1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "CodeGenInstruction.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "dag-patterns"
36 
37 static inline bool isIntegerOrPtr(MVT VT) {
38   return VT.isInteger() || VT == MVT::iPTR;
39 }
40 static inline bool isFloatingPoint(MVT VT) {
41   return VT.isFloatingPoint();
42 }
43 static inline bool isVector(MVT VT) {
44   return VT.isVector();
45 }
46 static inline bool isScalar(MVT VT) {
47   return !VT.isVector();
48 }
49 
50 template <typename Predicate>
51 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52   bool Erased = false;
53   // It is ok to iterate over MachineValueTypeSet and remove elements from it
54   // at the same time.
55   for (MVT T : S) {
56     if (!P(T))
57       continue;
58     Erased = true;
59     S.erase(T);
60   }
61   return Erased;
62 }
63 
64 // --- TypeSetByHwMode
65 
66 // This is a parameterized type-set class. For each mode there is a list
67 // of types that are currently possible for a given tree node. Type
68 // inference will apply to each mode separately.
69 
70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71   for (const ValueTypeByHwMode &VVT : VTList) {
72     insert(VVT);
73     AddrSpaces.push_back(VVT.PtrAddrSpace);
74   }
75 }
76 
77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78   for (const auto &I : *this) {
79     if (I.second.size() > 1)
80       return false;
81     if (!AllowEmpty && I.second.empty())
82       return false;
83   }
84   return true;
85 }
86 
87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88   assert(isValueTypeByHwMode(true) &&
89          "The type set has multiple types for at least one HW mode");
90   ValueTypeByHwMode VVT;
91   auto ASI = AddrSpaces.begin();
92 
93   for (const auto &I : *this) {
94     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95     VVT.getOrCreateTypeForMode(I.first, T);
96     if (ASI != AddrSpaces.end())
97       VVT.PtrAddrSpace = *ASI++;
98   }
99   return VVT;
100 }
101 
102 bool TypeSetByHwMode::isPossible() const {
103   for (const auto &I : *this)
104     if (!I.second.empty())
105       return true;
106   return false;
107 }
108 
109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110   bool Changed = false;
111   bool ContainsDefault = false;
112   MVT DT = MVT::Other;
113 
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     // Make sure there exists a set for each specific mode from VVT.
117     Changed |= getOrCreate(M).insert(P.second).second;
118     // Cache VVT's default mode.
119     if (DefaultMode == M) {
120       ContainsDefault = true;
121       DT = P.second;
122     }
123   }
124 
125   // If VVT has a default mode, add the corresponding type to all
126   // modes in "this" that do not exist in VVT.
127   if (ContainsDefault)
128     for (auto &I : *this)
129       if (!VVT.hasMode(I.first))
130         Changed |= I.second.insert(DT).second;
131 
132   return Changed;
133 }
134 
135 // Constrain the type set to be the intersection with VTS.
136 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
137   bool Changed = false;
138   if (hasDefault()) {
139     for (const auto &I : VTS) {
140       unsigned M = I.first;
141       if (M == DefaultMode || hasMode(M))
142         continue;
143       Map.insert({M, Map.at(DefaultMode)});
144       Changed = true;
145     }
146   }
147 
148   for (auto &I : *this) {
149     unsigned M = I.first;
150     SetType &S = I.second;
151     if (VTS.hasMode(M) || VTS.hasDefault()) {
152       Changed |= intersect(I.second, VTS.get(M));
153     } else if (!S.empty()) {
154       S.clear();
155       Changed = true;
156     }
157   }
158   return Changed;
159 }
160 
161 template <typename Predicate>
162 bool TypeSetByHwMode::constrain(Predicate P) {
163   bool Changed = false;
164   for (auto &I : *this)
165     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
166   return Changed;
167 }
168 
169 template <typename Predicate>
170 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
171   assert(empty());
172   for (const auto &I : VTS) {
173     SetType &S = getOrCreate(I.first);
174     for (auto J : I.second)
175       if (P(J))
176         S.insert(J);
177   }
178   return !empty();
179 }
180 
181 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
182   SmallVector<unsigned, 4> Modes;
183   Modes.reserve(Map.size());
184 
185   for (const auto &I : *this)
186     Modes.push_back(I.first);
187   if (Modes.empty()) {
188     OS << "{}";
189     return;
190   }
191   array_pod_sort(Modes.begin(), Modes.end());
192 
193   OS << '{';
194   for (unsigned M : Modes) {
195     OS << ' ' << getModeName(M) << ':';
196     writeToStream(get(M), OS);
197   }
198   OS << " }";
199 }
200 
201 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
202   SmallVector<MVT, 4> Types(S.begin(), S.end());
203   array_pod_sort(Types.begin(), Types.end());
204 
205   OS << '[';
206   ListSeparator LS(" ");
207   for (const MVT &T : Types)
208     OS << LS << ValueTypeByHwMode::getMVTName(T);
209   OS << ']';
210 }
211 
212 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
213   // The isSimple call is much quicker than hasDefault - check this first.
214   bool IsSimple = isSimple();
215   bool VTSIsSimple = VTS.isSimple();
216   if (IsSimple && VTSIsSimple)
217     return *begin() == *VTS.begin();
218 
219   // Speedup: We have a default if the set is simple.
220   bool HaveDefault = IsSimple || hasDefault();
221   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
222   if (HaveDefault != VTSHaveDefault)
223     return false;
224 
225   SmallSet<unsigned, 4> Modes;
226   for (auto &I : *this)
227     Modes.insert(I.first);
228   for (const auto &I : VTS)
229     Modes.insert(I.first);
230 
231   if (HaveDefault) {
232     // Both sets have default mode.
233     for (unsigned M : Modes) {
234       if (get(M) != VTS.get(M))
235         return false;
236     }
237   } else {
238     // Neither set has default mode.
239     for (unsigned M : Modes) {
240       // If there is no default mode, an empty set is equivalent to not having
241       // the corresponding mode.
242       bool NoModeThis = !hasMode(M) || get(M).empty();
243       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
244       if (NoModeThis != NoModeVTS)
245         return false;
246       if (!NoModeThis)
247         if (get(M) != VTS.get(M))
248           return false;
249     }
250   }
251 
252   return true;
253 }
254 
255 namespace llvm {
256   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
257     T.writeToStream(OS);
258     return OS;
259   }
260 }
261 
262 LLVM_DUMP_METHOD
263 void TypeSetByHwMode::dump() const {
264   dbgs() << *this << '\n';
265 }
266 
267 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
268   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
269   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
270 
271   if (OutP == InP)
272     return berase_if(Out, Int);
273 
274   // Compute the intersection of scalars separately to account for only
275   // one set containing iPTR.
276   // The intersection of iPTR with a set of integer scalar types that does not
277   // include iPTR will result in the most specific scalar type:
278   // - iPTR is more specific than any set with two elements or more
279   // - iPTR is less specific than any single integer scalar type.
280   // For example
281   // { iPTR } * { i32 }     -> { i32 }
282   // { iPTR } * { i32 i64 } -> { iPTR }
283   // and
284   // { iPTR i32 } * { i32 }          -> { i32 }
285   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
286   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
287 
288   // Compute the difference between the two sets in such a way that the
289   // iPTR is in the set that is being subtracted. This is to see if there
290   // are any extra scalars in the set without iPTR that are not in the
291   // set containing iPTR. Then the iPTR could be considered a "wildcard"
292   // matching these scalars. If there is only one such scalar, it would
293   // replace the iPTR, if there are more, the iPTR would be retained.
294   SetType Diff;
295   if (InP) {
296     Diff = Out;
297     berase_if(Diff, [&In](MVT T) { return In.count(T); });
298     // Pre-remove these elements and rely only on InP/OutP to determine
299     // whether a change has been made.
300     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
301   } else {
302     Diff = In;
303     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
304     Out.erase(MVT::iPTR);
305   }
306 
307   // The actual intersection.
308   bool Changed = berase_if(Out, Int);
309   unsigned NumD = Diff.size();
310   if (NumD == 0)
311     return Changed;
312 
313   if (NumD == 1) {
314     Out.insert(*Diff.begin());
315     // This is a change only if Out was the one with iPTR (which is now
316     // being replaced).
317     Changed |= OutP;
318   } else {
319     // Multiple elements from Out are now replaced with iPTR.
320     Out.insert(MVT::iPTR);
321     Changed |= !OutP;
322   }
323   return Changed;
324 }
325 
326 bool TypeSetByHwMode::validate() const {
327 #ifndef NDEBUG
328   if (empty())
329     return true;
330   bool AllEmpty = true;
331   for (const auto &I : *this)
332     AllEmpty &= I.second.empty();
333   return !AllEmpty;
334 #endif
335   return true;
336 }
337 
338 // --- TypeInfer
339 
340 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
341                                 const TypeSetByHwMode &In) {
342   ValidateOnExit _1(Out, *this);
343   In.validate();
344   if (In.empty() || Out == In || TP.hasError())
345     return false;
346   if (Out.empty()) {
347     Out = In;
348     return true;
349   }
350 
351   bool Changed = Out.constrain(In);
352   if (Changed && Out.empty())
353     TP.error("Type contradiction");
354 
355   return Changed;
356 }
357 
358 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
359   ValidateOnExit _1(Out, *this);
360   if (TP.hasError())
361     return false;
362   assert(!Out.empty() && "cannot pick from an empty set");
363 
364   bool Changed = false;
365   for (auto &I : Out) {
366     TypeSetByHwMode::SetType &S = I.second;
367     if (S.size() <= 1)
368       continue;
369     MVT T = *S.begin(); // Pick the first element.
370     S.clear();
371     S.insert(T);
372     Changed = true;
373   }
374   return Changed;
375 }
376 
377 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
378   ValidateOnExit _1(Out, *this);
379   if (TP.hasError())
380     return false;
381   if (!Out.empty())
382     return Out.constrain(isIntegerOrPtr);
383 
384   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
385 }
386 
387 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
388   ValidateOnExit _1(Out, *this);
389   if (TP.hasError())
390     return false;
391   if (!Out.empty())
392     return Out.constrain(isFloatingPoint);
393 
394   return Out.assign_if(getLegalTypes(), isFloatingPoint);
395 }
396 
397 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
398   ValidateOnExit _1(Out, *this);
399   if (TP.hasError())
400     return false;
401   if (!Out.empty())
402     return Out.constrain(isScalar);
403 
404   return Out.assign_if(getLegalTypes(), isScalar);
405 }
406 
407 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
408   ValidateOnExit _1(Out, *this);
409   if (TP.hasError())
410     return false;
411   if (!Out.empty())
412     return Out.constrain(isVector);
413 
414   return Out.assign_if(getLegalTypes(), isVector);
415 }
416 
417 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
418   ValidateOnExit _1(Out, *this);
419   if (TP.hasError() || !Out.empty())
420     return false;
421 
422   Out = getLegalTypes();
423   return true;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Min = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Min == E || L(*I, *Min))
435       Min = I;
436   }
437   return Min;
438 }
439 
440 template <typename Iter, typename Pred, typename Less>
441 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
442   if (B == E)
443     return E;
444   Iter Max = E;
445   for (Iter I = B; I != E; ++I) {
446     if (!P(*I))
447       continue;
448     if (Max == E || L(*Max, *I))
449       Max = I;
450   }
451   return Max;
452 }
453 
454 /// Make sure that for each type in Small, there exists a larger type in Big.
455 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big,
456                                    bool SmallIsVT) {
457   ValidateOnExit _1(Small, *this), _2(Big, *this);
458   if (TP.hasError())
459     return false;
460   bool Changed = false;
461 
462   assert((!SmallIsVT || !Small.empty()) &&
463          "Small should not be empty for SDTCisVTSmallerThanOp");
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   SmallVector<unsigned, 4> Modes;
473   union_modes(Small, Big, Modes);
474 
475   // 1. Only allow integer or floating point types and make sure that
476   //    both sides are both integer or both floating point.
477   // 2. Make sure that either both sides have vector types, or neither
478   //    of them does.
479   for (unsigned M : Modes) {
480     TypeSetByHwMode::SetType &S = Small.get(M);
481     TypeSetByHwMode::SetType &B = Big.get(M);
482 
483     assert((!SmallIsVT || !S.empty()) && "Expected non-empty type");
484 
485     if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) {
486       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
487       Changed |= berase_if(S, NotInt);
488       Changed |= berase_if(B, NotInt);
489     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
490       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
491       Changed |= berase_if(S, NotFP);
492       Changed |= berase_if(B, NotFP);
493     } else if (SmallIsVT && B.empty()) {
494       // B is empty and since S is a specific VT, it will never be empty. Don't
495       // report this as a change, just clear S and continue. This prevents an
496       // infinite loop.
497       S.clear();
498     } else if (S.empty() || B.empty()) {
499       Changed = !S.empty() || !B.empty();
500       S.clear();
501       B.clear();
502     } else {
503       TP.error("Incompatible types");
504       return Changed;
505     }
506 
507     if (none_of(S, isVector) || none_of(B, isVector)) {
508       Changed |= berase_if(S, isVector);
509       Changed |= berase_if(B, isVector);
510     }
511   }
512 
513   auto LT = [](MVT A, MVT B) -> bool {
514     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
515     // purposes of ordering.
516     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
517                                  A.getSizeInBits().getKnownMinSize());
518     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
519                                  B.getSizeInBits().getKnownMinSize());
520     return ASize < BSize;
521   };
522   auto SameKindLE = [](MVT A, MVT B) -> bool {
523     // This function is used when removing elements: when a vector is compared
524     // to a non-vector or a scalable vector to any non-scalable MVT, it should
525     // return false (to avoid removal).
526     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
527         std::make_tuple(B.isVector(), B.isScalableVector()))
528       return false;
529 
530     return std::make_tuple(A.getScalarSizeInBits(),
531                            A.getSizeInBits().getKnownMinSize()) <=
532            std::make_tuple(B.getScalarSizeInBits(),
533                            B.getSizeInBits().getKnownMinSize());
534   };
535 
536   for (unsigned M : Modes) {
537     TypeSetByHwMode::SetType &S = Small.get(M);
538     TypeSetByHwMode::SetType &B = Big.get(M);
539     // MinS = min scalar in Small, remove all scalars from Big that are
540     // smaller-or-equal than MinS.
541     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
542     if (MinS != S.end())
543       Changed |= berase_if(B, std::bind(SameKindLE,
544                                         std::placeholders::_1, *MinS));
545 
546     // MaxS = max scalar in Big, remove all scalars from Small that are
547     // larger than MaxS.
548     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
549     if (MaxS != B.end())
550       Changed |= berase_if(S, std::bind(SameKindLE,
551                                         *MaxS, std::placeholders::_1));
552 
553     // MinV = min vector in Small, remove all vectors from Big that are
554     // smaller-or-equal than MinV.
555     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
556     if (MinV != S.end())
557       Changed |= berase_if(B, std::bind(SameKindLE,
558                                         std::placeholders::_1, *MinV));
559 
560     // MaxV = max vector in Big, remove all vectors from Small that are
561     // larger than MaxV.
562     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
563     if (MaxV != B.end())
564       Changed |= berase_if(S, std::bind(SameKindLE,
565                                         *MaxV, std::placeholders::_1));
566   }
567 
568   return Changed;
569 }
570 
571 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
572 ///    for each type U in Elem, U is a scalar type.
573 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
574 ///    type T in Vec, such that U is the element type of T.
575 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
576                                        TypeSetByHwMode &Elem) {
577   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
578   if (TP.hasError())
579     return false;
580   bool Changed = false;
581 
582   if (Vec.empty())
583     Changed |= EnforceVector(Vec);
584   if (Elem.empty())
585     Changed |= EnforceScalar(Elem);
586 
587   SmallVector<unsigned, 4> Modes;
588   union_modes(Vec, Elem, Modes);
589   for (unsigned M : Modes) {
590     TypeSetByHwMode::SetType &V = Vec.get(M);
591     TypeSetByHwMode::SetType &E = Elem.get(M);
592 
593     Changed |= berase_if(V, isScalar);  // Scalar = !vector
594     Changed |= berase_if(E, isVector);  // Vector = !scalar
595     assert(!V.empty() && !E.empty());
596 
597     MachineValueTypeSet VT, ST;
598     // Collect element types from the "vector" set.
599     for (MVT T : V)
600       VT.insert(T.getVectorElementType());
601     // Collect scalar types from the "element" set.
602     for (MVT T : E)
603       ST.insert(T);
604 
605     // Remove from V all (vector) types whose element type is not in S.
606     Changed |= berase_if(V, [&ST](MVT T) -> bool {
607                               return !ST.count(T.getVectorElementType());
608                             });
609     // Remove from E all (scalar) types, for which there is no corresponding
610     // type in V.
611     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
612   }
613 
614   return Changed;
615 }
616 
617 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
618                                        const ValueTypeByHwMode &VVT) {
619   TypeSetByHwMode Tmp(VVT);
620   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
621   return EnforceVectorEltTypeIs(Vec, Tmp);
622 }
623 
624 /// Ensure that for each type T in Sub, T is a vector type, and there
625 /// exists a type U in Vec such that U is a vector type with the same
626 /// element type as T and at least as many elements as T.
627 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
628                                              TypeSetByHwMode &Sub) {
629   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
630   if (TP.hasError())
631     return false;
632 
633   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
634   auto IsSubVec = [](MVT B, MVT P) -> bool {
635     if (!B.isVector() || !P.isVector())
636       return false;
637     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
638     // but until there are obvious use-cases for this, keep the
639     // types separate.
640     if (B.isScalableVector() != P.isScalableVector())
641       return false;
642     if (B.getVectorElementType() != P.getVectorElementType())
643       return false;
644     return B.getVectorMinNumElements() < P.getVectorMinNumElements();
645   };
646 
647   /// Return true if S has no element (vector type) that T is a sub-vector of,
648   /// i.e. has the same element type as T and more elements.
649   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
650     for (auto I : S)
651       if (IsSubVec(T, I))
652         return false;
653     return true;
654   };
655 
656   /// Return true if S has no element (vector type) that T is a super-vector
657   /// of, i.e. has the same element type as T and fewer elements.
658   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
659     for (auto I : S)
660       if (IsSubVec(I, T))
661         return false;
662     return true;
663   };
664 
665   bool Changed = false;
666 
667   if (Vec.empty())
668     Changed |= EnforceVector(Vec);
669   if (Sub.empty())
670     Changed |= EnforceVector(Sub);
671 
672   SmallVector<unsigned, 4> Modes;
673   union_modes(Vec, Sub, Modes);
674   for (unsigned M : Modes) {
675     TypeSetByHwMode::SetType &S = Sub.get(M);
676     TypeSetByHwMode::SetType &V = Vec.get(M);
677 
678     Changed |= berase_if(S, isScalar);
679 
680     // Erase all types from S that are not sub-vectors of a type in V.
681     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
682 
683     // Erase all types from V that are not super-vectors of a type in S.
684     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
685   }
686 
687   return Changed;
688 }
689 
690 /// 1. Ensure that V has a scalar type iff W has a scalar type.
691 /// 2. Ensure that for each vector type T in V, there exists a vector
692 ///    type U in W, such that T and U have the same number of elements.
693 /// 3. Ensure that for each vector type U in W, there exists a vector
694 ///    type T in V, such that T and U have the same number of elements
695 ///    (reverse of 2).
696 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
697   ValidateOnExit _1(V, *this), _2(W, *this);
698   if (TP.hasError())
699     return false;
700 
701   bool Changed = false;
702   if (V.empty())
703     Changed |= EnforceAny(V);
704   if (W.empty())
705     Changed |= EnforceAny(W);
706 
707   // An actual vector type cannot have 0 elements, so we can treat scalars
708   // as zero-length vectors. This way both vectors and scalars can be
709   // processed identically.
710   auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths,
711                      MVT T) -> bool {
712     return !Lengths.count(T.isVector() ? T.getVectorElementCount()
713                                        : ElementCount::getNull());
714   };
715 
716   SmallVector<unsigned, 4> Modes;
717   union_modes(V, W, Modes);
718   for (unsigned M : Modes) {
719     TypeSetByHwMode::SetType &VS = V.get(M);
720     TypeSetByHwMode::SetType &WS = W.get(M);
721 
722     SmallDenseSet<ElementCount> VN, WN;
723     for (MVT T : VS)
724       VN.insert(T.isVector() ? T.getVectorElementCount()
725                              : ElementCount::getNull());
726     for (MVT T : WS)
727       WN.insert(T.isVector() ? T.getVectorElementCount()
728                              : ElementCount::getNull());
729 
730     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
731     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
732   }
733   return Changed;
734 }
735 
736 namespace {
737 struct TypeSizeComparator {
738   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
739     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
740            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
741   }
742 };
743 } // end anonymous namespace
744 
745 /// 1. Ensure that for each type T in A, there exists a type U in B,
746 ///    such that T and U have equal size in bits.
747 /// 2. Ensure that for each type U in B, there exists a type T in A
748 ///    such that T and U have equal size in bits (reverse of 1).
749 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
750   ValidateOnExit _1(A, *this), _2(B, *this);
751   if (TP.hasError())
752     return false;
753   bool Changed = false;
754   if (A.empty())
755     Changed |= EnforceAny(A);
756   if (B.empty())
757     Changed |= EnforceAny(B);
758 
759   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
760 
761   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
762     return !Sizes.count(T.getSizeInBits());
763   };
764 
765   SmallVector<unsigned, 4> Modes;
766   union_modes(A, B, Modes);
767   for (unsigned M : Modes) {
768     TypeSetByHwMode::SetType &AS = A.get(M);
769     TypeSetByHwMode::SetType &BS = B.get(M);
770     TypeSizeSet AN, BN;
771 
772     for (MVT T : AS)
773       AN.insert(T.getSizeInBits());
774     for (MVT T : BS)
775       BN.insert(T.getSizeInBits());
776 
777     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
778     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
779   }
780 
781   return Changed;
782 }
783 
784 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
785   ValidateOnExit _1(VTS, *this);
786   const TypeSetByHwMode &Legal = getLegalTypes();
787   assert(Legal.isDefaultOnly() && "Default-mode only expected");
788   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
789 
790   for (auto &I : VTS)
791     expandOverloads(I.second, LegalTypes);
792 }
793 
794 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
795                                 const TypeSetByHwMode::SetType &Legal) {
796   std::set<MVT> Ovs;
797   for (MVT T : Out) {
798     if (!T.isOverloaded())
799       continue;
800 
801     Ovs.insert(T);
802     // MachineValueTypeSet allows iteration and erasing.
803     Out.erase(T);
804   }
805 
806   for (MVT Ov : Ovs) {
807     switch (Ov.SimpleTy) {
808       case MVT::iPTRAny:
809         Out.insert(MVT::iPTR);
810         return;
811       case MVT::iAny:
812         for (MVT T : MVT::integer_valuetypes())
813           if (Legal.count(T))
814             Out.insert(T);
815         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
816           if (Legal.count(T))
817             Out.insert(T);
818         for (MVT T : MVT::integer_scalable_vector_valuetypes())
819           if (Legal.count(T))
820             Out.insert(T);
821         return;
822       case MVT::fAny:
823         for (MVT T : MVT::fp_valuetypes())
824           if (Legal.count(T))
825             Out.insert(T);
826         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
827           if (Legal.count(T))
828             Out.insert(T);
829         for (MVT T : MVT::fp_scalable_vector_valuetypes())
830           if (Legal.count(T))
831             Out.insert(T);
832         return;
833       case MVT::vAny:
834         for (MVT T : MVT::vector_valuetypes())
835           if (Legal.count(T))
836             Out.insert(T);
837         return;
838       case MVT::Any:
839         for (MVT T : MVT::all_valuetypes())
840           if (Legal.count(T))
841             Out.insert(T);
842         return;
843       default:
844         break;
845     }
846   }
847 }
848 
849 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
850   if (!LegalTypesCached) {
851     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
852     // Stuff all types from all modes into the default mode.
853     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
854     for (const auto &I : LTS)
855       LegalTypes.insert(I.second);
856     LegalTypesCached = true;
857   }
858   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
859   return LegalCache;
860 }
861 
862 #ifndef NDEBUG
863 TypeInfer::ValidateOnExit::~ValidateOnExit() {
864   if (Infer.Validate && !VTS.validate()) {
865     dbgs() << "Type set is empty for each HW mode:\n"
866               "possible type contradiction in the pattern below "
867               "(use -print-records with llvm-tblgen to see all "
868               "expanded records).\n";
869     Infer.TP.dump();
870     dbgs() << "Generated from record:\n";
871     Infer.TP.getRecord()->dump();
872     PrintFatalError(Infer.TP.getRecord()->getLoc(),
873                     "Type set is empty for each HW mode in '" +
874                         Infer.TP.getRecord()->getName() + "'");
875   }
876 }
877 #endif
878 
879 
880 //===----------------------------------------------------------------------===//
881 // ScopedName Implementation
882 //===----------------------------------------------------------------------===//
883 
884 bool ScopedName::operator==(const ScopedName &o) const {
885   return Scope == o.Scope && Identifier == o.Identifier;
886 }
887 
888 bool ScopedName::operator!=(const ScopedName &o) const {
889   return !(*this == o);
890 }
891 
892 
893 //===----------------------------------------------------------------------===//
894 // TreePredicateFn Implementation
895 //===----------------------------------------------------------------------===//
896 
897 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
898 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
899   assert(
900       (!hasPredCode() || !hasImmCode()) &&
901       ".td file corrupt: can't have a node predicate *and* an imm predicate");
902 }
903 
904 bool TreePredicateFn::hasPredCode() const {
905   return isLoad() || isStore() || isAtomic() ||
906          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
907 }
908 
909 std::string TreePredicateFn::getPredCode() const {
910   std::string Code;
911 
912   if (!isLoad() && !isStore() && !isAtomic()) {
913     Record *MemoryVT = getMemoryVT();
914 
915     if (MemoryVT)
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "MemoryVT requires IsLoad or IsStore");
918   }
919 
920   if (!isLoad() && !isStore()) {
921     if (isUnindexed())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsUnindexed requires IsLoad or IsStore");
924 
925     Record *ScalarMemoryVT = getScalarMemoryVT();
926 
927     if (ScalarMemoryVT)
928       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                       "ScalarMemoryVT requires IsLoad or IsStore");
930   }
931 
932   if (isLoad() + isStore() + isAtomic() > 1)
933     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
935 
936   if (isLoad()) {
937     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
938         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
939         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
940         getMinAlignment() < 1)
941       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
942                       "IsLoad cannot be used by itself");
943   } else {
944     if (isNonExtLoad())
945       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
946                       "IsNonExtLoad requires IsLoad");
947     if (isAnyExtLoad())
948       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                       "IsAnyExtLoad requires IsLoad");
950     if (isSignExtLoad())
951       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                       "IsSignExtLoad requires IsLoad");
953     if (isZeroExtLoad())
954       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                       "IsZeroExtLoad requires IsLoad");
956   }
957 
958   if (isStore()) {
959     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
960         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
961         getAddressSpaces() == nullptr && getMinAlignment() < 1)
962       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
963                       "IsStore cannot be used by itself");
964   } else {
965     if (isNonTruncStore())
966       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                       "IsNonTruncStore requires IsStore");
968     if (isTruncStore())
969       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970                       "IsTruncStore requires IsStore");
971   }
972 
973   if (isAtomic()) {
974     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
975         getAddressSpaces() == nullptr &&
976         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
977         !isAtomicOrderingAcquireRelease() &&
978         !isAtomicOrderingSequentiallyConsistent() &&
979         !isAtomicOrderingAcquireOrStronger() &&
980         !isAtomicOrderingReleaseOrStronger() &&
981         !isAtomicOrderingWeakerThanAcquire() &&
982         !isAtomicOrderingWeakerThanRelease())
983       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
984                       "IsAtomic cannot be used by itself");
985   } else {
986     if (isAtomicOrderingMonotonic())
987       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
988                       "IsAtomicOrderingMonotonic requires IsAtomic");
989     if (isAtomicOrderingAcquire())
990       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
991                       "IsAtomicOrderingAcquire requires IsAtomic");
992     if (isAtomicOrderingRelease())
993       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
994                       "IsAtomicOrderingRelease requires IsAtomic");
995     if (isAtomicOrderingAcquireRelease())
996       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
997                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
998     if (isAtomicOrderingSequentiallyConsistent())
999       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1000                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
1001     if (isAtomicOrderingAcquireOrStronger())
1002       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
1004     if (isAtomicOrderingReleaseOrStronger())
1005       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1006                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
1007     if (isAtomicOrderingWeakerThanAcquire())
1008       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1009                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
1010   }
1011 
1012   if (isLoad() || isStore() || isAtomic()) {
1013     if (ListInit *AddressSpaces = getAddressSpaces()) {
1014       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
1015         " if (";
1016 
1017       ListSeparator LS(" && ");
1018       for (Init *Val : AddressSpaces->getValues()) {
1019         Code += LS;
1020 
1021         IntInit *IntVal = dyn_cast<IntInit>(Val);
1022         if (!IntVal) {
1023           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1024                           "AddressSpaces element must be integer");
1025         }
1026 
1027         Code += "AddrSpace != " + utostr(IntVal->getValue());
1028       }
1029 
1030       Code += ")\nreturn false;\n";
1031     }
1032 
1033     int64_t MinAlign = getMinAlignment();
1034     if (MinAlign > 0) {
1035       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1036       Code += utostr(MinAlign);
1037       Code += "))\nreturn false;\n";
1038     }
1039 
1040     Record *MemoryVT = getMemoryVT();
1041 
1042     if (MemoryVT)
1043       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1044                MemoryVT->getName() + ") return false;\n")
1045                   .str();
1046   }
1047 
1048   if (isAtomic() && isAtomicOrderingMonotonic())
1049     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1050             "AtomicOrdering::Monotonic) return false;\n";
1051   if (isAtomic() && isAtomicOrderingAcquire())
1052     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1053             "AtomicOrdering::Acquire) return false;\n";
1054   if (isAtomic() && isAtomicOrderingRelease())
1055     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1056             "AtomicOrdering::Release) return false;\n";
1057   if (isAtomic() && isAtomicOrderingAcquireRelease())
1058     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1059             "AtomicOrdering::AcquireRelease) return false;\n";
1060   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1061     Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != "
1062             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1063 
1064   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1065     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1066             "return false;\n";
1067   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1068     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1069             "return false;\n";
1070 
1071   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1072     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1073             "return false;\n";
1074   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1075     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) "
1076             "return false;\n";
1077 
1078   if (isLoad() || isStore()) {
1079     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1080 
1081     if (isUnindexed())
1082       Code += ("if (cast<" + SDNodeName +
1083                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1084                "return false;\n")
1085                   .str();
1086 
1087     if (isLoad()) {
1088       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1089            isZeroExtLoad()) > 1)
1090         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1091                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1092                         "IsZeroExtLoad are mutually exclusive");
1093       if (isNonExtLoad())
1094         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1095                 "ISD::NON_EXTLOAD) return false;\n";
1096       if (isAnyExtLoad())
1097         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1098                 "return false;\n";
1099       if (isSignExtLoad())
1100         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1101                 "return false;\n";
1102       if (isZeroExtLoad())
1103         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1104                 "return false;\n";
1105     } else {
1106       if ((isNonTruncStore() + isTruncStore()) > 1)
1107         PrintFatalError(
1108             getOrigPatFragRecord()->getRecord()->getLoc(),
1109             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1110       if (isNonTruncStore())
1111         Code +=
1112             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1113       if (isTruncStore())
1114         Code +=
1115             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1116     }
1117 
1118     Record *ScalarMemoryVT = getScalarMemoryVT();
1119 
1120     if (ScalarMemoryVT)
1121       Code += ("if (cast<" + SDNodeName +
1122                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1123                ScalarMemoryVT->getName() + ") return false;\n")
1124                   .str();
1125   }
1126 
1127   std::string PredicateCode =
1128       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1129 
1130   Code += PredicateCode;
1131 
1132   if (PredicateCode.empty() && !Code.empty())
1133     Code += "return true;\n";
1134 
1135   return Code;
1136 }
1137 
1138 bool TreePredicateFn::hasImmCode() const {
1139   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1140 }
1141 
1142 std::string TreePredicateFn::getImmCode() const {
1143   return std::string(
1144       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1145 }
1146 
1147 bool TreePredicateFn::immCodeUsesAPInt() const {
1148   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1149 }
1150 
1151 bool TreePredicateFn::immCodeUsesAPFloat() const {
1152   bool Unset;
1153   // The return value will be false when IsAPFloat is unset.
1154   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1155                                                                    Unset);
1156 }
1157 
1158 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1159                                                    bool Value) const {
1160   bool Unset;
1161   bool Result =
1162       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1163   if (Unset)
1164     return false;
1165   return Result == Value;
1166 }
1167 bool TreePredicateFn::usesOperands() const {
1168   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1169 }
1170 bool TreePredicateFn::isLoad() const {
1171   return isPredefinedPredicateEqualTo("IsLoad", true);
1172 }
1173 bool TreePredicateFn::isStore() const {
1174   return isPredefinedPredicateEqualTo("IsStore", true);
1175 }
1176 bool TreePredicateFn::isAtomic() const {
1177   return isPredefinedPredicateEqualTo("IsAtomic", true);
1178 }
1179 bool TreePredicateFn::isUnindexed() const {
1180   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1181 }
1182 bool TreePredicateFn::isNonExtLoad() const {
1183   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1184 }
1185 bool TreePredicateFn::isAnyExtLoad() const {
1186   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1187 }
1188 bool TreePredicateFn::isSignExtLoad() const {
1189   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1190 }
1191 bool TreePredicateFn::isZeroExtLoad() const {
1192   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1193 }
1194 bool TreePredicateFn::isNonTruncStore() const {
1195   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1196 }
1197 bool TreePredicateFn::isTruncStore() const {
1198   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1199 }
1200 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1201   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1202 }
1203 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1204   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1205 }
1206 bool TreePredicateFn::isAtomicOrderingRelease() const {
1207   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1208 }
1209 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1210   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1211 }
1212 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1213   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1214                                       true);
1215 }
1216 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1217   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1218 }
1219 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1220   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1221 }
1222 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1223   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1224 }
1225 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1226   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1227 }
1228 Record *TreePredicateFn::getMemoryVT() const {
1229   Record *R = getOrigPatFragRecord()->getRecord();
1230   if (R->isValueUnset("MemoryVT"))
1231     return nullptr;
1232   return R->getValueAsDef("MemoryVT");
1233 }
1234 
1235 ListInit *TreePredicateFn::getAddressSpaces() const {
1236   Record *R = getOrigPatFragRecord()->getRecord();
1237   if (R->isValueUnset("AddressSpaces"))
1238     return nullptr;
1239   return R->getValueAsListInit("AddressSpaces");
1240 }
1241 
1242 int64_t TreePredicateFn::getMinAlignment() const {
1243   Record *R = getOrigPatFragRecord()->getRecord();
1244   if (R->isValueUnset("MinAlignment"))
1245     return 0;
1246   return R->getValueAsInt("MinAlignment");
1247 }
1248 
1249 Record *TreePredicateFn::getScalarMemoryVT() const {
1250   Record *R = getOrigPatFragRecord()->getRecord();
1251   if (R->isValueUnset("ScalarMemoryVT"))
1252     return nullptr;
1253   return R->getValueAsDef("ScalarMemoryVT");
1254 }
1255 bool TreePredicateFn::hasGISelPredicateCode() const {
1256   return !PatFragRec->getRecord()
1257               ->getValueAsString("GISelPredicateCode")
1258               .empty();
1259 }
1260 std::string TreePredicateFn::getGISelPredicateCode() const {
1261   return std::string(
1262       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1263 }
1264 
1265 StringRef TreePredicateFn::getImmType() const {
1266   if (immCodeUsesAPInt())
1267     return "const APInt &";
1268   if (immCodeUsesAPFloat())
1269     return "const APFloat &";
1270   return "int64_t";
1271 }
1272 
1273 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1274   if (immCodeUsesAPInt())
1275     return "APInt";
1276   if (immCodeUsesAPFloat())
1277     return "APFloat";
1278   return "I64";
1279 }
1280 
1281 /// isAlwaysTrue - Return true if this is a noop predicate.
1282 bool TreePredicateFn::isAlwaysTrue() const {
1283   return !hasPredCode() && !hasImmCode();
1284 }
1285 
1286 /// Return the name to use in the generated code to reference this, this is
1287 /// "Predicate_foo" if from a pattern fragment "foo".
1288 std::string TreePredicateFn::getFnName() const {
1289   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1290 }
1291 
1292 /// getCodeToRunOnSDNode - Return the code for the function body that
1293 /// evaluates this predicate.  The argument is expected to be in "Node",
1294 /// not N.  This handles casting and conversion to a concrete node type as
1295 /// appropriate.
1296 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1297   // Handle immediate predicates first.
1298   std::string ImmCode = getImmCode();
1299   if (!ImmCode.empty()) {
1300     if (isLoad())
1301       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1302                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1303     if (isStore())
1304       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1305                       "IsStore cannot be used with ImmLeaf or its subclasses");
1306     if (isUnindexed())
1307       PrintFatalError(
1308           getOrigPatFragRecord()->getRecord()->getLoc(),
1309           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1310     if (isNonExtLoad())
1311       PrintFatalError(
1312           getOrigPatFragRecord()->getRecord()->getLoc(),
1313           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1314     if (isAnyExtLoad())
1315       PrintFatalError(
1316           getOrigPatFragRecord()->getRecord()->getLoc(),
1317           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1318     if (isSignExtLoad())
1319       PrintFatalError(
1320           getOrigPatFragRecord()->getRecord()->getLoc(),
1321           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1322     if (isZeroExtLoad())
1323       PrintFatalError(
1324           getOrigPatFragRecord()->getRecord()->getLoc(),
1325           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1326     if (isNonTruncStore())
1327       PrintFatalError(
1328           getOrigPatFragRecord()->getRecord()->getLoc(),
1329           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1330     if (isTruncStore())
1331       PrintFatalError(
1332           getOrigPatFragRecord()->getRecord()->getLoc(),
1333           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1334     if (getMemoryVT())
1335       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1336                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1337     if (getScalarMemoryVT())
1338       PrintFatalError(
1339           getOrigPatFragRecord()->getRecord()->getLoc(),
1340           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1341 
1342     std::string Result = ("    " + getImmType() + " Imm = ").str();
1343     if (immCodeUsesAPFloat())
1344       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1345     else if (immCodeUsesAPInt())
1346       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1347     else
1348       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1349     return Result + ImmCode;
1350   }
1351 
1352   // Handle arbitrary node predicates.
1353   assert(hasPredCode() && "Don't have any predicate code!");
1354 
1355   // If this is using PatFrags, there are multiple trees to search. They should
1356   // all have the same class.  FIXME: Is there a way to find a common
1357   // superclass?
1358   StringRef ClassName;
1359   for (const auto &Tree : PatFragRec->getTrees()) {
1360     StringRef TreeClassName;
1361     if (Tree->isLeaf())
1362       TreeClassName = "SDNode";
1363     else {
1364       Record *Op = Tree->getOperator();
1365       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1366       TreeClassName = Info.getSDClassName();
1367     }
1368 
1369     if (ClassName.empty())
1370       ClassName = TreeClassName;
1371     else if (ClassName != TreeClassName) {
1372       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1373                       "PatFrags trees do not have consistent class");
1374     }
1375   }
1376 
1377   std::string Result;
1378   if (ClassName == "SDNode")
1379     Result = "    SDNode *N = Node;\n";
1380   else
1381     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1382 
1383   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1384 }
1385 
1386 //===----------------------------------------------------------------------===//
1387 // PatternToMatch implementation
1388 //
1389 
1390 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1391   if (!P->isLeaf())
1392     return false;
1393   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1394   if (!DI)
1395     return false;
1396 
1397   Record *R = DI->getDef();
1398   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1399 }
1400 
1401 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1402 /// patterns before small ones.  This is used to determine the size of a
1403 /// pattern.
1404 static unsigned getPatternSize(const TreePatternNode *P,
1405                                const CodeGenDAGPatterns &CGP) {
1406   unsigned Size = 3;  // The node itself.
1407   // If the root node is a ConstantSDNode, increases its size.
1408   // e.g. (set R32:$dst, 0).
1409   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1410     Size += 2;
1411 
1412   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1413     Size += AM->getComplexity();
1414     // We don't want to count any children twice, so return early.
1415     return Size;
1416   }
1417 
1418   // If this node has some predicate function that must match, it adds to the
1419   // complexity of this node.
1420   if (!P->getPredicateCalls().empty())
1421     ++Size;
1422 
1423   // Count children in the count if they are also nodes.
1424   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1425     const TreePatternNode *Child = P->getChild(i);
1426     if (!Child->isLeaf() && Child->getNumTypes()) {
1427       const TypeSetByHwMode &T0 = Child->getExtType(0);
1428       // At this point, all variable type sets should be simple, i.e. only
1429       // have a default mode.
1430       if (T0.getMachineValueType() != MVT::Other) {
1431         Size += getPatternSize(Child, CGP);
1432         continue;
1433       }
1434     }
1435     if (Child->isLeaf()) {
1436       if (isa<IntInit>(Child->getLeafValue()))
1437         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1438       else if (Child->getComplexPatternInfo(CGP))
1439         Size += getPatternSize(Child, CGP);
1440       else if (isImmAllOnesAllZerosMatch(Child))
1441         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1442       else if (!Child->getPredicateCalls().empty())
1443         ++Size;
1444     }
1445   }
1446 
1447   return Size;
1448 }
1449 
1450 /// Compute the complexity metric for the input pattern.  This roughly
1451 /// corresponds to the number of nodes that are covered.
1452 int PatternToMatch::
1453 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1454   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1455 }
1456 
1457 void PatternToMatch::getPredicateRecords(
1458     SmallVectorImpl<Record *> &PredicateRecs) const {
1459   for (Init *I : Predicates->getValues()) {
1460     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
1461       Record *Def = Pred->getDef();
1462       if (!Def->isSubClassOf("Predicate")) {
1463 #ifndef NDEBUG
1464         Def->dump();
1465 #endif
1466         llvm_unreachable("Unknown predicate type!");
1467       }
1468       PredicateRecs.push_back(Def);
1469     }
1470   }
1471   // Sort so that different orders get canonicalized to the same string.
1472   llvm::sort(PredicateRecs, LessRecord());
1473 }
1474 
1475 /// getPredicateCheck - Return a single string containing all of this
1476 /// pattern's predicates concatenated with "&&" operators.
1477 ///
1478 std::string PatternToMatch::getPredicateCheck() const {
1479   SmallVector<Record *, 4> PredicateRecs;
1480   getPredicateRecords(PredicateRecs);
1481 
1482   SmallString<128> PredicateCheck;
1483   for (Record *Pred : PredicateRecs) {
1484     StringRef CondString = Pred->getValueAsString("CondString");
1485     if (CondString.empty())
1486       continue;
1487     if (!PredicateCheck.empty())
1488       PredicateCheck += " && ";
1489     PredicateCheck += "(";
1490     PredicateCheck += CondString;
1491     PredicateCheck += ")";
1492   }
1493 
1494   if (!HwModeFeatures.empty()) {
1495     if (!PredicateCheck.empty())
1496       PredicateCheck += " && ";
1497     PredicateCheck += HwModeFeatures;
1498   }
1499 
1500   return std::string(PredicateCheck);
1501 }
1502 
1503 //===----------------------------------------------------------------------===//
1504 // SDTypeConstraint implementation
1505 //
1506 
1507 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1508   OperandNo = R->getValueAsInt("OperandNum");
1509 
1510   if (R->isSubClassOf("SDTCisVT")) {
1511     ConstraintType = SDTCisVT;
1512     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1513     for (const auto &P : VVT)
1514       if (P.second == MVT::isVoid)
1515         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1516   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1517     ConstraintType = SDTCisPtrTy;
1518   } else if (R->isSubClassOf("SDTCisInt")) {
1519     ConstraintType = SDTCisInt;
1520   } else if (R->isSubClassOf("SDTCisFP")) {
1521     ConstraintType = SDTCisFP;
1522   } else if (R->isSubClassOf("SDTCisVec")) {
1523     ConstraintType = SDTCisVec;
1524   } else if (R->isSubClassOf("SDTCisSameAs")) {
1525     ConstraintType = SDTCisSameAs;
1526     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1527   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1528     ConstraintType = SDTCisVTSmallerThanOp;
1529     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1530       R->getValueAsInt("OtherOperandNum");
1531   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1532     ConstraintType = SDTCisOpSmallerThanOp;
1533     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1534       R->getValueAsInt("BigOperandNum");
1535   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1536     ConstraintType = SDTCisEltOfVec;
1537     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1538   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1539     ConstraintType = SDTCisSubVecOfVec;
1540     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1541       R->getValueAsInt("OtherOpNum");
1542   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1543     ConstraintType = SDTCVecEltisVT;
1544     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1545     for (const auto &P : VVT) {
1546       MVT T = P.second;
1547       if (T.isVector())
1548         PrintFatalError(R->getLoc(),
1549                         "Cannot use vector type as SDTCVecEltisVT");
1550       if (!T.isInteger() && !T.isFloatingPoint())
1551         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1552                                      "as SDTCVecEltisVT");
1553     }
1554   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1555     ConstraintType = SDTCisSameNumEltsAs;
1556     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1557       R->getValueAsInt("OtherOperandNum");
1558   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1559     ConstraintType = SDTCisSameSizeAs;
1560     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1561       R->getValueAsInt("OtherOperandNum");
1562   } else {
1563     PrintFatalError(R->getLoc(),
1564                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1565   }
1566 }
1567 
1568 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1569 /// N, and the result number in ResNo.
1570 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1571                                       const SDNodeInfo &NodeInfo,
1572                                       unsigned &ResNo) {
1573   unsigned NumResults = NodeInfo.getNumResults();
1574   if (OpNo < NumResults) {
1575     ResNo = OpNo;
1576     return N;
1577   }
1578 
1579   OpNo -= NumResults;
1580 
1581   if (OpNo >= N->getNumChildren()) {
1582     std::string S;
1583     raw_string_ostream OS(S);
1584     OS << "Invalid operand number in type constraint "
1585            << (OpNo+NumResults) << " ";
1586     N->print(OS);
1587     PrintFatalError(S);
1588   }
1589 
1590   return N->getChild(OpNo);
1591 }
1592 
1593 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1594 /// constraint to the nodes operands.  This returns true if it makes a
1595 /// change, false otherwise.  If a type contradiction is found, flag an error.
1596 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1597                                            const SDNodeInfo &NodeInfo,
1598                                            TreePattern &TP) const {
1599   if (TP.hasError())
1600     return false;
1601 
1602   unsigned ResNo = 0; // The result number being referenced.
1603   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1604   TypeInfer &TI = TP.getInfer();
1605 
1606   switch (ConstraintType) {
1607   case SDTCisVT:
1608     // Operand must be a particular type.
1609     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1610   case SDTCisPtrTy:
1611     // Operand must be same as target pointer type.
1612     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1613   case SDTCisInt:
1614     // Require it to be one of the legal integer VTs.
1615      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1616   case SDTCisFP:
1617     // Require it to be one of the legal fp VTs.
1618     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1619   case SDTCisVec:
1620     // Require it to be one of the legal vector VTs.
1621     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1622   case SDTCisSameAs: {
1623     unsigned OResNo = 0;
1624     TreePatternNode *OtherNode =
1625       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1626     return (int)NodeToApply->UpdateNodeType(ResNo,
1627                                             OtherNode->getExtType(OResNo), TP) |
1628            (int)OtherNode->UpdateNodeType(OResNo,
1629                                           NodeToApply->getExtType(ResNo), TP);
1630   }
1631   case SDTCisVTSmallerThanOp: {
1632     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1633     // have an integer type that is smaller than the VT.
1634     if (!NodeToApply->isLeaf() ||
1635         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1636         !cast<DefInit>(NodeToApply->getLeafValue())->getDef()
1637                ->isSubClassOf("ValueType")) {
1638       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1639       return false;
1640     }
1641     DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue());
1642     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1643     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1644     TypeSetByHwMode TypeListTmp(VVT);
1645 
1646     unsigned OResNo = 0;
1647     TreePatternNode *OtherNode =
1648       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1649                     OResNo);
1650 
1651     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo),
1652                                  /*SmallIsVT*/ true);
1653   }
1654   case SDTCisOpSmallerThanOp: {
1655     unsigned BResNo = 0;
1656     TreePatternNode *BigOperand =
1657       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1658                     BResNo);
1659     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1660                                  BigOperand->getExtType(BResNo));
1661   }
1662   case SDTCisEltOfVec: {
1663     unsigned VResNo = 0;
1664     TreePatternNode *VecOperand =
1665       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1666                     VResNo);
1667     // Filter vector types out of VecOperand that don't have the right element
1668     // type.
1669     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1670                                      NodeToApply->getExtType(ResNo));
1671   }
1672   case SDTCisSubVecOfVec: {
1673     unsigned VResNo = 0;
1674     TreePatternNode *BigVecOperand =
1675       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1676                     VResNo);
1677 
1678     // Filter vector types out of BigVecOperand that don't have the
1679     // right subvector type.
1680     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1681                                            NodeToApply->getExtType(ResNo));
1682   }
1683   case SDTCVecEltisVT: {
1684     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1685   }
1686   case SDTCisSameNumEltsAs: {
1687     unsigned OResNo = 0;
1688     TreePatternNode *OtherNode =
1689       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1690                     N, NodeInfo, OResNo);
1691     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1692                                  NodeToApply->getExtType(ResNo));
1693   }
1694   case SDTCisSameSizeAs: {
1695     unsigned OResNo = 0;
1696     TreePatternNode *OtherNode =
1697       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1698                     N, NodeInfo, OResNo);
1699     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1700                               NodeToApply->getExtType(ResNo));
1701   }
1702   }
1703   llvm_unreachable("Invalid ConstraintType!");
1704 }
1705 
1706 // Update the node type to match an instruction operand or result as specified
1707 // in the ins or outs lists on the instruction definition. Return true if the
1708 // type was actually changed.
1709 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1710                                              Record *Operand,
1711                                              TreePattern &TP) {
1712   // The 'unknown' operand indicates that types should be inferred from the
1713   // context.
1714   if (Operand->isSubClassOf("unknown_class"))
1715     return false;
1716 
1717   // The Operand class specifies a type directly.
1718   if (Operand->isSubClassOf("Operand")) {
1719     Record *R = Operand->getValueAsDef("Type");
1720     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1721     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1722   }
1723 
1724   // PointerLikeRegClass has a type that is determined at runtime.
1725   if (Operand->isSubClassOf("PointerLikeRegClass"))
1726     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1727 
1728   // Both RegisterClass and RegisterOperand operands derive their types from a
1729   // register class def.
1730   Record *RC = nullptr;
1731   if (Operand->isSubClassOf("RegisterClass"))
1732     RC = Operand;
1733   else if (Operand->isSubClassOf("RegisterOperand"))
1734     RC = Operand->getValueAsDef("RegClass");
1735 
1736   assert(RC && "Unknown operand type");
1737   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1738   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1739 }
1740 
1741 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1742   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1743     if (!TP.getInfer().isConcrete(Types[i], true))
1744       return true;
1745   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1746     if (getChild(i)->ContainsUnresolvedType(TP))
1747       return true;
1748   return false;
1749 }
1750 
1751 bool TreePatternNode::hasProperTypeByHwMode() const {
1752   for (const TypeSetByHwMode &S : Types)
1753     if (!S.isDefaultOnly())
1754       return true;
1755   for (const TreePatternNodePtr &C : Children)
1756     if (C->hasProperTypeByHwMode())
1757       return true;
1758   return false;
1759 }
1760 
1761 bool TreePatternNode::hasPossibleType() const {
1762   for (const TypeSetByHwMode &S : Types)
1763     if (!S.isPossible())
1764       return false;
1765   for (const TreePatternNodePtr &C : Children)
1766     if (!C->hasPossibleType())
1767       return false;
1768   return true;
1769 }
1770 
1771 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1772   for (TypeSetByHwMode &S : Types) {
1773     S.makeSimple(Mode);
1774     // Check if the selected mode had a type conflict.
1775     if (S.get(DefaultMode).empty())
1776       return false;
1777   }
1778   for (const TreePatternNodePtr &C : Children)
1779     if (!C->setDefaultMode(Mode))
1780       return false;
1781   return true;
1782 }
1783 
1784 //===----------------------------------------------------------------------===//
1785 // SDNodeInfo implementation
1786 //
1787 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1788   EnumName    = R->getValueAsString("Opcode");
1789   SDClassName = R->getValueAsString("SDClass");
1790   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1791   NumResults = TypeProfile->getValueAsInt("NumResults");
1792   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1793 
1794   // Parse the properties.
1795   Properties = parseSDPatternOperatorProperties(R);
1796 
1797   // Parse the type constraints.
1798   std::vector<Record*> ConstraintList =
1799     TypeProfile->getValueAsListOfDefs("Constraints");
1800   for (Record *R : ConstraintList)
1801     TypeConstraints.emplace_back(R, CGH);
1802 }
1803 
1804 /// getKnownType - If the type constraints on this node imply a fixed type
1805 /// (e.g. all stores return void, etc), then return it as an
1806 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1807 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1808   unsigned NumResults = getNumResults();
1809   assert(NumResults <= 1 &&
1810          "We only work with nodes with zero or one result so far!");
1811   assert(ResNo == 0 && "Only handles single result nodes so far");
1812 
1813   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1814     // Make sure that this applies to the correct node result.
1815     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1816       continue;
1817 
1818     switch (Constraint.ConstraintType) {
1819     default: break;
1820     case SDTypeConstraint::SDTCisVT:
1821       if (Constraint.VVT.isSimple())
1822         return Constraint.VVT.getSimple().SimpleTy;
1823       break;
1824     case SDTypeConstraint::SDTCisPtrTy:
1825       return MVT::iPTR;
1826     }
1827   }
1828   return MVT::Other;
1829 }
1830 
1831 //===----------------------------------------------------------------------===//
1832 // TreePatternNode implementation
1833 //
1834 
1835 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1836   if (Operator->getName() == "set" ||
1837       Operator->getName() == "implicit")
1838     return 0;  // All return nothing.
1839 
1840   if (Operator->isSubClassOf("Intrinsic"))
1841     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1842 
1843   if (Operator->isSubClassOf("SDNode"))
1844     return CDP.getSDNodeInfo(Operator).getNumResults();
1845 
1846   if (Operator->isSubClassOf("PatFrags")) {
1847     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1848     // the forward reference case where one pattern fragment references another
1849     // before it is processed.
1850     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1851       // The number of results of a fragment with alternative records is the
1852       // maximum number of results across all alternatives.
1853       unsigned NumResults = 0;
1854       for (const auto &T : PFRec->getTrees())
1855         NumResults = std::max(NumResults, T->getNumTypes());
1856       return NumResults;
1857     }
1858 
1859     ListInit *LI = Operator->getValueAsListInit("Fragments");
1860     assert(LI && "Invalid Fragment");
1861     unsigned NumResults = 0;
1862     for (Init *I : LI->getValues()) {
1863       Record *Op = nullptr;
1864       if (DagInit *Dag = dyn_cast<DagInit>(I))
1865         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1866           Op = DI->getDef();
1867       assert(Op && "Invalid Fragment");
1868       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1869     }
1870     return NumResults;
1871   }
1872 
1873   if (Operator->isSubClassOf("Instruction")) {
1874     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1875 
1876     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1877 
1878     // Subtract any defaulted outputs.
1879     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1880       Record *OperandNode = InstInfo.Operands[i].Rec;
1881 
1882       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1883           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1884         --NumDefsToAdd;
1885     }
1886 
1887     // Add on one implicit def if it has a resolvable type.
1888     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1889       ++NumDefsToAdd;
1890     return NumDefsToAdd;
1891   }
1892 
1893   if (Operator->isSubClassOf("SDNodeXForm"))
1894     return 1;  // FIXME: Generalize SDNodeXForm
1895 
1896   if (Operator->isSubClassOf("ValueType"))
1897     return 1;  // A type-cast of one result.
1898 
1899   if (Operator->isSubClassOf("ComplexPattern"))
1900     return 1;
1901 
1902   errs() << *Operator;
1903   PrintFatalError("Unhandled node in GetNumNodeResults");
1904 }
1905 
1906 void TreePatternNode::print(raw_ostream &OS) const {
1907   if (isLeaf())
1908     OS << *getLeafValue();
1909   else
1910     OS << '(' << getOperator()->getName();
1911 
1912   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1913     OS << ':';
1914     getExtType(i).writeToStream(OS);
1915   }
1916 
1917   if (!isLeaf()) {
1918     if (getNumChildren() != 0) {
1919       OS << " ";
1920       ListSeparator LS;
1921       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1922         OS << LS;
1923         getChild(i)->print(OS);
1924       }
1925     }
1926     OS << ")";
1927   }
1928 
1929   for (const TreePredicateCall &Pred : PredicateCalls) {
1930     OS << "<<P:";
1931     if (Pred.Scope)
1932       OS << Pred.Scope << ":";
1933     OS << Pred.Fn.getFnName() << ">>";
1934   }
1935   if (TransformFn)
1936     OS << "<<X:" << TransformFn->getName() << ">>";
1937   if (!getName().empty())
1938     OS << ":$" << getName();
1939 
1940   for (const ScopedName &Name : NamesAsPredicateArg)
1941     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1942 }
1943 void TreePatternNode::dump() const {
1944   print(errs());
1945 }
1946 
1947 /// isIsomorphicTo - Return true if this node is recursively
1948 /// isomorphic to the specified node.  For this comparison, the node's
1949 /// entire state is considered. The assigned name is ignored, since
1950 /// nodes with differing names are considered isomorphic. However, if
1951 /// the assigned name is present in the dependent variable set, then
1952 /// the assigned name is considered significant and the node is
1953 /// isomorphic if the names match.
1954 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1955                                      const MultipleUseVarSet &DepVars) const {
1956   if (N == this) return true;
1957   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1958       getPredicateCalls() != N->getPredicateCalls() ||
1959       getTransformFn() != N->getTransformFn())
1960     return false;
1961 
1962   if (isLeaf()) {
1963     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1964       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1965         return ((DI->getDef() == NDI->getDef())
1966                 && (DepVars.find(getName()) == DepVars.end()
1967                     || getName() == N->getName()));
1968       }
1969     }
1970     return getLeafValue() == N->getLeafValue();
1971   }
1972 
1973   if (N->getOperator() != getOperator() ||
1974       N->getNumChildren() != getNumChildren()) return false;
1975   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1976     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1977       return false;
1978   return true;
1979 }
1980 
1981 /// clone - Make a copy of this tree and all of its children.
1982 ///
1983 TreePatternNodePtr TreePatternNode::clone() const {
1984   TreePatternNodePtr New;
1985   if (isLeaf()) {
1986     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1987   } else {
1988     std::vector<TreePatternNodePtr> CChildren;
1989     CChildren.reserve(Children.size());
1990     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1991       CChildren.push_back(getChild(i)->clone());
1992     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1993                                             getNumTypes());
1994   }
1995   New->setName(getName());
1996   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1997   New->Types = Types;
1998   New->setPredicateCalls(getPredicateCalls());
1999   New->setTransformFn(getTransformFn());
2000   return New;
2001 }
2002 
2003 /// RemoveAllTypes - Recursively strip all the types of this tree.
2004 void TreePatternNode::RemoveAllTypes() {
2005   // Reset to unknown type.
2006   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
2007   if (isLeaf()) return;
2008   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2009     getChild(i)->RemoveAllTypes();
2010 }
2011 
2012 
2013 /// SubstituteFormalArguments - Replace the formal arguments in this tree
2014 /// with actual values specified by ArgMap.
2015 void TreePatternNode::SubstituteFormalArguments(
2016     std::map<std::string, TreePatternNodePtr> &ArgMap) {
2017   if (isLeaf()) return;
2018 
2019   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2020     TreePatternNode *Child = getChild(i);
2021     if (Child->isLeaf()) {
2022       Init *Val = Child->getLeafValue();
2023       // Note that, when substituting into an output pattern, Val might be an
2024       // UnsetInit.
2025       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
2026           cast<DefInit>(Val)->getDef()->getName() == "node")) {
2027         // We found a use of a formal argument, replace it with its value.
2028         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
2029         assert(NewChild && "Couldn't find formal argument!");
2030         assert((Child->getPredicateCalls().empty() ||
2031                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2032                "Non-empty child predicate clobbered!");
2033         setChild(i, std::move(NewChild));
2034       }
2035     } else {
2036       getChild(i)->SubstituteFormalArguments(ArgMap);
2037     }
2038   }
2039 }
2040 
2041 
2042 /// InlinePatternFragments - If this pattern refers to any pattern
2043 /// fragments, return the set of inlined versions (this can be more than
2044 /// one if a PatFrags record has multiple alternatives).
2045 void TreePatternNode::InlinePatternFragments(
2046   TreePatternNodePtr T, TreePattern &TP,
2047   std::vector<TreePatternNodePtr> &OutAlternatives) {
2048 
2049   if (TP.hasError())
2050     return;
2051 
2052   if (isLeaf()) {
2053     OutAlternatives.push_back(T);  // nothing to do.
2054     return;
2055   }
2056 
2057   Record *Op = getOperator();
2058 
2059   if (!Op->isSubClassOf("PatFrags")) {
2060     if (getNumChildren() == 0) {
2061       OutAlternatives.push_back(T);
2062       return;
2063     }
2064 
2065     // Recursively inline children nodes.
2066     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2067     ChildAlternatives.resize(getNumChildren());
2068     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2069       TreePatternNodePtr Child = getChildShared(i);
2070       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2071       // If there are no alternatives for any child, there are no
2072       // alternatives for this expression as whole.
2073       if (ChildAlternatives[i].empty())
2074         return;
2075 
2076       assert((Child->getPredicateCalls().empty() ||
2077               llvm::all_of(ChildAlternatives[i],
2078                            [&](const TreePatternNodePtr &NewChild) {
2079                              return NewChild->getPredicateCalls() ==
2080                                     Child->getPredicateCalls();
2081                            })) &&
2082              "Non-empty child predicate clobbered!");
2083     }
2084 
2085     // The end result is an all-pairs construction of the resultant pattern.
2086     std::vector<unsigned> Idxs;
2087     Idxs.resize(ChildAlternatives.size());
2088     bool NotDone;
2089     do {
2090       // Create the variant and add it to the output list.
2091       std::vector<TreePatternNodePtr> NewChildren;
2092       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2093         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2094       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2095           getOperator(), std::move(NewChildren), getNumTypes());
2096 
2097       // Copy over properties.
2098       R->setName(getName());
2099       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2100       R->setPredicateCalls(getPredicateCalls());
2101       R->setTransformFn(getTransformFn());
2102       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2103         R->setType(i, getExtType(i));
2104       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2105         R->setResultIndex(i, getResultIndex(i));
2106 
2107       // Register alternative.
2108       OutAlternatives.push_back(R);
2109 
2110       // Increment indices to the next permutation by incrementing the
2111       // indices from last index backward, e.g., generate the sequence
2112       // [0, 0], [0, 1], [1, 0], [1, 1].
2113       int IdxsIdx;
2114       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2115         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2116           Idxs[IdxsIdx] = 0;
2117         else
2118           break;
2119       }
2120       NotDone = (IdxsIdx >= 0);
2121     } while (NotDone);
2122 
2123     return;
2124   }
2125 
2126   // Otherwise, we found a reference to a fragment.  First, look up its
2127   // TreePattern record.
2128   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2129 
2130   // Verify that we are passing the right number of operands.
2131   if (Frag->getNumArgs() != Children.size()) {
2132     TP.error("'" + Op->getName() + "' fragment requires " +
2133              Twine(Frag->getNumArgs()) + " operands!");
2134     return;
2135   }
2136 
2137   TreePredicateFn PredFn(Frag);
2138   unsigned Scope = 0;
2139   if (TreePredicateFn(Frag).usesOperands())
2140     Scope = TP.getDAGPatterns().allocateScope();
2141 
2142   // Compute the map of formal to actual arguments.
2143   std::map<std::string, TreePatternNodePtr> ArgMap;
2144   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2145     TreePatternNodePtr Child = getChildShared(i);
2146     if (Scope != 0) {
2147       Child = Child->clone();
2148       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2149     }
2150     ArgMap[Frag->getArgName(i)] = Child;
2151   }
2152 
2153   // Loop over all fragment alternatives.
2154   for (const auto &Alternative : Frag->getTrees()) {
2155     TreePatternNodePtr FragTree = Alternative->clone();
2156 
2157     if (!PredFn.isAlwaysTrue())
2158       FragTree->addPredicateCall(PredFn, Scope);
2159 
2160     // Resolve formal arguments to their actual value.
2161     if (Frag->getNumArgs())
2162       FragTree->SubstituteFormalArguments(ArgMap);
2163 
2164     // Transfer types.  Note that the resolved alternative may have fewer
2165     // (but not more) results than the PatFrags node.
2166     FragTree->setName(getName());
2167     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2168       FragTree->UpdateNodeType(i, getExtType(i), TP);
2169 
2170     // Transfer in the old predicates.
2171     for (const TreePredicateCall &Pred : getPredicateCalls())
2172       FragTree->addPredicateCall(Pred);
2173 
2174     // The fragment we inlined could have recursive inlining that is needed.  See
2175     // if there are any pattern fragments in it and inline them as needed.
2176     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2177   }
2178 }
2179 
2180 /// getImplicitType - Check to see if the specified record has an implicit
2181 /// type which should be applied to it.  This will infer the type of register
2182 /// references from the register file information, for example.
2183 ///
2184 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2185 /// the F8RC register class argument in:
2186 ///
2187 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2188 ///
2189 /// When Unnamed is false, return the type of a named DAG operand such as the
2190 /// GPR:$src operand above.
2191 ///
2192 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2193                                        bool NotRegisters,
2194                                        bool Unnamed,
2195                                        TreePattern &TP) {
2196   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2197 
2198   // Check to see if this is a register operand.
2199   if (R->isSubClassOf("RegisterOperand")) {
2200     assert(ResNo == 0 && "Regoperand ref only has one result!");
2201     if (NotRegisters)
2202       return TypeSetByHwMode(); // Unknown.
2203     Record *RegClass = R->getValueAsDef("RegClass");
2204     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2205     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2206   }
2207 
2208   // Check to see if this is a register or a register class.
2209   if (R->isSubClassOf("RegisterClass")) {
2210     assert(ResNo == 0 && "Regclass ref only has one result!");
2211     // An unnamed register class represents itself as an i32 immediate, for
2212     // example on a COPY_TO_REGCLASS instruction.
2213     if (Unnamed)
2214       return TypeSetByHwMode(MVT::i32);
2215 
2216     // In a named operand, the register class provides the possible set of
2217     // types.
2218     if (NotRegisters)
2219       return TypeSetByHwMode(); // Unknown.
2220     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2221     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2222   }
2223 
2224   if (R->isSubClassOf("PatFrags")) {
2225     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2226     // Pattern fragment types will be resolved when they are inlined.
2227     return TypeSetByHwMode(); // Unknown.
2228   }
2229 
2230   if (R->isSubClassOf("Register")) {
2231     assert(ResNo == 0 && "Registers only produce one result!");
2232     if (NotRegisters)
2233       return TypeSetByHwMode(); // Unknown.
2234     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2235     return TypeSetByHwMode(T.getRegisterVTs(R));
2236   }
2237 
2238   if (R->isSubClassOf("SubRegIndex")) {
2239     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2240     return TypeSetByHwMode(MVT::i32);
2241   }
2242 
2243   if (R->isSubClassOf("ValueType")) {
2244     assert(ResNo == 0 && "This node only has one result!");
2245     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2246     //
2247     //   (sext_inreg GPR:$src, i16)
2248     //                         ~~~
2249     if (Unnamed)
2250       return TypeSetByHwMode(MVT::Other);
2251     // With a name, the ValueType simply provides the type of the named
2252     // variable.
2253     //
2254     //   (sext_inreg i32:$src, i16)
2255     //               ~~~~~~~~
2256     if (NotRegisters)
2257       return TypeSetByHwMode(); // Unknown.
2258     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2259     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2260   }
2261 
2262   if (R->isSubClassOf("CondCode")) {
2263     assert(ResNo == 0 && "This node only has one result!");
2264     // Using a CondCodeSDNode.
2265     return TypeSetByHwMode(MVT::Other);
2266   }
2267 
2268   if (R->isSubClassOf("ComplexPattern")) {
2269     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2270     if (NotRegisters)
2271       return TypeSetByHwMode(); // Unknown.
2272     Record *T = CDP.getComplexPattern(R).getValueType();
2273     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2274     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2275   }
2276   if (R->isSubClassOf("PointerLikeRegClass")) {
2277     assert(ResNo == 0 && "Regclass can only have one result!");
2278     TypeSetByHwMode VTS(MVT::iPTR);
2279     TP.getInfer().expandOverloads(VTS);
2280     return VTS;
2281   }
2282 
2283   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2284       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2285       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2286     // Placeholder.
2287     return TypeSetByHwMode(); // Unknown.
2288   }
2289 
2290   if (R->isSubClassOf("Operand")) {
2291     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2292     Record *T = R->getValueAsDef("Type");
2293     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2294   }
2295 
2296   TP.error("Unknown node flavor used in pattern: " + R->getName());
2297   return TypeSetByHwMode(MVT::Other);
2298 }
2299 
2300 
2301 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2302 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2303 const CodeGenIntrinsic *TreePatternNode::
2304 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2305   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2306       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2307       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2308     return nullptr;
2309 
2310   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2311   return &CDP.getIntrinsicInfo(IID);
2312 }
2313 
2314 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2315 /// return the ComplexPattern information, otherwise return null.
2316 const ComplexPattern *
2317 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2318   Record *Rec;
2319   if (isLeaf()) {
2320     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2321     if (!DI)
2322       return nullptr;
2323     Rec = DI->getDef();
2324   } else
2325     Rec = getOperator();
2326 
2327   if (!Rec->isSubClassOf("ComplexPattern"))
2328     return nullptr;
2329   return &CGP.getComplexPattern(Rec);
2330 }
2331 
2332 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2333   // A ComplexPattern specifically declares how many results it fills in.
2334   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2335     return CP->getNumOperands();
2336 
2337   // If MIOperandInfo is specified, that gives the count.
2338   if (isLeaf()) {
2339     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2340     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2341       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2342       if (MIOps->getNumArgs())
2343         return MIOps->getNumArgs();
2344     }
2345   }
2346 
2347   // Otherwise there is just one result.
2348   return 1;
2349 }
2350 
2351 /// NodeHasProperty - Return true if this node has the specified property.
2352 bool TreePatternNode::NodeHasProperty(SDNP Property,
2353                                       const CodeGenDAGPatterns &CGP) const {
2354   if (isLeaf()) {
2355     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2356       return CP->hasProperty(Property);
2357 
2358     return false;
2359   }
2360 
2361   if (Property != SDNPHasChain) {
2362     // The chain proprety is already present on the different intrinsic node
2363     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2364     // on the intrinsic. Anything else is specific to the individual intrinsic.
2365     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2366       return Int->hasProperty(Property);
2367   }
2368 
2369   if (!Operator->isSubClassOf("SDPatternOperator"))
2370     return false;
2371 
2372   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2373 }
2374 
2375 
2376 
2377 
2378 /// TreeHasProperty - Return true if any node in this tree has the specified
2379 /// property.
2380 bool TreePatternNode::TreeHasProperty(SDNP Property,
2381                                       const CodeGenDAGPatterns &CGP) const {
2382   if (NodeHasProperty(Property, CGP))
2383     return true;
2384   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2385     if (getChild(i)->TreeHasProperty(Property, CGP))
2386       return true;
2387   return false;
2388 }
2389 
2390 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2391 /// commutative intrinsic.
2392 bool
2393 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2394   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2395     return Int->isCommutative;
2396   return false;
2397 }
2398 
2399 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2400   if (!N->isLeaf())
2401     return N->getOperator()->isSubClassOf(Class);
2402 
2403   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2404   if (DI && DI->getDef()->isSubClassOf(Class))
2405     return true;
2406 
2407   return false;
2408 }
2409 
2410 static void emitTooManyOperandsError(TreePattern &TP,
2411                                      StringRef InstName,
2412                                      unsigned Expected,
2413                                      unsigned Actual) {
2414   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2415            " operands but expected only " + Twine(Expected) + "!");
2416 }
2417 
2418 static void emitTooFewOperandsError(TreePattern &TP,
2419                                     StringRef InstName,
2420                                     unsigned Actual) {
2421   TP.error("Instruction '" + InstName +
2422            "' expects more than the provided " + Twine(Actual) + " operands!");
2423 }
2424 
2425 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2426 /// this node and its children in the tree.  This returns true if it makes a
2427 /// change, false otherwise.  If a type contradiction is found, flag an error.
2428 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2429   if (TP.hasError())
2430     return false;
2431 
2432   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2433   if (isLeaf()) {
2434     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2435       // If it's a regclass or something else known, include the type.
2436       bool MadeChange = false;
2437       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2438         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2439                                                         NotRegisters,
2440                                                         !hasName(), TP), TP);
2441       return MadeChange;
2442     }
2443 
2444     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2445       assert(Types.size() == 1 && "Invalid IntInit");
2446 
2447       // Int inits are always integers. :)
2448       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2449 
2450       if (!TP.getInfer().isConcrete(Types[0], false))
2451         return MadeChange;
2452 
2453       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2454       for (auto &P : VVT) {
2455         MVT::SimpleValueType VT = P.second.SimpleTy;
2456         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2457           continue;
2458         unsigned Size = MVT(VT).getFixedSizeInBits();
2459         // Make sure that the value is representable for this type.
2460         if (Size >= 32)
2461           continue;
2462         // Check that the value doesn't use more bits than we have. It must
2463         // either be a sign- or zero-extended equivalent of the original.
2464         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2465         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2466             SignBitAndAbove == 1)
2467           continue;
2468 
2469         TP.error("Integer value '" + Twine(II->getValue()) +
2470                  "' is out of range for type '" + getEnumName(VT) + "'!");
2471         break;
2472       }
2473       return MadeChange;
2474     }
2475 
2476     return false;
2477   }
2478 
2479   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2480     bool MadeChange = false;
2481 
2482     // Apply the result type to the node.
2483     unsigned NumRetVTs = Int->IS.RetVTs.size();
2484     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2485 
2486     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2487       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2488 
2489     if (getNumChildren() != NumParamVTs + 1) {
2490       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2491                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2492       return false;
2493     }
2494 
2495     // Apply type info to the intrinsic ID.
2496     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2497 
2498     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2499       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2500 
2501       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2502       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2503       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2504     }
2505     return MadeChange;
2506   }
2507 
2508   if (getOperator()->isSubClassOf("SDNode")) {
2509     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2510 
2511     // Check that the number of operands is sane.  Negative operands -> varargs.
2512     if (NI.getNumOperands() >= 0 &&
2513         getNumChildren() != (unsigned)NI.getNumOperands()) {
2514       TP.error(getOperator()->getName() + " node requires exactly " +
2515                Twine(NI.getNumOperands()) + " operands!");
2516       return false;
2517     }
2518 
2519     bool MadeChange = false;
2520     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2521       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2522     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2523     return MadeChange;
2524   }
2525 
2526   if (getOperator()->isSubClassOf("Instruction")) {
2527     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2528     CodeGenInstruction &InstInfo =
2529       CDP.getTargetInfo().getInstruction(getOperator());
2530 
2531     bool MadeChange = false;
2532 
2533     // Apply the result types to the node, these come from the things in the
2534     // (outs) list of the instruction.
2535     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2536                                         Inst.getNumResults());
2537     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2538       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2539 
2540     // If the instruction has implicit defs, we apply the first one as a result.
2541     // FIXME: This sucks, it should apply all implicit defs.
2542     if (!InstInfo.ImplicitDefs.empty()) {
2543       unsigned ResNo = NumResultsToAdd;
2544 
2545       // FIXME: Generalize to multiple possible types and multiple possible
2546       // ImplicitDefs.
2547       MVT::SimpleValueType VT =
2548         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2549 
2550       if (VT != MVT::Other)
2551         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2552     }
2553 
2554     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2555     // be the same.
2556     if (getOperator()->getName() == "INSERT_SUBREG") {
2557       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2558       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2559       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2560     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2561       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2562       // variadic.
2563 
2564       unsigned NChild = getNumChildren();
2565       if (NChild < 3) {
2566         TP.error("REG_SEQUENCE requires at least 3 operands!");
2567         return false;
2568       }
2569 
2570       if (NChild % 2 == 0) {
2571         TP.error("REG_SEQUENCE requires an odd number of operands!");
2572         return false;
2573       }
2574 
2575       if (!isOperandClass(getChild(0), "RegisterClass")) {
2576         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2577         return false;
2578       }
2579 
2580       for (unsigned I = 1; I < NChild; I += 2) {
2581         TreePatternNode *SubIdxChild = getChild(I + 1);
2582         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2583           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2584                    Twine(I + 1) + "!");
2585           return false;
2586         }
2587       }
2588     }
2589 
2590     unsigned NumResults = Inst.getNumResults();
2591     unsigned NumFixedOperands = InstInfo.Operands.size();
2592 
2593     // If one or more operands with a default value appear at the end of the
2594     // formal operand list for an instruction, we allow them to be overridden
2595     // by optional operands provided in the pattern.
2596     //
2597     // But if an operand B without a default appears at any point after an
2598     // operand A with a default, then we don't allow A to be overridden,
2599     // because there would be no way to specify whether the next operand in
2600     // the pattern was intended to override A or skip it.
2601     unsigned NonOverridableOperands = NumFixedOperands;
2602     while (NonOverridableOperands > NumResults &&
2603            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2604       --NonOverridableOperands;
2605 
2606     unsigned ChildNo = 0;
2607     assert(NumResults <= NumFixedOperands);
2608     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2609       Record *OperandNode = InstInfo.Operands[i].Rec;
2610 
2611       // If the operand has a default value, do we use it? We must use the
2612       // default if we've run out of children of the pattern DAG to consume,
2613       // or if the operand is followed by a non-defaulted one.
2614       if (CDP.operandHasDefault(OperandNode) &&
2615           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2616         continue;
2617 
2618       // If we have run out of child nodes and there _isn't_ a default
2619       // value we can use for the next operand, give an error.
2620       if (ChildNo >= getNumChildren()) {
2621         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2622         return false;
2623       }
2624 
2625       TreePatternNode *Child = getChild(ChildNo++);
2626       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2627 
2628       // If the operand has sub-operands, they may be provided by distinct
2629       // child patterns, so attempt to match each sub-operand separately.
2630       if (OperandNode->isSubClassOf("Operand")) {
2631         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2632         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2633           // But don't do that if the whole operand is being provided by
2634           // a single ComplexPattern-related Operand.
2635 
2636           if (Child->getNumMIResults(CDP) < NumArgs) {
2637             // Match first sub-operand against the child we already have.
2638             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2639             MadeChange |=
2640               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2641 
2642             // And the remaining sub-operands against subsequent children.
2643             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2644               if (ChildNo >= getNumChildren()) {
2645                 emitTooFewOperandsError(TP, getOperator()->getName(),
2646                                         getNumChildren());
2647                 return false;
2648               }
2649               Child = getChild(ChildNo++);
2650 
2651               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2652               MadeChange |=
2653                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2654             }
2655             continue;
2656           }
2657         }
2658       }
2659 
2660       // If we didn't match by pieces above, attempt to match the whole
2661       // operand now.
2662       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2663     }
2664 
2665     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2666       emitTooManyOperandsError(TP, getOperator()->getName(),
2667                                ChildNo, getNumChildren());
2668       return false;
2669     }
2670 
2671     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2672       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2673     return MadeChange;
2674   }
2675 
2676   if (getOperator()->isSubClassOf("ComplexPattern")) {
2677     bool MadeChange = false;
2678 
2679     if (!NotRegisters) {
2680       assert(Types.size() == 1 && "ComplexPatterns only produce one result!");
2681       Record *T = CDP.getComplexPattern(getOperator()).getValueType();
2682       const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2683       const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH);
2684       // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then
2685       // exclusively use those as non-leaf nodes with explicit type casts, so
2686       // for backwards compatibility we do no inference in that case. This is
2687       // not supported when the ComplexPattern is used as a leaf value,
2688       // however; this inconsistency should be resolved, either by adding this
2689       // case there or by altering the backends to not do this (e.g. using Any
2690       // instead may work).
2691       if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped)
2692         MadeChange |= UpdateNodeType(0, VVT, TP);
2693     }
2694 
2695     for (unsigned i = 0; i < getNumChildren(); ++i)
2696       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2697 
2698     return MadeChange;
2699   }
2700 
2701   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2702 
2703   // Node transforms always take one operand.
2704   if (getNumChildren() != 1) {
2705     TP.error("Node transform '" + getOperator()->getName() +
2706              "' requires one operand!");
2707     return false;
2708   }
2709 
2710   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2711   return MadeChange;
2712 }
2713 
2714 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2715 /// RHS of a commutative operation, not the on LHS.
2716 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2717   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2718     return true;
2719   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2720     return true;
2721   if (isImmAllOnesAllZerosMatch(N))
2722     return true;
2723   return false;
2724 }
2725 
2726 
2727 /// canPatternMatch - If it is impossible for this pattern to match on this
2728 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2729 /// used as a sanity check for .td files (to prevent people from writing stuff
2730 /// that can never possibly work), and to prevent the pattern permuter from
2731 /// generating stuff that is useless.
2732 bool TreePatternNode::canPatternMatch(std::string &Reason,
2733                                       const CodeGenDAGPatterns &CDP) {
2734   if (isLeaf()) return true;
2735 
2736   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2737     if (!getChild(i)->canPatternMatch(Reason, CDP))
2738       return false;
2739 
2740   // If this is an intrinsic, handle cases that would make it not match.  For
2741   // example, if an operand is required to be an immediate.
2742   if (getOperator()->isSubClassOf("Intrinsic")) {
2743     // TODO:
2744     return true;
2745   }
2746 
2747   if (getOperator()->isSubClassOf("ComplexPattern"))
2748     return true;
2749 
2750   // If this node is a commutative operator, check that the LHS isn't an
2751   // immediate.
2752   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2753   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2754   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2755     // Scan all of the operands of the node and make sure that only the last one
2756     // is a constant node, unless the RHS also is.
2757     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2758       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2759       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2760         if (OnlyOnRHSOfCommutative(getChild(i))) {
2761           Reason="Immediate value must be on the RHS of commutative operators!";
2762           return false;
2763         }
2764     }
2765   }
2766 
2767   return true;
2768 }
2769 
2770 //===----------------------------------------------------------------------===//
2771 // TreePattern implementation
2772 //
2773 
2774 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2775                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2776                          isInputPattern(isInput), HasError(false),
2777                          Infer(*this) {
2778   for (Init *I : RawPat->getValues())
2779     Trees.push_back(ParseTreePattern(I, ""));
2780 }
2781 
2782 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2783                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2784                          isInputPattern(isInput), HasError(false),
2785                          Infer(*this) {
2786   Trees.push_back(ParseTreePattern(Pat, ""));
2787 }
2788 
2789 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2790                          CodeGenDAGPatterns &cdp)
2791     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2792       Infer(*this) {
2793   Trees.push_back(Pat);
2794 }
2795 
2796 void TreePattern::error(const Twine &Msg) {
2797   if (HasError)
2798     return;
2799   dump();
2800   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2801   HasError = true;
2802 }
2803 
2804 void TreePattern::ComputeNamedNodes() {
2805   for (TreePatternNodePtr &Tree : Trees)
2806     ComputeNamedNodes(Tree.get());
2807 }
2808 
2809 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2810   if (!N->getName().empty())
2811     NamedNodes[N->getName()].push_back(N);
2812 
2813   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2814     ComputeNamedNodes(N->getChild(i));
2815 }
2816 
2817 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2818                                                  StringRef OpName) {
2819   RecordKeeper &RK = TheInit->getRecordKeeper();
2820   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2821     Record *R = DI->getDef();
2822 
2823     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2824     // TreePatternNode of its own.  For example:
2825     ///   (foo GPR, imm) -> (foo GPR, (imm))
2826     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2827       return ParseTreePattern(
2828         DagInit::get(DI, nullptr,
2829                      std::vector<std::pair<Init*, StringInit*> >()),
2830         OpName);
2831 
2832     // Input argument?
2833     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2834     if (R->getName() == "node" && !OpName.empty()) {
2835       if (OpName.empty())
2836         error("'node' argument requires a name to match with operand list");
2837       Args.push_back(std::string(OpName));
2838     }
2839 
2840     Res->setName(OpName);
2841     return Res;
2842   }
2843 
2844   // ?:$name or just $name.
2845   if (isa<UnsetInit>(TheInit)) {
2846     if (OpName.empty())
2847       error("'?' argument requires a name to match with operand list");
2848     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2849     Args.push_back(std::string(OpName));
2850     Res->setName(OpName);
2851     return Res;
2852   }
2853 
2854   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2855     if (!OpName.empty())
2856       error("Constant int or bit argument should not have a name!");
2857     if (isa<BitInit>(TheInit))
2858       TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK));
2859     return std::make_shared<TreePatternNode>(TheInit, 1);
2860   }
2861 
2862   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2863     // Turn this into an IntInit.
2864     Init *II = BI->convertInitializerTo(IntRecTy::get(RK));
2865     if (!II || !isa<IntInit>(II))
2866       error("Bits value must be constants!");
2867     return ParseTreePattern(II, OpName);
2868   }
2869 
2870   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2871   if (!Dag) {
2872     TheInit->print(errs());
2873     error("Pattern has unexpected init kind!");
2874   }
2875   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2876   if (!OpDef) error("Pattern has unexpected operator type!");
2877   Record *Operator = OpDef->getDef();
2878 
2879   if (Operator->isSubClassOf("ValueType")) {
2880     // If the operator is a ValueType, then this must be "type cast" of a leaf
2881     // node.
2882     if (Dag->getNumArgs() != 1)
2883       error("Type cast only takes one operand!");
2884 
2885     TreePatternNodePtr New =
2886         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2887 
2888     // Apply the type cast.
2889     if (New->getNumTypes() != 1)
2890       error("Type cast can only have one type!");
2891     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2892     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2893 
2894     if (!OpName.empty())
2895       error("ValueType cast should not have a name!");
2896     return New;
2897   }
2898 
2899   // Verify that this is something that makes sense for an operator.
2900   if (!Operator->isSubClassOf("PatFrags") &&
2901       !Operator->isSubClassOf("SDNode") &&
2902       !Operator->isSubClassOf("Instruction") &&
2903       !Operator->isSubClassOf("SDNodeXForm") &&
2904       !Operator->isSubClassOf("Intrinsic") &&
2905       !Operator->isSubClassOf("ComplexPattern") &&
2906       Operator->getName() != "set" &&
2907       Operator->getName() != "implicit")
2908     error("Unrecognized node '" + Operator->getName() + "'!");
2909 
2910   //  Check to see if this is something that is illegal in an input pattern.
2911   if (isInputPattern) {
2912     if (Operator->isSubClassOf("Instruction") ||
2913         Operator->isSubClassOf("SDNodeXForm"))
2914       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2915   } else {
2916     if (Operator->isSubClassOf("Intrinsic"))
2917       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2918 
2919     if (Operator->isSubClassOf("SDNode") &&
2920         Operator->getName() != "imm" &&
2921         Operator->getName() != "timm" &&
2922         Operator->getName() != "fpimm" &&
2923         Operator->getName() != "tglobaltlsaddr" &&
2924         Operator->getName() != "tconstpool" &&
2925         Operator->getName() != "tjumptable" &&
2926         Operator->getName() != "tframeindex" &&
2927         Operator->getName() != "texternalsym" &&
2928         Operator->getName() != "tblockaddress" &&
2929         Operator->getName() != "tglobaladdr" &&
2930         Operator->getName() != "bb" &&
2931         Operator->getName() != "vt" &&
2932         Operator->getName() != "mcsym")
2933       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2934   }
2935 
2936   std::vector<TreePatternNodePtr> Children;
2937 
2938   // Parse all the operands.
2939   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2940     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2941 
2942   // Get the actual number of results before Operator is converted to an intrinsic
2943   // node (which is hard-coded to have either zero or one result).
2944   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2945 
2946   // If the operator is an intrinsic, then this is just syntactic sugar for
2947   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2948   // convert the intrinsic name to a number.
2949   if (Operator->isSubClassOf("Intrinsic")) {
2950     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2951     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2952 
2953     // If this intrinsic returns void, it must have side-effects and thus a
2954     // chain.
2955     if (Int.IS.RetVTs.empty())
2956       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2957     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2958       // Has side-effects, requires chain.
2959       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2960     else // Otherwise, no chain.
2961       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2962 
2963     Children.insert(Children.begin(), std::make_shared<TreePatternNode>(
2964                                           IntInit::get(RK, IID), 1));
2965   }
2966 
2967   if (Operator->isSubClassOf("ComplexPattern")) {
2968     for (unsigned i = 0; i < Children.size(); ++i) {
2969       TreePatternNodePtr Child = Children[i];
2970 
2971       if (Child->getName().empty())
2972         error("All arguments to a ComplexPattern must be named");
2973 
2974       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2975       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2976       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2977       auto OperandId = std::make_pair(Operator, i);
2978       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2979       if (PrevOp != ComplexPatternOperands.end()) {
2980         if (PrevOp->getValue() != OperandId)
2981           error("All ComplexPattern operands must appear consistently: "
2982                 "in the same order in just one ComplexPattern instance.");
2983       } else
2984         ComplexPatternOperands[Child->getName()] = OperandId;
2985     }
2986   }
2987 
2988   TreePatternNodePtr Result =
2989       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2990                                         NumResults);
2991   Result->setName(OpName);
2992 
2993   if (Dag->getName()) {
2994     assert(Result->getName().empty());
2995     Result->setName(Dag->getNameStr());
2996   }
2997   return Result;
2998 }
2999 
3000 /// SimplifyTree - See if we can simplify this tree to eliminate something that
3001 /// will never match in favor of something obvious that will.  This is here
3002 /// strictly as a convenience to target authors because it allows them to write
3003 /// more type generic things and have useless type casts fold away.
3004 ///
3005 /// This returns true if any change is made.
3006 static bool SimplifyTree(TreePatternNodePtr &N) {
3007   if (N->isLeaf())
3008     return false;
3009 
3010   // If we have a bitconvert with a resolved type and if the source and
3011   // destination types are the same, then the bitconvert is useless, remove it.
3012   //
3013   // We make an exception if the types are completely empty. This can come up
3014   // when the pattern being simplified is in the Fragments list of a PatFrags,
3015   // so that the operand is just an untyped "node". In that situation we leave
3016   // bitconverts unsimplified, and simplify them later once the fragment is
3017   // expanded into its true context.
3018   if (N->getOperator()->getName() == "bitconvert" &&
3019       N->getExtType(0).isValueTypeByHwMode(false) &&
3020       !N->getExtType(0).empty() &&
3021       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
3022       N->getName().empty()) {
3023     N = N->getChildShared(0);
3024     SimplifyTree(N);
3025     return true;
3026   }
3027 
3028   // Walk all children.
3029   bool MadeChange = false;
3030   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3031     TreePatternNodePtr Child = N->getChildShared(i);
3032     MadeChange |= SimplifyTree(Child);
3033     N->setChild(i, std::move(Child));
3034   }
3035   return MadeChange;
3036 }
3037 
3038 
3039 
3040 /// InferAllTypes - Infer/propagate as many types throughout the expression
3041 /// patterns as possible.  Return true if all types are inferred, false
3042 /// otherwise.  Flags an error if a type contradiction is found.
3043 bool TreePattern::
3044 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
3045   if (NamedNodes.empty())
3046     ComputeNamedNodes();
3047 
3048   bool MadeChange = true;
3049   while (MadeChange) {
3050     MadeChange = false;
3051     for (TreePatternNodePtr &Tree : Trees) {
3052       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
3053       MadeChange |= SimplifyTree(Tree);
3054     }
3055 
3056     // If there are constraints on our named nodes, apply them.
3057     for (auto &Entry : NamedNodes) {
3058       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
3059 
3060       // If we have input named node types, propagate their types to the named
3061       // values here.
3062       if (InNamedTypes) {
3063         if (!InNamedTypes->count(Entry.getKey())) {
3064           error("Node '" + std::string(Entry.getKey()) +
3065                 "' in output pattern but not input pattern");
3066           return true;
3067         }
3068 
3069         const SmallVectorImpl<TreePatternNode*> &InNodes =
3070           InNamedTypes->find(Entry.getKey())->second;
3071 
3072         // The input types should be fully resolved by now.
3073         for (TreePatternNode *Node : Nodes) {
3074           // If this node is a register class, and it is the root of the pattern
3075           // then we're mapping something onto an input register.  We allow
3076           // changing the type of the input register in this case.  This allows
3077           // us to match things like:
3078           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3079           if (Node == Trees[0].get() && Node->isLeaf()) {
3080             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3081             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3082                        DI->getDef()->isSubClassOf("RegisterOperand")))
3083               continue;
3084           }
3085 
3086           assert(Node->getNumTypes() == 1 &&
3087                  InNodes[0]->getNumTypes() == 1 &&
3088                  "FIXME: cannot name multiple result nodes yet");
3089           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3090                                              *this);
3091         }
3092       }
3093 
3094       // If there are multiple nodes with the same name, they must all have the
3095       // same type.
3096       if (Entry.second.size() > 1) {
3097         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3098           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3099           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3100                  "FIXME: cannot name multiple result nodes yet");
3101 
3102           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3103           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3104         }
3105       }
3106     }
3107   }
3108 
3109   bool HasUnresolvedTypes = false;
3110   for (const TreePatternNodePtr &Tree : Trees)
3111     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3112   return !HasUnresolvedTypes;
3113 }
3114 
3115 void TreePattern::print(raw_ostream &OS) const {
3116   OS << getRecord()->getName();
3117   if (!Args.empty()) {
3118     OS << "(";
3119     ListSeparator LS;
3120     for (const std::string &Arg : Args)
3121       OS << LS << Arg;
3122     OS << ")";
3123   }
3124   OS << ": ";
3125 
3126   if (Trees.size() > 1)
3127     OS << "[\n";
3128   for (const TreePatternNodePtr &Tree : Trees) {
3129     OS << "\t";
3130     Tree->print(OS);
3131     OS << "\n";
3132   }
3133 
3134   if (Trees.size() > 1)
3135     OS << "]\n";
3136 }
3137 
3138 void TreePattern::dump() const { print(errs()); }
3139 
3140 //===----------------------------------------------------------------------===//
3141 // CodeGenDAGPatterns implementation
3142 //
3143 
3144 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3145                                        PatternRewriterFn PatternRewriter)
3146     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3147       PatternRewriter(PatternRewriter) {
3148 
3149   Intrinsics = CodeGenIntrinsicTable(Records);
3150   ParseNodeInfo();
3151   ParseNodeTransforms();
3152   ParseComplexPatterns();
3153   ParsePatternFragments();
3154   ParseDefaultOperands();
3155   ParseInstructions();
3156   ParsePatternFragments(/*OutFrags*/true);
3157   ParsePatterns();
3158 
3159   // Generate variants.  For example, commutative patterns can match
3160   // multiple ways.  Add them to PatternsToMatch as well.
3161   GenerateVariants();
3162 
3163   // Break patterns with parameterized types into a series of patterns,
3164   // where each one has a fixed type and is predicated on the conditions
3165   // of the associated HW mode.
3166   ExpandHwModeBasedTypes();
3167 
3168   // Infer instruction flags.  For example, we can detect loads,
3169   // stores, and side effects in many cases by examining an
3170   // instruction's pattern.
3171   InferInstructionFlags();
3172 
3173   // Verify that instruction flags match the patterns.
3174   VerifyInstructionFlags();
3175 }
3176 
3177 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3178   Record *N = Records.getDef(Name);
3179   if (!N || !N->isSubClassOf("SDNode"))
3180     PrintFatalError("Error getting SDNode '" + Name + "'!");
3181 
3182   return N;
3183 }
3184 
3185 // Parse all of the SDNode definitions for the target, populating SDNodes.
3186 void CodeGenDAGPatterns::ParseNodeInfo() {
3187   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3188   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3189 
3190   while (!Nodes.empty()) {
3191     Record *R = Nodes.back();
3192     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3193     Nodes.pop_back();
3194   }
3195 
3196   // Get the builtin intrinsic nodes.
3197   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3198   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3199   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3200 }
3201 
3202 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3203 /// map, and emit them to the file as functions.
3204 void CodeGenDAGPatterns::ParseNodeTransforms() {
3205   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3206   while (!Xforms.empty()) {
3207     Record *XFormNode = Xforms.back();
3208     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3209     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3210     SDNodeXForms.insert(
3211         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3212 
3213     Xforms.pop_back();
3214   }
3215 }
3216 
3217 void CodeGenDAGPatterns::ParseComplexPatterns() {
3218   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3219   while (!AMs.empty()) {
3220     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3221     AMs.pop_back();
3222   }
3223 }
3224 
3225 
3226 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3227 /// file, building up the PatternFragments map.  After we've collected them all,
3228 /// inline fragments together as necessary, so that there are no references left
3229 /// inside a pattern fragment to a pattern fragment.
3230 ///
3231 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3232   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3233 
3234   // First step, parse all of the fragments.
3235   for (Record *Frag : Fragments) {
3236     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3237       continue;
3238 
3239     ListInit *LI = Frag->getValueAsListInit("Fragments");
3240     TreePattern *P =
3241         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3242              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3243              *this)).get();
3244 
3245     // Validate the argument list, converting it to set, to discard duplicates.
3246     std::vector<std::string> &Args = P->getArgList();
3247     // Copy the args so we can take StringRefs to them.
3248     auto ArgsCopy = Args;
3249     SmallDenseSet<StringRef, 4> OperandsSet;
3250     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3251 
3252     if (OperandsSet.count(""))
3253       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3254 
3255     // Parse the operands list.
3256     DagInit *OpsList = Frag->getValueAsDag("Operands");
3257     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3258     // Special cases: ops == outs == ins. Different names are used to
3259     // improve readability.
3260     if (!OpsOp ||
3261         (OpsOp->getDef()->getName() != "ops" &&
3262          OpsOp->getDef()->getName() != "outs" &&
3263          OpsOp->getDef()->getName() != "ins"))
3264       P->error("Operands list should start with '(ops ... '!");
3265 
3266     // Copy over the arguments.
3267     Args.clear();
3268     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3269       if (!isa<DefInit>(OpsList->getArg(j)) ||
3270           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3271         P->error("Operands list should all be 'node' values.");
3272       if (!OpsList->getArgName(j))
3273         P->error("Operands list should have names for each operand!");
3274       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3275       if (!OperandsSet.count(ArgNameStr))
3276         P->error("'" + ArgNameStr +
3277                  "' does not occur in pattern or was multiply specified!");
3278       OperandsSet.erase(ArgNameStr);
3279       Args.push_back(std::string(ArgNameStr));
3280     }
3281 
3282     if (!OperandsSet.empty())
3283       P->error("Operands list does not contain an entry for operand '" +
3284                *OperandsSet.begin() + "'!");
3285 
3286     // If there is a node transformation corresponding to this, keep track of
3287     // it.
3288     Record *Transform = Frag->getValueAsDef("OperandTransform");
3289     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3290       for (const auto &T : P->getTrees())
3291         T->setTransformFn(Transform);
3292   }
3293 
3294   // Now that we've parsed all of the tree fragments, do a closure on them so
3295   // that there are not references to PatFrags left inside of them.
3296   for (Record *Frag : Fragments) {
3297     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3298       continue;
3299 
3300     TreePattern &ThePat = *PatternFragments[Frag];
3301     ThePat.InlinePatternFragments();
3302 
3303     // Infer as many types as possible.  Don't worry about it if we don't infer
3304     // all of them, some may depend on the inputs of the pattern.  Also, don't
3305     // validate type sets; validation may cause spurious failures e.g. if a
3306     // fragment needs floating-point types but the current target does not have
3307     // any (this is only an error if that fragment is ever used!).
3308     {
3309       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3310       ThePat.InferAllTypes();
3311       ThePat.resetError();
3312     }
3313 
3314     // If debugging, print out the pattern fragment result.
3315     LLVM_DEBUG(ThePat.dump());
3316   }
3317 }
3318 
3319 void CodeGenDAGPatterns::ParseDefaultOperands() {
3320   std::vector<Record*> DefaultOps;
3321   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3322 
3323   // Find some SDNode.
3324   assert(!SDNodes.empty() && "No SDNodes parsed?");
3325   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3326 
3327   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3328     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3329 
3330     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3331     // SomeSDnode so that we can parse this.
3332     std::vector<std::pair<Init*, StringInit*> > Ops;
3333     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3334       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3335                                    DefaultInfo->getArgName(op)));
3336     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3337 
3338     // Create a TreePattern to parse this.
3339     TreePattern P(DefaultOps[i], DI, false, *this);
3340     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3341 
3342     // Copy the operands over into a DAGDefaultOperand.
3343     DAGDefaultOperand DefaultOpInfo;
3344 
3345     const TreePatternNodePtr &T = P.getTree(0);
3346     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3347       TreePatternNodePtr TPN = T->getChildShared(op);
3348       while (TPN->ApplyTypeConstraints(P, false))
3349         /* Resolve all types */;
3350 
3351       if (TPN->ContainsUnresolvedType(P)) {
3352         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3353                         DefaultOps[i]->getName() +
3354                         "' doesn't have a concrete type!");
3355       }
3356       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3357     }
3358 
3359     // Insert it into the DefaultOperands map so we can find it later.
3360     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3361   }
3362 }
3363 
3364 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3365 /// instruction input.  Return true if this is a real use.
3366 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3367                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3368   // No name -> not interesting.
3369   if (Pat->getName().empty()) {
3370     if (Pat->isLeaf()) {
3371       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3372       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3373                  DI->getDef()->isSubClassOf("RegisterOperand")))
3374         I.error("Input " + DI->getDef()->getName() + " must be named!");
3375     }
3376     return false;
3377   }
3378 
3379   Record *Rec;
3380   if (Pat->isLeaf()) {
3381     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3382     if (!DI)
3383       I.error("Input $" + Pat->getName() + " must be an identifier!");
3384     Rec = DI->getDef();
3385   } else {
3386     Rec = Pat->getOperator();
3387   }
3388 
3389   // SRCVALUE nodes are ignored.
3390   if (Rec->getName() == "srcvalue")
3391     return false;
3392 
3393   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3394   if (!Slot) {
3395     Slot = Pat;
3396     return true;
3397   }
3398   Record *SlotRec;
3399   if (Slot->isLeaf()) {
3400     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3401   } else {
3402     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3403     SlotRec = Slot->getOperator();
3404   }
3405 
3406   // Ensure that the inputs agree if we've already seen this input.
3407   if (Rec != SlotRec)
3408     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3409   // Ensure that the types can agree as well.
3410   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3411   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3412   if (Slot->getExtTypes() != Pat->getExtTypes())
3413     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3414   return true;
3415 }
3416 
3417 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3418 /// part of "I", the instruction), computing the set of inputs and outputs of
3419 /// the pattern.  Report errors if we see anything naughty.
3420 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3421     TreePattern &I, TreePatternNodePtr Pat,
3422     std::map<std::string, TreePatternNodePtr> &InstInputs,
3423     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3424         &InstResults,
3425     std::vector<Record *> &InstImpResults) {
3426 
3427   // The instruction pattern still has unresolved fragments.  For *named*
3428   // nodes we must resolve those here.  This may not result in multiple
3429   // alternatives.
3430   if (!Pat->getName().empty()) {
3431     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3432     SrcPattern.InlinePatternFragments();
3433     SrcPattern.InferAllTypes();
3434     Pat = SrcPattern.getOnlyTree();
3435   }
3436 
3437   if (Pat->isLeaf()) {
3438     bool isUse = HandleUse(I, Pat, InstInputs);
3439     if (!isUse && Pat->getTransformFn())
3440       I.error("Cannot specify a transform function for a non-input value!");
3441     return;
3442   }
3443 
3444   if (Pat->getOperator()->getName() == "implicit") {
3445     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3446       TreePatternNode *Dest = Pat->getChild(i);
3447       if (!Dest->isLeaf())
3448         I.error("implicitly defined value should be a register!");
3449 
3450       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3451       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3452         I.error("implicitly defined value should be a register!");
3453       InstImpResults.push_back(Val->getDef());
3454     }
3455     return;
3456   }
3457 
3458   if (Pat->getOperator()->getName() != "set") {
3459     // If this is not a set, verify that the children nodes are not void typed,
3460     // and recurse.
3461     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3462       if (Pat->getChild(i)->getNumTypes() == 0)
3463         I.error("Cannot have void nodes inside of patterns!");
3464       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3465                                   InstResults, InstImpResults);
3466     }
3467 
3468     // If this is a non-leaf node with no children, treat it basically as if
3469     // it were a leaf.  This handles nodes like (imm).
3470     bool isUse = HandleUse(I, Pat, InstInputs);
3471 
3472     if (!isUse && Pat->getTransformFn())
3473       I.error("Cannot specify a transform function for a non-input value!");
3474     return;
3475   }
3476 
3477   // Otherwise, this is a set, validate and collect instruction results.
3478   if (Pat->getNumChildren() == 0)
3479     I.error("set requires operands!");
3480 
3481   if (Pat->getTransformFn())
3482     I.error("Cannot specify a transform function on a set node!");
3483 
3484   // Check the set destinations.
3485   unsigned NumDests = Pat->getNumChildren()-1;
3486   for (unsigned i = 0; i != NumDests; ++i) {
3487     TreePatternNodePtr Dest = Pat->getChildShared(i);
3488     // For set destinations we also must resolve fragments here.
3489     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3490     DestPattern.InlinePatternFragments();
3491     DestPattern.InferAllTypes();
3492     Dest = DestPattern.getOnlyTree();
3493 
3494     if (!Dest->isLeaf())
3495       I.error("set destination should be a register!");
3496 
3497     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3498     if (!Val) {
3499       I.error("set destination should be a register!");
3500       continue;
3501     }
3502 
3503     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3504         Val->getDef()->isSubClassOf("ValueType") ||
3505         Val->getDef()->isSubClassOf("RegisterOperand") ||
3506         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3507       if (Dest->getName().empty())
3508         I.error("set destination must have a name!");
3509       if (InstResults.count(Dest->getName()))
3510         I.error("cannot set '" + Dest->getName() + "' multiple times");
3511       InstResults[Dest->getName()] = Dest;
3512     } else if (Val->getDef()->isSubClassOf("Register")) {
3513       InstImpResults.push_back(Val->getDef());
3514     } else {
3515       I.error("set destination should be a register!");
3516     }
3517   }
3518 
3519   // Verify and collect info from the computation.
3520   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3521                               InstResults, InstImpResults);
3522 }
3523 
3524 //===----------------------------------------------------------------------===//
3525 // Instruction Analysis
3526 //===----------------------------------------------------------------------===//
3527 
3528 class InstAnalyzer {
3529   const CodeGenDAGPatterns &CDP;
3530 public:
3531   bool hasSideEffects;
3532   bool mayStore;
3533   bool mayLoad;
3534   bool isBitcast;
3535   bool isVariadic;
3536   bool hasChain;
3537 
3538   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3539     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3540       isBitcast(false), isVariadic(false), hasChain(false) {}
3541 
3542   void Analyze(const PatternToMatch &Pat) {
3543     const TreePatternNode *N = Pat.getSrcPattern();
3544     AnalyzeNode(N);
3545     // These properties are detected only on the root node.
3546     isBitcast = IsNodeBitcast(N);
3547   }
3548 
3549 private:
3550   bool IsNodeBitcast(const TreePatternNode *N) const {
3551     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3552       return false;
3553 
3554     if (N->isLeaf())
3555       return false;
3556     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3557       return false;
3558 
3559     if (N->getOperator()->isSubClassOf("ComplexPattern"))
3560       return false;
3561 
3562     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3563     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3564       return false;
3565     return OpInfo.getEnumName() == "ISD::BITCAST";
3566   }
3567 
3568 public:
3569   void AnalyzeNode(const TreePatternNode *N) {
3570     if (N->isLeaf()) {
3571       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3572         Record *LeafRec = DI->getDef();
3573         // Handle ComplexPattern leaves.
3574         if (LeafRec->isSubClassOf("ComplexPattern")) {
3575           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3576           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3577           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3578           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3579         }
3580       }
3581       return;
3582     }
3583 
3584     // Analyze children.
3585     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3586       AnalyzeNode(N->getChild(i));
3587 
3588     // Notice properties of the node.
3589     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3590     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3591     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3592     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3593     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3594 
3595     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3596       // If this is an intrinsic, analyze it.
3597       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3598         mayLoad = true;// These may load memory.
3599 
3600       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3601         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3602 
3603       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3604           IntInfo->hasSideEffects)
3605         // ReadWriteMem intrinsics can have other strange effects.
3606         hasSideEffects = true;
3607     }
3608   }
3609 
3610 };
3611 
3612 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3613                              const InstAnalyzer &PatInfo,
3614                              Record *PatDef) {
3615   bool Error = false;
3616 
3617   // Remember where InstInfo got its flags.
3618   if (InstInfo.hasUndefFlags())
3619       InstInfo.InferredFrom = PatDef;
3620 
3621   // Check explicitly set flags for consistency.
3622   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3623       !InstInfo.hasSideEffects_Unset) {
3624     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3625     // the pattern has no side effects. That could be useful for div/rem
3626     // instructions that may trap.
3627     if (!InstInfo.hasSideEffects) {
3628       Error = true;
3629       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3630                  Twine(InstInfo.hasSideEffects));
3631     }
3632   }
3633 
3634   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3635     Error = true;
3636     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3637                Twine(InstInfo.mayStore));
3638   }
3639 
3640   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3641     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3642     // Some targets translate immediates to loads.
3643     if (!InstInfo.mayLoad) {
3644       Error = true;
3645       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3646                  Twine(InstInfo.mayLoad));
3647     }
3648   }
3649 
3650   // Transfer inferred flags.
3651   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3652   InstInfo.mayStore |= PatInfo.mayStore;
3653   InstInfo.mayLoad |= PatInfo.mayLoad;
3654 
3655   // These flags are silently added without any verification.
3656   // FIXME: To match historical behavior of TableGen, for now add those flags
3657   // only when we're inferring from the primary instruction pattern.
3658   if (PatDef->isSubClassOf("Instruction")) {
3659     InstInfo.isBitcast |= PatInfo.isBitcast;
3660     InstInfo.hasChain |= PatInfo.hasChain;
3661     InstInfo.hasChain_Inferred = true;
3662   }
3663 
3664   // Don't infer isVariadic. This flag means something different on SDNodes and
3665   // instructions. For example, a CALL SDNode is variadic because it has the
3666   // call arguments as operands, but a CALL instruction is not variadic - it
3667   // has argument registers as implicit, not explicit uses.
3668 
3669   return Error;
3670 }
3671 
3672 /// hasNullFragReference - Return true if the DAG has any reference to the
3673 /// null_frag operator.
3674 static bool hasNullFragReference(DagInit *DI) {
3675   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3676   if (!OpDef) return false;
3677   Record *Operator = OpDef->getDef();
3678 
3679   // If this is the null fragment, return true.
3680   if (Operator->getName() == "null_frag") return true;
3681   // If any of the arguments reference the null fragment, return true.
3682   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3683     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3684       if (Arg->getDef()->getName() == "null_frag")
3685         return true;
3686     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3687     if (Arg && hasNullFragReference(Arg))
3688       return true;
3689   }
3690 
3691   return false;
3692 }
3693 
3694 /// hasNullFragReference - Return true if any DAG in the list references
3695 /// the null_frag operator.
3696 static bool hasNullFragReference(ListInit *LI) {
3697   for (Init *I : LI->getValues()) {
3698     DagInit *DI = dyn_cast<DagInit>(I);
3699     assert(DI && "non-dag in an instruction Pattern list?!");
3700     if (hasNullFragReference(DI))
3701       return true;
3702   }
3703   return false;
3704 }
3705 
3706 /// Get all the instructions in a tree.
3707 static void
3708 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3709   if (Tree->isLeaf())
3710     return;
3711   if (Tree->getOperator()->isSubClassOf("Instruction"))
3712     Instrs.push_back(Tree->getOperator());
3713   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3714     getInstructionsInTree(Tree->getChild(i), Instrs);
3715 }
3716 
3717 /// Check the class of a pattern leaf node against the instruction operand it
3718 /// represents.
3719 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3720                               Record *Leaf) {
3721   if (OI.Rec == Leaf)
3722     return true;
3723 
3724   // Allow direct value types to be used in instruction set patterns.
3725   // The type will be checked later.
3726   if (Leaf->isSubClassOf("ValueType"))
3727     return true;
3728 
3729   // Patterns can also be ComplexPattern instances.
3730   if (Leaf->isSubClassOf("ComplexPattern"))
3731     return true;
3732 
3733   return false;
3734 }
3735 
3736 void CodeGenDAGPatterns::parseInstructionPattern(
3737     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3738 
3739   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3740 
3741   // Parse the instruction.
3742   TreePattern I(CGI.TheDef, Pat, true, *this);
3743 
3744   // InstInputs - Keep track of all of the inputs of the instruction, along
3745   // with the record they are declared as.
3746   std::map<std::string, TreePatternNodePtr> InstInputs;
3747 
3748   // InstResults - Keep track of all the virtual registers that are 'set'
3749   // in the instruction, including what reg class they are.
3750   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3751       InstResults;
3752 
3753   std::vector<Record*> InstImpResults;
3754 
3755   // Verify that the top-level forms in the instruction are of void type, and
3756   // fill in the InstResults map.
3757   SmallString<32> TypesString;
3758   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3759     TypesString.clear();
3760     TreePatternNodePtr Pat = I.getTree(j);
3761     if (Pat->getNumTypes() != 0) {
3762       raw_svector_ostream OS(TypesString);
3763       ListSeparator LS;
3764       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3765         OS << LS;
3766         Pat->getExtType(k).writeToStream(OS);
3767       }
3768       I.error("Top-level forms in instruction pattern should have"
3769                " void types, has types " +
3770                OS.str());
3771     }
3772 
3773     // Find inputs and outputs, and verify the structure of the uses/defs.
3774     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3775                                 InstImpResults);
3776   }
3777 
3778   // Now that we have inputs and outputs of the pattern, inspect the operands
3779   // list for the instruction.  This determines the order that operands are
3780   // added to the machine instruction the node corresponds to.
3781   unsigned NumResults = InstResults.size();
3782 
3783   // Parse the operands list from the (ops) list, validating it.
3784   assert(I.getArgList().empty() && "Args list should still be empty here!");
3785 
3786   // Check that all of the results occur first in the list.
3787   std::vector<Record*> Results;
3788   std::vector<unsigned> ResultIndices;
3789   SmallVector<TreePatternNodePtr, 2> ResNodes;
3790   for (unsigned i = 0; i != NumResults; ++i) {
3791     if (i == CGI.Operands.size()) {
3792       const std::string &OpName =
3793           llvm::find_if(
3794               InstResults,
3795               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3796                 return P.second;
3797               })
3798               ->first;
3799 
3800       I.error("'" + OpName + "' set but does not appear in operand list!");
3801     }
3802 
3803     const std::string &OpName = CGI.Operands[i].Name;
3804 
3805     // Check that it exists in InstResults.
3806     auto InstResultIter = InstResults.find(OpName);
3807     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3808       I.error("Operand $" + OpName + " does not exist in operand list!");
3809 
3810     TreePatternNodePtr RNode = InstResultIter->second;
3811     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3812     ResNodes.push_back(std::move(RNode));
3813     if (!R)
3814       I.error("Operand $" + OpName + " should be a set destination: all "
3815                "outputs must occur before inputs in operand list!");
3816 
3817     if (!checkOperandClass(CGI.Operands[i], R))
3818       I.error("Operand $" + OpName + " class mismatch!");
3819 
3820     // Remember the return type.
3821     Results.push_back(CGI.Operands[i].Rec);
3822 
3823     // Remember the result index.
3824     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3825 
3826     // Okay, this one checks out.
3827     InstResultIter->second = nullptr;
3828   }
3829 
3830   // Loop over the inputs next.
3831   std::vector<TreePatternNodePtr> ResultNodeOperands;
3832   std::vector<Record*> Operands;
3833   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3834     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3835     const std::string &OpName = Op.Name;
3836     if (OpName.empty())
3837       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3838 
3839     if (!InstInputs.count(OpName)) {
3840       // If this is an operand with a DefaultOps set filled in, we can ignore
3841       // this.  When we codegen it, we will do so as always executed.
3842       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3843         // Does it have a non-empty DefaultOps field?  If so, ignore this
3844         // operand.
3845         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3846           continue;
3847       }
3848       I.error("Operand $" + OpName +
3849                " does not appear in the instruction pattern");
3850     }
3851     TreePatternNodePtr InVal = InstInputs[OpName];
3852     InstInputs.erase(OpName);   // It occurred, remove from map.
3853 
3854     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3855       Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef();
3856       if (!checkOperandClass(Op, InRec))
3857         I.error("Operand $" + OpName + "'s register class disagrees"
3858                  " between the operand and pattern");
3859     }
3860     Operands.push_back(Op.Rec);
3861 
3862     // Construct the result for the dest-pattern operand list.
3863     TreePatternNodePtr OpNode = InVal->clone();
3864 
3865     // No predicate is useful on the result.
3866     OpNode->clearPredicateCalls();
3867 
3868     // Promote the xform function to be an explicit node if set.
3869     if (Record *Xform = OpNode->getTransformFn()) {
3870       OpNode->setTransformFn(nullptr);
3871       std::vector<TreePatternNodePtr> Children;
3872       Children.push_back(OpNode);
3873       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3874                                                  OpNode->getNumTypes());
3875     }
3876 
3877     ResultNodeOperands.push_back(std::move(OpNode));
3878   }
3879 
3880   if (!InstInputs.empty())
3881     I.error("Input operand $" + InstInputs.begin()->first +
3882             " occurs in pattern but not in operands list!");
3883 
3884   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3885       I.getRecord(), std::move(ResultNodeOperands),
3886       GetNumNodeResults(I.getRecord(), *this));
3887   // Copy fully inferred output node types to instruction result pattern.
3888   for (unsigned i = 0; i != NumResults; ++i) {
3889     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3890     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3891     ResultPattern->setResultIndex(i, ResultIndices[i]);
3892   }
3893 
3894   // FIXME: Assume only the first tree is the pattern. The others are clobber
3895   // nodes.
3896   TreePatternNodePtr Pattern = I.getTree(0);
3897   TreePatternNodePtr SrcPattern;
3898   if (Pattern->getOperator()->getName() == "set") {
3899     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3900   } else{
3901     // Not a set (store or something?)
3902     SrcPattern = Pattern;
3903   }
3904 
3905   // Create and insert the instruction.
3906   // FIXME: InstImpResults should not be part of DAGInstruction.
3907   Record *R = I.getRecord();
3908   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3909                    std::forward_as_tuple(Results, Operands, InstImpResults,
3910                                          SrcPattern, ResultPattern));
3911 
3912   LLVM_DEBUG(I.dump());
3913 }
3914 
3915 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3916 /// any fragments involved.  This populates the Instructions list with fully
3917 /// resolved instructions.
3918 void CodeGenDAGPatterns::ParseInstructions() {
3919   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3920 
3921   for (Record *Instr : Instrs) {
3922     ListInit *LI = nullptr;
3923 
3924     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3925       LI = Instr->getValueAsListInit("Pattern");
3926 
3927     // If there is no pattern, only collect minimal information about the
3928     // instruction for its operand list.  We have to assume that there is one
3929     // result, as we have no detailed info. A pattern which references the
3930     // null_frag operator is as-if no pattern were specified. Normally this
3931     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3932     // null_frag.
3933     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3934       std::vector<Record*> Results;
3935       std::vector<Record*> Operands;
3936 
3937       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3938 
3939       if (InstInfo.Operands.size() != 0) {
3940         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3941           Results.push_back(InstInfo.Operands[j].Rec);
3942 
3943         // The rest are inputs.
3944         for (unsigned j = InstInfo.Operands.NumDefs,
3945                e = InstInfo.Operands.size(); j < e; ++j)
3946           Operands.push_back(InstInfo.Operands[j].Rec);
3947       }
3948 
3949       // Create and insert the instruction.
3950       std::vector<Record*> ImpResults;
3951       Instructions.insert(std::make_pair(Instr,
3952                             DAGInstruction(Results, Operands, ImpResults)));
3953       continue;  // no pattern.
3954     }
3955 
3956     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3957     parseInstructionPattern(CGI, LI, Instructions);
3958   }
3959 
3960   // If we can, convert the instructions to be patterns that are matched!
3961   for (auto &Entry : Instructions) {
3962     Record *Instr = Entry.first;
3963     DAGInstruction &TheInst = Entry.second;
3964     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3965     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3966 
3967     if (SrcPattern && ResultPattern) {
3968       TreePattern Pattern(Instr, SrcPattern, true, *this);
3969       TreePattern Result(Instr, ResultPattern, false, *this);
3970       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3971     }
3972   }
3973 }
3974 
3975 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3976 
3977 static void FindNames(TreePatternNode *P,
3978                       std::map<std::string, NameRecord> &Names,
3979                       TreePattern *PatternTop) {
3980   if (!P->getName().empty()) {
3981     NameRecord &Rec = Names[P->getName()];
3982     // If this is the first instance of the name, remember the node.
3983     if (Rec.second++ == 0)
3984       Rec.first = P;
3985     else if (Rec.first->getExtTypes() != P->getExtTypes())
3986       PatternTop->error("repetition of value: $" + P->getName() +
3987                         " where different uses have different types!");
3988   }
3989 
3990   if (!P->isLeaf()) {
3991     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3992       FindNames(P->getChild(i), Names, PatternTop);
3993   }
3994 }
3995 
3996 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3997                                            PatternToMatch &&PTM) {
3998   // Do some sanity checking on the pattern we're about to match.
3999   std::string Reason;
4000   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
4001     PrintWarning(Pattern->getRecord()->getLoc(),
4002       Twine("Pattern can never match: ") + Reason);
4003     return;
4004   }
4005 
4006   // If the source pattern's root is a complex pattern, that complex pattern
4007   // must specify the nodes it can potentially match.
4008   if (const ComplexPattern *CP =
4009         PTM.getSrcPattern()->getComplexPatternInfo(*this))
4010     if (CP->getRootNodes().empty())
4011       Pattern->error("ComplexPattern at root must specify list of opcodes it"
4012                      " could match");
4013 
4014 
4015   // Find all of the named values in the input and output, ensure they have the
4016   // same type.
4017   std::map<std::string, NameRecord> SrcNames, DstNames;
4018   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
4019   FindNames(PTM.getDstPattern(), DstNames, Pattern);
4020 
4021   // Scan all of the named values in the destination pattern, rejecting them if
4022   // they don't exist in the input pattern.
4023   for (const auto &Entry : DstNames) {
4024     if (SrcNames[Entry.first].first == nullptr)
4025       Pattern->error("Pattern has input without matching name in output: $" +
4026                      Entry.first);
4027   }
4028 
4029   // Scan all of the named values in the source pattern, rejecting them if the
4030   // name isn't used in the dest, and isn't used to tie two values together.
4031   for (const auto &Entry : SrcNames)
4032     if (DstNames[Entry.first].first == nullptr &&
4033         SrcNames[Entry.first].second == 1)
4034       Pattern->error("Pattern has dead named input: $" + Entry.first);
4035 
4036   PatternsToMatch.push_back(std::move(PTM));
4037 }
4038 
4039 void CodeGenDAGPatterns::InferInstructionFlags() {
4040   ArrayRef<const CodeGenInstruction*> Instructions =
4041     Target.getInstructionsByEnumValue();
4042 
4043   unsigned Errors = 0;
4044 
4045   // Try to infer flags from all patterns in PatternToMatch.  These include
4046   // both the primary instruction patterns (which always come first) and
4047   // patterns defined outside the instruction.
4048   for (const PatternToMatch &PTM : ptms()) {
4049     // We can only infer from single-instruction patterns, otherwise we won't
4050     // know which instruction should get the flags.
4051     SmallVector<Record*, 8> PatInstrs;
4052     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
4053     if (PatInstrs.size() != 1)
4054       continue;
4055 
4056     // Get the single instruction.
4057     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
4058 
4059     // Only infer properties from the first pattern. We'll verify the others.
4060     if (InstInfo.InferredFrom)
4061       continue;
4062 
4063     InstAnalyzer PatInfo(*this);
4064     PatInfo.Analyze(PTM);
4065     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4066   }
4067 
4068   if (Errors)
4069     PrintFatalError("pattern conflicts");
4070 
4071   // If requested by the target, guess any undefined properties.
4072   if (Target.guessInstructionProperties()) {
4073     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4074       CodeGenInstruction *InstInfo =
4075         const_cast<CodeGenInstruction *>(Instructions[i]);
4076       if (InstInfo->InferredFrom)
4077         continue;
4078       // The mayLoad and mayStore flags default to false.
4079       // Conservatively assume hasSideEffects if it wasn't explicit.
4080       if (InstInfo->hasSideEffects_Unset)
4081         InstInfo->hasSideEffects = true;
4082     }
4083     return;
4084   }
4085 
4086   // Complain about any flags that are still undefined.
4087   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4088     CodeGenInstruction *InstInfo =
4089       const_cast<CodeGenInstruction *>(Instructions[i]);
4090     if (InstInfo->InferredFrom)
4091       continue;
4092     if (InstInfo->hasSideEffects_Unset)
4093       PrintError(InstInfo->TheDef->getLoc(),
4094                  "Can't infer hasSideEffects from patterns");
4095     if (InstInfo->mayStore_Unset)
4096       PrintError(InstInfo->TheDef->getLoc(),
4097                  "Can't infer mayStore from patterns");
4098     if (InstInfo->mayLoad_Unset)
4099       PrintError(InstInfo->TheDef->getLoc(),
4100                  "Can't infer mayLoad from patterns");
4101   }
4102 }
4103 
4104 
4105 /// Verify instruction flags against pattern node properties.
4106 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4107   unsigned Errors = 0;
4108   for (const PatternToMatch &PTM : ptms()) {
4109     SmallVector<Record*, 8> Instrs;
4110     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4111     if (Instrs.empty())
4112       continue;
4113 
4114     // Count the number of instructions with each flag set.
4115     unsigned NumSideEffects = 0;
4116     unsigned NumStores = 0;
4117     unsigned NumLoads = 0;
4118     for (const Record *Instr : Instrs) {
4119       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4120       NumSideEffects += InstInfo.hasSideEffects;
4121       NumStores += InstInfo.mayStore;
4122       NumLoads += InstInfo.mayLoad;
4123     }
4124 
4125     // Analyze the source pattern.
4126     InstAnalyzer PatInfo(*this);
4127     PatInfo.Analyze(PTM);
4128 
4129     // Collect error messages.
4130     SmallVector<std::string, 4> Msgs;
4131 
4132     // Check for missing flags in the output.
4133     // Permit extra flags for now at least.
4134     if (PatInfo.hasSideEffects && !NumSideEffects)
4135       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4136 
4137     // Don't verify store flags on instructions with side effects. At least for
4138     // intrinsics, side effects implies mayStore.
4139     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4140       Msgs.push_back("pattern may store, but mayStore isn't set");
4141 
4142     // Similarly, mayStore implies mayLoad on intrinsics.
4143     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4144       Msgs.push_back("pattern may load, but mayLoad isn't set");
4145 
4146     // Print error messages.
4147     if (Msgs.empty())
4148       continue;
4149     ++Errors;
4150 
4151     for (const std::string &Msg : Msgs)
4152       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4153                  (Instrs.size() == 1 ?
4154                   "instruction" : "output instructions"));
4155     // Provide the location of the relevant instruction definitions.
4156     for (const Record *Instr : Instrs) {
4157       if (Instr != PTM.getSrcRecord())
4158         PrintError(Instr->getLoc(), "defined here");
4159       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4160       if (InstInfo.InferredFrom &&
4161           InstInfo.InferredFrom != InstInfo.TheDef &&
4162           InstInfo.InferredFrom != PTM.getSrcRecord())
4163         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4164     }
4165   }
4166   if (Errors)
4167     PrintFatalError("Errors in DAG patterns");
4168 }
4169 
4170 /// Given a pattern result with an unresolved type, see if we can find one
4171 /// instruction with an unresolved result type.  Force this result type to an
4172 /// arbitrary element if it's possible types to converge results.
4173 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4174   if (N->isLeaf())
4175     return false;
4176 
4177   // Analyze children.
4178   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4179     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4180       return true;
4181 
4182   if (!N->getOperator()->isSubClassOf("Instruction"))
4183     return false;
4184 
4185   // If this type is already concrete or completely unknown we can't do
4186   // anything.
4187   TypeInfer &TI = TP.getInfer();
4188   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4189     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4190       continue;
4191 
4192     // Otherwise, force its type to an arbitrary choice.
4193     if (TI.forceArbitrary(N->getExtType(i)))
4194       return true;
4195   }
4196 
4197   return false;
4198 }
4199 
4200 // Promote xform function to be an explicit node wherever set.
4201 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4202   if (Record *Xform = N->getTransformFn()) {
4203       N->setTransformFn(nullptr);
4204       std::vector<TreePatternNodePtr> Children;
4205       Children.push_back(PromoteXForms(N));
4206       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4207                                                N->getNumTypes());
4208   }
4209 
4210   if (!N->isLeaf())
4211     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4212       TreePatternNodePtr Child = N->getChildShared(i);
4213       N->setChild(i, PromoteXForms(Child));
4214     }
4215   return N;
4216 }
4217 
4218 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4219        TreePattern &Pattern, TreePattern &Result,
4220        const std::vector<Record *> &InstImpResults) {
4221 
4222   // Inline pattern fragments and expand multiple alternatives.
4223   Pattern.InlinePatternFragments();
4224   Result.InlinePatternFragments();
4225 
4226   if (Result.getNumTrees() != 1)
4227     Result.error("Cannot use multi-alternative fragments in result pattern!");
4228 
4229   // Infer types.
4230   bool IterateInference;
4231   bool InferredAllPatternTypes, InferredAllResultTypes;
4232   do {
4233     // Infer as many types as possible.  If we cannot infer all of them, we
4234     // can never do anything with this pattern: report it to the user.
4235     InferredAllPatternTypes =
4236         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4237 
4238     // Infer as many types as possible.  If we cannot infer all of them, we
4239     // can never do anything with this pattern: report it to the user.
4240     InferredAllResultTypes =
4241         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4242 
4243     IterateInference = false;
4244 
4245     // Apply the type of the result to the source pattern.  This helps us
4246     // resolve cases where the input type is known to be a pointer type (which
4247     // is considered resolved), but the result knows it needs to be 32- or
4248     // 64-bits.  Infer the other way for good measure.
4249     for (const auto &T : Pattern.getTrees())
4250       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4251                                         T->getNumTypes());
4252          i != e; ++i) {
4253         IterateInference |= T->UpdateNodeType(
4254             i, Result.getOnlyTree()->getExtType(i), Result);
4255         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4256             i, T->getExtType(i), Result);
4257       }
4258 
4259     // If our iteration has converged and the input pattern's types are fully
4260     // resolved but the result pattern is not fully resolved, we may have a
4261     // situation where we have two instructions in the result pattern and
4262     // the instructions require a common register class, but don't care about
4263     // what actual MVT is used.  This is actually a bug in our modelling:
4264     // output patterns should have register classes, not MVTs.
4265     //
4266     // In any case, to handle this, we just go through and disambiguate some
4267     // arbitrary types to the result pattern's nodes.
4268     if (!IterateInference && InferredAllPatternTypes &&
4269         !InferredAllResultTypes)
4270       IterateInference =
4271           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4272   } while (IterateInference);
4273 
4274   // Verify that we inferred enough types that we can do something with the
4275   // pattern and result.  If these fire the user has to add type casts.
4276   if (!InferredAllPatternTypes)
4277     Pattern.error("Could not infer all types in pattern!");
4278   if (!InferredAllResultTypes) {
4279     Pattern.dump();
4280     Result.error("Could not infer all types in pattern result!");
4281   }
4282 
4283   // Promote xform function to be an explicit node wherever set.
4284   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4285 
4286   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4287   Temp.InferAllTypes();
4288 
4289   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4290   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4291 
4292   if (PatternRewriter)
4293     PatternRewriter(&Pattern);
4294 
4295   // A pattern may end up with an "impossible" type, i.e. a situation
4296   // where all types have been eliminated for some node in this pattern.
4297   // This could occur for intrinsics that only make sense for a specific
4298   // value type, and use a specific register class. If, for some mode,
4299   // that register class does not accept that type, the type inference
4300   // will lead to a contradiction, which is not an error however, but
4301   // a sign that this pattern will simply never match.
4302   if (Temp.getOnlyTree()->hasPossibleType())
4303     for (const auto &T : Pattern.getTrees())
4304       if (T->hasPossibleType())
4305         AddPatternToMatch(&Pattern,
4306                           PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(),
4307                                          InstImpResults, Complexity,
4308                                          TheDef->getID()));
4309 }
4310 
4311 void CodeGenDAGPatterns::ParsePatterns() {
4312   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4313 
4314   for (Record *CurPattern : Patterns) {
4315     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4316 
4317     // If the pattern references the null_frag, there's nothing to do.
4318     if (hasNullFragReference(Tree))
4319       continue;
4320 
4321     TreePattern Pattern(CurPattern, Tree, true, *this);
4322 
4323     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4324     if (LI->empty()) continue;  // no pattern.
4325 
4326     // Parse the instruction.
4327     TreePattern Result(CurPattern, LI, false, *this);
4328 
4329     if (Result.getNumTrees() != 1)
4330       Result.error("Cannot handle instructions producing instructions "
4331                    "with temporaries yet!");
4332 
4333     // Validate that the input pattern is correct.
4334     std::map<std::string, TreePatternNodePtr> InstInputs;
4335     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4336         InstResults;
4337     std::vector<Record*> InstImpResults;
4338     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4339       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4340                                   InstResults, InstImpResults);
4341 
4342     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4343   }
4344 }
4345 
4346 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4347   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4348     for (const auto &I : VTS)
4349       Modes.insert(I.first);
4350 
4351   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4352     collectModes(Modes, N->getChild(i));
4353 }
4354 
4355 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4356   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4357   std::vector<PatternToMatch> Copy;
4358   PatternsToMatch.swap(Copy);
4359 
4360   auto AppendPattern = [this](PatternToMatch &P, unsigned Mode,
4361                               StringRef Check) {
4362     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4363     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4364     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4365       return;
4366     }
4367 
4368     PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(),
4369                                  std::move(NewSrc), std::move(NewDst),
4370                                  P.getDstRegs(), P.getAddedComplexity(),
4371                                  Record::getNewUID(Records), Mode, Check);
4372   };
4373 
4374   for (PatternToMatch &P : Copy) {
4375     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4376     if (P.getSrcPattern()->hasProperTypeByHwMode())
4377       SrcP = P.getSrcPatternShared();
4378     if (P.getDstPattern()->hasProperTypeByHwMode())
4379       DstP = P.getDstPatternShared();
4380     if (!SrcP && !DstP) {
4381       PatternsToMatch.push_back(P);
4382       continue;
4383     }
4384 
4385     std::set<unsigned> Modes;
4386     if (SrcP)
4387       collectModes(Modes, SrcP.get());
4388     if (DstP)
4389       collectModes(Modes, DstP.get());
4390 
4391     // The predicate for the default mode needs to be constructed for each
4392     // pattern separately.
4393     // Since not all modes must be present in each pattern, if a mode m is
4394     // absent, then there is no point in constructing a check for m. If such
4395     // a check was created, it would be equivalent to checking the default
4396     // mode, except not all modes' predicates would be a part of the checking
4397     // code. The subsequently generated check for the default mode would then
4398     // have the exact same patterns, but a different predicate code. To avoid
4399     // duplicated patterns with different predicate checks, construct the
4400     // default check as a negation of all predicates that are actually present
4401     // in the source/destination patterns.
4402     SmallString<128> DefaultCheck;
4403 
4404     for (unsigned M : Modes) {
4405       if (M == DefaultMode)
4406         continue;
4407 
4408       // Fill the map entry for this mode.
4409       const HwMode &HM = CGH.getMode(M);
4410       AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))");
4411 
4412       // Add negations of the HM's predicates to the default predicate.
4413       if (!DefaultCheck.empty())
4414         DefaultCheck += " && ";
4415       DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\"";
4416       DefaultCheck += HM.Features;
4417       DefaultCheck += "\")))";
4418     }
4419 
4420     bool HasDefault = Modes.count(DefaultMode);
4421     if (HasDefault)
4422       AppendPattern(P, DefaultMode, DefaultCheck);
4423   }
4424 }
4425 
4426 /// Dependent variable map for CodeGenDAGPattern variant generation
4427 typedef StringMap<int> DepVarMap;
4428 
4429 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4430   if (N->isLeaf()) {
4431     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4432       DepMap[N->getName()]++;
4433   } else {
4434     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4435       FindDepVarsOf(N->getChild(i), DepMap);
4436   }
4437 }
4438 
4439 /// Find dependent variables within child patterns
4440 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4441   DepVarMap depcounts;
4442   FindDepVarsOf(N, depcounts);
4443   for (const auto &Pair : depcounts) {
4444     if (Pair.getValue() > 1)
4445       DepVars.insert(Pair.getKey());
4446   }
4447 }
4448 
4449 #ifndef NDEBUG
4450 /// Dump the dependent variable set:
4451 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4452   if (DepVars.empty()) {
4453     LLVM_DEBUG(errs() << "<empty set>");
4454   } else {
4455     LLVM_DEBUG(errs() << "[ ");
4456     for (const auto &DepVar : DepVars) {
4457       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4458     }
4459     LLVM_DEBUG(errs() << "]");
4460   }
4461 }
4462 #endif
4463 
4464 
4465 /// CombineChildVariants - Given a bunch of permutations of each child of the
4466 /// 'operator' node, put them together in all possible ways.
4467 static void CombineChildVariants(
4468     TreePatternNodePtr Orig,
4469     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4470     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4471     const MultipleUseVarSet &DepVars) {
4472   // Make sure that each operand has at least one variant to choose from.
4473   for (const auto &Variants : ChildVariants)
4474     if (Variants.empty())
4475       return;
4476 
4477   // The end result is an all-pairs construction of the resultant pattern.
4478   std::vector<unsigned> Idxs;
4479   Idxs.resize(ChildVariants.size());
4480   bool NotDone;
4481   do {
4482 #ifndef NDEBUG
4483     LLVM_DEBUG(if (!Idxs.empty()) {
4484       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4485       for (unsigned Idx : Idxs) {
4486         errs() << Idx << " ";
4487       }
4488       errs() << "]\n";
4489     });
4490 #endif
4491     // Create the variant and add it to the output list.
4492     std::vector<TreePatternNodePtr> NewChildren;
4493     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4494       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4495     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4496         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4497 
4498     // Copy over properties.
4499     R->setName(Orig->getName());
4500     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4501     R->setPredicateCalls(Orig->getPredicateCalls());
4502     R->setTransformFn(Orig->getTransformFn());
4503     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4504       R->setType(i, Orig->getExtType(i));
4505 
4506     // If this pattern cannot match, do not include it as a variant.
4507     std::string ErrString;
4508     // Scan to see if this pattern has already been emitted.  We can get
4509     // duplication due to things like commuting:
4510     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4511     // which are the same pattern.  Ignore the dups.
4512     if (R->canPatternMatch(ErrString, CDP) &&
4513         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4514           return R->isIsomorphicTo(Variant.get(), DepVars);
4515         }))
4516       OutVariants.push_back(R);
4517 
4518     // Increment indices to the next permutation by incrementing the
4519     // indices from last index backward, e.g., generate the sequence
4520     // [0, 0], [0, 1], [1, 0], [1, 1].
4521     int IdxsIdx;
4522     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4523       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4524         Idxs[IdxsIdx] = 0;
4525       else
4526         break;
4527     }
4528     NotDone = (IdxsIdx >= 0);
4529   } while (NotDone);
4530 }
4531 
4532 /// CombineChildVariants - A helper function for binary operators.
4533 ///
4534 static void CombineChildVariants(TreePatternNodePtr Orig,
4535                                  const std::vector<TreePatternNodePtr> &LHS,
4536                                  const std::vector<TreePatternNodePtr> &RHS,
4537                                  std::vector<TreePatternNodePtr> &OutVariants,
4538                                  CodeGenDAGPatterns &CDP,
4539                                  const MultipleUseVarSet &DepVars) {
4540   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4541   ChildVariants.push_back(LHS);
4542   ChildVariants.push_back(RHS);
4543   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4544 }
4545 
4546 static void
4547 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4548                                   std::vector<TreePatternNodePtr> &Children) {
4549   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4550   Record *Operator = N->getOperator();
4551 
4552   // Only permit raw nodes.
4553   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4554       N->getTransformFn()) {
4555     Children.push_back(N);
4556     return;
4557   }
4558 
4559   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4560     Children.push_back(N->getChildShared(0));
4561   else
4562     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4563 
4564   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4565     Children.push_back(N->getChildShared(1));
4566   else
4567     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4568 }
4569 
4570 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4571 /// the (potentially recursive) pattern by using algebraic laws.
4572 ///
4573 static void GenerateVariantsOf(TreePatternNodePtr N,
4574                                std::vector<TreePatternNodePtr> &OutVariants,
4575                                CodeGenDAGPatterns &CDP,
4576                                const MultipleUseVarSet &DepVars) {
4577   // We cannot permute leaves or ComplexPattern uses.
4578   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4579     OutVariants.push_back(N);
4580     return;
4581   }
4582 
4583   // Look up interesting info about the node.
4584   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4585 
4586   // If this node is associative, re-associate.
4587   if (NodeInfo.hasProperty(SDNPAssociative)) {
4588     // Re-associate by pulling together all of the linked operators
4589     std::vector<TreePatternNodePtr> MaximalChildren;
4590     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4591 
4592     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4593     // permutations.
4594     if (MaximalChildren.size() == 3) {
4595       // Find the variants of all of our maximal children.
4596       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4597       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4598       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4599       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4600 
4601       // There are only two ways we can permute the tree:
4602       //   (A op B) op C    and    A op (B op C)
4603       // Within these forms, we can also permute A/B/C.
4604 
4605       // Generate legal pair permutations of A/B/C.
4606       std::vector<TreePatternNodePtr> ABVariants;
4607       std::vector<TreePatternNodePtr> BAVariants;
4608       std::vector<TreePatternNodePtr> ACVariants;
4609       std::vector<TreePatternNodePtr> CAVariants;
4610       std::vector<TreePatternNodePtr> BCVariants;
4611       std::vector<TreePatternNodePtr> CBVariants;
4612       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4613       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4614       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4615       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4616       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4617       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4618 
4619       // Combine those into the result: (x op x) op x
4620       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4621       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4622       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4623       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4624       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4625       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4626 
4627       // Combine those into the result: x op (x op x)
4628       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4629       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4630       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4631       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4632       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4633       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4634       return;
4635     }
4636   }
4637 
4638   // Compute permutations of all children.
4639   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4640   ChildVariants.resize(N->getNumChildren());
4641   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4642     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4643 
4644   // Build all permutations based on how the children were formed.
4645   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4646 
4647   // If this node is commutative, consider the commuted order.
4648   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4649   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4650     unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
4651     assert(N->getNumChildren() >= (2 + Skip) &&
4652            "Commutative but doesn't have 2 children!");
4653     // Don't allow commuting children which are actually register references.
4654     bool NoRegisters = true;
4655     unsigned i = 0 + Skip;
4656     unsigned e = 2 + Skip;
4657     for (; i != e; ++i) {
4658       TreePatternNode *Child = N->getChild(i);
4659       if (Child->isLeaf())
4660         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4661           Record *RR = DI->getDef();
4662           if (RR->isSubClassOf("Register"))
4663             NoRegisters = false;
4664         }
4665     }
4666     // Consider the commuted order.
4667     if (NoRegisters) {
4668       std::vector<std::vector<TreePatternNodePtr>> Variants;
4669       unsigned i = 0;
4670       if (isCommIntrinsic)
4671         Variants.push_back(std::move(ChildVariants[i++])); // Intrinsic id.
4672       Variants.push_back(std::move(ChildVariants[i + 1]));
4673       Variants.push_back(std::move(ChildVariants[i]));
4674       i += 2;
4675       // Remaining operands are not commuted.
4676       for (; i != N->getNumChildren(); ++i)
4677         Variants.push_back(std::move(ChildVariants[i]));
4678       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4679     }
4680   }
4681 }
4682 
4683 
4684 // GenerateVariants - Generate variants.  For example, commutative patterns can
4685 // match multiple ways.  Add them to PatternsToMatch as well.
4686 void CodeGenDAGPatterns::GenerateVariants() {
4687   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4688 
4689   // Loop over all of the patterns we've collected, checking to see if we can
4690   // generate variants of the instruction, through the exploitation of
4691   // identities.  This permits the target to provide aggressive matching without
4692   // the .td file having to contain tons of variants of instructions.
4693   //
4694   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4695   // intentionally do not reconsider these.  Any variants of added patterns have
4696   // already been added.
4697   //
4698   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4699     MultipleUseVarSet DepVars;
4700     std::vector<TreePatternNodePtr> Variants;
4701     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4702     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4703     LLVM_DEBUG(DumpDepVars(DepVars));
4704     LLVM_DEBUG(errs() << "\n");
4705     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4706                        *this, DepVars);
4707 
4708     assert(PatternsToMatch[i].getHwModeFeatures().empty() &&
4709            "HwModes should not have been expanded yet!");
4710 
4711     assert(!Variants.empty() && "Must create at least original variant!");
4712     if (Variants.size() == 1) // No additional variants for this pattern.
4713       continue;
4714 
4715     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4716                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4717 
4718     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4719       TreePatternNodePtr Variant = Variants[v];
4720 
4721       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4722                  errs() << "\n");
4723 
4724       // Scan to see if an instruction or explicit pattern already matches this.
4725       bool AlreadyExists = false;
4726       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4727         // Skip if the top level predicates do not match.
4728         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4729                          PatternsToMatch[p].getPredicates()))
4730           continue;
4731         // Check to see if this variant already exists.
4732         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4733                                     DepVars)) {
4734           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4735           AlreadyExists = true;
4736           break;
4737         }
4738       }
4739       // If we already have it, ignore the variant.
4740       if (AlreadyExists) continue;
4741 
4742       // Otherwise, add it to the list of patterns we have.
4743       PatternsToMatch.emplace_back(
4744           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4745           Variant, PatternsToMatch[i].getDstPatternShared(),
4746           PatternsToMatch[i].getDstRegs(),
4747           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records),
4748           PatternsToMatch[i].getForceMode(),
4749           PatternsToMatch[i].getHwModeFeatures());
4750     }
4751 
4752     LLVM_DEBUG(errs() << "\n");
4753   }
4754 }
4755