1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109 
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120 
121 // Constrain the type set to be the intersection with VTS.
122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133 
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146 
147 template <typename Predicate>
148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154 
155 template <typename Predicate>
156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166 
167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170 
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178 
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186 
187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190 
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199 
200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204 
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210 
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216 
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237 
238   return true;
239 }
240 
241 namespace llvm {
242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247 
248 LLVM_DUMP_METHOD
249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252 
253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256 
257   if (OutP == InP)
258     return berase_if(Out, Int);
259 
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273 
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292 
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298 
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311 
312 void TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   assert(!AllEmpty &&
320           "type set is empty for each HW mode: type contradiction?");
321 #endif
322 }
323 
324 // --- TypeInfer
325 
326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336 
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340 
341   return Changed;
342 }
343 
344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349 
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362 
363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369 
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372 
373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379 
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382 
383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389 
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392 
393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399 
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402 
403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out);
405   if (TP.hasError() || !Out.empty())
406     return false;
407 
408   Out = getLegalTypes();
409   return true;
410 }
411 
412 template <typename Iter, typename Pred, typename Less>
413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439 
440 /// Make sure that for each type in Small, there exists a larger type in Big.
441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small), _2(Big);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447 
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452 
453   assert(Small.hasDefault() && Big.hasDefault());
454 
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456 
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464 
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481 
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487 
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498 
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510 
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end())
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519 
520     // MaxS = max scalar in Big, remove all scalars from Small that are
521     // larger than MaxS.
522     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523     if (MaxS != B.end())
524       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525 
526     // MinV = min vector in Small, remove all vectors from Big that are
527     // smaller-or-equal than MinV.
528     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529     if (MinV != S.end())
530       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531 
532     // MaxV = max vector in Big, remove all vectors from Small that are
533     // larger than MaxV.
534     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535     if (MaxV != B.end())
536       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537   }
538 
539   return Changed;
540 }
541 
542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
543 ///    for each type U in Elem, U is a scalar type.
544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545 ///    type T in Vec, such that U is the element type of T.
546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547                                        TypeSetByHwMode &Elem) {
548   ValidateOnExit _1(Vec), _2(Elem);
549   if (TP.hasError())
550     return false;
551   bool Changed = false;
552 
553   if (Vec.empty())
554     Changed |= EnforceVector(Vec);
555   if (Elem.empty())
556     Changed |= EnforceScalar(Elem);
557 
558   for (unsigned M : union_modes(Vec, Elem)) {
559     TypeSetByHwMode::SetType &V = Vec.get(M);
560     TypeSetByHwMode::SetType &E = Elem.get(M);
561 
562     Changed |= berase_if(V, isScalar);  // Scalar = !vector
563     Changed |= berase_if(E, isVector);  // Vector = !scalar
564     assert(!V.empty() && !E.empty());
565 
566     SmallSet<MVT,4> VT, ST;
567     // Collect element types from the "vector" set.
568     for (MVT T : V)
569       VT.insert(T.getVectorElementType());
570     // Collect scalar types from the "element" set.
571     for (MVT T : E)
572       ST.insert(T);
573 
574     // Remove from V all (vector) types whose element type is not in S.
575     Changed |= berase_if(V, [&ST](MVT T) -> bool {
576                               return !ST.count(T.getVectorElementType());
577                             });
578     // Remove from E all (scalar) types, for which there is no corresponding
579     // type in V.
580     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581   }
582 
583   return Changed;
584 }
585 
586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587                                        const ValueTypeByHwMode &VVT) {
588   TypeSetByHwMode Tmp(VVT);
589   ValidateOnExit _1(Vec), _2(Tmp);
590   return EnforceVectorEltTypeIs(Vec, Tmp);
591 }
592 
593 /// Ensure that for each type T in Sub, T is a vector type, and there
594 /// exists a type U in Vec such that U is a vector type with the same
595 /// element type as T and at least as many elements as T.
596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597                                              TypeSetByHwMode &Sub) {
598   ValidateOnExit _1(Vec), _2(Sub);
599   if (TP.hasError())
600     return false;
601 
602   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603   auto IsSubVec = [](MVT B, MVT P) -> bool {
604     if (!B.isVector() || !P.isVector())
605       return false;
606     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607     // but until there are obvious use-cases for this, keep the
608     // types separate.
609     if (B.isScalableVector() != P.isScalableVector())
610       return false;
611     if (B.getVectorElementType() != P.getVectorElementType())
612       return false;
613     return B.getVectorNumElements() < P.getVectorNumElements();
614   };
615 
616   /// Return true if S has no element (vector type) that T is a sub-vector of,
617   /// i.e. has the same element type as T and more elements.
618   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619     for (const auto &I : S)
620       if (IsSubVec(T, I))
621         return false;
622     return true;
623   };
624 
625   /// Return true if S has no element (vector type) that T is a super-vector
626   /// of, i.e. has the same element type as T and fewer elements.
627   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(I, T))
630         return false;
631     return true;
632   };
633 
634   bool Changed = false;
635 
636   if (Vec.empty())
637     Changed |= EnforceVector(Vec);
638   if (Sub.empty())
639     Changed |= EnforceVector(Sub);
640 
641   for (unsigned M : union_modes(Vec, Sub)) {
642     TypeSetByHwMode::SetType &S = Sub.get(M);
643     TypeSetByHwMode::SetType &V = Vec.get(M);
644 
645     Changed |= berase_if(S, isScalar);
646 
647     // Erase all types from S that are not sub-vectors of a type in V.
648     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649 
650     // Erase all types from V that are not super-vectors of a type in S.
651     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652   }
653 
654   return Changed;
655 }
656 
657 /// 1. Ensure that V has a scalar type iff W has a scalar type.
658 /// 2. Ensure that for each vector type T in V, there exists a vector
659 ///    type U in W, such that T and U have the same number of elements.
660 /// 3. Ensure that for each vector type U in W, there exists a vector
661 ///    type T in V, such that T and U have the same number of elements
662 ///    (reverse of 2).
663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664   ValidateOnExit _1(V), _2(W);
665   if (TP.hasError())
666     return false;
667 
668   bool Changed = false;
669   if (V.empty())
670     Changed |= EnforceAny(V);
671   if (W.empty())
672     Changed |= EnforceAny(W);
673 
674   // An actual vector type cannot have 0 elements, so we can treat scalars
675   // as zero-length vectors. This way both vectors and scalars can be
676   // processed identically.
677   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679   };
680 
681   for (unsigned M : union_modes(V, W)) {
682     TypeSetByHwMode::SetType &VS = V.get(M);
683     TypeSetByHwMode::SetType &WS = W.get(M);
684 
685     SmallSet<unsigned,2> VN, WN;
686     for (MVT T : VS)
687       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688     for (MVT T : WS)
689       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690 
691     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693   }
694   return Changed;
695 }
696 
697 /// 1. Ensure that for each type T in A, there exists a type U in B,
698 ///    such that T and U have equal size in bits.
699 /// 2. Ensure that for each type U in B, there exists a type T in A
700 ///    such that T and U have equal size in bits (reverse of 1).
701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702   ValidateOnExit _1(A), _2(B);
703   if (TP.hasError())
704     return false;
705   bool Changed = false;
706   if (A.empty())
707     Changed |= EnforceAny(A);
708   if (B.empty())
709     Changed |= EnforceAny(B);
710 
711   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712     return !Sizes.count(T.getSizeInBits());
713   };
714 
715   for (unsigned M : union_modes(A, B)) {
716     TypeSetByHwMode::SetType &AS = A.get(M);
717     TypeSetByHwMode::SetType &BS = B.get(M);
718     SmallSet<unsigned,2> AN, BN;
719 
720     for (MVT T : AS)
721       AN.insert(T.getSizeInBits());
722     for (MVT T : BS)
723       BN.insert(T.getSizeInBits());
724 
725     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727   }
728 
729   return Changed;
730 }
731 
732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733   ValidateOnExit _1(VTS);
734   TypeSetByHwMode Legal = getLegalTypes();
735   bool HaveLegalDef = Legal.hasDefault();
736 
737   for (auto &I : VTS) {
738     unsigned M = I.first;
739     if (!Legal.hasMode(M) && !HaveLegalDef) {
740       TP.error("Invalid mode " + Twine(M));
741       return;
742     }
743     expandOverloads(I.second, Legal.get(M));
744   }
745 }
746 
747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748                                 const TypeSetByHwMode::SetType &Legal) {
749   std::set<MVT> Ovs;
750   for (MVT T : Out) {
751     if (!T.isOverloaded())
752       continue;
753 
754     Ovs.insert(T);
755     // MachineValueTypeSet allows iteration and erasing.
756     Out.erase(T);
757   }
758 
759   for (MVT Ov : Ovs) {
760     switch (Ov.SimpleTy) {
761       case MVT::iPTRAny:
762         Out.insert(MVT::iPTR);
763         return;
764       case MVT::iAny:
765         for (MVT T : MVT::integer_valuetypes())
766           if (Legal.count(T))
767             Out.insert(T);
768         for (MVT T : MVT::integer_vector_valuetypes())
769           if (Legal.count(T))
770             Out.insert(T);
771         return;
772       case MVT::fAny:
773         for (MVT T : MVT::fp_valuetypes())
774           if (Legal.count(T))
775             Out.insert(T);
776         for (MVT T : MVT::fp_vector_valuetypes())
777           if (Legal.count(T))
778             Out.insert(T);
779         return;
780       case MVT::vAny:
781         for (MVT T : MVT::vector_valuetypes())
782           if (Legal.count(T))
783             Out.insert(T);
784         return;
785       case MVT::Any:
786         for (MVT T : MVT::all_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       default:
791         break;
792     }
793   }
794 }
795 
796 TypeSetByHwMode TypeInfer::getLegalTypes() {
797   if (!LegalTypesCached) {
798     // Stuff all types from all modes into the default mode.
799     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800     for (const auto &I : LTS)
801       LegalCache.insert(I.second);
802     LegalTypesCached = true;
803   }
804   TypeSetByHwMode VTS;
805   VTS.getOrCreate(DefaultMode) = LegalCache;
806   return VTS;
807 }
808 
809 //===----------------------------------------------------------------------===//
810 // TreePredicateFn Implementation
811 //===----------------------------------------------------------------------===//
812 
813 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
814 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
815   assert(
816       (!hasPredCode() || !hasImmCode()) &&
817       ".td file corrupt: can't have a node predicate *and* an imm predicate");
818 }
819 
820 bool TreePredicateFn::hasPredCode() const {
821   return isLoad() || isStore() || isAtomic() ||
822          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
823 }
824 
825 std::string TreePredicateFn::getPredCode() const {
826   std::string Code = "";
827 
828   if (!isLoad() && !isStore() && !isAtomic()) {
829     Record *MemoryVT = getMemoryVT();
830 
831     if (MemoryVT)
832       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
833                       "MemoryVT requires IsLoad or IsStore");
834   }
835 
836   if (!isLoad() && !isStore()) {
837     if (isUnindexed())
838       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
839                       "IsUnindexed requires IsLoad or IsStore");
840 
841     Record *ScalarMemoryVT = getScalarMemoryVT();
842 
843     if (ScalarMemoryVT)
844       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
845                       "ScalarMemoryVT requires IsLoad or IsStore");
846   }
847 
848   if (isLoad() + isStore() + isAtomic() > 1)
849     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
850                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
851 
852   if (isLoad()) {
853     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
854         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
855         getScalarMemoryVT() == nullptr)
856       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
857                       "IsLoad cannot be used by itself");
858   } else {
859     if (isNonExtLoad())
860       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
861                       "IsNonExtLoad requires IsLoad");
862     if (isAnyExtLoad())
863       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864                       "IsAnyExtLoad requires IsLoad");
865     if (isSignExtLoad())
866       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
867                       "IsSignExtLoad requires IsLoad");
868     if (isZeroExtLoad())
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsZeroExtLoad requires IsLoad");
871   }
872 
873   if (isStore()) {
874     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
875         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
876       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877                       "IsStore cannot be used by itself");
878   } else {
879     if (isNonTruncStore())
880       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                       "IsNonTruncStore requires IsStore");
882     if (isTruncStore())
883       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
884                       "IsTruncStore requires IsStore");
885   }
886 
887   if (isAtomic()) {
888     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
889         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
890         !isAtomicOrderingAcquireRelease() &&
891         !isAtomicOrderingSequentiallyConsistent())
892       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893                       "IsAtomic cannot be used by itself");
894   } else {
895     if (isAtomicOrderingMonotonic())
896       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                       "IsAtomicOrderingMonotonic requires IsAtomic");
898     if (isAtomicOrderingAcquire())
899       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
900                       "IsAtomicOrderingAcquire requires IsAtomic");
901     if (isAtomicOrderingRelease())
902       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
903                       "IsAtomicOrderingRelease requires IsAtomic");
904     if (isAtomicOrderingAcquireRelease())
905       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
906                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
907     if (isAtomicOrderingSequentiallyConsistent())
908       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
909                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
910   }
911 
912   if (isLoad() || isStore() || isAtomic()) {
913     StringRef SDNodeName =
914         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
915 
916     Record *MemoryVT = getMemoryVT();
917 
918     if (MemoryVT)
919       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
920                MemoryVT->getName() + ") return false;\n")
921                   .str();
922   }
923 
924   if (isAtomic() && isAtomicOrderingMonotonic())
925     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
926             "AtomicOrdering::Monotonic) return false;\n";
927   if (isAtomic() && isAtomicOrderingAcquire())
928     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
929             "AtomicOrdering::Acquire) return false;\n";
930   if (isAtomic() && isAtomicOrderingRelease())
931     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
932             "AtomicOrdering::Release) return false;\n";
933   if (isAtomic() && isAtomicOrderingAcquireRelease())
934     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
935             "AtomicOrdering::AcquireRelease) return false;\n";
936   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
937     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
938             "AtomicOrdering::SequentiallyConsistent) return false;\n";
939 
940   if (isLoad() || isStore()) {
941     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
942 
943     if (isUnindexed())
944       Code += ("if (cast<" + SDNodeName +
945                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
946                "return false;\n")
947                   .str();
948 
949     if (isLoad()) {
950       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
951            isZeroExtLoad()) > 1)
952         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
954                         "IsZeroExtLoad are mutually exclusive");
955       if (isNonExtLoad())
956         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
957                 "ISD::NON_EXTLOAD) return false;\n";
958       if (isAnyExtLoad())
959         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
960                 "return false;\n";
961       if (isSignExtLoad())
962         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
963                 "return false;\n";
964       if (isZeroExtLoad())
965         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
966                 "return false;\n";
967     } else {
968       if ((isNonTruncStore() + isTruncStore()) > 1)
969         PrintFatalError(
970             getOrigPatFragRecord()->getRecord()->getLoc(),
971             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
972       if (isNonTruncStore())
973         Code +=
974             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
975       if (isTruncStore())
976         Code +=
977             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
978     }
979 
980     Record *ScalarMemoryVT = getScalarMemoryVT();
981 
982     if (ScalarMemoryVT)
983       Code += ("if (cast<" + SDNodeName +
984                ">(N)->getMemoryVT().getScalarType() != MVT::" +
985                ScalarMemoryVT->getName() + ") return false;\n")
986                   .str();
987   }
988 
989   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
990 
991   Code += PredicateCode;
992 
993   if (PredicateCode.empty() && !Code.empty())
994     Code += "return true;\n";
995 
996   return Code;
997 }
998 
999 bool TreePredicateFn::hasImmCode() const {
1000   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1001 }
1002 
1003 std::string TreePredicateFn::getImmCode() const {
1004   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1005 }
1006 
1007 bool TreePredicateFn::immCodeUsesAPInt() const {
1008   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1009 }
1010 
1011 bool TreePredicateFn::immCodeUsesAPFloat() const {
1012   bool Unset;
1013   // The return value will be false when IsAPFloat is unset.
1014   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1015                                                                    Unset);
1016 }
1017 
1018 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1019                                                    bool Value) const {
1020   bool Unset;
1021   bool Result =
1022       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1023   if (Unset)
1024     return false;
1025   return Result == Value;
1026 }
1027 bool TreePredicateFn::isLoad() const {
1028   return isPredefinedPredicateEqualTo("IsLoad", true);
1029 }
1030 bool TreePredicateFn::isStore() const {
1031   return isPredefinedPredicateEqualTo("IsStore", true);
1032 }
1033 bool TreePredicateFn::isAtomic() const {
1034   return isPredefinedPredicateEqualTo("IsAtomic", true);
1035 }
1036 bool TreePredicateFn::isUnindexed() const {
1037   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1038 }
1039 bool TreePredicateFn::isNonExtLoad() const {
1040   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1041 }
1042 bool TreePredicateFn::isAnyExtLoad() const {
1043   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1044 }
1045 bool TreePredicateFn::isSignExtLoad() const {
1046   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1047 }
1048 bool TreePredicateFn::isZeroExtLoad() const {
1049   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1050 }
1051 bool TreePredicateFn::isNonTruncStore() const {
1052   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1053 }
1054 bool TreePredicateFn::isTruncStore() const {
1055   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1056 }
1057 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1058   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1059 }
1060 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1061   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1062 }
1063 bool TreePredicateFn::isAtomicOrderingRelease() const {
1064   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1065 }
1066 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1067   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1068 }
1069 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1070   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1071                                       true);
1072 }
1073 Record *TreePredicateFn::getMemoryVT() const {
1074   Record *R = getOrigPatFragRecord()->getRecord();
1075   if (R->isValueUnset("MemoryVT"))
1076     return nullptr;
1077   return R->getValueAsDef("MemoryVT");
1078 }
1079 Record *TreePredicateFn::getScalarMemoryVT() const {
1080   Record *R = getOrigPatFragRecord()->getRecord();
1081   if (R->isValueUnset("ScalarMemoryVT"))
1082     return nullptr;
1083   return R->getValueAsDef("ScalarMemoryVT");
1084 }
1085 
1086 StringRef TreePredicateFn::getImmType() const {
1087   if (immCodeUsesAPInt())
1088     return "const APInt &";
1089   if (immCodeUsesAPFloat())
1090     return "const APFloat &";
1091   return "int64_t";
1092 }
1093 
1094 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1095   if (immCodeUsesAPInt())
1096     return "APInt";
1097   else if (immCodeUsesAPFloat())
1098     return "APFloat";
1099   return "I64";
1100 }
1101 
1102 /// isAlwaysTrue - Return true if this is a noop predicate.
1103 bool TreePredicateFn::isAlwaysTrue() const {
1104   return !hasPredCode() && !hasImmCode();
1105 }
1106 
1107 /// Return the name to use in the generated code to reference this, this is
1108 /// "Predicate_foo" if from a pattern fragment "foo".
1109 std::string TreePredicateFn::getFnName() const {
1110   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1111 }
1112 
1113 /// getCodeToRunOnSDNode - Return the code for the function body that
1114 /// evaluates this predicate.  The argument is expected to be in "Node",
1115 /// not N.  This handles casting and conversion to a concrete node type as
1116 /// appropriate.
1117 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1118   // Handle immediate predicates first.
1119   std::string ImmCode = getImmCode();
1120   if (!ImmCode.empty()) {
1121     if (isLoad())
1122       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1123                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1124     if (isStore())
1125       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1126                       "IsStore cannot be used with ImmLeaf or its subclasses");
1127     if (isUnindexed())
1128       PrintFatalError(
1129           getOrigPatFragRecord()->getRecord()->getLoc(),
1130           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1131     if (isNonExtLoad())
1132       PrintFatalError(
1133           getOrigPatFragRecord()->getRecord()->getLoc(),
1134           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1135     if (isAnyExtLoad())
1136       PrintFatalError(
1137           getOrigPatFragRecord()->getRecord()->getLoc(),
1138           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1139     if (isSignExtLoad())
1140       PrintFatalError(
1141           getOrigPatFragRecord()->getRecord()->getLoc(),
1142           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1143     if (isZeroExtLoad())
1144       PrintFatalError(
1145           getOrigPatFragRecord()->getRecord()->getLoc(),
1146           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1147     if (isNonTruncStore())
1148       PrintFatalError(
1149           getOrigPatFragRecord()->getRecord()->getLoc(),
1150           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1151     if (isTruncStore())
1152       PrintFatalError(
1153           getOrigPatFragRecord()->getRecord()->getLoc(),
1154           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1155     if (getMemoryVT())
1156       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1157                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1158     if (getScalarMemoryVT())
1159       PrintFatalError(
1160           getOrigPatFragRecord()->getRecord()->getLoc(),
1161           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1162 
1163     std::string Result = ("    " + getImmType() + " Imm = ").str();
1164     if (immCodeUsesAPFloat())
1165       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1166     else if (immCodeUsesAPInt())
1167       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1168     else
1169       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1170     return Result + ImmCode;
1171   }
1172 
1173   // Handle arbitrary node predicates.
1174   assert(hasPredCode() && "Don't have any predicate code!");
1175   StringRef ClassName;
1176   if (PatFragRec->getOnlyTree()->isLeaf())
1177     ClassName = "SDNode";
1178   else {
1179     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1180     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1181   }
1182   std::string Result;
1183   if (ClassName == "SDNode")
1184     Result = "    SDNode *N = Node;\n";
1185   else
1186     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1187 
1188   return Result + getPredCode();
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 // PatternToMatch implementation
1193 //
1194 
1195 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1196 /// patterns before small ones.  This is used to determine the size of a
1197 /// pattern.
1198 static unsigned getPatternSize(const TreePatternNode *P,
1199                                const CodeGenDAGPatterns &CGP) {
1200   unsigned Size = 3;  // The node itself.
1201   // If the root node is a ConstantSDNode, increases its size.
1202   // e.g. (set R32:$dst, 0).
1203   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1204     Size += 2;
1205 
1206   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1207     Size += AM->getComplexity();
1208     // We don't want to count any children twice, so return early.
1209     return Size;
1210   }
1211 
1212   // If this node has some predicate function that must match, it adds to the
1213   // complexity of this node.
1214   if (!P->getPredicateFns().empty())
1215     ++Size;
1216 
1217   // Count children in the count if they are also nodes.
1218   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1219     const TreePatternNode *Child = P->getChild(i);
1220     if (!Child->isLeaf() && Child->getNumTypes()) {
1221       const TypeSetByHwMode &T0 = Child->getType(0);
1222       // At this point, all variable type sets should be simple, i.e. only
1223       // have a default mode.
1224       if (T0.getMachineValueType() != MVT::Other) {
1225         Size += getPatternSize(Child, CGP);
1226         continue;
1227       }
1228     }
1229     if (Child->isLeaf()) {
1230       if (isa<IntInit>(Child->getLeafValue()))
1231         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1232       else if (Child->getComplexPatternInfo(CGP))
1233         Size += getPatternSize(Child, CGP);
1234       else if (!Child->getPredicateFns().empty())
1235         ++Size;
1236     }
1237   }
1238 
1239   return Size;
1240 }
1241 
1242 /// Compute the complexity metric for the input pattern.  This roughly
1243 /// corresponds to the number of nodes that are covered.
1244 int PatternToMatch::
1245 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1246   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1247 }
1248 
1249 /// getPredicateCheck - Return a single string containing all of this
1250 /// pattern's predicates concatenated with "&&" operators.
1251 ///
1252 std::string PatternToMatch::getPredicateCheck() const {
1253   SmallVector<const Predicate*,4> PredList;
1254   for (const Predicate &P : Predicates)
1255     PredList.push_back(&P);
1256   std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1257 
1258   std::string Check;
1259   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1260     if (i != 0)
1261       Check += " && ";
1262     Check += '(' + PredList[i]->getCondString() + ')';
1263   }
1264   return Check;
1265 }
1266 
1267 //===----------------------------------------------------------------------===//
1268 // SDTypeConstraint implementation
1269 //
1270 
1271 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1272   OperandNo = R->getValueAsInt("OperandNum");
1273 
1274   if (R->isSubClassOf("SDTCisVT")) {
1275     ConstraintType = SDTCisVT;
1276     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1277     for (const auto &P : VVT)
1278       if (P.second == MVT::isVoid)
1279         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1280   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1281     ConstraintType = SDTCisPtrTy;
1282   } else if (R->isSubClassOf("SDTCisInt")) {
1283     ConstraintType = SDTCisInt;
1284   } else if (R->isSubClassOf("SDTCisFP")) {
1285     ConstraintType = SDTCisFP;
1286   } else if (R->isSubClassOf("SDTCisVec")) {
1287     ConstraintType = SDTCisVec;
1288   } else if (R->isSubClassOf("SDTCisSameAs")) {
1289     ConstraintType = SDTCisSameAs;
1290     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1291   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1292     ConstraintType = SDTCisVTSmallerThanOp;
1293     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1294       R->getValueAsInt("OtherOperandNum");
1295   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1296     ConstraintType = SDTCisOpSmallerThanOp;
1297     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1298       R->getValueAsInt("BigOperandNum");
1299   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1300     ConstraintType = SDTCisEltOfVec;
1301     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1302   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1303     ConstraintType = SDTCisSubVecOfVec;
1304     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1305       R->getValueAsInt("OtherOpNum");
1306   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1307     ConstraintType = SDTCVecEltisVT;
1308     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1309     for (const auto &P : VVT) {
1310       MVT T = P.second;
1311       if (T.isVector())
1312         PrintFatalError(R->getLoc(),
1313                         "Cannot use vector type as SDTCVecEltisVT");
1314       if (!T.isInteger() && !T.isFloatingPoint())
1315         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1316                                      "as SDTCVecEltisVT");
1317     }
1318   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1319     ConstraintType = SDTCisSameNumEltsAs;
1320     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1321       R->getValueAsInt("OtherOperandNum");
1322   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1323     ConstraintType = SDTCisSameSizeAs;
1324     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1325       R->getValueAsInt("OtherOperandNum");
1326   } else {
1327     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1328   }
1329 }
1330 
1331 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1332 /// N, and the result number in ResNo.
1333 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1334                                       const SDNodeInfo &NodeInfo,
1335                                       unsigned &ResNo) {
1336   unsigned NumResults = NodeInfo.getNumResults();
1337   if (OpNo < NumResults) {
1338     ResNo = OpNo;
1339     return N;
1340   }
1341 
1342   OpNo -= NumResults;
1343 
1344   if (OpNo >= N->getNumChildren()) {
1345     std::string S;
1346     raw_string_ostream OS(S);
1347     OS << "Invalid operand number in type constraint "
1348            << (OpNo+NumResults) << " ";
1349     N->print(OS);
1350     PrintFatalError(OS.str());
1351   }
1352 
1353   return N->getChild(OpNo);
1354 }
1355 
1356 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1357 /// constraint to the nodes operands.  This returns true if it makes a
1358 /// change, false otherwise.  If a type contradiction is found, flag an error.
1359 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1360                                            const SDNodeInfo &NodeInfo,
1361                                            TreePattern &TP) const {
1362   if (TP.hasError())
1363     return false;
1364 
1365   unsigned ResNo = 0; // The result number being referenced.
1366   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1367   TypeInfer &TI = TP.getInfer();
1368 
1369   switch (ConstraintType) {
1370   case SDTCisVT:
1371     // Operand must be a particular type.
1372     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1373   case SDTCisPtrTy:
1374     // Operand must be same as target pointer type.
1375     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1376   case SDTCisInt:
1377     // Require it to be one of the legal integer VTs.
1378      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1379   case SDTCisFP:
1380     // Require it to be one of the legal fp VTs.
1381     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1382   case SDTCisVec:
1383     // Require it to be one of the legal vector VTs.
1384     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1385   case SDTCisSameAs: {
1386     unsigned OResNo = 0;
1387     TreePatternNode *OtherNode =
1388       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1389     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1390            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1391   }
1392   case SDTCisVTSmallerThanOp: {
1393     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1394     // have an integer type that is smaller than the VT.
1395     if (!NodeToApply->isLeaf() ||
1396         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1397         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1398                ->isSubClassOf("ValueType")) {
1399       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1400       return false;
1401     }
1402     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1403     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1404     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1405     TypeSetByHwMode TypeListTmp(VVT);
1406 
1407     unsigned OResNo = 0;
1408     TreePatternNode *OtherNode =
1409       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1410                     OResNo);
1411 
1412     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1413   }
1414   case SDTCisOpSmallerThanOp: {
1415     unsigned BResNo = 0;
1416     TreePatternNode *BigOperand =
1417       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1418                     BResNo);
1419     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1420                                  BigOperand->getExtType(BResNo));
1421   }
1422   case SDTCisEltOfVec: {
1423     unsigned VResNo = 0;
1424     TreePatternNode *VecOperand =
1425       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1426                     VResNo);
1427     // Filter vector types out of VecOperand that don't have the right element
1428     // type.
1429     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1430                                      NodeToApply->getExtType(ResNo));
1431   }
1432   case SDTCisSubVecOfVec: {
1433     unsigned VResNo = 0;
1434     TreePatternNode *BigVecOperand =
1435       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1436                     VResNo);
1437 
1438     // Filter vector types out of BigVecOperand that don't have the
1439     // right subvector type.
1440     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1441                                            NodeToApply->getExtType(ResNo));
1442   }
1443   case SDTCVecEltisVT: {
1444     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1445   }
1446   case SDTCisSameNumEltsAs: {
1447     unsigned OResNo = 0;
1448     TreePatternNode *OtherNode =
1449       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1450                     N, NodeInfo, OResNo);
1451     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1452                                  NodeToApply->getExtType(ResNo));
1453   }
1454   case SDTCisSameSizeAs: {
1455     unsigned OResNo = 0;
1456     TreePatternNode *OtherNode =
1457       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1458                     N, NodeInfo, OResNo);
1459     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1460                               NodeToApply->getExtType(ResNo));
1461   }
1462   }
1463   llvm_unreachable("Invalid ConstraintType!");
1464 }
1465 
1466 // Update the node type to match an instruction operand or result as specified
1467 // in the ins or outs lists on the instruction definition. Return true if the
1468 // type was actually changed.
1469 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1470                                              Record *Operand,
1471                                              TreePattern &TP) {
1472   // The 'unknown' operand indicates that types should be inferred from the
1473   // context.
1474   if (Operand->isSubClassOf("unknown_class"))
1475     return false;
1476 
1477   // The Operand class specifies a type directly.
1478   if (Operand->isSubClassOf("Operand")) {
1479     Record *R = Operand->getValueAsDef("Type");
1480     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1481     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1482   }
1483 
1484   // PointerLikeRegClass has a type that is determined at runtime.
1485   if (Operand->isSubClassOf("PointerLikeRegClass"))
1486     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1487 
1488   // Both RegisterClass and RegisterOperand operands derive their types from a
1489   // register class def.
1490   Record *RC = nullptr;
1491   if (Operand->isSubClassOf("RegisterClass"))
1492     RC = Operand;
1493   else if (Operand->isSubClassOf("RegisterOperand"))
1494     RC = Operand->getValueAsDef("RegClass");
1495 
1496   assert(RC && "Unknown operand type");
1497   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1498   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1499 }
1500 
1501 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1502   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1503     if (!TP.getInfer().isConcrete(Types[i], true))
1504       return true;
1505   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1506     if (getChild(i)->ContainsUnresolvedType(TP))
1507       return true;
1508   return false;
1509 }
1510 
1511 bool TreePatternNode::hasProperTypeByHwMode() const {
1512   for (const TypeSetByHwMode &S : Types)
1513     if (!S.isDefaultOnly())
1514       return true;
1515   for (TreePatternNode *C : Children)
1516     if (C->hasProperTypeByHwMode())
1517       return true;
1518   return false;
1519 }
1520 
1521 bool TreePatternNode::hasPossibleType() const {
1522   for (const TypeSetByHwMode &S : Types)
1523     if (!S.isPossible())
1524       return false;
1525   for (TreePatternNode *C : Children)
1526     if (!C->hasPossibleType())
1527       return false;
1528   return true;
1529 }
1530 
1531 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1532   for (TypeSetByHwMode &S : Types) {
1533     S.makeSimple(Mode);
1534     // Check if the selected mode had a type conflict.
1535     if (S.get(DefaultMode).empty())
1536       return false;
1537   }
1538   for (TreePatternNode *C : Children)
1539     if (!C->setDefaultMode(Mode))
1540       return false;
1541   return true;
1542 }
1543 
1544 //===----------------------------------------------------------------------===//
1545 // SDNodeInfo implementation
1546 //
1547 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1548   EnumName    = R->getValueAsString("Opcode");
1549   SDClassName = R->getValueAsString("SDClass");
1550   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1551   NumResults = TypeProfile->getValueAsInt("NumResults");
1552   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1553 
1554   // Parse the properties.
1555   Properties = 0;
1556   for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1557     if (Property->getName() == "SDNPCommutative") {
1558       Properties |= 1 << SDNPCommutative;
1559     } else if (Property->getName() == "SDNPAssociative") {
1560       Properties |= 1 << SDNPAssociative;
1561     } else if (Property->getName() == "SDNPHasChain") {
1562       Properties |= 1 << SDNPHasChain;
1563     } else if (Property->getName() == "SDNPOutGlue") {
1564       Properties |= 1 << SDNPOutGlue;
1565     } else if (Property->getName() == "SDNPInGlue") {
1566       Properties |= 1 << SDNPInGlue;
1567     } else if (Property->getName() == "SDNPOptInGlue") {
1568       Properties |= 1 << SDNPOptInGlue;
1569     } else if (Property->getName() == "SDNPMayStore") {
1570       Properties |= 1 << SDNPMayStore;
1571     } else if (Property->getName() == "SDNPMayLoad") {
1572       Properties |= 1 << SDNPMayLoad;
1573     } else if (Property->getName() == "SDNPSideEffect") {
1574       Properties |= 1 << SDNPSideEffect;
1575     } else if (Property->getName() == "SDNPMemOperand") {
1576       Properties |= 1 << SDNPMemOperand;
1577     } else if (Property->getName() == "SDNPVariadic") {
1578       Properties |= 1 << SDNPVariadic;
1579     } else {
1580       PrintFatalError("Unknown SD Node property '" +
1581                       Property->getName() + "' on node '" +
1582                       R->getName() + "'!");
1583     }
1584   }
1585 
1586 
1587   // Parse the type constraints.
1588   std::vector<Record*> ConstraintList =
1589     TypeProfile->getValueAsListOfDefs("Constraints");
1590   for (Record *R : ConstraintList)
1591     TypeConstraints.emplace_back(R, CGH);
1592 }
1593 
1594 /// getKnownType - If the type constraints on this node imply a fixed type
1595 /// (e.g. all stores return void, etc), then return it as an
1596 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1597 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1598   unsigned NumResults = getNumResults();
1599   assert(NumResults <= 1 &&
1600          "We only work with nodes with zero or one result so far!");
1601   assert(ResNo == 0 && "Only handles single result nodes so far");
1602 
1603   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1604     // Make sure that this applies to the correct node result.
1605     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1606       continue;
1607 
1608     switch (Constraint.ConstraintType) {
1609     default: break;
1610     case SDTypeConstraint::SDTCisVT:
1611       if (Constraint.VVT.isSimple())
1612         return Constraint.VVT.getSimple().SimpleTy;
1613       break;
1614     case SDTypeConstraint::SDTCisPtrTy:
1615       return MVT::iPTR;
1616     }
1617   }
1618   return MVT::Other;
1619 }
1620 
1621 //===----------------------------------------------------------------------===//
1622 // TreePatternNode implementation
1623 //
1624 
1625 TreePatternNode::~TreePatternNode() {
1626 #if 0 // FIXME: implement refcounted tree nodes!
1627   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1628     delete getChild(i);
1629 #endif
1630 }
1631 
1632 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1633   if (Operator->getName() == "set" ||
1634       Operator->getName() == "implicit")
1635     return 0;  // All return nothing.
1636 
1637   if (Operator->isSubClassOf("Intrinsic"))
1638     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1639 
1640   if (Operator->isSubClassOf("SDNode"))
1641     return CDP.getSDNodeInfo(Operator).getNumResults();
1642 
1643   if (Operator->isSubClassOf("PatFrag")) {
1644     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1645     // the forward reference case where one pattern fragment references another
1646     // before it is processed.
1647     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1648       return PFRec->getOnlyTree()->getNumTypes();
1649 
1650     // Get the result tree.
1651     DagInit *Tree = Operator->getValueAsDag("Fragment");
1652     Record *Op = nullptr;
1653     if (Tree)
1654       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1655         Op = DI->getDef();
1656     assert(Op && "Invalid Fragment");
1657     return GetNumNodeResults(Op, CDP);
1658   }
1659 
1660   if (Operator->isSubClassOf("Instruction")) {
1661     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1662 
1663     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1664 
1665     // Subtract any defaulted outputs.
1666     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1667       Record *OperandNode = InstInfo.Operands[i].Rec;
1668 
1669       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1670           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1671         --NumDefsToAdd;
1672     }
1673 
1674     // Add on one implicit def if it has a resolvable type.
1675     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1676       ++NumDefsToAdd;
1677     return NumDefsToAdd;
1678   }
1679 
1680   if (Operator->isSubClassOf("SDNodeXForm"))
1681     return 1;  // FIXME: Generalize SDNodeXForm
1682 
1683   if (Operator->isSubClassOf("ValueType"))
1684     return 1;  // A type-cast of one result.
1685 
1686   if (Operator->isSubClassOf("ComplexPattern"))
1687     return 1;
1688 
1689   errs() << *Operator;
1690   PrintFatalError("Unhandled node in GetNumNodeResults");
1691 }
1692 
1693 void TreePatternNode::print(raw_ostream &OS) const {
1694   if (isLeaf())
1695     OS << *getLeafValue();
1696   else
1697     OS << '(' << getOperator()->getName();
1698 
1699   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1700     OS << ':';
1701     getExtType(i).writeToStream(OS);
1702   }
1703 
1704   if (!isLeaf()) {
1705     if (getNumChildren() != 0) {
1706       OS << " ";
1707       getChild(0)->print(OS);
1708       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1709         OS << ", ";
1710         getChild(i)->print(OS);
1711       }
1712     }
1713     OS << ")";
1714   }
1715 
1716   for (const TreePredicateFn &Pred : PredicateFns)
1717     OS << "<<P:" << Pred.getFnName() << ">>";
1718   if (TransformFn)
1719     OS << "<<X:" << TransformFn->getName() << ">>";
1720   if (!getName().empty())
1721     OS << ":$" << getName();
1722 
1723 }
1724 void TreePatternNode::dump() const {
1725   print(errs());
1726 }
1727 
1728 /// isIsomorphicTo - Return true if this node is recursively
1729 /// isomorphic to the specified node.  For this comparison, the node's
1730 /// entire state is considered. The assigned name is ignored, since
1731 /// nodes with differing names are considered isomorphic. However, if
1732 /// the assigned name is present in the dependent variable set, then
1733 /// the assigned name is considered significant and the node is
1734 /// isomorphic if the names match.
1735 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1736                                      const MultipleUseVarSet &DepVars) const {
1737   if (N == this) return true;
1738   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1739       getPredicateFns() != N->getPredicateFns() ||
1740       getTransformFn() != N->getTransformFn())
1741     return false;
1742 
1743   if (isLeaf()) {
1744     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1745       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1746         return ((DI->getDef() == NDI->getDef())
1747                 && (DepVars.find(getName()) == DepVars.end()
1748                     || getName() == N->getName()));
1749       }
1750     }
1751     return getLeafValue() == N->getLeafValue();
1752   }
1753 
1754   if (N->getOperator() != getOperator() ||
1755       N->getNumChildren() != getNumChildren()) return false;
1756   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1757     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1758       return false;
1759   return true;
1760 }
1761 
1762 /// clone - Make a copy of this tree and all of its children.
1763 ///
1764 TreePatternNode *TreePatternNode::clone() const {
1765   TreePatternNode *New;
1766   if (isLeaf()) {
1767     New = new TreePatternNode(getLeafValue(), getNumTypes());
1768   } else {
1769     std::vector<TreePatternNode*> CChildren;
1770     CChildren.reserve(Children.size());
1771     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1772       CChildren.push_back(getChild(i)->clone());
1773     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1774   }
1775   New->setName(getName());
1776   New->Types = Types;
1777   New->setPredicateFns(getPredicateFns());
1778   New->setTransformFn(getTransformFn());
1779   return New;
1780 }
1781 
1782 /// RemoveAllTypes - Recursively strip all the types of this tree.
1783 void TreePatternNode::RemoveAllTypes() {
1784   // Reset to unknown type.
1785   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1786   if (isLeaf()) return;
1787   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1788     getChild(i)->RemoveAllTypes();
1789 }
1790 
1791 
1792 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1793 /// with actual values specified by ArgMap.
1794 void TreePatternNode::
1795 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1796   if (isLeaf()) return;
1797 
1798   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1799     TreePatternNode *Child = getChild(i);
1800     if (Child->isLeaf()) {
1801       Init *Val = Child->getLeafValue();
1802       // Note that, when substituting into an output pattern, Val might be an
1803       // UnsetInit.
1804       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1805           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1806         // We found a use of a formal argument, replace it with its value.
1807         TreePatternNode *NewChild = ArgMap[Child->getName()];
1808         assert(NewChild && "Couldn't find formal argument!");
1809         assert((Child->getPredicateFns().empty() ||
1810                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1811                "Non-empty child predicate clobbered!");
1812         setChild(i, NewChild);
1813       }
1814     } else {
1815       getChild(i)->SubstituteFormalArguments(ArgMap);
1816     }
1817   }
1818 }
1819 
1820 
1821 /// InlinePatternFragments - If this pattern refers to any pattern
1822 /// fragments, inline them into place, giving us a pattern without any
1823 /// PatFrag references.
1824 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1825   if (TP.hasError())
1826     return nullptr;
1827 
1828   if (isLeaf())
1829      return this;  // nothing to do.
1830   Record *Op = getOperator();
1831 
1832   if (!Op->isSubClassOf("PatFrag")) {
1833     // Just recursively inline children nodes.
1834     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1835       TreePatternNode *Child = getChild(i);
1836       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1837 
1838       assert((Child->getPredicateFns().empty() ||
1839               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1840              "Non-empty child predicate clobbered!");
1841 
1842       setChild(i, NewChild);
1843     }
1844     return this;
1845   }
1846 
1847   // Otherwise, we found a reference to a fragment.  First, look up its
1848   // TreePattern record.
1849   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1850 
1851   // Verify that we are passing the right number of operands.
1852   if (Frag->getNumArgs() != Children.size()) {
1853     TP.error("'" + Op->getName() + "' fragment requires " +
1854              utostr(Frag->getNumArgs()) + " operands!");
1855     return nullptr;
1856   }
1857 
1858   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1859 
1860   TreePredicateFn PredFn(Frag);
1861   if (!PredFn.isAlwaysTrue())
1862     FragTree->addPredicateFn(PredFn);
1863 
1864   // Resolve formal arguments to their actual value.
1865   if (Frag->getNumArgs()) {
1866     // Compute the map of formal to actual arguments.
1867     std::map<std::string, TreePatternNode*> ArgMap;
1868     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1869       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1870 
1871     FragTree->SubstituteFormalArguments(ArgMap);
1872   }
1873 
1874   FragTree->setName(getName());
1875   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1876     FragTree->UpdateNodeType(i, getExtType(i), TP);
1877 
1878   // Transfer in the old predicates.
1879   for (const TreePredicateFn &Pred : getPredicateFns())
1880     FragTree->addPredicateFn(Pred);
1881 
1882   // Get a new copy of this fragment to stitch into here.
1883   //delete this;    // FIXME: implement refcounting!
1884 
1885   // The fragment we inlined could have recursive inlining that is needed.  See
1886   // if there are any pattern fragments in it and inline them as needed.
1887   return FragTree->InlinePatternFragments(TP);
1888 }
1889 
1890 /// getImplicitType - Check to see if the specified record has an implicit
1891 /// type which should be applied to it.  This will infer the type of register
1892 /// references from the register file information, for example.
1893 ///
1894 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1895 /// the F8RC register class argument in:
1896 ///
1897 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1898 ///
1899 /// When Unnamed is false, return the type of a named DAG operand such as the
1900 /// GPR:$src operand above.
1901 ///
1902 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1903                                        bool NotRegisters,
1904                                        bool Unnamed,
1905                                        TreePattern &TP) {
1906   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1907 
1908   // Check to see if this is a register operand.
1909   if (R->isSubClassOf("RegisterOperand")) {
1910     assert(ResNo == 0 && "Regoperand ref only has one result!");
1911     if (NotRegisters)
1912       return TypeSetByHwMode(); // Unknown.
1913     Record *RegClass = R->getValueAsDef("RegClass");
1914     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1915     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1916   }
1917 
1918   // Check to see if this is a register or a register class.
1919   if (R->isSubClassOf("RegisterClass")) {
1920     assert(ResNo == 0 && "Regclass ref only has one result!");
1921     // An unnamed register class represents itself as an i32 immediate, for
1922     // example on a COPY_TO_REGCLASS instruction.
1923     if (Unnamed)
1924       return TypeSetByHwMode(MVT::i32);
1925 
1926     // In a named operand, the register class provides the possible set of
1927     // types.
1928     if (NotRegisters)
1929       return TypeSetByHwMode(); // Unknown.
1930     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1931     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1932   }
1933 
1934   if (R->isSubClassOf("PatFrag")) {
1935     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1936     // Pattern fragment types will be resolved when they are inlined.
1937     return TypeSetByHwMode(); // Unknown.
1938   }
1939 
1940   if (R->isSubClassOf("Register")) {
1941     assert(ResNo == 0 && "Registers only produce one result!");
1942     if (NotRegisters)
1943       return TypeSetByHwMode(); // Unknown.
1944     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1945     return TypeSetByHwMode(T.getRegisterVTs(R));
1946   }
1947 
1948   if (R->isSubClassOf("SubRegIndex")) {
1949     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1950     return TypeSetByHwMode(MVT::i32);
1951   }
1952 
1953   if (R->isSubClassOf("ValueType")) {
1954     assert(ResNo == 0 && "This node only has one result!");
1955     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1956     //
1957     //   (sext_inreg GPR:$src, i16)
1958     //                         ~~~
1959     if (Unnamed)
1960       return TypeSetByHwMode(MVT::Other);
1961     // With a name, the ValueType simply provides the type of the named
1962     // variable.
1963     //
1964     //   (sext_inreg i32:$src, i16)
1965     //               ~~~~~~~~
1966     if (NotRegisters)
1967       return TypeSetByHwMode(); // Unknown.
1968     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1969     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
1970   }
1971 
1972   if (R->isSubClassOf("CondCode")) {
1973     assert(ResNo == 0 && "This node only has one result!");
1974     // Using a CondCodeSDNode.
1975     return TypeSetByHwMode(MVT::Other);
1976   }
1977 
1978   if (R->isSubClassOf("ComplexPattern")) {
1979     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1980     if (NotRegisters)
1981       return TypeSetByHwMode(); // Unknown.
1982     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
1983   }
1984   if (R->isSubClassOf("PointerLikeRegClass")) {
1985     assert(ResNo == 0 && "Regclass can only have one result!");
1986     TypeSetByHwMode VTS(MVT::iPTR);
1987     TP.getInfer().expandOverloads(VTS);
1988     return VTS;
1989   }
1990 
1991   if (R->getName() == "node" || R->getName() == "srcvalue" ||
1992       R->getName() == "zero_reg") {
1993     // Placeholder.
1994     return TypeSetByHwMode(); // Unknown.
1995   }
1996 
1997   if (R->isSubClassOf("Operand")) {
1998     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1999     Record *T = R->getValueAsDef("Type");
2000     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2001   }
2002 
2003   TP.error("Unknown node flavor used in pattern: " + R->getName());
2004   return TypeSetByHwMode(MVT::Other);
2005 }
2006 
2007 
2008 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2009 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2010 const CodeGenIntrinsic *TreePatternNode::
2011 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2012   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2013       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2014       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2015     return nullptr;
2016 
2017   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2018   return &CDP.getIntrinsicInfo(IID);
2019 }
2020 
2021 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2022 /// return the ComplexPattern information, otherwise return null.
2023 const ComplexPattern *
2024 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2025   Record *Rec;
2026   if (isLeaf()) {
2027     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2028     if (!DI)
2029       return nullptr;
2030     Rec = DI->getDef();
2031   } else
2032     Rec = getOperator();
2033 
2034   if (!Rec->isSubClassOf("ComplexPattern"))
2035     return nullptr;
2036   return &CGP.getComplexPattern(Rec);
2037 }
2038 
2039 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2040   // A ComplexPattern specifically declares how many results it fills in.
2041   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2042     return CP->getNumOperands();
2043 
2044   // If MIOperandInfo is specified, that gives the count.
2045   if (isLeaf()) {
2046     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2047     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2048       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2049       if (MIOps->getNumArgs())
2050         return MIOps->getNumArgs();
2051     }
2052   }
2053 
2054   // Otherwise there is just one result.
2055   return 1;
2056 }
2057 
2058 /// NodeHasProperty - Return true if this node has the specified property.
2059 bool TreePatternNode::NodeHasProperty(SDNP Property,
2060                                       const CodeGenDAGPatterns &CGP) const {
2061   if (isLeaf()) {
2062     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2063       return CP->hasProperty(Property);
2064     return false;
2065   }
2066 
2067   Record *Operator = getOperator();
2068   if (!Operator->isSubClassOf("SDNode")) return false;
2069 
2070   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2071 }
2072 
2073 
2074 
2075 
2076 /// TreeHasProperty - Return true if any node in this tree has the specified
2077 /// property.
2078 bool TreePatternNode::TreeHasProperty(SDNP Property,
2079                                       const CodeGenDAGPatterns &CGP) const {
2080   if (NodeHasProperty(Property, CGP))
2081     return true;
2082   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2083     if (getChild(i)->TreeHasProperty(Property, CGP))
2084       return true;
2085   return false;
2086 }
2087 
2088 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2089 /// commutative intrinsic.
2090 bool
2091 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2092   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2093     return Int->isCommutative;
2094   return false;
2095 }
2096 
2097 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2098   if (!N->isLeaf())
2099     return N->getOperator()->isSubClassOf(Class);
2100 
2101   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2102   if (DI && DI->getDef()->isSubClassOf(Class))
2103     return true;
2104 
2105   return false;
2106 }
2107 
2108 static void emitTooManyOperandsError(TreePattern &TP,
2109                                      StringRef InstName,
2110                                      unsigned Expected,
2111                                      unsigned Actual) {
2112   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2113            " operands but expected only " + Twine(Expected) + "!");
2114 }
2115 
2116 static void emitTooFewOperandsError(TreePattern &TP,
2117                                     StringRef InstName,
2118                                     unsigned Actual) {
2119   TP.error("Instruction '" + InstName +
2120            "' expects more than the provided " + Twine(Actual) + " operands!");
2121 }
2122 
2123 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2124 /// this node and its children in the tree.  This returns true if it makes a
2125 /// change, false otherwise.  If a type contradiction is found, flag an error.
2126 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2127   if (TP.hasError())
2128     return false;
2129 
2130   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2131   if (isLeaf()) {
2132     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2133       // If it's a regclass or something else known, include the type.
2134       bool MadeChange = false;
2135       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2136         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2137                                                         NotRegisters,
2138                                                         !hasName(), TP), TP);
2139       return MadeChange;
2140     }
2141 
2142     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2143       assert(Types.size() == 1 && "Invalid IntInit");
2144 
2145       // Int inits are always integers. :)
2146       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2147 
2148       if (!TP.getInfer().isConcrete(Types[0], false))
2149         return MadeChange;
2150 
2151       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2152       for (auto &P : VVT) {
2153         MVT::SimpleValueType VT = P.second.SimpleTy;
2154         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2155           continue;
2156         unsigned Size = MVT(VT).getSizeInBits();
2157         // Make sure that the value is representable for this type.
2158         if (Size >= 32)
2159           continue;
2160         // Check that the value doesn't use more bits than we have. It must
2161         // either be a sign- or zero-extended equivalent of the original.
2162         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2163         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2164             SignBitAndAbove == 1)
2165           continue;
2166 
2167         TP.error("Integer value '" + itostr(II->getValue()) +
2168                  "' is out of range for type '" + getEnumName(VT) + "'!");
2169         break;
2170       }
2171       return MadeChange;
2172     }
2173 
2174     return false;
2175   }
2176 
2177   // special handling for set, which isn't really an SDNode.
2178   if (getOperator()->getName() == "set") {
2179     assert(getNumTypes() == 0 && "Set doesn't produce a value");
2180     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
2181     unsigned NC = getNumChildren();
2182 
2183     TreePatternNode *SetVal = getChild(NC-1);
2184     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
2185 
2186     for (unsigned i = 0; i < NC-1; ++i) {
2187       TreePatternNode *Child = getChild(i);
2188       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
2189 
2190       // Types of operands must match.
2191       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
2192       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
2193     }
2194     return MadeChange;
2195   }
2196 
2197   if (getOperator()->getName() == "implicit") {
2198     assert(getNumTypes() == 0 && "Node doesn't produce a value");
2199 
2200     bool MadeChange = false;
2201     for (unsigned i = 0; i < getNumChildren(); ++i)
2202       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2203     return MadeChange;
2204   }
2205 
2206   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2207     bool MadeChange = false;
2208 
2209     // Apply the result type to the node.
2210     unsigned NumRetVTs = Int->IS.RetVTs.size();
2211     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2212 
2213     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2214       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2215 
2216     if (getNumChildren() != NumParamVTs + 1) {
2217       TP.error("Intrinsic '" + Int->Name + "' expects " +
2218                utostr(NumParamVTs) + " operands, not " +
2219                utostr(getNumChildren() - 1) + " operands!");
2220       return false;
2221     }
2222 
2223     // Apply type info to the intrinsic ID.
2224     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2225 
2226     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2227       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2228 
2229       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2230       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2231       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2232     }
2233     return MadeChange;
2234   }
2235 
2236   if (getOperator()->isSubClassOf("SDNode")) {
2237     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2238 
2239     // Check that the number of operands is sane.  Negative operands -> varargs.
2240     if (NI.getNumOperands() >= 0 &&
2241         getNumChildren() != (unsigned)NI.getNumOperands()) {
2242       TP.error(getOperator()->getName() + " node requires exactly " +
2243                itostr(NI.getNumOperands()) + " operands!");
2244       return false;
2245     }
2246 
2247     bool MadeChange = false;
2248     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2249       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2250     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2251     return MadeChange;
2252   }
2253 
2254   if (getOperator()->isSubClassOf("Instruction")) {
2255     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2256     CodeGenInstruction &InstInfo =
2257       CDP.getTargetInfo().getInstruction(getOperator());
2258 
2259     bool MadeChange = false;
2260 
2261     // Apply the result types to the node, these come from the things in the
2262     // (outs) list of the instruction.
2263     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2264                                         Inst.getNumResults());
2265     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2266       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2267 
2268     // If the instruction has implicit defs, we apply the first one as a result.
2269     // FIXME: This sucks, it should apply all implicit defs.
2270     if (!InstInfo.ImplicitDefs.empty()) {
2271       unsigned ResNo = NumResultsToAdd;
2272 
2273       // FIXME: Generalize to multiple possible types and multiple possible
2274       // ImplicitDefs.
2275       MVT::SimpleValueType VT =
2276         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2277 
2278       if (VT != MVT::Other)
2279         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2280     }
2281 
2282     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2283     // be the same.
2284     if (getOperator()->getName() == "INSERT_SUBREG") {
2285       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2286       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2287       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2288     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2289       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2290       // variadic.
2291 
2292       unsigned NChild = getNumChildren();
2293       if (NChild < 3) {
2294         TP.error("REG_SEQUENCE requires at least 3 operands!");
2295         return false;
2296       }
2297 
2298       if (NChild % 2 == 0) {
2299         TP.error("REG_SEQUENCE requires an odd number of operands!");
2300         return false;
2301       }
2302 
2303       if (!isOperandClass(getChild(0), "RegisterClass")) {
2304         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2305         return false;
2306       }
2307 
2308       for (unsigned I = 1; I < NChild; I += 2) {
2309         TreePatternNode *SubIdxChild = getChild(I + 1);
2310         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2311           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2312                    itostr(I + 1) + "!");
2313           return false;
2314         }
2315       }
2316     }
2317 
2318     unsigned ChildNo = 0;
2319     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2320       Record *OperandNode = Inst.getOperand(i);
2321 
2322       // If the instruction expects a predicate or optional def operand, we
2323       // codegen this by setting the operand to it's default value if it has a
2324       // non-empty DefaultOps field.
2325       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2326           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2327         continue;
2328 
2329       // Verify that we didn't run out of provided operands.
2330       if (ChildNo >= getNumChildren()) {
2331         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2332         return false;
2333       }
2334 
2335       TreePatternNode *Child = getChild(ChildNo++);
2336       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2337 
2338       // If the operand has sub-operands, they may be provided by distinct
2339       // child patterns, so attempt to match each sub-operand separately.
2340       if (OperandNode->isSubClassOf("Operand")) {
2341         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2342         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2343           // But don't do that if the whole operand is being provided by
2344           // a single ComplexPattern-related Operand.
2345 
2346           if (Child->getNumMIResults(CDP) < NumArgs) {
2347             // Match first sub-operand against the child we already have.
2348             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2349             MadeChange |=
2350               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2351 
2352             // And the remaining sub-operands against subsequent children.
2353             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2354               if (ChildNo >= getNumChildren()) {
2355                 emitTooFewOperandsError(TP, getOperator()->getName(),
2356                                         getNumChildren());
2357                 return false;
2358               }
2359               Child = getChild(ChildNo++);
2360 
2361               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2362               MadeChange |=
2363                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2364             }
2365             continue;
2366           }
2367         }
2368       }
2369 
2370       // If we didn't match by pieces above, attempt to match the whole
2371       // operand now.
2372       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2373     }
2374 
2375     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2376       emitTooManyOperandsError(TP, getOperator()->getName(),
2377                                ChildNo, getNumChildren());
2378       return false;
2379     }
2380 
2381     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2382       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2383     return MadeChange;
2384   }
2385 
2386   if (getOperator()->isSubClassOf("ComplexPattern")) {
2387     bool MadeChange = false;
2388 
2389     for (unsigned i = 0; i < getNumChildren(); ++i)
2390       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2391 
2392     return MadeChange;
2393   }
2394 
2395   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2396 
2397   // Node transforms always take one operand.
2398   if (getNumChildren() != 1) {
2399     TP.error("Node transform '" + getOperator()->getName() +
2400              "' requires one operand!");
2401     return false;
2402   }
2403 
2404   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2405   return MadeChange;
2406 }
2407 
2408 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2409 /// RHS of a commutative operation, not the on LHS.
2410 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2411   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2412     return true;
2413   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2414     return true;
2415   return false;
2416 }
2417 
2418 
2419 /// canPatternMatch - If it is impossible for this pattern to match on this
2420 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2421 /// used as a sanity check for .td files (to prevent people from writing stuff
2422 /// that can never possibly work), and to prevent the pattern permuter from
2423 /// generating stuff that is useless.
2424 bool TreePatternNode::canPatternMatch(std::string &Reason,
2425                                       const CodeGenDAGPatterns &CDP) {
2426   if (isLeaf()) return true;
2427 
2428   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2429     if (!getChild(i)->canPatternMatch(Reason, CDP))
2430       return false;
2431 
2432   // If this is an intrinsic, handle cases that would make it not match.  For
2433   // example, if an operand is required to be an immediate.
2434   if (getOperator()->isSubClassOf("Intrinsic")) {
2435     // TODO:
2436     return true;
2437   }
2438 
2439   if (getOperator()->isSubClassOf("ComplexPattern"))
2440     return true;
2441 
2442   // If this node is a commutative operator, check that the LHS isn't an
2443   // immediate.
2444   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2445   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2446   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2447     // Scan all of the operands of the node and make sure that only the last one
2448     // is a constant node, unless the RHS also is.
2449     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2450       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2451       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2452         if (OnlyOnRHSOfCommutative(getChild(i))) {
2453           Reason="Immediate value must be on the RHS of commutative operators!";
2454           return false;
2455         }
2456     }
2457   }
2458 
2459   return true;
2460 }
2461 
2462 //===----------------------------------------------------------------------===//
2463 // TreePattern implementation
2464 //
2465 
2466 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2467                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2468                          isInputPattern(isInput), HasError(false),
2469                          Infer(*this) {
2470   for (Init *I : RawPat->getValues())
2471     Trees.push_back(ParseTreePattern(I, ""));
2472 }
2473 
2474 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2475                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2476                          isInputPattern(isInput), HasError(false),
2477                          Infer(*this) {
2478   Trees.push_back(ParseTreePattern(Pat, ""));
2479 }
2480 
2481 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2482                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2483                          isInputPattern(isInput), HasError(false),
2484                          Infer(*this) {
2485   Trees.push_back(Pat);
2486 }
2487 
2488 void TreePattern::error(const Twine &Msg) {
2489   if (HasError)
2490     return;
2491   dump();
2492   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2493   HasError = true;
2494 }
2495 
2496 void TreePattern::ComputeNamedNodes() {
2497   for (TreePatternNode *Tree : Trees)
2498     ComputeNamedNodes(Tree);
2499 }
2500 
2501 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2502   if (!N->getName().empty())
2503     NamedNodes[N->getName()].push_back(N);
2504 
2505   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2506     ComputeNamedNodes(N->getChild(i));
2507 }
2508 
2509 
2510 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2511   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2512     Record *R = DI->getDef();
2513 
2514     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2515     // TreePatternNode of its own.  For example:
2516     ///   (foo GPR, imm) -> (foo GPR, (imm))
2517     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2518       return ParseTreePattern(
2519         DagInit::get(DI, nullptr,
2520                      std::vector<std::pair<Init*, StringInit*> >()),
2521         OpName);
2522 
2523     // Input argument?
2524     TreePatternNode *Res = new TreePatternNode(DI, 1);
2525     if (R->getName() == "node" && !OpName.empty()) {
2526       if (OpName.empty())
2527         error("'node' argument requires a name to match with operand list");
2528       Args.push_back(OpName);
2529     }
2530 
2531     Res->setName(OpName);
2532     return Res;
2533   }
2534 
2535   // ?:$name or just $name.
2536   if (isa<UnsetInit>(TheInit)) {
2537     if (OpName.empty())
2538       error("'?' argument requires a name to match with operand list");
2539     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2540     Args.push_back(OpName);
2541     Res->setName(OpName);
2542     return Res;
2543   }
2544 
2545   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2546     if (!OpName.empty())
2547       error("Constant int argument should not have a name!");
2548     return new TreePatternNode(II, 1);
2549   }
2550 
2551   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2552     // Turn this into an IntInit.
2553     Init *II = BI->convertInitializerTo(IntRecTy::get());
2554     if (!II || !isa<IntInit>(II))
2555       error("Bits value must be constants!");
2556     return ParseTreePattern(II, OpName);
2557   }
2558 
2559   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2560   if (!Dag) {
2561     TheInit->print(errs());
2562     error("Pattern has unexpected init kind!");
2563   }
2564   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2565   if (!OpDef) error("Pattern has unexpected operator type!");
2566   Record *Operator = OpDef->getDef();
2567 
2568   if (Operator->isSubClassOf("ValueType")) {
2569     // If the operator is a ValueType, then this must be "type cast" of a leaf
2570     // node.
2571     if (Dag->getNumArgs() != 1)
2572       error("Type cast only takes one operand!");
2573 
2574     TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2575                                             Dag->getArgNameStr(0));
2576 
2577     // Apply the type cast.
2578     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2579     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2580     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2581 
2582     if (!OpName.empty())
2583       error("ValueType cast should not have a name!");
2584     return New;
2585   }
2586 
2587   // Verify that this is something that makes sense for an operator.
2588   if (!Operator->isSubClassOf("PatFrag") &&
2589       !Operator->isSubClassOf("SDNode") &&
2590       !Operator->isSubClassOf("Instruction") &&
2591       !Operator->isSubClassOf("SDNodeXForm") &&
2592       !Operator->isSubClassOf("Intrinsic") &&
2593       !Operator->isSubClassOf("ComplexPattern") &&
2594       Operator->getName() != "set" &&
2595       Operator->getName() != "implicit")
2596     error("Unrecognized node '" + Operator->getName() + "'!");
2597 
2598   //  Check to see if this is something that is illegal in an input pattern.
2599   if (isInputPattern) {
2600     if (Operator->isSubClassOf("Instruction") ||
2601         Operator->isSubClassOf("SDNodeXForm"))
2602       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2603   } else {
2604     if (Operator->isSubClassOf("Intrinsic"))
2605       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2606 
2607     if (Operator->isSubClassOf("SDNode") &&
2608         Operator->getName() != "imm" &&
2609         Operator->getName() != "fpimm" &&
2610         Operator->getName() != "tglobaltlsaddr" &&
2611         Operator->getName() != "tconstpool" &&
2612         Operator->getName() != "tjumptable" &&
2613         Operator->getName() != "tframeindex" &&
2614         Operator->getName() != "texternalsym" &&
2615         Operator->getName() != "tblockaddress" &&
2616         Operator->getName() != "tglobaladdr" &&
2617         Operator->getName() != "bb" &&
2618         Operator->getName() != "vt" &&
2619         Operator->getName() != "mcsym")
2620       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2621   }
2622 
2623   std::vector<TreePatternNode*> Children;
2624 
2625   // Parse all the operands.
2626   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2627     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2628 
2629   // If the operator is an intrinsic, then this is just syntactic sugar for for
2630   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2631   // convert the intrinsic name to a number.
2632   if (Operator->isSubClassOf("Intrinsic")) {
2633     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2634     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2635 
2636     // If this intrinsic returns void, it must have side-effects and thus a
2637     // chain.
2638     if (Int.IS.RetVTs.empty())
2639       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2640     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2641       // Has side-effects, requires chain.
2642       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2643     else // Otherwise, no chain.
2644       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2645 
2646     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2647     Children.insert(Children.begin(), IIDNode);
2648   }
2649 
2650   if (Operator->isSubClassOf("ComplexPattern")) {
2651     for (unsigned i = 0; i < Children.size(); ++i) {
2652       TreePatternNode *Child = Children[i];
2653 
2654       if (Child->getName().empty())
2655         error("All arguments to a ComplexPattern must be named");
2656 
2657       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2658       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2659       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2660       auto OperandId = std::make_pair(Operator, i);
2661       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2662       if (PrevOp != ComplexPatternOperands.end()) {
2663         if (PrevOp->getValue() != OperandId)
2664           error("All ComplexPattern operands must appear consistently: "
2665                 "in the same order in just one ComplexPattern instance.");
2666       } else
2667         ComplexPatternOperands[Child->getName()] = OperandId;
2668     }
2669   }
2670 
2671   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2672   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2673   Result->setName(OpName);
2674 
2675   if (Dag->getName()) {
2676     assert(Result->getName().empty());
2677     Result->setName(Dag->getNameStr());
2678   }
2679   return Result;
2680 }
2681 
2682 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2683 /// will never match in favor of something obvious that will.  This is here
2684 /// strictly as a convenience to target authors because it allows them to write
2685 /// more type generic things and have useless type casts fold away.
2686 ///
2687 /// This returns true if any change is made.
2688 static bool SimplifyTree(TreePatternNode *&N) {
2689   if (N->isLeaf())
2690     return false;
2691 
2692   // If we have a bitconvert with a resolved type and if the source and
2693   // destination types are the same, then the bitconvert is useless, remove it.
2694   if (N->getOperator()->getName() == "bitconvert" &&
2695       N->getExtType(0).isValueTypeByHwMode(false) &&
2696       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2697       N->getName().empty()) {
2698     N = N->getChild(0);
2699     SimplifyTree(N);
2700     return true;
2701   }
2702 
2703   // Walk all children.
2704   bool MadeChange = false;
2705   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2706     TreePatternNode *Child = N->getChild(i);
2707     MadeChange |= SimplifyTree(Child);
2708     N->setChild(i, Child);
2709   }
2710   return MadeChange;
2711 }
2712 
2713 
2714 
2715 /// InferAllTypes - Infer/propagate as many types throughout the expression
2716 /// patterns as possible.  Return true if all types are inferred, false
2717 /// otherwise.  Flags an error if a type contradiction is found.
2718 bool TreePattern::
2719 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2720   if (NamedNodes.empty())
2721     ComputeNamedNodes();
2722 
2723   bool MadeChange = true;
2724   while (MadeChange) {
2725     MadeChange = false;
2726     for (TreePatternNode *&Tree : Trees) {
2727       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2728       MadeChange |= SimplifyTree(Tree);
2729     }
2730 
2731     // If there are constraints on our named nodes, apply them.
2732     for (auto &Entry : NamedNodes) {
2733       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2734 
2735       // If we have input named node types, propagate their types to the named
2736       // values here.
2737       if (InNamedTypes) {
2738         if (!InNamedTypes->count(Entry.getKey())) {
2739           error("Node '" + std::string(Entry.getKey()) +
2740                 "' in output pattern but not input pattern");
2741           return true;
2742         }
2743 
2744         const SmallVectorImpl<TreePatternNode*> &InNodes =
2745           InNamedTypes->find(Entry.getKey())->second;
2746 
2747         // The input types should be fully resolved by now.
2748         for (TreePatternNode *Node : Nodes) {
2749           // If this node is a register class, and it is the root of the pattern
2750           // then we're mapping something onto an input register.  We allow
2751           // changing the type of the input register in this case.  This allows
2752           // us to match things like:
2753           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2754           if (Node == Trees[0] && Node->isLeaf()) {
2755             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2756             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2757                        DI->getDef()->isSubClassOf("RegisterOperand")))
2758               continue;
2759           }
2760 
2761           assert(Node->getNumTypes() == 1 &&
2762                  InNodes[0]->getNumTypes() == 1 &&
2763                  "FIXME: cannot name multiple result nodes yet");
2764           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2765                                              *this);
2766         }
2767       }
2768 
2769       // If there are multiple nodes with the same name, they must all have the
2770       // same type.
2771       if (Entry.second.size() > 1) {
2772         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2773           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2774           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2775                  "FIXME: cannot name multiple result nodes yet");
2776 
2777           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2778           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2779         }
2780       }
2781     }
2782   }
2783 
2784   bool HasUnresolvedTypes = false;
2785   for (const TreePatternNode *Tree : Trees)
2786     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2787   return !HasUnresolvedTypes;
2788 }
2789 
2790 void TreePattern::print(raw_ostream &OS) const {
2791   OS << getRecord()->getName();
2792   if (!Args.empty()) {
2793     OS << "(" << Args[0];
2794     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2795       OS << ", " << Args[i];
2796     OS << ")";
2797   }
2798   OS << ": ";
2799 
2800   if (Trees.size() > 1)
2801     OS << "[\n";
2802   for (const TreePatternNode *Tree : Trees) {
2803     OS << "\t";
2804     Tree->print(OS);
2805     OS << "\n";
2806   }
2807 
2808   if (Trees.size() > 1)
2809     OS << "]\n";
2810 }
2811 
2812 void TreePattern::dump() const { print(errs()); }
2813 
2814 //===----------------------------------------------------------------------===//
2815 // CodeGenDAGPatterns implementation
2816 //
2817 
2818 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2819                                        PatternRewriterFn PatternRewriter)
2820     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2821       PatternRewriter(PatternRewriter) {
2822 
2823   Intrinsics = CodeGenIntrinsicTable(Records, false);
2824   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2825   ParseNodeInfo();
2826   ParseNodeTransforms();
2827   ParseComplexPatterns();
2828   ParsePatternFragments();
2829   ParseDefaultOperands();
2830   ParseInstructions();
2831   ParsePatternFragments(/*OutFrags*/true);
2832   ParsePatterns();
2833 
2834   // Break patterns with parameterized types into a series of patterns,
2835   // where each one has a fixed type and is predicated on the conditions
2836   // of the associated HW mode.
2837   ExpandHwModeBasedTypes();
2838 
2839   // Generate variants.  For example, commutative patterns can match
2840   // multiple ways.  Add them to PatternsToMatch as well.
2841   GenerateVariants();
2842 
2843   // Infer instruction flags.  For example, we can detect loads,
2844   // stores, and side effects in many cases by examining an
2845   // instruction's pattern.
2846   InferInstructionFlags();
2847 
2848   // Verify that instruction flags match the patterns.
2849   VerifyInstructionFlags();
2850 }
2851 
2852 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2853   Record *N = Records.getDef(Name);
2854   if (!N || !N->isSubClassOf("SDNode"))
2855     PrintFatalError("Error getting SDNode '" + Name + "'!");
2856 
2857   return N;
2858 }
2859 
2860 // Parse all of the SDNode definitions for the target, populating SDNodes.
2861 void CodeGenDAGPatterns::ParseNodeInfo() {
2862   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2863   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2864 
2865   while (!Nodes.empty()) {
2866     Record *R = Nodes.back();
2867     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2868     Nodes.pop_back();
2869   }
2870 
2871   // Get the builtin intrinsic nodes.
2872   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2873   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2874   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2875 }
2876 
2877 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2878 /// map, and emit them to the file as functions.
2879 void CodeGenDAGPatterns::ParseNodeTransforms() {
2880   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2881   while (!Xforms.empty()) {
2882     Record *XFormNode = Xforms.back();
2883     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2884     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2885     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2886 
2887     Xforms.pop_back();
2888   }
2889 }
2890 
2891 void CodeGenDAGPatterns::ParseComplexPatterns() {
2892   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2893   while (!AMs.empty()) {
2894     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2895     AMs.pop_back();
2896   }
2897 }
2898 
2899 
2900 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2901 /// file, building up the PatternFragments map.  After we've collected them all,
2902 /// inline fragments together as necessary, so that there are no references left
2903 /// inside a pattern fragment to a pattern fragment.
2904 ///
2905 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2906   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2907 
2908   // First step, parse all of the fragments.
2909   for (Record *Frag : Fragments) {
2910     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2911       continue;
2912 
2913     DagInit *Tree = Frag->getValueAsDag("Fragment");
2914     TreePattern *P =
2915         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2916              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2917              *this)).get();
2918 
2919     // Validate the argument list, converting it to set, to discard duplicates.
2920     std::vector<std::string> &Args = P->getArgList();
2921     // Copy the args so we can take StringRefs to them.
2922     auto ArgsCopy = Args;
2923     SmallDenseSet<StringRef, 4> OperandsSet;
2924     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2925 
2926     if (OperandsSet.count(""))
2927       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2928 
2929     // Parse the operands list.
2930     DagInit *OpsList = Frag->getValueAsDag("Operands");
2931     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2932     // Special cases: ops == outs == ins. Different names are used to
2933     // improve readability.
2934     if (!OpsOp ||
2935         (OpsOp->getDef()->getName() != "ops" &&
2936          OpsOp->getDef()->getName() != "outs" &&
2937          OpsOp->getDef()->getName() != "ins"))
2938       P->error("Operands list should start with '(ops ... '!");
2939 
2940     // Copy over the arguments.
2941     Args.clear();
2942     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2943       if (!isa<DefInit>(OpsList->getArg(j)) ||
2944           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2945         P->error("Operands list should all be 'node' values.");
2946       if (!OpsList->getArgName(j))
2947         P->error("Operands list should have names for each operand!");
2948       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2949       if (!OperandsSet.count(ArgNameStr))
2950         P->error("'" + ArgNameStr +
2951                  "' does not occur in pattern or was multiply specified!");
2952       OperandsSet.erase(ArgNameStr);
2953       Args.push_back(ArgNameStr);
2954     }
2955 
2956     if (!OperandsSet.empty())
2957       P->error("Operands list does not contain an entry for operand '" +
2958                *OperandsSet.begin() + "'!");
2959 
2960     // If there is a code init for this fragment, keep track of the fact that
2961     // this fragment uses it.
2962     TreePredicateFn PredFn(P);
2963     if (!PredFn.isAlwaysTrue())
2964       P->getOnlyTree()->addPredicateFn(PredFn);
2965 
2966     // If there is a node transformation corresponding to this, keep track of
2967     // it.
2968     Record *Transform = Frag->getValueAsDef("OperandTransform");
2969     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2970       P->getOnlyTree()->setTransformFn(Transform);
2971   }
2972 
2973   // Now that we've parsed all of the tree fragments, do a closure on them so
2974   // that there are not references to PatFrags left inside of them.
2975   for (Record *Frag : Fragments) {
2976     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2977       continue;
2978 
2979     TreePattern &ThePat = *PatternFragments[Frag];
2980     ThePat.InlinePatternFragments();
2981 
2982     // Infer as many types as possible.  Don't worry about it if we don't infer
2983     // all of them, some may depend on the inputs of the pattern.
2984     ThePat.InferAllTypes();
2985     ThePat.resetError();
2986 
2987     // If debugging, print out the pattern fragment result.
2988     DEBUG(ThePat.dump());
2989   }
2990 }
2991 
2992 void CodeGenDAGPatterns::ParseDefaultOperands() {
2993   std::vector<Record*> DefaultOps;
2994   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2995 
2996   // Find some SDNode.
2997   assert(!SDNodes.empty() && "No SDNodes parsed?");
2998   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2999 
3000   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3001     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3002 
3003     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3004     // SomeSDnode so that we can parse this.
3005     std::vector<std::pair<Init*, StringInit*> > Ops;
3006     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3007       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3008                                    DefaultInfo->getArgName(op)));
3009     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3010 
3011     // Create a TreePattern to parse this.
3012     TreePattern P(DefaultOps[i], DI, false, *this);
3013     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3014 
3015     // Copy the operands over into a DAGDefaultOperand.
3016     DAGDefaultOperand DefaultOpInfo;
3017 
3018     TreePatternNode *T = P.getTree(0);
3019     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3020       TreePatternNode *TPN = T->getChild(op);
3021       while (TPN->ApplyTypeConstraints(P, false))
3022         /* Resolve all types */;
3023 
3024       if (TPN->ContainsUnresolvedType(P)) {
3025         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3026                         DefaultOps[i]->getName() +
3027                         "' doesn't have a concrete type!");
3028       }
3029       DefaultOpInfo.DefaultOps.push_back(TPN);
3030     }
3031 
3032     // Insert it into the DefaultOperands map so we can find it later.
3033     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3034   }
3035 }
3036 
3037 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3038 /// instruction input.  Return true if this is a real use.
3039 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
3040                       std::map<std::string, TreePatternNode*> &InstInputs) {
3041   // No name -> not interesting.
3042   if (Pat->getName().empty()) {
3043     if (Pat->isLeaf()) {
3044       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3045       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3046                  DI->getDef()->isSubClassOf("RegisterOperand")))
3047         I->error("Input " + DI->getDef()->getName() + " must be named!");
3048     }
3049     return false;
3050   }
3051 
3052   Record *Rec;
3053   if (Pat->isLeaf()) {
3054     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3055     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
3056     Rec = DI->getDef();
3057   } else {
3058     Rec = Pat->getOperator();
3059   }
3060 
3061   // SRCVALUE nodes are ignored.
3062   if (Rec->getName() == "srcvalue")
3063     return false;
3064 
3065   TreePatternNode *&Slot = InstInputs[Pat->getName()];
3066   if (!Slot) {
3067     Slot = Pat;
3068     return true;
3069   }
3070   Record *SlotRec;
3071   if (Slot->isLeaf()) {
3072     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3073   } else {
3074     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3075     SlotRec = Slot->getOperator();
3076   }
3077 
3078   // Ensure that the inputs agree if we've already seen this input.
3079   if (Rec != SlotRec)
3080     I->error("All $" + Pat->getName() + " inputs must agree with each other");
3081   if (Slot->getExtTypes() != Pat->getExtTypes())
3082     I->error("All $" + Pat->getName() + " inputs must agree with each other");
3083   return true;
3084 }
3085 
3086 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3087 /// part of "I", the instruction), computing the set of inputs and outputs of
3088 /// the pattern.  Report errors if we see anything naughty.
3089 void CodeGenDAGPatterns::
3090 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
3091                             std::map<std::string, TreePatternNode*> &InstInputs,
3092                             std::map<std::string, TreePatternNode*>&InstResults,
3093                             std::vector<Record*> &InstImpResults) {
3094   if (Pat->isLeaf()) {
3095     bool isUse = HandleUse(I, Pat, InstInputs);
3096     if (!isUse && Pat->getTransformFn())
3097       I->error("Cannot specify a transform function for a non-input value!");
3098     return;
3099   }
3100 
3101   if (Pat->getOperator()->getName() == "implicit") {
3102     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3103       TreePatternNode *Dest = Pat->getChild(i);
3104       if (!Dest->isLeaf())
3105         I->error("implicitly defined value should be a register!");
3106 
3107       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3108       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3109         I->error("implicitly defined value should be a register!");
3110       InstImpResults.push_back(Val->getDef());
3111     }
3112     return;
3113   }
3114 
3115   if (Pat->getOperator()->getName() != "set") {
3116     // If this is not a set, verify that the children nodes are not void typed,
3117     // and recurse.
3118     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3119       if (Pat->getChild(i)->getNumTypes() == 0)
3120         I->error("Cannot have void nodes inside of patterns!");
3121       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
3122                                   InstImpResults);
3123     }
3124 
3125     // If this is a non-leaf node with no children, treat it basically as if
3126     // it were a leaf.  This handles nodes like (imm).
3127     bool isUse = HandleUse(I, Pat, InstInputs);
3128 
3129     if (!isUse && Pat->getTransformFn())
3130       I->error("Cannot specify a transform function for a non-input value!");
3131     return;
3132   }
3133 
3134   // Otherwise, this is a set, validate and collect instruction results.
3135   if (Pat->getNumChildren() == 0)
3136     I->error("set requires operands!");
3137 
3138   if (Pat->getTransformFn())
3139     I->error("Cannot specify a transform function on a set node!");
3140 
3141   // Check the set destinations.
3142   unsigned NumDests = Pat->getNumChildren()-1;
3143   for (unsigned i = 0; i != NumDests; ++i) {
3144     TreePatternNode *Dest = Pat->getChild(i);
3145     if (!Dest->isLeaf())
3146       I->error("set destination should be a register!");
3147 
3148     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3149     if (!Val) {
3150       I->error("set destination should be a register!");
3151       continue;
3152     }
3153 
3154     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3155         Val->getDef()->isSubClassOf("ValueType") ||
3156         Val->getDef()->isSubClassOf("RegisterOperand") ||
3157         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3158       if (Dest->getName().empty())
3159         I->error("set destination must have a name!");
3160       if (InstResults.count(Dest->getName()))
3161         I->error("cannot set '" + Dest->getName() +"' multiple times");
3162       InstResults[Dest->getName()] = Dest;
3163     } else if (Val->getDef()->isSubClassOf("Register")) {
3164       InstImpResults.push_back(Val->getDef());
3165     } else {
3166       I->error("set destination should be a register!");
3167     }
3168   }
3169 
3170   // Verify and collect info from the computation.
3171   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
3172                               InstInputs, InstResults, InstImpResults);
3173 }
3174 
3175 //===----------------------------------------------------------------------===//
3176 // Instruction Analysis
3177 //===----------------------------------------------------------------------===//
3178 
3179 class InstAnalyzer {
3180   const CodeGenDAGPatterns &CDP;
3181 public:
3182   bool hasSideEffects;
3183   bool mayStore;
3184   bool mayLoad;
3185   bool isBitcast;
3186   bool isVariadic;
3187 
3188   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3189     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3190       isBitcast(false), isVariadic(false) {}
3191 
3192   void Analyze(const TreePattern *Pat) {
3193     // Assume only the first tree is the pattern. The others are clobber nodes.
3194     AnalyzeNode(Pat->getTree(0));
3195   }
3196 
3197   void Analyze(const PatternToMatch &Pat) {
3198     AnalyzeNode(Pat.getSrcPattern());
3199   }
3200 
3201 private:
3202   bool IsNodeBitcast(const TreePatternNode *N) const {
3203     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3204       return false;
3205 
3206     if (N->getNumChildren() != 2)
3207       return false;
3208 
3209     const TreePatternNode *N0 = N->getChild(0);
3210     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
3211       return false;
3212 
3213     const TreePatternNode *N1 = N->getChild(1);
3214     if (N1->isLeaf())
3215       return false;
3216     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
3217       return false;
3218 
3219     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
3220     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3221       return false;
3222     return OpInfo.getEnumName() == "ISD::BITCAST";
3223   }
3224 
3225 public:
3226   void AnalyzeNode(const TreePatternNode *N) {
3227     if (N->isLeaf()) {
3228       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3229         Record *LeafRec = DI->getDef();
3230         // Handle ComplexPattern leaves.
3231         if (LeafRec->isSubClassOf("ComplexPattern")) {
3232           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3233           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3234           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3235           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3236         }
3237       }
3238       return;
3239     }
3240 
3241     // Analyze children.
3242     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3243       AnalyzeNode(N->getChild(i));
3244 
3245     // Ignore set nodes, which are not SDNodes.
3246     if (N->getOperator()->getName() == "set") {
3247       isBitcast = IsNodeBitcast(N);
3248       return;
3249     }
3250 
3251     // Notice properties of the node.
3252     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3253     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3254     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3255     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3256 
3257     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3258       // If this is an intrinsic, analyze it.
3259       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3260         mayLoad = true;// These may load memory.
3261 
3262       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3263         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3264 
3265       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3266           IntInfo->hasSideEffects)
3267         // ReadWriteMem intrinsics can have other strange effects.
3268         hasSideEffects = true;
3269     }
3270   }
3271 
3272 };
3273 
3274 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3275                              const InstAnalyzer &PatInfo,
3276                              Record *PatDef) {
3277   bool Error = false;
3278 
3279   // Remember where InstInfo got its flags.
3280   if (InstInfo.hasUndefFlags())
3281       InstInfo.InferredFrom = PatDef;
3282 
3283   // Check explicitly set flags for consistency.
3284   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3285       !InstInfo.hasSideEffects_Unset) {
3286     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3287     // the pattern has no side effects. That could be useful for div/rem
3288     // instructions that may trap.
3289     if (!InstInfo.hasSideEffects) {
3290       Error = true;
3291       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3292                  Twine(InstInfo.hasSideEffects));
3293     }
3294   }
3295 
3296   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3297     Error = true;
3298     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3299                Twine(InstInfo.mayStore));
3300   }
3301 
3302   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3303     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3304     // Some targets translate immediates to loads.
3305     if (!InstInfo.mayLoad) {
3306       Error = true;
3307       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3308                  Twine(InstInfo.mayLoad));
3309     }
3310   }
3311 
3312   // Transfer inferred flags.
3313   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3314   InstInfo.mayStore |= PatInfo.mayStore;
3315   InstInfo.mayLoad |= PatInfo.mayLoad;
3316 
3317   // These flags are silently added without any verification.
3318   InstInfo.isBitcast |= PatInfo.isBitcast;
3319 
3320   // Don't infer isVariadic. This flag means something different on SDNodes and
3321   // instructions. For example, a CALL SDNode is variadic because it has the
3322   // call arguments as operands, but a CALL instruction is not variadic - it
3323   // has argument registers as implicit, not explicit uses.
3324 
3325   return Error;
3326 }
3327 
3328 /// hasNullFragReference - Return true if the DAG has any reference to the
3329 /// null_frag operator.
3330 static bool hasNullFragReference(DagInit *DI) {
3331   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3332   if (!OpDef) return false;
3333   Record *Operator = OpDef->getDef();
3334 
3335   // If this is the null fragment, return true.
3336   if (Operator->getName() == "null_frag") return true;
3337   // If any of the arguments reference the null fragment, return true.
3338   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3339     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3340     if (Arg && hasNullFragReference(Arg))
3341       return true;
3342   }
3343 
3344   return false;
3345 }
3346 
3347 /// hasNullFragReference - Return true if any DAG in the list references
3348 /// the null_frag operator.
3349 static bool hasNullFragReference(ListInit *LI) {
3350   for (Init *I : LI->getValues()) {
3351     DagInit *DI = dyn_cast<DagInit>(I);
3352     assert(DI && "non-dag in an instruction Pattern list?!");
3353     if (hasNullFragReference(DI))
3354       return true;
3355   }
3356   return false;
3357 }
3358 
3359 /// Get all the instructions in a tree.
3360 static void
3361 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3362   if (Tree->isLeaf())
3363     return;
3364   if (Tree->getOperator()->isSubClassOf("Instruction"))
3365     Instrs.push_back(Tree->getOperator());
3366   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3367     getInstructionsInTree(Tree->getChild(i), Instrs);
3368 }
3369 
3370 /// Check the class of a pattern leaf node against the instruction operand it
3371 /// represents.
3372 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3373                               Record *Leaf) {
3374   if (OI.Rec == Leaf)
3375     return true;
3376 
3377   // Allow direct value types to be used in instruction set patterns.
3378   // The type will be checked later.
3379   if (Leaf->isSubClassOf("ValueType"))
3380     return true;
3381 
3382   // Patterns can also be ComplexPattern instances.
3383   if (Leaf->isSubClassOf("ComplexPattern"))
3384     return true;
3385 
3386   return false;
3387 }
3388 
3389 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3390     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3391 
3392   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3393 
3394   // Parse the instruction.
3395   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
3396   // Inline pattern fragments into it.
3397   I->InlinePatternFragments();
3398 
3399   // Infer as many types as possible.  If we cannot infer all of them, we can
3400   // never do anything with this instruction pattern: report it to the user.
3401   if (!I->InferAllTypes())
3402     I->error("Could not infer all types in pattern!");
3403 
3404   // InstInputs - Keep track of all of the inputs of the instruction, along
3405   // with the record they are declared as.
3406   std::map<std::string, TreePatternNode*> InstInputs;
3407 
3408   // InstResults - Keep track of all the virtual registers that are 'set'
3409   // in the instruction, including what reg class they are.
3410   std::map<std::string, TreePatternNode*> InstResults;
3411 
3412   std::vector<Record*> InstImpResults;
3413 
3414   // Verify that the top-level forms in the instruction are of void type, and
3415   // fill in the InstResults map.
3416   SmallString<32> TypesString;
3417   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3418     TypesString.clear();
3419     TreePatternNode *Pat = I->getTree(j);
3420     if (Pat->getNumTypes() != 0) {
3421       raw_svector_ostream OS(TypesString);
3422       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3423         if (k > 0)
3424           OS << ", ";
3425         Pat->getExtType(k).writeToStream(OS);
3426       }
3427       I->error("Top-level forms in instruction pattern should have"
3428                " void types, has types " +
3429                OS.str());
3430     }
3431 
3432     // Find inputs and outputs, and verify the structure of the uses/defs.
3433     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3434                                 InstImpResults);
3435   }
3436 
3437   // Now that we have inputs and outputs of the pattern, inspect the operands
3438   // list for the instruction.  This determines the order that operands are
3439   // added to the machine instruction the node corresponds to.
3440   unsigned NumResults = InstResults.size();
3441 
3442   // Parse the operands list from the (ops) list, validating it.
3443   assert(I->getArgList().empty() && "Args list should still be empty here!");
3444 
3445   // Check that all of the results occur first in the list.
3446   std::vector<Record*> Results;
3447   SmallVector<TreePatternNode *, 2> ResNodes;
3448   for (unsigned i = 0; i != NumResults; ++i) {
3449     if (i == CGI.Operands.size())
3450       I->error("'" + InstResults.begin()->first +
3451                "' set but does not appear in operand list!");
3452     const std::string &OpName = CGI.Operands[i].Name;
3453 
3454     // Check that it exists in InstResults.
3455     TreePatternNode *RNode = InstResults[OpName];
3456     if (!RNode)
3457       I->error("Operand $" + OpName + " does not exist in operand list!");
3458 
3459     ResNodes.push_back(RNode);
3460 
3461     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3462     if (!R)
3463       I->error("Operand $" + OpName + " should be a set destination: all "
3464                "outputs must occur before inputs in operand list!");
3465 
3466     if (!checkOperandClass(CGI.Operands[i], R))
3467       I->error("Operand $" + OpName + " class mismatch!");
3468 
3469     // Remember the return type.
3470     Results.push_back(CGI.Operands[i].Rec);
3471 
3472     // Okay, this one checks out.
3473     InstResults.erase(OpName);
3474   }
3475 
3476   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3477   // the copy while we're checking the inputs.
3478   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3479 
3480   std::vector<TreePatternNode*> ResultNodeOperands;
3481   std::vector<Record*> Operands;
3482   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3483     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3484     const std::string &OpName = Op.Name;
3485     if (OpName.empty())
3486       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3487 
3488     if (!InstInputsCheck.count(OpName)) {
3489       // If this is an operand with a DefaultOps set filled in, we can ignore
3490       // this.  When we codegen it, we will do so as always executed.
3491       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3492         // Does it have a non-empty DefaultOps field?  If so, ignore this
3493         // operand.
3494         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3495           continue;
3496       }
3497       I->error("Operand $" + OpName +
3498                " does not appear in the instruction pattern");
3499     }
3500     TreePatternNode *InVal = InstInputsCheck[OpName];
3501     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3502 
3503     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3504       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3505       if (!checkOperandClass(Op, InRec))
3506         I->error("Operand $" + OpName + "'s register class disagrees"
3507                  " between the operand and pattern");
3508     }
3509     Operands.push_back(Op.Rec);
3510 
3511     // Construct the result for the dest-pattern operand list.
3512     TreePatternNode *OpNode = InVal->clone();
3513 
3514     // No predicate is useful on the result.
3515     OpNode->clearPredicateFns();
3516 
3517     // Promote the xform function to be an explicit node if set.
3518     if (Record *Xform = OpNode->getTransformFn()) {
3519       OpNode->setTransformFn(nullptr);
3520       std::vector<TreePatternNode*> Children;
3521       Children.push_back(OpNode);
3522       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3523     }
3524 
3525     ResultNodeOperands.push_back(OpNode);
3526   }
3527 
3528   if (!InstInputsCheck.empty())
3529     I->error("Input operand $" + InstInputsCheck.begin()->first +
3530              " occurs in pattern but not in operands list!");
3531 
3532   TreePatternNode *ResultPattern =
3533     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3534                         GetNumNodeResults(I->getRecord(), *this));
3535   // Copy fully inferred output node types to instruction result pattern.
3536   for (unsigned i = 0; i != NumResults; ++i) {
3537     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3538     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3539   }
3540 
3541   // Create and insert the instruction.
3542   // FIXME: InstImpResults should not be part of DAGInstruction.
3543   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3544   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3545 
3546   // Use a temporary tree pattern to infer all types and make sure that the
3547   // constructed result is correct.  This depends on the instruction already
3548   // being inserted into the DAGInsts map.
3549   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3550   Temp.InferAllTypes(&I->getNamedNodesMap());
3551 
3552   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3553   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3554 
3555   return TheInsertedInst;
3556 }
3557 
3558 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3559 /// any fragments involved.  This populates the Instructions list with fully
3560 /// resolved instructions.
3561 void CodeGenDAGPatterns::ParseInstructions() {
3562   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3563 
3564   for (Record *Instr : Instrs) {
3565     ListInit *LI = nullptr;
3566 
3567     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3568       LI = Instr->getValueAsListInit("Pattern");
3569 
3570     // If there is no pattern, only collect minimal information about the
3571     // instruction for its operand list.  We have to assume that there is one
3572     // result, as we have no detailed info. A pattern which references the
3573     // null_frag operator is as-if no pattern were specified. Normally this
3574     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3575     // null_frag.
3576     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3577       std::vector<Record*> Results;
3578       std::vector<Record*> Operands;
3579 
3580       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3581 
3582       if (InstInfo.Operands.size() != 0) {
3583         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3584           Results.push_back(InstInfo.Operands[j].Rec);
3585 
3586         // The rest are inputs.
3587         for (unsigned j = InstInfo.Operands.NumDefs,
3588                e = InstInfo.Operands.size(); j < e; ++j)
3589           Operands.push_back(InstInfo.Operands[j].Rec);
3590       }
3591 
3592       // Create and insert the instruction.
3593       std::vector<Record*> ImpResults;
3594       Instructions.insert(std::make_pair(Instr,
3595                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3596       continue;  // no pattern.
3597     }
3598 
3599     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3600     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3601 
3602     (void)DI;
3603     DEBUG(DI.getPattern()->dump());
3604   }
3605 
3606   // If we can, convert the instructions to be patterns that are matched!
3607   for (auto &Entry : Instructions) {
3608     DAGInstruction &TheInst = Entry.second;
3609     TreePattern *I = TheInst.getPattern();
3610     if (!I) continue;  // No pattern.
3611 
3612     if (PatternRewriter)
3613       PatternRewriter(I);
3614     // FIXME: Assume only the first tree is the pattern. The others are clobber
3615     // nodes.
3616     TreePatternNode *Pattern = I->getTree(0);
3617     TreePatternNode *SrcPattern;
3618     if (Pattern->getOperator()->getName() == "set") {
3619       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3620     } else{
3621       // Not a set (store or something?)
3622       SrcPattern = Pattern;
3623     }
3624 
3625     Record *Instr = Entry.first;
3626     ListInit *Preds = Instr->getValueAsListInit("Predicates");
3627     int Complexity = Instr->getValueAsInt("AddedComplexity");
3628     AddPatternToMatch(
3629         I,
3630         PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3631                        TheInst.getResultPattern(), TheInst.getImpResults(),
3632                        Complexity, Instr->getID()));
3633   }
3634 }
3635 
3636 
3637 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3638 
3639 static void FindNames(const TreePatternNode *P,
3640                       std::map<std::string, NameRecord> &Names,
3641                       TreePattern *PatternTop) {
3642   if (!P->getName().empty()) {
3643     NameRecord &Rec = Names[P->getName()];
3644     // If this is the first instance of the name, remember the node.
3645     if (Rec.second++ == 0)
3646       Rec.first = P;
3647     else if (Rec.first->getExtTypes() != P->getExtTypes())
3648       PatternTop->error("repetition of value: $" + P->getName() +
3649                         " where different uses have different types!");
3650   }
3651 
3652   if (!P->isLeaf()) {
3653     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3654       FindNames(P->getChild(i), Names, PatternTop);
3655   }
3656 }
3657 
3658 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3659   std::vector<Predicate> Preds;
3660   for (Init *I : L->getValues()) {
3661     if (DefInit *Pred = dyn_cast<DefInit>(I))
3662       Preds.push_back(Pred->getDef());
3663     else
3664       llvm_unreachable("Non-def on the list");
3665   }
3666 
3667   // Sort so that different orders get canonicalized to the same string.
3668   std::sort(Preds.begin(), Preds.end());
3669   return Preds;
3670 }
3671 
3672 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3673                                            PatternToMatch &&PTM) {
3674   // Do some sanity checking on the pattern we're about to match.
3675   std::string Reason;
3676   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3677     PrintWarning(Pattern->getRecord()->getLoc(),
3678       Twine("Pattern can never match: ") + Reason);
3679     return;
3680   }
3681 
3682   // If the source pattern's root is a complex pattern, that complex pattern
3683   // must specify the nodes it can potentially match.
3684   if (const ComplexPattern *CP =
3685         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3686     if (CP->getRootNodes().empty())
3687       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3688                      " could match");
3689 
3690 
3691   // Find all of the named values in the input and output, ensure they have the
3692   // same type.
3693   std::map<std::string, NameRecord> SrcNames, DstNames;
3694   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3695   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3696 
3697   // Scan all of the named values in the destination pattern, rejecting them if
3698   // they don't exist in the input pattern.
3699   for (const auto &Entry : DstNames) {
3700     if (SrcNames[Entry.first].first == nullptr)
3701       Pattern->error("Pattern has input without matching name in output: $" +
3702                      Entry.first);
3703   }
3704 
3705   // Scan all of the named values in the source pattern, rejecting them if the
3706   // name isn't used in the dest, and isn't used to tie two values together.
3707   for (const auto &Entry : SrcNames)
3708     if (DstNames[Entry.first].first == nullptr &&
3709         SrcNames[Entry.first].second == 1)
3710       Pattern->error("Pattern has dead named input: $" + Entry.first);
3711 
3712   PatternsToMatch.push_back(std::move(PTM));
3713 }
3714 
3715 void CodeGenDAGPatterns::InferInstructionFlags() {
3716   ArrayRef<const CodeGenInstruction*> Instructions =
3717     Target.getInstructionsByEnumValue();
3718 
3719   // First try to infer flags from the primary instruction pattern, if any.
3720   SmallVector<CodeGenInstruction*, 8> Revisit;
3721   unsigned Errors = 0;
3722   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3723     CodeGenInstruction &InstInfo =
3724       const_cast<CodeGenInstruction &>(*Instructions[i]);
3725 
3726     // Get the primary instruction pattern.
3727     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3728     if (!Pattern) {
3729       if (InstInfo.hasUndefFlags())
3730         Revisit.push_back(&InstInfo);
3731       continue;
3732     }
3733     InstAnalyzer PatInfo(*this);
3734     PatInfo.Analyze(Pattern);
3735     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3736   }
3737 
3738   // Second, look for single-instruction patterns defined outside the
3739   // instruction.
3740   for (const PatternToMatch &PTM : ptms()) {
3741     // We can only infer from single-instruction patterns, otherwise we won't
3742     // know which instruction should get the flags.
3743     SmallVector<Record*, 8> PatInstrs;
3744     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3745     if (PatInstrs.size() != 1)
3746       continue;
3747 
3748     // Get the single instruction.
3749     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3750 
3751     // Only infer properties from the first pattern. We'll verify the others.
3752     if (InstInfo.InferredFrom)
3753       continue;
3754 
3755     InstAnalyzer PatInfo(*this);
3756     PatInfo.Analyze(PTM);
3757     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3758   }
3759 
3760   if (Errors)
3761     PrintFatalError("pattern conflicts");
3762 
3763   // Revisit instructions with undefined flags and no pattern.
3764   if (Target.guessInstructionProperties()) {
3765     for (CodeGenInstruction *InstInfo : Revisit) {
3766       if (InstInfo->InferredFrom)
3767         continue;
3768       // The mayLoad and mayStore flags default to false.
3769       // Conservatively assume hasSideEffects if it wasn't explicit.
3770       if (InstInfo->hasSideEffects_Unset)
3771         InstInfo->hasSideEffects = true;
3772     }
3773     return;
3774   }
3775 
3776   // Complain about any flags that are still undefined.
3777   for (CodeGenInstruction *InstInfo : Revisit) {
3778     if (InstInfo->InferredFrom)
3779       continue;
3780     if (InstInfo->hasSideEffects_Unset)
3781       PrintError(InstInfo->TheDef->getLoc(),
3782                  "Can't infer hasSideEffects from patterns");
3783     if (InstInfo->mayStore_Unset)
3784       PrintError(InstInfo->TheDef->getLoc(),
3785                  "Can't infer mayStore from patterns");
3786     if (InstInfo->mayLoad_Unset)
3787       PrintError(InstInfo->TheDef->getLoc(),
3788                  "Can't infer mayLoad from patterns");
3789   }
3790 }
3791 
3792 
3793 /// Verify instruction flags against pattern node properties.
3794 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3795   unsigned Errors = 0;
3796   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3797     const PatternToMatch &PTM = *I;
3798     SmallVector<Record*, 8> Instrs;
3799     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3800     if (Instrs.empty())
3801       continue;
3802 
3803     // Count the number of instructions with each flag set.
3804     unsigned NumSideEffects = 0;
3805     unsigned NumStores = 0;
3806     unsigned NumLoads = 0;
3807     for (const Record *Instr : Instrs) {
3808       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3809       NumSideEffects += InstInfo.hasSideEffects;
3810       NumStores += InstInfo.mayStore;
3811       NumLoads += InstInfo.mayLoad;
3812     }
3813 
3814     // Analyze the source pattern.
3815     InstAnalyzer PatInfo(*this);
3816     PatInfo.Analyze(PTM);
3817 
3818     // Collect error messages.
3819     SmallVector<std::string, 4> Msgs;
3820 
3821     // Check for missing flags in the output.
3822     // Permit extra flags for now at least.
3823     if (PatInfo.hasSideEffects && !NumSideEffects)
3824       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3825 
3826     // Don't verify store flags on instructions with side effects. At least for
3827     // intrinsics, side effects implies mayStore.
3828     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3829       Msgs.push_back("pattern may store, but mayStore isn't set");
3830 
3831     // Similarly, mayStore implies mayLoad on intrinsics.
3832     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3833       Msgs.push_back("pattern may load, but mayLoad isn't set");
3834 
3835     // Print error messages.
3836     if (Msgs.empty())
3837       continue;
3838     ++Errors;
3839 
3840     for (const std::string &Msg : Msgs)
3841       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3842                  (Instrs.size() == 1 ?
3843                   "instruction" : "output instructions"));
3844     // Provide the location of the relevant instruction definitions.
3845     for (const Record *Instr : Instrs) {
3846       if (Instr != PTM.getSrcRecord())
3847         PrintError(Instr->getLoc(), "defined here");
3848       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3849       if (InstInfo.InferredFrom &&
3850           InstInfo.InferredFrom != InstInfo.TheDef &&
3851           InstInfo.InferredFrom != PTM.getSrcRecord())
3852         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3853     }
3854   }
3855   if (Errors)
3856     PrintFatalError("Errors in DAG patterns");
3857 }
3858 
3859 /// Given a pattern result with an unresolved type, see if we can find one
3860 /// instruction with an unresolved result type.  Force this result type to an
3861 /// arbitrary element if it's possible types to converge results.
3862 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3863   if (N->isLeaf())
3864     return false;
3865 
3866   // Analyze children.
3867   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3868     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3869       return true;
3870 
3871   if (!N->getOperator()->isSubClassOf("Instruction"))
3872     return false;
3873 
3874   // If this type is already concrete or completely unknown we can't do
3875   // anything.
3876   TypeInfer &TI = TP.getInfer();
3877   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3878     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3879       continue;
3880 
3881     // Otherwise, force its type to an arbitrary choice.
3882     if (TI.forceArbitrary(N->getExtType(i)))
3883       return true;
3884   }
3885 
3886   return false;
3887 }
3888 
3889 void CodeGenDAGPatterns::ParsePatterns() {
3890   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3891 
3892   for (Record *CurPattern : Patterns) {
3893     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3894 
3895     // If the pattern references the null_frag, there's nothing to do.
3896     if (hasNullFragReference(Tree))
3897       continue;
3898 
3899     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3900 
3901     // Inline pattern fragments into it.
3902     Pattern->InlinePatternFragments();
3903 
3904     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3905     if (LI->empty()) continue;  // no pattern.
3906 
3907     // Parse the instruction.
3908     TreePattern Result(CurPattern, LI, false, *this);
3909 
3910     // Inline pattern fragments into it.
3911     Result.InlinePatternFragments();
3912 
3913     if (Result.getNumTrees() != 1)
3914       Result.error("Cannot handle instructions producing instructions "
3915                    "with temporaries yet!");
3916 
3917     bool IterateInference;
3918     bool InferredAllPatternTypes, InferredAllResultTypes;
3919     do {
3920       // Infer as many types as possible.  If we cannot infer all of them, we
3921       // can never do anything with this pattern: report it to the user.
3922       InferredAllPatternTypes =
3923         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3924 
3925       // Infer as many types as possible.  If we cannot infer all of them, we
3926       // can never do anything with this pattern: report it to the user.
3927       InferredAllResultTypes =
3928           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3929 
3930       IterateInference = false;
3931 
3932       // Apply the type of the result to the source pattern.  This helps us
3933       // resolve cases where the input type is known to be a pointer type (which
3934       // is considered resolved), but the result knows it needs to be 32- or
3935       // 64-bits.  Infer the other way for good measure.
3936       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3937                                         Pattern->getTree(0)->getNumTypes());
3938            i != e; ++i) {
3939         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3940             i, Result.getTree(0)->getExtType(i), Result);
3941         IterateInference |= Result.getTree(0)->UpdateNodeType(
3942             i, Pattern->getTree(0)->getExtType(i), Result);
3943       }
3944 
3945       // If our iteration has converged and the input pattern's types are fully
3946       // resolved but the result pattern is not fully resolved, we may have a
3947       // situation where we have two instructions in the result pattern and
3948       // the instructions require a common register class, but don't care about
3949       // what actual MVT is used.  This is actually a bug in our modelling:
3950       // output patterns should have register classes, not MVTs.
3951       //
3952       // In any case, to handle this, we just go through and disambiguate some
3953       // arbitrary types to the result pattern's nodes.
3954       if (!IterateInference && InferredAllPatternTypes &&
3955           !InferredAllResultTypes)
3956         IterateInference =
3957             ForceArbitraryInstResultType(Result.getTree(0), Result);
3958     } while (IterateInference);
3959 
3960     // Verify that we inferred enough types that we can do something with the
3961     // pattern and result.  If these fire the user has to add type casts.
3962     if (!InferredAllPatternTypes)
3963       Pattern->error("Could not infer all types in pattern!");
3964     if (!InferredAllResultTypes) {
3965       Pattern->dump();
3966       Result.error("Could not infer all types in pattern result!");
3967     }
3968 
3969     // Validate that the input pattern is correct.
3970     std::map<std::string, TreePatternNode*> InstInputs;
3971     std::map<std::string, TreePatternNode*> InstResults;
3972     std::vector<Record*> InstImpResults;
3973     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3974       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3975                                   InstInputs, InstResults,
3976                                   InstImpResults);
3977 
3978     // Promote the xform function to be an explicit node if set.
3979     TreePatternNode *DstPattern = Result.getOnlyTree();
3980     std::vector<TreePatternNode*> ResultNodeOperands;
3981     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3982       TreePatternNode *OpNode = DstPattern->getChild(ii);
3983       if (Record *Xform = OpNode->getTransformFn()) {
3984         OpNode->setTransformFn(nullptr);
3985         std::vector<TreePatternNode*> Children;
3986         Children.push_back(OpNode);
3987         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3988       }
3989       ResultNodeOperands.push_back(OpNode);
3990     }
3991     DstPattern = Result.getOnlyTree();
3992     if (!DstPattern->isLeaf())
3993       DstPattern = new TreePatternNode(DstPattern->getOperator(),
3994                                        ResultNodeOperands,
3995                                        DstPattern->getNumTypes());
3996 
3997     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3998       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3999 
4000     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
4001     Temp.InferAllTypes();
4002 
4003     // A pattern may end up with an "impossible" type, i.e. a situation
4004     // where all types have been eliminated for some node in this pattern.
4005     // This could occur for intrinsics that only make sense for a specific
4006     // value type, and use a specific register class. If, for some mode,
4007     // that register class does not accept that type, the type inference
4008     // will lead to a contradiction, which is not an error however, but
4009     // a sign that this pattern will simply never match.
4010     if (Pattern->getTree(0)->hasPossibleType() &&
4011         Temp.getOnlyTree()->hasPossibleType()) {
4012       ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
4013       int Complexity = CurPattern->getValueAsInt("AddedComplexity");
4014       if (PatternRewriter)
4015         PatternRewriter(Pattern);
4016       AddPatternToMatch(
4017           Pattern,
4018           PatternToMatch(
4019               CurPattern, makePredList(Preds), Pattern->getTree(0),
4020               Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
4021               CurPattern->getID()));
4022     }
4023   }
4024 }
4025 
4026 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4027   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4028     for (const auto &I : VTS)
4029       Modes.insert(I.first);
4030 
4031   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4032     collectModes(Modes, N->getChild(i));
4033 }
4034 
4035 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4036   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4037   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4038   std::vector<PatternToMatch> Copy = PatternsToMatch;
4039   PatternsToMatch.clear();
4040 
4041   auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
4042     TreePatternNode *NewSrc = P.SrcPattern->clone();
4043     TreePatternNode *NewDst = P.DstPattern->clone();
4044     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4045       delete NewSrc;
4046       delete NewDst;
4047       return;
4048     }
4049 
4050     std::vector<Predicate> Preds = P.Predicates;
4051     const std::vector<Predicate> &MC = ModeChecks[Mode];
4052     Preds.insert(Preds.end(), MC.begin(), MC.end());
4053     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
4054                                  P.getDstRegs(), P.getAddedComplexity(),
4055                                  Record::getNewUID(), Mode);
4056   };
4057 
4058   for (PatternToMatch &P : Copy) {
4059     TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4060     if (P.SrcPattern->hasProperTypeByHwMode())
4061       SrcP = P.SrcPattern;
4062     if (P.DstPattern->hasProperTypeByHwMode())
4063       DstP = P.DstPattern;
4064     if (!SrcP && !DstP) {
4065       PatternsToMatch.push_back(P);
4066       continue;
4067     }
4068 
4069     std::set<unsigned> Modes;
4070     if (SrcP)
4071       collectModes(Modes, SrcP);
4072     if (DstP)
4073       collectModes(Modes, DstP);
4074 
4075     // The predicate for the default mode needs to be constructed for each
4076     // pattern separately.
4077     // Since not all modes must be present in each pattern, if a mode m is
4078     // absent, then there is no point in constructing a check for m. If such
4079     // a check was created, it would be equivalent to checking the default
4080     // mode, except not all modes' predicates would be a part of the checking
4081     // code. The subsequently generated check for the default mode would then
4082     // have the exact same patterns, but a different predicate code. To avoid
4083     // duplicated patterns with different predicate checks, construct the
4084     // default check as a negation of all predicates that are actually present
4085     // in the source/destination patterns.
4086     std::vector<Predicate> DefaultPred;
4087 
4088     for (unsigned M : Modes) {
4089       if (M == DefaultMode)
4090         continue;
4091       if (ModeChecks.find(M) != ModeChecks.end())
4092         continue;
4093 
4094       // Fill the map entry for this mode.
4095       const HwMode &HM = CGH.getMode(M);
4096       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4097 
4098       // Add negations of the HM's predicates to the default predicate.
4099       DefaultPred.emplace_back(Predicate(HM.Features, false));
4100     }
4101 
4102     for (unsigned M : Modes) {
4103       if (M == DefaultMode)
4104         continue;
4105       AppendPattern(P, M);
4106     }
4107 
4108     bool HasDefault = Modes.count(DefaultMode);
4109     if (HasDefault)
4110       AppendPattern(P, DefaultMode);
4111   }
4112 }
4113 
4114 /// Dependent variable map for CodeGenDAGPattern variant generation
4115 typedef StringMap<int> DepVarMap;
4116 
4117 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4118   if (N->isLeaf()) {
4119     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4120       DepMap[N->getName()]++;
4121   } else {
4122     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4123       FindDepVarsOf(N->getChild(i), DepMap);
4124   }
4125 }
4126 
4127 /// Find dependent variables within child patterns
4128 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4129   DepVarMap depcounts;
4130   FindDepVarsOf(N, depcounts);
4131   for (const auto &Pair : depcounts) {
4132     if (Pair.getValue() > 1)
4133       DepVars.insert(Pair.getKey());
4134   }
4135 }
4136 
4137 #ifndef NDEBUG
4138 /// Dump the dependent variable set:
4139 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4140   if (DepVars.empty()) {
4141     DEBUG(errs() << "<empty set>");
4142   } else {
4143     DEBUG(errs() << "[ ");
4144     for (const auto &DepVar : DepVars) {
4145       DEBUG(errs() << DepVar.getKey() << " ");
4146     }
4147     DEBUG(errs() << "]");
4148   }
4149 }
4150 #endif
4151 
4152 
4153 /// CombineChildVariants - Given a bunch of permutations of each child of the
4154 /// 'operator' node, put them together in all possible ways.
4155 static void CombineChildVariants(TreePatternNode *Orig,
4156                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
4157                                  std::vector<TreePatternNode*> &OutVariants,
4158                                  CodeGenDAGPatterns &CDP,
4159                                  const MultipleUseVarSet &DepVars) {
4160   // Make sure that each operand has at least one variant to choose from.
4161   for (const auto &Variants : ChildVariants)
4162     if (Variants.empty())
4163       return;
4164 
4165   // The end result is an all-pairs construction of the resultant pattern.
4166   std::vector<unsigned> Idxs;
4167   Idxs.resize(ChildVariants.size());
4168   bool NotDone;
4169   do {
4170 #ifndef NDEBUG
4171     DEBUG(if (!Idxs.empty()) {
4172             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4173               for (unsigned Idx : Idxs) {
4174                 errs() << Idx << " ";
4175             }
4176             errs() << "]\n";
4177           });
4178 #endif
4179     // Create the variant and add it to the output list.
4180     std::vector<TreePatternNode*> NewChildren;
4181     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4182       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4183     auto R = llvm::make_unique<TreePatternNode>(
4184         Orig->getOperator(), NewChildren, Orig->getNumTypes());
4185 
4186     // Copy over properties.
4187     R->setName(Orig->getName());
4188     R->setPredicateFns(Orig->getPredicateFns());
4189     R->setTransformFn(Orig->getTransformFn());
4190     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4191       R->setType(i, Orig->getExtType(i));
4192 
4193     // If this pattern cannot match, do not include it as a variant.
4194     std::string ErrString;
4195     // Scan to see if this pattern has already been emitted.  We can get
4196     // duplication due to things like commuting:
4197     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4198     // which are the same pattern.  Ignore the dups.
4199     if (R->canPatternMatch(ErrString, CDP) &&
4200         none_of(OutVariants, [&](TreePatternNode *Variant) {
4201           return R->isIsomorphicTo(Variant, DepVars);
4202         }))
4203       OutVariants.push_back(R.release());
4204 
4205     // Increment indices to the next permutation by incrementing the
4206     // indices from last index backward, e.g., generate the sequence
4207     // [0, 0], [0, 1], [1, 0], [1, 1].
4208     int IdxsIdx;
4209     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4210       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4211         Idxs[IdxsIdx] = 0;
4212       else
4213         break;
4214     }
4215     NotDone = (IdxsIdx >= 0);
4216   } while (NotDone);
4217 }
4218 
4219 /// CombineChildVariants - A helper function for binary operators.
4220 ///
4221 static void CombineChildVariants(TreePatternNode *Orig,
4222                                  const std::vector<TreePatternNode*> &LHS,
4223                                  const std::vector<TreePatternNode*> &RHS,
4224                                  std::vector<TreePatternNode*> &OutVariants,
4225                                  CodeGenDAGPatterns &CDP,
4226                                  const MultipleUseVarSet &DepVars) {
4227   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4228   ChildVariants.push_back(LHS);
4229   ChildVariants.push_back(RHS);
4230   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4231 }
4232 
4233 
4234 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
4235                                      std::vector<TreePatternNode *> &Children) {
4236   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4237   Record *Operator = N->getOperator();
4238 
4239   // Only permit raw nodes.
4240   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4241       N->getTransformFn()) {
4242     Children.push_back(N);
4243     return;
4244   }
4245 
4246   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4247     Children.push_back(N->getChild(0));
4248   else
4249     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
4250 
4251   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4252     Children.push_back(N->getChild(1));
4253   else
4254     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
4255 }
4256 
4257 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4258 /// the (potentially recursive) pattern by using algebraic laws.
4259 ///
4260 static void GenerateVariantsOf(TreePatternNode *N,
4261                                std::vector<TreePatternNode*> &OutVariants,
4262                                CodeGenDAGPatterns &CDP,
4263                                const MultipleUseVarSet &DepVars) {
4264   // We cannot permute leaves or ComplexPattern uses.
4265   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4266     OutVariants.push_back(N);
4267     return;
4268   }
4269 
4270   // Look up interesting info about the node.
4271   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4272 
4273   // If this node is associative, re-associate.
4274   if (NodeInfo.hasProperty(SDNPAssociative)) {
4275     // Re-associate by pulling together all of the linked operators
4276     std::vector<TreePatternNode*> MaximalChildren;
4277     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4278 
4279     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4280     // permutations.
4281     if (MaximalChildren.size() == 3) {
4282       // Find the variants of all of our maximal children.
4283       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
4284       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4285       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4286       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4287 
4288       // There are only two ways we can permute the tree:
4289       //   (A op B) op C    and    A op (B op C)
4290       // Within these forms, we can also permute A/B/C.
4291 
4292       // Generate legal pair permutations of A/B/C.
4293       std::vector<TreePatternNode*> ABVariants;
4294       std::vector<TreePatternNode*> BAVariants;
4295       std::vector<TreePatternNode*> ACVariants;
4296       std::vector<TreePatternNode*> CAVariants;
4297       std::vector<TreePatternNode*> BCVariants;
4298       std::vector<TreePatternNode*> CBVariants;
4299       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4300       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4301       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4302       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4303       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4304       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4305 
4306       // Combine those into the result: (x op x) op x
4307       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4308       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4309       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4310       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4311       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4312       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4313 
4314       // Combine those into the result: x op (x op x)
4315       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4316       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4317       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4318       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4319       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4320       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4321       return;
4322     }
4323   }
4324 
4325   // Compute permutations of all children.
4326   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4327   ChildVariants.resize(N->getNumChildren());
4328   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4329     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
4330 
4331   // Build all permutations based on how the children were formed.
4332   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4333 
4334   // If this node is commutative, consider the commuted order.
4335   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4336   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4337     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4338            "Commutative but doesn't have 2 children!");
4339     // Don't count children which are actually register references.
4340     unsigned NC = 0;
4341     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4342       TreePatternNode *Child = N->getChild(i);
4343       if (Child->isLeaf())
4344         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4345           Record *RR = DI->getDef();
4346           if (RR->isSubClassOf("Register"))
4347             continue;
4348         }
4349       NC++;
4350     }
4351     // Consider the commuted order.
4352     if (isCommIntrinsic) {
4353       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4354       // operands are the commutative operands, and there might be more operands
4355       // after those.
4356       assert(NC >= 3 &&
4357              "Commutative intrinsic should have at least 3 children!");
4358       std::vector<std::vector<TreePatternNode*> > Variants;
4359       Variants.push_back(ChildVariants[0]); // Intrinsic id.
4360       Variants.push_back(ChildVariants[2]);
4361       Variants.push_back(ChildVariants[1]);
4362       for (unsigned i = 3; i != NC; ++i)
4363         Variants.push_back(ChildVariants[i]);
4364       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4365     } else if (NC == N->getNumChildren()) {
4366       std::vector<std::vector<TreePatternNode*> > Variants;
4367       Variants.push_back(ChildVariants[1]);
4368       Variants.push_back(ChildVariants[0]);
4369       for (unsigned i = 2; i != NC; ++i)
4370         Variants.push_back(ChildVariants[i]);
4371       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4372     }
4373   }
4374 }
4375 
4376 
4377 // GenerateVariants - Generate variants.  For example, commutative patterns can
4378 // match multiple ways.  Add them to PatternsToMatch as well.
4379 void CodeGenDAGPatterns::GenerateVariants() {
4380   DEBUG(errs() << "Generating instruction variants.\n");
4381 
4382   // Loop over all of the patterns we've collected, checking to see if we can
4383   // generate variants of the instruction, through the exploitation of
4384   // identities.  This permits the target to provide aggressive matching without
4385   // the .td file having to contain tons of variants of instructions.
4386   //
4387   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4388   // intentionally do not reconsider these.  Any variants of added patterns have
4389   // already been added.
4390   //
4391   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4392     MultipleUseVarSet             DepVars;
4393     std::vector<TreePatternNode*> Variants;
4394     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4395     DEBUG(errs() << "Dependent/multiply used variables: ");
4396     DEBUG(DumpDepVars(DepVars));
4397     DEBUG(errs() << "\n");
4398     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
4399                        DepVars);
4400 
4401     assert(!Variants.empty() && "Must create at least original variant!");
4402     if (Variants.size() == 1)  // No additional variants for this pattern.
4403       continue;
4404 
4405     DEBUG(errs() << "FOUND VARIANTS OF: ";
4406           PatternsToMatch[i].getSrcPattern()->dump();
4407           errs() << "\n");
4408 
4409     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4410       TreePatternNode *Variant = Variants[v];
4411 
4412       DEBUG(errs() << "  VAR#" << v <<  ": ";
4413             Variant->dump();
4414             errs() << "\n");
4415 
4416       // Scan to see if an instruction or explicit pattern already matches this.
4417       bool AlreadyExists = false;
4418       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4419         // Skip if the top level predicates do not match.
4420         if (PatternsToMatch[i].getPredicates() !=
4421             PatternsToMatch[p].getPredicates())
4422           continue;
4423         // Check to see if this variant already exists.
4424         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4425                                     DepVars)) {
4426           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4427           AlreadyExists = true;
4428           break;
4429         }
4430       }
4431       // If we already have it, ignore the variant.
4432       if (AlreadyExists) continue;
4433 
4434       // Otherwise, add it to the list of patterns we have.
4435       PatternsToMatch.push_back(PatternToMatch(
4436           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4437           Variant, PatternsToMatch[i].getDstPattern(),
4438           PatternsToMatch[i].getDstRegs(),
4439           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4440     }
4441 
4442     DEBUG(errs() << "\n");
4443   }
4444 }
4445