1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/TableGen/Error.h" 26 #include "llvm/TableGen/Record.h" 27 #include <algorithm> 28 #include <cstdio> 29 #include <set> 30 using namespace llvm; 31 32 #define DEBUG_TYPE "dag-patterns" 33 34 static inline bool isIntegerOrPtr(MVT VT) { 35 return VT.isInteger() || VT == MVT::iPTR; 36 } 37 static inline bool isFloatingPoint(MVT VT) { 38 return VT.isFloatingPoint(); 39 } 40 static inline bool isVector(MVT VT) { 41 return VT.isVector(); 42 } 43 static inline bool isScalar(MVT VT) { 44 return !VT.isVector(); 45 } 46 47 template <typename Predicate> 48 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 49 bool Erased = false; 50 // It is ok to iterate over MachineValueTypeSet and remove elements from it 51 // at the same time. 52 for (MVT T : S) { 53 if (!P(T)) 54 continue; 55 Erased = true; 56 S.erase(T); 57 } 58 return Erased; 59 } 60 61 // --- TypeSetByHwMode 62 63 // This is a parameterized type-set class. For each mode there is a list 64 // of types that are currently possible for a given tree node. Type 65 // inference will apply to each mode separately. 66 67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 68 for (const ValueTypeByHwMode &VVT : VTList) 69 insert(VVT); 70 } 71 72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 73 for (const auto &I : *this) { 74 if (I.second.size() > 1) 75 return false; 76 if (!AllowEmpty && I.second.empty()) 77 return false; 78 } 79 return true; 80 } 81 82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 83 assert(isValueTypeByHwMode(true) && 84 "The type set has multiple types for at least one HW mode"); 85 ValueTypeByHwMode VVT; 86 for (const auto &I : *this) { 87 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 88 VVT.getOrCreateTypeForMode(I.first, T); 89 } 90 return VVT; 91 } 92 93 bool TypeSetByHwMode::isPossible() const { 94 for (const auto &I : *this) 95 if (!I.second.empty()) 96 return true; 97 return false; 98 } 99 100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 101 bool Changed = false; 102 SmallDenseSet<unsigned, 4> Modes; 103 for (const auto &P : VVT) { 104 unsigned M = P.first; 105 Modes.insert(M); 106 // Make sure there exists a set for each specific mode from VVT. 107 Changed |= getOrCreate(M).insert(P.second).second; 108 } 109 110 // If VVT has a default mode, add the corresponding type to all 111 // modes in "this" that do not exist in VVT. 112 if (Modes.count(DefaultMode)) { 113 MVT DT = VVT.getType(DefaultMode); 114 for (auto &I : *this) 115 if (!Modes.count(I.first)) 116 Changed |= I.second.insert(DT).second; 117 } 118 return Changed; 119 } 120 121 // Constrain the type set to be the intersection with VTS. 122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 123 bool Changed = false; 124 if (hasDefault()) { 125 for (const auto &I : VTS) { 126 unsigned M = I.first; 127 if (M == DefaultMode || hasMode(M)) 128 continue; 129 Map.insert({M, Map.at(DefaultMode)}); 130 Changed = true; 131 } 132 } 133 134 for (auto &I : *this) { 135 unsigned M = I.first; 136 SetType &S = I.second; 137 if (VTS.hasMode(M) || VTS.hasDefault()) { 138 Changed |= intersect(I.second, VTS.get(M)); 139 } else if (!S.empty()) { 140 S.clear(); 141 Changed = true; 142 } 143 } 144 return Changed; 145 } 146 147 template <typename Predicate> 148 bool TypeSetByHwMode::constrain(Predicate P) { 149 bool Changed = false; 150 for (auto &I : *this) 151 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 152 return Changed; 153 } 154 155 template <typename Predicate> 156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 157 assert(empty()); 158 for (const auto &I : VTS) { 159 SetType &S = getOrCreate(I.first); 160 for (auto J : I.second) 161 if (P(J)) 162 S.insert(J); 163 } 164 return !empty(); 165 } 166 167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 168 SmallVector<unsigned, 4> Modes; 169 Modes.reserve(Map.size()); 170 171 for (const auto &I : *this) 172 Modes.push_back(I.first); 173 if (Modes.empty()) { 174 OS << "{}"; 175 return; 176 } 177 array_pod_sort(Modes.begin(), Modes.end()); 178 179 OS << '{'; 180 for (unsigned M : Modes) { 181 OS << ' ' << getModeName(M) << ':'; 182 writeToStream(get(M), OS); 183 } 184 OS << " }"; 185 } 186 187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 188 SmallVector<MVT, 4> Types(S.begin(), S.end()); 189 array_pod_sort(Types.begin(), Types.end()); 190 191 OS << '['; 192 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 193 OS << ValueTypeByHwMode::getMVTName(Types[i]); 194 if (i != e-1) 195 OS << ' '; 196 } 197 OS << ']'; 198 } 199 200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 201 bool HaveDefault = hasDefault(); 202 if (HaveDefault != VTS.hasDefault()) 203 return false; 204 205 if (isSimple()) { 206 if (VTS.isSimple()) 207 return *begin() == *VTS.begin(); 208 return false; 209 } 210 211 SmallDenseSet<unsigned, 4> Modes; 212 for (auto &I : *this) 213 Modes.insert(I.first); 214 for (const auto &I : VTS) 215 Modes.insert(I.first); 216 217 if (HaveDefault) { 218 // Both sets have default mode. 219 for (unsigned M : Modes) { 220 if (get(M) != VTS.get(M)) 221 return false; 222 } 223 } else { 224 // Neither set has default mode. 225 for (unsigned M : Modes) { 226 // If there is no default mode, an empty set is equivalent to not having 227 // the corresponding mode. 228 bool NoModeThis = !hasMode(M) || get(M).empty(); 229 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 230 if (NoModeThis != NoModeVTS) 231 return false; 232 if (!NoModeThis) 233 if (get(M) != VTS.get(M)) 234 return false; 235 } 236 } 237 238 return true; 239 } 240 241 namespace llvm { 242 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 243 T.writeToStream(OS); 244 return OS; 245 } 246 } 247 248 LLVM_DUMP_METHOD 249 void TypeSetByHwMode::dump() const { 250 dbgs() << *this << '\n'; 251 } 252 253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 254 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 255 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 256 257 if (OutP == InP) 258 return berase_if(Out, Int); 259 260 // Compute the intersection of scalars separately to account for only 261 // one set containing iPTR. 262 // The itersection of iPTR with a set of integer scalar types that does not 263 // include iPTR will result in the most specific scalar type: 264 // - iPTR is more specific than any set with two elements or more 265 // - iPTR is less specific than any single integer scalar type. 266 // For example 267 // { iPTR } * { i32 } -> { i32 } 268 // { iPTR } * { i32 i64 } -> { iPTR } 269 // and 270 // { iPTR i32 } * { i32 } -> { i32 } 271 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 272 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 273 274 // Compute the difference between the two sets in such a way that the 275 // iPTR is in the set that is being subtracted. This is to see if there 276 // are any extra scalars in the set without iPTR that are not in the 277 // set containing iPTR. Then the iPTR could be considered a "wildcard" 278 // matching these scalars. If there is only one such scalar, it would 279 // replace the iPTR, if there are more, the iPTR would be retained. 280 SetType Diff; 281 if (InP) { 282 Diff = Out; 283 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 284 // Pre-remove these elements and rely only on InP/OutP to determine 285 // whether a change has been made. 286 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 287 } else { 288 Diff = In; 289 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 290 Out.erase(MVT::iPTR); 291 } 292 293 // The actual intersection. 294 bool Changed = berase_if(Out, Int); 295 unsigned NumD = Diff.size(); 296 if (NumD == 0) 297 return Changed; 298 299 if (NumD == 1) { 300 Out.insert(*Diff.begin()); 301 // This is a change only if Out was the one with iPTR (which is now 302 // being replaced). 303 Changed |= OutP; 304 } else { 305 // Multiple elements from Out are now replaced with iPTR. 306 Out.insert(MVT::iPTR); 307 Changed |= !OutP; 308 } 309 return Changed; 310 } 311 312 bool TypeSetByHwMode::validate() const { 313 #ifndef NDEBUG 314 if (empty()) 315 return true; 316 bool AllEmpty = true; 317 for (const auto &I : *this) 318 AllEmpty &= I.second.empty(); 319 return !AllEmpty; 320 #endif 321 return true; 322 } 323 324 // --- TypeInfer 325 326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 327 const TypeSetByHwMode &In) { 328 ValidateOnExit _1(Out, *this); 329 In.validate(); 330 if (In.empty() || Out == In || TP.hasError()) 331 return false; 332 if (Out.empty()) { 333 Out = In; 334 return true; 335 } 336 337 bool Changed = Out.constrain(In); 338 if (Changed && Out.empty()) 339 TP.error("Type contradiction"); 340 341 return Changed; 342 } 343 344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 345 ValidateOnExit _1(Out, *this); 346 if (TP.hasError()) 347 return false; 348 assert(!Out.empty() && "cannot pick from an empty set"); 349 350 bool Changed = false; 351 for (auto &I : Out) { 352 TypeSetByHwMode::SetType &S = I.second; 353 if (S.size() <= 1) 354 continue; 355 MVT T = *S.begin(); // Pick the first element. 356 S.clear(); 357 S.insert(T); 358 Changed = true; 359 } 360 return Changed; 361 } 362 363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 364 ValidateOnExit _1(Out, *this); 365 if (TP.hasError()) 366 return false; 367 if (!Out.empty()) 368 return Out.constrain(isIntegerOrPtr); 369 370 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 371 } 372 373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 374 ValidateOnExit _1(Out, *this); 375 if (TP.hasError()) 376 return false; 377 if (!Out.empty()) 378 return Out.constrain(isFloatingPoint); 379 380 return Out.assign_if(getLegalTypes(), isFloatingPoint); 381 } 382 383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 384 ValidateOnExit _1(Out, *this); 385 if (TP.hasError()) 386 return false; 387 if (!Out.empty()) 388 return Out.constrain(isScalar); 389 390 return Out.assign_if(getLegalTypes(), isScalar); 391 } 392 393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 394 ValidateOnExit _1(Out, *this); 395 if (TP.hasError()) 396 return false; 397 if (!Out.empty()) 398 return Out.constrain(isVector); 399 400 return Out.assign_if(getLegalTypes(), isVector); 401 } 402 403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 404 ValidateOnExit _1(Out, *this); 405 if (TP.hasError() || !Out.empty()) 406 return false; 407 408 Out = getLegalTypes(); 409 return true; 410 } 411 412 template <typename Iter, typename Pred, typename Less> 413 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 414 if (B == E) 415 return E; 416 Iter Min = E; 417 for (Iter I = B; I != E; ++I) { 418 if (!P(*I)) 419 continue; 420 if (Min == E || L(*I, *Min)) 421 Min = I; 422 } 423 return Min; 424 } 425 426 template <typename Iter, typename Pred, typename Less> 427 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 428 if (B == E) 429 return E; 430 Iter Max = E; 431 for (Iter I = B; I != E; ++I) { 432 if (!P(*I)) 433 continue; 434 if (Max == E || L(*Max, *I)) 435 Max = I; 436 } 437 return Max; 438 } 439 440 /// Make sure that for each type in Small, there exists a larger type in Big. 441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 442 TypeSetByHwMode &Big) { 443 ValidateOnExit _1(Small, *this), _2(Big, *this); 444 if (TP.hasError()) 445 return false; 446 bool Changed = false; 447 448 if (Small.empty()) 449 Changed |= EnforceAny(Small); 450 if (Big.empty()) 451 Changed |= EnforceAny(Big); 452 453 assert(Small.hasDefault() && Big.hasDefault()); 454 455 std::vector<unsigned> Modes = union_modes(Small, Big); 456 457 // 1. Only allow integer or floating point types and make sure that 458 // both sides are both integer or both floating point. 459 // 2. Make sure that either both sides have vector types, or neither 460 // of them does. 461 for (unsigned M : Modes) { 462 TypeSetByHwMode::SetType &S = Small.get(M); 463 TypeSetByHwMode::SetType &B = Big.get(M); 464 465 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 466 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 467 Changed |= berase_if(S, NotInt) | 468 berase_if(B, NotInt); 469 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 470 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 471 Changed |= berase_if(S, NotFP) | 472 berase_if(B, NotFP); 473 } else if (S.empty() || B.empty()) { 474 Changed = !S.empty() || !B.empty(); 475 S.clear(); 476 B.clear(); 477 } else { 478 TP.error("Incompatible types"); 479 return Changed; 480 } 481 482 if (none_of(S, isVector) || none_of(B, isVector)) { 483 Changed |= berase_if(S, isVector) | 484 berase_if(B, isVector); 485 } 486 } 487 488 auto LT = [](MVT A, MVT B) -> bool { 489 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 490 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 491 A.getSizeInBits() < B.getSizeInBits()); 492 }; 493 auto LE = [](MVT A, MVT B) -> bool { 494 // This function is used when removing elements: when a vector is compared 495 // to a non-vector, it should return false (to avoid removal). 496 if (A.isVector() != B.isVector()) 497 return false; 498 499 // Note on the < comparison below: 500 // X86 has patterns like 501 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))), 502 // where the truncated vector is given a type v16i8, while the source 503 // vector has type v4i32. They both have the same size in bits. 504 // The minimal type in the result is obviously v16i8, and when we remove 505 // all types from the source that are smaller-or-equal than v8i16, the 506 // only source type would also be removed (since it's equal in size). 507 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() || 508 A.getSizeInBits() < B.getSizeInBits(); 509 }; 510 511 for (unsigned M : Modes) { 512 TypeSetByHwMode::SetType &S = Small.get(M); 513 TypeSetByHwMode::SetType &B = Big.get(M); 514 // MinS = min scalar in Small, remove all scalars from Big that are 515 // smaller-or-equal than MinS. 516 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 517 if (MinS != S.end()) 518 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 519 520 // MaxS = max scalar in Big, remove all scalars from Small that are 521 // larger than MaxS. 522 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 523 if (MaxS != B.end()) 524 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 525 526 // MinV = min vector in Small, remove all vectors from Big that are 527 // smaller-or-equal than MinV. 528 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 529 if (MinV != S.end()) 530 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 531 532 // MaxV = max vector in Big, remove all vectors from Small that are 533 // larger than MaxV. 534 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 535 if (MaxV != B.end()) 536 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 537 } 538 539 return Changed; 540 } 541 542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 543 /// for each type U in Elem, U is a scalar type. 544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 545 /// type T in Vec, such that U is the element type of T. 546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 547 TypeSetByHwMode &Elem) { 548 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 549 if (TP.hasError()) 550 return false; 551 bool Changed = false; 552 553 if (Vec.empty()) 554 Changed |= EnforceVector(Vec); 555 if (Elem.empty()) 556 Changed |= EnforceScalar(Elem); 557 558 for (unsigned M : union_modes(Vec, Elem)) { 559 TypeSetByHwMode::SetType &V = Vec.get(M); 560 TypeSetByHwMode::SetType &E = Elem.get(M); 561 562 Changed |= berase_if(V, isScalar); // Scalar = !vector 563 Changed |= berase_if(E, isVector); // Vector = !scalar 564 assert(!V.empty() && !E.empty()); 565 566 SmallSet<MVT,4> VT, ST; 567 // Collect element types from the "vector" set. 568 for (MVT T : V) 569 VT.insert(T.getVectorElementType()); 570 // Collect scalar types from the "element" set. 571 for (MVT T : E) 572 ST.insert(T); 573 574 // Remove from V all (vector) types whose element type is not in S. 575 Changed |= berase_if(V, [&ST](MVT T) -> bool { 576 return !ST.count(T.getVectorElementType()); 577 }); 578 // Remove from E all (scalar) types, for which there is no corresponding 579 // type in V. 580 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 581 } 582 583 return Changed; 584 } 585 586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 587 const ValueTypeByHwMode &VVT) { 588 TypeSetByHwMode Tmp(VVT); 589 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 590 return EnforceVectorEltTypeIs(Vec, Tmp); 591 } 592 593 /// Ensure that for each type T in Sub, T is a vector type, and there 594 /// exists a type U in Vec such that U is a vector type with the same 595 /// element type as T and at least as many elements as T. 596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 597 TypeSetByHwMode &Sub) { 598 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 599 if (TP.hasError()) 600 return false; 601 602 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 603 auto IsSubVec = [](MVT B, MVT P) -> bool { 604 if (!B.isVector() || !P.isVector()) 605 return false; 606 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 607 // but until there are obvious use-cases for this, keep the 608 // types separate. 609 if (B.isScalableVector() != P.isScalableVector()) 610 return false; 611 if (B.getVectorElementType() != P.getVectorElementType()) 612 return false; 613 return B.getVectorNumElements() < P.getVectorNumElements(); 614 }; 615 616 /// Return true if S has no element (vector type) that T is a sub-vector of, 617 /// i.e. has the same element type as T and more elements. 618 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 619 for (const auto &I : S) 620 if (IsSubVec(T, I)) 621 return false; 622 return true; 623 }; 624 625 /// Return true if S has no element (vector type) that T is a super-vector 626 /// of, i.e. has the same element type as T and fewer elements. 627 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 628 for (const auto &I : S) 629 if (IsSubVec(I, T)) 630 return false; 631 return true; 632 }; 633 634 bool Changed = false; 635 636 if (Vec.empty()) 637 Changed |= EnforceVector(Vec); 638 if (Sub.empty()) 639 Changed |= EnforceVector(Sub); 640 641 for (unsigned M : union_modes(Vec, Sub)) { 642 TypeSetByHwMode::SetType &S = Sub.get(M); 643 TypeSetByHwMode::SetType &V = Vec.get(M); 644 645 Changed |= berase_if(S, isScalar); 646 647 // Erase all types from S that are not sub-vectors of a type in V. 648 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 649 650 // Erase all types from V that are not super-vectors of a type in S. 651 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 652 } 653 654 return Changed; 655 } 656 657 /// 1. Ensure that V has a scalar type iff W has a scalar type. 658 /// 2. Ensure that for each vector type T in V, there exists a vector 659 /// type U in W, such that T and U have the same number of elements. 660 /// 3. Ensure that for each vector type U in W, there exists a vector 661 /// type T in V, such that T and U have the same number of elements 662 /// (reverse of 2). 663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 664 ValidateOnExit _1(V, *this), _2(W, *this); 665 if (TP.hasError()) 666 return false; 667 668 bool Changed = false; 669 if (V.empty()) 670 Changed |= EnforceAny(V); 671 if (W.empty()) 672 Changed |= EnforceAny(W); 673 674 // An actual vector type cannot have 0 elements, so we can treat scalars 675 // as zero-length vectors. This way both vectors and scalars can be 676 // processed identically. 677 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 678 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 679 }; 680 681 for (unsigned M : union_modes(V, W)) { 682 TypeSetByHwMode::SetType &VS = V.get(M); 683 TypeSetByHwMode::SetType &WS = W.get(M); 684 685 SmallSet<unsigned,2> VN, WN; 686 for (MVT T : VS) 687 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 688 for (MVT T : WS) 689 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 690 691 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 692 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 693 } 694 return Changed; 695 } 696 697 /// 1. Ensure that for each type T in A, there exists a type U in B, 698 /// such that T and U have equal size in bits. 699 /// 2. Ensure that for each type U in B, there exists a type T in A 700 /// such that T and U have equal size in bits (reverse of 1). 701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 702 ValidateOnExit _1(A, *this), _2(B, *this); 703 if (TP.hasError()) 704 return false; 705 bool Changed = false; 706 if (A.empty()) 707 Changed |= EnforceAny(A); 708 if (B.empty()) 709 Changed |= EnforceAny(B); 710 711 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 712 return !Sizes.count(T.getSizeInBits()); 713 }; 714 715 for (unsigned M : union_modes(A, B)) { 716 TypeSetByHwMode::SetType &AS = A.get(M); 717 TypeSetByHwMode::SetType &BS = B.get(M); 718 SmallSet<unsigned,2> AN, BN; 719 720 for (MVT T : AS) 721 AN.insert(T.getSizeInBits()); 722 for (MVT T : BS) 723 BN.insert(T.getSizeInBits()); 724 725 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 726 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 727 } 728 729 return Changed; 730 } 731 732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 733 ValidateOnExit _1(VTS, *this); 734 TypeSetByHwMode Legal = getLegalTypes(); 735 bool HaveLegalDef = Legal.hasDefault(); 736 737 for (auto &I : VTS) { 738 unsigned M = I.first; 739 if (!Legal.hasMode(M) && !HaveLegalDef) { 740 TP.error("Invalid mode " + Twine(M)); 741 return; 742 } 743 expandOverloads(I.second, Legal.get(M)); 744 } 745 } 746 747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 748 const TypeSetByHwMode::SetType &Legal) { 749 std::set<MVT> Ovs; 750 for (MVT T : Out) { 751 if (!T.isOverloaded()) 752 continue; 753 754 Ovs.insert(T); 755 // MachineValueTypeSet allows iteration and erasing. 756 Out.erase(T); 757 } 758 759 for (MVT Ov : Ovs) { 760 switch (Ov.SimpleTy) { 761 case MVT::iPTRAny: 762 Out.insert(MVT::iPTR); 763 return; 764 case MVT::iAny: 765 for (MVT T : MVT::integer_valuetypes()) 766 if (Legal.count(T)) 767 Out.insert(T); 768 for (MVT T : MVT::integer_vector_valuetypes()) 769 if (Legal.count(T)) 770 Out.insert(T); 771 return; 772 case MVT::fAny: 773 for (MVT T : MVT::fp_valuetypes()) 774 if (Legal.count(T)) 775 Out.insert(T); 776 for (MVT T : MVT::fp_vector_valuetypes()) 777 if (Legal.count(T)) 778 Out.insert(T); 779 return; 780 case MVT::vAny: 781 for (MVT T : MVT::vector_valuetypes()) 782 if (Legal.count(T)) 783 Out.insert(T); 784 return; 785 case MVT::Any: 786 for (MVT T : MVT::all_valuetypes()) 787 if (Legal.count(T)) 788 Out.insert(T); 789 return; 790 default: 791 break; 792 } 793 } 794 } 795 796 TypeSetByHwMode TypeInfer::getLegalTypes() { 797 if (!LegalTypesCached) { 798 // Stuff all types from all modes into the default mode. 799 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 800 for (const auto &I : LTS) 801 LegalCache.insert(I.second); 802 LegalTypesCached = true; 803 } 804 TypeSetByHwMode VTS; 805 VTS.getOrCreate(DefaultMode) = LegalCache; 806 return VTS; 807 } 808 809 #ifndef NDEBUG 810 TypeInfer::ValidateOnExit::~ValidateOnExit() { 811 if (!VTS.validate()) { 812 dbgs() << "Type set is empty for each HW mode:\n" 813 "possible type contradiction in the pattern below " 814 "(use -print-records with llvm-tblgen to see all " 815 "expanded records).\n"; 816 Infer.TP.dump(); 817 llvm_unreachable(nullptr); 818 } 819 } 820 #endif 821 822 //===----------------------------------------------------------------------===// 823 // TreePredicateFn Implementation 824 //===----------------------------------------------------------------------===// 825 826 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 827 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 828 assert( 829 (!hasPredCode() || !hasImmCode()) && 830 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 831 } 832 833 bool TreePredicateFn::hasPredCode() const { 834 return isLoad() || isStore() || isAtomic() || 835 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 836 } 837 838 std::string TreePredicateFn::getPredCode() const { 839 std::string Code = ""; 840 841 if (!isLoad() && !isStore() && !isAtomic()) { 842 Record *MemoryVT = getMemoryVT(); 843 844 if (MemoryVT) 845 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 846 "MemoryVT requires IsLoad or IsStore"); 847 } 848 849 if (!isLoad() && !isStore()) { 850 if (isUnindexed()) 851 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 852 "IsUnindexed requires IsLoad or IsStore"); 853 854 Record *ScalarMemoryVT = getScalarMemoryVT(); 855 856 if (ScalarMemoryVT) 857 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 858 "ScalarMemoryVT requires IsLoad or IsStore"); 859 } 860 861 if (isLoad() + isStore() + isAtomic() > 1) 862 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 863 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 864 865 if (isLoad()) { 866 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 867 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 868 getScalarMemoryVT() == nullptr) 869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 870 "IsLoad cannot be used by itself"); 871 } else { 872 if (isNonExtLoad()) 873 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 874 "IsNonExtLoad requires IsLoad"); 875 if (isAnyExtLoad()) 876 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 877 "IsAnyExtLoad requires IsLoad"); 878 if (isSignExtLoad()) 879 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 880 "IsSignExtLoad requires IsLoad"); 881 if (isZeroExtLoad()) 882 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 883 "IsZeroExtLoad requires IsLoad"); 884 } 885 886 if (isStore()) { 887 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 888 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 889 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 890 "IsStore cannot be used by itself"); 891 } else { 892 if (isNonTruncStore()) 893 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 894 "IsNonTruncStore requires IsStore"); 895 if (isTruncStore()) 896 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 897 "IsTruncStore requires IsStore"); 898 } 899 900 if (isAtomic()) { 901 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 902 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 903 !isAtomicOrderingAcquireRelease() && 904 !isAtomicOrderingSequentiallyConsistent() && 905 !isAtomicOrderingAcquireOrStronger() && 906 !isAtomicOrderingReleaseOrStronger() && 907 !isAtomicOrderingWeakerThanAcquire() && 908 !isAtomicOrderingWeakerThanRelease()) 909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 910 "IsAtomic cannot be used by itself"); 911 } else { 912 if (isAtomicOrderingMonotonic()) 913 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 914 "IsAtomicOrderingMonotonic requires IsAtomic"); 915 if (isAtomicOrderingAcquire()) 916 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 917 "IsAtomicOrderingAcquire requires IsAtomic"); 918 if (isAtomicOrderingRelease()) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsAtomicOrderingRelease requires IsAtomic"); 921 if (isAtomicOrderingAcquireRelease()) 922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 923 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 924 if (isAtomicOrderingSequentiallyConsistent()) 925 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 926 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 927 if (isAtomicOrderingAcquireOrStronger()) 928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 929 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 930 if (isAtomicOrderingReleaseOrStronger()) 931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 932 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 933 if (isAtomicOrderingWeakerThanAcquire()) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 936 } 937 938 if (isLoad() || isStore() || isAtomic()) { 939 StringRef SDNodeName = 940 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode"; 941 942 Record *MemoryVT = getMemoryVT(); 943 944 if (MemoryVT) 945 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" + 946 MemoryVT->getName() + ") return false;\n") 947 .str(); 948 } 949 950 if (isAtomic() && isAtomicOrderingMonotonic()) 951 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 952 "AtomicOrdering::Monotonic) return false;\n"; 953 if (isAtomic() && isAtomicOrderingAcquire()) 954 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 955 "AtomicOrdering::Acquire) return false;\n"; 956 if (isAtomic() && isAtomicOrderingRelease()) 957 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 958 "AtomicOrdering::Release) return false;\n"; 959 if (isAtomic() && isAtomicOrderingAcquireRelease()) 960 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 961 "AtomicOrdering::AcquireRelease) return false;\n"; 962 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 963 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 964 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 965 966 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 967 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 968 "return false;\n"; 969 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 970 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 971 "return false;\n"; 972 973 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 974 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 975 "return false;\n"; 976 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 977 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 978 "return false;\n"; 979 980 if (isLoad() || isStore()) { 981 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 982 983 if (isUnindexed()) 984 Code += ("if (cast<" + SDNodeName + 985 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 986 "return false;\n") 987 .str(); 988 989 if (isLoad()) { 990 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 991 isZeroExtLoad()) > 1) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 994 "IsZeroExtLoad are mutually exclusive"); 995 if (isNonExtLoad()) 996 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 997 "ISD::NON_EXTLOAD) return false;\n"; 998 if (isAnyExtLoad()) 999 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1000 "return false;\n"; 1001 if (isSignExtLoad()) 1002 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1003 "return false;\n"; 1004 if (isZeroExtLoad()) 1005 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1006 "return false;\n"; 1007 } else { 1008 if ((isNonTruncStore() + isTruncStore()) > 1) 1009 PrintFatalError( 1010 getOrigPatFragRecord()->getRecord()->getLoc(), 1011 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1012 if (isNonTruncStore()) 1013 Code += 1014 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1015 if (isTruncStore()) 1016 Code += 1017 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1018 } 1019 1020 Record *ScalarMemoryVT = getScalarMemoryVT(); 1021 1022 if (ScalarMemoryVT) 1023 Code += ("if (cast<" + SDNodeName + 1024 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1025 ScalarMemoryVT->getName() + ") return false;\n") 1026 .str(); 1027 } 1028 1029 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1030 1031 Code += PredicateCode; 1032 1033 if (PredicateCode.empty() && !Code.empty()) 1034 Code += "return true;\n"; 1035 1036 return Code; 1037 } 1038 1039 bool TreePredicateFn::hasImmCode() const { 1040 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1041 } 1042 1043 std::string TreePredicateFn::getImmCode() const { 1044 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1045 } 1046 1047 bool TreePredicateFn::immCodeUsesAPInt() const { 1048 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1049 } 1050 1051 bool TreePredicateFn::immCodeUsesAPFloat() const { 1052 bool Unset; 1053 // The return value will be false when IsAPFloat is unset. 1054 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1055 Unset); 1056 } 1057 1058 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1059 bool Value) const { 1060 bool Unset; 1061 bool Result = 1062 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1063 if (Unset) 1064 return false; 1065 return Result == Value; 1066 } 1067 bool TreePredicateFn::isLoad() const { 1068 return isPredefinedPredicateEqualTo("IsLoad", true); 1069 } 1070 bool TreePredicateFn::isStore() const { 1071 return isPredefinedPredicateEqualTo("IsStore", true); 1072 } 1073 bool TreePredicateFn::isAtomic() const { 1074 return isPredefinedPredicateEqualTo("IsAtomic", true); 1075 } 1076 bool TreePredicateFn::isUnindexed() const { 1077 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1078 } 1079 bool TreePredicateFn::isNonExtLoad() const { 1080 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1081 } 1082 bool TreePredicateFn::isAnyExtLoad() const { 1083 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1084 } 1085 bool TreePredicateFn::isSignExtLoad() const { 1086 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1087 } 1088 bool TreePredicateFn::isZeroExtLoad() const { 1089 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1090 } 1091 bool TreePredicateFn::isNonTruncStore() const { 1092 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1093 } 1094 bool TreePredicateFn::isTruncStore() const { 1095 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1096 } 1097 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1098 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1099 } 1100 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1101 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1102 } 1103 bool TreePredicateFn::isAtomicOrderingRelease() const { 1104 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1105 } 1106 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1107 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1108 } 1109 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1110 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1111 true); 1112 } 1113 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1114 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1115 } 1116 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1117 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1118 } 1119 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1120 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1121 } 1122 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1123 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1124 } 1125 Record *TreePredicateFn::getMemoryVT() const { 1126 Record *R = getOrigPatFragRecord()->getRecord(); 1127 if (R->isValueUnset("MemoryVT")) 1128 return nullptr; 1129 return R->getValueAsDef("MemoryVT"); 1130 } 1131 Record *TreePredicateFn::getScalarMemoryVT() const { 1132 Record *R = getOrigPatFragRecord()->getRecord(); 1133 if (R->isValueUnset("ScalarMemoryVT")) 1134 return nullptr; 1135 return R->getValueAsDef("ScalarMemoryVT"); 1136 } 1137 bool TreePredicateFn::hasGISelPredicateCode() const { 1138 return !PatFragRec->getRecord() 1139 ->getValueAsString("GISelPredicateCode") 1140 .empty(); 1141 } 1142 std::string TreePredicateFn::getGISelPredicateCode() const { 1143 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1144 } 1145 1146 StringRef TreePredicateFn::getImmType() const { 1147 if (immCodeUsesAPInt()) 1148 return "const APInt &"; 1149 if (immCodeUsesAPFloat()) 1150 return "const APFloat &"; 1151 return "int64_t"; 1152 } 1153 1154 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1155 if (immCodeUsesAPInt()) 1156 return "APInt"; 1157 else if (immCodeUsesAPFloat()) 1158 return "APFloat"; 1159 return "I64"; 1160 } 1161 1162 /// isAlwaysTrue - Return true if this is a noop predicate. 1163 bool TreePredicateFn::isAlwaysTrue() const { 1164 return !hasPredCode() && !hasImmCode(); 1165 } 1166 1167 /// Return the name to use in the generated code to reference this, this is 1168 /// "Predicate_foo" if from a pattern fragment "foo". 1169 std::string TreePredicateFn::getFnName() const { 1170 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1171 } 1172 1173 /// getCodeToRunOnSDNode - Return the code for the function body that 1174 /// evaluates this predicate. The argument is expected to be in "Node", 1175 /// not N. This handles casting and conversion to a concrete node type as 1176 /// appropriate. 1177 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1178 // Handle immediate predicates first. 1179 std::string ImmCode = getImmCode(); 1180 if (!ImmCode.empty()) { 1181 if (isLoad()) 1182 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1183 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1184 if (isStore()) 1185 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1186 "IsStore cannot be used with ImmLeaf or its subclasses"); 1187 if (isUnindexed()) 1188 PrintFatalError( 1189 getOrigPatFragRecord()->getRecord()->getLoc(), 1190 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1191 if (isNonExtLoad()) 1192 PrintFatalError( 1193 getOrigPatFragRecord()->getRecord()->getLoc(), 1194 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1195 if (isAnyExtLoad()) 1196 PrintFatalError( 1197 getOrigPatFragRecord()->getRecord()->getLoc(), 1198 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1199 if (isSignExtLoad()) 1200 PrintFatalError( 1201 getOrigPatFragRecord()->getRecord()->getLoc(), 1202 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1203 if (isZeroExtLoad()) 1204 PrintFatalError( 1205 getOrigPatFragRecord()->getRecord()->getLoc(), 1206 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1207 if (isNonTruncStore()) 1208 PrintFatalError( 1209 getOrigPatFragRecord()->getRecord()->getLoc(), 1210 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1211 if (isTruncStore()) 1212 PrintFatalError( 1213 getOrigPatFragRecord()->getRecord()->getLoc(), 1214 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1215 if (getMemoryVT()) 1216 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1217 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1218 if (getScalarMemoryVT()) 1219 PrintFatalError( 1220 getOrigPatFragRecord()->getRecord()->getLoc(), 1221 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1222 1223 std::string Result = (" " + getImmType() + " Imm = ").str(); 1224 if (immCodeUsesAPFloat()) 1225 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1226 else if (immCodeUsesAPInt()) 1227 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1228 else 1229 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1230 return Result + ImmCode; 1231 } 1232 1233 // Handle arbitrary node predicates. 1234 assert(hasPredCode() && "Don't have any predicate code!"); 1235 StringRef ClassName; 1236 if (PatFragRec->getOnlyTree()->isLeaf()) 1237 ClassName = "SDNode"; 1238 else { 1239 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1240 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1241 } 1242 std::string Result; 1243 if (ClassName == "SDNode") 1244 Result = " SDNode *N = Node;\n"; 1245 else 1246 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1247 1248 return Result + getPredCode(); 1249 } 1250 1251 //===----------------------------------------------------------------------===// 1252 // PatternToMatch implementation 1253 // 1254 1255 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1256 /// patterns before small ones. This is used to determine the size of a 1257 /// pattern. 1258 static unsigned getPatternSize(const TreePatternNode *P, 1259 const CodeGenDAGPatterns &CGP) { 1260 unsigned Size = 3; // The node itself. 1261 // If the root node is a ConstantSDNode, increases its size. 1262 // e.g. (set R32:$dst, 0). 1263 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1264 Size += 2; 1265 1266 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1267 Size += AM->getComplexity(); 1268 // We don't want to count any children twice, so return early. 1269 return Size; 1270 } 1271 1272 // If this node has some predicate function that must match, it adds to the 1273 // complexity of this node. 1274 if (!P->getPredicateFns().empty()) 1275 ++Size; 1276 1277 // Count children in the count if they are also nodes. 1278 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1279 const TreePatternNode *Child = P->getChild(i); 1280 if (!Child->isLeaf() && Child->getNumTypes()) { 1281 const TypeSetByHwMode &T0 = Child->getType(0); 1282 // At this point, all variable type sets should be simple, i.e. only 1283 // have a default mode. 1284 if (T0.getMachineValueType() != MVT::Other) { 1285 Size += getPatternSize(Child, CGP); 1286 continue; 1287 } 1288 } 1289 if (Child->isLeaf()) { 1290 if (isa<IntInit>(Child->getLeafValue())) 1291 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1292 else if (Child->getComplexPatternInfo(CGP)) 1293 Size += getPatternSize(Child, CGP); 1294 else if (!Child->getPredicateFns().empty()) 1295 ++Size; 1296 } 1297 } 1298 1299 return Size; 1300 } 1301 1302 /// Compute the complexity metric for the input pattern. This roughly 1303 /// corresponds to the number of nodes that are covered. 1304 int PatternToMatch:: 1305 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1306 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1307 } 1308 1309 /// getPredicateCheck - Return a single string containing all of this 1310 /// pattern's predicates concatenated with "&&" operators. 1311 /// 1312 std::string PatternToMatch::getPredicateCheck() const { 1313 SmallVector<const Predicate*,4> PredList; 1314 for (const Predicate &P : Predicates) 1315 PredList.push_back(&P); 1316 llvm::sort(PredList.begin(), PredList.end(), deref<llvm::less>()); 1317 1318 std::string Check; 1319 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1320 if (i != 0) 1321 Check += " && "; 1322 Check += '(' + PredList[i]->getCondString() + ')'; 1323 } 1324 return Check; 1325 } 1326 1327 //===----------------------------------------------------------------------===// 1328 // SDTypeConstraint implementation 1329 // 1330 1331 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1332 OperandNo = R->getValueAsInt("OperandNum"); 1333 1334 if (R->isSubClassOf("SDTCisVT")) { 1335 ConstraintType = SDTCisVT; 1336 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1337 for (const auto &P : VVT) 1338 if (P.second == MVT::isVoid) 1339 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1340 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1341 ConstraintType = SDTCisPtrTy; 1342 } else if (R->isSubClassOf("SDTCisInt")) { 1343 ConstraintType = SDTCisInt; 1344 } else if (R->isSubClassOf("SDTCisFP")) { 1345 ConstraintType = SDTCisFP; 1346 } else if (R->isSubClassOf("SDTCisVec")) { 1347 ConstraintType = SDTCisVec; 1348 } else if (R->isSubClassOf("SDTCisSameAs")) { 1349 ConstraintType = SDTCisSameAs; 1350 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1351 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1352 ConstraintType = SDTCisVTSmallerThanOp; 1353 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1354 R->getValueAsInt("OtherOperandNum"); 1355 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1356 ConstraintType = SDTCisOpSmallerThanOp; 1357 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1358 R->getValueAsInt("BigOperandNum"); 1359 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1360 ConstraintType = SDTCisEltOfVec; 1361 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1362 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1363 ConstraintType = SDTCisSubVecOfVec; 1364 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1365 R->getValueAsInt("OtherOpNum"); 1366 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1367 ConstraintType = SDTCVecEltisVT; 1368 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1369 for (const auto &P : VVT) { 1370 MVT T = P.second; 1371 if (T.isVector()) 1372 PrintFatalError(R->getLoc(), 1373 "Cannot use vector type as SDTCVecEltisVT"); 1374 if (!T.isInteger() && !T.isFloatingPoint()) 1375 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1376 "as SDTCVecEltisVT"); 1377 } 1378 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1379 ConstraintType = SDTCisSameNumEltsAs; 1380 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1381 R->getValueAsInt("OtherOperandNum"); 1382 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1383 ConstraintType = SDTCisSameSizeAs; 1384 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1385 R->getValueAsInt("OtherOperandNum"); 1386 } else { 1387 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1388 } 1389 } 1390 1391 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1392 /// N, and the result number in ResNo. 1393 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1394 const SDNodeInfo &NodeInfo, 1395 unsigned &ResNo) { 1396 unsigned NumResults = NodeInfo.getNumResults(); 1397 if (OpNo < NumResults) { 1398 ResNo = OpNo; 1399 return N; 1400 } 1401 1402 OpNo -= NumResults; 1403 1404 if (OpNo >= N->getNumChildren()) { 1405 std::string S; 1406 raw_string_ostream OS(S); 1407 OS << "Invalid operand number in type constraint " 1408 << (OpNo+NumResults) << " "; 1409 N->print(OS); 1410 PrintFatalError(OS.str()); 1411 } 1412 1413 return N->getChild(OpNo); 1414 } 1415 1416 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1417 /// constraint to the nodes operands. This returns true if it makes a 1418 /// change, false otherwise. If a type contradiction is found, flag an error. 1419 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1420 const SDNodeInfo &NodeInfo, 1421 TreePattern &TP) const { 1422 if (TP.hasError()) 1423 return false; 1424 1425 unsigned ResNo = 0; // The result number being referenced. 1426 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1427 TypeInfer &TI = TP.getInfer(); 1428 1429 switch (ConstraintType) { 1430 case SDTCisVT: 1431 // Operand must be a particular type. 1432 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1433 case SDTCisPtrTy: 1434 // Operand must be same as target pointer type. 1435 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1436 case SDTCisInt: 1437 // Require it to be one of the legal integer VTs. 1438 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1439 case SDTCisFP: 1440 // Require it to be one of the legal fp VTs. 1441 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1442 case SDTCisVec: 1443 // Require it to be one of the legal vector VTs. 1444 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1445 case SDTCisSameAs: { 1446 unsigned OResNo = 0; 1447 TreePatternNode *OtherNode = 1448 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1449 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1450 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1451 } 1452 case SDTCisVTSmallerThanOp: { 1453 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1454 // have an integer type that is smaller than the VT. 1455 if (!NodeToApply->isLeaf() || 1456 !isa<DefInit>(NodeToApply->getLeafValue()) || 1457 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1458 ->isSubClassOf("ValueType")) { 1459 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1460 return false; 1461 } 1462 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1463 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1464 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1465 TypeSetByHwMode TypeListTmp(VVT); 1466 1467 unsigned OResNo = 0; 1468 TreePatternNode *OtherNode = 1469 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1470 OResNo); 1471 1472 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1473 } 1474 case SDTCisOpSmallerThanOp: { 1475 unsigned BResNo = 0; 1476 TreePatternNode *BigOperand = 1477 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1478 BResNo); 1479 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1480 BigOperand->getExtType(BResNo)); 1481 } 1482 case SDTCisEltOfVec: { 1483 unsigned VResNo = 0; 1484 TreePatternNode *VecOperand = 1485 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1486 VResNo); 1487 // Filter vector types out of VecOperand that don't have the right element 1488 // type. 1489 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1490 NodeToApply->getExtType(ResNo)); 1491 } 1492 case SDTCisSubVecOfVec: { 1493 unsigned VResNo = 0; 1494 TreePatternNode *BigVecOperand = 1495 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1496 VResNo); 1497 1498 // Filter vector types out of BigVecOperand that don't have the 1499 // right subvector type. 1500 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1501 NodeToApply->getExtType(ResNo)); 1502 } 1503 case SDTCVecEltisVT: { 1504 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1505 } 1506 case SDTCisSameNumEltsAs: { 1507 unsigned OResNo = 0; 1508 TreePatternNode *OtherNode = 1509 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1510 N, NodeInfo, OResNo); 1511 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1512 NodeToApply->getExtType(ResNo)); 1513 } 1514 case SDTCisSameSizeAs: { 1515 unsigned OResNo = 0; 1516 TreePatternNode *OtherNode = 1517 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1518 N, NodeInfo, OResNo); 1519 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1520 NodeToApply->getExtType(ResNo)); 1521 } 1522 } 1523 llvm_unreachable("Invalid ConstraintType!"); 1524 } 1525 1526 // Update the node type to match an instruction operand or result as specified 1527 // in the ins or outs lists on the instruction definition. Return true if the 1528 // type was actually changed. 1529 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1530 Record *Operand, 1531 TreePattern &TP) { 1532 // The 'unknown' operand indicates that types should be inferred from the 1533 // context. 1534 if (Operand->isSubClassOf("unknown_class")) 1535 return false; 1536 1537 // The Operand class specifies a type directly. 1538 if (Operand->isSubClassOf("Operand")) { 1539 Record *R = Operand->getValueAsDef("Type"); 1540 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1541 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1542 } 1543 1544 // PointerLikeRegClass has a type that is determined at runtime. 1545 if (Operand->isSubClassOf("PointerLikeRegClass")) 1546 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1547 1548 // Both RegisterClass and RegisterOperand operands derive their types from a 1549 // register class def. 1550 Record *RC = nullptr; 1551 if (Operand->isSubClassOf("RegisterClass")) 1552 RC = Operand; 1553 else if (Operand->isSubClassOf("RegisterOperand")) 1554 RC = Operand->getValueAsDef("RegClass"); 1555 1556 assert(RC && "Unknown operand type"); 1557 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1558 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1559 } 1560 1561 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1562 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1563 if (!TP.getInfer().isConcrete(Types[i], true)) 1564 return true; 1565 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1566 if (getChild(i)->ContainsUnresolvedType(TP)) 1567 return true; 1568 return false; 1569 } 1570 1571 bool TreePatternNode::hasProperTypeByHwMode() const { 1572 for (const TypeSetByHwMode &S : Types) 1573 if (!S.isDefaultOnly()) 1574 return true; 1575 for (const TreePatternNodePtr &C : Children) 1576 if (C->hasProperTypeByHwMode()) 1577 return true; 1578 return false; 1579 } 1580 1581 bool TreePatternNode::hasPossibleType() const { 1582 for (const TypeSetByHwMode &S : Types) 1583 if (!S.isPossible()) 1584 return false; 1585 for (const TreePatternNodePtr &C : Children) 1586 if (!C->hasPossibleType()) 1587 return false; 1588 return true; 1589 } 1590 1591 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1592 for (TypeSetByHwMode &S : Types) { 1593 S.makeSimple(Mode); 1594 // Check if the selected mode had a type conflict. 1595 if (S.get(DefaultMode).empty()) 1596 return false; 1597 } 1598 for (const TreePatternNodePtr &C : Children) 1599 if (!C->setDefaultMode(Mode)) 1600 return false; 1601 return true; 1602 } 1603 1604 //===----------------------------------------------------------------------===// 1605 // SDNodeInfo implementation 1606 // 1607 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1608 EnumName = R->getValueAsString("Opcode"); 1609 SDClassName = R->getValueAsString("SDClass"); 1610 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1611 NumResults = TypeProfile->getValueAsInt("NumResults"); 1612 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1613 1614 // Parse the properties. 1615 Properties = parseSDPatternOperatorProperties(R); 1616 1617 // Parse the type constraints. 1618 std::vector<Record*> ConstraintList = 1619 TypeProfile->getValueAsListOfDefs("Constraints"); 1620 for (Record *R : ConstraintList) 1621 TypeConstraints.emplace_back(R, CGH); 1622 } 1623 1624 /// getKnownType - If the type constraints on this node imply a fixed type 1625 /// (e.g. all stores return void, etc), then return it as an 1626 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1627 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1628 unsigned NumResults = getNumResults(); 1629 assert(NumResults <= 1 && 1630 "We only work with nodes with zero or one result so far!"); 1631 assert(ResNo == 0 && "Only handles single result nodes so far"); 1632 1633 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1634 // Make sure that this applies to the correct node result. 1635 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1636 continue; 1637 1638 switch (Constraint.ConstraintType) { 1639 default: break; 1640 case SDTypeConstraint::SDTCisVT: 1641 if (Constraint.VVT.isSimple()) 1642 return Constraint.VVT.getSimple().SimpleTy; 1643 break; 1644 case SDTypeConstraint::SDTCisPtrTy: 1645 return MVT::iPTR; 1646 } 1647 } 1648 return MVT::Other; 1649 } 1650 1651 //===----------------------------------------------------------------------===// 1652 // TreePatternNode implementation 1653 // 1654 1655 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1656 if (Operator->getName() == "set" || 1657 Operator->getName() == "implicit") 1658 return 0; // All return nothing. 1659 1660 if (Operator->isSubClassOf("Intrinsic")) 1661 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1662 1663 if (Operator->isSubClassOf("SDNode")) 1664 return CDP.getSDNodeInfo(Operator).getNumResults(); 1665 1666 if (Operator->isSubClassOf("PatFrag")) { 1667 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1668 // the forward reference case where one pattern fragment references another 1669 // before it is processed. 1670 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1671 return PFRec->getOnlyTree()->getNumTypes(); 1672 1673 // Get the result tree. 1674 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1675 Record *Op = nullptr; 1676 if (Tree) 1677 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1678 Op = DI->getDef(); 1679 assert(Op && "Invalid Fragment"); 1680 return GetNumNodeResults(Op, CDP); 1681 } 1682 1683 if (Operator->isSubClassOf("Instruction")) { 1684 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1685 1686 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1687 1688 // Subtract any defaulted outputs. 1689 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1690 Record *OperandNode = InstInfo.Operands[i].Rec; 1691 1692 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1693 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1694 --NumDefsToAdd; 1695 } 1696 1697 // Add on one implicit def if it has a resolvable type. 1698 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1699 ++NumDefsToAdd; 1700 return NumDefsToAdd; 1701 } 1702 1703 if (Operator->isSubClassOf("SDNodeXForm")) 1704 return 1; // FIXME: Generalize SDNodeXForm 1705 1706 if (Operator->isSubClassOf("ValueType")) 1707 return 1; // A type-cast of one result. 1708 1709 if (Operator->isSubClassOf("ComplexPattern")) 1710 return 1; 1711 1712 errs() << *Operator; 1713 PrintFatalError("Unhandled node in GetNumNodeResults"); 1714 } 1715 1716 void TreePatternNode::print(raw_ostream &OS) const { 1717 if (isLeaf()) 1718 OS << *getLeafValue(); 1719 else 1720 OS << '(' << getOperator()->getName(); 1721 1722 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1723 OS << ':'; 1724 getExtType(i).writeToStream(OS); 1725 } 1726 1727 if (!isLeaf()) { 1728 if (getNumChildren() != 0) { 1729 OS << " "; 1730 getChild(0)->print(OS); 1731 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1732 OS << ", "; 1733 getChild(i)->print(OS); 1734 } 1735 } 1736 OS << ")"; 1737 } 1738 1739 for (const TreePredicateFn &Pred : PredicateFns) 1740 OS << "<<P:" << Pred.getFnName() << ">>"; 1741 if (TransformFn) 1742 OS << "<<X:" << TransformFn->getName() << ">>"; 1743 if (!getName().empty()) 1744 OS << ":$" << getName(); 1745 1746 } 1747 void TreePatternNode::dump() const { 1748 print(errs()); 1749 } 1750 1751 /// isIsomorphicTo - Return true if this node is recursively 1752 /// isomorphic to the specified node. For this comparison, the node's 1753 /// entire state is considered. The assigned name is ignored, since 1754 /// nodes with differing names are considered isomorphic. However, if 1755 /// the assigned name is present in the dependent variable set, then 1756 /// the assigned name is considered significant and the node is 1757 /// isomorphic if the names match. 1758 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1759 const MultipleUseVarSet &DepVars) const { 1760 if (N == this) return true; 1761 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1762 getPredicateFns() != N->getPredicateFns() || 1763 getTransformFn() != N->getTransformFn()) 1764 return false; 1765 1766 if (isLeaf()) { 1767 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1768 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1769 return ((DI->getDef() == NDI->getDef()) 1770 && (DepVars.find(getName()) == DepVars.end() 1771 || getName() == N->getName())); 1772 } 1773 } 1774 return getLeafValue() == N->getLeafValue(); 1775 } 1776 1777 if (N->getOperator() != getOperator() || 1778 N->getNumChildren() != getNumChildren()) return false; 1779 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1780 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1781 return false; 1782 return true; 1783 } 1784 1785 /// clone - Make a copy of this tree and all of its children. 1786 /// 1787 TreePatternNodePtr TreePatternNode::clone() const { 1788 TreePatternNodePtr New; 1789 if (isLeaf()) { 1790 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1791 } else { 1792 std::vector<TreePatternNodePtr> CChildren; 1793 CChildren.reserve(Children.size()); 1794 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1795 CChildren.push_back(getChild(i)->clone()); 1796 New = std::make_shared<TreePatternNode>(getOperator(), CChildren, 1797 getNumTypes()); 1798 } 1799 New->setName(getName()); 1800 New->Types = Types; 1801 New->setPredicateFns(getPredicateFns()); 1802 New->setTransformFn(getTransformFn()); 1803 return New; 1804 } 1805 1806 /// RemoveAllTypes - Recursively strip all the types of this tree. 1807 void TreePatternNode::RemoveAllTypes() { 1808 // Reset to unknown type. 1809 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1810 if (isLeaf()) return; 1811 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1812 getChild(i)->RemoveAllTypes(); 1813 } 1814 1815 1816 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1817 /// with actual values specified by ArgMap. 1818 void TreePatternNode::SubstituteFormalArguments( 1819 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1820 if (isLeaf()) return; 1821 1822 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1823 TreePatternNode *Child = getChild(i); 1824 if (Child->isLeaf()) { 1825 Init *Val = Child->getLeafValue(); 1826 // Note that, when substituting into an output pattern, Val might be an 1827 // UnsetInit. 1828 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1829 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1830 // We found a use of a formal argument, replace it with its value. 1831 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1832 assert(NewChild && "Couldn't find formal argument!"); 1833 assert((Child->getPredicateFns().empty() || 1834 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1835 "Non-empty child predicate clobbered!"); 1836 setChild(i, std::move(NewChild)); 1837 } 1838 } else { 1839 getChild(i)->SubstituteFormalArguments(ArgMap); 1840 } 1841 } 1842 } 1843 1844 1845 /// InlinePatternFragments - If this pattern refers to any pattern 1846 /// fragments, inline them into place, giving us a pattern without any 1847 /// PatFrag references. 1848 TreePatternNodePtr TreePatternNode::InlinePatternFragments(TreePatternNodePtr T, 1849 TreePattern &TP) { 1850 if (TP.hasError()) 1851 return nullptr; 1852 1853 if (isLeaf()) 1854 return T; // nothing to do. 1855 Record *Op = getOperator(); 1856 1857 if (!Op->isSubClassOf("PatFrag")) { 1858 // Just recursively inline children nodes. 1859 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1860 TreePatternNodePtr Child = getChildShared(i); 1861 TreePatternNodePtr NewChild = Child->InlinePatternFragments(Child, TP); 1862 1863 assert((Child->getPredicateFns().empty() || 1864 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1865 "Non-empty child predicate clobbered!"); 1866 1867 setChild(i, std::move(NewChild)); 1868 } 1869 return T; 1870 } 1871 1872 // Otherwise, we found a reference to a fragment. First, look up its 1873 // TreePattern record. 1874 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1875 1876 // Verify that we are passing the right number of operands. 1877 if (Frag->getNumArgs() != Children.size()) { 1878 TP.error("'" + Op->getName() + "' fragment requires " + 1879 Twine(Frag->getNumArgs()) + " operands!"); 1880 return {nullptr}; 1881 } 1882 1883 TreePatternNodePtr FragTree = Frag->getOnlyTree()->clone(); 1884 1885 TreePredicateFn PredFn(Frag); 1886 if (!PredFn.isAlwaysTrue()) 1887 FragTree->addPredicateFn(PredFn); 1888 1889 // Resolve formal arguments to their actual value. 1890 if (Frag->getNumArgs()) { 1891 // Compute the map of formal to actual arguments. 1892 std::map<std::string, TreePatternNodePtr> ArgMap; 1893 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 1894 const TreePatternNodePtr &Child = getChildShared(i); 1895 ArgMap[Frag->getArgName(i)] = Child->InlinePatternFragments(Child, TP); 1896 } 1897 1898 FragTree->SubstituteFormalArguments(ArgMap); 1899 } 1900 1901 FragTree->setName(getName()); 1902 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1903 FragTree->UpdateNodeType(i, getExtType(i), TP); 1904 1905 // Transfer in the old predicates. 1906 for (const TreePredicateFn &Pred : getPredicateFns()) 1907 FragTree->addPredicateFn(Pred); 1908 1909 // The fragment we inlined could have recursive inlining that is needed. See 1910 // if there are any pattern fragments in it and inline them as needed. 1911 return FragTree->InlinePatternFragments(FragTree, TP); 1912 } 1913 1914 /// getImplicitType - Check to see if the specified record has an implicit 1915 /// type which should be applied to it. This will infer the type of register 1916 /// references from the register file information, for example. 1917 /// 1918 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1919 /// the F8RC register class argument in: 1920 /// 1921 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1922 /// 1923 /// When Unnamed is false, return the type of a named DAG operand such as the 1924 /// GPR:$src operand above. 1925 /// 1926 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 1927 bool NotRegisters, 1928 bool Unnamed, 1929 TreePattern &TP) { 1930 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1931 1932 // Check to see if this is a register operand. 1933 if (R->isSubClassOf("RegisterOperand")) { 1934 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1935 if (NotRegisters) 1936 return TypeSetByHwMode(); // Unknown. 1937 Record *RegClass = R->getValueAsDef("RegClass"); 1938 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1939 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 1940 } 1941 1942 // Check to see if this is a register or a register class. 1943 if (R->isSubClassOf("RegisterClass")) { 1944 assert(ResNo == 0 && "Regclass ref only has one result!"); 1945 // An unnamed register class represents itself as an i32 immediate, for 1946 // example on a COPY_TO_REGCLASS instruction. 1947 if (Unnamed) 1948 return TypeSetByHwMode(MVT::i32); 1949 1950 // In a named operand, the register class provides the possible set of 1951 // types. 1952 if (NotRegisters) 1953 return TypeSetByHwMode(); // Unknown. 1954 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1955 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 1956 } 1957 1958 if (R->isSubClassOf("PatFrag")) { 1959 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1960 // Pattern fragment types will be resolved when they are inlined. 1961 return TypeSetByHwMode(); // Unknown. 1962 } 1963 1964 if (R->isSubClassOf("Register")) { 1965 assert(ResNo == 0 && "Registers only produce one result!"); 1966 if (NotRegisters) 1967 return TypeSetByHwMode(); // Unknown. 1968 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1969 return TypeSetByHwMode(T.getRegisterVTs(R)); 1970 } 1971 1972 if (R->isSubClassOf("SubRegIndex")) { 1973 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1974 return TypeSetByHwMode(MVT::i32); 1975 } 1976 1977 if (R->isSubClassOf("ValueType")) { 1978 assert(ResNo == 0 && "This node only has one result!"); 1979 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1980 // 1981 // (sext_inreg GPR:$src, i16) 1982 // ~~~ 1983 if (Unnamed) 1984 return TypeSetByHwMode(MVT::Other); 1985 // With a name, the ValueType simply provides the type of the named 1986 // variable. 1987 // 1988 // (sext_inreg i32:$src, i16) 1989 // ~~~~~~~~ 1990 if (NotRegisters) 1991 return TypeSetByHwMode(); // Unknown. 1992 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 1993 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 1994 } 1995 1996 if (R->isSubClassOf("CondCode")) { 1997 assert(ResNo == 0 && "This node only has one result!"); 1998 // Using a CondCodeSDNode. 1999 return TypeSetByHwMode(MVT::Other); 2000 } 2001 2002 if (R->isSubClassOf("ComplexPattern")) { 2003 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2004 if (NotRegisters) 2005 return TypeSetByHwMode(); // Unknown. 2006 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2007 } 2008 if (R->isSubClassOf("PointerLikeRegClass")) { 2009 assert(ResNo == 0 && "Regclass can only have one result!"); 2010 TypeSetByHwMode VTS(MVT::iPTR); 2011 TP.getInfer().expandOverloads(VTS); 2012 return VTS; 2013 } 2014 2015 if (R->getName() == "node" || R->getName() == "srcvalue" || 2016 R->getName() == "zero_reg") { 2017 // Placeholder. 2018 return TypeSetByHwMode(); // Unknown. 2019 } 2020 2021 if (R->isSubClassOf("Operand")) { 2022 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2023 Record *T = R->getValueAsDef("Type"); 2024 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2025 } 2026 2027 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2028 return TypeSetByHwMode(MVT::Other); 2029 } 2030 2031 2032 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2033 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2034 const CodeGenIntrinsic *TreePatternNode:: 2035 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2036 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2037 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2038 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2039 return nullptr; 2040 2041 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2042 return &CDP.getIntrinsicInfo(IID); 2043 } 2044 2045 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2046 /// return the ComplexPattern information, otherwise return null. 2047 const ComplexPattern * 2048 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2049 Record *Rec; 2050 if (isLeaf()) { 2051 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2052 if (!DI) 2053 return nullptr; 2054 Rec = DI->getDef(); 2055 } else 2056 Rec = getOperator(); 2057 2058 if (!Rec->isSubClassOf("ComplexPattern")) 2059 return nullptr; 2060 return &CGP.getComplexPattern(Rec); 2061 } 2062 2063 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2064 // A ComplexPattern specifically declares how many results it fills in. 2065 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2066 return CP->getNumOperands(); 2067 2068 // If MIOperandInfo is specified, that gives the count. 2069 if (isLeaf()) { 2070 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2071 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2072 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2073 if (MIOps->getNumArgs()) 2074 return MIOps->getNumArgs(); 2075 } 2076 } 2077 2078 // Otherwise there is just one result. 2079 return 1; 2080 } 2081 2082 /// NodeHasProperty - Return true if this node has the specified property. 2083 bool TreePatternNode::NodeHasProperty(SDNP Property, 2084 const CodeGenDAGPatterns &CGP) const { 2085 if (isLeaf()) { 2086 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2087 return CP->hasProperty(Property); 2088 2089 return false; 2090 } 2091 2092 if (Property != SDNPHasChain) { 2093 // The chain proprety is already present on the different intrinsic node 2094 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2095 // on the intrinsic. Anything else is specific to the individual intrinsic. 2096 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2097 return Int->hasProperty(Property); 2098 } 2099 2100 if (!Operator->isSubClassOf("SDPatternOperator")) 2101 return false; 2102 2103 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2104 } 2105 2106 2107 2108 2109 /// TreeHasProperty - Return true if any node in this tree has the specified 2110 /// property. 2111 bool TreePatternNode::TreeHasProperty(SDNP Property, 2112 const CodeGenDAGPatterns &CGP) const { 2113 if (NodeHasProperty(Property, CGP)) 2114 return true; 2115 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2116 if (getChild(i)->TreeHasProperty(Property, CGP)) 2117 return true; 2118 return false; 2119 } 2120 2121 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2122 /// commutative intrinsic. 2123 bool 2124 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2125 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2126 return Int->isCommutative; 2127 return false; 2128 } 2129 2130 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2131 if (!N->isLeaf()) 2132 return N->getOperator()->isSubClassOf(Class); 2133 2134 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2135 if (DI && DI->getDef()->isSubClassOf(Class)) 2136 return true; 2137 2138 return false; 2139 } 2140 2141 static void emitTooManyOperandsError(TreePattern &TP, 2142 StringRef InstName, 2143 unsigned Expected, 2144 unsigned Actual) { 2145 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2146 " operands but expected only " + Twine(Expected) + "!"); 2147 } 2148 2149 static void emitTooFewOperandsError(TreePattern &TP, 2150 StringRef InstName, 2151 unsigned Actual) { 2152 TP.error("Instruction '" + InstName + 2153 "' expects more than the provided " + Twine(Actual) + " operands!"); 2154 } 2155 2156 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2157 /// this node and its children in the tree. This returns true if it makes a 2158 /// change, false otherwise. If a type contradiction is found, flag an error. 2159 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2160 if (TP.hasError()) 2161 return false; 2162 2163 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2164 if (isLeaf()) { 2165 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2166 // If it's a regclass or something else known, include the type. 2167 bool MadeChange = false; 2168 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2169 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2170 NotRegisters, 2171 !hasName(), TP), TP); 2172 return MadeChange; 2173 } 2174 2175 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2176 assert(Types.size() == 1 && "Invalid IntInit"); 2177 2178 // Int inits are always integers. :) 2179 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2180 2181 if (!TP.getInfer().isConcrete(Types[0], false)) 2182 return MadeChange; 2183 2184 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2185 for (auto &P : VVT) { 2186 MVT::SimpleValueType VT = P.second.SimpleTy; 2187 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2188 continue; 2189 unsigned Size = MVT(VT).getSizeInBits(); 2190 // Make sure that the value is representable for this type. 2191 if (Size >= 32) 2192 continue; 2193 // Check that the value doesn't use more bits than we have. It must 2194 // either be a sign- or zero-extended equivalent of the original. 2195 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2196 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2197 SignBitAndAbove == 1) 2198 continue; 2199 2200 TP.error("Integer value '" + Twine(II->getValue()) + 2201 "' is out of range for type '" + getEnumName(VT) + "'!"); 2202 break; 2203 } 2204 return MadeChange; 2205 } 2206 2207 return false; 2208 } 2209 2210 // special handling for set, which isn't really an SDNode. 2211 if (getOperator()->getName() == "set") { 2212 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 2213 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 2214 unsigned NC = getNumChildren(); 2215 2216 TreePatternNode *SetVal = getChild(NC-1); 2217 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 2218 2219 for (unsigned i = 0; i < NC-1; ++i) { 2220 TreePatternNode *Child = getChild(i); 2221 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 2222 2223 // Types of operands must match. 2224 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 2225 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 2226 } 2227 return MadeChange; 2228 } 2229 2230 if (getOperator()->getName() == "implicit") { 2231 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 2232 2233 bool MadeChange = false; 2234 for (unsigned i = 0; i < getNumChildren(); ++i) 2235 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2236 return MadeChange; 2237 } 2238 2239 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2240 bool MadeChange = false; 2241 2242 // Apply the result type to the node. 2243 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2244 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2245 2246 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2247 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2248 2249 if (getNumChildren() != NumParamVTs + 1) { 2250 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2251 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2252 return false; 2253 } 2254 2255 // Apply type info to the intrinsic ID. 2256 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2257 2258 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2259 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2260 2261 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2262 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2263 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2264 } 2265 return MadeChange; 2266 } 2267 2268 if (getOperator()->isSubClassOf("SDNode")) { 2269 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2270 2271 // Check that the number of operands is sane. Negative operands -> varargs. 2272 if (NI.getNumOperands() >= 0 && 2273 getNumChildren() != (unsigned)NI.getNumOperands()) { 2274 TP.error(getOperator()->getName() + " node requires exactly " + 2275 Twine(NI.getNumOperands()) + " operands!"); 2276 return false; 2277 } 2278 2279 bool MadeChange = false; 2280 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2281 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2282 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2283 return MadeChange; 2284 } 2285 2286 if (getOperator()->isSubClassOf("Instruction")) { 2287 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2288 CodeGenInstruction &InstInfo = 2289 CDP.getTargetInfo().getInstruction(getOperator()); 2290 2291 bool MadeChange = false; 2292 2293 // Apply the result types to the node, these come from the things in the 2294 // (outs) list of the instruction. 2295 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2296 Inst.getNumResults()); 2297 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2298 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2299 2300 // If the instruction has implicit defs, we apply the first one as a result. 2301 // FIXME: This sucks, it should apply all implicit defs. 2302 if (!InstInfo.ImplicitDefs.empty()) { 2303 unsigned ResNo = NumResultsToAdd; 2304 2305 // FIXME: Generalize to multiple possible types and multiple possible 2306 // ImplicitDefs. 2307 MVT::SimpleValueType VT = 2308 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2309 2310 if (VT != MVT::Other) 2311 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2312 } 2313 2314 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2315 // be the same. 2316 if (getOperator()->getName() == "INSERT_SUBREG") { 2317 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2318 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2319 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2320 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2321 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2322 // variadic. 2323 2324 unsigned NChild = getNumChildren(); 2325 if (NChild < 3) { 2326 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2327 return false; 2328 } 2329 2330 if (NChild % 2 == 0) { 2331 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2332 return false; 2333 } 2334 2335 if (!isOperandClass(getChild(0), "RegisterClass")) { 2336 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2337 return false; 2338 } 2339 2340 for (unsigned I = 1; I < NChild; I += 2) { 2341 TreePatternNode *SubIdxChild = getChild(I + 1); 2342 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2343 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2344 Twine(I + 1) + "!"); 2345 return false; 2346 } 2347 } 2348 } 2349 2350 unsigned ChildNo = 0; 2351 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2352 Record *OperandNode = Inst.getOperand(i); 2353 2354 // If the instruction expects a predicate or optional def operand, we 2355 // codegen this by setting the operand to it's default value if it has a 2356 // non-empty DefaultOps field. 2357 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 2358 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 2359 continue; 2360 2361 // Verify that we didn't run out of provided operands. 2362 if (ChildNo >= getNumChildren()) { 2363 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2364 return false; 2365 } 2366 2367 TreePatternNode *Child = getChild(ChildNo++); 2368 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2369 2370 // If the operand has sub-operands, they may be provided by distinct 2371 // child patterns, so attempt to match each sub-operand separately. 2372 if (OperandNode->isSubClassOf("Operand")) { 2373 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2374 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2375 // But don't do that if the whole operand is being provided by 2376 // a single ComplexPattern-related Operand. 2377 2378 if (Child->getNumMIResults(CDP) < NumArgs) { 2379 // Match first sub-operand against the child we already have. 2380 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2381 MadeChange |= 2382 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2383 2384 // And the remaining sub-operands against subsequent children. 2385 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2386 if (ChildNo >= getNumChildren()) { 2387 emitTooFewOperandsError(TP, getOperator()->getName(), 2388 getNumChildren()); 2389 return false; 2390 } 2391 Child = getChild(ChildNo++); 2392 2393 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2394 MadeChange |= 2395 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2396 } 2397 continue; 2398 } 2399 } 2400 } 2401 2402 // If we didn't match by pieces above, attempt to match the whole 2403 // operand now. 2404 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2405 } 2406 2407 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2408 emitTooManyOperandsError(TP, getOperator()->getName(), 2409 ChildNo, getNumChildren()); 2410 return false; 2411 } 2412 2413 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2414 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2415 return MadeChange; 2416 } 2417 2418 if (getOperator()->isSubClassOf("ComplexPattern")) { 2419 bool MadeChange = false; 2420 2421 for (unsigned i = 0; i < getNumChildren(); ++i) 2422 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2423 2424 return MadeChange; 2425 } 2426 2427 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2428 2429 // Node transforms always take one operand. 2430 if (getNumChildren() != 1) { 2431 TP.error("Node transform '" + getOperator()->getName() + 2432 "' requires one operand!"); 2433 return false; 2434 } 2435 2436 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2437 return MadeChange; 2438 } 2439 2440 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2441 /// RHS of a commutative operation, not the on LHS. 2442 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2443 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2444 return true; 2445 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2446 return true; 2447 return false; 2448 } 2449 2450 2451 /// canPatternMatch - If it is impossible for this pattern to match on this 2452 /// target, fill in Reason and return false. Otherwise, return true. This is 2453 /// used as a sanity check for .td files (to prevent people from writing stuff 2454 /// that can never possibly work), and to prevent the pattern permuter from 2455 /// generating stuff that is useless. 2456 bool TreePatternNode::canPatternMatch(std::string &Reason, 2457 const CodeGenDAGPatterns &CDP) { 2458 if (isLeaf()) return true; 2459 2460 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2461 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2462 return false; 2463 2464 // If this is an intrinsic, handle cases that would make it not match. For 2465 // example, if an operand is required to be an immediate. 2466 if (getOperator()->isSubClassOf("Intrinsic")) { 2467 // TODO: 2468 return true; 2469 } 2470 2471 if (getOperator()->isSubClassOf("ComplexPattern")) 2472 return true; 2473 2474 // If this node is a commutative operator, check that the LHS isn't an 2475 // immediate. 2476 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2477 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2478 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2479 // Scan all of the operands of the node and make sure that only the last one 2480 // is a constant node, unless the RHS also is. 2481 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2482 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2483 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2484 if (OnlyOnRHSOfCommutative(getChild(i))) { 2485 Reason="Immediate value must be on the RHS of commutative operators!"; 2486 return false; 2487 } 2488 } 2489 } 2490 2491 return true; 2492 } 2493 2494 //===----------------------------------------------------------------------===// 2495 // TreePattern implementation 2496 // 2497 2498 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2499 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2500 isInputPattern(isInput), HasError(false), 2501 Infer(*this) { 2502 for (Init *I : RawPat->getValues()) 2503 Trees.push_back(ParseTreePattern(I, "")); 2504 } 2505 2506 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2507 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2508 isInputPattern(isInput), HasError(false), 2509 Infer(*this) { 2510 Trees.push_back(ParseTreePattern(Pat, "")); 2511 } 2512 2513 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2514 CodeGenDAGPatterns &cdp) 2515 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2516 Infer(*this) { 2517 Trees.push_back(Pat); 2518 } 2519 2520 void TreePattern::error(const Twine &Msg) { 2521 if (HasError) 2522 return; 2523 dump(); 2524 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2525 HasError = true; 2526 } 2527 2528 void TreePattern::ComputeNamedNodes() { 2529 for (TreePatternNodePtr &Tree : Trees) 2530 ComputeNamedNodes(Tree.get()); 2531 } 2532 2533 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2534 if (!N->getName().empty()) 2535 NamedNodes[N->getName()].push_back(N); 2536 2537 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2538 ComputeNamedNodes(N->getChild(i)); 2539 } 2540 2541 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2542 StringRef OpName) { 2543 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2544 Record *R = DI->getDef(); 2545 2546 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2547 // TreePatternNode of its own. For example: 2548 /// (foo GPR, imm) -> (foo GPR, (imm)) 2549 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2550 return ParseTreePattern( 2551 DagInit::get(DI, nullptr, 2552 std::vector<std::pair<Init*, StringInit*> >()), 2553 OpName); 2554 2555 // Input argument? 2556 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2557 if (R->getName() == "node" && !OpName.empty()) { 2558 if (OpName.empty()) 2559 error("'node' argument requires a name to match with operand list"); 2560 Args.push_back(OpName); 2561 } 2562 2563 Res->setName(OpName); 2564 return Res; 2565 } 2566 2567 // ?:$name or just $name. 2568 if (isa<UnsetInit>(TheInit)) { 2569 if (OpName.empty()) 2570 error("'?' argument requires a name to match with operand list"); 2571 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2572 Args.push_back(OpName); 2573 Res->setName(OpName); 2574 return Res; 2575 } 2576 2577 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2578 if (!OpName.empty()) 2579 error("Constant int or bit argument should not have a name!"); 2580 if (isa<BitInit>(TheInit)) 2581 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2582 return std::make_shared<TreePatternNode>(TheInit, 1); 2583 } 2584 2585 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2586 // Turn this into an IntInit. 2587 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2588 if (!II || !isa<IntInit>(II)) 2589 error("Bits value must be constants!"); 2590 return ParseTreePattern(II, OpName); 2591 } 2592 2593 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2594 if (!Dag) { 2595 TheInit->print(errs()); 2596 error("Pattern has unexpected init kind!"); 2597 } 2598 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2599 if (!OpDef) error("Pattern has unexpected operator type!"); 2600 Record *Operator = OpDef->getDef(); 2601 2602 if (Operator->isSubClassOf("ValueType")) { 2603 // If the operator is a ValueType, then this must be "type cast" of a leaf 2604 // node. 2605 if (Dag->getNumArgs() != 1) 2606 error("Type cast only takes one operand!"); 2607 2608 TreePatternNodePtr New = 2609 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2610 2611 // Apply the type cast. 2612 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2613 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2614 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2615 2616 if (!OpName.empty()) 2617 error("ValueType cast should not have a name!"); 2618 return New; 2619 } 2620 2621 // Verify that this is something that makes sense for an operator. 2622 if (!Operator->isSubClassOf("PatFrag") && 2623 !Operator->isSubClassOf("SDNode") && 2624 !Operator->isSubClassOf("Instruction") && 2625 !Operator->isSubClassOf("SDNodeXForm") && 2626 !Operator->isSubClassOf("Intrinsic") && 2627 !Operator->isSubClassOf("ComplexPattern") && 2628 Operator->getName() != "set" && 2629 Operator->getName() != "implicit") 2630 error("Unrecognized node '" + Operator->getName() + "'!"); 2631 2632 // Check to see if this is something that is illegal in an input pattern. 2633 if (isInputPattern) { 2634 if (Operator->isSubClassOf("Instruction") || 2635 Operator->isSubClassOf("SDNodeXForm")) 2636 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2637 } else { 2638 if (Operator->isSubClassOf("Intrinsic")) 2639 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2640 2641 if (Operator->isSubClassOf("SDNode") && 2642 Operator->getName() != "imm" && 2643 Operator->getName() != "fpimm" && 2644 Operator->getName() != "tglobaltlsaddr" && 2645 Operator->getName() != "tconstpool" && 2646 Operator->getName() != "tjumptable" && 2647 Operator->getName() != "tframeindex" && 2648 Operator->getName() != "texternalsym" && 2649 Operator->getName() != "tblockaddress" && 2650 Operator->getName() != "tglobaladdr" && 2651 Operator->getName() != "bb" && 2652 Operator->getName() != "vt" && 2653 Operator->getName() != "mcsym") 2654 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2655 } 2656 2657 std::vector<TreePatternNodePtr> Children; 2658 2659 // Parse all the operands. 2660 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2661 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2662 2663 // Get the actual number of results before Operator is converted to an intrinsic 2664 // node (which is hard-coded to have either zero or one result). 2665 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2666 2667 // If the operator is an intrinsic, then this is just syntactic sugar for 2668 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2669 // convert the intrinsic name to a number. 2670 if (Operator->isSubClassOf("Intrinsic")) { 2671 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2672 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2673 2674 // If this intrinsic returns void, it must have side-effects and thus a 2675 // chain. 2676 if (Int.IS.RetVTs.empty()) 2677 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2678 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2679 // Has side-effects, requires chain. 2680 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2681 else // Otherwise, no chain. 2682 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2683 2684 Children.insert(Children.begin(), 2685 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2686 } 2687 2688 if (Operator->isSubClassOf("ComplexPattern")) { 2689 for (unsigned i = 0; i < Children.size(); ++i) { 2690 TreePatternNodePtr Child = Children[i]; 2691 2692 if (Child->getName().empty()) 2693 error("All arguments to a ComplexPattern must be named"); 2694 2695 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2696 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2697 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2698 auto OperandId = std::make_pair(Operator, i); 2699 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2700 if (PrevOp != ComplexPatternOperands.end()) { 2701 if (PrevOp->getValue() != OperandId) 2702 error("All ComplexPattern operands must appear consistently: " 2703 "in the same order in just one ComplexPattern instance."); 2704 } else 2705 ComplexPatternOperands[Child->getName()] = OperandId; 2706 } 2707 } 2708 2709 TreePatternNodePtr Result = 2710 std::make_shared<TreePatternNode>(Operator, Children, NumResults); 2711 Result->setName(OpName); 2712 2713 if (Dag->getName()) { 2714 assert(Result->getName().empty()); 2715 Result->setName(Dag->getNameStr()); 2716 } 2717 return Result; 2718 } 2719 2720 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2721 /// will never match in favor of something obvious that will. This is here 2722 /// strictly as a convenience to target authors because it allows them to write 2723 /// more type generic things and have useless type casts fold away. 2724 /// 2725 /// This returns true if any change is made. 2726 static bool SimplifyTree(TreePatternNodePtr &N) { 2727 if (N->isLeaf()) 2728 return false; 2729 2730 // If we have a bitconvert with a resolved type and if the source and 2731 // destination types are the same, then the bitconvert is useless, remove it. 2732 if (N->getOperator()->getName() == "bitconvert" && 2733 N->getExtType(0).isValueTypeByHwMode(false) && 2734 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2735 N->getName().empty()) { 2736 N = N->getChildShared(0); 2737 SimplifyTree(N); 2738 return true; 2739 } 2740 2741 // Walk all children. 2742 bool MadeChange = false; 2743 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2744 TreePatternNodePtr Child = N->getChildShared(i); 2745 MadeChange |= SimplifyTree(Child); 2746 N->setChild(i, std::move(Child)); 2747 } 2748 return MadeChange; 2749 } 2750 2751 2752 2753 /// InferAllTypes - Infer/propagate as many types throughout the expression 2754 /// patterns as possible. Return true if all types are inferred, false 2755 /// otherwise. Flags an error if a type contradiction is found. 2756 bool TreePattern:: 2757 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2758 if (NamedNodes.empty()) 2759 ComputeNamedNodes(); 2760 2761 bool MadeChange = true; 2762 while (MadeChange) { 2763 MadeChange = false; 2764 for (TreePatternNodePtr &Tree : Trees) { 2765 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2766 MadeChange |= SimplifyTree(Tree); 2767 } 2768 2769 // If there are constraints on our named nodes, apply them. 2770 for (auto &Entry : NamedNodes) { 2771 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2772 2773 // If we have input named node types, propagate their types to the named 2774 // values here. 2775 if (InNamedTypes) { 2776 if (!InNamedTypes->count(Entry.getKey())) { 2777 error("Node '" + std::string(Entry.getKey()) + 2778 "' in output pattern but not input pattern"); 2779 return true; 2780 } 2781 2782 const SmallVectorImpl<TreePatternNode*> &InNodes = 2783 InNamedTypes->find(Entry.getKey())->second; 2784 2785 // The input types should be fully resolved by now. 2786 for (TreePatternNode *Node : Nodes) { 2787 // If this node is a register class, and it is the root of the pattern 2788 // then we're mapping something onto an input register. We allow 2789 // changing the type of the input register in this case. This allows 2790 // us to match things like: 2791 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2792 if (Node == Trees[0].get() && Node->isLeaf()) { 2793 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2794 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2795 DI->getDef()->isSubClassOf("RegisterOperand"))) 2796 continue; 2797 } 2798 2799 assert(Node->getNumTypes() == 1 && 2800 InNodes[0]->getNumTypes() == 1 && 2801 "FIXME: cannot name multiple result nodes yet"); 2802 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2803 *this); 2804 } 2805 } 2806 2807 // If there are multiple nodes with the same name, they must all have the 2808 // same type. 2809 if (Entry.second.size() > 1) { 2810 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2811 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2812 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2813 "FIXME: cannot name multiple result nodes yet"); 2814 2815 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2816 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2817 } 2818 } 2819 } 2820 } 2821 2822 bool HasUnresolvedTypes = false; 2823 for (const TreePatternNodePtr &Tree : Trees) 2824 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2825 return !HasUnresolvedTypes; 2826 } 2827 2828 void TreePattern::print(raw_ostream &OS) const { 2829 OS << getRecord()->getName(); 2830 if (!Args.empty()) { 2831 OS << "(" << Args[0]; 2832 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2833 OS << ", " << Args[i]; 2834 OS << ")"; 2835 } 2836 OS << ": "; 2837 2838 if (Trees.size() > 1) 2839 OS << "[\n"; 2840 for (const TreePatternNodePtr &Tree : Trees) { 2841 OS << "\t"; 2842 Tree->print(OS); 2843 OS << "\n"; 2844 } 2845 2846 if (Trees.size() > 1) 2847 OS << "]\n"; 2848 } 2849 2850 void TreePattern::dump() const { print(errs()); } 2851 2852 //===----------------------------------------------------------------------===// 2853 // CodeGenDAGPatterns implementation 2854 // 2855 2856 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 2857 PatternRewriterFn PatternRewriter) 2858 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 2859 PatternRewriter(PatternRewriter) { 2860 2861 Intrinsics = CodeGenIntrinsicTable(Records, false); 2862 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2863 ParseNodeInfo(); 2864 ParseNodeTransforms(); 2865 ParseComplexPatterns(); 2866 ParsePatternFragments(); 2867 ParseDefaultOperands(); 2868 ParseInstructions(); 2869 ParsePatternFragments(/*OutFrags*/true); 2870 ParsePatterns(); 2871 2872 // Break patterns with parameterized types into a series of patterns, 2873 // where each one has a fixed type and is predicated on the conditions 2874 // of the associated HW mode. 2875 ExpandHwModeBasedTypes(); 2876 2877 // Generate variants. For example, commutative patterns can match 2878 // multiple ways. Add them to PatternsToMatch as well. 2879 GenerateVariants(); 2880 2881 // Infer instruction flags. For example, we can detect loads, 2882 // stores, and side effects in many cases by examining an 2883 // instruction's pattern. 2884 InferInstructionFlags(); 2885 2886 // Verify that instruction flags match the patterns. 2887 VerifyInstructionFlags(); 2888 } 2889 2890 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2891 Record *N = Records.getDef(Name); 2892 if (!N || !N->isSubClassOf("SDNode")) 2893 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2894 2895 return N; 2896 } 2897 2898 // Parse all of the SDNode definitions for the target, populating SDNodes. 2899 void CodeGenDAGPatterns::ParseNodeInfo() { 2900 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2901 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 2902 2903 while (!Nodes.empty()) { 2904 Record *R = Nodes.back(); 2905 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 2906 Nodes.pop_back(); 2907 } 2908 2909 // Get the builtin intrinsic nodes. 2910 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2911 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2912 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2913 } 2914 2915 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2916 /// map, and emit them to the file as functions. 2917 void CodeGenDAGPatterns::ParseNodeTransforms() { 2918 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2919 while (!Xforms.empty()) { 2920 Record *XFormNode = Xforms.back(); 2921 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2922 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 2923 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2924 2925 Xforms.pop_back(); 2926 } 2927 } 2928 2929 void CodeGenDAGPatterns::ParseComplexPatterns() { 2930 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2931 while (!AMs.empty()) { 2932 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2933 AMs.pop_back(); 2934 } 2935 } 2936 2937 2938 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2939 /// file, building up the PatternFragments map. After we've collected them all, 2940 /// inline fragments together as necessary, so that there are no references left 2941 /// inside a pattern fragment to a pattern fragment. 2942 /// 2943 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2944 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2945 2946 // First step, parse all of the fragments. 2947 for (Record *Frag : Fragments) { 2948 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2949 continue; 2950 2951 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2952 TreePattern *P = 2953 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2954 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2955 *this)).get(); 2956 2957 // Validate the argument list, converting it to set, to discard duplicates. 2958 std::vector<std::string> &Args = P->getArgList(); 2959 // Copy the args so we can take StringRefs to them. 2960 auto ArgsCopy = Args; 2961 SmallDenseSet<StringRef, 4> OperandsSet; 2962 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 2963 2964 if (OperandsSet.count("")) 2965 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2966 2967 // Parse the operands list. 2968 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2969 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2970 // Special cases: ops == outs == ins. Different names are used to 2971 // improve readability. 2972 if (!OpsOp || 2973 (OpsOp->getDef()->getName() != "ops" && 2974 OpsOp->getDef()->getName() != "outs" && 2975 OpsOp->getDef()->getName() != "ins")) 2976 P->error("Operands list should start with '(ops ... '!"); 2977 2978 // Copy over the arguments. 2979 Args.clear(); 2980 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2981 if (!isa<DefInit>(OpsList->getArg(j)) || 2982 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2983 P->error("Operands list should all be 'node' values."); 2984 if (!OpsList->getArgName(j)) 2985 P->error("Operands list should have names for each operand!"); 2986 StringRef ArgNameStr = OpsList->getArgNameStr(j); 2987 if (!OperandsSet.count(ArgNameStr)) 2988 P->error("'" + ArgNameStr + 2989 "' does not occur in pattern or was multiply specified!"); 2990 OperandsSet.erase(ArgNameStr); 2991 Args.push_back(ArgNameStr); 2992 } 2993 2994 if (!OperandsSet.empty()) 2995 P->error("Operands list does not contain an entry for operand '" + 2996 *OperandsSet.begin() + "'!"); 2997 2998 // If there is a code init for this fragment, keep track of the fact that 2999 // this fragment uses it. 3000 TreePredicateFn PredFn(P); 3001 if (!PredFn.isAlwaysTrue()) 3002 P->getOnlyTree()->addPredicateFn(PredFn); 3003 3004 // If there is a node transformation corresponding to this, keep track of 3005 // it. 3006 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3007 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3008 P->getOnlyTree()->setTransformFn(Transform); 3009 } 3010 3011 // Now that we've parsed all of the tree fragments, do a closure on them so 3012 // that there are not references to PatFrags left inside of them. 3013 for (Record *Frag : Fragments) { 3014 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3015 continue; 3016 3017 TreePattern &ThePat = *PatternFragments[Frag]; 3018 ThePat.InlinePatternFragments(); 3019 3020 // Infer as many types as possible. Don't worry about it if we don't infer 3021 // all of them, some may depend on the inputs of the pattern. 3022 ThePat.InferAllTypes(); 3023 ThePat.resetError(); 3024 3025 // If debugging, print out the pattern fragment result. 3026 LLVM_DEBUG(ThePat.dump()); 3027 } 3028 } 3029 3030 void CodeGenDAGPatterns::ParseDefaultOperands() { 3031 std::vector<Record*> DefaultOps; 3032 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3033 3034 // Find some SDNode. 3035 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3036 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3037 3038 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3039 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3040 3041 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3042 // SomeSDnode so that we can parse this. 3043 std::vector<std::pair<Init*, StringInit*> > Ops; 3044 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3045 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3046 DefaultInfo->getArgName(op))); 3047 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3048 3049 // Create a TreePattern to parse this. 3050 TreePattern P(DefaultOps[i], DI, false, *this); 3051 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3052 3053 // Copy the operands over into a DAGDefaultOperand. 3054 DAGDefaultOperand DefaultOpInfo; 3055 3056 const TreePatternNodePtr &T = P.getTree(0); 3057 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3058 TreePatternNodePtr TPN = T->getChildShared(op); 3059 while (TPN->ApplyTypeConstraints(P, false)) 3060 /* Resolve all types */; 3061 3062 if (TPN->ContainsUnresolvedType(P)) { 3063 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3064 DefaultOps[i]->getName() + 3065 "' doesn't have a concrete type!"); 3066 } 3067 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3068 } 3069 3070 // Insert it into the DefaultOperands map so we can find it later. 3071 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3072 } 3073 } 3074 3075 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3076 /// instruction input. Return true if this is a real use. 3077 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3078 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3079 // No name -> not interesting. 3080 if (Pat->getName().empty()) { 3081 if (Pat->isLeaf()) { 3082 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3083 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3084 DI->getDef()->isSubClassOf("RegisterOperand"))) 3085 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3086 } 3087 return false; 3088 } 3089 3090 Record *Rec; 3091 if (Pat->isLeaf()) { 3092 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3093 if (!DI) 3094 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3095 Rec = DI->getDef(); 3096 } else { 3097 Rec = Pat->getOperator(); 3098 } 3099 3100 // SRCVALUE nodes are ignored. 3101 if (Rec->getName() == "srcvalue") 3102 return false; 3103 3104 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3105 if (!Slot) { 3106 Slot = Pat; 3107 return true; 3108 } 3109 Record *SlotRec; 3110 if (Slot->isLeaf()) { 3111 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3112 } else { 3113 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3114 SlotRec = Slot->getOperator(); 3115 } 3116 3117 // Ensure that the inputs agree if we've already seen this input. 3118 if (Rec != SlotRec) 3119 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3120 if (Slot->getExtTypes() != Pat->getExtTypes()) 3121 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3122 return true; 3123 } 3124 3125 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3126 /// part of "I", the instruction), computing the set of inputs and outputs of 3127 /// the pattern. Report errors if we see anything naughty. 3128 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3129 TreePattern &I, TreePatternNodePtr Pat, 3130 std::map<std::string, TreePatternNodePtr> &InstInputs, 3131 std::map<std::string, TreePatternNodePtr> &InstResults, 3132 std::vector<Record *> &InstImpResults) { 3133 if (Pat->isLeaf()) { 3134 bool isUse = HandleUse(I, Pat, InstInputs); 3135 if (!isUse && Pat->getTransformFn()) 3136 I.error("Cannot specify a transform function for a non-input value!"); 3137 return; 3138 } 3139 3140 if (Pat->getOperator()->getName() == "implicit") { 3141 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3142 TreePatternNode *Dest = Pat->getChild(i); 3143 if (!Dest->isLeaf()) 3144 I.error("implicitly defined value should be a register!"); 3145 3146 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3147 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3148 I.error("implicitly defined value should be a register!"); 3149 InstImpResults.push_back(Val->getDef()); 3150 } 3151 return; 3152 } 3153 3154 if (Pat->getOperator()->getName() != "set") { 3155 // If this is not a set, verify that the children nodes are not void typed, 3156 // and recurse. 3157 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3158 if (Pat->getChild(i)->getNumTypes() == 0) 3159 I.error("Cannot have void nodes inside of patterns!"); 3160 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3161 InstResults, InstImpResults); 3162 } 3163 3164 // If this is a non-leaf node with no children, treat it basically as if 3165 // it were a leaf. This handles nodes like (imm). 3166 bool isUse = HandleUse(I, Pat, InstInputs); 3167 3168 if (!isUse && Pat->getTransformFn()) 3169 I.error("Cannot specify a transform function for a non-input value!"); 3170 return; 3171 } 3172 3173 // Otherwise, this is a set, validate and collect instruction results. 3174 if (Pat->getNumChildren() == 0) 3175 I.error("set requires operands!"); 3176 3177 if (Pat->getTransformFn()) 3178 I.error("Cannot specify a transform function on a set node!"); 3179 3180 // Check the set destinations. 3181 unsigned NumDests = Pat->getNumChildren()-1; 3182 for (unsigned i = 0; i != NumDests; ++i) { 3183 TreePatternNodePtr Dest = Pat->getChildShared(i); 3184 if (!Dest->isLeaf()) 3185 I.error("set destination should be a register!"); 3186 3187 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3188 if (!Val) { 3189 I.error("set destination should be a register!"); 3190 continue; 3191 } 3192 3193 if (Val->getDef()->isSubClassOf("RegisterClass") || 3194 Val->getDef()->isSubClassOf("ValueType") || 3195 Val->getDef()->isSubClassOf("RegisterOperand") || 3196 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3197 if (Dest->getName().empty()) 3198 I.error("set destination must have a name!"); 3199 if (InstResults.count(Dest->getName())) 3200 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3201 InstResults[Dest->getName()] = Dest; 3202 } else if (Val->getDef()->isSubClassOf("Register")) { 3203 InstImpResults.push_back(Val->getDef()); 3204 } else { 3205 I.error("set destination should be a register!"); 3206 } 3207 } 3208 3209 // Verify and collect info from the computation. 3210 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3211 InstResults, InstImpResults); 3212 } 3213 3214 //===----------------------------------------------------------------------===// 3215 // Instruction Analysis 3216 //===----------------------------------------------------------------------===// 3217 3218 class InstAnalyzer { 3219 const CodeGenDAGPatterns &CDP; 3220 public: 3221 bool hasSideEffects; 3222 bool mayStore; 3223 bool mayLoad; 3224 bool isBitcast; 3225 bool isVariadic; 3226 3227 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3228 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3229 isBitcast(false), isVariadic(false) {} 3230 3231 void Analyze(const TreePattern *Pat) { 3232 // Assume only the first tree is the pattern. The others are clobber nodes. 3233 AnalyzeNode(Pat->getTree(0).get()); 3234 } 3235 3236 void Analyze(const PatternToMatch &Pat) { 3237 AnalyzeNode(Pat.getSrcPattern()); 3238 } 3239 3240 private: 3241 bool IsNodeBitcast(const TreePatternNode *N) const { 3242 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3243 return false; 3244 3245 if (N->getNumChildren() != 2) 3246 return false; 3247 3248 const TreePatternNode *N0 = N->getChild(0); 3249 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 3250 return false; 3251 3252 const TreePatternNode *N1 = N->getChild(1); 3253 if (N1->isLeaf()) 3254 return false; 3255 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 3256 return false; 3257 3258 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 3259 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3260 return false; 3261 return OpInfo.getEnumName() == "ISD::BITCAST"; 3262 } 3263 3264 public: 3265 void AnalyzeNode(const TreePatternNode *N) { 3266 if (N->isLeaf()) { 3267 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3268 Record *LeafRec = DI->getDef(); 3269 // Handle ComplexPattern leaves. 3270 if (LeafRec->isSubClassOf("ComplexPattern")) { 3271 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3272 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3273 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3274 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3275 } 3276 } 3277 return; 3278 } 3279 3280 // Analyze children. 3281 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3282 AnalyzeNode(N->getChild(i)); 3283 3284 // Ignore set nodes, which are not SDNodes. 3285 if (N->getOperator()->getName() == "set") { 3286 isBitcast = IsNodeBitcast(N); 3287 return; 3288 } 3289 3290 // Notice properties of the node. 3291 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3292 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3293 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3294 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3295 3296 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3297 // If this is an intrinsic, analyze it. 3298 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3299 mayLoad = true;// These may load memory. 3300 3301 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3302 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3303 3304 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3305 IntInfo->hasSideEffects) 3306 // ReadWriteMem intrinsics can have other strange effects. 3307 hasSideEffects = true; 3308 } 3309 } 3310 3311 }; 3312 3313 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3314 const InstAnalyzer &PatInfo, 3315 Record *PatDef) { 3316 bool Error = false; 3317 3318 // Remember where InstInfo got its flags. 3319 if (InstInfo.hasUndefFlags()) 3320 InstInfo.InferredFrom = PatDef; 3321 3322 // Check explicitly set flags for consistency. 3323 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3324 !InstInfo.hasSideEffects_Unset) { 3325 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3326 // the pattern has no side effects. That could be useful for div/rem 3327 // instructions that may trap. 3328 if (!InstInfo.hasSideEffects) { 3329 Error = true; 3330 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3331 Twine(InstInfo.hasSideEffects)); 3332 } 3333 } 3334 3335 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3336 Error = true; 3337 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3338 Twine(InstInfo.mayStore)); 3339 } 3340 3341 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3342 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3343 // Some targets translate immediates to loads. 3344 if (!InstInfo.mayLoad) { 3345 Error = true; 3346 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3347 Twine(InstInfo.mayLoad)); 3348 } 3349 } 3350 3351 // Transfer inferred flags. 3352 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3353 InstInfo.mayStore |= PatInfo.mayStore; 3354 InstInfo.mayLoad |= PatInfo.mayLoad; 3355 3356 // These flags are silently added without any verification. 3357 InstInfo.isBitcast |= PatInfo.isBitcast; 3358 3359 // Don't infer isVariadic. This flag means something different on SDNodes and 3360 // instructions. For example, a CALL SDNode is variadic because it has the 3361 // call arguments as operands, but a CALL instruction is not variadic - it 3362 // has argument registers as implicit, not explicit uses. 3363 3364 return Error; 3365 } 3366 3367 /// hasNullFragReference - Return true if the DAG has any reference to the 3368 /// null_frag operator. 3369 static bool hasNullFragReference(DagInit *DI) { 3370 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3371 if (!OpDef) return false; 3372 Record *Operator = OpDef->getDef(); 3373 3374 // If this is the null fragment, return true. 3375 if (Operator->getName() == "null_frag") return true; 3376 // If any of the arguments reference the null fragment, return true. 3377 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3378 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3379 if (Arg && hasNullFragReference(Arg)) 3380 return true; 3381 } 3382 3383 return false; 3384 } 3385 3386 /// hasNullFragReference - Return true if any DAG in the list references 3387 /// the null_frag operator. 3388 static bool hasNullFragReference(ListInit *LI) { 3389 for (Init *I : LI->getValues()) { 3390 DagInit *DI = dyn_cast<DagInit>(I); 3391 assert(DI && "non-dag in an instruction Pattern list?!"); 3392 if (hasNullFragReference(DI)) 3393 return true; 3394 } 3395 return false; 3396 } 3397 3398 /// Get all the instructions in a tree. 3399 static void 3400 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3401 if (Tree->isLeaf()) 3402 return; 3403 if (Tree->getOperator()->isSubClassOf("Instruction")) 3404 Instrs.push_back(Tree->getOperator()); 3405 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3406 getInstructionsInTree(Tree->getChild(i), Instrs); 3407 } 3408 3409 /// Check the class of a pattern leaf node against the instruction operand it 3410 /// represents. 3411 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3412 Record *Leaf) { 3413 if (OI.Rec == Leaf) 3414 return true; 3415 3416 // Allow direct value types to be used in instruction set patterns. 3417 // The type will be checked later. 3418 if (Leaf->isSubClassOf("ValueType")) 3419 return true; 3420 3421 // Patterns can also be ComplexPattern instances. 3422 if (Leaf->isSubClassOf("ComplexPattern")) 3423 return true; 3424 3425 return false; 3426 } 3427 3428 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 3429 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3430 3431 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3432 3433 // Parse the instruction. 3434 auto I = llvm::make_unique<TreePattern>(CGI.TheDef, Pat, true, *this); 3435 // Inline pattern fragments into it. 3436 I->InlinePatternFragments(); 3437 3438 // Infer as many types as possible. If we cannot infer all of them, we can 3439 // never do anything with this instruction pattern: report it to the user. 3440 if (!I->InferAllTypes()) 3441 I->error("Could not infer all types in pattern!"); 3442 3443 // InstInputs - Keep track of all of the inputs of the instruction, along 3444 // with the record they are declared as. 3445 std::map<std::string, TreePatternNodePtr> InstInputs; 3446 3447 // InstResults - Keep track of all the virtual registers that are 'set' 3448 // in the instruction, including what reg class they are. 3449 std::map<std::string, TreePatternNodePtr> InstResults; 3450 3451 std::vector<Record*> InstImpResults; 3452 3453 // Verify that the top-level forms in the instruction are of void type, and 3454 // fill in the InstResults map. 3455 SmallString<32> TypesString; 3456 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 3457 TypesString.clear(); 3458 TreePatternNodePtr Pat = I->getTree(j); 3459 if (Pat->getNumTypes() != 0) { 3460 raw_svector_ostream OS(TypesString); 3461 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3462 if (k > 0) 3463 OS << ", "; 3464 Pat->getExtType(k).writeToStream(OS); 3465 } 3466 I->error("Top-level forms in instruction pattern should have" 3467 " void types, has types " + 3468 OS.str()); 3469 } 3470 3471 // Find inputs and outputs, and verify the structure of the uses/defs. 3472 FindPatternInputsAndOutputs(*I, Pat, InstInputs, InstResults, 3473 InstImpResults); 3474 } 3475 3476 // Now that we have inputs and outputs of the pattern, inspect the operands 3477 // list for the instruction. This determines the order that operands are 3478 // added to the machine instruction the node corresponds to. 3479 unsigned NumResults = InstResults.size(); 3480 3481 // Parse the operands list from the (ops) list, validating it. 3482 assert(I->getArgList().empty() && "Args list should still be empty here!"); 3483 3484 // Check that all of the results occur first in the list. 3485 std::vector<Record*> Results; 3486 SmallVector<TreePatternNodePtr, 2> ResNodes; 3487 for (unsigned i = 0; i != NumResults; ++i) { 3488 if (i == CGI.Operands.size()) 3489 I->error("'" + InstResults.begin()->first + 3490 "' set but does not appear in operand list!"); 3491 const std::string &OpName = CGI.Operands[i].Name; 3492 3493 // Check that it exists in InstResults. 3494 TreePatternNodePtr RNode = InstResults[OpName]; 3495 if (!RNode) 3496 I->error("Operand $" + OpName + " does not exist in operand list!"); 3497 3498 3499 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3500 ResNodes.push_back(std::move(RNode)); 3501 if (!R) 3502 I->error("Operand $" + OpName + " should be a set destination: all " 3503 "outputs must occur before inputs in operand list!"); 3504 3505 if (!checkOperandClass(CGI.Operands[i], R)) 3506 I->error("Operand $" + OpName + " class mismatch!"); 3507 3508 // Remember the return type. 3509 Results.push_back(CGI.Operands[i].Rec); 3510 3511 // Okay, this one checks out. 3512 InstResults.erase(OpName); 3513 } 3514 3515 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3516 // the copy while we're checking the inputs. 3517 std::map<std::string, TreePatternNodePtr> InstInputsCheck(InstInputs); 3518 3519 std::vector<TreePatternNodePtr> ResultNodeOperands; 3520 std::vector<Record*> Operands; 3521 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3522 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3523 const std::string &OpName = Op.Name; 3524 if (OpName.empty()) 3525 I->error("Operand #" + Twine(i) + " in operands list has no name!"); 3526 3527 if (!InstInputsCheck.count(OpName)) { 3528 // If this is an operand with a DefaultOps set filled in, we can ignore 3529 // this. When we codegen it, we will do so as always executed. 3530 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3531 // Does it have a non-empty DefaultOps field? If so, ignore this 3532 // operand. 3533 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3534 continue; 3535 } 3536 I->error("Operand $" + OpName + 3537 " does not appear in the instruction pattern"); 3538 } 3539 TreePatternNodePtr InVal = InstInputsCheck[OpName]; 3540 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3541 3542 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3543 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3544 if (!checkOperandClass(Op, InRec)) 3545 I->error("Operand $" + OpName + "'s register class disagrees" 3546 " between the operand and pattern"); 3547 } 3548 Operands.push_back(Op.Rec); 3549 3550 // Construct the result for the dest-pattern operand list. 3551 TreePatternNodePtr OpNode = InVal->clone(); 3552 3553 // No predicate is useful on the result. 3554 OpNode->clearPredicateFns(); 3555 3556 // Promote the xform function to be an explicit node if set. 3557 if (Record *Xform = OpNode->getTransformFn()) { 3558 OpNode->setTransformFn(nullptr); 3559 std::vector<TreePatternNodePtr> Children; 3560 Children.push_back(OpNode); 3561 OpNode = std::make_shared<TreePatternNode>(Xform, Children, 3562 OpNode->getNumTypes()); 3563 } 3564 3565 ResultNodeOperands.push_back(std::move(OpNode)); 3566 } 3567 3568 if (!InstInputsCheck.empty()) 3569 I->error("Input operand $" + InstInputsCheck.begin()->first + 3570 " occurs in pattern but not in operands list!"); 3571 3572 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3573 I->getRecord(), ResultNodeOperands, 3574 GetNumNodeResults(I->getRecord(), *this)); 3575 // Copy fully inferred output node types to instruction result pattern. 3576 for (unsigned i = 0; i != NumResults; ++i) { 3577 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3578 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3579 } 3580 3581 // Create and insert the instruction. 3582 // FIXME: InstImpResults should not be part of DAGInstruction. 3583 Record *R = I->getRecord(); 3584 DAGInstruction &TheInst = 3585 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3586 std::forward_as_tuple(std::move(I), Results, Operands, 3587 InstImpResults)).first->second; 3588 3589 // Use a temporary tree pattern to infer all types and make sure that the 3590 // constructed result is correct. This depends on the instruction already 3591 // being inserted into the DAGInsts map. 3592 TreePattern Temp(TheInst.getPattern()->getRecord(), ResultPattern, false, 3593 *this); 3594 Temp.InferAllTypes(&TheInst.getPattern()->getNamedNodesMap()); 3595 3596 TheInst.setResultPattern(Temp.getOnlyTree()); 3597 3598 return TheInst; 3599 } 3600 3601 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3602 /// any fragments involved. This populates the Instructions list with fully 3603 /// resolved instructions. 3604 void CodeGenDAGPatterns::ParseInstructions() { 3605 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3606 3607 for (Record *Instr : Instrs) { 3608 ListInit *LI = nullptr; 3609 3610 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3611 LI = Instr->getValueAsListInit("Pattern"); 3612 3613 // If there is no pattern, only collect minimal information about the 3614 // instruction for its operand list. We have to assume that there is one 3615 // result, as we have no detailed info. A pattern which references the 3616 // null_frag operator is as-if no pattern were specified. Normally this 3617 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3618 // null_frag. 3619 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3620 std::vector<Record*> Results; 3621 std::vector<Record*> Operands; 3622 3623 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3624 3625 if (InstInfo.Operands.size() != 0) { 3626 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3627 Results.push_back(InstInfo.Operands[j].Rec); 3628 3629 // The rest are inputs. 3630 for (unsigned j = InstInfo.Operands.NumDefs, 3631 e = InstInfo.Operands.size(); j < e; ++j) 3632 Operands.push_back(InstInfo.Operands[j].Rec); 3633 } 3634 3635 // Create and insert the instruction. 3636 std::vector<Record*> ImpResults; 3637 Instructions.insert(std::make_pair(Instr, 3638 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3639 continue; // no pattern. 3640 } 3641 3642 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3643 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3644 3645 (void)DI; 3646 LLVM_DEBUG(DI.getPattern()->dump()); 3647 } 3648 3649 // If we can, convert the instructions to be patterns that are matched! 3650 for (auto &Entry : Instructions) { 3651 DAGInstruction &TheInst = Entry.second; 3652 TreePattern *I = TheInst.getPattern(); 3653 if (!I) continue; // No pattern. 3654 3655 if (PatternRewriter) 3656 PatternRewriter(I); 3657 // FIXME: Assume only the first tree is the pattern. The others are clobber 3658 // nodes. 3659 TreePatternNodePtr Pattern = I->getTree(0); 3660 TreePatternNodePtr SrcPattern; 3661 if (Pattern->getOperator()->getName() == "set") { 3662 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3663 } else{ 3664 // Not a set (store or something?) 3665 SrcPattern = Pattern; 3666 } 3667 3668 Record *Instr = Entry.first; 3669 ListInit *Preds = Instr->getValueAsListInit("Predicates"); 3670 int Complexity = Instr->getValueAsInt("AddedComplexity"); 3671 AddPatternToMatch( 3672 I, 3673 PatternToMatch(Instr, makePredList(Preds), SrcPattern, 3674 TheInst.getResultPattern(), TheInst.getImpResults(), 3675 Complexity, Instr->getID())); 3676 } 3677 } 3678 3679 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3680 3681 static void FindNames(TreePatternNode *P, 3682 std::map<std::string, NameRecord> &Names, 3683 TreePattern *PatternTop) { 3684 if (!P->getName().empty()) { 3685 NameRecord &Rec = Names[P->getName()]; 3686 // If this is the first instance of the name, remember the node. 3687 if (Rec.second++ == 0) 3688 Rec.first = P; 3689 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3690 PatternTop->error("repetition of value: $" + P->getName() + 3691 " where different uses have different types!"); 3692 } 3693 3694 if (!P->isLeaf()) { 3695 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3696 FindNames(P->getChild(i), Names, PatternTop); 3697 } 3698 } 3699 3700 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3701 std::vector<Predicate> Preds; 3702 for (Init *I : L->getValues()) { 3703 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3704 Preds.push_back(Pred->getDef()); 3705 else 3706 llvm_unreachable("Non-def on the list"); 3707 } 3708 3709 // Sort so that different orders get canonicalized to the same string. 3710 llvm::sort(Preds.begin(), Preds.end()); 3711 return Preds; 3712 } 3713 3714 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3715 PatternToMatch &&PTM) { 3716 // Do some sanity checking on the pattern we're about to match. 3717 std::string Reason; 3718 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3719 PrintWarning(Pattern->getRecord()->getLoc(), 3720 Twine("Pattern can never match: ") + Reason); 3721 return; 3722 } 3723 3724 // If the source pattern's root is a complex pattern, that complex pattern 3725 // must specify the nodes it can potentially match. 3726 if (const ComplexPattern *CP = 3727 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3728 if (CP->getRootNodes().empty()) 3729 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3730 " could match"); 3731 3732 3733 // Find all of the named values in the input and output, ensure they have the 3734 // same type. 3735 std::map<std::string, NameRecord> SrcNames, DstNames; 3736 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3737 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3738 3739 // Scan all of the named values in the destination pattern, rejecting them if 3740 // they don't exist in the input pattern. 3741 for (const auto &Entry : DstNames) { 3742 if (SrcNames[Entry.first].first == nullptr) 3743 Pattern->error("Pattern has input without matching name in output: $" + 3744 Entry.first); 3745 } 3746 3747 // Scan all of the named values in the source pattern, rejecting them if the 3748 // name isn't used in the dest, and isn't used to tie two values together. 3749 for (const auto &Entry : SrcNames) 3750 if (DstNames[Entry.first].first == nullptr && 3751 SrcNames[Entry.first].second == 1) 3752 Pattern->error("Pattern has dead named input: $" + Entry.first); 3753 3754 PatternsToMatch.push_back(PTM); 3755 } 3756 3757 void CodeGenDAGPatterns::InferInstructionFlags() { 3758 ArrayRef<const CodeGenInstruction*> Instructions = 3759 Target.getInstructionsByEnumValue(); 3760 3761 // First try to infer flags from the primary instruction pattern, if any. 3762 SmallVector<CodeGenInstruction*, 8> Revisit; 3763 unsigned Errors = 0; 3764 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3765 CodeGenInstruction &InstInfo = 3766 const_cast<CodeGenInstruction &>(*Instructions[i]); 3767 3768 // Get the primary instruction pattern. 3769 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3770 if (!Pattern) { 3771 if (InstInfo.hasUndefFlags()) 3772 Revisit.push_back(&InstInfo); 3773 continue; 3774 } 3775 InstAnalyzer PatInfo(*this); 3776 PatInfo.Analyze(Pattern); 3777 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3778 } 3779 3780 // Second, look for single-instruction patterns defined outside the 3781 // instruction. 3782 for (const PatternToMatch &PTM : ptms()) { 3783 // We can only infer from single-instruction patterns, otherwise we won't 3784 // know which instruction should get the flags. 3785 SmallVector<Record*, 8> PatInstrs; 3786 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3787 if (PatInstrs.size() != 1) 3788 continue; 3789 3790 // Get the single instruction. 3791 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3792 3793 // Only infer properties from the first pattern. We'll verify the others. 3794 if (InstInfo.InferredFrom) 3795 continue; 3796 3797 InstAnalyzer PatInfo(*this); 3798 PatInfo.Analyze(PTM); 3799 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3800 } 3801 3802 if (Errors) 3803 PrintFatalError("pattern conflicts"); 3804 3805 // Revisit instructions with undefined flags and no pattern. 3806 if (Target.guessInstructionProperties()) { 3807 for (CodeGenInstruction *InstInfo : Revisit) { 3808 if (InstInfo->InferredFrom) 3809 continue; 3810 // The mayLoad and mayStore flags default to false. 3811 // Conservatively assume hasSideEffects if it wasn't explicit. 3812 if (InstInfo->hasSideEffects_Unset) 3813 InstInfo->hasSideEffects = true; 3814 } 3815 return; 3816 } 3817 3818 // Complain about any flags that are still undefined. 3819 for (CodeGenInstruction *InstInfo : Revisit) { 3820 if (InstInfo->InferredFrom) 3821 continue; 3822 if (InstInfo->hasSideEffects_Unset) 3823 PrintError(InstInfo->TheDef->getLoc(), 3824 "Can't infer hasSideEffects from patterns"); 3825 if (InstInfo->mayStore_Unset) 3826 PrintError(InstInfo->TheDef->getLoc(), 3827 "Can't infer mayStore from patterns"); 3828 if (InstInfo->mayLoad_Unset) 3829 PrintError(InstInfo->TheDef->getLoc(), 3830 "Can't infer mayLoad from patterns"); 3831 } 3832 } 3833 3834 3835 /// Verify instruction flags against pattern node properties. 3836 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3837 unsigned Errors = 0; 3838 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3839 const PatternToMatch &PTM = *I; 3840 SmallVector<Record*, 8> Instrs; 3841 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3842 if (Instrs.empty()) 3843 continue; 3844 3845 // Count the number of instructions with each flag set. 3846 unsigned NumSideEffects = 0; 3847 unsigned NumStores = 0; 3848 unsigned NumLoads = 0; 3849 for (const Record *Instr : Instrs) { 3850 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3851 NumSideEffects += InstInfo.hasSideEffects; 3852 NumStores += InstInfo.mayStore; 3853 NumLoads += InstInfo.mayLoad; 3854 } 3855 3856 // Analyze the source pattern. 3857 InstAnalyzer PatInfo(*this); 3858 PatInfo.Analyze(PTM); 3859 3860 // Collect error messages. 3861 SmallVector<std::string, 4> Msgs; 3862 3863 // Check for missing flags in the output. 3864 // Permit extra flags for now at least. 3865 if (PatInfo.hasSideEffects && !NumSideEffects) 3866 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3867 3868 // Don't verify store flags on instructions with side effects. At least for 3869 // intrinsics, side effects implies mayStore. 3870 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3871 Msgs.push_back("pattern may store, but mayStore isn't set"); 3872 3873 // Similarly, mayStore implies mayLoad on intrinsics. 3874 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3875 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3876 3877 // Print error messages. 3878 if (Msgs.empty()) 3879 continue; 3880 ++Errors; 3881 3882 for (const std::string &Msg : Msgs) 3883 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3884 (Instrs.size() == 1 ? 3885 "instruction" : "output instructions")); 3886 // Provide the location of the relevant instruction definitions. 3887 for (const Record *Instr : Instrs) { 3888 if (Instr != PTM.getSrcRecord()) 3889 PrintError(Instr->getLoc(), "defined here"); 3890 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3891 if (InstInfo.InferredFrom && 3892 InstInfo.InferredFrom != InstInfo.TheDef && 3893 InstInfo.InferredFrom != PTM.getSrcRecord()) 3894 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3895 } 3896 } 3897 if (Errors) 3898 PrintFatalError("Errors in DAG patterns"); 3899 } 3900 3901 /// Given a pattern result with an unresolved type, see if we can find one 3902 /// instruction with an unresolved result type. Force this result type to an 3903 /// arbitrary element if it's possible types to converge results. 3904 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3905 if (N->isLeaf()) 3906 return false; 3907 3908 // Analyze children. 3909 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3910 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3911 return true; 3912 3913 if (!N->getOperator()->isSubClassOf("Instruction")) 3914 return false; 3915 3916 // If this type is already concrete or completely unknown we can't do 3917 // anything. 3918 TypeInfer &TI = TP.getInfer(); 3919 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3920 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 3921 continue; 3922 3923 // Otherwise, force its type to an arbitrary choice. 3924 if (TI.forceArbitrary(N->getExtType(i))) 3925 return true; 3926 } 3927 3928 return false; 3929 } 3930 3931 void CodeGenDAGPatterns::ParsePatterns() { 3932 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3933 3934 for (Record *CurPattern : Patterns) { 3935 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3936 3937 // If the pattern references the null_frag, there's nothing to do. 3938 if (hasNullFragReference(Tree)) 3939 continue; 3940 3941 TreePattern Pattern(CurPattern, Tree, true, *this); 3942 3943 // Inline pattern fragments into it. 3944 Pattern.InlinePatternFragments(); 3945 3946 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3947 if (LI->empty()) continue; // no pattern. 3948 3949 // Parse the instruction. 3950 TreePattern Result(CurPattern, LI, false, *this); 3951 3952 // Inline pattern fragments into it. 3953 Result.InlinePatternFragments(); 3954 3955 if (Result.getNumTrees() != 1) 3956 Result.error("Cannot handle instructions producing instructions " 3957 "with temporaries yet!"); 3958 3959 bool IterateInference; 3960 bool InferredAllPatternTypes, InferredAllResultTypes; 3961 do { 3962 // Infer as many types as possible. If we cannot infer all of them, we 3963 // can never do anything with this pattern: report it to the user. 3964 InferredAllPatternTypes = 3965 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 3966 3967 // Infer as many types as possible. If we cannot infer all of them, we 3968 // can never do anything with this pattern: report it to the user. 3969 InferredAllResultTypes = 3970 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 3971 3972 IterateInference = false; 3973 3974 // Apply the type of the result to the source pattern. This helps us 3975 // resolve cases where the input type is known to be a pointer type (which 3976 // is considered resolved), but the result knows it needs to be 32- or 3977 // 64-bits. Infer the other way for good measure. 3978 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3979 Pattern.getTree(0)->getNumTypes()); 3980 i != e; ++i) { 3981 IterateInference = Pattern.getTree(0)->UpdateNodeType( 3982 i, Result.getTree(0)->getExtType(i), Result); 3983 IterateInference |= Result.getTree(0)->UpdateNodeType( 3984 i, Pattern.getTree(0)->getExtType(i), Result); 3985 } 3986 3987 // If our iteration has converged and the input pattern's types are fully 3988 // resolved but the result pattern is not fully resolved, we may have a 3989 // situation where we have two instructions in the result pattern and 3990 // the instructions require a common register class, but don't care about 3991 // what actual MVT is used. This is actually a bug in our modelling: 3992 // output patterns should have register classes, not MVTs. 3993 // 3994 // In any case, to handle this, we just go through and disambiguate some 3995 // arbitrary types to the result pattern's nodes. 3996 if (!IterateInference && InferredAllPatternTypes && 3997 !InferredAllResultTypes) 3998 IterateInference = 3999 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4000 } while (IterateInference); 4001 4002 // Verify that we inferred enough types that we can do something with the 4003 // pattern and result. If these fire the user has to add type casts. 4004 if (!InferredAllPatternTypes) 4005 Pattern.error("Could not infer all types in pattern!"); 4006 if (!InferredAllResultTypes) { 4007 Pattern.dump(); 4008 Result.error("Could not infer all types in pattern result!"); 4009 } 4010 4011 // Validate that the input pattern is correct. 4012 std::map<std::string, TreePatternNodePtr> InstInputs; 4013 std::map<std::string, TreePatternNodePtr> InstResults; 4014 std::vector<Record*> InstImpResults; 4015 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4016 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4017 InstResults, InstImpResults); 4018 4019 // Promote the xform function to be an explicit node if set. 4020 const TreePatternNodePtr &DstPattern = Result.getOnlyTree(); 4021 std::vector<TreePatternNodePtr> ResultNodeOperands; 4022 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 4023 TreePatternNodePtr OpNode = DstPattern->getChildShared(ii); 4024 if (Record *Xform = OpNode->getTransformFn()) { 4025 OpNode->setTransformFn(nullptr); 4026 std::vector<TreePatternNodePtr> Children; 4027 Children.push_back(OpNode); 4028 OpNode = std::make_shared<TreePatternNode>(Xform, Children, 4029 OpNode->getNumTypes()); 4030 } 4031 ResultNodeOperands.push_back(OpNode); 4032 } 4033 4034 TreePatternNodePtr DstShared = 4035 DstPattern->isLeaf() 4036 ? DstPattern 4037 : std::make_shared<TreePatternNode>(DstPattern->getOperator(), 4038 ResultNodeOperands, 4039 DstPattern->getNumTypes()); 4040 4041 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 4042 DstShared->setType(i, Result.getOnlyTree()->getExtType(i)); 4043 4044 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4045 Temp.InferAllTypes(); 4046 4047 // A pattern may end up with an "impossible" type, i.e. a situation 4048 // where all types have been eliminated for some node in this pattern. 4049 // This could occur for intrinsics that only make sense for a specific 4050 // value type, and use a specific register class. If, for some mode, 4051 // that register class does not accept that type, the type inference 4052 // will lead to a contradiction, which is not an error however, but 4053 // a sign that this pattern will simply never match. 4054 if (Pattern.getTree(0)->hasPossibleType() && 4055 Temp.getOnlyTree()->hasPossibleType()) { 4056 ListInit *Preds = CurPattern->getValueAsListInit("Predicates"); 4057 int Complexity = CurPattern->getValueAsInt("AddedComplexity"); 4058 if (PatternRewriter) 4059 PatternRewriter(&Pattern); 4060 AddPatternToMatch(&Pattern, 4061 PatternToMatch(CurPattern, makePredList(Preds), 4062 Pattern.getTree(0), Temp.getOnlyTree(), 4063 std::move(InstImpResults), Complexity, 4064 CurPattern->getID())); 4065 } 4066 } 4067 } 4068 4069 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4070 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4071 for (const auto &I : VTS) 4072 Modes.insert(I.first); 4073 4074 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4075 collectModes(Modes, N->getChild(i)); 4076 } 4077 4078 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4079 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4080 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4081 std::vector<PatternToMatch> Copy = PatternsToMatch; 4082 PatternsToMatch.clear(); 4083 4084 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4085 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4086 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4087 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4088 return; 4089 } 4090 4091 std::vector<Predicate> Preds = P.Predicates; 4092 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4093 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4094 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4095 std::move(NewDst), P.getDstRegs(), 4096 P.getAddedComplexity(), Record::getNewUID(), 4097 Mode); 4098 }; 4099 4100 for (PatternToMatch &P : Copy) { 4101 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4102 if (P.SrcPattern->hasProperTypeByHwMode()) 4103 SrcP = P.SrcPattern; 4104 if (P.DstPattern->hasProperTypeByHwMode()) 4105 DstP = P.DstPattern; 4106 if (!SrcP && !DstP) { 4107 PatternsToMatch.push_back(P); 4108 continue; 4109 } 4110 4111 std::set<unsigned> Modes; 4112 if (SrcP) 4113 collectModes(Modes, SrcP.get()); 4114 if (DstP) 4115 collectModes(Modes, DstP.get()); 4116 4117 // The predicate for the default mode needs to be constructed for each 4118 // pattern separately. 4119 // Since not all modes must be present in each pattern, if a mode m is 4120 // absent, then there is no point in constructing a check for m. If such 4121 // a check was created, it would be equivalent to checking the default 4122 // mode, except not all modes' predicates would be a part of the checking 4123 // code. The subsequently generated check for the default mode would then 4124 // have the exact same patterns, but a different predicate code. To avoid 4125 // duplicated patterns with different predicate checks, construct the 4126 // default check as a negation of all predicates that are actually present 4127 // in the source/destination patterns. 4128 std::vector<Predicate> DefaultPred; 4129 4130 for (unsigned M : Modes) { 4131 if (M == DefaultMode) 4132 continue; 4133 if (ModeChecks.find(M) != ModeChecks.end()) 4134 continue; 4135 4136 // Fill the map entry for this mode. 4137 const HwMode &HM = CGH.getMode(M); 4138 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4139 4140 // Add negations of the HM's predicates to the default predicate. 4141 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4142 } 4143 4144 for (unsigned M : Modes) { 4145 if (M == DefaultMode) 4146 continue; 4147 AppendPattern(P, M); 4148 } 4149 4150 bool HasDefault = Modes.count(DefaultMode); 4151 if (HasDefault) 4152 AppendPattern(P, DefaultMode); 4153 } 4154 } 4155 4156 /// Dependent variable map for CodeGenDAGPattern variant generation 4157 typedef StringMap<int> DepVarMap; 4158 4159 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4160 if (N->isLeaf()) { 4161 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4162 DepMap[N->getName()]++; 4163 } else { 4164 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4165 FindDepVarsOf(N->getChild(i), DepMap); 4166 } 4167 } 4168 4169 /// Find dependent variables within child patterns 4170 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4171 DepVarMap depcounts; 4172 FindDepVarsOf(N, depcounts); 4173 for (const auto &Pair : depcounts) { 4174 if (Pair.getValue() > 1) 4175 DepVars.insert(Pair.getKey()); 4176 } 4177 } 4178 4179 #ifndef NDEBUG 4180 /// Dump the dependent variable set: 4181 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4182 if (DepVars.empty()) { 4183 LLVM_DEBUG(errs() << "<empty set>"); 4184 } else { 4185 LLVM_DEBUG(errs() << "[ "); 4186 for (const auto &DepVar : DepVars) { 4187 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4188 } 4189 LLVM_DEBUG(errs() << "]"); 4190 } 4191 } 4192 #endif 4193 4194 4195 /// CombineChildVariants - Given a bunch of permutations of each child of the 4196 /// 'operator' node, put them together in all possible ways. 4197 static void CombineChildVariants( 4198 TreePatternNodePtr Orig, 4199 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4200 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4201 const MultipleUseVarSet &DepVars) { 4202 // Make sure that each operand has at least one variant to choose from. 4203 for (const auto &Variants : ChildVariants) 4204 if (Variants.empty()) 4205 return; 4206 4207 // The end result is an all-pairs construction of the resultant pattern. 4208 std::vector<unsigned> Idxs; 4209 Idxs.resize(ChildVariants.size()); 4210 bool NotDone; 4211 do { 4212 #ifndef NDEBUG 4213 LLVM_DEBUG(if (!Idxs.empty()) { 4214 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4215 for (unsigned Idx : Idxs) { 4216 errs() << Idx << " "; 4217 } 4218 errs() << "]\n"; 4219 }); 4220 #endif 4221 // Create the variant and add it to the output list. 4222 std::vector<TreePatternNodePtr> NewChildren; 4223 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4224 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4225 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4226 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 4227 4228 // Copy over properties. 4229 R->setName(Orig->getName()); 4230 R->setPredicateFns(Orig->getPredicateFns()); 4231 R->setTransformFn(Orig->getTransformFn()); 4232 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4233 R->setType(i, Orig->getExtType(i)); 4234 4235 // If this pattern cannot match, do not include it as a variant. 4236 std::string ErrString; 4237 // Scan to see if this pattern has already been emitted. We can get 4238 // duplication due to things like commuting: 4239 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4240 // which are the same pattern. Ignore the dups. 4241 if (R->canPatternMatch(ErrString, CDP) && 4242 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4243 return R->isIsomorphicTo(Variant.get(), DepVars); 4244 })) 4245 OutVariants.push_back(R); 4246 4247 // Increment indices to the next permutation by incrementing the 4248 // indices from last index backward, e.g., generate the sequence 4249 // [0, 0], [0, 1], [1, 0], [1, 1]. 4250 int IdxsIdx; 4251 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4252 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4253 Idxs[IdxsIdx] = 0; 4254 else 4255 break; 4256 } 4257 NotDone = (IdxsIdx >= 0); 4258 } while (NotDone); 4259 } 4260 4261 /// CombineChildVariants - A helper function for binary operators. 4262 /// 4263 static void CombineChildVariants(TreePatternNodePtr Orig, 4264 const std::vector<TreePatternNodePtr> &LHS, 4265 const std::vector<TreePatternNodePtr> &RHS, 4266 std::vector<TreePatternNodePtr> &OutVariants, 4267 CodeGenDAGPatterns &CDP, 4268 const MultipleUseVarSet &DepVars) { 4269 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4270 ChildVariants.push_back(LHS); 4271 ChildVariants.push_back(RHS); 4272 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4273 } 4274 4275 static void 4276 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4277 std::vector<TreePatternNodePtr> &Children) { 4278 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4279 Record *Operator = N->getOperator(); 4280 4281 // Only permit raw nodes. 4282 if (!N->getName().empty() || !N->getPredicateFns().empty() || 4283 N->getTransformFn()) { 4284 Children.push_back(N); 4285 return; 4286 } 4287 4288 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4289 Children.push_back(N->getChildShared(0)); 4290 else 4291 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4292 4293 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4294 Children.push_back(N->getChildShared(1)); 4295 else 4296 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4297 } 4298 4299 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4300 /// the (potentially recursive) pattern by using algebraic laws. 4301 /// 4302 static void GenerateVariantsOf(TreePatternNodePtr N, 4303 std::vector<TreePatternNodePtr> &OutVariants, 4304 CodeGenDAGPatterns &CDP, 4305 const MultipleUseVarSet &DepVars) { 4306 // We cannot permute leaves or ComplexPattern uses. 4307 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4308 OutVariants.push_back(N); 4309 return; 4310 } 4311 4312 // Look up interesting info about the node. 4313 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4314 4315 // If this node is associative, re-associate. 4316 if (NodeInfo.hasProperty(SDNPAssociative)) { 4317 // Re-associate by pulling together all of the linked operators 4318 std::vector<TreePatternNodePtr> MaximalChildren; 4319 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4320 4321 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4322 // permutations. 4323 if (MaximalChildren.size() == 3) { 4324 // Find the variants of all of our maximal children. 4325 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4326 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4327 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4328 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4329 4330 // There are only two ways we can permute the tree: 4331 // (A op B) op C and A op (B op C) 4332 // Within these forms, we can also permute A/B/C. 4333 4334 // Generate legal pair permutations of A/B/C. 4335 std::vector<TreePatternNodePtr> ABVariants; 4336 std::vector<TreePatternNodePtr> BAVariants; 4337 std::vector<TreePatternNodePtr> ACVariants; 4338 std::vector<TreePatternNodePtr> CAVariants; 4339 std::vector<TreePatternNodePtr> BCVariants; 4340 std::vector<TreePatternNodePtr> CBVariants; 4341 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4342 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4343 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4344 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4345 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4346 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4347 4348 // Combine those into the result: (x op x) op x 4349 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4350 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4351 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4352 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4353 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4354 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4355 4356 // Combine those into the result: x op (x op x) 4357 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4358 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4359 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4360 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4361 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4362 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4363 return; 4364 } 4365 } 4366 4367 // Compute permutations of all children. 4368 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4369 ChildVariants.resize(N->getNumChildren()); 4370 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4371 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4372 4373 // Build all permutations based on how the children were formed. 4374 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4375 4376 // If this node is commutative, consider the commuted order. 4377 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4378 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4379 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4380 "Commutative but doesn't have 2 children!"); 4381 // Don't count children which are actually register references. 4382 unsigned NC = 0; 4383 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4384 TreePatternNode *Child = N->getChild(i); 4385 if (Child->isLeaf()) 4386 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4387 Record *RR = DI->getDef(); 4388 if (RR->isSubClassOf("Register")) 4389 continue; 4390 } 4391 NC++; 4392 } 4393 // Consider the commuted order. 4394 if (isCommIntrinsic) { 4395 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4396 // operands are the commutative operands, and there might be more operands 4397 // after those. 4398 assert(NC >= 3 && 4399 "Commutative intrinsic should have at least 3 children!"); 4400 std::vector<std::vector<TreePatternNodePtr>> Variants; 4401 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4402 Variants.push_back(std::move(ChildVariants[2])); 4403 Variants.push_back(std::move(ChildVariants[1])); 4404 for (unsigned i = 3; i != NC; ++i) 4405 Variants.push_back(std::move(ChildVariants[i])); 4406 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4407 } else if (NC == N->getNumChildren()) { 4408 std::vector<std::vector<TreePatternNodePtr>> Variants; 4409 Variants.push_back(std::move(ChildVariants[1])); 4410 Variants.push_back(std::move(ChildVariants[0])); 4411 for (unsigned i = 2; i != NC; ++i) 4412 Variants.push_back(std::move(ChildVariants[i])); 4413 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4414 } 4415 } 4416 } 4417 4418 4419 // GenerateVariants - Generate variants. For example, commutative patterns can 4420 // match multiple ways. Add them to PatternsToMatch as well. 4421 void CodeGenDAGPatterns::GenerateVariants() { 4422 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4423 4424 // Loop over all of the patterns we've collected, checking to see if we can 4425 // generate variants of the instruction, through the exploitation of 4426 // identities. This permits the target to provide aggressive matching without 4427 // the .td file having to contain tons of variants of instructions. 4428 // 4429 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4430 // intentionally do not reconsider these. Any variants of added patterns have 4431 // already been added. 4432 // 4433 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4434 MultipleUseVarSet DepVars; 4435 std::vector<TreePatternNodePtr> Variants; 4436 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4437 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4438 LLVM_DEBUG(DumpDepVars(DepVars)); 4439 LLVM_DEBUG(errs() << "\n"); 4440 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4441 *this, DepVars); 4442 4443 assert(!Variants.empty() && "Must create at least original variant!"); 4444 if (Variants.size() == 1) // No additional variants for this pattern. 4445 continue; 4446 4447 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4448 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4449 4450 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4451 TreePatternNodePtr Variant = Variants[v]; 4452 4453 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4454 errs() << "\n"); 4455 4456 // Scan to see if an instruction or explicit pattern already matches this. 4457 bool AlreadyExists = false; 4458 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4459 // Skip if the top level predicates do not match. 4460 if (PatternsToMatch[i].getPredicates() != 4461 PatternsToMatch[p].getPredicates()) 4462 continue; 4463 // Check to see if this variant already exists. 4464 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4465 DepVars)) { 4466 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4467 AlreadyExists = true; 4468 break; 4469 } 4470 } 4471 // If we already have it, ignore the variant. 4472 if (AlreadyExists) continue; 4473 4474 // Otherwise, add it to the list of patterns we have. 4475 PatternsToMatch.push_back(PatternToMatch( 4476 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4477 Variant, PatternsToMatch[i].getDstPatternShared(), 4478 PatternsToMatch[i].getDstRegs(), 4479 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4480 } 4481 4482 LLVM_DEBUG(errs() << "\n"); 4483 } 4484 } 4485