignBitAndAbove == 1) 2447 continue; 2448 2449 TP.error("Integer value '" + Twine(II->getValue()) + 2450 "' is out of range for type '" + getEnumName(VT) + "'!"); 2451 break; 2452 } 2453 return MadeChange; 2454 } 2455 2456 return false; 2457 } 2458 2459 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2460 bool MadeChange = false; 2461 2462 // Apply the result type to the node. 2463 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2464 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2465 2466 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2467 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2468 2469 if (getNumChildren() != NumParamVTs + 1) { 2470 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2471 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2472 return false; 2473 } 2474 2475 // Apply type info to the intrinsic ID. 2476 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2477 2478 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2479 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2480 2481 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2482 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2483 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2484 } 2485 return MadeChange; 2486 } 2487 2488 if (getOperator()->isSubClassOf("SDNode")) { 2489 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2490 2491 // Check that the number of operands is sane. Negative operands -> varargs. 2492 if (NI.getNumOperands() >= 0 && 2493 getNumChildren() != (unsigned)NI.getNumOperands()) { 2494 TP.error(getOperator()->getName() + " node requires exactly " + 2495 Twine(NI.getNumOperands()) + " operands!"); 2496 return false; 2497 } 2498 2499 bool MadeChange = false; 2500 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2501 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2502 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2503 return MadeChange; 2504 } 2505 2506 if (getOperator()->isSubClassOf("Instruction")) { 2507 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2508 CodeGenInstruction &InstInfo = 2509 CDP.getTargetInfo().getInstruction(getOperator()); 2510 2511 bool MadeChange = false; 2512 2513 // Apply the result types to the node, these come from the things in the 2514 // (outs) list of the instruction. 2515 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2516 Inst.getNumResults()); 2517 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2518 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2519 2520 // If the instruction has implicit defs, we apply the first one as a result. 2521 // FIXME: This sucks, it should apply all implicit defs. 2522 if (!InstInfo.ImplicitDefs.empty()) { 2523 unsigned ResNo = NumResultsToAdd; 2524 2525 // FIXME: Generalize to multiple possible types and multiple possible 2526 // ImplicitDefs. 2527 MVT::SimpleValueType VT = 2528 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2529 2530 if (VT != MVT::Other) 2531 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2532 } 2533 2534 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2535 // be the same. 2536 if (getOperator()->getName() == "INSERT_SUBREG") { 2537 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2538 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2539 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2540 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2541 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2542 // variadic. 2543 2544 unsigned NChild = getNumChildren(); 2545 if (NChild < 3) { 2546 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2547 return false; 2548 } 2549 2550 if (NChild % 2 == 0) { 2551 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2552 return false; 2553 } 2554 2555 if (!isOperandClass(getChild(0), "RegisterClass")) { 2556 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2557 return false; 2558 } 2559 2560 for (unsigned I = 1; I < NChild; I += 2) { 2561 TreePatternNode *SubIdxChild = getChild(I + 1); 2562 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2563 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2564 Twine(I + 1) + "!"); 2565 return false; 2566 } 2567 } 2568 } 2569 2570 unsigned NumResults = Inst.getNumResults(); 2571 unsigned NumFixedOperands = InstInfo.Operands.size(); 2572 2573 // If one or more operands with a default value appear at the end of the 2574 // formal operand list for an instruction, we allow them to be overridden 2575 // by optional operands provided in the pattern. 2576 // 2577 // But if an operand B without a default appears at any point after an 2578 // operand A with a default, then we don't allow A to be overridden, 2579 // because there would be no way to specify whether the next operand in 2580 // the pattern was intended to override A or skip it. 2581 unsigned NonOverridableOperands = NumFixedOperands; 2582 while (NonOverridableOperands > NumResults && 2583 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2584 --NonOverridableOperands; 2585 2586 unsigned ChildNo = 0; 2587 assert(NumResults <= NumFixedOperands); 2588 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2589 Record *OperandNode = InstInfo.Operands[i].Rec; 2590 2591 // If the operand has a default value, do we use it? We must use the 2592 // default if we've run out of children of the pattern DAG to consume, 2593 // or if the operand is followed by a non-defaulted one. 2594 if (CDP.operandHasDefault(OperandNode) && 2595 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2596 continue; 2597 2598 // If we have run out of child nodes and there _isn't_ a default 2599 // value we can use for the next operand, give an error. 2600 if (ChildNo >= getNumChildren()) { 2601 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2602 return false; 2603 } 2604 2605 TreePatternNode *Child = getChild(ChildNo++); 2606 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2607 2608 // If the operand has sub-operands, they may be provided by distinct 2609 // child patterns, so attempt to match each sub-operand separately. 2610 if (OperandNode->isSubClassOf("Operand")) { 2611 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2612 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2613 // But don't do that if the whole operand is being provided by 2614 // a single ComplexPattern-related Operand. 2615 2616 if (Child->getNumMIResults(CDP) < NumArgs) { 2617 // Match first sub-operand against the child we already have. 2618 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2619 MadeChange |= 2620 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2621 2622 // And the remaining sub-operands against subsequent children. 2623 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2624 if (ChildNo >= getNumChildren()) { 2625 emitTooFewOperandsError(TP, getOperator()->getName(), 2626 getNumChildren()); 2627 return false; 2628 } 2629 Child = getChild(ChildNo++); 2630 2631 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2632 MadeChange |= 2633 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2634 } 2635 continue; 2636 } 2637 } 2638 } 2639 2640 // If we didn't match by pieces above, attempt to match the whole 2641 // operand now. 2642 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2643 } 2644 2645 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2646 emitTooManyOperandsError(TP, getOperator()->getName(), 2647 ChildNo, getNumChildren()); 2648 return false; 2649 } 2650 2651 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2652 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2653 return MadeChange; 2654 } 2655 2656 if (getOperator()->isSubClassOf("ComplexPattern")) { 2657 bool MadeChange = false; 2658 2659 for (unsigned i = 0; i < getNumChildren(); ++i) 2660 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2661 2662 return MadeChange; 2663 } 2664 2665 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2666 2667 // Node transforms always take one operand. 2668 if (getNumChildren() != 1) { 2669 TP.error("Node transform '" + getOperator()->getName() + 2670 "' requires one operand!"); 2671 return false; 2672 } 2673 2674 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2675 return MadeChange; 2676 } 2677 2678 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2679 /// RHS of a commutative operation, not the on LHS. 2680 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2681 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2682 return true; 2683 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2684 return true; 2685 if (isImmAllOnesAllZerosMatch(N)) 2686 return true; 2687 return false; 2688 } 2689 2690 2691 /// canPatternMatch - If it is impossible for this pattern to match on this 2692 /// target, fill in Reason and return false. Otherwise, return true. This is 2693 /// used as a sanity check for .td files (to prevent people from writing stuff 2694 /// that can never possibly work), and to prevent the pattern permuter from 2695 /// generating stuff that is useless. 2696 bool TreePatternNode::canPatternMatch(std::string &Reason, 2697 const CodeGenDAGPatterns &CDP) { 2698 if (isLeaf()) return true; 2699 2700 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2701 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2702 return false; 2703 2704 // If this is an intrinsic, handle cases that would make it not match. For 2705 // example, if an operand is required to be an immediate. 2706 if (getOperator()->isSubClassOf("Intrinsic")) { 2707 // TODO: 2708 return true; 2709 } 2710 2711 if (getOperator()->isSubClassOf("ComplexPattern")) 2712 return true; 2713 2714 // If this node is a commutative operator, check that the LHS isn't an 2715 // immediate. 2716 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2717 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2718 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2719 // Scan all of the operands of the node and make sure that only the last one 2720 // is a constant node, unless the RHS also is. 2721 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2722 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2723 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2724 if (OnlyOnRHSOfCommutative(getChild(i))) { 2725 Reason="Immediate value must be on the RHS of commutative operators!"; 2726 return false; 2727 } 2728 } 2729 } 2730 2731 return true; 2732 } 2733 2734 //===----------------------------------------------------------------------===// 2735 // TreePattern implementation 2736 // 2737 2738 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2739 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2740 isInputPattern(isInput), HasError(false), 2741 Infer(*this) { 2742 for (Init *I : RawPat->getValues()) 2743 Trees.push_back(ParseTreePattern(I, "")); 2744 } 2745 2746 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2747 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2748 isInputPattern(isInput), HasError(false), 2749 Infer(*this) { 2750 Trees.push_back(ParseTreePattern(Pat, "")); 2751 } 2752 2753 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2754 CodeGenDAGPatterns &cdp) 2755 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2756 Infer(*this) { 2757 Trees.push_back(Pat); 2758 } 2759 2760 void TreePattern::error(const Twine &Msg) { 2761 if (HasError) 2762 return; 2763 dump(); 2764 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2765 HasError = true; 2766 } 2767 2768 void TreePattern::ComputeNamedNodes() { 2769 for (TreePatternNodePtr &Tree : Trees) 2770 ComputeNamedNodes(Tree.get()); 2771 } 2772 2773 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2774 if (!N->getName().empty()) 2775 NamedNodes[N->getName()].push_back(N); 2776 2777 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2778 ComputeNamedNodes(N->getChild(i)); 2779 } 2780 2781 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2782 StringRef OpName) { 2783 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2784 Record *R = DI->getDef(); 2785 2786 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2787 // TreePatternNode of its own. For example: 2788 /// (foo GPR, imm) -> (foo GPR, (imm)) 2789 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2790 return ParseTreePattern( 2791 DagInit::get(DI, nullptr, 2792 std::vector<std::pair<Init*, StringInit*> >()), 2793 OpName); 2794 2795 // Input argument? 2796 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2797 if (R->getName() == "node" && !OpName.empty()) { 2798 if (OpName.empty()) 2799 error("'node' argument requires a name to match with operand list"); 2800 Args.push_back(std::string(OpName)); 2801 } 2802 2803 Res->setName(OpName); 2804 return Res; 2805 } 2806 2807 // ?:$name or just $name. 2808 if (isa<UnsetInit>(TheInit)) { 2809 if (OpName.empty()) 2810 error("'?' argument requires a name to match with operand list"); 2811 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2812 Args.push_back(std::string(OpName)); 2813 Res->setName(OpName); 2814 return Res; 2815 } 2816 2817 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2818 if (!OpName.empty()) 2819 error("Constant int or bit argument should not have a name!"); 2820 if (isa<BitInit>(TheInit)) 2821 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2822 return std::make_shared<TreePatternNode>(TheInit, 1); 2823 } 2824 2825 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2826 // Turn this into an IntInit. 2827 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2828 if (!II || !isa<IntInit>(II)) 2829 error("Bits value must be constants!"); 2830 return ParseTreePattern(II, OpName); 2831 } 2832 2833 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2834 if (!Dag) { 2835 TheInit->print(errs()); 2836 error("Pattern has unexpected init kind!"); 2837 } 2838 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2839 if (!OpDef) error("Pattern has unexpected operator type!"); 2840 Record *Operator = OpDef->getDef(); 2841 2842 if (Operator->isSubClassOf("ValueType")) { 2843 // If the operator is a ValueType, then this must be "type cast" of a leaf 2844 // node. 2845 if (Dag->getNumArgs() != 1) 2846 error("Type cast only takes one operand!"); 2847 2848 TreePatternNodePtr New = 2849 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2850 2851 // Apply the type cast. 2852 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2853 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2854 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2855 2856 if (!OpName.empty()) 2857 error("ValueType cast should not have a name!"); 2858 return New; 2859 } 2860 2861 // Verify that this is something that makes sense for an operator. 2862 if (!Operator->isSubClassOf("PatFrags") && 2863 !Operator->isSubClassOf("SDNode") && 2864 !Operator->isSubClassOf("Instruction") && 2865 !Operator->isSubClassOf("SDNodeXForm") && 2866 !Operator->isSubClassOf("Intrinsic") && 2867 !Operator->isSubClassOf("ComplexPattern") && 2868 Operator->getName() != "set" && 2869 Operator->getName() != "implicit") 2870 error("Unrecognized node '" + Operator->getName() + "'!"); 2871 2872 // Check to see if this is something that is illegal in an input pattern. 2873 if (isInputPattern) { 2874 if (Operator->isSubClassOf("Instruction") || 2875 Operator->isSubClassOf("SDNodeXForm")) 2876 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2877 } else { 2878 if (Operator->isSubClassOf("Intrinsic")) 2879 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2880 2881 if (Operator->isSubClassOf("SDNode") && 2882 Operator->getName() != "imm" && 2883 Operator->getName() != "timm" && 2884 Operator->getName() != "fpimm" && 2885 Operator->getName() != "tglobaltlsaddr" && 2886 Operator->getName() != "tconstpool" && 2887 Operator->getName() != "tjumptable" && 2888 Operator->getName() != "tframeindex" && 2889 Operator->getName() != "texternalsym" && 2890 Operator->getName() != "tblockaddress" && 2891 Operator->getName() != "tglobaladdr" && 2892 Operator->getName() != "bb" && 2893 Operator->getName() != "vt" && 2894 Operator->getName() != "mcsym") 2895 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2896 } 2897 2898 std::vector<TreePatternNodePtr> Children; 2899 2900 // Parse all the operands. 2901 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2902 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2903 2904 // Get the actual number of results before Operator is converted to an intrinsic 2905 // node (which is hard-coded to have either zero or one result). 2906 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2907 2908 // If the operator is an intrinsic, then this is just syntactic sugar for 2909 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2910 // convert the intrinsic name to a number. 2911 if (Operator->isSubClassOf("Intrinsic")) { 2912 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2913 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2914 2915 // If this intrinsic returns void, it must have side-effects and thus a 2916 // chain. 2917 if (Int.IS.RetVTs.empty()) 2918 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2919 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2920 // Has side-effects, requires chain. 2921 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2922 else // Otherwise, no chain. 2923 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2924 2925 Children.insert(Children.begin(), 2926 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2927 } 2928 2929 if (Operator->isSubClassOf("ComplexPattern")) { 2930 for (unsigned i = 0; i < Children.size(); ++i) { 2931 TreePatternNodePtr Child = Children[i]; 2932 2933 if (Child->getName().empty()) 2934 error("All arguments to a ComplexPattern must be named"); 2935 2936 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2937 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2938 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2939 auto OperandId = std::make_pair(Operator, i); 2940 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2941 if (PrevOp != ComplexPatternOperands.end()) { 2942 if (PrevOp->getValue() != OperandId) 2943 error("All ComplexPattern operands must appear consistently: " 2944 "in the same order in just one ComplexPattern instance."); 2945 } else 2946 ComplexPatternOperands[Child->getName()] = OperandId; 2947 } 2948 } 2949 2950 TreePatternNodePtr Result = 2951 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2952 NumResults); 2953 Result->setName(OpName); 2954 2955 if (Dag->getName()) { 2956 assert(Result->getName().empty()); 2957 Result->setName(Dag->getNameStr()); 2958 } 2959 return Result; 2960 } 2961 2962 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2963 /// will never match in favor of something obvious that will. This is here 2964 /// strictly as a convenience to target authors because it allows them to write 2965 /// more type generic things and have useless type casts fold away. 2966 /// 2967 /// This returns true if any change is made. 2968 static bool SimplifyTree(TreePatternNodePtr &N) { 2969 if (N->isLeaf()) 2970 return false; 2971 2972 // If we have a bitconvert with a resolved type and if the source and 2973 // destination types are the same, then the bitconvert is useless, remove it. 2974 // 2975 // We make an exception if the types are completely empty. This can come up 2976 // when the pattern being simplified is in the Fragments list of a PatFrags, 2977 // so that the operand is just an untyped "node". In that situation we leave 2978 // bitconverts unsimplified, and simplify them later once the fragment is 2979 // expanded into its true context. 2980 if (N->getOperator()->getName() == "bitconvert" && 2981 N->getExtType(0).isValueTypeByHwMode(false) && 2982 !N->getExtType(0).empty() && 2983 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2984 N->getName().empty()) { 2985 N = N->getChildShared(0); 2986 SimplifyTree(N); 2987 return true; 2988 } 2989 2990 // Walk all children. 2991 bool MadeChange = false; 2992 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2993 TreePatternNodePtr Child = N->getChildShared(i); 2994 MadeChange |= SimplifyTree(Child); 2995 N->setChild(i, std::move(Child)); 2996 } 2997 return MadeChange; 2998 } 2999 3000 3001 3002 /// InferAllTypes - Infer/propagate as many types throughout the expression 3003 /// patterns as possible. Return true if all types are inferred, false 3004 /// otherwise. Flags an error if a type contradiction is found. 3005 bool TreePattern:: 3006 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 3007 if (NamedNodes.empty()) 3008 ComputeNamedNodes(); 3009 3010 bool MadeChange = true; 3011 while (MadeChange) { 3012 MadeChange = false; 3013 for (TreePatternNodePtr &Tree : Trees) { 3014 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3015 MadeChange |= SimplifyTree(Tree); 3016 } 3017 3018 // If there are constraints on our named nodes, apply them. 3019 for (auto &Entry : NamedNodes) { 3020 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 3021 3022 // If we have input named node types, propagate their types to the named 3023 // values here. 3024 if (InNamedTypes) { 3025 if (!InNamedTypes->count(Entry.getKey())) { 3026 error("Node '" + std::string(Entry.getKey()) + 3027 "' in output pattern but not input pattern"); 3028 return true; 3029 } 3030 3031 const SmallVectorImpl<TreePatternNode*> &InNodes = 3032 InNamedTypes->find(Entry.getKey())->second; 3033 3034 // The input types should be fully resolved by now. 3035 for (TreePatternNode *Node : Nodes) { 3036 // If this node is a register class, and it is the root of the pattern 3037 // then we're mapping something onto an input register. We allow 3038 // changing the type of the input register in this case. This allows 3039 // us to match things like: 3040 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3041 if (Node == Trees[0].get() && Node->isLeaf()) { 3042 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3043 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3044 DI->getDef()->isSubClassOf("RegisterOperand"))) 3045 continue; 3046 } 3047 3048 assert(Node->getNumTypes() == 1 && 3049 InNodes[0]->getNumTypes() == 1 && 3050 "FIXME: cannot name multiple result nodes yet"); 3051 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3052 *this); 3053 } 3054 } 3055 3056 // If there are multiple nodes with the same name, they must all have the 3057 // same type. 3058 if (Entry.second.size() > 1) { 3059 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3060 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3061 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3062 "FIXME: cannot name multiple result nodes yet"); 3063 3064 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3065 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3066 } 3067 } 3068 } 3069 } 3070 3071 bool HasUnresolvedTypes = false; 3072 for (const TreePatternNodePtr &Tree : Trees) 3073 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3074 return !HasUnresolvedTypes; 3075 } 3076 3077 void TreePattern::print(raw_ostream &OS) const { 3078 OS << getRecord()->getName(); 3079 if (!Args.empty()) { 3080 OS << "("; 3081 ListSeparator LS; 3082 for (const std::string &Arg : Args) 3083 OS << LS << Arg; 3084 OS << ")"; 3085 } 3086 OS << ": "; 3087 3088 if (Trees.size() > 1) 3089 OS << "[\n"; 3090 for (const TreePatternNodePtr &Tree : Trees) { 3091 OS << "\t"; 3092 Tree->print(OS); 3093 OS << "\n"; 3094 } 3095 3096 if (Trees.size() > 1) 3097 OS << "]\n"; 3098 } 3099 3100 void TreePattern::dump() const { print(errs()); } 3101 3102 //===----------------------------------------------------------------------===// 3103 // CodeGenDAGPatterns implementation 3104 // 3105 3106 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3107 PatternRewriterFn PatternRewriter) 3108 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3109 PatternRewriter(PatternRewriter) { 3110 3111 Intrinsics = CodeGenIntrinsicTable(Records); 3112 ParseNodeInfo(); 3113 ParseNodeTransforms(); 3114 ParseComplexPatterns(); 3115 ParsePatternFragments(); 3116 ParseDefaultOperands(); 3117 ParseInstructions(); 3118 ParsePatternFragments(/*OutFrags*/true); 3119 ParsePatterns(); 3120 3121 // Generate variants. For example, commutative patterns can match 3122 // multiple ways. Add them to PatternsToMatch as well. 3123 GenerateVariants(); 3124 3125 // Break patterns with parameterized types into a series of patterns, 3126 // where each one has a fixed type and is predicated on the conditions 3127 // of the associated HW mode. 3128 ExpandHwModeBasedTypes(); 3129 3130 // Infer instruction flags. For example, we can detect loads, 3131 // stores, and side effects in many cases by examining an 3132 // instruction's pattern. 3133 InferInstructionFlags(); 3134 3135 // Verify that instruction flags match the patterns. 3136 VerifyInstructionFlags(); 3137 } 3138 3139 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3140 Record *N = Records.getDef(Name); 3141 if (!N || !N->isSubClassOf("SDNode")) 3142 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3143 3144 return N; 3145 } 3146 3147 // Parse all of the SDNode definitions for the target, populating SDNodes. 3148 void CodeGenDAGPatterns::ParseNodeInfo() { 3149 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3150 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3151 3152 while (!Nodes.empty()) { 3153 Record *R = Nodes.back(); 3154 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3155 Nodes.pop_back(); 3156 } 3157 3158 // Get the builtin intrinsic nodes. 3159 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3160 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3161 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3162 } 3163 3164 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3165 /// map, and emit them to the file as functions. 3166 void CodeGenDAGPatterns::ParseNodeTransforms() { 3167 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3168 while (!Xforms.empty()) { 3169 Record *XFormNode = Xforms.back(); 3170 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3171 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3172 SDNodeXForms.insert( 3173 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3174 3175 Xforms.pop_back(); 3176 } 3177 } 3178 3179 void CodeGenDAGPatterns::ParseComplexPatterns() { 3180 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3181 while (!AMs.empty()) { 3182 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3183 AMs.pop_back(); 3184 } 3185 } 3186 3187 3188 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3189 /// file, building up the PatternFragments map. After we've collected them all, 3190 /// inline fragments together as necessary, so that there are no references left 3191 /// inside a pattern fragment to a pattern fragment. 3192 /// 3193 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3194 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3195 3196 // First step, parse all of the fragments. 3197 for (Record *Frag : Fragments) { 3198 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3199 continue; 3200 3201 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3202 TreePattern *P = 3203 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3204 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3205 *this)).get(); 3206 3207 // Validate the argument list, converting it to set, to discard duplicates. 3208 std::vector<std::string> &Args = P->getArgList(); 3209 // Copy the args so we can take StringRefs to them. 3210 auto ArgsCopy = Args; 3211 SmallDenseSet<StringRef, 4> OperandsSet; 3212 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3213 3214 if (OperandsSet.count("")) 3215 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3216 3217 // Parse the operands list. 3218 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3219 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3220 // Special cases: ops == outs == ins. Different names are used to 3221 // improve readability. 3222 if (!OpsOp || 3223 (OpsOp->getDef()->getName() != "ops" && 3224 OpsOp->getDef()->getName() != "outs" && 3225 OpsOp->getDef()->getName() != "ins")) 3226 P->error("Operands list should start with '(ops ... '!"); 3227 3228 // Copy over the arguments. 3229 Args.clear(); 3230 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3231 if (!isa<DefInit>(OpsList->getArg(j)) || 3232 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3233 P->error("Operands list should all be 'node' values."); 3234 if (!OpsList->getArgName(j)) 3235 P->error("Operands list should have names for each operand!"); 3236 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3237 if (!OperandsSet.count(ArgNameStr)) 3238 P->error("'" + ArgNameStr + 3239 "' does not occur in pattern or was multiply specified!"); 3240 OperandsSet.erase(ArgNameStr); 3241 Args.push_back(std::string(ArgNameStr)); 3242 } 3243 3244 if (!OperandsSet.empty()) 3245 P->error("Operands list does not contain an entry for operand '" + 3246 *OperandsSet.begin() + "'!"); 3247 3248 // If there is a node transformation corresponding to this, keep track of 3249 // it. 3250 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3251 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3252 for (const auto &T : P->getTrees()) 3253 T->setTransformFn(Transform); 3254 } 3255 3256 // Now that we've parsed all of the tree fragments, do a closure on them so 3257 // that there are not references to PatFrags left inside of them. 3258 for (Record *Frag : Fragments) { 3259 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3260 continue; 3261 3262 TreePattern &ThePat = *PatternFragments[Frag]; 3263 ThePat.InlinePatternFragments(); 3264 3265 // Infer as many types as possible. Don't worry about it if we don't infer 3266 // all of them, some may depend on the inputs of the pattern. Also, don't 3267 // validate type sets; validation may cause spurious failures e.g. if a 3268 // fragment needs floating-point types but the current target does not have 3269 // any (this is only an error if that fragment is ever used!). 3270 { 3271 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3272 ThePat.InferAllTypes(); 3273 ThePat.resetError(); 3274 } 3275 3276 // If debugging, print out the pattern fragment result. 3277 LLVM_DEBUG(ThePat.dump()); 3278 } 3279 } 3280 3281 void CodeGenDAGPatterns::ParseDefaultOperands() { 3282 std::vector<Record*> DefaultOps; 3283 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3284 3285 // Find some SDNode. 3286 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3287 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3288 3289 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3290 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3291 3292 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3293 // SomeSDnode so that we can parse this. 3294 std::vector<std::pair<Init*, StringInit*> > Ops; 3295 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3296 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3297 DefaultInfo->getArgName(op))); 3298 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3299 3300 // Create a TreePattern to parse this. 3301 TreePattern P(DefaultOps[i], DI, false, *this); 3302 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3303 3304 // Copy the operands over into a DAGDefaultOperand. 3305 DAGDefaultOperand DefaultOpInfo; 3306 3307 const TreePatternNodePtr &T = P.getTree(0); 3308 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3309 TreePatternNodePtr TPN = T->getChildShared(op); 3310 while (TPN->ApplyTypeConstraints(P, false)) 3311 /* Resolve all types */; 3312 3313 if (TPN->ContainsUnresolvedType(P)) { 3314 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3315 DefaultOps[i]->getName() + 3316 "' doesn't have a concrete type!"); 3317 } 3318 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3319 } 3320 3321 // Insert it into the DefaultOperands map so we can find it later. 3322 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3323 } 3324 } 3325 3326 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3327 /// instruction input. Return true if this is a real use. 3328 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3329 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3330 // No name -> not interesting. 3331 if (Pat->getName().empty()) { 3332 if (Pat->isLeaf()) { 3333 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3334 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3335 DI->getDef()->isSubClassOf("RegisterOperand"))) 3336 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3337 } 3338 return false; 3339 } 3340 3341 Record *Rec; 3342 if (Pat->isLeaf()) { 3343 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3344 if (!DI) 3345 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3346 Rec = DI->getDef(); 3347 } else { 3348 Rec = Pat->getOperator(); 3349 } 3350 3351 // SRCVALUE nodes are ignored. 3352 if (Rec->getName() == "srcvalue") 3353 return false; 3354 3355 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3356 if (!Slot) { 3357 Slot = Pat; 3358 return true; 3359 } 3360 Record *SlotRec; 3361 if (Slot->isLeaf()) { 3362 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3363 } else { 3364 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3365 SlotRec = Slot->getOperator(); 3366 } 3367 3368 // Ensure that the inputs agree if we've already seen this input. 3369 if (Rec != SlotRec) 3370 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3371 // Ensure that the types can agree as well. 3372 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3373 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3374 if (Slot->getExtTypes() != Pat->getExtTypes()) 3375 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3376 return true; 3377 } 3378 3379 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3380 /// part of "I", the instruction), computing the set of inputs and outputs of 3381 /// the pattern. Report errors if we see anything naughty. 3382 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3383 TreePattern &I, TreePatternNodePtr Pat, 3384 std::map<std::string, TreePatternNodePtr> &InstInputs, 3385 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3386 &InstResults, 3387 std::vector<Record *> &InstImpResults) { 3388 3389 // The instruction pattern still has unresolved fragments. For *named* 3390 // nodes we must resolve those here. This may not result in multiple 3391 // alternatives. 3392 if (!Pat->getName().empty()) { 3393 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3394 SrcPattern.InlinePatternFragments(); 3395 SrcPattern.InferAllTypes(); 3396 Pat = SrcPattern.getOnlyTree(); 3397 } 3398 3399 if (Pat->isLeaf()) { 3400 bool isUse = HandleUse(I, Pat, InstInputs); 3401 if (!isUse && Pat->getTransformFn()) 3402 I.error("Cannot specify a transform function for a non-input value!"); 3403 return; 3404 } 3405 3406 if (Pat->getOperator()->getName() == "implicit") { 3407 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3408 TreePatternNode *Dest = Pat->getChild(i); 3409 if (!Dest->isLeaf()) 3410 I.error("implicitly defined value should be a register!"); 3411 3412 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3413 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3414 I.error("implicitly defined value should be a register!"); 3415 InstImpResults.push_back(Val->getDef()); 3416 } 3417 return; 3418 } 3419 3420 if (Pat->getOperator()->getName() != "set") { 3421 // If this is not a set, verify that the children nodes are not void typed, 3422 // and recurse. 3423 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3424 if (Pat->getChild(i)->getNumTypes() == 0) 3425 I.error("Cannot have void nodes inside of patterns!"); 3426 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3427 InstResults, InstImpResults); 3428 } 3429 3430 // If this is a non-leaf node with no children, treat it basically as if 3431 // it were a leaf. This handles nodes like (imm). 3432 bool isUse = HandleUse(I, Pat, InstInputs); 3433 3434 if (!isUse && Pat->getTransformFn()) 3435 I.error("Cannot specify a transform function for a non-input value!"); 3436 return; 3437 } 3438 3439 // Otherwise, this is a set, validate and collect instruction results. 3440 if (Pat->getNumChildren() == 0) 3441 I.error("set requires operands!"); 3442 3443 if (Pat->getTransformFn()) 3444 I.error("Cannot specify a transform function on a set node!"); 3445 3446 // Check the set destinations. 3447 unsigned NumDests = Pat->getNumChildren()-1; 3448 for (unsigned i = 0; i != NumDests; ++i) { 3449 TreePatternNodePtr Dest = Pat->getChildShared(i); 3450 // For set destinations we also must resolve fragments here. 3451 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3452 DestPattern.InlinePatternFragments(); 3453 DestPattern.InferAllTypes(); 3454 Dest = DestPattern.getOnlyTree(); 3455 3456 if (!Dest->isLeaf()) 3457 I.error("set destination should be a register!"); 3458 3459 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3460 if (!Val) { 3461 I.error("set destination should be a register!"); 3462 continue; 3463 } 3464 3465 if (Val->getDef()->isSubClassOf("RegisterClass") || 3466 Val->getDef()->isSubClassOf("ValueType") || 3467 Val->getDef()->isSubClassOf("RegisterOperand") || 3468 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3469 if (Dest->getName().empty()) 3470 I.error("set destination must have a name!"); 3471 if (InstResults.count(Dest->getName())) 3472 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3473 InstResults[Dest->getName()] = Dest; 3474 } else if (Val->getDef()->isSubClassOf("Register")) { 3475 InstImpResults.push_back(Val->getDef()); 3476 } else { 3477 I.error("set destination should be a register!"); 3478 } 3479 } 3480 3481 // Verify and collect info from the computation. 3482 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3483 InstResults, InstImpResults); 3484 } 3485 3486 //===----------------------------------------------------------------------===// 3487 // Instruction Analysis 3488 //===----------------------------------------------------------------------===// 3489 3490 class InstAnalyzer { 3491 const CodeGenDAGPatterns &CDP; 3492 public: 3493 bool hasSideEffects; 3494 bool mayStore; 3495 bool mayLoad; 3496 bool isBitcast; 3497 bool isVariadic; 3498 bool hasChain; 3499 3500 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3501 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3502 isBitcast(false), isVariadic(false), hasChain(false) {} 3503 3504 void Analyze(const PatternToMatch &Pat) { 3505 const TreePatternNode *N = Pat.getSrcPattern(); 3506 AnalyzeNode(N); 3507 // These properties are detected only on the root node. 3508 isBitcast = IsNodeBitcast(N); 3509 } 3510 3511 private: 3512 bool IsNodeBitcast(const TreePatternNode *N) const { 3513 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3514 return false; 3515 3516 if (N->isLeaf()) 3517 return false; 3518 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3519 return false; 3520 3521 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3522 return false; 3523 3524 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3525 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3526 return false; 3527 return OpInfo.getEnumName() == "ISD::BITCAST"; 3528 } 3529 3530 public: 3531 void AnalyzeNode(const TreePatternNode *N) { 3532 if (N->isLeaf()) { 3533 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3534 Record *LeafRec = DI->getDef(); 3535 // Handle ComplexPattern leaves. 3536 if (LeafRec->isSubClassOf("ComplexPattern")) { 3537 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3538 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3539 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3540 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3541 } 3542 } 3543 return; 3544 } 3545 3546 // Analyze children. 3547 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3548 AnalyzeNode(N->getChild(i)); 3549 3550 // Notice properties of the node. 3551 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3552 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3553 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3554 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3555 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3556 3557 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3558 // If this is an intrinsic, analyze it. 3559 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3560 mayLoad = true;// These may load memory. 3561 3562 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3563 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3564 3565 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3566 IntInfo->hasSideEffects) 3567 // ReadWriteMem intrinsics can have other strange effects. 3568 hasSideEffects = true; 3569 } 3570 } 3571 3572 }; 3573 3574 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3575 const InstAnalyzer &PatInfo, 3576 Record *PatDef) { 3577 bool Error = false; 3578 3579 // Remember where InstInfo got its flags. 3580 if (InstInfo.hasUndefFlags()) 3581 InstInfo.InferredFrom = PatDef; 3582 3583 // Check explicitly set flags for consistency. 3584 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3585 !InstInfo.hasSideEffects_Unset) { 3586 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3587 // the pattern has no side effects. That could be useful for div/rem 3588 // instructions that may trap. 3589 if (!InstInfo.hasSideEffects) { 3590 Error = true; 3591 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3592 Twine(InstInfo.hasSideEffects)); 3593 } 3594 } 3595 3596 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3597 Error = true; 3598 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3599 Twine(InstInfo.mayStore)); 3600 } 3601 3602 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3603 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3604 // Some targets translate immediates to loads. 3605 if (!InstInfo.mayLoad) { 3606 Error = true; 3607 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3608 Twine(InstInfo.mayLoad)); 3609 } 3610 } 3611 3612 // Transfer inferred flags. 3613 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3614 InstInfo.mayStore |= PatInfo.mayStore; 3615 InstInfo.mayLoad |= PatInfo.mayLoad; 3616 3617 // These flags are silently added without any verification. 3618 // FIXME: To match historical behavior of TableGen, for now add those flags 3619 // only when we're inferring from the primary instruction pattern. 3620 if (PatDef->isSubClassOf("Instruction")) { 3621 InstInfo.isBitcast |= PatInfo.isBitcast; 3622 InstInfo.hasChain |= PatInfo.hasChain; 3623 InstInfo.hasChain_Inferred = true; 3624 } 3625 3626 // Don't infer isVariadic. This flag means something different on SDNodes and 3627 // instructions. For example, a CALL SDNode is variadic because it has the 3628 // call arguments as operands, but a CALL instruction is not variadic - it 3629 // has argument registers as implicit, not explicit uses. 3630 3631 return Error; 3632 } 3633 3634 /// hasNullFragReference - Return true if the DAG has any reference to the 3635 /// null_frag operator. 3636 static bool hasNullFragReference(DagInit *DI) { 3637 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3638 if (!OpDef) return false; 3639 Record *Operator = OpDef->getDef(); 3640 3641 // If this is the null fragment, return true. 3642 if (Operator->getName() == "null_frag") return true; 3643 // If any of the arguments reference the null fragment, return true. 3644 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3645 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3646 if (Arg->getDef()->getName() == "null_frag") 3647 return true; 3648 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3649 if (Arg && hasNullFragReference(Arg)) 3650 return true; 3651 } 3652 3653 return false; 3654 } 3655 3656 /// hasNullFragReference - Return true if any DAG in the list references 3657 /// the null_frag operator. 3658 static bool hasNullFragReference(ListInit *LI) { 3659 for (Init *I : LI->getValues()) { 3660 DagInit *DI = dyn_cast<DagInit>(I); 3661 assert(DI && "non-dag in an instruction Pattern list?!"); 3662 if (hasNullFragReference(DI)) 3663 return true; 3664 } 3665 return false; 3666 } 3667 3668 /// Get all the instructions in a tree. 3669 static void 3670 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3671 if (Tree->isLeaf()) 3672 return; 3673 if (Tree->getOperator()->isSubClassOf("Instruction")) 3674 Instrs.push_back(Tree->getOperator()); 3675 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3676 getInstructionsInTree(Tree->getChild(i), Instrs); 3677 } 3678 3679 /// Check the class of a pattern leaf node against the instruction operand it 3680 /// represents. 3681 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3682 Record *Leaf) { 3683 if (OI.Rec == Leaf) 3684 return true; 3685 3686 // Allow direct value types to be used in instruction set patterns. 3687 // The type will be checked later. 3688 if (Leaf->isSubClassOf("ValueType")) 3689 return true; 3690 3691 // Patterns can also be ComplexPattern instances. 3692 if (Leaf->isSubClassOf("ComplexPattern")) 3693 return true; 3694 3695 return false; 3696 } 3697 3698 void CodeGenDAGPatterns::parseInstructionPattern( 3699 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3700 3701 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3702 3703 // Parse the instruction. 3704 TreePattern I(CGI.TheDef, Pat, true, *this); 3705 3706 // InstInputs - Keep track of all of the inputs of the instruction, along 3707 // with the record they are declared as. 3708 std::map<std::string, TreePatternNodePtr> InstInputs; 3709 3710 // InstResults - Keep track of all the virtual registers that are 'set' 3711 // in the instruction, including what reg class they are. 3712 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3713 InstResults; 3714 3715 std::vector<Record*> InstImpResults; 3716 3717 // Verify that the top-level forms in the instruction are of void type, and 3718 // fill in the InstResults map. 3719 SmallString<32> TypesString; 3720 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3721 TypesString.clear(); 3722 TreePatternNodePtr Pat = I.getTree(j); 3723 if (Pat->getNumTypes() != 0) { 3724 raw_svector_ostream OS(TypesString); 3725 ListSeparator LS; 3726 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3727 OS << LS; 3728 Pat->getExtType(k).writeToStream(OS); 3729 } 3730 I.error("Top-level forms in instruction pattern should have" 3731 " void types, has types " + 3732 OS.str()); 3733 } 3734 3735 // Find inputs and outputs, and verify the structure of the uses/defs. 3736 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3737 InstImpResults); 3738 } 3739 3740 // Now that we have inputs and outputs of the pattern, inspect the operands 3741 // list for the instruction. This determines the order that operands are 3742 // added to the machine instruction the node corresponds to. 3743 unsigned NumResults = InstResults.size(); 3744 3745 // Parse the operands list from the (ops) list, validating it. 3746 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3747 3748 // Check that all of the results occur first in the list. 3749 std::vector<Record*> Results; 3750 std::vector<unsigned> ResultIndices; 3751 SmallVector<TreePatternNodePtr, 2> ResNodes; 3752 for (unsigned i = 0; i != NumResults; ++i) { 3753 if (i == CGI.Operands.size()) { 3754 const std::string &OpName = 3755 llvm::find_if( 3756 InstResults, 3757 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3758 return P.second; 3759 }) 3760 ->first; 3761 3762 I.error("'" + OpName + "' set but does not appear in operand list!"); 3763 } 3764 3765 const std::string &OpName = CGI.Operands[i].Name; 3766 3767 // Check that it exists in InstResults. 3768 auto InstResultIter = InstResults.find(OpName); 3769 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3770 I.error("Operand $" + OpName + " does not exist in operand list!"); 3771 3772 TreePatternNodePtr RNode = InstResultIter->second; 3773 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3774 ResNodes.push_back(std::move(RNode)); 3775 if (!R) 3776 I.error("Operand $" + OpName + " should be a set destination: all " 3777 "outputs must occur before inputs in operand list!"); 3778 3779 if (!checkOperandClass(CGI.Operands[i], R)) 3780 I.error("Operand $" + OpName + " class mismatch!"); 3781 3782 // Remember the return type. 3783 Results.push_back(CGI.Operands[i].Rec); 3784 3785 // Remember the result index. 3786 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3787 3788 // Okay, this one checks out. 3789 InstResultIter->second = nullptr; 3790 } 3791 3792 // Loop over the inputs next. 3793 std::vector<TreePatternNodePtr> ResultNodeOperands; 3794 std::vector<Record*> Operands; 3795 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3796 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3797 const std::string &OpName = Op.Name; 3798 if (OpName.empty()) 3799 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3800 3801 if (!InstInputs.count(OpName)) { 3802 // If this is an operand with a DefaultOps set filled in, we can ignore 3803 // this. When we codegen it, we will do so as always executed. 3804 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3805 // Does it have a non-empty DefaultOps field? If so, ignore this 3806 // operand. 3807 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3808 continue; 3809 } 3810 I.error("Operand $" + OpName + 3811 " does not appear in the instruction pattern"); 3812 } 3813 TreePatternNodePtr InVal = InstInputs[OpName]; 3814 InstInputs.erase(OpName); // It occurred, remove from map. 3815 3816 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3817 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3818 if (!checkOperandClass(Op, InRec)) 3819 I.error("Operand $" + OpName + "'s register class disagrees" 3820 " between the operand and pattern"); 3821 } 3822 Operands.push_back(Op.Rec); 3823 3824 // Construct the result for the dest-pattern operand list. 3825 TreePatternNodePtr OpNode = InVal->clone(); 3826 3827 // No predicate is useful on the result. 3828 OpNode->clearPredicateCalls(); 3829 3830 // Promote the xform function to be an explicit node if set. 3831 if (Record *Xform = OpNode->getTransformFn()) { 3832 OpNode->setTransformFn(nullptr); 3833 std::vector<TreePatternNodePtr> Children; 3834 Children.push_back(OpNode); 3835 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3836 OpNode->getNumTypes()); 3837 } 3838 3839 ResultNodeOperands.push_back(std::move(OpNode)); 3840 } 3841 3842 if (!InstInputs.empty()) 3843 I.error("Input operand $" + InstInputs.begin()->first + 3844 " occurs in pattern but not in operands list!"); 3845 3846 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3847 I.getRecord(), std::move(ResultNodeOperands), 3848 GetNumNodeResults(I.getRecord(), *this)); 3849 // Copy fully inferred output node types to instruction result pattern. 3850 for (unsigned i = 0; i != NumResults; ++i) { 3851 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3852 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3853 ResultPattern->setResultIndex(i, ResultIndices[i]); 3854 } 3855 3856 // FIXME: Assume only the first tree is the pattern. The others are clobber 3857 // nodes. 3858 TreePatternNodePtr Pattern = I.getTree(0); 3859 TreePatternNodePtr SrcPattern; 3860 if (Pattern->getOperator()->getName() == "set") { 3861 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3862 } else{ 3863 // Not a set (store or something?) 3864 SrcPattern = Pattern; 3865 } 3866 3867 // Create and insert the instruction. 3868 // FIXME: InstImpResults should not be part of DAGInstruction. 3869 Record *R = I.getRecord(); 3870 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3871 std::forward_as_tuple(Results, Operands, InstImpResults, 3872 SrcPattern, ResultPattern)); 3873 3874 LLVM_DEBUG(I.dump()); 3875 } 3876 3877 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3878 /// any fragments involved. This populates the Instructions list with fully 3879 /// resolved instructions. 3880 void CodeGenDAGPatterns::ParseInstructions() { 3881 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3882 3883 for (Record *Instr : Instrs) { 3884 ListInit *LI = nullptr; 3885 3886 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3887 LI = Instr->getValueAsListInit("Pattern"); 3888 3889 // If there is no pattern, only collect minimal information about the 3890 // instruction for its operand list. We have to assume that there is one 3891 // result, as we have no detailed info. A pattern which references the 3892 // null_frag operator is as-if no pattern were specified. Normally this 3893 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3894 // null_frag. 3895 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3896 std::vector<Record*> Results; 3897 std::vector<Record*> Operands; 3898 3899 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3900 3901 if (InstInfo.Operands.size() != 0) { 3902 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3903 Results.push_back(InstInfo.Operands[j].Rec); 3904 3905 // The rest are inputs. 3906 for (unsigned j = InstInfo.Operands.NumDefs, 3907 e = InstInfo.Operands.size(); j < e; ++j) 3908 Operands.push_back(InstInfo.Operands[j].Rec); 3909 } 3910 3911 // Create and insert the instruction. 3912 std::vector<Record*> ImpResults; 3913 Instructions.insert(std::make_pair(Instr, 3914 DAGInstruction(Results, Operands, ImpResults))); 3915 continue; // no pattern. 3916 } 3917 3918 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3919 parseInstructionPattern(CGI, LI, Instructions); 3920 } 3921 3922 // If we can, convert the instructions to be patterns that are matched! 3923 for (auto &Entry : Instructions) { 3924 Record *Instr = Entry.first; 3925 DAGInstruction &TheInst = Entry.second; 3926 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3927 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3928 3929 if (SrcPattern && ResultPattern) { 3930 TreePattern Pattern(Instr, SrcPattern, true, *this); 3931 TreePattern Result(Instr, ResultPattern, false, *this); 3932 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3933 } 3934 } 3935 } 3936 3937 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3938 3939 static void FindNames(TreePatternNode *P, 3940 std::map<std::string, NameRecord> &Names, 3941 TreePattern *PatternTop) { 3942 if (!P->getName().empty()) { 3943 NameRecord &Rec = Names[P->getName()]; 3944 // If this is the first instance of the name, remember the node. 3945 if (Rec.second++ == 0) 3946 Rec.first = P; 3947 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3948 PatternTop->error("repetition of value: $" + P->getName() + 3949 " where different uses have different types!"); 3950 } 3951 3952 if (!P->isLeaf()) { 3953 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3954 FindNames(P->getChild(i), Names, PatternTop); 3955 } 3956 } 3957 3958 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3959 PatternToMatch &&PTM) { 3960 // Do some sanity checking on the pattern we're about to match. 3961 std::string Reason; 3962 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3963 PrintWarning(Pattern->getRecord()->getLoc(), 3964 Twine("Pattern can never match: ") + Reason); 3965 return; 3966 } 3967 3968 // If the source pattern's root is a complex pattern, that complex pattern 3969 // must specify the nodes it can potentially match. 3970 if (const ComplexPattern *CP = 3971 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3972 if (CP->getRootNodes().empty()) 3973 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3974 " could match"); 3975 3976 3977 // Find all of the named values in the input and output, ensure they have the 3978 // same type. 3979 std::map<std::string, NameRecord> SrcNames, DstNames; 3980 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3981 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3982 3983 // Scan all of the named values in the destination pattern, rejecting them if 3984 // they don't exist in the input pattern. 3985 for (const auto &Entry : DstNames) { 3986 if (SrcNames[Entry.first].first == nullptr) 3987 Pattern->error("Pattern has input without matching name in output: $" + 3988 Entry.first); 3989 } 3990 3991 // Scan all of the named values in the source pattern, rejecting them if the 3992 // name isn't used in the dest, and isn't used to tie two values together. 3993 for (const auto &Entry : SrcNames) 3994 if (DstNames[Entry.first].first == nullptr && 3995 SrcNames[Entry.first].second == 1) 3996 Pattern->error("Pattern has dead named input: $" + Entry.first); 3997 3998 PatternsToMatch.push_back(std::move(PTM)); 3999 } 4000 4001 void CodeGenDAGPatterns::InferInstructionFlags() { 4002 ArrayRef<const CodeGenInstruction*> Instructions = 4003 Target.getInstructionsByEnumValue(); 4004 4005 unsigned Errors = 0; 4006 4007 // Try to infer flags from all patterns in PatternToMatch. These include 4008 // both the primary instruction patterns (which always come first) and 4009 // patterns defined outside the instruction. 4010 for (const PatternToMatch &PTM : ptms()) { 4011 // We can only infer from single-instruction patterns, otherwise we won't 4012 // know which instruction should get the flags. 4013 SmallVector<Record*, 8> PatInstrs; 4014 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4015 if (PatInstrs.size() != 1) 4016 continue; 4017 4018 // Get the single instruction. 4019 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4020 4021 // Only infer properties from the first pattern. We'll verify the others. 4022 if (InstInfo.InferredFrom) 4023 continue; 4024 4025 InstAnalyzer PatInfo(*this); 4026 PatInfo.Analyze(PTM); 4027 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4028 } 4029 4030 if (Errors) 4031 PrintFatalError("pattern conflicts"); 4032 4033 // If requested by the target, guess any undefined properties. 4034 if (Target.guessInstructionProperties()) { 4035 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4036 CodeGenInstruction *InstInfo = 4037 const_cast<CodeGenInstruction *>(Instructions[i]); 4038 if (InstInfo->InferredFrom) 4039 continue; 4040 // The mayLoad and mayStore flags default to false. 4041 // Conservatively assume hasSideEffects if it wasn't explicit. 4042 if (InstInfo->hasSideEffects_Unset) 4043 InstInfo->hasSideEffects = true; 4044 } 4045 return; 4046 } 4047 4048 // Complain about any flags that are still undefined. 4049 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4050 CodeGenInstruction *InstInfo = 4051 const_cast<CodeGenInstruction *>(Instructions[i]); 4052 if (InstInfo->InferredFrom) 4053 continue; 4054 if (InstInfo->hasSideEffects_Unset) 4055 PrintError(InstInfo->TheDef->getLoc(), 4056 "Can't infer hasSideEffects from patterns"); 4057 if (InstInfo->mayStore_Unset) 4058 PrintError(InstInfo->TheDef->getLoc(), 4059 "Can't infer mayStore from patterns"); 4060 if (InstInfo->mayLoad_Unset) 4061 PrintError(InstInfo->TheDef->getLoc(), 4062 "Can't infer mayLoad from patterns"); 4063 } 4064 } 4065 4066 4067 /// Verify instruction flags against pattern node properties. 4068 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4069 unsigned Errors = 0; 4070 for (const PatternToMatch &PTM : ptms()) { 4071 SmallVector<Record*, 8> Instrs; 4072 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4073 if (Instrs.empty()) 4074 continue; 4075 4076 // Count the number of instructions with each flag set. 4077 unsigned NumSideEffects = 0; 4078 unsigned NumStores = 0; 4079 unsigned NumLoads = 0; 4080 for (const Record *Instr : Instrs) { 4081 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4082 NumSideEffects += InstInfo.hasSideEffects; 4083 NumStores += InstInfo.mayStore; 4084 NumLoads += InstInfo.mayLoad; 4085 } 4086 4087 // Analyze the source pattern. 4088 InstAnalyzer PatInfo(*this); 4089 PatInfo.Analyze(PTM); 4090 4091 // Collect error messages. 4092 SmallVector<std::string, 4> Msgs; 4093 4094 // Check for missing flags in the output. 4095 // Permit extra flags for now at least. 4096 if (PatInfo.hasSideEffects && !NumSideEffects) 4097 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4098 4099 // Don't verify store flags on instructions with side effects. At least for 4100 // intrinsics, side effects implies mayStore. 4101 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4102 Msgs.push_back("pattern may store, but mayStore isn't set"); 4103 4104 // Similarly, mayStore implies mayLoad on intrinsics. 4105 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4106 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4107 4108 // Print error messages. 4109 if (Msgs.empty()) 4110 continue; 4111 ++Errors; 4112 4113 for (const std::string &Msg : Msgs) 4114 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4115 (Instrs.size() == 1 ? 4116 "instruction" : "output instructions")); 4117 // Provide the location of the relevant instruction definitions. 4118 for (const Record *Instr : Instrs) { 4119 if (Instr != PTM.getSrcRecord()) 4120 PrintError(Instr->getLoc(), "defined here"); 4121 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4122 if (InstInfo.InferredFrom && 4123 InstInfo.InferredFrom != InstInfo.TheDef && 4124 InstInfo.InferredFrom != PTM.getSrcRecord()) 4125 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4126 } 4127 } 4128 if (Errors) 4129 PrintFatalError("Errors in DAG patterns"); 4130 } 4131 4132 /// Given a pattern result with an unresolved type, see if we can find one 4133 /// instruction with an unresolved result type. Force this result type to an 4134 /// arbitrary element if it's possible types to converge results. 4135 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4136 if (N->isLeaf()) 4137 return false; 4138 4139 // Analyze children. 4140 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4141 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4142 return true; 4143 4144 if (!N->getOperator()->isSubClassOf("Instruction")) 4145 return false; 4146 4147 // If this type is already concrete or completely unknown we can't do 4148 // anything. 4149 TypeInfer &TI = TP.getInfer(); 4150 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4151 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4152 continue; 4153 4154 // Otherwise, force its type to an arbitrary choice. 4155 if (TI.forceArbitrary(N->getExtType(i))) 4156 return true; 4157 } 4158 4159 return false; 4160 } 4161 4162 // Promote xform function to be an explicit node wherever set. 4163 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4164 if (Record *Xform = N->getTransformFn()) { 4165 N->setTransformFn(nullptr); 4166 std::vector<TreePatternNodePtr> Children; 4167 Children.push_back(PromoteXForms(N)); 4168 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4169 N->getNumTypes()); 4170 } 4171 4172 if (!N->isLeaf()) 4173 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4174 TreePatternNodePtr Child = N->getChildShared(i); 4175 N->setChild(i, PromoteXForms(Child)); 4176 } 4177 return N; 4178 } 4179 4180 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4181 TreePattern &Pattern, TreePattern &Result, 4182 const std::vector<Record *> &InstImpResults) { 4183 4184 // Inline pattern fragments and expand multiple alternatives. 4185 Pattern.InlinePatternFragments(); 4186 Result.InlinePatternFragments(); 4187 4188 if (Result.getNumTrees() != 1) 4189 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4190 4191 // Infer types. 4192 bool IterateInference; 4193 bool InferredAllPatternTypes, InferredAllResultTypes; 4194 do { 4195 // Infer as many types as possible. If we cannot infer all of them, we 4196 // can never do anything with this pattern: report it to the user. 4197 InferredAllPatternTypes = 4198 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4199 4200 // Infer as many types as possible. If we cannot infer all of them, we 4201 // can never do anything with this pattern: report it to the user. 4202 InferredAllResultTypes = 4203 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4204 4205 IterateInference = false; 4206 4207 // Apply the type of the result to the source pattern. This helps us 4208 // resolve cases where the input type is known to be a pointer type (which 4209 // is considered resolved), but the result knows it needs to be 32- or 4210 // 64-bits. Infer the other way for good measure. 4211 for (const auto &T : Pattern.getTrees()) 4212 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4213 T->getNumTypes()); 4214 i != e; ++i) { 4215 IterateInference |= T->UpdateNodeType( 4216 i, Result.getOnlyTree()->getExtType(i), Result); 4217 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4218 i, T->getExtType(i), Result); 4219 } 4220 4221 // If our iteration has converged and the input pattern's types are fully 4222 // resolved but the result pattern is not fully resolved, we may have a 4223 // situation where we have two instructions in the result pattern and 4224 // the instructions require a common register class, but don't care about 4225 // what actual MVT is used. This is actually a bug in our modelling: 4226 // output patterns should have register classes, not MVTs. 4227 // 4228 // In any case, to handle this, we just go through and disambiguate some 4229 // arbitrary types to the result pattern's nodes. 4230 if (!IterateInference && InferredAllPatternTypes && 4231 !InferredAllResultTypes) 4232 IterateInference = 4233 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4234 } while (IterateInference); 4235 4236 // Verify that we inferred enough types that we can do something with the 4237 // pattern and result. If these fire the user has to add type casts. 4238 if (!InferredAllPatternTypes) 4239 Pattern.error("Could not infer all types in pattern!"); 4240 if (!InferredAllResultTypes) { 4241 Pattern.dump(); 4242 Result.error("Could not infer all types in pattern result!"); 4243 } 4244 4245 // Promote xform function to be an explicit node wherever set. 4246 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4247 4248 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4249 Temp.InferAllTypes(); 4250 4251 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4252 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4253 4254 if (PatternRewriter) 4255 PatternRewriter(&Pattern); 4256 4257 // A pattern may end up with an "impossible" type, i.e. a situation 4258 // where all types have been eliminated for some node in this pattern. 4259 // This could occur for intrinsics that only make sense for a specific 4260 // value type, and use a specific register class. If, for some mode, 4261 // that register class does not accept that type, the type inference 4262 // will lead to a contradiction, which is not an error however, but 4263 // a sign that this pattern will simply never match. 4264 if (Temp.getOnlyTree()->hasPossibleType()) 4265 for (const auto &T : Pattern.getTrees()) 4266 if (T->hasPossibleType()) 4267 AddPatternToMatch(&Pattern, 4268 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4269 InstImpResults, Complexity, 4270 TheDef->getID())); 4271 } 4272 4273 void CodeGenDAGPatterns::ParsePatterns() { 4274 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4275 4276 for (Record *CurPattern : Patterns) { 4277 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4278 4279 // If the pattern references the null_frag, there's nothing to do. 4280 if (hasNullFragReference(Tree)) 4281 continue; 4282 4283 TreePattern Pattern(CurPattern, Tree, true, *this); 4284 4285 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4286 if (LI->empty()) continue; // no pattern. 4287 4288 // Parse the instruction. 4289 TreePattern Result(CurPattern, LI, false, *this); 4290 4291 if (Result.getNumTrees() != 1) 4292 Result.error("Cannot handle instructions producing instructions " 4293 "with temporaries yet!"); 4294 4295 // Validate that the input pattern is correct. 4296 std::map<std::string, TreePatternNodePtr> InstInputs; 4297 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4298 InstResults; 4299 std::vector<Record*> InstImpResults; 4300 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4301 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4302 InstResults, InstImpResults); 4303 4304 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4305 } 4306 } 4307 4308 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4309 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4310 for (const auto &I : VTS) 4311 Modes.insert(I.first); 4312 4313 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4314 collectModes(Modes, N->getChild(i)); 4315 } 4316 4317 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4318 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4319 std::vector<PatternToMatch> Copy; 4320 PatternsToMatch.swap(Copy); 4321 4322 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4323 StringRef Check) { 4324 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4325 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4326 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4327 return; 4328 } 4329 4330 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4331 std::move(NewSrc), std::move(NewDst), 4332 P.getDstRegs(), P.getAddedComplexity(), 4333 Record::getNewUID(), Mode, Check); 4334 }; 4335 4336 for (PatternToMatch &P : Copy) { 4337 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4338 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4339 SrcP = P.getSrcPatternShared(); 4340 if (P.getDstPattern()->hasProperTypeByHwMode()) 4341 DstP = P.getDstPatternShared(); 4342 if (!SrcP && !DstP) { 4343 PatternsToMatch.push_back(P); 4344 continue; 4345 } 4346 4347 std::set<unsigned> Modes; 4348 if (SrcP) 4349 collectModes(Modes, SrcP.get()); 4350 if (DstP) 4351 collectModes(Modes, DstP.get()); 4352 4353 // The predicate for the default mode needs to be constructed for each 4354 // pattern separately. 4355 // Since not all modes must be present in each pattern, if a mode m is 4356 // absent, then there is no point in constructing a check for m. If such 4357 // a check was created, it would be equivalent to checking the default 4358 // mode, except not all modes' predicates would be a part of the checking 4359 // code. The subsequently generated check for the default mode would then 4360 // have the exact same patterns, but a different predicate code. To avoid 4361 // duplicated patterns with different predicate checks, construct the 4362 // default check as a negation of all predicates that are actually present 4363 // in the source/destination patterns. 4364 SmallString<128> DefaultCheck; 4365 4366 for (unsigned M : Modes) { 4367 if (M == DefaultMode) 4368 continue; 4369 4370 // Fill the map entry for this mode. 4371 const HwMode &HM = CGH.getMode(M); 4372 AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))"); 4373 4374 // Add negations of the HM's predicates to the default predicate. 4375 if (!DefaultCheck.empty()) 4376 DefaultCheck += " && "; 4377 DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\""; 4378 DefaultCheck += HM.Features; 4379 DefaultCheck += "\")))"; 4380 } 4381 4382 bool HasDefault = Modes.count(DefaultMode); 4383 if (HasDefault) 4384 AppendPattern(P, DefaultMode, DefaultCheck); 4385 } 4386 } 4387 4388 /// Dependent variable map for CodeGenDAGPattern variant generation 4389 typedef StringMap<int> DepVarMap; 4390 4391 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4392 if (N->isLeaf()) { 4393 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4394 DepMap[N->getName()]++; 4395 } else { 4396 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4397 FindDepVarsOf(N->getChild(i), DepMap); 4398 } 4399 } 4400 4401 /// Find dependent variables within child patterns 4402 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4403 DepVarMap depcounts; 4404 FindDepVarsOf(N, depcounts); 4405 for (const auto &Pair : depcounts) { 4406 if (Pair.getValue() > 1) 4407 DepVars.insert(Pair.getKey()); 4408 } 4409 } 4410 4411 #ifndef NDEBUG 4412 /// Dump the dependent variable set: 4413 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4414 if (DepVars.empty()) { 4415 LLVM_DEBUG(errs() << "<empty set>"); 4416 } else { 4417 LLVM_DEBUG(errs() << "[ "); 4418 for (const auto &DepVar : DepVars) { 4419 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4420 } 4421 LLVM_DEBUG(errs() << "]"); 4422 } 4423 } 4424 #endif 4425 4426 4427 /// CombineChildVariants - Given a bunch of permutations of each child of the 4428 /// 'operator' node, put them together in all possible ways. 4429 static void CombineChildVariants( 4430 TreePatternNodePtr Orig, 4431 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4432 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4433 const MultipleUseVarSet &DepVars) { 4434 // Make sure that each operand has at least one variant to choose from. 4435 for (const auto &Variants : ChildVariants) 4436 if (Variants.empty()) 4437 return; 4438 4439 // The end result is an all-pairs construction of the resultant pattern. 4440 std::vector<unsigned> Idxs; 4441 Idxs.resize(ChildVariants.size()); 4442 bool NotDone; 4443 do { 4444 #ifndef NDEBUG 4445 LLVM_DEBUG(if (!Idxs.empty()) { 4446 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4447 for (unsigned Idx : Idxs) { 4448 errs() << Idx << " "; 4449 } 4450 errs() << "]\n"; 4451 }); 4452 #endif 4453 // Create the variant and add it to the output list. 4454 std::vector<TreePatternNodePtr> NewChildren; 4455 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4456 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4457 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4458 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4459 4460 // Copy over properties. 4461 R->setName(Orig->getName()); 4462 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4463 R->setPredicateCalls(Orig->getPredicateCalls()); 4464 R->setTransformFn(Orig->getTransformFn()); 4465 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4466 R->setType(i, Orig->getExtType(i)); 4467 4468 // If this pattern cannot match, do not include it as a variant. 4469 std::string ErrString; 4470 // Scan to see if this pattern has already been emitted. We can get 4471 // duplication due to things like commuting: 4472 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4473 // which are the same pattern. Ignore the dups. 4474 if (R->canPatternMatch(ErrString, CDP) && 4475 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4476 return R->isIsomorphicTo(Variant.get(), DepVars); 4477 })) 4478 OutVariants.push_back(R); 4479 4480 // Increment indices to the next permutation by incrementing the 4481 // indices from last index backward, e.g., generate the sequence 4482 // [0, 0], [0, 1], [1, 0], [1, 1]. 4483 int IdxsIdx; 4484 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4485 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4486 Idxs[IdxsIdx] = 0; 4487 else 4488 break; 4489 } 4490 NotDone = (IdxsIdx >= 0); 4491 } while (NotDone); 4492 } 4493 4494 /// CombineChildVariants - A helper function for binary operators. 4495 /// 4496 static void CombineChildVariants(TreePatternNodePtr Orig, 4497 const std::vector<TreePatternNodePtr> &LHS, 4498 const std::vector<TreePatternNodePtr> &RHS, 4499 std::vector<TreePatternNodePtr> &OutVariants, 4500 CodeGenDAGPatterns &CDP, 4501 const MultipleUseVarSet &DepVars) { 4502 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4503 ChildVariants.push_back(LHS); 4504 ChildVariants.push_back(RHS); 4505 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4506 } 4507 4508 static void 4509 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4510 std::vector<TreePatternNodePtr> &Children) { 4511 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4512 Record *Operator = N->getOperator(); 4513 4514 // Only permit raw nodes. 4515 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4516 N->getTransformFn()) { 4517 Children.push_back(N); 4518 return; 4519 } 4520 4521 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4522 Children.push_back(N->getChildShared(0)); 4523 else 4524 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4525 4526 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4527 Children.push_back(N->getChildShared(1)); 4528 else 4529 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4530 } 4531 4532 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4533 /// the (potentially recursive) pattern by using algebraic laws. 4534 /// 4535 static void GenerateVariantsOf(TreePatternNodePtr N, 4536 std::vector<TreePatternNodePtr> &OutVariants, 4537 CodeGenDAGPatterns &CDP, 4538 const MultipleUseVarSet &DepVars) { 4539 // We cannot permute leaves or ComplexPattern uses. 4540 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4541 OutVariants.push_back(N); 4542 return; 4543 } 4544 4545 // Look up interesting info about the node. 4546 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4547 4548 // If this node is associative, re-associate. 4549 if (NodeInfo.hasProperty(SDNPAssociative)) { 4550 // Re-associate by pulling together all of the linked operators 4551 std::vector<TreePatternNodePtr> MaximalChildren; 4552 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4553 4554 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4555 // permutations. 4556 if (MaximalChildren.size() == 3) { 4557 // Find the variants of all of our maximal children. 4558 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4559 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4560 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4561 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4562 4563 // There are only two ways we can permute the tree: 4564 // (A op B) op C and A op (B op C) 4565 // Within these forms, we can also permute A/B/C. 4566 4567 // Generate legal pair permutations of A/B/C. 4568 std::vector<TreePatternNodePtr> ABVariants; 4569 std::vector<TreePatternNodePtr> BAVariants; 4570 std::vector<TreePatternNodePtr> ACVariants; 4571 std::vector<TreePatternNodePtr> CAVariants; 4572 std::vector<TreePatternNodePtr> BCVariants; 4573 std::vector<TreePatternNodePtr> CBVariants; 4574 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4575 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4576 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4577 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4578 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4579 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4580 4581 // Combine those into the result: (x op x) op x 4582 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4583 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4584 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4585 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4586 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4587 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4588 4589 // Combine those into the result: x op (x op x) 4590 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4591 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4592 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4593 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4594 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4595 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4596 return; 4597 } 4598 } 4599 4600 // Compute permutations of all children. 4601 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4602 ChildVariants.resize(N->getNumChildren()); 4603 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4604 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4605 4606 // Build all permutations based on how the children were formed. 4607 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4608 4609 // If this node is commutative, consider the commuted order. 4610 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4611 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4612 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4613 "Commutative but doesn't have 2 children!"); 4614 // Don't count children which are actually register references. 4615 unsigned NC = 0; 4616 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4617 TreePatternNode *Child = N->getChild(i); 4618 if (Child->isLeaf()) 4619 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4620 Record *RR = DI->getDef(); 4621 if (RR->isSubClassOf("Register")) 4622 continue; 4623 } 4624 NC++; 4625 } 4626 // Consider the commuted order. 4627 if (isCommIntrinsic) { 4628 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4629 // operands are the commutative operands, and there might be more operands 4630 // after those. 4631 assert(NC >= 3 && 4632 "Commutative intrinsic should have at least 3 children!"); 4633 std::vector<std::vector<TreePatternNodePtr>> Variants; 4634 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4635 Variants.push_back(std::move(ChildVariants[2])); 4636 Variants.push_back(std::move(ChildVariants[1])); 4637 for (unsigned i = 3; i != NC; ++i) 4638 Variants.push_back(std::move(ChildVariants[i])); 4639 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4640 } else if (NC == N->getNumChildren()) { 4641 std::vector<std::vector<TreePatternNodePtr>> Variants; 4642 Variants.push_back(std::move(ChildVariants[1])); 4643 Variants.push_back(std::move(ChildVariants[0])); 4644 for (unsigned i = 2; i != NC; ++i) 4645 Variants.push_back(std::move(ChildVariants[i])); 4646 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4647 } 4648 } 4649 } 4650 4651 4652 // GenerateVariants - Generate variants. For example, commutative patterns can 4653 // match multiple ways. Add them to PatternsToMatch as well. 4654 void CodeGenDAGPatterns::GenerateVariants() { 4655 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4656 4657 // Loop over all of the patterns we've collected, checking to see if we can 4658 // generate variants of the instruction, through the exploitation of 4659 // identities. This permits the target to provide aggressive matching without 4660 // the .td file having to contain tons of variants of instructions. 4661 // 4662 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4663 // intentionally do not reconsider these. Any variants of added patterns have 4664 // already been added. 4665 // 4666 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4667 MultipleUseVarSet DepVars; 4668 std::vector<TreePatternNodePtr> Variants; 4669 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4670 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4671 LLVM_DEBUG(DumpDepVars(DepVars)); 4672 LLVM_DEBUG(errs() << "\n"); 4673 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4674 *this, DepVars); 4675 4676 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4677 "HwModes should not have been expanded yet!"); 4678 4679 assert(!Variants.empty() && "Must create at least original variant!"); 4680 if (Variants.size() == 1) // No additional variants for this pattern. 4681 continue; 4682 4683 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4684 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4685 4686 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4687 TreePatternNodePtr Variant = Variants[v]; 4688 4689 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4690 errs() << "\n"); 4691 4692 // Scan to see if an instruction or explicit pattern already matches this. 4693 bool AlreadyExists = false; 4694 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4695 // Skip if the top level predicates do not match. 4696 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4697 PatternsToMatch[p].getPredicates())) 4698 continue; 4699 // Check to see if this variant already exists. 4700 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4701 DepVars)) { 4702 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4703 AlreadyExists = true; 4704 break; 4705 } 4706 } 4707 // If we already have it, ignore the variant. 4708 if (AlreadyExists) continue; 4709 4710 // Otherwise, add it to the list of patterns we have. 4711 PatternsToMatch.emplace_back( 4712 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4713 Variant, PatternsToMatch[i].getDstPatternShared(), 4714 PatternsToMatch[i].getDstRegs(), 4715 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(), 4716 PatternsToMatch[i].getForceMode(), 4717 PatternsToMatch[i].getHwModeFeatures()); 4718 } 4719 4720 LLVM_DEBUG(errs() << "\n"); 4721 } 4722 } 4723