1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 50 template <typename Predicate> 51 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 52 bool Erased = false; 53 // It is ok to iterate over MachineValueTypeSet and remove elements from it 54 // at the same time. 55 for (MVT T : S) { 56 if (!P(T)) 57 continue; 58 Erased = true; 59 S.erase(T); 60 } 61 return Erased; 62 } 63 64 // --- TypeSetByHwMode 65 66 // This is a parameterized type-set class. For each mode there is a list 67 // of types that are currently possible for a given tree node. Type 68 // inference will apply to each mode separately. 69 70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 71 for (const ValueTypeByHwMode &VVT : VTList) { 72 insert(VVT); 73 AddrSpaces.push_back(VVT.PtrAddrSpace); 74 } 75 } 76 77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 78 for (const auto &I : *this) { 79 if (I.second.size() > 1) 80 return false; 81 if (!AllowEmpty && I.second.empty()) 82 return false; 83 } 84 return true; 85 } 86 87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 88 assert(isValueTypeByHwMode(true) && 89 "The type set has multiple types for at least one HW mode"); 90 ValueTypeByHwMode VVT; 91 auto ASI = AddrSpaces.begin(); 92 93 for (const auto &I : *this) { 94 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 95 VVT.getOrCreateTypeForMode(I.first, T); 96 if (ASI != AddrSpaces.end()) 97 VVT.PtrAddrSpace = *ASI++; 98 } 99 return VVT; 100 } 101 102 bool TypeSetByHwMode::isPossible() const { 103 for (const auto &I : *this) 104 if (!I.second.empty()) 105 return true; 106 return false; 107 } 108 109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 110 bool Changed = false; 111 bool ContainsDefault = false; 112 MVT DT = MVT::Other; 113 114 for (const auto &P : VVT) { 115 unsigned M = P.first; 116 // Make sure there exists a set for each specific mode from VVT. 117 Changed |= getOrCreate(M).insert(P.second).second; 118 // Cache VVT's default mode. 119 if (DefaultMode == M) { 120 ContainsDefault = true; 121 DT = P.second; 122 } 123 } 124 125 // If VVT has a default mode, add the corresponding type to all 126 // modes in "this" that do not exist in VVT. 127 if (ContainsDefault) 128 for (auto &I : *this) 129 if (!VVT.hasMode(I.first)) 130 Changed |= I.second.insert(DT).second; 131 132 return Changed; 133 } 134 135 // Constrain the type set to be the intersection with VTS. 136 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 137 bool Changed = false; 138 if (hasDefault()) { 139 for (const auto &I : VTS) { 140 unsigned M = I.first; 141 if (M == DefaultMode || hasMode(M)) 142 continue; 143 Map.insert({M, Map.at(DefaultMode)}); 144 Changed = true; 145 } 146 } 147 148 for (auto &I : *this) { 149 unsigned M = I.first; 150 SetType &S = I.second; 151 if (VTS.hasMode(M) || VTS.hasDefault()) { 152 Changed |= intersect(I.second, VTS.get(M)); 153 } else if (!S.empty()) { 154 S.clear(); 155 Changed = true; 156 } 157 } 158 return Changed; 159 } 160 161 template <typename Predicate> 162 bool TypeSetByHwMode::constrain(Predicate P) { 163 bool Changed = false; 164 for (auto &I : *this) 165 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 166 return Changed; 167 } 168 169 template <typename Predicate> 170 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 171 assert(empty()); 172 for (const auto &I : VTS) { 173 SetType &S = getOrCreate(I.first); 174 for (auto J : I.second) 175 if (P(J)) 176 S.insert(J); 177 } 178 return !empty(); 179 } 180 181 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 182 SmallVector<unsigned, 4> Modes; 183 Modes.reserve(Map.size()); 184 185 for (const auto &I : *this) 186 Modes.push_back(I.first); 187 if (Modes.empty()) { 188 OS << "{}"; 189 return; 190 } 191 array_pod_sort(Modes.begin(), Modes.end()); 192 193 OS << '{'; 194 for (unsigned M : Modes) { 195 OS << ' ' << getModeName(M) << ':'; 196 writeToStream(get(M), OS); 197 } 198 OS << " }"; 199 } 200 201 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 202 SmallVector<MVT, 4> Types(S.begin(), S.end()); 203 array_pod_sort(Types.begin(), Types.end()); 204 205 OS << '['; 206 ListSeparator LS(" "); 207 for (const MVT &T : Types) 208 OS << LS << ValueTypeByHwMode::getMVTName(T); 209 OS << ']'; 210 } 211 212 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 213 // The isSimple call is much quicker than hasDefault - check this first. 214 bool IsSimple = isSimple(); 215 bool VTSIsSimple = VTS.isSimple(); 216 if (IsSimple && VTSIsSimple) 217 return *begin() == *VTS.begin(); 218 219 // Speedup: We have a default if the set is simple. 220 bool HaveDefault = IsSimple || hasDefault(); 221 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 222 if (HaveDefault != VTSHaveDefault) 223 return false; 224 225 SmallSet<unsigned, 4> Modes; 226 for (auto &I : *this) 227 Modes.insert(I.first); 228 for (const auto &I : VTS) 229 Modes.insert(I.first); 230 231 if (HaveDefault) { 232 // Both sets have default mode. 233 for (unsigned M : Modes) { 234 if (get(M) != VTS.get(M)) 235 return false; 236 } 237 } else { 238 // Neither set has default mode. 239 for (unsigned M : Modes) { 240 // If there is no default mode, an empty set is equivalent to not having 241 // the corresponding mode. 242 bool NoModeThis = !hasMode(M) || get(M).empty(); 243 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 244 if (NoModeThis != NoModeVTS) 245 return false; 246 if (!NoModeThis) 247 if (get(M) != VTS.get(M)) 248 return false; 249 } 250 } 251 252 return true; 253 } 254 255 namespace llvm { 256 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 257 T.writeToStream(OS); 258 return OS; 259 } 260 } 261 262 LLVM_DUMP_METHOD 263 void TypeSetByHwMode::dump() const { 264 dbgs() << *this << '\n'; 265 } 266 267 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 268 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 269 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 270 271 if (OutP == InP) 272 return berase_if(Out, Int); 273 274 // Compute the intersection of scalars separately to account for only 275 // one set containing iPTR. 276 // The intersection of iPTR with a set of integer scalar types that does not 277 // include iPTR will result in the most specific scalar type: 278 // - iPTR is more specific than any set with two elements or more 279 // - iPTR is less specific than any single integer scalar type. 280 // For example 281 // { iPTR } * { i32 } -> { i32 } 282 // { iPTR } * { i32 i64 } -> { iPTR } 283 // and 284 // { iPTR i32 } * { i32 } -> { i32 } 285 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 286 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 287 288 // Compute the difference between the two sets in such a way that the 289 // iPTR is in the set that is being subtracted. This is to see if there 290 // are any extra scalars in the set without iPTR that are not in the 291 // set containing iPTR. Then the iPTR could be considered a "wildcard" 292 // matching these scalars. If there is only one such scalar, it would 293 // replace the iPTR, if there are more, the iPTR would be retained. 294 SetType Diff; 295 if (InP) { 296 Diff = Out; 297 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 298 // Pre-remove these elements and rely only on InP/OutP to determine 299 // whether a change has been made. 300 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 301 } else { 302 Diff = In; 303 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 304 Out.erase(MVT::iPTR); 305 } 306 307 // The actual intersection. 308 bool Changed = berase_if(Out, Int); 309 unsigned NumD = Diff.size(); 310 if (NumD == 0) 311 return Changed; 312 313 if (NumD == 1) { 314 Out.insert(*Diff.begin()); 315 // This is a change only if Out was the one with iPTR (which is now 316 // being replaced). 317 Changed |= OutP; 318 } else { 319 // Multiple elements from Out are now replaced with iPTR. 320 Out.insert(MVT::iPTR); 321 Changed |= !OutP; 322 } 323 return Changed; 324 } 325 326 bool TypeSetByHwMode::validate() const { 327 #ifndef NDEBUG 328 if (empty()) 329 return true; 330 bool AllEmpty = true; 331 for (const auto &I : *this) 332 AllEmpty &= I.second.empty(); 333 return !AllEmpty; 334 #endif 335 return true; 336 } 337 338 // --- TypeInfer 339 340 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 341 const TypeSetByHwMode &In) { 342 ValidateOnExit _1(Out, *this); 343 In.validate(); 344 if (In.empty() || Out == In || TP.hasError()) 345 return false; 346 if (Out.empty()) { 347 Out = In; 348 return true; 349 } 350 351 bool Changed = Out.constrain(In); 352 if (Changed && Out.empty()) 353 TP.error("Type contradiction"); 354 355 return Changed; 356 } 357 358 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 359 ValidateOnExit _1(Out, *this); 360 if (TP.hasError()) 361 return false; 362 assert(!Out.empty() && "cannot pick from an empty set"); 363 364 bool Changed = false; 365 for (auto &I : Out) { 366 TypeSetByHwMode::SetType &S = I.second; 367 if (S.size() <= 1) 368 continue; 369 MVT T = *S.begin(); // Pick the first element. 370 S.clear(); 371 S.insert(T); 372 Changed = true; 373 } 374 return Changed; 375 } 376 377 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 378 ValidateOnExit _1(Out, *this); 379 if (TP.hasError()) 380 return false; 381 if (!Out.empty()) 382 return Out.constrain(isIntegerOrPtr); 383 384 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 385 } 386 387 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 388 ValidateOnExit _1(Out, *this); 389 if (TP.hasError()) 390 return false; 391 if (!Out.empty()) 392 return Out.constrain(isFloatingPoint); 393 394 return Out.assign_if(getLegalTypes(), isFloatingPoint); 395 } 396 397 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 398 ValidateOnExit _1(Out, *this); 399 if (TP.hasError()) 400 return false; 401 if (!Out.empty()) 402 return Out.constrain(isScalar); 403 404 return Out.assign_if(getLegalTypes(), isScalar); 405 } 406 407 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 408 ValidateOnExit _1(Out, *this); 409 if (TP.hasError()) 410 return false; 411 if (!Out.empty()) 412 return Out.constrain(isVector); 413 414 return Out.assign_if(getLegalTypes(), isVector); 415 } 416 417 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 418 ValidateOnExit _1(Out, *this); 419 if (TP.hasError() || !Out.empty()) 420 return false; 421 422 Out = getLegalTypes(); 423 return true; 424 } 425 426 template <typename Iter, typename Pred, typename Less> 427 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 428 if (B == E) 429 return E; 430 Iter Min = E; 431 for (Iter I = B; I != E; ++I) { 432 if (!P(*I)) 433 continue; 434 if (Min == E || L(*I, *Min)) 435 Min = I; 436 } 437 return Min; 438 } 439 440 template <typename Iter, typename Pred, typename Less> 441 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 442 if (B == E) 443 return E; 444 Iter Max = E; 445 for (Iter I = B; I != E; ++I) { 446 if (!P(*I)) 447 continue; 448 if (Max == E || L(*Max, *I)) 449 Max = I; 450 } 451 return Max; 452 } 453 454 /// Make sure that for each type in Small, there exists a larger type in Big. 455 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 456 TypeSetByHwMode &Big) { 457 ValidateOnExit _1(Small, *this), _2(Big, *this); 458 if (TP.hasError()) 459 return false; 460 bool Changed = false; 461 462 if (Small.empty()) 463 Changed |= EnforceAny(Small); 464 if (Big.empty()) 465 Changed |= EnforceAny(Big); 466 467 assert(Small.hasDefault() && Big.hasDefault()); 468 469 SmallVector<unsigned, 4> Modes; 470 union_modes(Small, Big, Modes); 471 472 // 1. Only allow integer or floating point types and make sure that 473 // both sides are both integer or both floating point. 474 // 2. Make sure that either both sides have vector types, or neither 475 // of them does. 476 for (unsigned M : Modes) { 477 TypeSetByHwMode::SetType &S = Small.get(M); 478 TypeSetByHwMode::SetType &B = Big.get(M); 479 480 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 481 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 482 Changed |= berase_if(S, NotInt); 483 Changed |= berase_if(B, NotInt); 484 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 485 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 486 Changed |= berase_if(S, NotFP); 487 Changed |= berase_if(B, NotFP); 488 } else if (S.empty() || B.empty()) { 489 Changed = !S.empty() || !B.empty(); 490 S.clear(); 491 B.clear(); 492 } else { 493 TP.error("Incompatible types"); 494 return Changed; 495 } 496 497 if (none_of(S, isVector) || none_of(B, isVector)) { 498 Changed |= berase_if(S, isVector); 499 Changed |= berase_if(B, isVector); 500 } 501 } 502 503 auto LT = [](MVT A, MVT B) -> bool { 504 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 505 // purposes of ordering. 506 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 507 A.getSizeInBits().getKnownMinSize()); 508 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 509 B.getSizeInBits().getKnownMinSize()); 510 return ASize < BSize; 511 }; 512 auto SameKindLE = [](MVT A, MVT B) -> bool { 513 // This function is used when removing elements: when a vector is compared 514 // to a non-vector or a scalable vector to any non-scalable MVT, it should 515 // return false (to avoid removal). 516 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 517 std::make_tuple(B.isVector(), B.isScalableVector())) 518 return false; 519 520 return std::make_tuple(A.getScalarSizeInBits(), 521 A.getSizeInBits().getKnownMinSize()) <= 522 std::make_tuple(B.getScalarSizeInBits(), 523 B.getSizeInBits().getKnownMinSize()); 524 }; 525 526 for (unsigned M : Modes) { 527 TypeSetByHwMode::SetType &S = Small.get(M); 528 TypeSetByHwMode::SetType &B = Big.get(M); 529 // MinS = min scalar in Small, remove all scalars from Big that are 530 // smaller-or-equal than MinS. 531 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 532 if (MinS != S.end()) 533 Changed |= berase_if(B, std::bind(SameKindLE, 534 std::placeholders::_1, *MinS)); 535 536 // MaxS = max scalar in Big, remove all scalars from Small that are 537 // larger than MaxS. 538 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 539 if (MaxS != B.end()) 540 Changed |= berase_if(S, std::bind(SameKindLE, 541 *MaxS, std::placeholders::_1)); 542 543 // MinV = min vector in Small, remove all vectors from Big that are 544 // smaller-or-equal than MinV. 545 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 546 if (MinV != S.end()) 547 Changed |= berase_if(B, std::bind(SameKindLE, 548 std::placeholders::_1, *MinV)); 549 550 // MaxV = max vector in Big, remove all vectors from Small that are 551 // larger than MaxV. 552 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 553 if (MaxV != B.end()) 554 Changed |= berase_if(S, std::bind(SameKindLE, 555 *MaxV, std::placeholders::_1)); 556 } 557 558 return Changed; 559 } 560 561 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 562 /// for each type U in Elem, U is a scalar type. 563 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 564 /// type T in Vec, such that U is the element type of T. 565 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 566 TypeSetByHwMode &Elem) { 567 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 568 if (TP.hasError()) 569 return false; 570 bool Changed = false; 571 572 if (Vec.empty()) 573 Changed |= EnforceVector(Vec); 574 if (Elem.empty()) 575 Changed |= EnforceScalar(Elem); 576 577 SmallVector<unsigned, 4> Modes; 578 union_modes(Vec, Elem, Modes); 579 for (unsigned M : Modes) { 580 TypeSetByHwMode::SetType &V = Vec.get(M); 581 TypeSetByHwMode::SetType &E = Elem.get(M); 582 583 Changed |= berase_if(V, isScalar); // Scalar = !vector 584 Changed |= berase_if(E, isVector); // Vector = !scalar 585 assert(!V.empty() && !E.empty()); 586 587 MachineValueTypeSet VT, ST; 588 // Collect element types from the "vector" set. 589 for (MVT T : V) 590 VT.insert(T.getVectorElementType()); 591 // Collect scalar types from the "element" set. 592 for (MVT T : E) 593 ST.insert(T); 594 595 // Remove from V all (vector) types whose element type is not in S. 596 Changed |= berase_if(V, [&ST](MVT T) -> bool { 597 return !ST.count(T.getVectorElementType()); 598 }); 599 // Remove from E all (scalar) types, for which there is no corresponding 600 // type in V. 601 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 602 } 603 604 return Changed; 605 } 606 607 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 608 const ValueTypeByHwMode &VVT) { 609 TypeSetByHwMode Tmp(VVT); 610 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 611 return EnforceVectorEltTypeIs(Vec, Tmp); 612 } 613 614 /// Ensure that for each type T in Sub, T is a vector type, and there 615 /// exists a type U in Vec such that U is a vector type with the same 616 /// element type as T and at least as many elements as T. 617 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 618 TypeSetByHwMode &Sub) { 619 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 620 if (TP.hasError()) 621 return false; 622 623 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 624 auto IsSubVec = [](MVT B, MVT P) -> bool { 625 if (!B.isVector() || !P.isVector()) 626 return false; 627 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 628 // but until there are obvious use-cases for this, keep the 629 // types separate. 630 if (B.isScalableVector() != P.isScalableVector()) 631 return false; 632 if (B.getVectorElementType() != P.getVectorElementType()) 633 return false; 634 return B.getVectorNumElements() < P.getVectorNumElements(); 635 }; 636 637 /// Return true if S has no element (vector type) that T is a sub-vector of, 638 /// i.e. has the same element type as T and more elements. 639 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 640 for (auto I : S) 641 if (IsSubVec(T, I)) 642 return false; 643 return true; 644 }; 645 646 /// Return true if S has no element (vector type) that T is a super-vector 647 /// of, i.e. has the same element type as T and fewer elements. 648 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 649 for (auto I : S) 650 if (IsSubVec(I, T)) 651 return false; 652 return true; 653 }; 654 655 bool Changed = false; 656 657 if (Vec.empty()) 658 Changed |= EnforceVector(Vec); 659 if (Sub.empty()) 660 Changed |= EnforceVector(Sub); 661 662 SmallVector<unsigned, 4> Modes; 663 union_modes(Vec, Sub, Modes); 664 for (unsigned M : Modes) { 665 TypeSetByHwMode::SetType &S = Sub.get(M); 666 TypeSetByHwMode::SetType &V = Vec.get(M); 667 668 Changed |= berase_if(S, isScalar); 669 670 // Erase all types from S that are not sub-vectors of a type in V. 671 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 672 673 // Erase all types from V that are not super-vectors of a type in S. 674 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 675 } 676 677 return Changed; 678 } 679 680 /// 1. Ensure that V has a scalar type iff W has a scalar type. 681 /// 2. Ensure that for each vector type T in V, there exists a vector 682 /// type U in W, such that T and U have the same number of elements. 683 /// 3. Ensure that for each vector type U in W, there exists a vector 684 /// type T in V, such that T and U have the same number of elements 685 /// (reverse of 2). 686 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 687 ValidateOnExit _1(V, *this), _2(W, *this); 688 if (TP.hasError()) 689 return false; 690 691 bool Changed = false; 692 if (V.empty()) 693 Changed |= EnforceAny(V); 694 if (W.empty()) 695 Changed |= EnforceAny(W); 696 697 // An actual vector type cannot have 0 elements, so we can treat scalars 698 // as zero-length vectors. This way both vectors and scalars can be 699 // processed identically. 700 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 701 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 702 }; 703 704 SmallVector<unsigned, 4> Modes; 705 union_modes(V, W, Modes); 706 for (unsigned M : Modes) { 707 TypeSetByHwMode::SetType &VS = V.get(M); 708 TypeSetByHwMode::SetType &WS = W.get(M); 709 710 SmallSet<unsigned,2> VN, WN; 711 for (MVT T : VS) 712 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 713 for (MVT T : WS) 714 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 715 716 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 717 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 718 } 719 return Changed; 720 } 721 722 namespace { 723 struct TypeSizeComparator { 724 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 725 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 726 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 727 } 728 }; 729 } // end anonymous namespace 730 731 /// 1. Ensure that for each type T in A, there exists a type U in B, 732 /// such that T and U have equal size in bits. 733 /// 2. Ensure that for each type U in B, there exists a type T in A 734 /// such that T and U have equal size in bits (reverse of 1). 735 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 736 ValidateOnExit _1(A, *this), _2(B, *this); 737 if (TP.hasError()) 738 return false; 739 bool Changed = false; 740 if (A.empty()) 741 Changed |= EnforceAny(A); 742 if (B.empty()) 743 Changed |= EnforceAny(B); 744 745 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 746 747 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 748 return !Sizes.count(T.getSizeInBits()); 749 }; 750 751 SmallVector<unsigned, 4> Modes; 752 union_modes(A, B, Modes); 753 for (unsigned M : Modes) { 754 TypeSetByHwMode::SetType &AS = A.get(M); 755 TypeSetByHwMode::SetType &BS = B.get(M); 756 TypeSizeSet AN, BN; 757 758 for (MVT T : AS) 759 AN.insert(T.getSizeInBits()); 760 for (MVT T : BS) 761 BN.insert(T.getSizeInBits()); 762 763 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 764 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 765 } 766 767 return Changed; 768 } 769 770 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 771 ValidateOnExit _1(VTS, *this); 772 const TypeSetByHwMode &Legal = getLegalTypes(); 773 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 774 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 775 776 for (auto &I : VTS) 777 expandOverloads(I.second, LegalTypes); 778 } 779 780 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 781 const TypeSetByHwMode::SetType &Legal) { 782 std::set<MVT> Ovs; 783 for (MVT T : Out) { 784 if (!T.isOverloaded()) 785 continue; 786 787 Ovs.insert(T); 788 // MachineValueTypeSet allows iteration and erasing. 789 Out.erase(T); 790 } 791 792 for (MVT Ov : Ovs) { 793 switch (Ov.SimpleTy) { 794 case MVT::iPTRAny: 795 Out.insert(MVT::iPTR); 796 return; 797 case MVT::iAny: 798 for (MVT T : MVT::integer_valuetypes()) 799 if (Legal.count(T)) 800 Out.insert(T); 801 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 802 if (Legal.count(T)) 803 Out.insert(T); 804 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 805 if (Legal.count(T)) 806 Out.insert(T); 807 return; 808 case MVT::fAny: 809 for (MVT T : MVT::fp_valuetypes()) 810 if (Legal.count(T)) 811 Out.insert(T); 812 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 813 if (Legal.count(T)) 814 Out.insert(T); 815 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 816 if (Legal.count(T)) 817 Out.insert(T); 818 return; 819 case MVT::vAny: 820 for (MVT T : MVT::vector_valuetypes()) 821 if (Legal.count(T)) 822 Out.insert(T); 823 return; 824 case MVT::Any: 825 for (MVT T : MVT::all_valuetypes()) 826 if (Legal.count(T)) 827 Out.insert(T); 828 return; 829 default: 830 break; 831 } 832 } 833 } 834 835 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 836 if (!LegalTypesCached) { 837 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 838 // Stuff all types from all modes into the default mode. 839 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 840 for (const auto &I : LTS) 841 LegalTypes.insert(I.second); 842 LegalTypesCached = true; 843 } 844 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 845 return LegalCache; 846 } 847 848 #ifndef NDEBUG 849 TypeInfer::ValidateOnExit::~ValidateOnExit() { 850 if (Infer.Validate && !VTS.validate()) { 851 dbgs() << "Type set is empty for each HW mode:\n" 852 "possible type contradiction in the pattern below " 853 "(use -print-records with llvm-tblgen to see all " 854 "expanded records).\n"; 855 Infer.TP.dump(); 856 dbgs() << "Generated from record:\n"; 857 Infer.TP.getRecord()->dump(); 858 PrintFatalError(Infer.TP.getRecord()->getLoc(), 859 "Type set is empty for each HW mode in '" + 860 Infer.TP.getRecord()->getName() + "'"); 861 } 862 } 863 #endif 864 865 866 //===----------------------------------------------------------------------===// 867 // ScopedName Implementation 868 //===----------------------------------------------------------------------===// 869 870 bool ScopedName::operator==(const ScopedName &o) const { 871 return Scope == o.Scope && Identifier == o.Identifier; 872 } 873 874 bool ScopedName::operator!=(const ScopedName &o) const { 875 return !(*this == o); 876 } 877 878 879 //===----------------------------------------------------------------------===// 880 // TreePredicateFn Implementation 881 //===----------------------------------------------------------------------===// 882 883 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 884 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 885 assert( 886 (!hasPredCode() || !hasImmCode()) && 887 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 888 } 889 890 bool TreePredicateFn::hasPredCode() const { 891 return isLoad() || isStore() || isAtomic() || 892 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 893 } 894 895 std::string TreePredicateFn::getPredCode() const { 896 std::string Code; 897 898 if (!isLoad() && !isStore() && !isAtomic()) { 899 Record *MemoryVT = getMemoryVT(); 900 901 if (MemoryVT) 902 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 903 "MemoryVT requires IsLoad or IsStore"); 904 } 905 906 if (!isLoad() && !isStore()) { 907 if (isUnindexed()) 908 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 909 "IsUnindexed requires IsLoad or IsStore"); 910 911 Record *ScalarMemoryVT = getScalarMemoryVT(); 912 913 if (ScalarMemoryVT) 914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 915 "ScalarMemoryVT requires IsLoad or IsStore"); 916 } 917 918 if (isLoad() + isStore() + isAtomic() > 1) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 921 922 if (isLoad()) { 923 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 924 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 925 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 926 getMinAlignment() < 1) 927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 928 "IsLoad cannot be used by itself"); 929 } else { 930 if (isNonExtLoad()) 931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 932 "IsNonExtLoad requires IsLoad"); 933 if (isAnyExtLoad()) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsAnyExtLoad requires IsLoad"); 936 if (isSignExtLoad()) 937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 938 "IsSignExtLoad requires IsLoad"); 939 if (isZeroExtLoad()) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsZeroExtLoad requires IsLoad"); 942 } 943 944 if (isStore()) { 945 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 946 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 947 getAddressSpaces() == nullptr && getMinAlignment() < 1) 948 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 949 "IsStore cannot be used by itself"); 950 } else { 951 if (isNonTruncStore()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsNonTruncStore requires IsStore"); 954 if (isTruncStore()) 955 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 956 "IsTruncStore requires IsStore"); 957 } 958 959 if (isAtomic()) { 960 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 961 getAddressSpaces() == nullptr && 962 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 963 !isAtomicOrderingAcquireRelease() && 964 !isAtomicOrderingSequentiallyConsistent() && 965 !isAtomicOrderingAcquireOrStronger() && 966 !isAtomicOrderingReleaseOrStronger() && 967 !isAtomicOrderingWeakerThanAcquire() && 968 !isAtomicOrderingWeakerThanRelease()) 969 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 970 "IsAtomic cannot be used by itself"); 971 } else { 972 if (isAtomicOrderingMonotonic()) 973 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 974 "IsAtomicOrderingMonotonic requires IsAtomic"); 975 if (isAtomicOrderingAcquire()) 976 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 977 "IsAtomicOrderingAcquire requires IsAtomic"); 978 if (isAtomicOrderingRelease()) 979 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 980 "IsAtomicOrderingRelease requires IsAtomic"); 981 if (isAtomicOrderingAcquireRelease()) 982 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 983 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 984 if (isAtomicOrderingSequentiallyConsistent()) 985 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 986 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 987 if (isAtomicOrderingAcquireOrStronger()) 988 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 989 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 990 if (isAtomicOrderingReleaseOrStronger()) 991 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 992 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 993 if (isAtomicOrderingWeakerThanAcquire()) 994 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 995 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 996 } 997 998 if (isLoad() || isStore() || isAtomic()) { 999 if (ListInit *AddressSpaces = getAddressSpaces()) { 1000 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1001 " if ("; 1002 1003 ListSeparator LS(" && "); 1004 for (Init *Val : AddressSpaces->getValues()) { 1005 Code += LS; 1006 1007 IntInit *IntVal = dyn_cast<IntInit>(Val); 1008 if (!IntVal) { 1009 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1010 "AddressSpaces element must be integer"); 1011 } 1012 1013 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1014 } 1015 1016 Code += ")\nreturn false;\n"; 1017 } 1018 1019 int64_t MinAlign = getMinAlignment(); 1020 if (MinAlign > 0) { 1021 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1022 Code += utostr(MinAlign); 1023 Code += "))\nreturn false;\n"; 1024 } 1025 1026 Record *MemoryVT = getMemoryVT(); 1027 1028 if (MemoryVT) 1029 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1030 MemoryVT->getName() + ") return false;\n") 1031 .str(); 1032 } 1033 1034 if (isAtomic() && isAtomicOrderingMonotonic()) 1035 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1036 "AtomicOrdering::Monotonic) return false;\n"; 1037 if (isAtomic() && isAtomicOrderingAcquire()) 1038 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1039 "AtomicOrdering::Acquire) return false;\n"; 1040 if (isAtomic() && isAtomicOrderingRelease()) 1041 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1042 "AtomicOrdering::Release) return false;\n"; 1043 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1044 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1045 "AtomicOrdering::AcquireRelease) return false;\n"; 1046 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1047 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1048 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1049 1050 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1051 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1052 "return false;\n"; 1053 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1054 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1055 "return false;\n"; 1056 1057 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1058 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1059 "return false;\n"; 1060 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1061 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1062 "return false;\n"; 1063 1064 if (isLoad() || isStore()) { 1065 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1066 1067 if (isUnindexed()) 1068 Code += ("if (cast<" + SDNodeName + 1069 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1070 "return false;\n") 1071 .str(); 1072 1073 if (isLoad()) { 1074 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1075 isZeroExtLoad()) > 1) 1076 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1077 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1078 "IsZeroExtLoad are mutually exclusive"); 1079 if (isNonExtLoad()) 1080 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1081 "ISD::NON_EXTLOAD) return false;\n"; 1082 if (isAnyExtLoad()) 1083 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1084 "return false;\n"; 1085 if (isSignExtLoad()) 1086 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1087 "return false;\n"; 1088 if (isZeroExtLoad()) 1089 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1090 "return false;\n"; 1091 } else { 1092 if ((isNonTruncStore() + isTruncStore()) > 1) 1093 PrintFatalError( 1094 getOrigPatFragRecord()->getRecord()->getLoc(), 1095 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1096 if (isNonTruncStore()) 1097 Code += 1098 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1099 if (isTruncStore()) 1100 Code += 1101 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1102 } 1103 1104 Record *ScalarMemoryVT = getScalarMemoryVT(); 1105 1106 if (ScalarMemoryVT) 1107 Code += ("if (cast<" + SDNodeName + 1108 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1109 ScalarMemoryVT->getName() + ") return false;\n") 1110 .str(); 1111 } 1112 1113 std::string PredicateCode = 1114 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1115 1116 Code += PredicateCode; 1117 1118 if (PredicateCode.empty() && !Code.empty()) 1119 Code += "return true;\n"; 1120 1121 return Code; 1122 } 1123 1124 bool TreePredicateFn::hasImmCode() const { 1125 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1126 } 1127 1128 std::string TreePredicateFn::getImmCode() const { 1129 return std::string( 1130 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1131 } 1132 1133 bool TreePredicateFn::immCodeUsesAPInt() const { 1134 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1135 } 1136 1137 bool TreePredicateFn::immCodeUsesAPFloat() const { 1138 bool Unset; 1139 // The return value will be false when IsAPFloat is unset. 1140 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1141 Unset); 1142 } 1143 1144 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1145 bool Value) const { 1146 bool Unset; 1147 bool Result = 1148 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1149 if (Unset) 1150 return false; 1151 return Result == Value; 1152 } 1153 bool TreePredicateFn::usesOperands() const { 1154 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1155 } 1156 bool TreePredicateFn::isLoad() const { 1157 return isPredefinedPredicateEqualTo("IsLoad", true); 1158 } 1159 bool TreePredicateFn::isStore() const { 1160 return isPredefinedPredicateEqualTo("IsStore", true); 1161 } 1162 bool TreePredicateFn::isAtomic() const { 1163 return isPredefinedPredicateEqualTo("IsAtomic", true); 1164 } 1165 bool TreePredicateFn::isUnindexed() const { 1166 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1167 } 1168 bool TreePredicateFn::isNonExtLoad() const { 1169 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1170 } 1171 bool TreePredicateFn::isAnyExtLoad() const { 1172 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1173 } 1174 bool TreePredicateFn::isSignExtLoad() const { 1175 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1176 } 1177 bool TreePredicateFn::isZeroExtLoad() const { 1178 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1179 } 1180 bool TreePredicateFn::isNonTruncStore() const { 1181 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1182 } 1183 bool TreePredicateFn::isTruncStore() const { 1184 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1185 } 1186 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1187 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1188 } 1189 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1190 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1191 } 1192 bool TreePredicateFn::isAtomicOrderingRelease() const { 1193 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1194 } 1195 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1196 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1197 } 1198 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1199 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1200 true); 1201 } 1202 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1203 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1204 } 1205 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1206 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1207 } 1208 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1209 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1210 } 1211 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1212 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1213 } 1214 Record *TreePredicateFn::getMemoryVT() const { 1215 Record *R = getOrigPatFragRecord()->getRecord(); 1216 if (R->isValueUnset("MemoryVT")) 1217 return nullptr; 1218 return R->getValueAsDef("MemoryVT"); 1219 } 1220 1221 ListInit *TreePredicateFn::getAddressSpaces() const { 1222 Record *R = getOrigPatFragRecord()->getRecord(); 1223 if (R->isValueUnset("AddressSpaces")) 1224 return nullptr; 1225 return R->getValueAsListInit("AddressSpaces"); 1226 } 1227 1228 int64_t TreePredicateFn::getMinAlignment() const { 1229 Record *R = getOrigPatFragRecord()->getRecord(); 1230 if (R->isValueUnset("MinAlignment")) 1231 return 0; 1232 return R->getValueAsInt("MinAlignment"); 1233 } 1234 1235 Record *TreePredicateFn::getScalarMemoryVT() const { 1236 Record *R = getOrigPatFragRecord()->getRecord(); 1237 if (R->isValueUnset("ScalarMemoryVT")) 1238 return nullptr; 1239 return R->getValueAsDef("ScalarMemoryVT"); 1240 } 1241 bool TreePredicateFn::hasGISelPredicateCode() const { 1242 return !PatFragRec->getRecord() 1243 ->getValueAsString("GISelPredicateCode") 1244 .empty(); 1245 } 1246 std::string TreePredicateFn::getGISelPredicateCode() const { 1247 return std::string( 1248 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1249 } 1250 1251 StringRef TreePredicateFn::getImmType() const { 1252 if (immCodeUsesAPInt()) 1253 return "const APInt &"; 1254 if (immCodeUsesAPFloat()) 1255 return "const APFloat &"; 1256 return "int64_t"; 1257 } 1258 1259 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1260 if (immCodeUsesAPInt()) 1261 return "APInt"; 1262 if (immCodeUsesAPFloat()) 1263 return "APFloat"; 1264 return "I64"; 1265 } 1266 1267 /// isAlwaysTrue - Return true if this is a noop predicate. 1268 bool TreePredicateFn::isAlwaysTrue() const { 1269 return !hasPredCode() && !hasImmCode(); 1270 } 1271 1272 /// Return the name to use in the generated code to reference this, this is 1273 /// "Predicate_foo" if from a pattern fragment "foo". 1274 std::string TreePredicateFn::getFnName() const { 1275 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1276 } 1277 1278 /// getCodeToRunOnSDNode - Return the code for the function body that 1279 /// evaluates this predicate. The argument is expected to be in "Node", 1280 /// not N. This handles casting and conversion to a concrete node type as 1281 /// appropriate. 1282 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1283 // Handle immediate predicates first. 1284 std::string ImmCode = getImmCode(); 1285 if (!ImmCode.empty()) { 1286 if (isLoad()) 1287 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1288 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1289 if (isStore()) 1290 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1291 "IsStore cannot be used with ImmLeaf or its subclasses"); 1292 if (isUnindexed()) 1293 PrintFatalError( 1294 getOrigPatFragRecord()->getRecord()->getLoc(), 1295 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1296 if (isNonExtLoad()) 1297 PrintFatalError( 1298 getOrigPatFragRecord()->getRecord()->getLoc(), 1299 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1300 if (isAnyExtLoad()) 1301 PrintFatalError( 1302 getOrigPatFragRecord()->getRecord()->getLoc(), 1303 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1304 if (isSignExtLoad()) 1305 PrintFatalError( 1306 getOrigPatFragRecord()->getRecord()->getLoc(), 1307 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1308 if (isZeroExtLoad()) 1309 PrintFatalError( 1310 getOrigPatFragRecord()->getRecord()->getLoc(), 1311 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1312 if (isNonTruncStore()) 1313 PrintFatalError( 1314 getOrigPatFragRecord()->getRecord()->getLoc(), 1315 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1316 if (isTruncStore()) 1317 PrintFatalError( 1318 getOrigPatFragRecord()->getRecord()->getLoc(), 1319 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1320 if (getMemoryVT()) 1321 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1322 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1323 if (getScalarMemoryVT()) 1324 PrintFatalError( 1325 getOrigPatFragRecord()->getRecord()->getLoc(), 1326 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1327 1328 std::string Result = (" " + getImmType() + " Imm = ").str(); 1329 if (immCodeUsesAPFloat()) 1330 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1331 else if (immCodeUsesAPInt()) 1332 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1333 else 1334 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1335 return Result + ImmCode; 1336 } 1337 1338 // Handle arbitrary node predicates. 1339 assert(hasPredCode() && "Don't have any predicate code!"); 1340 1341 // If this is using PatFrags, there are multiple trees to search. They should 1342 // all have the same class. FIXME: Is there a way to find a common 1343 // superclass? 1344 StringRef ClassName; 1345 for (const auto &Tree : PatFragRec->getTrees()) { 1346 StringRef TreeClassName; 1347 if (Tree->isLeaf()) 1348 TreeClassName = "SDNode"; 1349 else { 1350 Record *Op = Tree->getOperator(); 1351 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1352 TreeClassName = Info.getSDClassName(); 1353 } 1354 1355 if (ClassName.empty()) 1356 ClassName = TreeClassName; 1357 else if (ClassName != TreeClassName) { 1358 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1359 "PatFrags trees do not have consistent class"); 1360 } 1361 } 1362 1363 std::string Result; 1364 if (ClassName == "SDNode") 1365 Result = " SDNode *N = Node;\n"; 1366 else 1367 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1368 1369 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1370 } 1371 1372 //===----------------------------------------------------------------------===// 1373 // PatternToMatch implementation 1374 // 1375 1376 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1377 if (!P->isLeaf()) 1378 return false; 1379 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1380 if (!DI) 1381 return false; 1382 1383 Record *R = DI->getDef(); 1384 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1385 } 1386 1387 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1388 /// patterns before small ones. This is used to determine the size of a 1389 /// pattern. 1390 static unsigned getPatternSize(const TreePatternNode *P, 1391 const CodeGenDAGPatterns &CGP) { 1392 unsigned Size = 3; // The node itself. 1393 // If the root node is a ConstantSDNode, increases its size. 1394 // e.g. (set R32:$dst, 0). 1395 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1396 Size += 2; 1397 1398 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1399 Size += AM->getComplexity(); 1400 // We don't want to count any children twice, so return early. 1401 return Size; 1402 } 1403 1404 // If this node has some predicate function that must match, it adds to the 1405 // complexity of this node. 1406 if (!P->getPredicateCalls().empty()) 1407 ++Size; 1408 1409 // Count children in the count if they are also nodes. 1410 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1411 const TreePatternNode *Child = P->getChild(i); 1412 if (!Child->isLeaf() && Child->getNumTypes()) { 1413 const TypeSetByHwMode &T0 = Child->getExtType(0); 1414 // At this point, all variable type sets should be simple, i.e. only 1415 // have a default mode. 1416 if (T0.getMachineValueType() != MVT::Other) { 1417 Size += getPatternSize(Child, CGP); 1418 continue; 1419 } 1420 } 1421 if (Child->isLeaf()) { 1422 if (isa<IntInit>(Child->getLeafValue())) 1423 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1424 else if (Child->getComplexPatternInfo(CGP)) 1425 Size += getPatternSize(Child, CGP); 1426 else if (isImmAllOnesAllZerosMatch(Child)) 1427 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1428 else if (!Child->getPredicateCalls().empty()) 1429 ++Size; 1430 } 1431 } 1432 1433 return Size; 1434 } 1435 1436 /// Compute the complexity metric for the input pattern. This roughly 1437 /// corresponds to the number of nodes that are covered. 1438 int PatternToMatch:: 1439 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1440 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1441 } 1442 1443 /// getPredicateCheck - Return a single string containing all of this 1444 /// pattern's predicates concatenated with "&&" operators. 1445 /// 1446 std::string PatternToMatch::getPredicateCheck() const { 1447 SmallVector<const Predicate*,4> PredList; 1448 for (const Predicate &P : Predicates) { 1449 if (!P.getCondString().empty()) 1450 PredList.push_back(&P); 1451 } 1452 llvm::sort(PredList, deref<std::less<>>()); 1453 1454 std::string Check; 1455 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1456 if (i != 0) 1457 Check += " && "; 1458 Check += '(' + PredList[i]->getCondString() + ')'; 1459 } 1460 return Check; 1461 } 1462 1463 //===----------------------------------------------------------------------===// 1464 // SDTypeConstraint implementation 1465 // 1466 1467 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1468 OperandNo = R->getValueAsInt("OperandNum"); 1469 1470 if (R->isSubClassOf("SDTCisVT")) { 1471 ConstraintType = SDTCisVT; 1472 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1473 for (const auto &P : VVT) 1474 if (P.second == MVT::isVoid) 1475 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1476 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1477 ConstraintType = SDTCisPtrTy; 1478 } else if (R->isSubClassOf("SDTCisInt")) { 1479 ConstraintType = SDTCisInt; 1480 } else if (R->isSubClassOf("SDTCisFP")) { 1481 ConstraintType = SDTCisFP; 1482 } else if (R->isSubClassOf("SDTCisVec")) { 1483 ConstraintType = SDTCisVec; 1484 } else if (R->isSubClassOf("SDTCisSameAs")) { 1485 ConstraintType = SDTCisSameAs; 1486 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1487 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1488 ConstraintType = SDTCisVTSmallerThanOp; 1489 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1490 R->getValueAsInt("OtherOperandNum"); 1491 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1492 ConstraintType = SDTCisOpSmallerThanOp; 1493 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1494 R->getValueAsInt("BigOperandNum"); 1495 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1496 ConstraintType = SDTCisEltOfVec; 1497 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1498 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1499 ConstraintType = SDTCisSubVecOfVec; 1500 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1501 R->getValueAsInt("OtherOpNum"); 1502 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1503 ConstraintType = SDTCVecEltisVT; 1504 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1505 for (const auto &P : VVT) { 1506 MVT T = P.second; 1507 if (T.isVector()) 1508 PrintFatalError(R->getLoc(), 1509 "Cannot use vector type as SDTCVecEltisVT"); 1510 if (!T.isInteger() && !T.isFloatingPoint()) 1511 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1512 "as SDTCVecEltisVT"); 1513 } 1514 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1515 ConstraintType = SDTCisSameNumEltsAs; 1516 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1517 R->getValueAsInt("OtherOperandNum"); 1518 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1519 ConstraintType = SDTCisSameSizeAs; 1520 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1521 R->getValueAsInt("OtherOperandNum"); 1522 } else { 1523 PrintFatalError(R->getLoc(), 1524 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1525 } 1526 } 1527 1528 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1529 /// N, and the result number in ResNo. 1530 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1531 const SDNodeInfo &NodeInfo, 1532 unsigned &ResNo) { 1533 unsigned NumResults = NodeInfo.getNumResults(); 1534 if (OpNo < NumResults) { 1535 ResNo = OpNo; 1536 return N; 1537 } 1538 1539 OpNo -= NumResults; 1540 1541 if (OpNo >= N->getNumChildren()) { 1542 std::string S; 1543 raw_string_ostream OS(S); 1544 OS << "Invalid operand number in type constraint " 1545 << (OpNo+NumResults) << " "; 1546 N->print(OS); 1547 PrintFatalError(OS.str()); 1548 } 1549 1550 return N->getChild(OpNo); 1551 } 1552 1553 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1554 /// constraint to the nodes operands. This returns true if it makes a 1555 /// change, false otherwise. If a type contradiction is found, flag an error. 1556 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1557 const SDNodeInfo &NodeInfo, 1558 TreePattern &TP) const { 1559 if (TP.hasError()) 1560 return false; 1561 1562 unsigned ResNo = 0; // The result number being referenced. 1563 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1564 TypeInfer &TI = TP.getInfer(); 1565 1566 switch (ConstraintType) { 1567 case SDTCisVT: 1568 // Operand must be a particular type. 1569 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1570 case SDTCisPtrTy: 1571 // Operand must be same as target pointer type. 1572 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1573 case SDTCisInt: 1574 // Require it to be one of the legal integer VTs. 1575 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1576 case SDTCisFP: 1577 // Require it to be one of the legal fp VTs. 1578 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1579 case SDTCisVec: 1580 // Require it to be one of the legal vector VTs. 1581 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1582 case SDTCisSameAs: { 1583 unsigned OResNo = 0; 1584 TreePatternNode *OtherNode = 1585 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1586 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1587 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1588 } 1589 case SDTCisVTSmallerThanOp: { 1590 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1591 // have an integer type that is smaller than the VT. 1592 if (!NodeToApply->isLeaf() || 1593 !isa<DefInit>(NodeToApply->getLeafValue()) || 1594 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1595 ->isSubClassOf("ValueType")) { 1596 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1597 return false; 1598 } 1599 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1600 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1601 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1602 TypeSetByHwMode TypeListTmp(VVT); 1603 1604 unsigned OResNo = 0; 1605 TreePatternNode *OtherNode = 1606 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1607 OResNo); 1608 1609 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1610 } 1611 case SDTCisOpSmallerThanOp: { 1612 unsigned BResNo = 0; 1613 TreePatternNode *BigOperand = 1614 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1615 BResNo); 1616 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1617 BigOperand->getExtType(BResNo)); 1618 } 1619 case SDTCisEltOfVec: { 1620 unsigned VResNo = 0; 1621 TreePatternNode *VecOperand = 1622 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1623 VResNo); 1624 // Filter vector types out of VecOperand that don't have the right element 1625 // type. 1626 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1627 NodeToApply->getExtType(ResNo)); 1628 } 1629 case SDTCisSubVecOfVec: { 1630 unsigned VResNo = 0; 1631 TreePatternNode *BigVecOperand = 1632 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1633 VResNo); 1634 1635 // Filter vector types out of BigVecOperand that don't have the 1636 // right subvector type. 1637 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1638 NodeToApply->getExtType(ResNo)); 1639 } 1640 case SDTCVecEltisVT: { 1641 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1642 } 1643 case SDTCisSameNumEltsAs: { 1644 unsigned OResNo = 0; 1645 TreePatternNode *OtherNode = 1646 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1647 N, NodeInfo, OResNo); 1648 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1649 NodeToApply->getExtType(ResNo)); 1650 } 1651 case SDTCisSameSizeAs: { 1652 unsigned OResNo = 0; 1653 TreePatternNode *OtherNode = 1654 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1655 N, NodeInfo, OResNo); 1656 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1657 NodeToApply->getExtType(ResNo)); 1658 } 1659 } 1660 llvm_unreachable("Invalid ConstraintType!"); 1661 } 1662 1663 // Update the node type to match an instruction operand or result as specified 1664 // in the ins or outs lists on the instruction definition. Return true if the 1665 // type was actually changed. 1666 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1667 Record *Operand, 1668 TreePattern &TP) { 1669 // The 'unknown' operand indicates that types should be inferred from the 1670 // context. 1671 if (Operand->isSubClassOf("unknown_class")) 1672 return false; 1673 1674 // The Operand class specifies a type directly. 1675 if (Operand->isSubClassOf("Operand")) { 1676 Record *R = Operand->getValueAsDef("Type"); 1677 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1678 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1679 } 1680 1681 // PointerLikeRegClass has a type that is determined at runtime. 1682 if (Operand->isSubClassOf("PointerLikeRegClass")) 1683 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1684 1685 // Both RegisterClass and RegisterOperand operands derive their types from a 1686 // register class def. 1687 Record *RC = nullptr; 1688 if (Operand->isSubClassOf("RegisterClass")) 1689 RC = Operand; 1690 else if (Operand->isSubClassOf("RegisterOperand")) 1691 RC = Operand->getValueAsDef("RegClass"); 1692 1693 assert(RC && "Unknown operand type"); 1694 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1695 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1696 } 1697 1698 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1699 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1700 if (!TP.getInfer().isConcrete(Types[i], true)) 1701 return true; 1702 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1703 if (getChild(i)->ContainsUnresolvedType(TP)) 1704 return true; 1705 return false; 1706 } 1707 1708 bool TreePatternNode::hasProperTypeByHwMode() const { 1709 for (const TypeSetByHwMode &S : Types) 1710 if (!S.isDefaultOnly()) 1711 return true; 1712 for (const TreePatternNodePtr &C : Children) 1713 if (C->hasProperTypeByHwMode()) 1714 return true; 1715 return false; 1716 } 1717 1718 bool TreePatternNode::hasPossibleType() const { 1719 for (const TypeSetByHwMode &S : Types) 1720 if (!S.isPossible()) 1721 return false; 1722 for (const TreePatternNodePtr &C : Children) 1723 if (!C->hasPossibleType()) 1724 return false; 1725 return true; 1726 } 1727 1728 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1729 for (TypeSetByHwMode &S : Types) { 1730 S.makeSimple(Mode); 1731 // Check if the selected mode had a type conflict. 1732 if (S.get(DefaultMode).empty()) 1733 return false; 1734 } 1735 for (const TreePatternNodePtr &C : Children) 1736 if (!C->setDefaultMode(Mode)) 1737 return false; 1738 return true; 1739 } 1740 1741 //===----------------------------------------------------------------------===// 1742 // SDNodeInfo implementation 1743 // 1744 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1745 EnumName = R->getValueAsString("Opcode"); 1746 SDClassName = R->getValueAsString("SDClass"); 1747 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1748 NumResults = TypeProfile->getValueAsInt("NumResults"); 1749 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1750 1751 // Parse the properties. 1752 Properties = parseSDPatternOperatorProperties(R); 1753 1754 // Parse the type constraints. 1755 std::vector<Record*> ConstraintList = 1756 TypeProfile->getValueAsListOfDefs("Constraints"); 1757 for (Record *R : ConstraintList) 1758 TypeConstraints.emplace_back(R, CGH); 1759 } 1760 1761 /// getKnownType - If the type constraints on this node imply a fixed type 1762 /// (e.g. all stores return void, etc), then return it as an 1763 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1764 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1765 unsigned NumResults = getNumResults(); 1766 assert(NumResults <= 1 && 1767 "We only work with nodes with zero or one result so far!"); 1768 assert(ResNo == 0 && "Only handles single result nodes so far"); 1769 1770 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1771 // Make sure that this applies to the correct node result. 1772 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1773 continue; 1774 1775 switch (Constraint.ConstraintType) { 1776 default: break; 1777 case SDTypeConstraint::SDTCisVT: 1778 if (Constraint.VVT.isSimple()) 1779 return Constraint.VVT.getSimple().SimpleTy; 1780 break; 1781 case SDTypeConstraint::SDTCisPtrTy: 1782 return MVT::iPTR; 1783 } 1784 } 1785 return MVT::Other; 1786 } 1787 1788 //===----------------------------------------------------------------------===// 1789 // TreePatternNode implementation 1790 // 1791 1792 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1793 if (Operator->getName() == "set" || 1794 Operator->getName() == "implicit") 1795 return 0; // All return nothing. 1796 1797 if (Operator->isSubClassOf("Intrinsic")) 1798 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1799 1800 if (Operator->isSubClassOf("SDNode")) 1801 return CDP.getSDNodeInfo(Operator).getNumResults(); 1802 1803 if (Operator->isSubClassOf("PatFrags")) { 1804 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1805 // the forward reference case where one pattern fragment references another 1806 // before it is processed. 1807 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1808 // The number of results of a fragment with alternative records is the 1809 // maximum number of results across all alternatives. 1810 unsigned NumResults = 0; 1811 for (const auto &T : PFRec->getTrees()) 1812 NumResults = std::max(NumResults, T->getNumTypes()); 1813 return NumResults; 1814 } 1815 1816 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1817 assert(LI && "Invalid Fragment"); 1818 unsigned NumResults = 0; 1819 for (Init *I : LI->getValues()) { 1820 Record *Op = nullptr; 1821 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1822 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1823 Op = DI->getDef(); 1824 assert(Op && "Invalid Fragment"); 1825 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1826 } 1827 return NumResults; 1828 } 1829 1830 if (Operator->isSubClassOf("Instruction")) { 1831 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1832 1833 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1834 1835 // Subtract any defaulted outputs. 1836 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1837 Record *OperandNode = InstInfo.Operands[i].Rec; 1838 1839 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1840 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1841 --NumDefsToAdd; 1842 } 1843 1844 // Add on one implicit def if it has a resolvable type. 1845 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1846 ++NumDefsToAdd; 1847 return NumDefsToAdd; 1848 } 1849 1850 if (Operator->isSubClassOf("SDNodeXForm")) 1851 return 1; // FIXME: Generalize SDNodeXForm 1852 1853 if (Operator->isSubClassOf("ValueType")) 1854 return 1; // A type-cast of one result. 1855 1856 if (Operator->isSubClassOf("ComplexPattern")) 1857 return 1; 1858 1859 errs() << *Operator; 1860 PrintFatalError("Unhandled node in GetNumNodeResults"); 1861 } 1862 1863 void TreePatternNode::print(raw_ostream &OS) const { 1864 if (isLeaf()) 1865 OS << *getLeafValue(); 1866 else 1867 OS << '(' << getOperator()->getName(); 1868 1869 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1870 OS << ':'; 1871 getExtType(i).writeToStream(OS); 1872 } 1873 1874 if (!isLeaf()) { 1875 if (getNumChildren() != 0) { 1876 OS << " "; 1877 ListSeparator LS; 1878 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1879 OS << LS; 1880 getChild(i)->print(OS); 1881 } 1882 } 1883 OS << ")"; 1884 } 1885 1886 for (const TreePredicateCall &Pred : PredicateCalls) { 1887 OS << "<<P:"; 1888 if (Pred.Scope) 1889 OS << Pred.Scope << ":"; 1890 OS << Pred.Fn.getFnName() << ">>"; 1891 } 1892 if (TransformFn) 1893 OS << "<<X:" << TransformFn->getName() << ">>"; 1894 if (!getName().empty()) 1895 OS << ":$" << getName(); 1896 1897 for (const ScopedName &Name : NamesAsPredicateArg) 1898 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1899 } 1900 void TreePatternNode::dump() const { 1901 print(errs()); 1902 } 1903 1904 /// isIsomorphicTo - Return true if this node is recursively 1905 /// isomorphic to the specified node. For this comparison, the node's 1906 /// entire state is considered. The assigned name is ignored, since 1907 /// nodes with differing names are considered isomorphic. However, if 1908 /// the assigned name is present in the dependent variable set, then 1909 /// the assigned name is considered significant and the node is 1910 /// isomorphic if the names match. 1911 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1912 const MultipleUseVarSet &DepVars) const { 1913 if (N == this) return true; 1914 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1915 getPredicateCalls() != N->getPredicateCalls() || 1916 getTransformFn() != N->getTransformFn()) 1917 return false; 1918 1919 if (isLeaf()) { 1920 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1921 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1922 return ((DI->getDef() == NDI->getDef()) 1923 && (DepVars.find(getName()) == DepVars.end() 1924 || getName() == N->getName())); 1925 } 1926 } 1927 return getLeafValue() == N->getLeafValue(); 1928 } 1929 1930 if (N->getOperator() != getOperator() || 1931 N->getNumChildren() != getNumChildren()) return false; 1932 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1933 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1934 return false; 1935 return true; 1936 } 1937 1938 /// clone - Make a copy of this tree and all of its children. 1939 /// 1940 TreePatternNodePtr TreePatternNode::clone() const { 1941 TreePatternNodePtr New; 1942 if (isLeaf()) { 1943 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1944 } else { 1945 std::vector<TreePatternNodePtr> CChildren; 1946 CChildren.reserve(Children.size()); 1947 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1948 CChildren.push_back(getChild(i)->clone()); 1949 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1950 getNumTypes()); 1951 } 1952 New->setName(getName()); 1953 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1954 New->Types = Types; 1955 New->setPredicateCalls(getPredicateCalls()); 1956 New->setTransformFn(getTransformFn()); 1957 return New; 1958 } 1959 1960 /// RemoveAllTypes - Recursively strip all the types of this tree. 1961 void TreePatternNode::RemoveAllTypes() { 1962 // Reset to unknown type. 1963 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1964 if (isLeaf()) return; 1965 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1966 getChild(i)->RemoveAllTypes(); 1967 } 1968 1969 1970 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1971 /// with actual values specified by ArgMap. 1972 void TreePatternNode::SubstituteFormalArguments( 1973 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1974 if (isLeaf()) return; 1975 1976 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1977 TreePatternNode *Child = getChild(i); 1978 if (Child->isLeaf()) { 1979 Init *Val = Child->getLeafValue(); 1980 // Note that, when substituting into an output pattern, Val might be an 1981 // UnsetInit. 1982 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1983 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1984 // We found a use of a formal argument, replace it with its value. 1985 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1986 assert(NewChild && "Couldn't find formal argument!"); 1987 assert((Child->getPredicateCalls().empty() || 1988 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1989 "Non-empty child predicate clobbered!"); 1990 setChild(i, std::move(NewChild)); 1991 } 1992 } else { 1993 getChild(i)->SubstituteFormalArguments(ArgMap); 1994 } 1995 } 1996 } 1997 1998 1999 /// InlinePatternFragments - If this pattern refers to any pattern 2000 /// fragments, return the set of inlined versions (this can be more than 2001 /// one if a PatFrags record has multiple alternatives). 2002 void TreePatternNode::InlinePatternFragments( 2003 TreePatternNodePtr T, TreePattern &TP, 2004 std::vector<TreePatternNodePtr> &OutAlternatives) { 2005 2006 if (TP.hasError()) 2007 return; 2008 2009 if (isLeaf()) { 2010 OutAlternatives.push_back(T); // nothing to do. 2011 return; 2012 } 2013 2014 Record *Op = getOperator(); 2015 2016 if (!Op->isSubClassOf("PatFrags")) { 2017 if (getNumChildren() == 0) { 2018 OutAlternatives.push_back(T); 2019 return; 2020 } 2021 2022 // Recursively inline children nodes. 2023 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2024 ChildAlternatives.resize(getNumChildren()); 2025 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2026 TreePatternNodePtr Child = getChildShared(i); 2027 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2028 // If there are no alternatives for any child, there are no 2029 // alternatives for this expression as whole. 2030 if (ChildAlternatives[i].empty()) 2031 return; 2032 2033 assert((Child->getPredicateCalls().empty() || 2034 llvm::all_of(ChildAlternatives[i], 2035 [&](const TreePatternNodePtr &NewChild) { 2036 return NewChild->getPredicateCalls() == 2037 Child->getPredicateCalls(); 2038 })) && 2039 "Non-empty child predicate clobbered!"); 2040 } 2041 2042 // The end result is an all-pairs construction of the resultant pattern. 2043 std::vector<unsigned> Idxs; 2044 Idxs.resize(ChildAlternatives.size()); 2045 bool NotDone; 2046 do { 2047 // Create the variant and add it to the output list. 2048 std::vector<TreePatternNodePtr> NewChildren; 2049 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2050 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2051 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2052 getOperator(), std::move(NewChildren), getNumTypes()); 2053 2054 // Copy over properties. 2055 R->setName(getName()); 2056 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2057 R->setPredicateCalls(getPredicateCalls()); 2058 R->setTransformFn(getTransformFn()); 2059 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2060 R->setType(i, getExtType(i)); 2061 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2062 R->setResultIndex(i, getResultIndex(i)); 2063 2064 // Register alternative. 2065 OutAlternatives.push_back(R); 2066 2067 // Increment indices to the next permutation by incrementing the 2068 // indices from last index backward, e.g., generate the sequence 2069 // [0, 0], [0, 1], [1, 0], [1, 1]. 2070 int IdxsIdx; 2071 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2072 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2073 Idxs[IdxsIdx] = 0; 2074 else 2075 break; 2076 } 2077 NotDone = (IdxsIdx >= 0); 2078 } while (NotDone); 2079 2080 return; 2081 } 2082 2083 // Otherwise, we found a reference to a fragment. First, look up its 2084 // TreePattern record. 2085 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2086 2087 // Verify that we are passing the right number of operands. 2088 if (Frag->getNumArgs() != Children.size()) { 2089 TP.error("'" + Op->getName() + "' fragment requires " + 2090 Twine(Frag->getNumArgs()) + " operands!"); 2091 return; 2092 } 2093 2094 TreePredicateFn PredFn(Frag); 2095 unsigned Scope = 0; 2096 if (TreePredicateFn(Frag).usesOperands()) 2097 Scope = TP.getDAGPatterns().allocateScope(); 2098 2099 // Compute the map of formal to actual arguments. 2100 std::map<std::string, TreePatternNodePtr> ArgMap; 2101 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2102 TreePatternNodePtr Child = getChildShared(i); 2103 if (Scope != 0) { 2104 Child = Child->clone(); 2105 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2106 } 2107 ArgMap[Frag->getArgName(i)] = Child; 2108 } 2109 2110 // Loop over all fragment alternatives. 2111 for (const auto &Alternative : Frag->getTrees()) { 2112 TreePatternNodePtr FragTree = Alternative->clone(); 2113 2114 if (!PredFn.isAlwaysTrue()) 2115 FragTree->addPredicateCall(PredFn, Scope); 2116 2117 // Resolve formal arguments to their actual value. 2118 if (Frag->getNumArgs()) 2119 FragTree->SubstituteFormalArguments(ArgMap); 2120 2121 // Transfer types. Note that the resolved alternative may have fewer 2122 // (but not more) results than the PatFrags node. 2123 FragTree->setName(getName()); 2124 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2125 FragTree->UpdateNodeType(i, getExtType(i), TP); 2126 2127 // Transfer in the old predicates. 2128 for (const TreePredicateCall &Pred : getPredicateCalls()) 2129 FragTree->addPredicateCall(Pred); 2130 2131 // The fragment we inlined could have recursive inlining that is needed. See 2132 // if there are any pattern fragments in it and inline them as needed. 2133 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2134 } 2135 } 2136 2137 /// getImplicitType - Check to see if the specified record has an implicit 2138 /// type which should be applied to it. This will infer the type of register 2139 /// references from the register file information, for example. 2140 /// 2141 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2142 /// the F8RC register class argument in: 2143 /// 2144 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2145 /// 2146 /// When Unnamed is false, return the type of a named DAG operand such as the 2147 /// GPR:$src operand above. 2148 /// 2149 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2150 bool NotRegisters, 2151 bool Unnamed, 2152 TreePattern &TP) { 2153 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2154 2155 // Check to see if this is a register operand. 2156 if (R->isSubClassOf("RegisterOperand")) { 2157 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2158 if (NotRegisters) 2159 return TypeSetByHwMode(); // Unknown. 2160 Record *RegClass = R->getValueAsDef("RegClass"); 2161 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2162 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2163 } 2164 2165 // Check to see if this is a register or a register class. 2166 if (R->isSubClassOf("RegisterClass")) { 2167 assert(ResNo == 0 && "Regclass ref only has one result!"); 2168 // An unnamed register class represents itself as an i32 immediate, for 2169 // example on a COPY_TO_REGCLASS instruction. 2170 if (Unnamed) 2171 return TypeSetByHwMode(MVT::i32); 2172 2173 // In a named operand, the register class provides the possible set of 2174 // types. 2175 if (NotRegisters) 2176 return TypeSetByHwMode(); // Unknown. 2177 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2178 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2179 } 2180 2181 if (R->isSubClassOf("PatFrags")) { 2182 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2183 // Pattern fragment types will be resolved when they are inlined. 2184 return TypeSetByHwMode(); // Unknown. 2185 } 2186 2187 if (R->isSubClassOf("Register")) { 2188 assert(ResNo == 0 && "Registers only produce one result!"); 2189 if (NotRegisters) 2190 return TypeSetByHwMode(); // Unknown. 2191 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2192 return TypeSetByHwMode(T.getRegisterVTs(R)); 2193 } 2194 2195 if (R->isSubClassOf("SubRegIndex")) { 2196 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2197 return TypeSetByHwMode(MVT::i32); 2198 } 2199 2200 if (R->isSubClassOf("ValueType")) { 2201 assert(ResNo == 0 && "This node only has one result!"); 2202 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2203 // 2204 // (sext_inreg GPR:$src, i16) 2205 // ~~~ 2206 if (Unnamed) 2207 return TypeSetByHwMode(MVT::Other); 2208 // With a name, the ValueType simply provides the type of the named 2209 // variable. 2210 // 2211 // (sext_inreg i32:$src, i16) 2212 // ~~~~~~~~ 2213 if (NotRegisters) 2214 return TypeSetByHwMode(); // Unknown. 2215 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2216 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2217 } 2218 2219 if (R->isSubClassOf("CondCode")) { 2220 assert(ResNo == 0 && "This node only has one result!"); 2221 // Using a CondCodeSDNode. 2222 return TypeSetByHwMode(MVT::Other); 2223 } 2224 2225 if (R->isSubClassOf("ComplexPattern")) { 2226 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2227 if (NotRegisters) 2228 return TypeSetByHwMode(); // Unknown. 2229 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2230 } 2231 if (R->isSubClassOf("PointerLikeRegClass")) { 2232 assert(ResNo == 0 && "Regclass can only have one result!"); 2233 TypeSetByHwMode VTS(MVT::iPTR); 2234 TP.getInfer().expandOverloads(VTS); 2235 return VTS; 2236 } 2237 2238 if (R->getName() == "node" || R->getName() == "srcvalue" || 2239 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2240 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2241 // Placeholder. 2242 return TypeSetByHwMode(); // Unknown. 2243 } 2244 2245 if (R->isSubClassOf("Operand")) { 2246 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2247 Record *T = R->getValueAsDef("Type"); 2248 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2249 } 2250 2251 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2252 return TypeSetByHwMode(MVT::Other); 2253 } 2254 2255 2256 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2257 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2258 const CodeGenIntrinsic *TreePatternNode:: 2259 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2260 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2261 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2262 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2263 return nullptr; 2264 2265 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2266 return &CDP.getIntrinsicInfo(IID); 2267 } 2268 2269 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2270 /// return the ComplexPattern information, otherwise return null. 2271 const ComplexPattern * 2272 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2273 Record *Rec; 2274 if (isLeaf()) { 2275 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2276 if (!DI) 2277 return nullptr; 2278 Rec = DI->getDef(); 2279 } else 2280 Rec = getOperator(); 2281 2282 if (!Rec->isSubClassOf("ComplexPattern")) 2283 return nullptr; 2284 return &CGP.getComplexPattern(Rec); 2285 } 2286 2287 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2288 // A ComplexPattern specifically declares how many results it fills in. 2289 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2290 return CP->getNumOperands(); 2291 2292 // If MIOperandInfo is specified, that gives the count. 2293 if (isLeaf()) { 2294 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2295 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2296 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2297 if (MIOps->getNumArgs()) 2298 return MIOps->getNumArgs(); 2299 } 2300 } 2301 2302 // Otherwise there is just one result. 2303 return 1; 2304 } 2305 2306 /// NodeHasProperty - Return true if this node has the specified property. 2307 bool TreePatternNode::NodeHasProperty(SDNP Property, 2308 const CodeGenDAGPatterns &CGP) const { 2309 if (isLeaf()) { 2310 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2311 return CP->hasProperty(Property); 2312 2313 return false; 2314 } 2315 2316 if (Property != SDNPHasChain) { 2317 // The chain proprety is already present on the different intrinsic node 2318 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2319 // on the intrinsic. Anything else is specific to the individual intrinsic. 2320 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2321 return Int->hasProperty(Property); 2322 } 2323 2324 if (!Operator->isSubClassOf("SDPatternOperator")) 2325 return false; 2326 2327 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2328 } 2329 2330 2331 2332 2333 /// TreeHasProperty - Return true if any node in this tree has the specified 2334 /// property. 2335 bool TreePatternNode::TreeHasProperty(SDNP Property, 2336 const CodeGenDAGPatterns &CGP) const { 2337 if (NodeHasProperty(Property, CGP)) 2338 return true; 2339 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2340 if (getChild(i)->TreeHasProperty(Property, CGP)) 2341 return true; 2342 return false; 2343 } 2344 2345 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2346 /// commutative intrinsic. 2347 bool 2348 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2349 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2350 return Int->isCommutative; 2351 return false; 2352 } 2353 2354 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2355 if (!N->isLeaf()) 2356 return N->getOperator()->isSubClassOf(Class); 2357 2358 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2359 if (DI && DI->getDef()->isSubClassOf(Class)) 2360 return true; 2361 2362 return false; 2363 } 2364 2365 static void emitTooManyOperandsError(TreePattern &TP, 2366 StringRef InstName, 2367 unsigned Expected, 2368 unsigned Actual) { 2369 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2370 " operands but expected only " + Twine(Expected) + "!"); 2371 } 2372 2373 static void emitTooFewOperandsError(TreePattern &TP, 2374 StringRef InstName, 2375 unsigned Actual) { 2376 TP.error("Instruction '" + InstName + 2377 "' expects more than the provided " + Twine(Actual) + " operands!"); 2378 } 2379 2380 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2381 /// this node and its children in the tree. This returns true if it makes a 2382 /// change, false otherwise. If a type contradiction is found, flag an error. 2383 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2384 if (TP.hasError()) 2385 return false; 2386 2387 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2388 if (isLeaf()) { 2389 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2390 // If it's a regclass or something else known, include the type. 2391 bool MadeChange = false; 2392 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2393 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2394 NotRegisters, 2395 !hasName(), TP), TP); 2396 return MadeChange; 2397 } 2398 2399 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2400 assert(Types.size() == 1 && "Invalid IntInit"); 2401 2402 // Int inits are always integers. :) 2403 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2404 2405 if (!TP.getInfer().isConcrete(Types[0], false)) 2406 return MadeChange; 2407 2408 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2409 for (auto &P : VVT) { 2410 MVT::SimpleValueType VT = P.second.SimpleTy; 2411 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2412 continue; 2413 unsigned Size = MVT(VT).getFixedSizeInBits(); 2414 // Make sure that the value is representable for this type. 2415 if (Size >= 32) 2416 continue; 2417 // Check that the value doesn't use more bits than we have. It must 2418 // either be a sign- or zero-extended equivalent of the original. 2419 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2420 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2421 SignBitAndAbove == 1) 2422 continue; 2423 2424 TP.error("Integer value '" + Twine(II->getValue()) + 2425 "' is out of range for type '" + getEnumName(VT) + "'!"); 2426 break; 2427 } 2428 return MadeChange; 2429 } 2430 2431 return false; 2432 } 2433 2434 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2435 bool MadeChange = false; 2436 2437 // Apply the result type to the node. 2438 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2439 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2440 2441 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2442 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2443 2444 if (getNumChildren() != NumParamVTs + 1) { 2445 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2446 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2447 return false; 2448 } 2449 2450 // Apply type info to the intrinsic ID. 2451 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2452 2453 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2454 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2455 2456 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2457 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2458 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2459 } 2460 return MadeChange; 2461 } 2462 2463 if (getOperator()->isSubClassOf("SDNode")) { 2464 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2465 2466 // Check that the number of operands is sane. Negative operands -> varargs. 2467 if (NI.getNumOperands() >= 0 && 2468 getNumChildren() != (unsigned)NI.getNumOperands()) { 2469 TP.error(getOperator()->getName() + " node requires exactly " + 2470 Twine(NI.getNumOperands()) + " operands!"); 2471 return false; 2472 } 2473 2474 bool MadeChange = false; 2475 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2476 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2477 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2478 return MadeChange; 2479 } 2480 2481 if (getOperator()->isSubClassOf("Instruction")) { 2482 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2483 CodeGenInstruction &InstInfo = 2484 CDP.getTargetInfo().getInstruction(getOperator()); 2485 2486 bool MadeChange = false; 2487 2488 // Apply the result types to the node, these come from the things in the 2489 // (outs) list of the instruction. 2490 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2491 Inst.getNumResults()); 2492 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2493 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2494 2495 // If the instruction has implicit defs, we apply the first one as a result. 2496 // FIXME: This sucks, it should apply all implicit defs. 2497 if (!InstInfo.ImplicitDefs.empty()) { 2498 unsigned ResNo = NumResultsToAdd; 2499 2500 // FIXME: Generalize to multiple possible types and multiple possible 2501 // ImplicitDefs. 2502 MVT::SimpleValueType VT = 2503 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2504 2505 if (VT != MVT::Other) 2506 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2507 } 2508 2509 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2510 // be the same. 2511 if (getOperator()->getName() == "INSERT_SUBREG") { 2512 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2513 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2514 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2515 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2516 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2517 // variadic. 2518 2519 unsigned NChild = getNumChildren(); 2520 if (NChild < 3) { 2521 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2522 return false; 2523 } 2524 2525 if (NChild % 2 == 0) { 2526 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2527 return false; 2528 } 2529 2530 if (!isOperandClass(getChild(0), "RegisterClass")) { 2531 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2532 return false; 2533 } 2534 2535 for (unsigned I = 1; I < NChild; I += 2) { 2536 TreePatternNode *SubIdxChild = getChild(I + 1); 2537 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2538 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2539 Twine(I + 1) + "!"); 2540 return false; 2541 } 2542 } 2543 } 2544 2545 unsigned NumResults = Inst.getNumResults(); 2546 unsigned NumFixedOperands = InstInfo.Operands.size(); 2547 2548 // If one or more operands with a default value appear at the end of the 2549 // formal operand list for an instruction, we allow them to be overridden 2550 // by optional operands provided in the pattern. 2551 // 2552 // But if an operand B without a default appears at any point after an 2553 // operand A with a default, then we don't allow A to be overridden, 2554 // because there would be no way to specify whether the next operand in 2555 // the pattern was intended to override A or skip it. 2556 unsigned NonOverridableOperands = NumFixedOperands; 2557 while (NonOverridableOperands > NumResults && 2558 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2559 --NonOverridableOperands; 2560 2561 unsigned ChildNo = 0; 2562 assert(NumResults <= NumFixedOperands); 2563 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2564 Record *OperandNode = InstInfo.Operands[i].Rec; 2565 2566 // If the operand has a default value, do we use it? We must use the 2567 // default if we've run out of children of the pattern DAG to consume, 2568 // or if the operand is followed by a non-defaulted one. 2569 if (CDP.operandHasDefault(OperandNode) && 2570 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2571 continue; 2572 2573 // If we have run out of child nodes and there _isn't_ a default 2574 // value we can use for the next operand, give an error. 2575 if (ChildNo >= getNumChildren()) { 2576 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2577 return false; 2578 } 2579 2580 TreePatternNode *Child = getChild(ChildNo++); 2581 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2582 2583 // If the operand has sub-operands, they may be provided by distinct 2584 // child patterns, so attempt to match each sub-operand separately. 2585 if (OperandNode->isSubClassOf("Operand")) { 2586 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2587 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2588 // But don't do that if the whole operand is being provided by 2589 // a single ComplexPattern-related Operand. 2590 2591 if (Child->getNumMIResults(CDP) < NumArgs) { 2592 // Match first sub-operand against the child we already have. 2593 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2594 MadeChange |= 2595 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2596 2597 // And the remaining sub-operands against subsequent children. 2598 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2599 if (ChildNo >= getNumChildren()) { 2600 emitTooFewOperandsError(TP, getOperator()->getName(), 2601 getNumChildren()); 2602 return false; 2603 } 2604 Child = getChild(ChildNo++); 2605 2606 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2607 MadeChange |= 2608 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2609 } 2610 continue; 2611 } 2612 } 2613 } 2614 2615 // If we didn't match by pieces above, attempt to match the whole 2616 // operand now. 2617 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2618 } 2619 2620 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2621 emitTooManyOperandsError(TP, getOperator()->getName(), 2622 ChildNo, getNumChildren()); 2623 return false; 2624 } 2625 2626 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2627 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2628 return MadeChange; 2629 } 2630 2631 if (getOperator()->isSubClassOf("ComplexPattern")) { 2632 bool MadeChange = false; 2633 2634 for (unsigned i = 0; i < getNumChildren(); ++i) 2635 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2636 2637 return MadeChange; 2638 } 2639 2640 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2641 2642 // Node transforms always take one operand. 2643 if (getNumChildren() != 1) { 2644 TP.error("Node transform '" + getOperator()->getName() + 2645 "' requires one operand!"); 2646 return false; 2647 } 2648 2649 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2650 return MadeChange; 2651 } 2652 2653 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2654 /// RHS of a commutative operation, not the on LHS. 2655 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2656 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2657 return true; 2658 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2659 return true; 2660 if (isImmAllOnesAllZerosMatch(N)) 2661 return true; 2662 return false; 2663 } 2664 2665 2666 /// canPatternMatch - If it is impossible for this pattern to match on this 2667 /// target, fill in Reason and return false. Otherwise, return true. This is 2668 /// used as a sanity check for .td files (to prevent people from writing stuff 2669 /// that can never possibly work), and to prevent the pattern permuter from 2670 /// generating stuff that is useless. 2671 bool TreePatternNode::canPatternMatch(std::string &Reason, 2672 const CodeGenDAGPatterns &CDP) { 2673 if (isLeaf()) return true; 2674 2675 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2676 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2677 return false; 2678 2679 // If this is an intrinsic, handle cases that would make it not match. For 2680 // example, if an operand is required to be an immediate. 2681 if (getOperator()->isSubClassOf("Intrinsic")) { 2682 // TODO: 2683 return true; 2684 } 2685 2686 if (getOperator()->isSubClassOf("ComplexPattern")) 2687 return true; 2688 2689 // If this node is a commutative operator, check that the LHS isn't an 2690 // immediate. 2691 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2692 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2693 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2694 // Scan all of the operands of the node and make sure that only the last one 2695 // is a constant node, unless the RHS also is. 2696 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2697 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2698 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2699 if (OnlyOnRHSOfCommutative(getChild(i))) { 2700 Reason="Immediate value must be on the RHS of commutative operators!"; 2701 return false; 2702 } 2703 } 2704 } 2705 2706 return true; 2707 } 2708 2709 //===----------------------------------------------------------------------===// 2710 // TreePattern implementation 2711 // 2712 2713 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2714 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2715 isInputPattern(isInput), HasError(false), 2716 Infer(*this) { 2717 for (Init *I : RawPat->getValues()) 2718 Trees.push_back(ParseTreePattern(I, "")); 2719 } 2720 2721 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2722 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2723 isInputPattern(isInput), HasError(false), 2724 Infer(*this) { 2725 Trees.push_back(ParseTreePattern(Pat, "")); 2726 } 2727 2728 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2729 CodeGenDAGPatterns &cdp) 2730 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2731 Infer(*this) { 2732 Trees.push_back(Pat); 2733 } 2734 2735 void TreePattern::error(const Twine &Msg) { 2736 if (HasError) 2737 return; 2738 dump(); 2739 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2740 HasError = true; 2741 } 2742 2743 void TreePattern::ComputeNamedNodes() { 2744 for (TreePatternNodePtr &Tree : Trees) 2745 ComputeNamedNodes(Tree.get()); 2746 } 2747 2748 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2749 if (!N->getName().empty()) 2750 NamedNodes[N->getName()].push_back(N); 2751 2752 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2753 ComputeNamedNodes(N->getChild(i)); 2754 } 2755 2756 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2757 StringRef OpName) { 2758 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2759 Record *R = DI->getDef(); 2760 2761 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2762 // TreePatternNode of its own. For example: 2763 /// (foo GPR, imm) -> (foo GPR, (imm)) 2764 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2765 return ParseTreePattern( 2766 DagInit::get(DI, nullptr, 2767 std::vector<std::pair<Init*, StringInit*> >()), 2768 OpName); 2769 2770 // Input argument? 2771 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2772 if (R->getName() == "node" && !OpName.empty()) { 2773 if (OpName.empty()) 2774 error("'node' argument requires a name to match with operand list"); 2775 Args.push_back(std::string(OpName)); 2776 } 2777 2778 Res->setName(OpName); 2779 return Res; 2780 } 2781 2782 // ?:$name or just $name. 2783 if (isa<UnsetInit>(TheInit)) { 2784 if (OpName.empty()) 2785 error("'?' argument requires a name to match with operand list"); 2786 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2787 Args.push_back(std::string(OpName)); 2788 Res->setName(OpName); 2789 return Res; 2790 } 2791 2792 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2793 if (!OpName.empty()) 2794 error("Constant int or bit argument should not have a name!"); 2795 if (isa<BitInit>(TheInit)) 2796 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2797 return std::make_shared<TreePatternNode>(TheInit, 1); 2798 } 2799 2800 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2801 // Turn this into an IntInit. 2802 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2803 if (!II || !isa<IntInit>(II)) 2804 error("Bits value must be constants!"); 2805 return ParseTreePattern(II, OpName); 2806 } 2807 2808 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2809 if (!Dag) { 2810 TheInit->print(errs()); 2811 error("Pattern has unexpected init kind!"); 2812 } 2813 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2814 if (!OpDef) error("Pattern has unexpected operator type!"); 2815 Record *Operator = OpDef->getDef(); 2816 2817 if (Operator->isSubClassOf("ValueType")) { 2818 // If the operator is a ValueType, then this must be "type cast" of a leaf 2819 // node. 2820 if (Dag->getNumArgs() != 1) 2821 error("Type cast only takes one operand!"); 2822 2823 TreePatternNodePtr New = 2824 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2825 2826 // Apply the type cast. 2827 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2828 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2829 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2830 2831 if (!OpName.empty()) 2832 error("ValueType cast should not have a name!"); 2833 return New; 2834 } 2835 2836 // Verify that this is something that makes sense for an operator. 2837 if (!Operator->isSubClassOf("PatFrags") && 2838 !Operator->isSubClassOf("SDNode") && 2839 !Operator->isSubClassOf("Instruction") && 2840 !Operator->isSubClassOf("SDNodeXForm") && 2841 !Operator->isSubClassOf("Intrinsic") && 2842 !Operator->isSubClassOf("ComplexPattern") && 2843 Operator->getName() != "set" && 2844 Operator->getName() != "implicit") 2845 error("Unrecognized node '" + Operator->getName() + "'!"); 2846 2847 // Check to see if this is something that is illegal in an input pattern. 2848 if (isInputPattern) { 2849 if (Operator->isSubClassOf("Instruction") || 2850 Operator->isSubClassOf("SDNodeXForm")) 2851 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2852 } else { 2853 if (Operator->isSubClassOf("Intrinsic")) 2854 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2855 2856 if (Operator->isSubClassOf("SDNode") && 2857 Operator->getName() != "imm" && 2858 Operator->getName() != "timm" && 2859 Operator->getName() != "fpimm" && 2860 Operator->getName() != "tglobaltlsaddr" && 2861 Operator->getName() != "tconstpool" && 2862 Operator->getName() != "tjumptable" && 2863 Operator->getName() != "tframeindex" && 2864 Operator->getName() != "texternalsym" && 2865 Operator->getName() != "tblockaddress" && 2866 Operator->getName() != "tglobaladdr" && 2867 Operator->getName() != "bb" && 2868 Operator->getName() != "vt" && 2869 Operator->getName() != "mcsym") 2870 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2871 } 2872 2873 std::vector<TreePatternNodePtr> Children; 2874 2875 // Parse all the operands. 2876 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2877 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2878 2879 // Get the actual number of results before Operator is converted to an intrinsic 2880 // node (which is hard-coded to have either zero or one result). 2881 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2882 2883 // If the operator is an intrinsic, then this is just syntactic sugar for 2884 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2885 // convert the intrinsic name to a number. 2886 if (Operator->isSubClassOf("Intrinsic")) { 2887 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2888 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2889 2890 // If this intrinsic returns void, it must have side-effects and thus a 2891 // chain. 2892 if (Int.IS.RetVTs.empty()) 2893 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2894 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2895 // Has side-effects, requires chain. 2896 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2897 else // Otherwise, no chain. 2898 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2899 2900 Children.insert(Children.begin(), 2901 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2902 } 2903 2904 if (Operator->isSubClassOf("ComplexPattern")) { 2905 for (unsigned i = 0; i < Children.size(); ++i) { 2906 TreePatternNodePtr Child = Children[i]; 2907 2908 if (Child->getName().empty()) 2909 error("All arguments to a ComplexPattern must be named"); 2910 2911 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2912 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2913 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2914 auto OperandId = std::make_pair(Operator, i); 2915 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2916 if (PrevOp != ComplexPatternOperands.end()) { 2917 if (PrevOp->getValue() != OperandId) 2918 error("All ComplexPattern operands must appear consistently: " 2919 "in the same order in just one ComplexPattern instance."); 2920 } else 2921 ComplexPatternOperands[Child->getName()] = OperandId; 2922 } 2923 } 2924 2925 TreePatternNodePtr Result = 2926 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2927 NumResults); 2928 Result->setName(OpName); 2929 2930 if (Dag->getName()) { 2931 assert(Result->getName().empty()); 2932 Result->setName(Dag->getNameStr()); 2933 } 2934 return Result; 2935 } 2936 2937 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2938 /// will never match in favor of something obvious that will. This is here 2939 /// strictly as a convenience to target authors because it allows them to write 2940 /// more type generic things and have useless type casts fold away. 2941 /// 2942 /// This returns true if any change is made. 2943 static bool SimplifyTree(TreePatternNodePtr &N) { 2944 if (N->isLeaf()) 2945 return false; 2946 2947 // If we have a bitconvert with a resolved type and if the source and 2948 // destination types are the same, then the bitconvert is useless, remove it. 2949 // 2950 // We make an exception if the types are completely empty. This can come up 2951 // when the pattern being simplified is in the Fragments list of a PatFrags, 2952 // so that the operand is just an untyped "node". In that situation we leave 2953 // bitconverts unsimplified, and simplify them later once the fragment is 2954 // expanded into its true context. 2955 if (N->getOperator()->getName() == "bitconvert" && 2956 N->getExtType(0).isValueTypeByHwMode(false) && 2957 !N->getExtType(0).empty() && 2958 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2959 N->getName().empty()) { 2960 N = N->getChildShared(0); 2961 SimplifyTree(N); 2962 return true; 2963 } 2964 2965 // Walk all children. 2966 bool MadeChange = false; 2967 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2968 TreePatternNodePtr Child = N->getChildShared(i); 2969 MadeChange |= SimplifyTree(Child); 2970 N->setChild(i, std::move(Child)); 2971 } 2972 return MadeChange; 2973 } 2974 2975 2976 2977 /// InferAllTypes - Infer/propagate as many types throughout the expression 2978 /// patterns as possible. Return true if all types are inferred, false 2979 /// otherwise. Flags an error if a type contradiction is found. 2980 bool TreePattern:: 2981 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2982 if (NamedNodes.empty()) 2983 ComputeNamedNodes(); 2984 2985 bool MadeChange = true; 2986 while (MadeChange) { 2987 MadeChange = false; 2988 for (TreePatternNodePtr &Tree : Trees) { 2989 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2990 MadeChange |= SimplifyTree(Tree); 2991 } 2992 2993 // If there are constraints on our named nodes, apply them. 2994 for (auto &Entry : NamedNodes) { 2995 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2996 2997 // If we have input named node types, propagate their types to the named 2998 // values here. 2999 if (InNamedTypes) { 3000 if (!InNamedTypes->count(Entry.getKey())) { 3001 error("Node '" + std::string(Entry.getKey()) + 3002 "' in output pattern but not input pattern"); 3003 return true; 3004 } 3005 3006 const SmallVectorImpl<TreePatternNode*> &InNodes = 3007 InNamedTypes->find(Entry.getKey())->second; 3008 3009 // The input types should be fully resolved by now. 3010 for (TreePatternNode *Node : Nodes) { 3011 // If this node is a register class, and it is the root of the pattern 3012 // then we're mapping something onto an input register. We allow 3013 // changing the type of the input register in this case. This allows 3014 // us to match things like: 3015 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3016 if (Node == Trees[0].get() && Node->isLeaf()) { 3017 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3018 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3019 DI->getDef()->isSubClassOf("RegisterOperand"))) 3020 continue; 3021 } 3022 3023 assert(Node->getNumTypes() == 1 && 3024 InNodes[0]->getNumTypes() == 1 && 3025 "FIXME: cannot name multiple result nodes yet"); 3026 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3027 *this); 3028 } 3029 } 3030 3031 // If there are multiple nodes with the same name, they must all have the 3032 // same type. 3033 if (Entry.second.size() > 1) { 3034 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3035 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3036 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3037 "FIXME: cannot name multiple result nodes yet"); 3038 3039 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3040 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3041 } 3042 } 3043 } 3044 } 3045 3046 bool HasUnresolvedTypes = false; 3047 for (const TreePatternNodePtr &Tree : Trees) 3048 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3049 return !HasUnresolvedTypes; 3050 } 3051 3052 void TreePattern::print(raw_ostream &OS) const { 3053 OS << getRecord()->getName(); 3054 if (!Args.empty()) { 3055 OS << "("; 3056 ListSeparator LS; 3057 for (const std::string &Arg : Args) 3058 OS << LS << Arg; 3059 OS << ")"; 3060 } 3061 OS << ": "; 3062 3063 if (Trees.size() > 1) 3064 OS << "[\n"; 3065 for (const TreePatternNodePtr &Tree : Trees) { 3066 OS << "\t"; 3067 Tree->print(OS); 3068 OS << "\n"; 3069 } 3070 3071 if (Trees.size() > 1) 3072 OS << "]\n"; 3073 } 3074 3075 void TreePattern::dump() const { print(errs()); } 3076 3077 //===----------------------------------------------------------------------===// 3078 // CodeGenDAGPatterns implementation 3079 // 3080 3081 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3082 PatternRewriterFn PatternRewriter) 3083 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3084 PatternRewriter(PatternRewriter) { 3085 3086 Intrinsics = CodeGenIntrinsicTable(Records); 3087 ParseNodeInfo(); 3088 ParseNodeTransforms(); 3089 ParseComplexPatterns(); 3090 ParsePatternFragments(); 3091 ParseDefaultOperands(); 3092 ParseInstructions(); 3093 ParsePatternFragments(/*OutFrags*/true); 3094 ParsePatterns(); 3095 3096 // Generate variants. For example, commutative patterns can match 3097 // multiple ways. Add them to PatternsToMatch as well. 3098 GenerateVariants(); 3099 3100 // Break patterns with parameterized types into a series of patterns, 3101 // where each one has a fixed type and is predicated on the conditions 3102 // of the associated HW mode. 3103 ExpandHwModeBasedTypes(); 3104 3105 // Infer instruction flags. For example, we can detect loads, 3106 // stores, and side effects in many cases by examining an 3107 // instruction's pattern. 3108 InferInstructionFlags(); 3109 3110 // Verify that instruction flags match the patterns. 3111 VerifyInstructionFlags(); 3112 } 3113 3114 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3115 Record *N = Records.getDef(Name); 3116 if (!N || !N->isSubClassOf("SDNode")) 3117 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3118 3119 return N; 3120 } 3121 3122 // Parse all of the SDNode definitions for the target, populating SDNodes. 3123 void CodeGenDAGPatterns::ParseNodeInfo() { 3124 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3125 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3126 3127 while (!Nodes.empty()) { 3128 Record *R = Nodes.back(); 3129 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3130 Nodes.pop_back(); 3131 } 3132 3133 // Get the builtin intrinsic nodes. 3134 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3135 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3136 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3137 } 3138 3139 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3140 /// map, and emit them to the file as functions. 3141 void CodeGenDAGPatterns::ParseNodeTransforms() { 3142 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3143 while (!Xforms.empty()) { 3144 Record *XFormNode = Xforms.back(); 3145 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3146 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3147 SDNodeXForms.insert( 3148 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3149 3150 Xforms.pop_back(); 3151 } 3152 } 3153 3154 void CodeGenDAGPatterns::ParseComplexPatterns() { 3155 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3156 while (!AMs.empty()) { 3157 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3158 AMs.pop_back(); 3159 } 3160 } 3161 3162 3163 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3164 /// file, building up the PatternFragments map. After we've collected them all, 3165 /// inline fragments together as necessary, so that there are no references left 3166 /// inside a pattern fragment to a pattern fragment. 3167 /// 3168 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3169 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3170 3171 // First step, parse all of the fragments. 3172 for (Record *Frag : Fragments) { 3173 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3174 continue; 3175 3176 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3177 TreePattern *P = 3178 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3179 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3180 *this)).get(); 3181 3182 // Validate the argument list, converting it to set, to discard duplicates. 3183 std::vector<std::string> &Args = P->getArgList(); 3184 // Copy the args so we can take StringRefs to them. 3185 auto ArgsCopy = Args; 3186 SmallDenseSet<StringRef, 4> OperandsSet; 3187 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3188 3189 if (OperandsSet.count("")) 3190 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3191 3192 // Parse the operands list. 3193 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3194 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3195 // Special cases: ops == outs == ins. Different names are used to 3196 // improve readability. 3197 if (!OpsOp || 3198 (OpsOp->getDef()->getName() != "ops" && 3199 OpsOp->getDef()->getName() != "outs" && 3200 OpsOp->getDef()->getName() != "ins")) 3201 P->error("Operands list should start with '(ops ... '!"); 3202 3203 // Copy over the arguments. 3204 Args.clear(); 3205 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3206 if (!isa<DefInit>(OpsList->getArg(j)) || 3207 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3208 P->error("Operands list should all be 'node' values."); 3209 if (!OpsList->getArgName(j)) 3210 P->error("Operands list should have names for each operand!"); 3211 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3212 if (!OperandsSet.count(ArgNameStr)) 3213 P->error("'" + ArgNameStr + 3214 "' does not occur in pattern or was multiply specified!"); 3215 OperandsSet.erase(ArgNameStr); 3216 Args.push_back(std::string(ArgNameStr)); 3217 } 3218 3219 if (!OperandsSet.empty()) 3220 P->error("Operands list does not contain an entry for operand '" + 3221 *OperandsSet.begin() + "'!"); 3222 3223 // If there is a node transformation corresponding to this, keep track of 3224 // it. 3225 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3226 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3227 for (const auto &T : P->getTrees()) 3228 T->setTransformFn(Transform); 3229 } 3230 3231 // Now that we've parsed all of the tree fragments, do a closure on them so 3232 // that there are not references to PatFrags left inside of them. 3233 for (Record *Frag : Fragments) { 3234 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3235 continue; 3236 3237 TreePattern &ThePat = *PatternFragments[Frag]; 3238 ThePat.InlinePatternFragments(); 3239 3240 // Infer as many types as possible. Don't worry about it if we don't infer 3241 // all of them, some may depend on the inputs of the pattern. Also, don't 3242 // validate type sets; validation may cause spurious failures e.g. if a 3243 // fragment needs floating-point types but the current target does not have 3244 // any (this is only an error if that fragment is ever used!). 3245 { 3246 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3247 ThePat.InferAllTypes(); 3248 ThePat.resetError(); 3249 } 3250 3251 // If debugging, print out the pattern fragment result. 3252 LLVM_DEBUG(ThePat.dump()); 3253 } 3254 } 3255 3256 void CodeGenDAGPatterns::ParseDefaultOperands() { 3257 std::vector<Record*> DefaultOps; 3258 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3259 3260 // Find some SDNode. 3261 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3262 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3263 3264 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3265 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3266 3267 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3268 // SomeSDnode so that we can parse this. 3269 std::vector<std::pair<Init*, StringInit*> > Ops; 3270 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3271 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3272 DefaultInfo->getArgName(op))); 3273 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3274 3275 // Create a TreePattern to parse this. 3276 TreePattern P(DefaultOps[i], DI, false, *this); 3277 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3278 3279 // Copy the operands over into a DAGDefaultOperand. 3280 DAGDefaultOperand DefaultOpInfo; 3281 3282 const TreePatternNodePtr &T = P.getTree(0); 3283 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3284 TreePatternNodePtr TPN = T->getChildShared(op); 3285 while (TPN->ApplyTypeConstraints(P, false)) 3286 /* Resolve all types */; 3287 3288 if (TPN->ContainsUnresolvedType(P)) { 3289 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3290 DefaultOps[i]->getName() + 3291 "' doesn't have a concrete type!"); 3292 } 3293 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3294 } 3295 3296 // Insert it into the DefaultOperands map so we can find it later. 3297 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3298 } 3299 } 3300 3301 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3302 /// instruction input. Return true if this is a real use. 3303 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3304 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3305 // No name -> not interesting. 3306 if (Pat->getName().empty()) { 3307 if (Pat->isLeaf()) { 3308 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3309 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3310 DI->getDef()->isSubClassOf("RegisterOperand"))) 3311 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3312 } 3313 return false; 3314 } 3315 3316 Record *Rec; 3317 if (Pat->isLeaf()) { 3318 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3319 if (!DI) 3320 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3321 Rec = DI->getDef(); 3322 } else { 3323 Rec = Pat->getOperator(); 3324 } 3325 3326 // SRCVALUE nodes are ignored. 3327 if (Rec->getName() == "srcvalue") 3328 return false; 3329 3330 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3331 if (!Slot) { 3332 Slot = Pat; 3333 return true; 3334 } 3335 Record *SlotRec; 3336 if (Slot->isLeaf()) { 3337 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3338 } else { 3339 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3340 SlotRec = Slot->getOperator(); 3341 } 3342 3343 // Ensure that the inputs agree if we've already seen this input. 3344 if (Rec != SlotRec) 3345 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3346 // Ensure that the types can agree as well. 3347 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3348 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3349 if (Slot->getExtTypes() != Pat->getExtTypes()) 3350 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3351 return true; 3352 } 3353 3354 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3355 /// part of "I", the instruction), computing the set of inputs and outputs of 3356 /// the pattern. Report errors if we see anything naughty. 3357 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3358 TreePattern &I, TreePatternNodePtr Pat, 3359 std::map<std::string, TreePatternNodePtr> &InstInputs, 3360 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3361 &InstResults, 3362 std::vector<Record *> &InstImpResults) { 3363 3364 // The instruction pattern still has unresolved fragments. For *named* 3365 // nodes we must resolve those here. This may not result in multiple 3366 // alternatives. 3367 if (!Pat->getName().empty()) { 3368 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3369 SrcPattern.InlinePatternFragments(); 3370 SrcPattern.InferAllTypes(); 3371 Pat = SrcPattern.getOnlyTree(); 3372 } 3373 3374 if (Pat->isLeaf()) { 3375 bool isUse = HandleUse(I, Pat, InstInputs); 3376 if (!isUse && Pat->getTransformFn()) 3377 I.error("Cannot specify a transform function for a non-input value!"); 3378 return; 3379 } 3380 3381 if (Pat->getOperator()->getName() == "implicit") { 3382 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3383 TreePatternNode *Dest = Pat->getChild(i); 3384 if (!Dest->isLeaf()) 3385 I.error("implicitly defined value should be a register!"); 3386 3387 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3388 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3389 I.error("implicitly defined value should be a register!"); 3390 InstImpResults.push_back(Val->getDef()); 3391 } 3392 return; 3393 } 3394 3395 if (Pat->getOperator()->getName() != "set") { 3396 // If this is not a set, verify that the children nodes are not void typed, 3397 // and recurse. 3398 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3399 if (Pat->getChild(i)->getNumTypes() == 0) 3400 I.error("Cannot have void nodes inside of patterns!"); 3401 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3402 InstResults, InstImpResults); 3403 } 3404 3405 // If this is a non-leaf node with no children, treat it basically as if 3406 // it were a leaf. This handles nodes like (imm). 3407 bool isUse = HandleUse(I, Pat, InstInputs); 3408 3409 if (!isUse && Pat->getTransformFn()) 3410 I.error("Cannot specify a transform function for a non-input value!"); 3411 return; 3412 } 3413 3414 // Otherwise, this is a set, validate and collect instruction results. 3415 if (Pat->getNumChildren() == 0) 3416 I.error("set requires operands!"); 3417 3418 if (Pat->getTransformFn()) 3419 I.error("Cannot specify a transform function on a set node!"); 3420 3421 // Check the set destinations. 3422 unsigned NumDests = Pat->getNumChildren()-1; 3423 for (unsigned i = 0; i != NumDests; ++i) { 3424 TreePatternNodePtr Dest = Pat->getChildShared(i); 3425 // For set destinations we also must resolve fragments here. 3426 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3427 DestPattern.InlinePatternFragments(); 3428 DestPattern.InferAllTypes(); 3429 Dest = DestPattern.getOnlyTree(); 3430 3431 if (!Dest->isLeaf()) 3432 I.error("set destination should be a register!"); 3433 3434 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3435 if (!Val) { 3436 I.error("set destination should be a register!"); 3437 continue; 3438 } 3439 3440 if (Val->getDef()->isSubClassOf("RegisterClass") || 3441 Val->getDef()->isSubClassOf("ValueType") || 3442 Val->getDef()->isSubClassOf("RegisterOperand") || 3443 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3444 if (Dest->getName().empty()) 3445 I.error("set destination must have a name!"); 3446 if (InstResults.count(Dest->getName())) 3447 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3448 InstResults[Dest->getName()] = Dest; 3449 } else if (Val->getDef()->isSubClassOf("Register")) { 3450 InstImpResults.push_back(Val->getDef()); 3451 } else { 3452 I.error("set destination should be a register!"); 3453 } 3454 } 3455 3456 // Verify and collect info from the computation. 3457 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3458 InstResults, InstImpResults); 3459 } 3460 3461 //===----------------------------------------------------------------------===// 3462 // Instruction Analysis 3463 //===----------------------------------------------------------------------===// 3464 3465 class InstAnalyzer { 3466 const CodeGenDAGPatterns &CDP; 3467 public: 3468 bool hasSideEffects; 3469 bool mayStore; 3470 bool mayLoad; 3471 bool isBitcast; 3472 bool isVariadic; 3473 bool hasChain; 3474 3475 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3476 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3477 isBitcast(false), isVariadic(false), hasChain(false) {} 3478 3479 void Analyze(const PatternToMatch &Pat) { 3480 const TreePatternNode *N = Pat.getSrcPattern(); 3481 AnalyzeNode(N); 3482 // These properties are detected only on the root node. 3483 isBitcast = IsNodeBitcast(N); 3484 } 3485 3486 private: 3487 bool IsNodeBitcast(const TreePatternNode *N) const { 3488 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3489 return false; 3490 3491 if (N->isLeaf()) 3492 return false; 3493 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3494 return false; 3495 3496 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3497 return false; 3498 3499 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3500 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3501 return false; 3502 return OpInfo.getEnumName() == "ISD::BITCAST"; 3503 } 3504 3505 public: 3506 void AnalyzeNode(const TreePatternNode *N) { 3507 if (N->isLeaf()) { 3508 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3509 Record *LeafRec = DI->getDef(); 3510 // Handle ComplexPattern leaves. 3511 if (LeafRec->isSubClassOf("ComplexPattern")) { 3512 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3513 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3514 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3515 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3516 } 3517 } 3518 return; 3519 } 3520 3521 // Analyze children. 3522 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3523 AnalyzeNode(N->getChild(i)); 3524 3525 // Notice properties of the node. 3526 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3527 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3528 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3529 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3530 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3531 3532 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3533 // If this is an intrinsic, analyze it. 3534 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3535 mayLoad = true;// These may load memory. 3536 3537 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3538 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3539 3540 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3541 IntInfo->hasSideEffects) 3542 // ReadWriteMem intrinsics can have other strange effects. 3543 hasSideEffects = true; 3544 } 3545 } 3546 3547 }; 3548 3549 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3550 const InstAnalyzer &PatInfo, 3551 Record *PatDef) { 3552 bool Error = false; 3553 3554 // Remember where InstInfo got its flags. 3555 if (InstInfo.hasUndefFlags()) 3556 InstInfo.InferredFrom = PatDef; 3557 3558 // Check explicitly set flags for consistency. 3559 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3560 !InstInfo.hasSideEffects_Unset) { 3561 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3562 // the pattern has no side effects. That could be useful for div/rem 3563 // instructions that may trap. 3564 if (!InstInfo.hasSideEffects) { 3565 Error = true; 3566 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3567 Twine(InstInfo.hasSideEffects)); 3568 } 3569 } 3570 3571 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3572 Error = true; 3573 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3574 Twine(InstInfo.mayStore)); 3575 } 3576 3577 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3578 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3579 // Some targets translate immediates to loads. 3580 if (!InstInfo.mayLoad) { 3581 Error = true; 3582 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3583 Twine(InstInfo.mayLoad)); 3584 } 3585 } 3586 3587 // Transfer inferred flags. 3588 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3589 InstInfo.mayStore |= PatInfo.mayStore; 3590 InstInfo.mayLoad |= PatInfo.mayLoad; 3591 3592 // These flags are silently added without any verification. 3593 // FIXME: To match historical behavior of TableGen, for now add those flags 3594 // only when we're inferring from the primary instruction pattern. 3595 if (PatDef->isSubClassOf("Instruction")) { 3596 InstInfo.isBitcast |= PatInfo.isBitcast; 3597 InstInfo.hasChain |= PatInfo.hasChain; 3598 InstInfo.hasChain_Inferred = true; 3599 } 3600 3601 // Don't infer isVariadic. This flag means something different on SDNodes and 3602 // instructions. For example, a CALL SDNode is variadic because it has the 3603 // call arguments as operands, but a CALL instruction is not variadic - it 3604 // has argument registers as implicit, not explicit uses. 3605 3606 return Error; 3607 } 3608 3609 /// hasNullFragReference - Return true if the DAG has any reference to the 3610 /// null_frag operator. 3611 static bool hasNullFragReference(DagInit *DI) { 3612 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3613 if (!OpDef) return false; 3614 Record *Operator = OpDef->getDef(); 3615 3616 // If this is the null fragment, return true. 3617 if (Operator->getName() == "null_frag") return true; 3618 // If any of the arguments reference the null fragment, return true. 3619 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3620 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3621 if (Arg->getDef()->getName() == "null_frag") 3622 return true; 3623 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3624 if (Arg && hasNullFragReference(Arg)) 3625 return true; 3626 } 3627 3628 return false; 3629 } 3630 3631 /// hasNullFragReference - Return true if any DAG in the list references 3632 /// the null_frag operator. 3633 static bool hasNullFragReference(ListInit *LI) { 3634 for (Init *I : LI->getValues()) { 3635 DagInit *DI = dyn_cast<DagInit>(I); 3636 assert(DI && "non-dag in an instruction Pattern list?!"); 3637 if (hasNullFragReference(DI)) 3638 return true; 3639 } 3640 return false; 3641 } 3642 3643 /// Get all the instructions in a tree. 3644 static void 3645 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3646 if (Tree->isLeaf()) 3647 return; 3648 if (Tree->getOperator()->isSubClassOf("Instruction")) 3649 Instrs.push_back(Tree->getOperator()); 3650 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3651 getInstructionsInTree(Tree->getChild(i), Instrs); 3652 } 3653 3654 /// Check the class of a pattern leaf node against the instruction operand it 3655 /// represents. 3656 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3657 Record *Leaf) { 3658 if (OI.Rec == Leaf) 3659 return true; 3660 3661 // Allow direct value types to be used in instruction set patterns. 3662 // The type will be checked later. 3663 if (Leaf->isSubClassOf("ValueType")) 3664 return true; 3665 3666 // Patterns can also be ComplexPattern instances. 3667 if (Leaf->isSubClassOf("ComplexPattern")) 3668 return true; 3669 3670 return false; 3671 } 3672 3673 void CodeGenDAGPatterns::parseInstructionPattern( 3674 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3675 3676 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3677 3678 // Parse the instruction. 3679 TreePattern I(CGI.TheDef, Pat, true, *this); 3680 3681 // InstInputs - Keep track of all of the inputs of the instruction, along 3682 // with the record they are declared as. 3683 std::map<std::string, TreePatternNodePtr> InstInputs; 3684 3685 // InstResults - Keep track of all the virtual registers that are 'set' 3686 // in the instruction, including what reg class they are. 3687 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3688 InstResults; 3689 3690 std::vector<Record*> InstImpResults; 3691 3692 // Verify that the top-level forms in the instruction are of void type, and 3693 // fill in the InstResults map. 3694 SmallString<32> TypesString; 3695 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3696 TypesString.clear(); 3697 TreePatternNodePtr Pat = I.getTree(j); 3698 if (Pat->getNumTypes() != 0) { 3699 raw_svector_ostream OS(TypesString); 3700 ListSeparator LS; 3701 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3702 OS << LS; 3703 Pat->getExtType(k).writeToStream(OS); 3704 } 3705 I.error("Top-level forms in instruction pattern should have" 3706 " void types, has types " + 3707 OS.str()); 3708 } 3709 3710 // Find inputs and outputs, and verify the structure of the uses/defs. 3711 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3712 InstImpResults); 3713 } 3714 3715 // Now that we have inputs and outputs of the pattern, inspect the operands 3716 // list for the instruction. This determines the order that operands are 3717 // added to the machine instruction the node corresponds to. 3718 unsigned NumResults = InstResults.size(); 3719 3720 // Parse the operands list from the (ops) list, validating it. 3721 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3722 3723 // Check that all of the results occur first in the list. 3724 std::vector<Record*> Results; 3725 std::vector<unsigned> ResultIndices; 3726 SmallVector<TreePatternNodePtr, 2> ResNodes; 3727 for (unsigned i = 0; i != NumResults; ++i) { 3728 if (i == CGI.Operands.size()) { 3729 const std::string &OpName = 3730 llvm::find_if( 3731 InstResults, 3732 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3733 return P.second; 3734 }) 3735 ->first; 3736 3737 I.error("'" + OpName + "' set but does not appear in operand list!"); 3738 } 3739 3740 const std::string &OpName = CGI.Operands[i].Name; 3741 3742 // Check that it exists in InstResults. 3743 auto InstResultIter = InstResults.find(OpName); 3744 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3745 I.error("Operand $" + OpName + " does not exist in operand list!"); 3746 3747 TreePatternNodePtr RNode = InstResultIter->second; 3748 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3749 ResNodes.push_back(std::move(RNode)); 3750 if (!R) 3751 I.error("Operand $" + OpName + " should be a set destination: all " 3752 "outputs must occur before inputs in operand list!"); 3753 3754 if (!checkOperandClass(CGI.Operands[i], R)) 3755 I.error("Operand $" + OpName + " class mismatch!"); 3756 3757 // Remember the return type. 3758 Results.push_back(CGI.Operands[i].Rec); 3759 3760 // Remember the result index. 3761 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3762 3763 // Okay, this one checks out. 3764 InstResultIter->second = nullptr; 3765 } 3766 3767 // Loop over the inputs next. 3768 std::vector<TreePatternNodePtr> ResultNodeOperands; 3769 std::vector<Record*> Operands; 3770 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3771 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3772 const std::string &OpName = Op.Name; 3773 if (OpName.empty()) 3774 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3775 3776 if (!InstInputs.count(OpName)) { 3777 // If this is an operand with a DefaultOps set filled in, we can ignore 3778 // this. When we codegen it, we will do so as always executed. 3779 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3780 // Does it have a non-empty DefaultOps field? If so, ignore this 3781 // operand. 3782 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3783 continue; 3784 } 3785 I.error("Operand $" + OpName + 3786 " does not appear in the instruction pattern"); 3787 } 3788 TreePatternNodePtr InVal = InstInputs[OpName]; 3789 InstInputs.erase(OpName); // It occurred, remove from map. 3790 3791 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3792 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3793 if (!checkOperandClass(Op, InRec)) 3794 I.error("Operand $" + OpName + "'s register class disagrees" 3795 " between the operand and pattern"); 3796 } 3797 Operands.push_back(Op.Rec); 3798 3799 // Construct the result for the dest-pattern operand list. 3800 TreePatternNodePtr OpNode = InVal->clone(); 3801 3802 // No predicate is useful on the result. 3803 OpNode->clearPredicateCalls(); 3804 3805 // Promote the xform function to be an explicit node if set. 3806 if (Record *Xform = OpNode->getTransformFn()) { 3807 OpNode->setTransformFn(nullptr); 3808 std::vector<TreePatternNodePtr> Children; 3809 Children.push_back(OpNode); 3810 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3811 OpNode->getNumTypes()); 3812 } 3813 3814 ResultNodeOperands.push_back(std::move(OpNode)); 3815 } 3816 3817 if (!InstInputs.empty()) 3818 I.error("Input operand $" + InstInputs.begin()->first + 3819 " occurs in pattern but not in operands list!"); 3820 3821 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3822 I.getRecord(), std::move(ResultNodeOperands), 3823 GetNumNodeResults(I.getRecord(), *this)); 3824 // Copy fully inferred output node types to instruction result pattern. 3825 for (unsigned i = 0; i != NumResults; ++i) { 3826 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3827 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3828 ResultPattern->setResultIndex(i, ResultIndices[i]); 3829 } 3830 3831 // FIXME: Assume only the first tree is the pattern. The others are clobber 3832 // nodes. 3833 TreePatternNodePtr Pattern = I.getTree(0); 3834 TreePatternNodePtr SrcPattern; 3835 if (Pattern->getOperator()->getName() == "set") { 3836 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3837 } else{ 3838 // Not a set (store or something?) 3839 SrcPattern = Pattern; 3840 } 3841 3842 // Create and insert the instruction. 3843 // FIXME: InstImpResults should not be part of DAGInstruction. 3844 Record *R = I.getRecord(); 3845 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3846 std::forward_as_tuple(Results, Operands, InstImpResults, 3847 SrcPattern, ResultPattern)); 3848 3849 LLVM_DEBUG(I.dump()); 3850 } 3851 3852 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3853 /// any fragments involved. This populates the Instructions list with fully 3854 /// resolved instructions. 3855 void CodeGenDAGPatterns::ParseInstructions() { 3856 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3857 3858 for (Record *Instr : Instrs) { 3859 ListInit *LI = nullptr; 3860 3861 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3862 LI = Instr->getValueAsListInit("Pattern"); 3863 3864 // If there is no pattern, only collect minimal information about the 3865 // instruction for its operand list. We have to assume that there is one 3866 // result, as we have no detailed info. A pattern which references the 3867 // null_frag operator is as-if no pattern were specified. Normally this 3868 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3869 // null_frag. 3870 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3871 std::vector<Record*> Results; 3872 std::vector<Record*> Operands; 3873 3874 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3875 3876 if (InstInfo.Operands.size() != 0) { 3877 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3878 Results.push_back(InstInfo.Operands[j].Rec); 3879 3880 // The rest are inputs. 3881 for (unsigned j = InstInfo.Operands.NumDefs, 3882 e = InstInfo.Operands.size(); j < e; ++j) 3883 Operands.push_back(InstInfo.Operands[j].Rec); 3884 } 3885 3886 // Create and insert the instruction. 3887 std::vector<Record*> ImpResults; 3888 Instructions.insert(std::make_pair(Instr, 3889 DAGInstruction(Results, Operands, ImpResults))); 3890 continue; // no pattern. 3891 } 3892 3893 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3894 parseInstructionPattern(CGI, LI, Instructions); 3895 } 3896 3897 // If we can, convert the instructions to be patterns that are matched! 3898 for (auto &Entry : Instructions) { 3899 Record *Instr = Entry.first; 3900 DAGInstruction &TheInst = Entry.second; 3901 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3902 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3903 3904 if (SrcPattern && ResultPattern) { 3905 TreePattern Pattern(Instr, SrcPattern, true, *this); 3906 TreePattern Result(Instr, ResultPattern, false, *this); 3907 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3908 } 3909 } 3910 } 3911 3912 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3913 3914 static void FindNames(TreePatternNode *P, 3915 std::map<std::string, NameRecord> &Names, 3916 TreePattern *PatternTop) { 3917 if (!P->getName().empty()) { 3918 NameRecord &Rec = Names[P->getName()]; 3919 // If this is the first instance of the name, remember the node. 3920 if (Rec.second++ == 0) 3921 Rec.first = P; 3922 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3923 PatternTop->error("repetition of value: $" + P->getName() + 3924 " where different uses have different types!"); 3925 } 3926 3927 if (!P->isLeaf()) { 3928 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3929 FindNames(P->getChild(i), Names, PatternTop); 3930 } 3931 } 3932 3933 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3934 std::vector<Predicate> Preds; 3935 for (Init *I : L->getValues()) { 3936 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3937 Preds.push_back(Pred->getDef()); 3938 else 3939 llvm_unreachable("Non-def on the list"); 3940 } 3941 3942 // Sort so that different orders get canonicalized to the same string. 3943 llvm::sort(Preds); 3944 return Preds; 3945 } 3946 3947 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3948 PatternToMatch &&PTM) { 3949 // Do some sanity checking on the pattern we're about to match. 3950 std::string Reason; 3951 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3952 PrintWarning(Pattern->getRecord()->getLoc(), 3953 Twine("Pattern can never match: ") + Reason); 3954 return; 3955 } 3956 3957 // If the source pattern's root is a complex pattern, that complex pattern 3958 // must specify the nodes it can potentially match. 3959 if (const ComplexPattern *CP = 3960 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3961 if (CP->getRootNodes().empty()) 3962 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3963 " could match"); 3964 3965 3966 // Find all of the named values in the input and output, ensure they have the 3967 // same type. 3968 std::map<std::string, NameRecord> SrcNames, DstNames; 3969 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3970 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3971 3972 // Scan all of the named values in the destination pattern, rejecting them if 3973 // they don't exist in the input pattern. 3974 for (const auto &Entry : DstNames) { 3975 if (SrcNames[Entry.first].first == nullptr) 3976 Pattern->error("Pattern has input without matching name in output: $" + 3977 Entry.first); 3978 } 3979 3980 // Scan all of the named values in the source pattern, rejecting them if the 3981 // name isn't used in the dest, and isn't used to tie two values together. 3982 for (const auto &Entry : SrcNames) 3983 if (DstNames[Entry.first].first == nullptr && 3984 SrcNames[Entry.first].second == 1) 3985 Pattern->error("Pattern has dead named input: $" + Entry.first); 3986 3987 PatternsToMatch.push_back(std::move(PTM)); 3988 } 3989 3990 void CodeGenDAGPatterns::InferInstructionFlags() { 3991 ArrayRef<const CodeGenInstruction*> Instructions = 3992 Target.getInstructionsByEnumValue(); 3993 3994 unsigned Errors = 0; 3995 3996 // Try to infer flags from all patterns in PatternToMatch. These include 3997 // both the primary instruction patterns (which always come first) and 3998 // patterns defined outside the instruction. 3999 for (const PatternToMatch &PTM : ptms()) { 4000 // We can only infer from single-instruction patterns, otherwise we won't 4001 // know which instruction should get the flags. 4002 SmallVector<Record*, 8> PatInstrs; 4003 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4004 if (PatInstrs.size() != 1) 4005 continue; 4006 4007 // Get the single instruction. 4008 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4009 4010 // Only infer properties from the first pattern. We'll verify the others. 4011 if (InstInfo.InferredFrom) 4012 continue; 4013 4014 InstAnalyzer PatInfo(*this); 4015 PatInfo.Analyze(PTM); 4016 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4017 } 4018 4019 if (Errors) 4020 PrintFatalError("pattern conflicts"); 4021 4022 // If requested by the target, guess any undefined properties. 4023 if (Target.guessInstructionProperties()) { 4024 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4025 CodeGenInstruction *InstInfo = 4026 const_cast<CodeGenInstruction *>(Instructions[i]); 4027 if (InstInfo->InferredFrom) 4028 continue; 4029 // The mayLoad and mayStore flags default to false. 4030 // Conservatively assume hasSideEffects if it wasn't explicit. 4031 if (InstInfo->hasSideEffects_Unset) 4032 InstInfo->hasSideEffects = true; 4033 } 4034 return; 4035 } 4036 4037 // Complain about any flags that are still undefined. 4038 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4039 CodeGenInstruction *InstInfo = 4040 const_cast<CodeGenInstruction *>(Instructions[i]); 4041 if (InstInfo->InferredFrom) 4042 continue; 4043 if (InstInfo->hasSideEffects_Unset) 4044 PrintError(InstInfo->TheDef->getLoc(), 4045 "Can't infer hasSideEffects from patterns"); 4046 if (InstInfo->mayStore_Unset) 4047 PrintError(InstInfo->TheDef->getLoc(), 4048 "Can't infer mayStore from patterns"); 4049 if (InstInfo->mayLoad_Unset) 4050 PrintError(InstInfo->TheDef->getLoc(), 4051 "Can't infer mayLoad from patterns"); 4052 } 4053 } 4054 4055 4056 /// Verify instruction flags against pattern node properties. 4057 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4058 unsigned Errors = 0; 4059 for (const PatternToMatch &PTM : ptms()) { 4060 SmallVector<Record*, 8> Instrs; 4061 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4062 if (Instrs.empty()) 4063 continue; 4064 4065 // Count the number of instructions with each flag set. 4066 unsigned NumSideEffects = 0; 4067 unsigned NumStores = 0; 4068 unsigned NumLoads = 0; 4069 for (const Record *Instr : Instrs) { 4070 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4071 NumSideEffects += InstInfo.hasSideEffects; 4072 NumStores += InstInfo.mayStore; 4073 NumLoads += InstInfo.mayLoad; 4074 } 4075 4076 // Analyze the source pattern. 4077 InstAnalyzer PatInfo(*this); 4078 PatInfo.Analyze(PTM); 4079 4080 // Collect error messages. 4081 SmallVector<std::string, 4> Msgs; 4082 4083 // Check for missing flags in the output. 4084 // Permit extra flags for now at least. 4085 if (PatInfo.hasSideEffects && !NumSideEffects) 4086 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4087 4088 // Don't verify store flags on instructions with side effects. At least for 4089 // intrinsics, side effects implies mayStore. 4090 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4091 Msgs.push_back("pattern may store, but mayStore isn't set"); 4092 4093 // Similarly, mayStore implies mayLoad on intrinsics. 4094 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4095 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4096 4097 // Print error messages. 4098 if (Msgs.empty()) 4099 continue; 4100 ++Errors; 4101 4102 for (const std::string &Msg : Msgs) 4103 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4104 (Instrs.size() == 1 ? 4105 "instruction" : "output instructions")); 4106 // Provide the location of the relevant instruction definitions. 4107 for (const Record *Instr : Instrs) { 4108 if (Instr != PTM.getSrcRecord()) 4109 PrintError(Instr->getLoc(), "defined here"); 4110 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4111 if (InstInfo.InferredFrom && 4112 InstInfo.InferredFrom != InstInfo.TheDef && 4113 InstInfo.InferredFrom != PTM.getSrcRecord()) 4114 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4115 } 4116 } 4117 if (Errors) 4118 PrintFatalError("Errors in DAG patterns"); 4119 } 4120 4121 /// Given a pattern result with an unresolved type, see if we can find one 4122 /// instruction with an unresolved result type. Force this result type to an 4123 /// arbitrary element if it's possible types to converge results. 4124 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4125 if (N->isLeaf()) 4126 return false; 4127 4128 // Analyze children. 4129 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4130 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4131 return true; 4132 4133 if (!N->getOperator()->isSubClassOf("Instruction")) 4134 return false; 4135 4136 // If this type is already concrete or completely unknown we can't do 4137 // anything. 4138 TypeInfer &TI = TP.getInfer(); 4139 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4140 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4141 continue; 4142 4143 // Otherwise, force its type to an arbitrary choice. 4144 if (TI.forceArbitrary(N->getExtType(i))) 4145 return true; 4146 } 4147 4148 return false; 4149 } 4150 4151 // Promote xform function to be an explicit node wherever set. 4152 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4153 if (Record *Xform = N->getTransformFn()) { 4154 N->setTransformFn(nullptr); 4155 std::vector<TreePatternNodePtr> Children; 4156 Children.push_back(PromoteXForms(N)); 4157 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4158 N->getNumTypes()); 4159 } 4160 4161 if (!N->isLeaf()) 4162 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4163 TreePatternNodePtr Child = N->getChildShared(i); 4164 N->setChild(i, PromoteXForms(Child)); 4165 } 4166 return N; 4167 } 4168 4169 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4170 TreePattern &Pattern, TreePattern &Result, 4171 const std::vector<Record *> &InstImpResults) { 4172 4173 // Inline pattern fragments and expand multiple alternatives. 4174 Pattern.InlinePatternFragments(); 4175 Result.InlinePatternFragments(); 4176 4177 if (Result.getNumTrees() != 1) 4178 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4179 4180 // Infer types. 4181 bool IterateInference; 4182 bool InferredAllPatternTypes, InferredAllResultTypes; 4183 do { 4184 // Infer as many types as possible. If we cannot infer all of them, we 4185 // can never do anything with this pattern: report it to the user. 4186 InferredAllPatternTypes = 4187 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4188 4189 // Infer as many types as possible. If we cannot infer all of them, we 4190 // can never do anything with this pattern: report it to the user. 4191 InferredAllResultTypes = 4192 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4193 4194 IterateInference = false; 4195 4196 // Apply the type of the result to the source pattern. This helps us 4197 // resolve cases where the input type is known to be a pointer type (which 4198 // is considered resolved), but the result knows it needs to be 32- or 4199 // 64-bits. Infer the other way for good measure. 4200 for (const auto &T : Pattern.getTrees()) 4201 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4202 T->getNumTypes()); 4203 i != e; ++i) { 4204 IterateInference |= T->UpdateNodeType( 4205 i, Result.getOnlyTree()->getExtType(i), Result); 4206 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4207 i, T->getExtType(i), Result); 4208 } 4209 4210 // If our iteration has converged and the input pattern's types are fully 4211 // resolved but the result pattern is not fully resolved, we may have a 4212 // situation where we have two instructions in the result pattern and 4213 // the instructions require a common register class, but don't care about 4214 // what actual MVT is used. This is actually a bug in our modelling: 4215 // output patterns should have register classes, not MVTs. 4216 // 4217 // In any case, to handle this, we just go through and disambiguate some 4218 // arbitrary types to the result pattern's nodes. 4219 if (!IterateInference && InferredAllPatternTypes && 4220 !InferredAllResultTypes) 4221 IterateInference = 4222 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4223 } while (IterateInference); 4224 4225 // Verify that we inferred enough types that we can do something with the 4226 // pattern and result. If these fire the user has to add type casts. 4227 if (!InferredAllPatternTypes) 4228 Pattern.error("Could not infer all types in pattern!"); 4229 if (!InferredAllResultTypes) { 4230 Pattern.dump(); 4231 Result.error("Could not infer all types in pattern result!"); 4232 } 4233 4234 // Promote xform function to be an explicit node wherever set. 4235 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4236 4237 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4238 Temp.InferAllTypes(); 4239 4240 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4241 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4242 4243 if (PatternRewriter) 4244 PatternRewriter(&Pattern); 4245 4246 // A pattern may end up with an "impossible" type, i.e. a situation 4247 // where all types have been eliminated for some node in this pattern. 4248 // This could occur for intrinsics that only make sense for a specific 4249 // value type, and use a specific register class. If, for some mode, 4250 // that register class does not accept that type, the type inference 4251 // will lead to a contradiction, which is not an error however, but 4252 // a sign that this pattern will simply never match. 4253 if (Temp.getOnlyTree()->hasPossibleType()) 4254 for (const auto &T : Pattern.getTrees()) 4255 if (T->hasPossibleType()) 4256 AddPatternToMatch(&Pattern, 4257 PatternToMatch(TheDef, makePredList(Preds), 4258 T, Temp.getOnlyTree(), 4259 InstImpResults, Complexity, 4260 TheDef->getID())); 4261 } 4262 4263 void CodeGenDAGPatterns::ParsePatterns() { 4264 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4265 4266 for (Record *CurPattern : Patterns) { 4267 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4268 4269 // If the pattern references the null_frag, there's nothing to do. 4270 if (hasNullFragReference(Tree)) 4271 continue; 4272 4273 TreePattern Pattern(CurPattern, Tree, true, *this); 4274 4275 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4276 if (LI->empty()) continue; // no pattern. 4277 4278 // Parse the instruction. 4279 TreePattern Result(CurPattern, LI, false, *this); 4280 4281 if (Result.getNumTrees() != 1) 4282 Result.error("Cannot handle instructions producing instructions " 4283 "with temporaries yet!"); 4284 4285 // Validate that the input pattern is correct. 4286 std::map<std::string, TreePatternNodePtr> InstInputs; 4287 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4288 InstResults; 4289 std::vector<Record*> InstImpResults; 4290 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4291 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4292 InstResults, InstImpResults); 4293 4294 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4295 } 4296 } 4297 4298 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4299 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4300 for (const auto &I : VTS) 4301 Modes.insert(I.first); 4302 4303 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4304 collectModes(Modes, N->getChild(i)); 4305 } 4306 4307 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4308 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4309 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4310 std::vector<PatternToMatch> Copy; 4311 PatternsToMatch.swap(Copy); 4312 4313 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4314 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4315 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4316 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4317 return; 4318 } 4319 4320 std::vector<Predicate> Preds = P.getPredicates(); 4321 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4322 llvm::append_range(Preds, MC); 4323 PatternsToMatch.emplace_back(P.getSrcRecord(), std::move(Preds), 4324 std::move(NewSrc), std::move(NewDst), 4325 P.getDstRegs(), 4326 P.getAddedComplexity(), Record::getNewUID(), 4327 Mode); 4328 }; 4329 4330 for (PatternToMatch &P : Copy) { 4331 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4332 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4333 SrcP = P.getSrcPatternShared(); 4334 if (P.getDstPattern()->hasProperTypeByHwMode()) 4335 DstP = P.getDstPatternShared(); 4336 if (!SrcP && !DstP) { 4337 PatternsToMatch.push_back(P); 4338 continue; 4339 } 4340 4341 std::set<unsigned> Modes; 4342 if (SrcP) 4343 collectModes(Modes, SrcP.get()); 4344 if (DstP) 4345 collectModes(Modes, DstP.get()); 4346 4347 // The predicate for the default mode needs to be constructed for each 4348 // pattern separately. 4349 // Since not all modes must be present in each pattern, if a mode m is 4350 // absent, then there is no point in constructing a check for m. If such 4351 // a check was created, it would be equivalent to checking the default 4352 // mode, except not all modes' predicates would be a part of the checking 4353 // code. The subsequently generated check for the default mode would then 4354 // have the exact same patterns, but a different predicate code. To avoid 4355 // duplicated patterns with different predicate checks, construct the 4356 // default check as a negation of all predicates that are actually present 4357 // in the source/destination patterns. 4358 std::vector<Predicate> DefaultPred; 4359 4360 for (unsigned M : Modes) { 4361 if (M == DefaultMode) 4362 continue; 4363 if (ModeChecks.find(M) != ModeChecks.end()) 4364 continue; 4365 4366 // Fill the map entry for this mode. 4367 const HwMode &HM = CGH.getMode(M); 4368 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4369 4370 // Add negations of the HM's predicates to the default predicate. 4371 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4372 } 4373 4374 for (unsigned M : Modes) { 4375 if (M == DefaultMode) 4376 continue; 4377 AppendPattern(P, M); 4378 } 4379 4380 bool HasDefault = Modes.count(DefaultMode); 4381 if (HasDefault) 4382 AppendPattern(P, DefaultMode); 4383 } 4384 } 4385 4386 /// Dependent variable map for CodeGenDAGPattern variant generation 4387 typedef StringMap<int> DepVarMap; 4388 4389 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4390 if (N->isLeaf()) { 4391 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4392 DepMap[N->getName()]++; 4393 } else { 4394 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4395 FindDepVarsOf(N->getChild(i), DepMap); 4396 } 4397 } 4398 4399 /// Find dependent variables within child patterns 4400 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4401 DepVarMap depcounts; 4402 FindDepVarsOf(N, depcounts); 4403 for (const auto &Pair : depcounts) { 4404 if (Pair.getValue() > 1) 4405 DepVars.insert(Pair.getKey()); 4406 } 4407 } 4408 4409 #ifndef NDEBUG 4410 /// Dump the dependent variable set: 4411 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4412 if (DepVars.empty()) { 4413 LLVM_DEBUG(errs() << "<empty set>"); 4414 } else { 4415 LLVM_DEBUG(errs() << "[ "); 4416 for (const auto &DepVar : DepVars) { 4417 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4418 } 4419 LLVM_DEBUG(errs() << "]"); 4420 } 4421 } 4422 #endif 4423 4424 4425 /// CombineChildVariants - Given a bunch of permutations of each child of the 4426 /// 'operator' node, put them together in all possible ways. 4427 static void CombineChildVariants( 4428 TreePatternNodePtr Orig, 4429 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4430 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4431 const MultipleUseVarSet &DepVars) { 4432 // Make sure that each operand has at least one variant to choose from. 4433 for (const auto &Variants : ChildVariants) 4434 if (Variants.empty()) 4435 return; 4436 4437 // The end result is an all-pairs construction of the resultant pattern. 4438 std::vector<unsigned> Idxs; 4439 Idxs.resize(ChildVariants.size()); 4440 bool NotDone; 4441 do { 4442 #ifndef NDEBUG 4443 LLVM_DEBUG(if (!Idxs.empty()) { 4444 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4445 for (unsigned Idx : Idxs) { 4446 errs() << Idx << " "; 4447 } 4448 errs() << "]\n"; 4449 }); 4450 #endif 4451 // Create the variant and add it to the output list. 4452 std::vector<TreePatternNodePtr> NewChildren; 4453 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4454 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4455 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4456 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4457 4458 // Copy over properties. 4459 R->setName(Orig->getName()); 4460 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4461 R->setPredicateCalls(Orig->getPredicateCalls()); 4462 R->setTransformFn(Orig->getTransformFn()); 4463 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4464 R->setType(i, Orig->getExtType(i)); 4465 4466 // If this pattern cannot match, do not include it as a variant. 4467 std::string ErrString; 4468 // Scan to see if this pattern has already been emitted. We can get 4469 // duplication due to things like commuting: 4470 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4471 // which are the same pattern. Ignore the dups. 4472 if (R->canPatternMatch(ErrString, CDP) && 4473 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4474 return R->isIsomorphicTo(Variant.get(), DepVars); 4475 })) 4476 OutVariants.push_back(R); 4477 4478 // Increment indices to the next permutation by incrementing the 4479 // indices from last index backward, e.g., generate the sequence 4480 // [0, 0], [0, 1], [1, 0], [1, 1]. 4481 int IdxsIdx; 4482 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4483 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4484 Idxs[IdxsIdx] = 0; 4485 else 4486 break; 4487 } 4488 NotDone = (IdxsIdx >= 0); 4489 } while (NotDone); 4490 } 4491 4492 /// CombineChildVariants - A helper function for binary operators. 4493 /// 4494 static void CombineChildVariants(TreePatternNodePtr Orig, 4495 const std::vector<TreePatternNodePtr> &LHS, 4496 const std::vector<TreePatternNodePtr> &RHS, 4497 std::vector<TreePatternNodePtr> &OutVariants, 4498 CodeGenDAGPatterns &CDP, 4499 const MultipleUseVarSet &DepVars) { 4500 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4501 ChildVariants.push_back(LHS); 4502 ChildVariants.push_back(RHS); 4503 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4504 } 4505 4506 static void 4507 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4508 std::vector<TreePatternNodePtr> &Children) { 4509 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4510 Record *Operator = N->getOperator(); 4511 4512 // Only permit raw nodes. 4513 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4514 N->getTransformFn()) { 4515 Children.push_back(N); 4516 return; 4517 } 4518 4519 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4520 Children.push_back(N->getChildShared(0)); 4521 else 4522 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4523 4524 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4525 Children.push_back(N->getChildShared(1)); 4526 else 4527 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4528 } 4529 4530 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4531 /// the (potentially recursive) pattern by using algebraic laws. 4532 /// 4533 static void GenerateVariantsOf(TreePatternNodePtr N, 4534 std::vector<TreePatternNodePtr> &OutVariants, 4535 CodeGenDAGPatterns &CDP, 4536 const MultipleUseVarSet &DepVars) { 4537 // We cannot permute leaves or ComplexPattern uses. 4538 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4539 OutVariants.push_back(N); 4540 return; 4541 } 4542 4543 // Look up interesting info about the node. 4544 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4545 4546 // If this node is associative, re-associate. 4547 if (NodeInfo.hasProperty(SDNPAssociative)) { 4548 // Re-associate by pulling together all of the linked operators 4549 std::vector<TreePatternNodePtr> MaximalChildren; 4550 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4551 4552 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4553 // permutations. 4554 if (MaximalChildren.size() == 3) { 4555 // Find the variants of all of our maximal children. 4556 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4557 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4558 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4559 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4560 4561 // There are only two ways we can permute the tree: 4562 // (A op B) op C and A op (B op C) 4563 // Within these forms, we can also permute A/B/C. 4564 4565 // Generate legal pair permutations of A/B/C. 4566 std::vector<TreePatternNodePtr> ABVariants; 4567 std::vector<TreePatternNodePtr> BAVariants; 4568 std::vector<TreePatternNodePtr> ACVariants; 4569 std::vector<TreePatternNodePtr> CAVariants; 4570 std::vector<TreePatternNodePtr> BCVariants; 4571 std::vector<TreePatternNodePtr> CBVariants; 4572 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4573 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4574 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4575 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4576 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4577 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4578 4579 // Combine those into the result: (x op x) op x 4580 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4581 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4582 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4583 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4584 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4585 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4586 4587 // Combine those into the result: x op (x op x) 4588 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4589 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4590 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4591 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4592 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4593 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4594 return; 4595 } 4596 } 4597 4598 // Compute permutations of all children. 4599 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4600 ChildVariants.resize(N->getNumChildren()); 4601 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4602 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4603 4604 // Build all permutations based on how the children were formed. 4605 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4606 4607 // If this node is commutative, consider the commuted order. 4608 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4609 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4610 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4611 "Commutative but doesn't have 2 children!"); 4612 // Don't count children which are actually register references. 4613 unsigned NC = 0; 4614 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4615 TreePatternNode *Child = N->getChild(i); 4616 if (Child->isLeaf()) 4617 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4618 Record *RR = DI->getDef(); 4619 if (RR->isSubClassOf("Register")) 4620 continue; 4621 } 4622 NC++; 4623 } 4624 // Consider the commuted order. 4625 if (isCommIntrinsic) { 4626 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4627 // operands are the commutative operands, and there might be more operands 4628 // after those. 4629 assert(NC >= 3 && 4630 "Commutative intrinsic should have at least 3 children!"); 4631 std::vector<std::vector<TreePatternNodePtr>> Variants; 4632 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4633 Variants.push_back(std::move(ChildVariants[2])); 4634 Variants.push_back(std::move(ChildVariants[1])); 4635 for (unsigned i = 3; i != NC; ++i) 4636 Variants.push_back(std::move(ChildVariants[i])); 4637 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4638 } else if (NC == N->getNumChildren()) { 4639 std::vector<std::vector<TreePatternNodePtr>> Variants; 4640 Variants.push_back(std::move(ChildVariants[1])); 4641 Variants.push_back(std::move(ChildVariants[0])); 4642 for (unsigned i = 2; i != NC; ++i) 4643 Variants.push_back(std::move(ChildVariants[i])); 4644 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4645 } 4646 } 4647 } 4648 4649 4650 // GenerateVariants - Generate variants. For example, commutative patterns can 4651 // match multiple ways. Add them to PatternsToMatch as well. 4652 void CodeGenDAGPatterns::GenerateVariants() { 4653 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4654 4655 // Loop over all of the patterns we've collected, checking to see if we can 4656 // generate variants of the instruction, through the exploitation of 4657 // identities. This permits the target to provide aggressive matching without 4658 // the .td file having to contain tons of variants of instructions. 4659 // 4660 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4661 // intentionally do not reconsider these. Any variants of added patterns have 4662 // already been added. 4663 // 4664 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4665 BitVector MatchedPatterns(NumOriginalPatterns); 4666 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4667 BitVector(NumOriginalPatterns)); 4668 4669 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4670 DepsAndVariants; 4671 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4672 4673 // Collect patterns with more than one variant. 4674 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4675 MultipleUseVarSet DepVars; 4676 std::vector<TreePatternNodePtr> Variants; 4677 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4678 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4679 LLVM_DEBUG(DumpDepVars(DepVars)); 4680 LLVM_DEBUG(errs() << "\n"); 4681 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4682 *this, DepVars); 4683 4684 assert(!Variants.empty() && "Must create at least original variant!"); 4685 if (Variants.size() == 1) // No additional variants for this pattern. 4686 continue; 4687 4688 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4689 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4690 4691 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4692 4693 // Cache matching predicates. 4694 if (MatchedPatterns[i]) 4695 continue; 4696 4697 const std::vector<Predicate> &Predicates = 4698 PatternsToMatch[i].getPredicates(); 4699 4700 BitVector &Matches = MatchedPredicates[i]; 4701 MatchedPatterns.set(i); 4702 Matches.set(i); 4703 4704 // Don't test patterns that have already been cached - it won't match. 4705 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4706 if (!MatchedPatterns[p]) 4707 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4708 4709 // Copy this to all the matching patterns. 4710 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4711 if (p != (int)i) { 4712 MatchedPatterns.set(p); 4713 MatchedPredicates[p] = Matches; 4714 } 4715 } 4716 4717 for (const auto &it : PatternsWithVariants) { 4718 unsigned i = it.first; 4719 const MultipleUseVarSet &DepVars = it.second.first; 4720 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4721 4722 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4723 TreePatternNodePtr Variant = Variants[v]; 4724 BitVector &Matches = MatchedPredicates[i]; 4725 4726 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4727 errs() << "\n"); 4728 4729 // Scan to see if an instruction or explicit pattern already matches this. 4730 bool AlreadyExists = false; 4731 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4732 // Skip if the top level predicates do not match. 4733 if (!Matches[p]) 4734 continue; 4735 // Check to see if this variant already exists. 4736 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4737 DepVars)) { 4738 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4739 AlreadyExists = true; 4740 break; 4741 } 4742 } 4743 // If we already have it, ignore the variant. 4744 if (AlreadyExists) continue; 4745 4746 // Otherwise, add it to the list of patterns we have. 4747 PatternsToMatch.emplace_back( 4748 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4749 Variant, PatternsToMatch[i].getDstPatternShared(), 4750 PatternsToMatch[i].getDstRegs(), 4751 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 4752 MatchedPredicates.push_back(Matches); 4753 4754 // Add a new match the same as this pattern. 4755 for (auto &P : MatchedPredicates) 4756 P.push_back(P[i]); 4757 } 4758 4759 LLVM_DEBUG(errs() << "\n"); 4760 } 4761 } 4762