1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/TableGen/Error.h" 26 #include "llvm/TableGen/Record.h" 27 #include <algorithm> 28 #include <cstdio> 29 #include <set> 30 using namespace llvm; 31 32 #define DEBUG_TYPE "dag-patterns" 33 34 static inline bool isIntegerOrPtr(MVT VT) { 35 return VT.isInteger() || VT == MVT::iPTR; 36 } 37 static inline bool isFloatingPoint(MVT VT) { 38 return VT.isFloatingPoint(); 39 } 40 static inline bool isVector(MVT VT) { 41 return VT.isVector(); 42 } 43 static inline bool isScalar(MVT VT) { 44 return !VT.isVector(); 45 } 46 47 template <typename Predicate> 48 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 49 bool Erased = false; 50 // It is ok to iterate over MachineValueTypeSet and remove elements from it 51 // at the same time. 52 for (MVT T : S) { 53 if (!P(T)) 54 continue; 55 Erased = true; 56 S.erase(T); 57 } 58 return Erased; 59 } 60 61 // --- TypeSetByHwMode 62 63 // This is a parameterized type-set class. For each mode there is a list 64 // of types that are currently possible for a given tree node. Type 65 // inference will apply to each mode separately. 66 67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 68 for (const ValueTypeByHwMode &VVT : VTList) 69 insert(VVT); 70 } 71 72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 73 for (const auto &I : *this) { 74 if (I.second.size() > 1) 75 return false; 76 if (!AllowEmpty && I.second.empty()) 77 return false; 78 } 79 return true; 80 } 81 82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 83 assert(isValueTypeByHwMode(true) && 84 "The type set has multiple types for at least one HW mode"); 85 ValueTypeByHwMode VVT; 86 for (const auto &I : *this) { 87 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 88 VVT.getOrCreateTypeForMode(I.first, T); 89 } 90 return VVT; 91 } 92 93 bool TypeSetByHwMode::isPossible() const { 94 for (const auto &I : *this) 95 if (!I.second.empty()) 96 return true; 97 return false; 98 } 99 100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 101 bool Changed = false; 102 SmallDenseSet<unsigned, 4> Modes; 103 for (const auto &P : VVT) { 104 unsigned M = P.first; 105 Modes.insert(M); 106 // Make sure there exists a set for each specific mode from VVT. 107 Changed |= getOrCreate(M).insert(P.second).second; 108 } 109 110 // If VVT has a default mode, add the corresponding type to all 111 // modes in "this" that do not exist in VVT. 112 if (Modes.count(DefaultMode)) { 113 MVT DT = VVT.getType(DefaultMode); 114 for (auto &I : *this) 115 if (!Modes.count(I.first)) 116 Changed |= I.second.insert(DT).second; 117 } 118 return Changed; 119 } 120 121 // Constrain the type set to be the intersection with VTS. 122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 123 bool Changed = false; 124 if (hasDefault()) { 125 for (const auto &I : VTS) { 126 unsigned M = I.first; 127 if (M == DefaultMode || hasMode(M)) 128 continue; 129 Map.insert({M, Map.at(DefaultMode)}); 130 Changed = true; 131 } 132 } 133 134 for (auto &I : *this) { 135 unsigned M = I.first; 136 SetType &S = I.second; 137 if (VTS.hasMode(M) || VTS.hasDefault()) { 138 Changed |= intersect(I.second, VTS.get(M)); 139 } else if (!S.empty()) { 140 S.clear(); 141 Changed = true; 142 } 143 } 144 return Changed; 145 } 146 147 template <typename Predicate> 148 bool TypeSetByHwMode::constrain(Predicate P) { 149 bool Changed = false; 150 for (auto &I : *this) 151 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 152 return Changed; 153 } 154 155 template <typename Predicate> 156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 157 assert(empty()); 158 for (const auto &I : VTS) { 159 SetType &S = getOrCreate(I.first); 160 for (auto J : I.second) 161 if (P(J)) 162 S.insert(J); 163 } 164 return !empty(); 165 } 166 167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 168 SmallVector<unsigned, 4> Modes; 169 Modes.reserve(Map.size()); 170 171 for (const auto &I : *this) 172 Modes.push_back(I.first); 173 if (Modes.empty()) { 174 OS << "{}"; 175 return; 176 } 177 array_pod_sort(Modes.begin(), Modes.end()); 178 179 OS << '{'; 180 for (unsigned M : Modes) { 181 OS << ' ' << getModeName(M) << ':'; 182 writeToStream(get(M), OS); 183 } 184 OS << " }"; 185 } 186 187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 188 SmallVector<MVT, 4> Types(S.begin(), S.end()); 189 array_pod_sort(Types.begin(), Types.end()); 190 191 OS << '['; 192 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 193 OS << ValueTypeByHwMode::getMVTName(Types[i]); 194 if (i != e-1) 195 OS << ' '; 196 } 197 OS << ']'; 198 } 199 200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 201 bool HaveDefault = hasDefault(); 202 if (HaveDefault != VTS.hasDefault()) 203 return false; 204 205 if (isSimple()) { 206 if (VTS.isSimple()) 207 return *begin() == *VTS.begin(); 208 return false; 209 } 210 211 SmallDenseSet<unsigned, 4> Modes; 212 for (auto &I : *this) 213 Modes.insert(I.first); 214 for (const auto &I : VTS) 215 Modes.insert(I.first); 216 217 if (HaveDefault) { 218 // Both sets have default mode. 219 for (unsigned M : Modes) { 220 if (get(M) != VTS.get(M)) 221 return false; 222 } 223 } else { 224 // Neither set has default mode. 225 for (unsigned M : Modes) { 226 // If there is no default mode, an empty set is equivalent to not having 227 // the corresponding mode. 228 bool NoModeThis = !hasMode(M) || get(M).empty(); 229 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 230 if (NoModeThis != NoModeVTS) 231 return false; 232 if (!NoModeThis) 233 if (get(M) != VTS.get(M)) 234 return false; 235 } 236 } 237 238 return true; 239 } 240 241 namespace llvm { 242 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 243 T.writeToStream(OS); 244 return OS; 245 } 246 } 247 248 LLVM_DUMP_METHOD 249 void TypeSetByHwMode::dump() const { 250 dbgs() << *this << '\n'; 251 } 252 253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 254 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 255 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 256 257 if (OutP == InP) 258 return berase_if(Out, Int); 259 260 // Compute the intersection of scalars separately to account for only 261 // one set containing iPTR. 262 // The itersection of iPTR with a set of integer scalar types that does not 263 // include iPTR will result in the most specific scalar type: 264 // - iPTR is more specific than any set with two elements or more 265 // - iPTR is less specific than any single integer scalar type. 266 // For example 267 // { iPTR } * { i32 } -> { i32 } 268 // { iPTR } * { i32 i64 } -> { iPTR } 269 // and 270 // { iPTR i32 } * { i32 } -> { i32 } 271 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 272 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 273 274 // Compute the difference between the two sets in such a way that the 275 // iPTR is in the set that is being subtracted. This is to see if there 276 // are any extra scalars in the set without iPTR that are not in the 277 // set containing iPTR. Then the iPTR could be considered a "wildcard" 278 // matching these scalars. If there is only one such scalar, it would 279 // replace the iPTR, if there are more, the iPTR would be retained. 280 SetType Diff; 281 if (InP) { 282 Diff = Out; 283 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 284 // Pre-remove these elements and rely only on InP/OutP to determine 285 // whether a change has been made. 286 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 287 } else { 288 Diff = In; 289 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 290 Out.erase(MVT::iPTR); 291 } 292 293 // The actual intersection. 294 bool Changed = berase_if(Out, Int); 295 unsigned NumD = Diff.size(); 296 if (NumD == 0) 297 return Changed; 298 299 if (NumD == 1) { 300 Out.insert(*Diff.begin()); 301 // This is a change only if Out was the one with iPTR (which is now 302 // being replaced). 303 Changed |= OutP; 304 } else { 305 // Multiple elements from Out are now replaced with iPTR. 306 Out.insert(MVT::iPTR); 307 Changed |= !OutP; 308 } 309 return Changed; 310 } 311 312 void TypeSetByHwMode::validate() const { 313 #ifndef NDEBUG 314 if (empty()) 315 return; 316 bool AllEmpty = true; 317 for (const auto &I : *this) 318 AllEmpty &= I.second.empty(); 319 assert(!AllEmpty && 320 "type set is empty for each HW mode: type contradiction?"); 321 #endif 322 } 323 324 // --- TypeInfer 325 326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 327 const TypeSetByHwMode &In) { 328 ValidateOnExit _1(Out); 329 In.validate(); 330 if (In.empty() || Out == In || TP.hasError()) 331 return false; 332 if (Out.empty()) { 333 Out = In; 334 return true; 335 } 336 337 bool Changed = Out.constrain(In); 338 if (Changed && Out.empty()) 339 TP.error("Type contradiction"); 340 341 return Changed; 342 } 343 344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 345 ValidateOnExit _1(Out); 346 if (TP.hasError()) 347 return false; 348 assert(!Out.empty() && "cannot pick from an empty set"); 349 350 bool Changed = false; 351 for (auto &I : Out) { 352 TypeSetByHwMode::SetType &S = I.second; 353 if (S.size() <= 1) 354 continue; 355 MVT T = *S.begin(); // Pick the first element. 356 S.clear(); 357 S.insert(T); 358 Changed = true; 359 } 360 return Changed; 361 } 362 363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 364 ValidateOnExit _1(Out); 365 if (TP.hasError()) 366 return false; 367 if (!Out.empty()) 368 return Out.constrain(isIntegerOrPtr); 369 370 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 371 } 372 373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 374 ValidateOnExit _1(Out); 375 if (TP.hasError()) 376 return false; 377 if (!Out.empty()) 378 return Out.constrain(isFloatingPoint); 379 380 return Out.assign_if(getLegalTypes(), isFloatingPoint); 381 } 382 383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 384 ValidateOnExit _1(Out); 385 if (TP.hasError()) 386 return false; 387 if (!Out.empty()) 388 return Out.constrain(isScalar); 389 390 return Out.assign_if(getLegalTypes(), isScalar); 391 } 392 393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 394 ValidateOnExit _1(Out); 395 if (TP.hasError()) 396 return false; 397 if (!Out.empty()) 398 return Out.constrain(isVector); 399 400 return Out.assign_if(getLegalTypes(), isVector); 401 } 402 403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 404 ValidateOnExit _1(Out); 405 if (TP.hasError() || !Out.empty()) 406 return false; 407 408 Out = getLegalTypes(); 409 return true; 410 } 411 412 template <typename Iter, typename Pred, typename Less> 413 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 414 if (B == E) 415 return E; 416 Iter Min = E; 417 for (Iter I = B; I != E; ++I) { 418 if (!P(*I)) 419 continue; 420 if (Min == E || L(*I, *Min)) 421 Min = I; 422 } 423 return Min; 424 } 425 426 template <typename Iter, typename Pred, typename Less> 427 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 428 if (B == E) 429 return E; 430 Iter Max = E; 431 for (Iter I = B; I != E; ++I) { 432 if (!P(*I)) 433 continue; 434 if (Max == E || L(*Max, *I)) 435 Max = I; 436 } 437 return Max; 438 } 439 440 /// Make sure that for each type in Small, there exists a larger type in Big. 441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 442 TypeSetByHwMode &Big) { 443 ValidateOnExit _1(Small), _2(Big); 444 if (TP.hasError()) 445 return false; 446 bool Changed = false; 447 448 if (Small.empty()) 449 Changed |= EnforceAny(Small); 450 if (Big.empty()) 451 Changed |= EnforceAny(Big); 452 453 assert(Small.hasDefault() && Big.hasDefault()); 454 455 std::vector<unsigned> Modes = union_modes(Small, Big); 456 457 // 1. Only allow integer or floating point types and make sure that 458 // both sides are both integer or both floating point. 459 // 2. Make sure that either both sides have vector types, or neither 460 // of them does. 461 for (unsigned M : Modes) { 462 TypeSetByHwMode::SetType &S = Small.get(M); 463 TypeSetByHwMode::SetType &B = Big.get(M); 464 465 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 466 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 467 Changed |= berase_if(S, NotInt) | 468 berase_if(B, NotInt); 469 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 470 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 471 Changed |= berase_if(S, NotFP) | 472 berase_if(B, NotFP); 473 } else if (S.empty() || B.empty()) { 474 Changed = !S.empty() || !B.empty(); 475 S.clear(); 476 B.clear(); 477 } else { 478 TP.error("Incompatible types"); 479 return Changed; 480 } 481 482 if (none_of(S, isVector) || none_of(B, isVector)) { 483 Changed |= berase_if(S, isVector) | 484 berase_if(B, isVector); 485 } 486 } 487 488 auto LT = [](MVT A, MVT B) -> bool { 489 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 490 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 491 A.getSizeInBits() < B.getSizeInBits()); 492 }; 493 auto LE = [](MVT A, MVT B) -> bool { 494 // This function is used when removing elements: when a vector is compared 495 // to a non-vector, it should return false (to avoid removal). 496 if (A.isVector() != B.isVector()) 497 return false; 498 499 // Note on the < comparison below: 500 // X86 has patterns like 501 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))), 502 // where the truncated vector is given a type v16i8, while the source 503 // vector has type v4i32. They both have the same size in bits. 504 // The minimal type in the result is obviously v16i8, and when we remove 505 // all types from the source that are smaller-or-equal than v8i16, the 506 // only source type would also be removed (since it's equal in size). 507 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() || 508 A.getSizeInBits() < B.getSizeInBits(); 509 }; 510 511 for (unsigned M : Modes) { 512 TypeSetByHwMode::SetType &S = Small.get(M); 513 TypeSetByHwMode::SetType &B = Big.get(M); 514 // MinS = min scalar in Small, remove all scalars from Big that are 515 // smaller-or-equal than MinS. 516 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 517 if (MinS != S.end()) 518 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 519 520 // MaxS = max scalar in Big, remove all scalars from Small that are 521 // larger than MaxS. 522 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 523 if (MaxS != B.end()) 524 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 525 526 // MinV = min vector in Small, remove all vectors from Big that are 527 // smaller-or-equal than MinV. 528 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 529 if (MinV != S.end()) 530 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 531 532 // MaxV = max vector in Big, remove all vectors from Small that are 533 // larger than MaxV. 534 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 535 if (MaxV != B.end()) 536 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 537 } 538 539 return Changed; 540 } 541 542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 543 /// for each type U in Elem, U is a scalar type. 544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 545 /// type T in Vec, such that U is the element type of T. 546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 547 TypeSetByHwMode &Elem) { 548 ValidateOnExit _1(Vec), _2(Elem); 549 if (TP.hasError()) 550 return false; 551 bool Changed = false; 552 553 if (Vec.empty()) 554 Changed |= EnforceVector(Vec); 555 if (Elem.empty()) 556 Changed |= EnforceScalar(Elem); 557 558 for (unsigned M : union_modes(Vec, Elem)) { 559 TypeSetByHwMode::SetType &V = Vec.get(M); 560 TypeSetByHwMode::SetType &E = Elem.get(M); 561 562 Changed |= berase_if(V, isScalar); // Scalar = !vector 563 Changed |= berase_if(E, isVector); // Vector = !scalar 564 assert(!V.empty() && !E.empty()); 565 566 SmallSet<MVT,4> VT, ST; 567 // Collect element types from the "vector" set. 568 for (MVT T : V) 569 VT.insert(T.getVectorElementType()); 570 // Collect scalar types from the "element" set. 571 for (MVT T : E) 572 ST.insert(T); 573 574 // Remove from V all (vector) types whose element type is not in S. 575 Changed |= berase_if(V, [&ST](MVT T) -> bool { 576 return !ST.count(T.getVectorElementType()); 577 }); 578 // Remove from E all (scalar) types, for which there is no corresponding 579 // type in V. 580 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 581 } 582 583 return Changed; 584 } 585 586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 587 const ValueTypeByHwMode &VVT) { 588 TypeSetByHwMode Tmp(VVT); 589 ValidateOnExit _1(Vec), _2(Tmp); 590 return EnforceVectorEltTypeIs(Vec, Tmp); 591 } 592 593 /// Ensure that for each type T in Sub, T is a vector type, and there 594 /// exists a type U in Vec such that U is a vector type with the same 595 /// element type as T and at least as many elements as T. 596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 597 TypeSetByHwMode &Sub) { 598 ValidateOnExit _1(Vec), _2(Sub); 599 if (TP.hasError()) 600 return false; 601 602 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 603 auto IsSubVec = [](MVT B, MVT P) -> bool { 604 if (!B.isVector() || !P.isVector()) 605 return false; 606 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 607 // but until there are obvious use-cases for this, keep the 608 // types separate. 609 if (B.isScalableVector() != P.isScalableVector()) 610 return false; 611 if (B.getVectorElementType() != P.getVectorElementType()) 612 return false; 613 return B.getVectorNumElements() < P.getVectorNumElements(); 614 }; 615 616 /// Return true if S has no element (vector type) that T is a sub-vector of, 617 /// i.e. has the same element type as T and more elements. 618 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 619 for (const auto &I : S) 620 if (IsSubVec(T, I)) 621 return false; 622 return true; 623 }; 624 625 /// Return true if S has no element (vector type) that T is a super-vector 626 /// of, i.e. has the same element type as T and fewer elements. 627 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 628 for (const auto &I : S) 629 if (IsSubVec(I, T)) 630 return false; 631 return true; 632 }; 633 634 bool Changed = false; 635 636 if (Vec.empty()) 637 Changed |= EnforceVector(Vec); 638 if (Sub.empty()) 639 Changed |= EnforceVector(Sub); 640 641 for (unsigned M : union_modes(Vec, Sub)) { 642 TypeSetByHwMode::SetType &S = Sub.get(M); 643 TypeSetByHwMode::SetType &V = Vec.get(M); 644 645 Changed |= berase_if(S, isScalar); 646 647 // Erase all types from S that are not sub-vectors of a type in V. 648 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 649 650 // Erase all types from V that are not super-vectors of a type in S. 651 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 652 } 653 654 return Changed; 655 } 656 657 /// 1. Ensure that V has a scalar type iff W has a scalar type. 658 /// 2. Ensure that for each vector type T in V, there exists a vector 659 /// type U in W, such that T and U have the same number of elements. 660 /// 3. Ensure that for each vector type U in W, there exists a vector 661 /// type T in V, such that T and U have the same number of elements 662 /// (reverse of 2). 663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 664 ValidateOnExit _1(V), _2(W); 665 if (TP.hasError()) 666 return false; 667 668 bool Changed = false; 669 if (V.empty()) 670 Changed |= EnforceAny(V); 671 if (W.empty()) 672 Changed |= EnforceAny(W); 673 674 // An actual vector type cannot have 0 elements, so we can treat scalars 675 // as zero-length vectors. This way both vectors and scalars can be 676 // processed identically. 677 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 678 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 679 }; 680 681 for (unsigned M : union_modes(V, W)) { 682 TypeSetByHwMode::SetType &VS = V.get(M); 683 TypeSetByHwMode::SetType &WS = W.get(M); 684 685 SmallSet<unsigned,2> VN, WN; 686 for (MVT T : VS) 687 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 688 for (MVT T : WS) 689 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 690 691 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 692 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 693 } 694 return Changed; 695 } 696 697 /// 1. Ensure that for each type T in A, there exists a type U in B, 698 /// such that T and U have equal size in bits. 699 /// 2. Ensure that for each type U in B, there exists a type T in A 700 /// such that T and U have equal size in bits (reverse of 1). 701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 702 ValidateOnExit _1(A), _2(B); 703 if (TP.hasError()) 704 return false; 705 bool Changed = false; 706 if (A.empty()) 707 Changed |= EnforceAny(A); 708 if (B.empty()) 709 Changed |= EnforceAny(B); 710 711 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 712 return !Sizes.count(T.getSizeInBits()); 713 }; 714 715 for (unsigned M : union_modes(A, B)) { 716 TypeSetByHwMode::SetType &AS = A.get(M); 717 TypeSetByHwMode::SetType &BS = B.get(M); 718 SmallSet<unsigned,2> AN, BN; 719 720 for (MVT T : AS) 721 AN.insert(T.getSizeInBits()); 722 for (MVT T : BS) 723 BN.insert(T.getSizeInBits()); 724 725 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 726 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 727 } 728 729 return Changed; 730 } 731 732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 733 ValidateOnExit _1(VTS); 734 TypeSetByHwMode Legal = getLegalTypes(); 735 bool HaveLegalDef = Legal.hasDefault(); 736 737 for (auto &I : VTS) { 738 unsigned M = I.first; 739 if (!Legal.hasMode(M) && !HaveLegalDef) { 740 TP.error("Invalid mode " + Twine(M)); 741 return; 742 } 743 expandOverloads(I.second, Legal.get(M)); 744 } 745 } 746 747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 748 const TypeSetByHwMode::SetType &Legal) { 749 std::set<MVT> Ovs; 750 for (MVT T : Out) { 751 if (!T.isOverloaded()) 752 continue; 753 754 Ovs.insert(T); 755 // MachineValueTypeSet allows iteration and erasing. 756 Out.erase(T); 757 } 758 759 for (MVT Ov : Ovs) { 760 switch (Ov.SimpleTy) { 761 case MVT::iPTRAny: 762 Out.insert(MVT::iPTR); 763 return; 764 case MVT::iAny: 765 for (MVT T : MVT::integer_valuetypes()) 766 if (Legal.count(T)) 767 Out.insert(T); 768 for (MVT T : MVT::integer_vector_valuetypes()) 769 if (Legal.count(T)) 770 Out.insert(T); 771 return; 772 case MVT::fAny: 773 for (MVT T : MVT::fp_valuetypes()) 774 if (Legal.count(T)) 775 Out.insert(T); 776 for (MVT T : MVT::fp_vector_valuetypes()) 777 if (Legal.count(T)) 778 Out.insert(T); 779 return; 780 case MVT::vAny: 781 for (MVT T : MVT::vector_valuetypes()) 782 if (Legal.count(T)) 783 Out.insert(T); 784 return; 785 case MVT::Any: 786 for (MVT T : MVT::all_valuetypes()) 787 if (Legal.count(T)) 788 Out.insert(T); 789 return; 790 default: 791 break; 792 } 793 } 794 } 795 796 TypeSetByHwMode TypeInfer::getLegalTypes() { 797 if (!LegalTypesCached) { 798 // Stuff all types from all modes into the default mode. 799 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 800 for (const auto &I : LTS) 801 LegalCache.insert(I.second); 802 LegalTypesCached = true; 803 } 804 TypeSetByHwMode VTS; 805 VTS.getOrCreate(DefaultMode) = LegalCache; 806 return VTS; 807 } 808 809 //===----------------------------------------------------------------------===// 810 // TreePredicateFn Implementation 811 //===----------------------------------------------------------------------===// 812 813 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 814 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 815 assert( 816 (!hasPredCode() || !hasImmCode()) && 817 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 818 } 819 820 bool TreePredicateFn::hasPredCode() const { 821 return isLoad() || isStore() || isAtomic() || 822 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 823 } 824 825 std::string TreePredicateFn::getPredCode() const { 826 std::string Code = ""; 827 828 if (!isLoad() && !isStore() && !isAtomic()) { 829 Record *MemoryVT = getMemoryVT(); 830 831 if (MemoryVT) 832 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 833 "MemoryVT requires IsLoad or IsStore"); 834 } 835 836 if (!isLoad() && !isStore()) { 837 if (isUnindexed()) 838 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 839 "IsUnindexed requires IsLoad or IsStore"); 840 841 Record *ScalarMemoryVT = getScalarMemoryVT(); 842 843 if (ScalarMemoryVT) 844 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 845 "ScalarMemoryVT requires IsLoad or IsStore"); 846 } 847 848 if (isLoad() + isStore() + isAtomic() > 1) 849 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 850 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 851 852 if (isLoad()) { 853 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 854 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 855 getScalarMemoryVT() == nullptr) 856 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 857 "IsLoad cannot be used by itself"); 858 } else { 859 if (isNonExtLoad()) 860 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 861 "IsNonExtLoad requires IsLoad"); 862 if (isAnyExtLoad()) 863 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 864 "IsAnyExtLoad requires IsLoad"); 865 if (isSignExtLoad()) 866 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 867 "IsSignExtLoad requires IsLoad"); 868 if (isZeroExtLoad()) 869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 870 "IsZeroExtLoad requires IsLoad"); 871 } 872 873 if (isStore()) { 874 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 875 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 876 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 877 "IsStore cannot be used by itself"); 878 } else { 879 if (isNonTruncStore()) 880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 881 "IsNonTruncStore requires IsStore"); 882 if (isTruncStore()) 883 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 884 "IsTruncStore requires IsStore"); 885 } 886 887 if (isAtomic()) { 888 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 889 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 890 !isAtomicOrderingAcquireRelease() && 891 !isAtomicOrderingSequentiallyConsistent()) 892 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 893 "IsAtomic cannot be used by itself"); 894 } else { 895 if (isAtomicOrderingMonotonic()) 896 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 897 "IsAtomicOrderingMonotonic requires IsAtomic"); 898 if (isAtomicOrderingAcquire()) 899 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 900 "IsAtomicOrderingAcquire requires IsAtomic"); 901 if (isAtomicOrderingRelease()) 902 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 903 "IsAtomicOrderingRelease requires IsAtomic"); 904 if (isAtomicOrderingAcquireRelease()) 905 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 906 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 907 if (isAtomicOrderingSequentiallyConsistent()) 908 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 909 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 910 } 911 912 if (isLoad() || isStore() || isAtomic()) { 913 StringRef SDNodeName = 914 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode"; 915 916 Record *MemoryVT = getMemoryVT(); 917 918 if (MemoryVT) 919 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" + 920 MemoryVT->getName() + ") return false;\n") 921 .str(); 922 } 923 924 if (isAtomic() && isAtomicOrderingMonotonic()) 925 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 926 "AtomicOrdering::Monotonic) return false;\n"; 927 if (isAtomic() && isAtomicOrderingAcquire()) 928 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 929 "AtomicOrdering::Acquire) return false;\n"; 930 if (isAtomic() && isAtomicOrderingRelease()) 931 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 932 "AtomicOrdering::Release) return false;\n"; 933 if (isAtomic() && isAtomicOrderingAcquireRelease()) 934 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 935 "AtomicOrdering::AcquireRelease) return false;\n"; 936 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 937 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 938 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 939 940 if (isLoad() || isStore()) { 941 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 942 943 if (isUnindexed()) 944 Code += ("if (cast<" + SDNodeName + 945 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 946 "return false;\n") 947 .str(); 948 949 if (isLoad()) { 950 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 951 isZeroExtLoad()) > 1) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 954 "IsZeroExtLoad are mutually exclusive"); 955 if (isNonExtLoad()) 956 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 957 "ISD::NON_EXTLOAD) return false;\n"; 958 if (isAnyExtLoad()) 959 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 960 "return false;\n"; 961 if (isSignExtLoad()) 962 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 963 "return false;\n"; 964 if (isZeroExtLoad()) 965 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 966 "return false;\n"; 967 } else { 968 if ((isNonTruncStore() + isTruncStore()) > 1) 969 PrintFatalError( 970 getOrigPatFragRecord()->getRecord()->getLoc(), 971 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 972 if (isNonTruncStore()) 973 Code += 974 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 975 if (isTruncStore()) 976 Code += 977 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 978 } 979 980 Record *ScalarMemoryVT = getScalarMemoryVT(); 981 982 if (ScalarMemoryVT) 983 Code += ("if (cast<" + SDNodeName + 984 ">(N)->getMemoryVT().getScalarType() != MVT::" + 985 ScalarMemoryVT->getName() + ") return false;\n") 986 .str(); 987 } 988 989 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 990 991 Code += PredicateCode; 992 993 if (PredicateCode.empty() && !Code.empty()) 994 Code += "return true;\n"; 995 996 return Code; 997 } 998 999 bool TreePredicateFn::hasImmCode() const { 1000 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1001 } 1002 1003 std::string TreePredicateFn::getImmCode() const { 1004 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1005 } 1006 1007 bool TreePredicateFn::immCodeUsesAPInt() const { 1008 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1009 } 1010 1011 bool TreePredicateFn::immCodeUsesAPFloat() const { 1012 bool Unset; 1013 // The return value will be false when IsAPFloat is unset. 1014 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1015 Unset); 1016 } 1017 1018 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1019 bool Value) const { 1020 bool Unset; 1021 bool Result = 1022 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1023 if (Unset) 1024 return false; 1025 return Result == Value; 1026 } 1027 bool TreePredicateFn::isLoad() const { 1028 return isPredefinedPredicateEqualTo("IsLoad", true); 1029 } 1030 bool TreePredicateFn::isStore() const { 1031 return isPredefinedPredicateEqualTo("IsStore", true); 1032 } 1033 bool TreePredicateFn::isAtomic() const { 1034 return isPredefinedPredicateEqualTo("IsAtomic", true); 1035 } 1036 bool TreePredicateFn::isUnindexed() const { 1037 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1038 } 1039 bool TreePredicateFn::isNonExtLoad() const { 1040 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1041 } 1042 bool TreePredicateFn::isAnyExtLoad() const { 1043 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1044 } 1045 bool TreePredicateFn::isSignExtLoad() const { 1046 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1047 } 1048 bool TreePredicateFn::isZeroExtLoad() const { 1049 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1050 } 1051 bool TreePredicateFn::isNonTruncStore() const { 1052 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1053 } 1054 bool TreePredicateFn::isTruncStore() const { 1055 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1056 } 1057 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1058 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1059 } 1060 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1061 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1062 } 1063 bool TreePredicateFn::isAtomicOrderingRelease() const { 1064 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1065 } 1066 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1067 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1068 } 1069 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1070 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1071 true); 1072 } 1073 Record *TreePredicateFn::getMemoryVT() const { 1074 Record *R = getOrigPatFragRecord()->getRecord(); 1075 if (R->isValueUnset("MemoryVT")) 1076 return nullptr; 1077 return R->getValueAsDef("MemoryVT"); 1078 } 1079 Record *TreePredicateFn::getScalarMemoryVT() const { 1080 Record *R = getOrigPatFragRecord()->getRecord(); 1081 if (R->isValueUnset("ScalarMemoryVT")) 1082 return nullptr; 1083 return R->getValueAsDef("ScalarMemoryVT"); 1084 } 1085 1086 StringRef TreePredicateFn::getImmType() const { 1087 if (immCodeUsesAPInt()) 1088 return "const APInt &"; 1089 if (immCodeUsesAPFloat()) 1090 return "const APFloat &"; 1091 return "int64_t"; 1092 } 1093 1094 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1095 if (immCodeUsesAPInt()) 1096 return "APInt"; 1097 else if (immCodeUsesAPFloat()) 1098 return "APFloat"; 1099 return "I64"; 1100 } 1101 1102 /// isAlwaysTrue - Return true if this is a noop predicate. 1103 bool TreePredicateFn::isAlwaysTrue() const { 1104 return !hasPredCode() && !hasImmCode(); 1105 } 1106 1107 /// Return the name to use in the generated code to reference this, this is 1108 /// "Predicate_foo" if from a pattern fragment "foo". 1109 std::string TreePredicateFn::getFnName() const { 1110 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1111 } 1112 1113 /// getCodeToRunOnSDNode - Return the code for the function body that 1114 /// evaluates this predicate. The argument is expected to be in "Node", 1115 /// not N. This handles casting and conversion to a concrete node type as 1116 /// appropriate. 1117 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1118 // Handle immediate predicates first. 1119 std::string ImmCode = getImmCode(); 1120 if (!ImmCode.empty()) { 1121 if (isLoad()) 1122 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1123 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1124 if (isStore()) 1125 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1126 "IsStore cannot be used with ImmLeaf or its subclasses"); 1127 if (isUnindexed()) 1128 PrintFatalError( 1129 getOrigPatFragRecord()->getRecord()->getLoc(), 1130 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1131 if (isNonExtLoad()) 1132 PrintFatalError( 1133 getOrigPatFragRecord()->getRecord()->getLoc(), 1134 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1135 if (isAnyExtLoad()) 1136 PrintFatalError( 1137 getOrigPatFragRecord()->getRecord()->getLoc(), 1138 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1139 if (isSignExtLoad()) 1140 PrintFatalError( 1141 getOrigPatFragRecord()->getRecord()->getLoc(), 1142 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1143 if (isZeroExtLoad()) 1144 PrintFatalError( 1145 getOrigPatFragRecord()->getRecord()->getLoc(), 1146 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1147 if (isNonTruncStore()) 1148 PrintFatalError( 1149 getOrigPatFragRecord()->getRecord()->getLoc(), 1150 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1151 if (isTruncStore()) 1152 PrintFatalError( 1153 getOrigPatFragRecord()->getRecord()->getLoc(), 1154 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1155 if (getMemoryVT()) 1156 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1157 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1158 if (getScalarMemoryVT()) 1159 PrintFatalError( 1160 getOrigPatFragRecord()->getRecord()->getLoc(), 1161 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1162 1163 std::string Result = (" " + getImmType() + " Imm = ").str(); 1164 if (immCodeUsesAPFloat()) 1165 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1166 else if (immCodeUsesAPInt()) 1167 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1168 else 1169 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1170 return Result + ImmCode; 1171 } 1172 1173 // Handle arbitrary node predicates. 1174 assert(hasPredCode() && "Don't have any predicate code!"); 1175 StringRef ClassName; 1176 if (PatFragRec->getOnlyTree()->isLeaf()) 1177 ClassName = "SDNode"; 1178 else { 1179 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1180 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1181 } 1182 std::string Result; 1183 if (ClassName == "SDNode") 1184 Result = " SDNode *N = Node;\n"; 1185 else 1186 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1187 1188 return Result + getPredCode(); 1189 } 1190 1191 //===----------------------------------------------------------------------===// 1192 // PatternToMatch implementation 1193 // 1194 1195 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1196 /// patterns before small ones. This is used to determine the size of a 1197 /// pattern. 1198 static unsigned getPatternSize(const TreePatternNode *P, 1199 const CodeGenDAGPatterns &CGP) { 1200 unsigned Size = 3; // The node itself. 1201 // If the root node is a ConstantSDNode, increases its size. 1202 // e.g. (set R32:$dst, 0). 1203 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1204 Size += 2; 1205 1206 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1207 Size += AM->getComplexity(); 1208 // We don't want to count any children twice, so return early. 1209 return Size; 1210 } 1211 1212 // If this node has some predicate function that must match, it adds to the 1213 // complexity of this node. 1214 if (!P->getPredicateFns().empty()) 1215 ++Size; 1216 1217 // Count children in the count if they are also nodes. 1218 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1219 const TreePatternNode *Child = P->getChild(i); 1220 if (!Child->isLeaf() && Child->getNumTypes()) { 1221 const TypeSetByHwMode &T0 = Child->getType(0); 1222 // At this point, all variable type sets should be simple, i.e. only 1223 // have a default mode. 1224 if (T0.getMachineValueType() != MVT::Other) { 1225 Size += getPatternSize(Child, CGP); 1226 continue; 1227 } 1228 } 1229 if (Child->isLeaf()) { 1230 if (isa<IntInit>(Child->getLeafValue())) 1231 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1232 else if (Child->getComplexPatternInfo(CGP)) 1233 Size += getPatternSize(Child, CGP); 1234 else if (!Child->getPredicateFns().empty()) 1235 ++Size; 1236 } 1237 } 1238 1239 return Size; 1240 } 1241 1242 /// Compute the complexity metric for the input pattern. This roughly 1243 /// corresponds to the number of nodes that are covered. 1244 int PatternToMatch:: 1245 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1246 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1247 } 1248 1249 /// getPredicateCheck - Return a single string containing all of this 1250 /// pattern's predicates concatenated with "&&" operators. 1251 /// 1252 std::string PatternToMatch::getPredicateCheck() const { 1253 SmallVector<const Predicate*,4> PredList; 1254 for (const Predicate &P : Predicates) 1255 PredList.push_back(&P); 1256 std::sort(PredList.begin(), PredList.end(), deref<llvm::less>()); 1257 1258 std::string Check; 1259 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1260 if (i != 0) 1261 Check += " && "; 1262 Check += '(' + PredList[i]->getCondString() + ')'; 1263 } 1264 return Check; 1265 } 1266 1267 //===----------------------------------------------------------------------===// 1268 // SDTypeConstraint implementation 1269 // 1270 1271 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1272 OperandNo = R->getValueAsInt("OperandNum"); 1273 1274 if (R->isSubClassOf("SDTCisVT")) { 1275 ConstraintType = SDTCisVT; 1276 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1277 for (const auto &P : VVT) 1278 if (P.second == MVT::isVoid) 1279 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1280 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1281 ConstraintType = SDTCisPtrTy; 1282 } else if (R->isSubClassOf("SDTCisInt")) { 1283 ConstraintType = SDTCisInt; 1284 } else if (R->isSubClassOf("SDTCisFP")) { 1285 ConstraintType = SDTCisFP; 1286 } else if (R->isSubClassOf("SDTCisVec")) { 1287 ConstraintType = SDTCisVec; 1288 } else if (R->isSubClassOf("SDTCisSameAs")) { 1289 ConstraintType = SDTCisSameAs; 1290 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1291 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1292 ConstraintType = SDTCisVTSmallerThanOp; 1293 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1294 R->getValueAsInt("OtherOperandNum"); 1295 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1296 ConstraintType = SDTCisOpSmallerThanOp; 1297 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1298 R->getValueAsInt("BigOperandNum"); 1299 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1300 ConstraintType = SDTCisEltOfVec; 1301 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1302 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1303 ConstraintType = SDTCisSubVecOfVec; 1304 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1305 R->getValueAsInt("OtherOpNum"); 1306 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1307 ConstraintType = SDTCVecEltisVT; 1308 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1309 for (const auto &P : VVT) { 1310 MVT T = P.second; 1311 if (T.isVector()) 1312 PrintFatalError(R->getLoc(), 1313 "Cannot use vector type as SDTCVecEltisVT"); 1314 if (!T.isInteger() && !T.isFloatingPoint()) 1315 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1316 "as SDTCVecEltisVT"); 1317 } 1318 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1319 ConstraintType = SDTCisSameNumEltsAs; 1320 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1321 R->getValueAsInt("OtherOperandNum"); 1322 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1323 ConstraintType = SDTCisSameSizeAs; 1324 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1325 R->getValueAsInt("OtherOperandNum"); 1326 } else { 1327 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1328 } 1329 } 1330 1331 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1332 /// N, and the result number in ResNo. 1333 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1334 const SDNodeInfo &NodeInfo, 1335 unsigned &ResNo) { 1336 unsigned NumResults = NodeInfo.getNumResults(); 1337 if (OpNo < NumResults) { 1338 ResNo = OpNo; 1339 return N; 1340 } 1341 1342 OpNo -= NumResults; 1343 1344 if (OpNo >= N->getNumChildren()) { 1345 std::string S; 1346 raw_string_ostream OS(S); 1347 OS << "Invalid operand number in type constraint " 1348 << (OpNo+NumResults) << " "; 1349 N->print(OS); 1350 PrintFatalError(OS.str()); 1351 } 1352 1353 return N->getChild(OpNo); 1354 } 1355 1356 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1357 /// constraint to the nodes operands. This returns true if it makes a 1358 /// change, false otherwise. If a type contradiction is found, flag an error. 1359 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1360 const SDNodeInfo &NodeInfo, 1361 TreePattern &TP) const { 1362 if (TP.hasError()) 1363 return false; 1364 1365 unsigned ResNo = 0; // The result number being referenced. 1366 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1367 TypeInfer &TI = TP.getInfer(); 1368 1369 switch (ConstraintType) { 1370 case SDTCisVT: 1371 // Operand must be a particular type. 1372 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1373 case SDTCisPtrTy: 1374 // Operand must be same as target pointer type. 1375 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1376 case SDTCisInt: 1377 // Require it to be one of the legal integer VTs. 1378 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1379 case SDTCisFP: 1380 // Require it to be one of the legal fp VTs. 1381 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1382 case SDTCisVec: 1383 // Require it to be one of the legal vector VTs. 1384 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1385 case SDTCisSameAs: { 1386 unsigned OResNo = 0; 1387 TreePatternNode *OtherNode = 1388 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1389 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1390 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1391 } 1392 case SDTCisVTSmallerThanOp: { 1393 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1394 // have an integer type that is smaller than the VT. 1395 if (!NodeToApply->isLeaf() || 1396 !isa<DefInit>(NodeToApply->getLeafValue()) || 1397 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1398 ->isSubClassOf("ValueType")) { 1399 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1400 return false; 1401 } 1402 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1403 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1404 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1405 TypeSetByHwMode TypeListTmp(VVT); 1406 1407 unsigned OResNo = 0; 1408 TreePatternNode *OtherNode = 1409 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1410 OResNo); 1411 1412 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1413 } 1414 case SDTCisOpSmallerThanOp: { 1415 unsigned BResNo = 0; 1416 TreePatternNode *BigOperand = 1417 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1418 BResNo); 1419 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1420 BigOperand->getExtType(BResNo)); 1421 } 1422 case SDTCisEltOfVec: { 1423 unsigned VResNo = 0; 1424 TreePatternNode *VecOperand = 1425 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1426 VResNo); 1427 // Filter vector types out of VecOperand that don't have the right element 1428 // type. 1429 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1430 NodeToApply->getExtType(ResNo)); 1431 } 1432 case SDTCisSubVecOfVec: { 1433 unsigned VResNo = 0; 1434 TreePatternNode *BigVecOperand = 1435 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1436 VResNo); 1437 1438 // Filter vector types out of BigVecOperand that don't have the 1439 // right subvector type. 1440 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1441 NodeToApply->getExtType(ResNo)); 1442 } 1443 case SDTCVecEltisVT: { 1444 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1445 } 1446 case SDTCisSameNumEltsAs: { 1447 unsigned OResNo = 0; 1448 TreePatternNode *OtherNode = 1449 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1450 N, NodeInfo, OResNo); 1451 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1452 NodeToApply->getExtType(ResNo)); 1453 } 1454 case SDTCisSameSizeAs: { 1455 unsigned OResNo = 0; 1456 TreePatternNode *OtherNode = 1457 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1458 N, NodeInfo, OResNo); 1459 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1460 NodeToApply->getExtType(ResNo)); 1461 } 1462 } 1463 llvm_unreachable("Invalid ConstraintType!"); 1464 } 1465 1466 // Update the node type to match an instruction operand or result as specified 1467 // in the ins or outs lists on the instruction definition. Return true if the 1468 // type was actually changed. 1469 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1470 Record *Operand, 1471 TreePattern &TP) { 1472 // The 'unknown' operand indicates that types should be inferred from the 1473 // context. 1474 if (Operand->isSubClassOf("unknown_class")) 1475 return false; 1476 1477 // The Operand class specifies a type directly. 1478 if (Operand->isSubClassOf("Operand")) { 1479 Record *R = Operand->getValueAsDef("Type"); 1480 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1481 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1482 } 1483 1484 // PointerLikeRegClass has a type that is determined at runtime. 1485 if (Operand->isSubClassOf("PointerLikeRegClass")) 1486 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1487 1488 // Both RegisterClass and RegisterOperand operands derive their types from a 1489 // register class def. 1490 Record *RC = nullptr; 1491 if (Operand->isSubClassOf("RegisterClass")) 1492 RC = Operand; 1493 else if (Operand->isSubClassOf("RegisterOperand")) 1494 RC = Operand->getValueAsDef("RegClass"); 1495 1496 assert(RC && "Unknown operand type"); 1497 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1498 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1499 } 1500 1501 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1502 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1503 if (!TP.getInfer().isConcrete(Types[i], true)) 1504 return true; 1505 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1506 if (getChild(i)->ContainsUnresolvedType(TP)) 1507 return true; 1508 return false; 1509 } 1510 1511 bool TreePatternNode::hasProperTypeByHwMode() const { 1512 for (const TypeSetByHwMode &S : Types) 1513 if (!S.isDefaultOnly()) 1514 return true; 1515 for (TreePatternNode *C : Children) 1516 if (C->hasProperTypeByHwMode()) 1517 return true; 1518 return false; 1519 } 1520 1521 bool TreePatternNode::hasPossibleType() const { 1522 for (const TypeSetByHwMode &S : Types) 1523 if (!S.isPossible()) 1524 return false; 1525 for (TreePatternNode *C : Children) 1526 if (!C->hasPossibleType()) 1527 return false; 1528 return true; 1529 } 1530 1531 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1532 for (TypeSetByHwMode &S : Types) { 1533 S.makeSimple(Mode); 1534 // Check if the selected mode had a type conflict. 1535 if (S.get(DefaultMode).empty()) 1536 return false; 1537 } 1538 for (TreePatternNode *C : Children) 1539 if (!C->setDefaultMode(Mode)) 1540 return false; 1541 return true; 1542 } 1543 1544 //===----------------------------------------------------------------------===// 1545 // SDNodeInfo implementation 1546 // 1547 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1548 EnumName = R->getValueAsString("Opcode"); 1549 SDClassName = R->getValueAsString("SDClass"); 1550 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1551 NumResults = TypeProfile->getValueAsInt("NumResults"); 1552 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1553 1554 // Parse the properties. 1555 Properties = 0; 1556 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1557 if (Property->getName() == "SDNPCommutative") { 1558 Properties |= 1 << SDNPCommutative; 1559 } else if (Property->getName() == "SDNPAssociative") { 1560 Properties |= 1 << SDNPAssociative; 1561 } else if (Property->getName() == "SDNPHasChain") { 1562 Properties |= 1 << SDNPHasChain; 1563 } else if (Property->getName() == "SDNPOutGlue") { 1564 Properties |= 1 << SDNPOutGlue; 1565 } else if (Property->getName() == "SDNPInGlue") { 1566 Properties |= 1 << SDNPInGlue; 1567 } else if (Property->getName() == "SDNPOptInGlue") { 1568 Properties |= 1 << SDNPOptInGlue; 1569 } else if (Property->getName() == "SDNPMayStore") { 1570 Properties |= 1 << SDNPMayStore; 1571 } else if (Property->getName() == "SDNPMayLoad") { 1572 Properties |= 1 << SDNPMayLoad; 1573 } else if (Property->getName() == "SDNPSideEffect") { 1574 Properties |= 1 << SDNPSideEffect; 1575 } else if (Property->getName() == "SDNPMemOperand") { 1576 Properties |= 1 << SDNPMemOperand; 1577 } else if (Property->getName() == "SDNPVariadic") { 1578 Properties |= 1 << SDNPVariadic; 1579 } else { 1580 PrintFatalError("Unknown SD Node property '" + 1581 Property->getName() + "' on node '" + 1582 R->getName() + "'!"); 1583 } 1584 } 1585 1586 1587 // Parse the type constraints. 1588 std::vector<Record*> ConstraintList = 1589 TypeProfile->getValueAsListOfDefs("Constraints"); 1590 for (Record *R : ConstraintList) 1591 TypeConstraints.emplace_back(R, CGH); 1592 } 1593 1594 /// getKnownType - If the type constraints on this node imply a fixed type 1595 /// (e.g. all stores return void, etc), then return it as an 1596 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1597 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1598 unsigned NumResults = getNumResults(); 1599 assert(NumResults <= 1 && 1600 "We only work with nodes with zero or one result so far!"); 1601 assert(ResNo == 0 && "Only handles single result nodes so far"); 1602 1603 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1604 // Make sure that this applies to the correct node result. 1605 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1606 continue; 1607 1608 switch (Constraint.ConstraintType) { 1609 default: break; 1610 case SDTypeConstraint::SDTCisVT: 1611 if (Constraint.VVT.isSimple()) 1612 return Constraint.VVT.getSimple().SimpleTy; 1613 break; 1614 case SDTypeConstraint::SDTCisPtrTy: 1615 return MVT::iPTR; 1616 } 1617 } 1618 return MVT::Other; 1619 } 1620 1621 //===----------------------------------------------------------------------===// 1622 // TreePatternNode implementation 1623 // 1624 1625 TreePatternNode::~TreePatternNode() { 1626 #if 0 // FIXME: implement refcounted tree nodes! 1627 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1628 delete getChild(i); 1629 #endif 1630 } 1631 1632 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1633 if (Operator->getName() == "set" || 1634 Operator->getName() == "implicit") 1635 return 0; // All return nothing. 1636 1637 if (Operator->isSubClassOf("Intrinsic")) 1638 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1639 1640 if (Operator->isSubClassOf("SDNode")) 1641 return CDP.getSDNodeInfo(Operator).getNumResults(); 1642 1643 if (Operator->isSubClassOf("PatFrag")) { 1644 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1645 // the forward reference case where one pattern fragment references another 1646 // before it is processed. 1647 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1648 return PFRec->getOnlyTree()->getNumTypes(); 1649 1650 // Get the result tree. 1651 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1652 Record *Op = nullptr; 1653 if (Tree) 1654 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1655 Op = DI->getDef(); 1656 assert(Op && "Invalid Fragment"); 1657 return GetNumNodeResults(Op, CDP); 1658 } 1659 1660 if (Operator->isSubClassOf("Instruction")) { 1661 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1662 1663 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1664 1665 // Subtract any defaulted outputs. 1666 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1667 Record *OperandNode = InstInfo.Operands[i].Rec; 1668 1669 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1670 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1671 --NumDefsToAdd; 1672 } 1673 1674 // Add on one implicit def if it has a resolvable type. 1675 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1676 ++NumDefsToAdd; 1677 return NumDefsToAdd; 1678 } 1679 1680 if (Operator->isSubClassOf("SDNodeXForm")) 1681 return 1; // FIXME: Generalize SDNodeXForm 1682 1683 if (Operator->isSubClassOf("ValueType")) 1684 return 1; // A type-cast of one result. 1685 1686 if (Operator->isSubClassOf("ComplexPattern")) 1687 return 1; 1688 1689 errs() << *Operator; 1690 PrintFatalError("Unhandled node in GetNumNodeResults"); 1691 } 1692 1693 void TreePatternNode::print(raw_ostream &OS) const { 1694 if (isLeaf()) 1695 OS << *getLeafValue(); 1696 else 1697 OS << '(' << getOperator()->getName(); 1698 1699 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1700 OS << ':'; 1701 getExtType(i).writeToStream(OS); 1702 } 1703 1704 if (!isLeaf()) { 1705 if (getNumChildren() != 0) { 1706 OS << " "; 1707 getChild(0)->print(OS); 1708 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1709 OS << ", "; 1710 getChild(i)->print(OS); 1711 } 1712 } 1713 OS << ")"; 1714 } 1715 1716 for (const TreePredicateFn &Pred : PredicateFns) 1717 OS << "<<P:" << Pred.getFnName() << ">>"; 1718 if (TransformFn) 1719 OS << "<<X:" << TransformFn->getName() << ">>"; 1720 if (!getName().empty()) 1721 OS << ":$" << getName(); 1722 1723 } 1724 void TreePatternNode::dump() const { 1725 print(errs()); 1726 } 1727 1728 /// isIsomorphicTo - Return true if this node is recursively 1729 /// isomorphic to the specified node. For this comparison, the node's 1730 /// entire state is considered. The assigned name is ignored, since 1731 /// nodes with differing names are considered isomorphic. However, if 1732 /// the assigned name is present in the dependent variable set, then 1733 /// the assigned name is considered significant and the node is 1734 /// isomorphic if the names match. 1735 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1736 const MultipleUseVarSet &DepVars) const { 1737 if (N == this) return true; 1738 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1739 getPredicateFns() != N->getPredicateFns() || 1740 getTransformFn() != N->getTransformFn()) 1741 return false; 1742 1743 if (isLeaf()) { 1744 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1745 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1746 return ((DI->getDef() == NDI->getDef()) 1747 && (DepVars.find(getName()) == DepVars.end() 1748 || getName() == N->getName())); 1749 } 1750 } 1751 return getLeafValue() == N->getLeafValue(); 1752 } 1753 1754 if (N->getOperator() != getOperator() || 1755 N->getNumChildren() != getNumChildren()) return false; 1756 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1757 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1758 return false; 1759 return true; 1760 } 1761 1762 /// clone - Make a copy of this tree and all of its children. 1763 /// 1764 TreePatternNode *TreePatternNode::clone() const { 1765 TreePatternNode *New; 1766 if (isLeaf()) { 1767 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1768 } else { 1769 std::vector<TreePatternNode*> CChildren; 1770 CChildren.reserve(Children.size()); 1771 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1772 CChildren.push_back(getChild(i)->clone()); 1773 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1774 } 1775 New->setName(getName()); 1776 New->Types = Types; 1777 New->setPredicateFns(getPredicateFns()); 1778 New->setTransformFn(getTransformFn()); 1779 return New; 1780 } 1781 1782 /// RemoveAllTypes - Recursively strip all the types of this tree. 1783 void TreePatternNode::RemoveAllTypes() { 1784 // Reset to unknown type. 1785 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1786 if (isLeaf()) return; 1787 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1788 getChild(i)->RemoveAllTypes(); 1789 } 1790 1791 1792 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1793 /// with actual values specified by ArgMap. 1794 void TreePatternNode:: 1795 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1796 if (isLeaf()) return; 1797 1798 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1799 TreePatternNode *Child = getChild(i); 1800 if (Child->isLeaf()) { 1801 Init *Val = Child->getLeafValue(); 1802 // Note that, when substituting into an output pattern, Val might be an 1803 // UnsetInit. 1804 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1805 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1806 // We found a use of a formal argument, replace it with its value. 1807 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1808 assert(NewChild && "Couldn't find formal argument!"); 1809 assert((Child->getPredicateFns().empty() || 1810 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1811 "Non-empty child predicate clobbered!"); 1812 setChild(i, NewChild); 1813 } 1814 } else { 1815 getChild(i)->SubstituteFormalArguments(ArgMap); 1816 } 1817 } 1818 } 1819 1820 1821 /// InlinePatternFragments - If this pattern refers to any pattern 1822 /// fragments, inline them into place, giving us a pattern without any 1823 /// PatFrag references. 1824 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1825 if (TP.hasError()) 1826 return nullptr; 1827 1828 if (isLeaf()) 1829 return this; // nothing to do. 1830 Record *Op = getOperator(); 1831 1832 if (!Op->isSubClassOf("PatFrag")) { 1833 // Just recursively inline children nodes. 1834 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1835 TreePatternNode *Child = getChild(i); 1836 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1837 1838 assert((Child->getPredicateFns().empty() || 1839 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1840 "Non-empty child predicate clobbered!"); 1841 1842 setChild(i, NewChild); 1843 } 1844 return this; 1845 } 1846 1847 // Otherwise, we found a reference to a fragment. First, look up its 1848 // TreePattern record. 1849 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1850 1851 // Verify that we are passing the right number of operands. 1852 if (Frag->getNumArgs() != Children.size()) { 1853 TP.error("'" + Op->getName() + "' fragment requires " + 1854 utostr(Frag->getNumArgs()) + " operands!"); 1855 return nullptr; 1856 } 1857 1858 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1859 1860 TreePredicateFn PredFn(Frag); 1861 if (!PredFn.isAlwaysTrue()) 1862 FragTree->addPredicateFn(PredFn); 1863 1864 // Resolve formal arguments to their actual value. 1865 if (Frag->getNumArgs()) { 1866 // Compute the map of formal to actual arguments. 1867 std::map<std::string, TreePatternNode*> ArgMap; 1868 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1869 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1870 1871 FragTree->SubstituteFormalArguments(ArgMap); 1872 } 1873 1874 FragTree->setName(getName()); 1875 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1876 FragTree->UpdateNodeType(i, getExtType(i), TP); 1877 1878 // Transfer in the old predicates. 1879 for (const TreePredicateFn &Pred : getPredicateFns()) 1880 FragTree->addPredicateFn(Pred); 1881 1882 // Get a new copy of this fragment to stitch into here. 1883 //delete this; // FIXME: implement refcounting! 1884 1885 // The fragment we inlined could have recursive inlining that is needed. See 1886 // if there are any pattern fragments in it and inline them as needed. 1887 return FragTree->InlinePatternFragments(TP); 1888 } 1889 1890 /// getImplicitType - Check to see if the specified record has an implicit 1891 /// type which should be applied to it. This will infer the type of register 1892 /// references from the register file information, for example. 1893 /// 1894 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1895 /// the F8RC register class argument in: 1896 /// 1897 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1898 /// 1899 /// When Unnamed is false, return the type of a named DAG operand such as the 1900 /// GPR:$src operand above. 1901 /// 1902 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 1903 bool NotRegisters, 1904 bool Unnamed, 1905 TreePattern &TP) { 1906 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1907 1908 // Check to see if this is a register operand. 1909 if (R->isSubClassOf("RegisterOperand")) { 1910 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1911 if (NotRegisters) 1912 return TypeSetByHwMode(); // Unknown. 1913 Record *RegClass = R->getValueAsDef("RegClass"); 1914 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1915 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 1916 } 1917 1918 // Check to see if this is a register or a register class. 1919 if (R->isSubClassOf("RegisterClass")) { 1920 assert(ResNo == 0 && "Regclass ref only has one result!"); 1921 // An unnamed register class represents itself as an i32 immediate, for 1922 // example on a COPY_TO_REGCLASS instruction. 1923 if (Unnamed) 1924 return TypeSetByHwMode(MVT::i32); 1925 1926 // In a named operand, the register class provides the possible set of 1927 // types. 1928 if (NotRegisters) 1929 return TypeSetByHwMode(); // Unknown. 1930 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1931 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 1932 } 1933 1934 if (R->isSubClassOf("PatFrag")) { 1935 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1936 // Pattern fragment types will be resolved when they are inlined. 1937 return TypeSetByHwMode(); // Unknown. 1938 } 1939 1940 if (R->isSubClassOf("Register")) { 1941 assert(ResNo == 0 && "Registers only produce one result!"); 1942 if (NotRegisters) 1943 return TypeSetByHwMode(); // Unknown. 1944 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1945 return TypeSetByHwMode(T.getRegisterVTs(R)); 1946 } 1947 1948 if (R->isSubClassOf("SubRegIndex")) { 1949 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1950 return TypeSetByHwMode(MVT::i32); 1951 } 1952 1953 if (R->isSubClassOf("ValueType")) { 1954 assert(ResNo == 0 && "This node only has one result!"); 1955 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1956 // 1957 // (sext_inreg GPR:$src, i16) 1958 // ~~~ 1959 if (Unnamed) 1960 return TypeSetByHwMode(MVT::Other); 1961 // With a name, the ValueType simply provides the type of the named 1962 // variable. 1963 // 1964 // (sext_inreg i32:$src, i16) 1965 // ~~~~~~~~ 1966 if (NotRegisters) 1967 return TypeSetByHwMode(); // Unknown. 1968 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 1969 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 1970 } 1971 1972 if (R->isSubClassOf("CondCode")) { 1973 assert(ResNo == 0 && "This node only has one result!"); 1974 // Using a CondCodeSDNode. 1975 return TypeSetByHwMode(MVT::Other); 1976 } 1977 1978 if (R->isSubClassOf("ComplexPattern")) { 1979 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1980 if (NotRegisters) 1981 return TypeSetByHwMode(); // Unknown. 1982 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 1983 } 1984 if (R->isSubClassOf("PointerLikeRegClass")) { 1985 assert(ResNo == 0 && "Regclass can only have one result!"); 1986 TypeSetByHwMode VTS(MVT::iPTR); 1987 TP.getInfer().expandOverloads(VTS); 1988 return VTS; 1989 } 1990 1991 if (R->getName() == "node" || R->getName() == "srcvalue" || 1992 R->getName() == "zero_reg") { 1993 // Placeholder. 1994 return TypeSetByHwMode(); // Unknown. 1995 } 1996 1997 if (R->isSubClassOf("Operand")) { 1998 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 1999 Record *T = R->getValueAsDef("Type"); 2000 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2001 } 2002 2003 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2004 return TypeSetByHwMode(MVT::Other); 2005 } 2006 2007 2008 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2009 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2010 const CodeGenIntrinsic *TreePatternNode:: 2011 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2012 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2013 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2014 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2015 return nullptr; 2016 2017 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2018 return &CDP.getIntrinsicInfo(IID); 2019 } 2020 2021 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2022 /// return the ComplexPattern information, otherwise return null. 2023 const ComplexPattern * 2024 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2025 Record *Rec; 2026 if (isLeaf()) { 2027 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2028 if (!DI) 2029 return nullptr; 2030 Rec = DI->getDef(); 2031 } else 2032 Rec = getOperator(); 2033 2034 if (!Rec->isSubClassOf("ComplexPattern")) 2035 return nullptr; 2036 return &CGP.getComplexPattern(Rec); 2037 } 2038 2039 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2040 // A ComplexPattern specifically declares how many results it fills in. 2041 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2042 return CP->getNumOperands(); 2043 2044 // If MIOperandInfo is specified, that gives the count. 2045 if (isLeaf()) { 2046 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2047 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2048 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2049 if (MIOps->getNumArgs()) 2050 return MIOps->getNumArgs(); 2051 } 2052 } 2053 2054 // Otherwise there is just one result. 2055 return 1; 2056 } 2057 2058 /// NodeHasProperty - Return true if this node has the specified property. 2059 bool TreePatternNode::NodeHasProperty(SDNP Property, 2060 const CodeGenDAGPatterns &CGP) const { 2061 if (isLeaf()) { 2062 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2063 return CP->hasProperty(Property); 2064 return false; 2065 } 2066 2067 Record *Operator = getOperator(); 2068 if (!Operator->isSubClassOf("SDNode")) return false; 2069 2070 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2071 } 2072 2073 2074 2075 2076 /// TreeHasProperty - Return true if any node in this tree has the specified 2077 /// property. 2078 bool TreePatternNode::TreeHasProperty(SDNP Property, 2079 const CodeGenDAGPatterns &CGP) const { 2080 if (NodeHasProperty(Property, CGP)) 2081 return true; 2082 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2083 if (getChild(i)->TreeHasProperty(Property, CGP)) 2084 return true; 2085 return false; 2086 } 2087 2088 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2089 /// commutative intrinsic. 2090 bool 2091 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2092 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2093 return Int->isCommutative; 2094 return false; 2095 } 2096 2097 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2098 if (!N->isLeaf()) 2099 return N->getOperator()->isSubClassOf(Class); 2100 2101 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2102 if (DI && DI->getDef()->isSubClassOf(Class)) 2103 return true; 2104 2105 return false; 2106 } 2107 2108 static void emitTooManyOperandsError(TreePattern &TP, 2109 StringRef InstName, 2110 unsigned Expected, 2111 unsigned Actual) { 2112 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2113 " operands but expected only " + Twine(Expected) + "!"); 2114 } 2115 2116 static void emitTooFewOperandsError(TreePattern &TP, 2117 StringRef InstName, 2118 unsigned Actual) { 2119 TP.error("Instruction '" + InstName + 2120 "' expects more than the provided " + Twine(Actual) + " operands!"); 2121 } 2122 2123 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2124 /// this node and its children in the tree. This returns true if it makes a 2125 /// change, false otherwise. If a type contradiction is found, flag an error. 2126 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2127 if (TP.hasError()) 2128 return false; 2129 2130 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2131 if (isLeaf()) { 2132 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2133 // If it's a regclass or something else known, include the type. 2134 bool MadeChange = false; 2135 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2136 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2137 NotRegisters, 2138 !hasName(), TP), TP); 2139 return MadeChange; 2140 } 2141 2142 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2143 assert(Types.size() == 1 && "Invalid IntInit"); 2144 2145 // Int inits are always integers. :) 2146 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2147 2148 if (!TP.getInfer().isConcrete(Types[0], false)) 2149 return MadeChange; 2150 2151 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2152 for (auto &P : VVT) { 2153 MVT::SimpleValueType VT = P.second.SimpleTy; 2154 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2155 continue; 2156 unsigned Size = MVT(VT).getSizeInBits(); 2157 // Make sure that the value is representable for this type. 2158 if (Size >= 32) 2159 continue; 2160 // Check that the value doesn't use more bits than we have. It must 2161 // either be a sign- or zero-extended equivalent of the original. 2162 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2163 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2164 SignBitAndAbove == 1) 2165 continue; 2166 2167 TP.error("Integer value '" + itostr(II->getValue()) + 2168 "' is out of range for type '" + getEnumName(VT) + "'!"); 2169 break; 2170 } 2171 return MadeChange; 2172 } 2173 2174 return false; 2175 } 2176 2177 // special handling for set, which isn't really an SDNode. 2178 if (getOperator()->getName() == "set") { 2179 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 2180 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 2181 unsigned NC = getNumChildren(); 2182 2183 TreePatternNode *SetVal = getChild(NC-1); 2184 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 2185 2186 for (unsigned i = 0; i < NC-1; ++i) { 2187 TreePatternNode *Child = getChild(i); 2188 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 2189 2190 // Types of operands must match. 2191 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 2192 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 2193 } 2194 return MadeChange; 2195 } 2196 2197 if (getOperator()->getName() == "implicit") { 2198 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 2199 2200 bool MadeChange = false; 2201 for (unsigned i = 0; i < getNumChildren(); ++i) 2202 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2203 return MadeChange; 2204 } 2205 2206 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2207 bool MadeChange = false; 2208 2209 // Apply the result type to the node. 2210 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2211 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2212 2213 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2214 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2215 2216 if (getNumChildren() != NumParamVTs + 1) { 2217 TP.error("Intrinsic '" + Int->Name + "' expects " + 2218 utostr(NumParamVTs) + " operands, not " + 2219 utostr(getNumChildren() - 1) + " operands!"); 2220 return false; 2221 } 2222 2223 // Apply type info to the intrinsic ID. 2224 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2225 2226 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2227 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2228 2229 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2230 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2231 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2232 } 2233 return MadeChange; 2234 } 2235 2236 if (getOperator()->isSubClassOf("SDNode")) { 2237 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2238 2239 // Check that the number of operands is sane. Negative operands -> varargs. 2240 if (NI.getNumOperands() >= 0 && 2241 getNumChildren() != (unsigned)NI.getNumOperands()) { 2242 TP.error(getOperator()->getName() + " node requires exactly " + 2243 itostr(NI.getNumOperands()) + " operands!"); 2244 return false; 2245 } 2246 2247 bool MadeChange = false; 2248 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2249 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2250 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2251 return MadeChange; 2252 } 2253 2254 if (getOperator()->isSubClassOf("Instruction")) { 2255 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2256 CodeGenInstruction &InstInfo = 2257 CDP.getTargetInfo().getInstruction(getOperator()); 2258 2259 bool MadeChange = false; 2260 2261 // Apply the result types to the node, these come from the things in the 2262 // (outs) list of the instruction. 2263 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2264 Inst.getNumResults()); 2265 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2266 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2267 2268 // If the instruction has implicit defs, we apply the first one as a result. 2269 // FIXME: This sucks, it should apply all implicit defs. 2270 if (!InstInfo.ImplicitDefs.empty()) { 2271 unsigned ResNo = NumResultsToAdd; 2272 2273 // FIXME: Generalize to multiple possible types and multiple possible 2274 // ImplicitDefs. 2275 MVT::SimpleValueType VT = 2276 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2277 2278 if (VT != MVT::Other) 2279 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2280 } 2281 2282 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2283 // be the same. 2284 if (getOperator()->getName() == "INSERT_SUBREG") { 2285 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2286 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2287 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2288 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2289 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2290 // variadic. 2291 2292 unsigned NChild = getNumChildren(); 2293 if (NChild < 3) { 2294 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2295 return false; 2296 } 2297 2298 if (NChild % 2 == 0) { 2299 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2300 return false; 2301 } 2302 2303 if (!isOperandClass(getChild(0), "RegisterClass")) { 2304 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2305 return false; 2306 } 2307 2308 for (unsigned I = 1; I < NChild; I += 2) { 2309 TreePatternNode *SubIdxChild = getChild(I + 1); 2310 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2311 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2312 itostr(I + 1) + "!"); 2313 return false; 2314 } 2315 } 2316 } 2317 2318 unsigned ChildNo = 0; 2319 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2320 Record *OperandNode = Inst.getOperand(i); 2321 2322 // If the instruction expects a predicate or optional def operand, we 2323 // codegen this by setting the operand to it's default value if it has a 2324 // non-empty DefaultOps field. 2325 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 2326 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 2327 continue; 2328 2329 // Verify that we didn't run out of provided operands. 2330 if (ChildNo >= getNumChildren()) { 2331 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2332 return false; 2333 } 2334 2335 TreePatternNode *Child = getChild(ChildNo++); 2336 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2337 2338 // If the operand has sub-operands, they may be provided by distinct 2339 // child patterns, so attempt to match each sub-operand separately. 2340 if (OperandNode->isSubClassOf("Operand")) { 2341 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2342 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2343 // But don't do that if the whole operand is being provided by 2344 // a single ComplexPattern-related Operand. 2345 2346 if (Child->getNumMIResults(CDP) < NumArgs) { 2347 // Match first sub-operand against the child we already have. 2348 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2349 MadeChange |= 2350 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2351 2352 // And the remaining sub-operands against subsequent children. 2353 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2354 if (ChildNo >= getNumChildren()) { 2355 emitTooFewOperandsError(TP, getOperator()->getName(), 2356 getNumChildren()); 2357 return false; 2358 } 2359 Child = getChild(ChildNo++); 2360 2361 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2362 MadeChange |= 2363 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2364 } 2365 continue; 2366 } 2367 } 2368 } 2369 2370 // If we didn't match by pieces above, attempt to match the whole 2371 // operand now. 2372 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2373 } 2374 2375 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2376 emitTooManyOperandsError(TP, getOperator()->getName(), 2377 ChildNo, getNumChildren()); 2378 return false; 2379 } 2380 2381 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2382 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2383 return MadeChange; 2384 } 2385 2386 if (getOperator()->isSubClassOf("ComplexPattern")) { 2387 bool MadeChange = false; 2388 2389 for (unsigned i = 0; i < getNumChildren(); ++i) 2390 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2391 2392 return MadeChange; 2393 } 2394 2395 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2396 2397 // Node transforms always take one operand. 2398 if (getNumChildren() != 1) { 2399 TP.error("Node transform '" + getOperator()->getName() + 2400 "' requires one operand!"); 2401 return false; 2402 } 2403 2404 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2405 return MadeChange; 2406 } 2407 2408 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2409 /// RHS of a commutative operation, not the on LHS. 2410 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2411 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2412 return true; 2413 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2414 return true; 2415 return false; 2416 } 2417 2418 2419 /// canPatternMatch - If it is impossible for this pattern to match on this 2420 /// target, fill in Reason and return false. Otherwise, return true. This is 2421 /// used as a sanity check for .td files (to prevent people from writing stuff 2422 /// that can never possibly work), and to prevent the pattern permuter from 2423 /// generating stuff that is useless. 2424 bool TreePatternNode::canPatternMatch(std::string &Reason, 2425 const CodeGenDAGPatterns &CDP) { 2426 if (isLeaf()) return true; 2427 2428 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2429 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2430 return false; 2431 2432 // If this is an intrinsic, handle cases that would make it not match. For 2433 // example, if an operand is required to be an immediate. 2434 if (getOperator()->isSubClassOf("Intrinsic")) { 2435 // TODO: 2436 return true; 2437 } 2438 2439 if (getOperator()->isSubClassOf("ComplexPattern")) 2440 return true; 2441 2442 // If this node is a commutative operator, check that the LHS isn't an 2443 // immediate. 2444 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2445 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2446 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2447 // Scan all of the operands of the node and make sure that only the last one 2448 // is a constant node, unless the RHS also is. 2449 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2450 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2451 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2452 if (OnlyOnRHSOfCommutative(getChild(i))) { 2453 Reason="Immediate value must be on the RHS of commutative operators!"; 2454 return false; 2455 } 2456 } 2457 } 2458 2459 return true; 2460 } 2461 2462 //===----------------------------------------------------------------------===// 2463 // TreePattern implementation 2464 // 2465 2466 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2467 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2468 isInputPattern(isInput), HasError(false), 2469 Infer(*this) { 2470 for (Init *I : RawPat->getValues()) 2471 Trees.push_back(ParseTreePattern(I, "")); 2472 } 2473 2474 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2475 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2476 isInputPattern(isInput), HasError(false), 2477 Infer(*this) { 2478 Trees.push_back(ParseTreePattern(Pat, "")); 2479 } 2480 2481 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2482 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2483 isInputPattern(isInput), HasError(false), 2484 Infer(*this) { 2485 Trees.push_back(Pat); 2486 } 2487 2488 void TreePattern::error(const Twine &Msg) { 2489 if (HasError) 2490 return; 2491 dump(); 2492 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2493 HasError = true; 2494 } 2495 2496 void TreePattern::ComputeNamedNodes() { 2497 for (TreePatternNode *Tree : Trees) 2498 ComputeNamedNodes(Tree); 2499 } 2500 2501 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2502 if (!N->getName().empty()) 2503 NamedNodes[N->getName()].push_back(N); 2504 2505 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2506 ComputeNamedNodes(N->getChild(i)); 2507 } 2508 2509 2510 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2511 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2512 Record *R = DI->getDef(); 2513 2514 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2515 // TreePatternNode of its own. For example: 2516 /// (foo GPR, imm) -> (foo GPR, (imm)) 2517 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2518 return ParseTreePattern( 2519 DagInit::get(DI, nullptr, 2520 std::vector<std::pair<Init*, StringInit*> >()), 2521 OpName); 2522 2523 // Input argument? 2524 TreePatternNode *Res = new TreePatternNode(DI, 1); 2525 if (R->getName() == "node" && !OpName.empty()) { 2526 if (OpName.empty()) 2527 error("'node' argument requires a name to match with operand list"); 2528 Args.push_back(OpName); 2529 } 2530 2531 Res->setName(OpName); 2532 return Res; 2533 } 2534 2535 // ?:$name or just $name. 2536 if (isa<UnsetInit>(TheInit)) { 2537 if (OpName.empty()) 2538 error("'?' argument requires a name to match with operand list"); 2539 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2540 Args.push_back(OpName); 2541 Res->setName(OpName); 2542 return Res; 2543 } 2544 2545 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2546 if (!OpName.empty()) 2547 error("Constant int argument should not have a name!"); 2548 return new TreePatternNode(II, 1); 2549 } 2550 2551 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2552 // Turn this into an IntInit. 2553 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2554 if (!II || !isa<IntInit>(II)) 2555 error("Bits value must be constants!"); 2556 return ParseTreePattern(II, OpName); 2557 } 2558 2559 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2560 if (!Dag) { 2561 TheInit->print(errs()); 2562 error("Pattern has unexpected init kind!"); 2563 } 2564 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2565 if (!OpDef) error("Pattern has unexpected operator type!"); 2566 Record *Operator = OpDef->getDef(); 2567 2568 if (Operator->isSubClassOf("ValueType")) { 2569 // If the operator is a ValueType, then this must be "type cast" of a leaf 2570 // node. 2571 if (Dag->getNumArgs() != 1) 2572 error("Type cast only takes one operand!"); 2573 2574 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), 2575 Dag->getArgNameStr(0)); 2576 2577 // Apply the type cast. 2578 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2579 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2580 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2581 2582 if (!OpName.empty()) 2583 error("ValueType cast should not have a name!"); 2584 return New; 2585 } 2586 2587 // Verify that this is something that makes sense for an operator. 2588 if (!Operator->isSubClassOf("PatFrag") && 2589 !Operator->isSubClassOf("SDNode") && 2590 !Operator->isSubClassOf("Instruction") && 2591 !Operator->isSubClassOf("SDNodeXForm") && 2592 !Operator->isSubClassOf("Intrinsic") && 2593 !Operator->isSubClassOf("ComplexPattern") && 2594 Operator->getName() != "set" && 2595 Operator->getName() != "implicit") 2596 error("Unrecognized node '" + Operator->getName() + "'!"); 2597 2598 // Check to see if this is something that is illegal in an input pattern. 2599 if (isInputPattern) { 2600 if (Operator->isSubClassOf("Instruction") || 2601 Operator->isSubClassOf("SDNodeXForm")) 2602 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2603 } else { 2604 if (Operator->isSubClassOf("Intrinsic")) 2605 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2606 2607 if (Operator->isSubClassOf("SDNode") && 2608 Operator->getName() != "imm" && 2609 Operator->getName() != "fpimm" && 2610 Operator->getName() != "tglobaltlsaddr" && 2611 Operator->getName() != "tconstpool" && 2612 Operator->getName() != "tjumptable" && 2613 Operator->getName() != "tframeindex" && 2614 Operator->getName() != "texternalsym" && 2615 Operator->getName() != "tblockaddress" && 2616 Operator->getName() != "tglobaladdr" && 2617 Operator->getName() != "bb" && 2618 Operator->getName() != "vt" && 2619 Operator->getName() != "mcsym") 2620 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2621 } 2622 2623 std::vector<TreePatternNode*> Children; 2624 2625 // Parse all the operands. 2626 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2627 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2628 2629 // If the operator is an intrinsic, then this is just syntactic sugar for for 2630 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2631 // convert the intrinsic name to a number. 2632 if (Operator->isSubClassOf("Intrinsic")) { 2633 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2634 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2635 2636 // If this intrinsic returns void, it must have side-effects and thus a 2637 // chain. 2638 if (Int.IS.RetVTs.empty()) 2639 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2640 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2641 // Has side-effects, requires chain. 2642 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2643 else // Otherwise, no chain. 2644 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2645 2646 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2647 Children.insert(Children.begin(), IIDNode); 2648 } 2649 2650 if (Operator->isSubClassOf("ComplexPattern")) { 2651 for (unsigned i = 0; i < Children.size(); ++i) { 2652 TreePatternNode *Child = Children[i]; 2653 2654 if (Child->getName().empty()) 2655 error("All arguments to a ComplexPattern must be named"); 2656 2657 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2658 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2659 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2660 auto OperandId = std::make_pair(Operator, i); 2661 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2662 if (PrevOp != ComplexPatternOperands.end()) { 2663 if (PrevOp->getValue() != OperandId) 2664 error("All ComplexPattern operands must appear consistently: " 2665 "in the same order in just one ComplexPattern instance."); 2666 } else 2667 ComplexPatternOperands[Child->getName()] = OperandId; 2668 } 2669 } 2670 2671 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2672 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2673 Result->setName(OpName); 2674 2675 if (Dag->getName()) { 2676 assert(Result->getName().empty()); 2677 Result->setName(Dag->getNameStr()); 2678 } 2679 return Result; 2680 } 2681 2682 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2683 /// will never match in favor of something obvious that will. This is here 2684 /// strictly as a convenience to target authors because it allows them to write 2685 /// more type generic things and have useless type casts fold away. 2686 /// 2687 /// This returns true if any change is made. 2688 static bool SimplifyTree(TreePatternNode *&N) { 2689 if (N->isLeaf()) 2690 return false; 2691 2692 // If we have a bitconvert with a resolved type and if the source and 2693 // destination types are the same, then the bitconvert is useless, remove it. 2694 if (N->getOperator()->getName() == "bitconvert" && 2695 N->getExtType(0).isValueTypeByHwMode(false) && 2696 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2697 N->getName().empty()) { 2698 N = N->getChild(0); 2699 SimplifyTree(N); 2700 return true; 2701 } 2702 2703 // Walk all children. 2704 bool MadeChange = false; 2705 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2706 TreePatternNode *Child = N->getChild(i); 2707 MadeChange |= SimplifyTree(Child); 2708 N->setChild(i, Child); 2709 } 2710 return MadeChange; 2711 } 2712 2713 2714 2715 /// InferAllTypes - Infer/propagate as many types throughout the expression 2716 /// patterns as possible. Return true if all types are inferred, false 2717 /// otherwise. Flags an error if a type contradiction is found. 2718 bool TreePattern:: 2719 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2720 if (NamedNodes.empty()) 2721 ComputeNamedNodes(); 2722 2723 bool MadeChange = true; 2724 while (MadeChange) { 2725 MadeChange = false; 2726 for (TreePatternNode *&Tree : Trees) { 2727 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2728 MadeChange |= SimplifyTree(Tree); 2729 } 2730 2731 // If there are constraints on our named nodes, apply them. 2732 for (auto &Entry : NamedNodes) { 2733 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2734 2735 // If we have input named node types, propagate their types to the named 2736 // values here. 2737 if (InNamedTypes) { 2738 if (!InNamedTypes->count(Entry.getKey())) { 2739 error("Node '" + std::string(Entry.getKey()) + 2740 "' in output pattern but not input pattern"); 2741 return true; 2742 } 2743 2744 const SmallVectorImpl<TreePatternNode*> &InNodes = 2745 InNamedTypes->find(Entry.getKey())->second; 2746 2747 // The input types should be fully resolved by now. 2748 for (TreePatternNode *Node : Nodes) { 2749 // If this node is a register class, and it is the root of the pattern 2750 // then we're mapping something onto an input register. We allow 2751 // changing the type of the input register in this case. This allows 2752 // us to match things like: 2753 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2754 if (Node == Trees[0] && Node->isLeaf()) { 2755 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2756 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2757 DI->getDef()->isSubClassOf("RegisterOperand"))) 2758 continue; 2759 } 2760 2761 assert(Node->getNumTypes() == 1 && 2762 InNodes[0]->getNumTypes() == 1 && 2763 "FIXME: cannot name multiple result nodes yet"); 2764 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2765 *this); 2766 } 2767 } 2768 2769 // If there are multiple nodes with the same name, they must all have the 2770 // same type. 2771 if (Entry.second.size() > 1) { 2772 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2773 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2774 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2775 "FIXME: cannot name multiple result nodes yet"); 2776 2777 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2778 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2779 } 2780 } 2781 } 2782 } 2783 2784 bool HasUnresolvedTypes = false; 2785 for (const TreePatternNode *Tree : Trees) 2786 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2787 return !HasUnresolvedTypes; 2788 } 2789 2790 void TreePattern::print(raw_ostream &OS) const { 2791 OS << getRecord()->getName(); 2792 if (!Args.empty()) { 2793 OS << "(" << Args[0]; 2794 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2795 OS << ", " << Args[i]; 2796 OS << ")"; 2797 } 2798 OS << ": "; 2799 2800 if (Trees.size() > 1) 2801 OS << "[\n"; 2802 for (const TreePatternNode *Tree : Trees) { 2803 OS << "\t"; 2804 Tree->print(OS); 2805 OS << "\n"; 2806 } 2807 2808 if (Trees.size() > 1) 2809 OS << "]\n"; 2810 } 2811 2812 void TreePattern::dump() const { print(errs()); } 2813 2814 //===----------------------------------------------------------------------===// 2815 // CodeGenDAGPatterns implementation 2816 // 2817 2818 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 2819 PatternRewriterFn PatternRewriter) 2820 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 2821 PatternRewriter(PatternRewriter) { 2822 2823 Intrinsics = CodeGenIntrinsicTable(Records, false); 2824 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2825 ParseNodeInfo(); 2826 ParseNodeTransforms(); 2827 ParseComplexPatterns(); 2828 ParsePatternFragments(); 2829 ParseDefaultOperands(); 2830 ParseInstructions(); 2831 ParsePatternFragments(/*OutFrags*/true); 2832 ParsePatterns(); 2833 2834 // Break patterns with parameterized types into a series of patterns, 2835 // where each one has a fixed type and is predicated on the conditions 2836 // of the associated HW mode. 2837 ExpandHwModeBasedTypes(); 2838 2839 // Generate variants. For example, commutative patterns can match 2840 // multiple ways. Add them to PatternsToMatch as well. 2841 GenerateVariants(); 2842 2843 // Infer instruction flags. For example, we can detect loads, 2844 // stores, and side effects in many cases by examining an 2845 // instruction's pattern. 2846 InferInstructionFlags(); 2847 2848 // Verify that instruction flags match the patterns. 2849 VerifyInstructionFlags(); 2850 } 2851 2852 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2853 Record *N = Records.getDef(Name); 2854 if (!N || !N->isSubClassOf("SDNode")) 2855 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2856 2857 return N; 2858 } 2859 2860 // Parse all of the SDNode definitions for the target, populating SDNodes. 2861 void CodeGenDAGPatterns::ParseNodeInfo() { 2862 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2863 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 2864 2865 while (!Nodes.empty()) { 2866 Record *R = Nodes.back(); 2867 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 2868 Nodes.pop_back(); 2869 } 2870 2871 // Get the builtin intrinsic nodes. 2872 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2873 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2874 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2875 } 2876 2877 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2878 /// map, and emit them to the file as functions. 2879 void CodeGenDAGPatterns::ParseNodeTransforms() { 2880 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2881 while (!Xforms.empty()) { 2882 Record *XFormNode = Xforms.back(); 2883 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2884 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 2885 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2886 2887 Xforms.pop_back(); 2888 } 2889 } 2890 2891 void CodeGenDAGPatterns::ParseComplexPatterns() { 2892 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2893 while (!AMs.empty()) { 2894 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2895 AMs.pop_back(); 2896 } 2897 } 2898 2899 2900 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2901 /// file, building up the PatternFragments map. After we've collected them all, 2902 /// inline fragments together as necessary, so that there are no references left 2903 /// inside a pattern fragment to a pattern fragment. 2904 /// 2905 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2906 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2907 2908 // First step, parse all of the fragments. 2909 for (Record *Frag : Fragments) { 2910 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2911 continue; 2912 2913 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2914 TreePattern *P = 2915 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2916 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2917 *this)).get(); 2918 2919 // Validate the argument list, converting it to set, to discard duplicates. 2920 std::vector<std::string> &Args = P->getArgList(); 2921 // Copy the args so we can take StringRefs to them. 2922 auto ArgsCopy = Args; 2923 SmallDenseSet<StringRef, 4> OperandsSet; 2924 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 2925 2926 if (OperandsSet.count("")) 2927 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2928 2929 // Parse the operands list. 2930 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2931 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2932 // Special cases: ops == outs == ins. Different names are used to 2933 // improve readability. 2934 if (!OpsOp || 2935 (OpsOp->getDef()->getName() != "ops" && 2936 OpsOp->getDef()->getName() != "outs" && 2937 OpsOp->getDef()->getName() != "ins")) 2938 P->error("Operands list should start with '(ops ... '!"); 2939 2940 // Copy over the arguments. 2941 Args.clear(); 2942 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2943 if (!isa<DefInit>(OpsList->getArg(j)) || 2944 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2945 P->error("Operands list should all be 'node' values."); 2946 if (!OpsList->getArgName(j)) 2947 P->error("Operands list should have names for each operand!"); 2948 StringRef ArgNameStr = OpsList->getArgNameStr(j); 2949 if (!OperandsSet.count(ArgNameStr)) 2950 P->error("'" + ArgNameStr + 2951 "' does not occur in pattern or was multiply specified!"); 2952 OperandsSet.erase(ArgNameStr); 2953 Args.push_back(ArgNameStr); 2954 } 2955 2956 if (!OperandsSet.empty()) 2957 P->error("Operands list does not contain an entry for operand '" + 2958 *OperandsSet.begin() + "'!"); 2959 2960 // If there is a code init for this fragment, keep track of the fact that 2961 // this fragment uses it. 2962 TreePredicateFn PredFn(P); 2963 if (!PredFn.isAlwaysTrue()) 2964 P->getOnlyTree()->addPredicateFn(PredFn); 2965 2966 // If there is a node transformation corresponding to this, keep track of 2967 // it. 2968 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2969 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2970 P->getOnlyTree()->setTransformFn(Transform); 2971 } 2972 2973 // Now that we've parsed all of the tree fragments, do a closure on them so 2974 // that there are not references to PatFrags left inside of them. 2975 for (Record *Frag : Fragments) { 2976 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2977 continue; 2978 2979 TreePattern &ThePat = *PatternFragments[Frag]; 2980 ThePat.InlinePatternFragments(); 2981 2982 // Infer as many types as possible. Don't worry about it if we don't infer 2983 // all of them, some may depend on the inputs of the pattern. 2984 ThePat.InferAllTypes(); 2985 ThePat.resetError(); 2986 2987 // If debugging, print out the pattern fragment result. 2988 DEBUG(ThePat.dump()); 2989 } 2990 } 2991 2992 void CodeGenDAGPatterns::ParseDefaultOperands() { 2993 std::vector<Record*> DefaultOps; 2994 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2995 2996 // Find some SDNode. 2997 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2998 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2999 3000 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3001 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3002 3003 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3004 // SomeSDnode so that we can parse this. 3005 std::vector<std::pair<Init*, StringInit*> > Ops; 3006 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3007 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3008 DefaultInfo->getArgName(op))); 3009 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3010 3011 // Create a TreePattern to parse this. 3012 TreePattern P(DefaultOps[i], DI, false, *this); 3013 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3014 3015 // Copy the operands over into a DAGDefaultOperand. 3016 DAGDefaultOperand DefaultOpInfo; 3017 3018 TreePatternNode *T = P.getTree(0); 3019 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3020 TreePatternNode *TPN = T->getChild(op); 3021 while (TPN->ApplyTypeConstraints(P, false)) 3022 /* Resolve all types */; 3023 3024 if (TPN->ContainsUnresolvedType(P)) { 3025 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3026 DefaultOps[i]->getName() + 3027 "' doesn't have a concrete type!"); 3028 } 3029 DefaultOpInfo.DefaultOps.push_back(TPN); 3030 } 3031 3032 // Insert it into the DefaultOperands map so we can find it later. 3033 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3034 } 3035 } 3036 3037 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3038 /// instruction input. Return true if this is a real use. 3039 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 3040 std::map<std::string, TreePatternNode*> &InstInputs) { 3041 // No name -> not interesting. 3042 if (Pat->getName().empty()) { 3043 if (Pat->isLeaf()) { 3044 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3045 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3046 DI->getDef()->isSubClassOf("RegisterOperand"))) 3047 I->error("Input " + DI->getDef()->getName() + " must be named!"); 3048 } 3049 return false; 3050 } 3051 3052 Record *Rec; 3053 if (Pat->isLeaf()) { 3054 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3055 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 3056 Rec = DI->getDef(); 3057 } else { 3058 Rec = Pat->getOperator(); 3059 } 3060 3061 // SRCVALUE nodes are ignored. 3062 if (Rec->getName() == "srcvalue") 3063 return false; 3064 3065 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 3066 if (!Slot) { 3067 Slot = Pat; 3068 return true; 3069 } 3070 Record *SlotRec; 3071 if (Slot->isLeaf()) { 3072 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3073 } else { 3074 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3075 SlotRec = Slot->getOperator(); 3076 } 3077 3078 // Ensure that the inputs agree if we've already seen this input. 3079 if (Rec != SlotRec) 3080 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 3081 if (Slot->getExtTypes() != Pat->getExtTypes()) 3082 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 3083 return true; 3084 } 3085 3086 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3087 /// part of "I", the instruction), computing the set of inputs and outputs of 3088 /// the pattern. Report errors if we see anything naughty. 3089 void CodeGenDAGPatterns:: 3090 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 3091 std::map<std::string, TreePatternNode*> &InstInputs, 3092 std::map<std::string, TreePatternNode*>&InstResults, 3093 std::vector<Record*> &InstImpResults) { 3094 if (Pat->isLeaf()) { 3095 bool isUse = HandleUse(I, Pat, InstInputs); 3096 if (!isUse && Pat->getTransformFn()) 3097 I->error("Cannot specify a transform function for a non-input value!"); 3098 return; 3099 } 3100 3101 if (Pat->getOperator()->getName() == "implicit") { 3102 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3103 TreePatternNode *Dest = Pat->getChild(i); 3104 if (!Dest->isLeaf()) 3105 I->error("implicitly defined value should be a register!"); 3106 3107 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3108 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3109 I->error("implicitly defined value should be a register!"); 3110 InstImpResults.push_back(Val->getDef()); 3111 } 3112 return; 3113 } 3114 3115 if (Pat->getOperator()->getName() != "set") { 3116 // If this is not a set, verify that the children nodes are not void typed, 3117 // and recurse. 3118 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3119 if (Pat->getChild(i)->getNumTypes() == 0) 3120 I->error("Cannot have void nodes inside of patterns!"); 3121 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 3122 InstImpResults); 3123 } 3124 3125 // If this is a non-leaf node with no children, treat it basically as if 3126 // it were a leaf. This handles nodes like (imm). 3127 bool isUse = HandleUse(I, Pat, InstInputs); 3128 3129 if (!isUse && Pat->getTransformFn()) 3130 I->error("Cannot specify a transform function for a non-input value!"); 3131 return; 3132 } 3133 3134 // Otherwise, this is a set, validate and collect instruction results. 3135 if (Pat->getNumChildren() == 0) 3136 I->error("set requires operands!"); 3137 3138 if (Pat->getTransformFn()) 3139 I->error("Cannot specify a transform function on a set node!"); 3140 3141 // Check the set destinations. 3142 unsigned NumDests = Pat->getNumChildren()-1; 3143 for (unsigned i = 0; i != NumDests; ++i) { 3144 TreePatternNode *Dest = Pat->getChild(i); 3145 if (!Dest->isLeaf()) 3146 I->error("set destination should be a register!"); 3147 3148 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3149 if (!Val) { 3150 I->error("set destination should be a register!"); 3151 continue; 3152 } 3153 3154 if (Val->getDef()->isSubClassOf("RegisterClass") || 3155 Val->getDef()->isSubClassOf("ValueType") || 3156 Val->getDef()->isSubClassOf("RegisterOperand") || 3157 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3158 if (Dest->getName().empty()) 3159 I->error("set destination must have a name!"); 3160 if (InstResults.count(Dest->getName())) 3161 I->error("cannot set '" + Dest->getName() +"' multiple times"); 3162 InstResults[Dest->getName()] = Dest; 3163 } else if (Val->getDef()->isSubClassOf("Register")) { 3164 InstImpResults.push_back(Val->getDef()); 3165 } else { 3166 I->error("set destination should be a register!"); 3167 } 3168 } 3169 3170 // Verify and collect info from the computation. 3171 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 3172 InstInputs, InstResults, InstImpResults); 3173 } 3174 3175 //===----------------------------------------------------------------------===// 3176 // Instruction Analysis 3177 //===----------------------------------------------------------------------===// 3178 3179 class InstAnalyzer { 3180 const CodeGenDAGPatterns &CDP; 3181 public: 3182 bool hasSideEffects; 3183 bool mayStore; 3184 bool mayLoad; 3185 bool isBitcast; 3186 bool isVariadic; 3187 3188 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3189 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3190 isBitcast(false), isVariadic(false) {} 3191 3192 void Analyze(const TreePattern *Pat) { 3193 // Assume only the first tree is the pattern. The others are clobber nodes. 3194 AnalyzeNode(Pat->getTree(0)); 3195 } 3196 3197 void Analyze(const PatternToMatch &Pat) { 3198 AnalyzeNode(Pat.getSrcPattern()); 3199 } 3200 3201 private: 3202 bool IsNodeBitcast(const TreePatternNode *N) const { 3203 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3204 return false; 3205 3206 if (N->getNumChildren() != 2) 3207 return false; 3208 3209 const TreePatternNode *N0 = N->getChild(0); 3210 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 3211 return false; 3212 3213 const TreePatternNode *N1 = N->getChild(1); 3214 if (N1->isLeaf()) 3215 return false; 3216 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 3217 return false; 3218 3219 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 3220 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3221 return false; 3222 return OpInfo.getEnumName() == "ISD::BITCAST"; 3223 } 3224 3225 public: 3226 void AnalyzeNode(const TreePatternNode *N) { 3227 if (N->isLeaf()) { 3228 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3229 Record *LeafRec = DI->getDef(); 3230 // Handle ComplexPattern leaves. 3231 if (LeafRec->isSubClassOf("ComplexPattern")) { 3232 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3233 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3234 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3235 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3236 } 3237 } 3238 return; 3239 } 3240 3241 // Analyze children. 3242 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3243 AnalyzeNode(N->getChild(i)); 3244 3245 // Ignore set nodes, which are not SDNodes. 3246 if (N->getOperator()->getName() == "set") { 3247 isBitcast = IsNodeBitcast(N); 3248 return; 3249 } 3250 3251 // Notice properties of the node. 3252 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3253 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3254 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3255 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3256 3257 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3258 // If this is an intrinsic, analyze it. 3259 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3260 mayLoad = true;// These may load memory. 3261 3262 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3263 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3264 3265 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3266 IntInfo->hasSideEffects) 3267 // ReadWriteMem intrinsics can have other strange effects. 3268 hasSideEffects = true; 3269 } 3270 } 3271 3272 }; 3273 3274 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3275 const InstAnalyzer &PatInfo, 3276 Record *PatDef) { 3277 bool Error = false; 3278 3279 // Remember where InstInfo got its flags. 3280 if (InstInfo.hasUndefFlags()) 3281 InstInfo.InferredFrom = PatDef; 3282 3283 // Check explicitly set flags for consistency. 3284 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3285 !InstInfo.hasSideEffects_Unset) { 3286 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3287 // the pattern has no side effects. That could be useful for div/rem 3288 // instructions that may trap. 3289 if (!InstInfo.hasSideEffects) { 3290 Error = true; 3291 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3292 Twine(InstInfo.hasSideEffects)); 3293 } 3294 } 3295 3296 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3297 Error = true; 3298 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3299 Twine(InstInfo.mayStore)); 3300 } 3301 3302 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3303 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3304 // Some targets translate immediates to loads. 3305 if (!InstInfo.mayLoad) { 3306 Error = true; 3307 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3308 Twine(InstInfo.mayLoad)); 3309 } 3310 } 3311 3312 // Transfer inferred flags. 3313 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3314 InstInfo.mayStore |= PatInfo.mayStore; 3315 InstInfo.mayLoad |= PatInfo.mayLoad; 3316 3317 // These flags are silently added without any verification. 3318 InstInfo.isBitcast |= PatInfo.isBitcast; 3319 3320 // Don't infer isVariadic. This flag means something different on SDNodes and 3321 // instructions. For example, a CALL SDNode is variadic because it has the 3322 // call arguments as operands, but a CALL instruction is not variadic - it 3323 // has argument registers as implicit, not explicit uses. 3324 3325 return Error; 3326 } 3327 3328 /// hasNullFragReference - Return true if the DAG has any reference to the 3329 /// null_frag operator. 3330 static bool hasNullFragReference(DagInit *DI) { 3331 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3332 if (!OpDef) return false; 3333 Record *Operator = OpDef->getDef(); 3334 3335 // If this is the null fragment, return true. 3336 if (Operator->getName() == "null_frag") return true; 3337 // If any of the arguments reference the null fragment, return true. 3338 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3339 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3340 if (Arg && hasNullFragReference(Arg)) 3341 return true; 3342 } 3343 3344 return false; 3345 } 3346 3347 /// hasNullFragReference - Return true if any DAG in the list references 3348 /// the null_frag operator. 3349 static bool hasNullFragReference(ListInit *LI) { 3350 for (Init *I : LI->getValues()) { 3351 DagInit *DI = dyn_cast<DagInit>(I); 3352 assert(DI && "non-dag in an instruction Pattern list?!"); 3353 if (hasNullFragReference(DI)) 3354 return true; 3355 } 3356 return false; 3357 } 3358 3359 /// Get all the instructions in a tree. 3360 static void 3361 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3362 if (Tree->isLeaf()) 3363 return; 3364 if (Tree->getOperator()->isSubClassOf("Instruction")) 3365 Instrs.push_back(Tree->getOperator()); 3366 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3367 getInstructionsInTree(Tree->getChild(i), Instrs); 3368 } 3369 3370 /// Check the class of a pattern leaf node against the instruction operand it 3371 /// represents. 3372 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3373 Record *Leaf) { 3374 if (OI.Rec == Leaf) 3375 return true; 3376 3377 // Allow direct value types to be used in instruction set patterns. 3378 // The type will be checked later. 3379 if (Leaf->isSubClassOf("ValueType")) 3380 return true; 3381 3382 // Patterns can also be ComplexPattern instances. 3383 if (Leaf->isSubClassOf("ComplexPattern")) 3384 return true; 3385 3386 return false; 3387 } 3388 3389 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 3390 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3391 3392 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3393 3394 // Parse the instruction. 3395 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 3396 // Inline pattern fragments into it. 3397 I->InlinePatternFragments(); 3398 3399 // Infer as many types as possible. If we cannot infer all of them, we can 3400 // never do anything with this instruction pattern: report it to the user. 3401 if (!I->InferAllTypes()) 3402 I->error("Could not infer all types in pattern!"); 3403 3404 // InstInputs - Keep track of all of the inputs of the instruction, along 3405 // with the record they are declared as. 3406 std::map<std::string, TreePatternNode*> InstInputs; 3407 3408 // InstResults - Keep track of all the virtual registers that are 'set' 3409 // in the instruction, including what reg class they are. 3410 std::map<std::string, TreePatternNode*> InstResults; 3411 3412 std::vector<Record*> InstImpResults; 3413 3414 // Verify that the top-level forms in the instruction are of void type, and 3415 // fill in the InstResults map. 3416 SmallString<32> TypesString; 3417 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 3418 TypesString.clear(); 3419 TreePatternNode *Pat = I->getTree(j); 3420 if (Pat->getNumTypes() != 0) { 3421 raw_svector_ostream OS(TypesString); 3422 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3423 if (k > 0) 3424 OS << ", "; 3425 Pat->getExtType(k).writeToStream(OS); 3426 } 3427 I->error("Top-level forms in instruction pattern should have" 3428 " void types, has types " + 3429 OS.str()); 3430 } 3431 3432 // Find inputs and outputs, and verify the structure of the uses/defs. 3433 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3434 InstImpResults); 3435 } 3436 3437 // Now that we have inputs and outputs of the pattern, inspect the operands 3438 // list for the instruction. This determines the order that operands are 3439 // added to the machine instruction the node corresponds to. 3440 unsigned NumResults = InstResults.size(); 3441 3442 // Parse the operands list from the (ops) list, validating it. 3443 assert(I->getArgList().empty() && "Args list should still be empty here!"); 3444 3445 // Check that all of the results occur first in the list. 3446 std::vector<Record*> Results; 3447 SmallVector<TreePatternNode *, 2> ResNodes; 3448 for (unsigned i = 0; i != NumResults; ++i) { 3449 if (i == CGI.Operands.size()) 3450 I->error("'" + InstResults.begin()->first + 3451 "' set but does not appear in operand list!"); 3452 const std::string &OpName = CGI.Operands[i].Name; 3453 3454 // Check that it exists in InstResults. 3455 TreePatternNode *RNode = InstResults[OpName]; 3456 if (!RNode) 3457 I->error("Operand $" + OpName + " does not exist in operand list!"); 3458 3459 ResNodes.push_back(RNode); 3460 3461 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3462 if (!R) 3463 I->error("Operand $" + OpName + " should be a set destination: all " 3464 "outputs must occur before inputs in operand list!"); 3465 3466 if (!checkOperandClass(CGI.Operands[i], R)) 3467 I->error("Operand $" + OpName + " class mismatch!"); 3468 3469 // Remember the return type. 3470 Results.push_back(CGI.Operands[i].Rec); 3471 3472 // Okay, this one checks out. 3473 InstResults.erase(OpName); 3474 } 3475 3476 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3477 // the copy while we're checking the inputs. 3478 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3479 3480 std::vector<TreePatternNode*> ResultNodeOperands; 3481 std::vector<Record*> Operands; 3482 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3483 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3484 const std::string &OpName = Op.Name; 3485 if (OpName.empty()) 3486 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 3487 3488 if (!InstInputsCheck.count(OpName)) { 3489 // If this is an operand with a DefaultOps set filled in, we can ignore 3490 // this. When we codegen it, we will do so as always executed. 3491 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3492 // Does it have a non-empty DefaultOps field? If so, ignore this 3493 // operand. 3494 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3495 continue; 3496 } 3497 I->error("Operand $" + OpName + 3498 " does not appear in the instruction pattern"); 3499 } 3500 TreePatternNode *InVal = InstInputsCheck[OpName]; 3501 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3502 3503 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3504 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3505 if (!checkOperandClass(Op, InRec)) 3506 I->error("Operand $" + OpName + "'s register class disagrees" 3507 " between the operand and pattern"); 3508 } 3509 Operands.push_back(Op.Rec); 3510 3511 // Construct the result for the dest-pattern operand list. 3512 TreePatternNode *OpNode = InVal->clone(); 3513 3514 // No predicate is useful on the result. 3515 OpNode->clearPredicateFns(); 3516 3517 // Promote the xform function to be an explicit node if set. 3518 if (Record *Xform = OpNode->getTransformFn()) { 3519 OpNode->setTransformFn(nullptr); 3520 std::vector<TreePatternNode*> Children; 3521 Children.push_back(OpNode); 3522 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3523 } 3524 3525 ResultNodeOperands.push_back(OpNode); 3526 } 3527 3528 if (!InstInputsCheck.empty()) 3529 I->error("Input operand $" + InstInputsCheck.begin()->first + 3530 " occurs in pattern but not in operands list!"); 3531 3532 TreePatternNode *ResultPattern = 3533 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3534 GetNumNodeResults(I->getRecord(), *this)); 3535 // Copy fully inferred output node types to instruction result pattern. 3536 for (unsigned i = 0; i != NumResults; ++i) { 3537 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3538 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3539 } 3540 3541 // Create and insert the instruction. 3542 // FIXME: InstImpResults should not be part of DAGInstruction. 3543 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3544 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3545 3546 // Use a temporary tree pattern to infer all types and make sure that the 3547 // constructed result is correct. This depends on the instruction already 3548 // being inserted into the DAGInsts map. 3549 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3550 Temp.InferAllTypes(&I->getNamedNodesMap()); 3551 3552 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3553 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3554 3555 return TheInsertedInst; 3556 } 3557 3558 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3559 /// any fragments involved. This populates the Instructions list with fully 3560 /// resolved instructions. 3561 void CodeGenDAGPatterns::ParseInstructions() { 3562 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3563 3564 for (Record *Instr : Instrs) { 3565 ListInit *LI = nullptr; 3566 3567 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3568 LI = Instr->getValueAsListInit("Pattern"); 3569 3570 // If there is no pattern, only collect minimal information about the 3571 // instruction for its operand list. We have to assume that there is one 3572 // result, as we have no detailed info. A pattern which references the 3573 // null_frag operator is as-if no pattern were specified. Normally this 3574 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3575 // null_frag. 3576 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3577 std::vector<Record*> Results; 3578 std::vector<Record*> Operands; 3579 3580 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3581 3582 if (InstInfo.Operands.size() != 0) { 3583 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3584 Results.push_back(InstInfo.Operands[j].Rec); 3585 3586 // The rest are inputs. 3587 for (unsigned j = InstInfo.Operands.NumDefs, 3588 e = InstInfo.Operands.size(); j < e; ++j) 3589 Operands.push_back(InstInfo.Operands[j].Rec); 3590 } 3591 3592 // Create and insert the instruction. 3593 std::vector<Record*> ImpResults; 3594 Instructions.insert(std::make_pair(Instr, 3595 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3596 continue; // no pattern. 3597 } 3598 3599 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3600 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3601 3602 (void)DI; 3603 DEBUG(DI.getPattern()->dump()); 3604 } 3605 3606 // If we can, convert the instructions to be patterns that are matched! 3607 for (auto &Entry : Instructions) { 3608 DAGInstruction &TheInst = Entry.second; 3609 TreePattern *I = TheInst.getPattern(); 3610 if (!I) continue; // No pattern. 3611 3612 if (PatternRewriter) 3613 PatternRewriter(I); 3614 // FIXME: Assume only the first tree is the pattern. The others are clobber 3615 // nodes. 3616 TreePatternNode *Pattern = I->getTree(0); 3617 TreePatternNode *SrcPattern; 3618 if (Pattern->getOperator()->getName() == "set") { 3619 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3620 } else{ 3621 // Not a set (store or something?) 3622 SrcPattern = Pattern; 3623 } 3624 3625 Record *Instr = Entry.first; 3626 ListInit *Preds = Instr->getValueAsListInit("Predicates"); 3627 int Complexity = Instr->getValueAsInt("AddedComplexity"); 3628 AddPatternToMatch( 3629 I, 3630 PatternToMatch(Instr, makePredList(Preds), SrcPattern, 3631 TheInst.getResultPattern(), TheInst.getImpResults(), 3632 Complexity, Instr->getID())); 3633 } 3634 } 3635 3636 3637 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3638 3639 static void FindNames(const TreePatternNode *P, 3640 std::map<std::string, NameRecord> &Names, 3641 TreePattern *PatternTop) { 3642 if (!P->getName().empty()) { 3643 NameRecord &Rec = Names[P->getName()]; 3644 // If this is the first instance of the name, remember the node. 3645 if (Rec.second++ == 0) 3646 Rec.first = P; 3647 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3648 PatternTop->error("repetition of value: $" + P->getName() + 3649 " where different uses have different types!"); 3650 } 3651 3652 if (!P->isLeaf()) { 3653 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3654 FindNames(P->getChild(i), Names, PatternTop); 3655 } 3656 } 3657 3658 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3659 std::vector<Predicate> Preds; 3660 for (Init *I : L->getValues()) { 3661 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3662 Preds.push_back(Pred->getDef()); 3663 else 3664 llvm_unreachable("Non-def on the list"); 3665 } 3666 3667 // Sort so that different orders get canonicalized to the same string. 3668 std::sort(Preds.begin(), Preds.end()); 3669 return Preds; 3670 } 3671 3672 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3673 PatternToMatch &&PTM) { 3674 // Do some sanity checking on the pattern we're about to match. 3675 std::string Reason; 3676 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3677 PrintWarning(Pattern->getRecord()->getLoc(), 3678 Twine("Pattern can never match: ") + Reason); 3679 return; 3680 } 3681 3682 // If the source pattern's root is a complex pattern, that complex pattern 3683 // must specify the nodes it can potentially match. 3684 if (const ComplexPattern *CP = 3685 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3686 if (CP->getRootNodes().empty()) 3687 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3688 " could match"); 3689 3690 3691 // Find all of the named values in the input and output, ensure they have the 3692 // same type. 3693 std::map<std::string, NameRecord> SrcNames, DstNames; 3694 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3695 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3696 3697 // Scan all of the named values in the destination pattern, rejecting them if 3698 // they don't exist in the input pattern. 3699 for (const auto &Entry : DstNames) { 3700 if (SrcNames[Entry.first].first == nullptr) 3701 Pattern->error("Pattern has input without matching name in output: $" + 3702 Entry.first); 3703 } 3704 3705 // Scan all of the named values in the source pattern, rejecting them if the 3706 // name isn't used in the dest, and isn't used to tie two values together. 3707 for (const auto &Entry : SrcNames) 3708 if (DstNames[Entry.first].first == nullptr && 3709 SrcNames[Entry.first].second == 1) 3710 Pattern->error("Pattern has dead named input: $" + Entry.first); 3711 3712 PatternsToMatch.push_back(std::move(PTM)); 3713 } 3714 3715 void CodeGenDAGPatterns::InferInstructionFlags() { 3716 ArrayRef<const CodeGenInstruction*> Instructions = 3717 Target.getInstructionsByEnumValue(); 3718 3719 // First try to infer flags from the primary instruction pattern, if any. 3720 SmallVector<CodeGenInstruction*, 8> Revisit; 3721 unsigned Errors = 0; 3722 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3723 CodeGenInstruction &InstInfo = 3724 const_cast<CodeGenInstruction &>(*Instructions[i]); 3725 3726 // Get the primary instruction pattern. 3727 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3728 if (!Pattern) { 3729 if (InstInfo.hasUndefFlags()) 3730 Revisit.push_back(&InstInfo); 3731 continue; 3732 } 3733 InstAnalyzer PatInfo(*this); 3734 PatInfo.Analyze(Pattern); 3735 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3736 } 3737 3738 // Second, look for single-instruction patterns defined outside the 3739 // instruction. 3740 for (const PatternToMatch &PTM : ptms()) { 3741 // We can only infer from single-instruction patterns, otherwise we won't 3742 // know which instruction should get the flags. 3743 SmallVector<Record*, 8> PatInstrs; 3744 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3745 if (PatInstrs.size() != 1) 3746 continue; 3747 3748 // Get the single instruction. 3749 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3750 3751 // Only infer properties from the first pattern. We'll verify the others. 3752 if (InstInfo.InferredFrom) 3753 continue; 3754 3755 InstAnalyzer PatInfo(*this); 3756 PatInfo.Analyze(PTM); 3757 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3758 } 3759 3760 if (Errors) 3761 PrintFatalError("pattern conflicts"); 3762 3763 // Revisit instructions with undefined flags and no pattern. 3764 if (Target.guessInstructionProperties()) { 3765 for (CodeGenInstruction *InstInfo : Revisit) { 3766 if (InstInfo->InferredFrom) 3767 continue; 3768 // The mayLoad and mayStore flags default to false. 3769 // Conservatively assume hasSideEffects if it wasn't explicit. 3770 if (InstInfo->hasSideEffects_Unset) 3771 InstInfo->hasSideEffects = true; 3772 } 3773 return; 3774 } 3775 3776 // Complain about any flags that are still undefined. 3777 for (CodeGenInstruction *InstInfo : Revisit) { 3778 if (InstInfo->InferredFrom) 3779 continue; 3780 if (InstInfo->hasSideEffects_Unset) 3781 PrintError(InstInfo->TheDef->getLoc(), 3782 "Can't infer hasSideEffects from patterns"); 3783 if (InstInfo->mayStore_Unset) 3784 PrintError(InstInfo->TheDef->getLoc(), 3785 "Can't infer mayStore from patterns"); 3786 if (InstInfo->mayLoad_Unset) 3787 PrintError(InstInfo->TheDef->getLoc(), 3788 "Can't infer mayLoad from patterns"); 3789 } 3790 } 3791 3792 3793 /// Verify instruction flags against pattern node properties. 3794 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3795 unsigned Errors = 0; 3796 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3797 const PatternToMatch &PTM = *I; 3798 SmallVector<Record*, 8> Instrs; 3799 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3800 if (Instrs.empty()) 3801 continue; 3802 3803 // Count the number of instructions with each flag set. 3804 unsigned NumSideEffects = 0; 3805 unsigned NumStores = 0; 3806 unsigned NumLoads = 0; 3807 for (const Record *Instr : Instrs) { 3808 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3809 NumSideEffects += InstInfo.hasSideEffects; 3810 NumStores += InstInfo.mayStore; 3811 NumLoads += InstInfo.mayLoad; 3812 } 3813 3814 // Analyze the source pattern. 3815 InstAnalyzer PatInfo(*this); 3816 PatInfo.Analyze(PTM); 3817 3818 // Collect error messages. 3819 SmallVector<std::string, 4> Msgs; 3820 3821 // Check for missing flags in the output. 3822 // Permit extra flags for now at least. 3823 if (PatInfo.hasSideEffects && !NumSideEffects) 3824 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3825 3826 // Don't verify store flags on instructions with side effects. At least for 3827 // intrinsics, side effects implies mayStore. 3828 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3829 Msgs.push_back("pattern may store, but mayStore isn't set"); 3830 3831 // Similarly, mayStore implies mayLoad on intrinsics. 3832 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3833 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3834 3835 // Print error messages. 3836 if (Msgs.empty()) 3837 continue; 3838 ++Errors; 3839 3840 for (const std::string &Msg : Msgs) 3841 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3842 (Instrs.size() == 1 ? 3843 "instruction" : "output instructions")); 3844 // Provide the location of the relevant instruction definitions. 3845 for (const Record *Instr : Instrs) { 3846 if (Instr != PTM.getSrcRecord()) 3847 PrintError(Instr->getLoc(), "defined here"); 3848 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3849 if (InstInfo.InferredFrom && 3850 InstInfo.InferredFrom != InstInfo.TheDef && 3851 InstInfo.InferredFrom != PTM.getSrcRecord()) 3852 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3853 } 3854 } 3855 if (Errors) 3856 PrintFatalError("Errors in DAG patterns"); 3857 } 3858 3859 /// Given a pattern result with an unresolved type, see if we can find one 3860 /// instruction with an unresolved result type. Force this result type to an 3861 /// arbitrary element if it's possible types to converge results. 3862 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3863 if (N->isLeaf()) 3864 return false; 3865 3866 // Analyze children. 3867 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3868 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3869 return true; 3870 3871 if (!N->getOperator()->isSubClassOf("Instruction")) 3872 return false; 3873 3874 // If this type is already concrete or completely unknown we can't do 3875 // anything. 3876 TypeInfer &TI = TP.getInfer(); 3877 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3878 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 3879 continue; 3880 3881 // Otherwise, force its type to an arbitrary choice. 3882 if (TI.forceArbitrary(N->getExtType(i))) 3883 return true; 3884 } 3885 3886 return false; 3887 } 3888 3889 void CodeGenDAGPatterns::ParsePatterns() { 3890 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3891 3892 for (Record *CurPattern : Patterns) { 3893 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3894 3895 // If the pattern references the null_frag, there's nothing to do. 3896 if (hasNullFragReference(Tree)) 3897 continue; 3898 3899 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3900 3901 // Inline pattern fragments into it. 3902 Pattern->InlinePatternFragments(); 3903 3904 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3905 if (LI->empty()) continue; // no pattern. 3906 3907 // Parse the instruction. 3908 TreePattern Result(CurPattern, LI, false, *this); 3909 3910 // Inline pattern fragments into it. 3911 Result.InlinePatternFragments(); 3912 3913 if (Result.getNumTrees() != 1) 3914 Result.error("Cannot handle instructions producing instructions " 3915 "with temporaries yet!"); 3916 3917 bool IterateInference; 3918 bool InferredAllPatternTypes, InferredAllResultTypes; 3919 do { 3920 // Infer as many types as possible. If we cannot infer all of them, we 3921 // can never do anything with this pattern: report it to the user. 3922 InferredAllPatternTypes = 3923 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3924 3925 // Infer as many types as possible. If we cannot infer all of them, we 3926 // can never do anything with this pattern: report it to the user. 3927 InferredAllResultTypes = 3928 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3929 3930 IterateInference = false; 3931 3932 // Apply the type of the result to the source pattern. This helps us 3933 // resolve cases where the input type is known to be a pointer type (which 3934 // is considered resolved), but the result knows it needs to be 32- or 3935 // 64-bits. Infer the other way for good measure. 3936 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3937 Pattern->getTree(0)->getNumTypes()); 3938 i != e; ++i) { 3939 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3940 i, Result.getTree(0)->getExtType(i), Result); 3941 IterateInference |= Result.getTree(0)->UpdateNodeType( 3942 i, Pattern->getTree(0)->getExtType(i), Result); 3943 } 3944 3945 // If our iteration has converged and the input pattern's types are fully 3946 // resolved but the result pattern is not fully resolved, we may have a 3947 // situation where we have two instructions in the result pattern and 3948 // the instructions require a common register class, but don't care about 3949 // what actual MVT is used. This is actually a bug in our modelling: 3950 // output patterns should have register classes, not MVTs. 3951 // 3952 // In any case, to handle this, we just go through and disambiguate some 3953 // arbitrary types to the result pattern's nodes. 3954 if (!IterateInference && InferredAllPatternTypes && 3955 !InferredAllResultTypes) 3956 IterateInference = 3957 ForceArbitraryInstResultType(Result.getTree(0), Result); 3958 } while (IterateInference); 3959 3960 // Verify that we inferred enough types that we can do something with the 3961 // pattern and result. If these fire the user has to add type casts. 3962 if (!InferredAllPatternTypes) 3963 Pattern->error("Could not infer all types in pattern!"); 3964 if (!InferredAllResultTypes) { 3965 Pattern->dump(); 3966 Result.error("Could not infer all types in pattern result!"); 3967 } 3968 3969 // Validate that the input pattern is correct. 3970 std::map<std::string, TreePatternNode*> InstInputs; 3971 std::map<std::string, TreePatternNode*> InstResults; 3972 std::vector<Record*> InstImpResults; 3973 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3974 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3975 InstInputs, InstResults, 3976 InstImpResults); 3977 3978 // Promote the xform function to be an explicit node if set. 3979 TreePatternNode *DstPattern = Result.getOnlyTree(); 3980 std::vector<TreePatternNode*> ResultNodeOperands; 3981 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3982 TreePatternNode *OpNode = DstPattern->getChild(ii); 3983 if (Record *Xform = OpNode->getTransformFn()) { 3984 OpNode->setTransformFn(nullptr); 3985 std::vector<TreePatternNode*> Children; 3986 Children.push_back(OpNode); 3987 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3988 } 3989 ResultNodeOperands.push_back(OpNode); 3990 } 3991 DstPattern = Result.getOnlyTree(); 3992 if (!DstPattern->isLeaf()) 3993 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3994 ResultNodeOperands, 3995 DstPattern->getNumTypes()); 3996 3997 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3998 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3999 4000 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 4001 Temp.InferAllTypes(); 4002 4003 // A pattern may end up with an "impossible" type, i.e. a situation 4004 // where all types have been eliminated for some node in this pattern. 4005 // This could occur for intrinsics that only make sense for a specific 4006 // value type, and use a specific register class. If, for some mode, 4007 // that register class does not accept that type, the type inference 4008 // will lead to a contradiction, which is not an error however, but 4009 // a sign that this pattern will simply never match. 4010 if (Pattern->getTree(0)->hasPossibleType() && 4011 Temp.getOnlyTree()->hasPossibleType()) { 4012 ListInit *Preds = CurPattern->getValueAsListInit("Predicates"); 4013 int Complexity = CurPattern->getValueAsInt("AddedComplexity"); 4014 if (PatternRewriter) 4015 PatternRewriter(Pattern); 4016 AddPatternToMatch( 4017 Pattern, 4018 PatternToMatch( 4019 CurPattern, makePredList(Preds), Pattern->getTree(0), 4020 Temp.getOnlyTree(), std::move(InstImpResults), Complexity, 4021 CurPattern->getID())); 4022 } 4023 } 4024 } 4025 4026 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4027 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4028 for (const auto &I : VTS) 4029 Modes.insert(I.first); 4030 4031 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4032 collectModes(Modes, N->getChild(i)); 4033 } 4034 4035 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4036 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4037 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4038 std::vector<PatternToMatch> Copy = PatternsToMatch; 4039 PatternsToMatch.clear(); 4040 4041 auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) { 4042 TreePatternNode *NewSrc = P.SrcPattern->clone(); 4043 TreePatternNode *NewDst = P.DstPattern->clone(); 4044 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4045 delete NewSrc; 4046 delete NewDst; 4047 return; 4048 } 4049 4050 std::vector<Predicate> Preds = P.Predicates; 4051 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4052 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4053 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst, 4054 P.getDstRegs(), P.getAddedComplexity(), 4055 Record::getNewUID(), Mode); 4056 }; 4057 4058 for (PatternToMatch &P : Copy) { 4059 TreePatternNode *SrcP = nullptr, *DstP = nullptr; 4060 if (P.SrcPattern->hasProperTypeByHwMode()) 4061 SrcP = P.SrcPattern; 4062 if (P.DstPattern->hasProperTypeByHwMode()) 4063 DstP = P.DstPattern; 4064 if (!SrcP && !DstP) { 4065 PatternsToMatch.push_back(P); 4066 continue; 4067 } 4068 4069 std::set<unsigned> Modes; 4070 if (SrcP) 4071 collectModes(Modes, SrcP); 4072 if (DstP) 4073 collectModes(Modes, DstP); 4074 4075 // The predicate for the default mode needs to be constructed for each 4076 // pattern separately. 4077 // Since not all modes must be present in each pattern, if a mode m is 4078 // absent, then there is no point in constructing a check for m. If such 4079 // a check was created, it would be equivalent to checking the default 4080 // mode, except not all modes' predicates would be a part of the checking 4081 // code. The subsequently generated check for the default mode would then 4082 // have the exact same patterns, but a different predicate code. To avoid 4083 // duplicated patterns with different predicate checks, construct the 4084 // default check as a negation of all predicates that are actually present 4085 // in the source/destination patterns. 4086 std::vector<Predicate> DefaultPred; 4087 4088 for (unsigned M : Modes) { 4089 if (M == DefaultMode) 4090 continue; 4091 if (ModeChecks.find(M) != ModeChecks.end()) 4092 continue; 4093 4094 // Fill the map entry for this mode. 4095 const HwMode &HM = CGH.getMode(M); 4096 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4097 4098 // Add negations of the HM's predicates to the default predicate. 4099 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4100 } 4101 4102 for (unsigned M : Modes) { 4103 if (M == DefaultMode) 4104 continue; 4105 AppendPattern(P, M); 4106 } 4107 4108 bool HasDefault = Modes.count(DefaultMode); 4109 if (HasDefault) 4110 AppendPattern(P, DefaultMode); 4111 } 4112 } 4113 4114 /// Dependent variable map for CodeGenDAGPattern variant generation 4115 typedef StringMap<int> DepVarMap; 4116 4117 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4118 if (N->isLeaf()) { 4119 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4120 DepMap[N->getName()]++; 4121 } else { 4122 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4123 FindDepVarsOf(N->getChild(i), DepMap); 4124 } 4125 } 4126 4127 /// Find dependent variables within child patterns 4128 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4129 DepVarMap depcounts; 4130 FindDepVarsOf(N, depcounts); 4131 for (const auto &Pair : depcounts) { 4132 if (Pair.getValue() > 1) 4133 DepVars.insert(Pair.getKey()); 4134 } 4135 } 4136 4137 #ifndef NDEBUG 4138 /// Dump the dependent variable set: 4139 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4140 if (DepVars.empty()) { 4141 DEBUG(errs() << "<empty set>"); 4142 } else { 4143 DEBUG(errs() << "[ "); 4144 for (const auto &DepVar : DepVars) { 4145 DEBUG(errs() << DepVar.getKey() << " "); 4146 } 4147 DEBUG(errs() << "]"); 4148 } 4149 } 4150 #endif 4151 4152 4153 /// CombineChildVariants - Given a bunch of permutations of each child of the 4154 /// 'operator' node, put them together in all possible ways. 4155 static void CombineChildVariants(TreePatternNode *Orig, 4156 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 4157 std::vector<TreePatternNode*> &OutVariants, 4158 CodeGenDAGPatterns &CDP, 4159 const MultipleUseVarSet &DepVars) { 4160 // Make sure that each operand has at least one variant to choose from. 4161 for (const auto &Variants : ChildVariants) 4162 if (Variants.empty()) 4163 return; 4164 4165 // The end result is an all-pairs construction of the resultant pattern. 4166 std::vector<unsigned> Idxs; 4167 Idxs.resize(ChildVariants.size()); 4168 bool NotDone; 4169 do { 4170 #ifndef NDEBUG 4171 DEBUG(if (!Idxs.empty()) { 4172 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4173 for (unsigned Idx : Idxs) { 4174 errs() << Idx << " "; 4175 } 4176 errs() << "]\n"; 4177 }); 4178 #endif 4179 // Create the variant and add it to the output list. 4180 std::vector<TreePatternNode*> NewChildren; 4181 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4182 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4183 auto R = llvm::make_unique<TreePatternNode>( 4184 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 4185 4186 // Copy over properties. 4187 R->setName(Orig->getName()); 4188 R->setPredicateFns(Orig->getPredicateFns()); 4189 R->setTransformFn(Orig->getTransformFn()); 4190 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4191 R->setType(i, Orig->getExtType(i)); 4192 4193 // If this pattern cannot match, do not include it as a variant. 4194 std::string ErrString; 4195 // Scan to see if this pattern has already been emitted. We can get 4196 // duplication due to things like commuting: 4197 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4198 // which are the same pattern. Ignore the dups. 4199 if (R->canPatternMatch(ErrString, CDP) && 4200 none_of(OutVariants, [&](TreePatternNode *Variant) { 4201 return R->isIsomorphicTo(Variant, DepVars); 4202 })) 4203 OutVariants.push_back(R.release()); 4204 4205 // Increment indices to the next permutation by incrementing the 4206 // indices from last index backward, e.g., generate the sequence 4207 // [0, 0], [0, 1], [1, 0], [1, 1]. 4208 int IdxsIdx; 4209 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4210 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4211 Idxs[IdxsIdx] = 0; 4212 else 4213 break; 4214 } 4215 NotDone = (IdxsIdx >= 0); 4216 } while (NotDone); 4217 } 4218 4219 /// CombineChildVariants - A helper function for binary operators. 4220 /// 4221 static void CombineChildVariants(TreePatternNode *Orig, 4222 const std::vector<TreePatternNode*> &LHS, 4223 const std::vector<TreePatternNode*> &RHS, 4224 std::vector<TreePatternNode*> &OutVariants, 4225 CodeGenDAGPatterns &CDP, 4226 const MultipleUseVarSet &DepVars) { 4227 std::vector<std::vector<TreePatternNode*> > ChildVariants; 4228 ChildVariants.push_back(LHS); 4229 ChildVariants.push_back(RHS); 4230 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4231 } 4232 4233 4234 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 4235 std::vector<TreePatternNode *> &Children) { 4236 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4237 Record *Operator = N->getOperator(); 4238 4239 // Only permit raw nodes. 4240 if (!N->getName().empty() || !N->getPredicateFns().empty() || 4241 N->getTransformFn()) { 4242 Children.push_back(N); 4243 return; 4244 } 4245 4246 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4247 Children.push_back(N->getChild(0)); 4248 else 4249 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 4250 4251 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4252 Children.push_back(N->getChild(1)); 4253 else 4254 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 4255 } 4256 4257 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4258 /// the (potentially recursive) pattern by using algebraic laws. 4259 /// 4260 static void GenerateVariantsOf(TreePatternNode *N, 4261 std::vector<TreePatternNode*> &OutVariants, 4262 CodeGenDAGPatterns &CDP, 4263 const MultipleUseVarSet &DepVars) { 4264 // We cannot permute leaves or ComplexPattern uses. 4265 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4266 OutVariants.push_back(N); 4267 return; 4268 } 4269 4270 // Look up interesting info about the node. 4271 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4272 4273 // If this node is associative, re-associate. 4274 if (NodeInfo.hasProperty(SDNPAssociative)) { 4275 // Re-associate by pulling together all of the linked operators 4276 std::vector<TreePatternNode*> MaximalChildren; 4277 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4278 4279 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4280 // permutations. 4281 if (MaximalChildren.size() == 3) { 4282 // Find the variants of all of our maximal children. 4283 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 4284 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4285 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4286 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4287 4288 // There are only two ways we can permute the tree: 4289 // (A op B) op C and A op (B op C) 4290 // Within these forms, we can also permute A/B/C. 4291 4292 // Generate legal pair permutations of A/B/C. 4293 std::vector<TreePatternNode*> ABVariants; 4294 std::vector<TreePatternNode*> BAVariants; 4295 std::vector<TreePatternNode*> ACVariants; 4296 std::vector<TreePatternNode*> CAVariants; 4297 std::vector<TreePatternNode*> BCVariants; 4298 std::vector<TreePatternNode*> CBVariants; 4299 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4300 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4301 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4302 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4303 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4304 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4305 4306 // Combine those into the result: (x op x) op x 4307 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4308 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4309 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4310 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4311 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4312 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4313 4314 // Combine those into the result: x op (x op x) 4315 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4316 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4317 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4318 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4319 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4320 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4321 return; 4322 } 4323 } 4324 4325 // Compute permutations of all children. 4326 std::vector<std::vector<TreePatternNode*> > ChildVariants; 4327 ChildVariants.resize(N->getNumChildren()); 4328 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4329 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 4330 4331 // Build all permutations based on how the children were formed. 4332 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4333 4334 // If this node is commutative, consider the commuted order. 4335 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4336 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4337 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4338 "Commutative but doesn't have 2 children!"); 4339 // Don't count children which are actually register references. 4340 unsigned NC = 0; 4341 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4342 TreePatternNode *Child = N->getChild(i); 4343 if (Child->isLeaf()) 4344 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4345 Record *RR = DI->getDef(); 4346 if (RR->isSubClassOf("Register")) 4347 continue; 4348 } 4349 NC++; 4350 } 4351 // Consider the commuted order. 4352 if (isCommIntrinsic) { 4353 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4354 // operands are the commutative operands, and there might be more operands 4355 // after those. 4356 assert(NC >= 3 && 4357 "Commutative intrinsic should have at least 3 children!"); 4358 std::vector<std::vector<TreePatternNode*> > Variants; 4359 Variants.push_back(ChildVariants[0]); // Intrinsic id. 4360 Variants.push_back(ChildVariants[2]); 4361 Variants.push_back(ChildVariants[1]); 4362 for (unsigned i = 3; i != NC; ++i) 4363 Variants.push_back(ChildVariants[i]); 4364 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4365 } else if (NC == N->getNumChildren()) { 4366 std::vector<std::vector<TreePatternNode*> > Variants; 4367 Variants.push_back(ChildVariants[1]); 4368 Variants.push_back(ChildVariants[0]); 4369 for (unsigned i = 2; i != NC; ++i) 4370 Variants.push_back(ChildVariants[i]); 4371 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4372 } 4373 } 4374 } 4375 4376 4377 // GenerateVariants - Generate variants. For example, commutative patterns can 4378 // match multiple ways. Add them to PatternsToMatch as well. 4379 void CodeGenDAGPatterns::GenerateVariants() { 4380 DEBUG(errs() << "Generating instruction variants.\n"); 4381 4382 // Loop over all of the patterns we've collected, checking to see if we can 4383 // generate variants of the instruction, through the exploitation of 4384 // identities. This permits the target to provide aggressive matching without 4385 // the .td file having to contain tons of variants of instructions. 4386 // 4387 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4388 // intentionally do not reconsider these. Any variants of added patterns have 4389 // already been added. 4390 // 4391 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4392 MultipleUseVarSet DepVars; 4393 std::vector<TreePatternNode*> Variants; 4394 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4395 DEBUG(errs() << "Dependent/multiply used variables: "); 4396 DEBUG(DumpDepVars(DepVars)); 4397 DEBUG(errs() << "\n"); 4398 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 4399 DepVars); 4400 4401 assert(!Variants.empty() && "Must create at least original variant!"); 4402 if (Variants.size() == 1) // No additional variants for this pattern. 4403 continue; 4404 4405 DEBUG(errs() << "FOUND VARIANTS OF: "; 4406 PatternsToMatch[i].getSrcPattern()->dump(); 4407 errs() << "\n"); 4408 4409 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4410 TreePatternNode *Variant = Variants[v]; 4411 4412 DEBUG(errs() << " VAR#" << v << ": "; 4413 Variant->dump(); 4414 errs() << "\n"); 4415 4416 // Scan to see if an instruction or explicit pattern already matches this. 4417 bool AlreadyExists = false; 4418 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4419 // Skip if the top level predicates do not match. 4420 if (PatternsToMatch[i].getPredicates() != 4421 PatternsToMatch[p].getPredicates()) 4422 continue; 4423 // Check to see if this variant already exists. 4424 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4425 DepVars)) { 4426 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4427 AlreadyExists = true; 4428 break; 4429 } 4430 } 4431 // If we already have it, ignore the variant. 4432 if (AlreadyExists) continue; 4433 4434 // Otherwise, add it to the list of patterns we have. 4435 PatternsToMatch.push_back(PatternToMatch( 4436 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4437 Variant, PatternsToMatch[i].getDstPattern(), 4438 PatternsToMatch[i].getDstRegs(), 4439 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4440 } 4441 4442 DEBUG(errs() << "\n"); 4443 } 4444 } 4445