1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109 
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120 
121 // Constrain the type set to be the intersection with VTS.
122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133 
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146 
147 template <typename Predicate>
148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154 
155 template <typename Predicate>
156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166 
167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170 
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178 
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186 
187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190 
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199 
200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204 
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210 
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216 
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237 
238   return true;
239 }
240 
241 namespace llvm {
242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247 
248 LLVM_DUMP_METHOD
249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252 
253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256 
257   if (OutP == InP)
258     return berase_if(Out, Int);
259 
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273 
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292 
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298 
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311 
312 bool TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return true;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   return !AllEmpty;
320 #endif
321   return true;
322 }
323 
324 // --- TypeInfer
325 
326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out, *this);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336 
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340 
341   return Changed;
342 }
343 
344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out, *this);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349 
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362 
363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out, *this);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369 
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372 
373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out, *this);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379 
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382 
383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out, *this);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389 
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392 
393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out, *this);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399 
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402 
403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out, *this);
405   if (TP.hasError() || !Out.empty())
406     return false;
407 
408   Out = getLegalTypes();
409   return true;
410 }
411 
412 template <typename Iter, typename Pred, typename Less>
413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439 
440 /// Make sure that for each type in Small, there exists a larger type in Big.
441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small, *this), _2(Big, *this);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447 
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452 
453   assert(Small.hasDefault() && Big.hasDefault());
454 
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456 
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464 
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481 
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487 
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498 
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510 
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end())
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519 
520     // MaxS = max scalar in Big, remove all scalars from Small that are
521     // larger than MaxS.
522     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523     if (MaxS != B.end())
524       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525 
526     // MinV = min vector in Small, remove all vectors from Big that are
527     // smaller-or-equal than MinV.
528     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529     if (MinV != S.end())
530       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531 
532     // MaxV = max vector in Big, remove all vectors from Small that are
533     // larger than MaxV.
534     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535     if (MaxV != B.end())
536       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537   }
538 
539   return Changed;
540 }
541 
542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
543 ///    for each type U in Elem, U is a scalar type.
544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545 ///    type T in Vec, such that U is the element type of T.
546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547                                        TypeSetByHwMode &Elem) {
548   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
549   if (TP.hasError())
550     return false;
551   bool Changed = false;
552 
553   if (Vec.empty())
554     Changed |= EnforceVector(Vec);
555   if (Elem.empty())
556     Changed |= EnforceScalar(Elem);
557 
558   for (unsigned M : union_modes(Vec, Elem)) {
559     TypeSetByHwMode::SetType &V = Vec.get(M);
560     TypeSetByHwMode::SetType &E = Elem.get(M);
561 
562     Changed |= berase_if(V, isScalar);  // Scalar = !vector
563     Changed |= berase_if(E, isVector);  // Vector = !scalar
564     assert(!V.empty() && !E.empty());
565 
566     SmallSet<MVT,4> VT, ST;
567     // Collect element types from the "vector" set.
568     for (MVT T : V)
569       VT.insert(T.getVectorElementType());
570     // Collect scalar types from the "element" set.
571     for (MVT T : E)
572       ST.insert(T);
573 
574     // Remove from V all (vector) types whose element type is not in S.
575     Changed |= berase_if(V, [&ST](MVT T) -> bool {
576                               return !ST.count(T.getVectorElementType());
577                             });
578     // Remove from E all (scalar) types, for which there is no corresponding
579     // type in V.
580     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581   }
582 
583   return Changed;
584 }
585 
586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587                                        const ValueTypeByHwMode &VVT) {
588   TypeSetByHwMode Tmp(VVT);
589   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
590   return EnforceVectorEltTypeIs(Vec, Tmp);
591 }
592 
593 /// Ensure that for each type T in Sub, T is a vector type, and there
594 /// exists a type U in Vec such that U is a vector type with the same
595 /// element type as T and at least as many elements as T.
596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597                                              TypeSetByHwMode &Sub) {
598   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
599   if (TP.hasError())
600     return false;
601 
602   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603   auto IsSubVec = [](MVT B, MVT P) -> bool {
604     if (!B.isVector() || !P.isVector())
605       return false;
606     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607     // but until there are obvious use-cases for this, keep the
608     // types separate.
609     if (B.isScalableVector() != P.isScalableVector())
610       return false;
611     if (B.getVectorElementType() != P.getVectorElementType())
612       return false;
613     return B.getVectorNumElements() < P.getVectorNumElements();
614   };
615 
616   /// Return true if S has no element (vector type) that T is a sub-vector of,
617   /// i.e. has the same element type as T and more elements.
618   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619     for (const auto &I : S)
620       if (IsSubVec(T, I))
621         return false;
622     return true;
623   };
624 
625   /// Return true if S has no element (vector type) that T is a super-vector
626   /// of, i.e. has the same element type as T and fewer elements.
627   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(I, T))
630         return false;
631     return true;
632   };
633 
634   bool Changed = false;
635 
636   if (Vec.empty())
637     Changed |= EnforceVector(Vec);
638   if (Sub.empty())
639     Changed |= EnforceVector(Sub);
640 
641   for (unsigned M : union_modes(Vec, Sub)) {
642     TypeSetByHwMode::SetType &S = Sub.get(M);
643     TypeSetByHwMode::SetType &V = Vec.get(M);
644 
645     Changed |= berase_if(S, isScalar);
646 
647     // Erase all types from S that are not sub-vectors of a type in V.
648     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649 
650     // Erase all types from V that are not super-vectors of a type in S.
651     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652   }
653 
654   return Changed;
655 }
656 
657 /// 1. Ensure that V has a scalar type iff W has a scalar type.
658 /// 2. Ensure that for each vector type T in V, there exists a vector
659 ///    type U in W, such that T and U have the same number of elements.
660 /// 3. Ensure that for each vector type U in W, there exists a vector
661 ///    type T in V, such that T and U have the same number of elements
662 ///    (reverse of 2).
663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664   ValidateOnExit _1(V, *this), _2(W, *this);
665   if (TP.hasError())
666     return false;
667 
668   bool Changed = false;
669   if (V.empty())
670     Changed |= EnforceAny(V);
671   if (W.empty())
672     Changed |= EnforceAny(W);
673 
674   // An actual vector type cannot have 0 elements, so we can treat scalars
675   // as zero-length vectors. This way both vectors and scalars can be
676   // processed identically.
677   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679   };
680 
681   for (unsigned M : union_modes(V, W)) {
682     TypeSetByHwMode::SetType &VS = V.get(M);
683     TypeSetByHwMode::SetType &WS = W.get(M);
684 
685     SmallSet<unsigned,2> VN, WN;
686     for (MVT T : VS)
687       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688     for (MVT T : WS)
689       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690 
691     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693   }
694   return Changed;
695 }
696 
697 /// 1. Ensure that for each type T in A, there exists a type U in B,
698 ///    such that T and U have equal size in bits.
699 /// 2. Ensure that for each type U in B, there exists a type T in A
700 ///    such that T and U have equal size in bits (reverse of 1).
701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702   ValidateOnExit _1(A, *this), _2(B, *this);
703   if (TP.hasError())
704     return false;
705   bool Changed = false;
706   if (A.empty())
707     Changed |= EnforceAny(A);
708   if (B.empty())
709     Changed |= EnforceAny(B);
710 
711   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712     return !Sizes.count(T.getSizeInBits());
713   };
714 
715   for (unsigned M : union_modes(A, B)) {
716     TypeSetByHwMode::SetType &AS = A.get(M);
717     TypeSetByHwMode::SetType &BS = B.get(M);
718     SmallSet<unsigned,2> AN, BN;
719 
720     for (MVT T : AS)
721       AN.insert(T.getSizeInBits());
722     for (MVT T : BS)
723       BN.insert(T.getSizeInBits());
724 
725     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727   }
728 
729   return Changed;
730 }
731 
732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733   ValidateOnExit _1(VTS, *this);
734   TypeSetByHwMode Legal = getLegalTypes();
735   bool HaveLegalDef = Legal.hasDefault();
736 
737   for (auto &I : VTS) {
738     unsigned M = I.first;
739     if (!Legal.hasMode(M) && !HaveLegalDef) {
740       TP.error("Invalid mode " + Twine(M));
741       return;
742     }
743     expandOverloads(I.second, Legal.get(M));
744   }
745 }
746 
747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748                                 const TypeSetByHwMode::SetType &Legal) {
749   std::set<MVT> Ovs;
750   for (MVT T : Out) {
751     if (!T.isOverloaded())
752       continue;
753 
754     Ovs.insert(T);
755     // MachineValueTypeSet allows iteration and erasing.
756     Out.erase(T);
757   }
758 
759   for (MVT Ov : Ovs) {
760     switch (Ov.SimpleTy) {
761       case MVT::iPTRAny:
762         Out.insert(MVT::iPTR);
763         return;
764       case MVT::iAny:
765         for (MVT T : MVT::integer_valuetypes())
766           if (Legal.count(T))
767             Out.insert(T);
768         for (MVT T : MVT::integer_vector_valuetypes())
769           if (Legal.count(T))
770             Out.insert(T);
771         return;
772       case MVT::fAny:
773         for (MVT T : MVT::fp_valuetypes())
774           if (Legal.count(T))
775             Out.insert(T);
776         for (MVT T : MVT::fp_vector_valuetypes())
777           if (Legal.count(T))
778             Out.insert(T);
779         return;
780       case MVT::vAny:
781         for (MVT T : MVT::vector_valuetypes())
782           if (Legal.count(T))
783             Out.insert(T);
784         return;
785       case MVT::Any:
786         for (MVT T : MVT::all_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       default:
791         break;
792     }
793   }
794 }
795 
796 TypeSetByHwMode TypeInfer::getLegalTypes() {
797   if (!LegalTypesCached) {
798     // Stuff all types from all modes into the default mode.
799     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800     for (const auto &I : LTS)
801       LegalCache.insert(I.second);
802     LegalTypesCached = true;
803   }
804   TypeSetByHwMode VTS;
805   VTS.getOrCreate(DefaultMode) = LegalCache;
806   return VTS;
807 }
808 
809 #ifndef NDEBUG
810 TypeInfer::ValidateOnExit::~ValidateOnExit() {
811   if (!VTS.validate()) {
812     dbgs() << "Type set is empty for each HW mode:\n"
813               "possible type contradiction in the pattern below "
814               "(use -print-records with llvm-tblgen to see all "
815               "expanded records).\n";
816     Infer.TP.dump();
817     llvm_unreachable(nullptr);
818   }
819 }
820 #endif
821 
822 //===----------------------------------------------------------------------===//
823 // TreePredicateFn Implementation
824 //===----------------------------------------------------------------------===//
825 
826 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
827 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
828   assert(
829       (!hasPredCode() || !hasImmCode()) &&
830       ".td file corrupt: can't have a node predicate *and* an imm predicate");
831 }
832 
833 bool TreePredicateFn::hasPredCode() const {
834   return isLoad() || isStore() || isAtomic() ||
835          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
836 }
837 
838 std::string TreePredicateFn::getPredCode() const {
839   std::string Code = "";
840 
841   if (!isLoad() && !isStore() && !isAtomic()) {
842     Record *MemoryVT = getMemoryVT();
843 
844     if (MemoryVT)
845       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
846                       "MemoryVT requires IsLoad or IsStore");
847   }
848 
849   if (!isLoad() && !isStore()) {
850     if (isUnindexed())
851       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
852                       "IsUnindexed requires IsLoad or IsStore");
853 
854     Record *ScalarMemoryVT = getScalarMemoryVT();
855 
856     if (ScalarMemoryVT)
857       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
858                       "ScalarMemoryVT requires IsLoad or IsStore");
859   }
860 
861   if (isLoad() + isStore() + isAtomic() > 1)
862     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
863                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
864 
865   if (isLoad()) {
866     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
867         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
868         getScalarMemoryVT() == nullptr)
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsLoad cannot be used by itself");
871   } else {
872     if (isNonExtLoad())
873       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874                       "IsNonExtLoad requires IsLoad");
875     if (isAnyExtLoad())
876       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877                       "IsAnyExtLoad requires IsLoad");
878     if (isSignExtLoad())
879       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
880                       "IsSignExtLoad requires IsLoad");
881     if (isZeroExtLoad())
882       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883                       "IsZeroExtLoad requires IsLoad");
884   }
885 
886   if (isStore()) {
887     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
888         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
889       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890                       "IsStore cannot be used by itself");
891   } else {
892     if (isNonTruncStore())
893       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894                       "IsNonTruncStore requires IsStore");
895     if (isTruncStore())
896       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                       "IsTruncStore requires IsStore");
898   }
899 
900   if (isAtomic()) {
901     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
902         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
903         !isAtomicOrderingAcquireRelease() &&
904         !isAtomicOrderingSequentiallyConsistent() &&
905         !isAtomicOrderingAcquireOrStronger() &&
906         !isAtomicOrderingReleaseOrStronger() &&
907         !isAtomicOrderingWeakerThanAcquire() &&
908         !isAtomicOrderingWeakerThanRelease())
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsAtomic cannot be used by itself");
911   } else {
912     if (isAtomicOrderingMonotonic())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsAtomicOrderingMonotonic requires IsAtomic");
915     if (isAtomicOrderingAcquire())
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "IsAtomicOrderingAcquire requires IsAtomic");
918     if (isAtomicOrderingRelease())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsAtomicOrderingRelease requires IsAtomic");
921     if (isAtomicOrderingAcquireRelease())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
924     if (isAtomicOrderingSequentiallyConsistent())
925       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
926                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
927     if (isAtomicOrderingAcquireOrStronger())
928       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
929                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
930     if (isAtomicOrderingReleaseOrStronger())
931       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
933     if (isAtomicOrderingWeakerThanAcquire())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
936   }
937 
938   if (isLoad() || isStore() || isAtomic()) {
939     StringRef SDNodeName =
940         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
941 
942     Record *MemoryVT = getMemoryVT();
943 
944     if (MemoryVT)
945       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
946                MemoryVT->getName() + ") return false;\n")
947                   .str();
948   }
949 
950   if (isAtomic() && isAtomicOrderingMonotonic())
951     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
952             "AtomicOrdering::Monotonic) return false;\n";
953   if (isAtomic() && isAtomicOrderingAcquire())
954     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
955             "AtomicOrdering::Acquire) return false;\n";
956   if (isAtomic() && isAtomicOrderingRelease())
957     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
958             "AtomicOrdering::Release) return false;\n";
959   if (isAtomic() && isAtomicOrderingAcquireRelease())
960     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
961             "AtomicOrdering::AcquireRelease) return false;\n";
962   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
963     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
964             "AtomicOrdering::SequentiallyConsistent) return false;\n";
965 
966   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
967     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
968             "return false;\n";
969   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
970     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
971             "return false;\n";
972 
973   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
974     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975             "return false;\n";
976   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
977     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
978             "return false;\n";
979 
980   if (isLoad() || isStore()) {
981     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
982 
983     if (isUnindexed())
984       Code += ("if (cast<" + SDNodeName +
985                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
986                "return false;\n")
987                   .str();
988 
989     if (isLoad()) {
990       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
991            isZeroExtLoad()) > 1)
992         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
993                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
994                         "IsZeroExtLoad are mutually exclusive");
995       if (isNonExtLoad())
996         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
997                 "ISD::NON_EXTLOAD) return false;\n";
998       if (isAnyExtLoad())
999         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1000                 "return false;\n";
1001       if (isSignExtLoad())
1002         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1003                 "return false;\n";
1004       if (isZeroExtLoad())
1005         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1006                 "return false;\n";
1007     } else {
1008       if ((isNonTruncStore() + isTruncStore()) > 1)
1009         PrintFatalError(
1010             getOrigPatFragRecord()->getRecord()->getLoc(),
1011             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1012       if (isNonTruncStore())
1013         Code +=
1014             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1015       if (isTruncStore())
1016         Code +=
1017             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1018     }
1019 
1020     Record *ScalarMemoryVT = getScalarMemoryVT();
1021 
1022     if (ScalarMemoryVT)
1023       Code += ("if (cast<" + SDNodeName +
1024                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1025                ScalarMemoryVT->getName() + ") return false;\n")
1026                   .str();
1027   }
1028 
1029   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1030 
1031   Code += PredicateCode;
1032 
1033   if (PredicateCode.empty() && !Code.empty())
1034     Code += "return true;\n";
1035 
1036   return Code;
1037 }
1038 
1039 bool TreePredicateFn::hasImmCode() const {
1040   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1041 }
1042 
1043 std::string TreePredicateFn::getImmCode() const {
1044   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1045 }
1046 
1047 bool TreePredicateFn::immCodeUsesAPInt() const {
1048   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1049 }
1050 
1051 bool TreePredicateFn::immCodeUsesAPFloat() const {
1052   bool Unset;
1053   // The return value will be false when IsAPFloat is unset.
1054   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1055                                                                    Unset);
1056 }
1057 
1058 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1059                                                    bool Value) const {
1060   bool Unset;
1061   bool Result =
1062       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1063   if (Unset)
1064     return false;
1065   return Result == Value;
1066 }
1067 bool TreePredicateFn::isLoad() const {
1068   return isPredefinedPredicateEqualTo("IsLoad", true);
1069 }
1070 bool TreePredicateFn::isStore() const {
1071   return isPredefinedPredicateEqualTo("IsStore", true);
1072 }
1073 bool TreePredicateFn::isAtomic() const {
1074   return isPredefinedPredicateEqualTo("IsAtomic", true);
1075 }
1076 bool TreePredicateFn::isUnindexed() const {
1077   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1078 }
1079 bool TreePredicateFn::isNonExtLoad() const {
1080   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1081 }
1082 bool TreePredicateFn::isAnyExtLoad() const {
1083   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1084 }
1085 bool TreePredicateFn::isSignExtLoad() const {
1086   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1087 }
1088 bool TreePredicateFn::isZeroExtLoad() const {
1089   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1090 }
1091 bool TreePredicateFn::isNonTruncStore() const {
1092   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1093 }
1094 bool TreePredicateFn::isTruncStore() const {
1095   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1096 }
1097 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1098   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1099 }
1100 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1101   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1102 }
1103 bool TreePredicateFn::isAtomicOrderingRelease() const {
1104   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1105 }
1106 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1107   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1108 }
1109 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1110   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1111                                       true);
1112 }
1113 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1114   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1115 }
1116 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1117   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1118 }
1119 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1120   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1121 }
1122 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1123   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1124 }
1125 Record *TreePredicateFn::getMemoryVT() const {
1126   Record *R = getOrigPatFragRecord()->getRecord();
1127   if (R->isValueUnset("MemoryVT"))
1128     return nullptr;
1129   return R->getValueAsDef("MemoryVT");
1130 }
1131 Record *TreePredicateFn::getScalarMemoryVT() const {
1132   Record *R = getOrigPatFragRecord()->getRecord();
1133   if (R->isValueUnset("ScalarMemoryVT"))
1134     return nullptr;
1135   return R->getValueAsDef("ScalarMemoryVT");
1136 }
1137 bool TreePredicateFn::hasGISelPredicateCode() const {
1138   return !PatFragRec->getRecord()
1139               ->getValueAsString("GISelPredicateCode")
1140               .empty();
1141 }
1142 std::string TreePredicateFn::getGISelPredicateCode() const {
1143   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1144 }
1145 
1146 StringRef TreePredicateFn::getImmType() const {
1147   if (immCodeUsesAPInt())
1148     return "const APInt &";
1149   if (immCodeUsesAPFloat())
1150     return "const APFloat &";
1151   return "int64_t";
1152 }
1153 
1154 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1155   if (immCodeUsesAPInt())
1156     return "APInt";
1157   else if (immCodeUsesAPFloat())
1158     return "APFloat";
1159   return "I64";
1160 }
1161 
1162 /// isAlwaysTrue - Return true if this is a noop predicate.
1163 bool TreePredicateFn::isAlwaysTrue() const {
1164   return !hasPredCode() && !hasImmCode();
1165 }
1166 
1167 /// Return the name to use in the generated code to reference this, this is
1168 /// "Predicate_foo" if from a pattern fragment "foo".
1169 std::string TreePredicateFn::getFnName() const {
1170   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1171 }
1172 
1173 /// getCodeToRunOnSDNode - Return the code for the function body that
1174 /// evaluates this predicate.  The argument is expected to be in "Node",
1175 /// not N.  This handles casting and conversion to a concrete node type as
1176 /// appropriate.
1177 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1178   // Handle immediate predicates first.
1179   std::string ImmCode = getImmCode();
1180   if (!ImmCode.empty()) {
1181     if (isLoad())
1182       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1183                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1184     if (isStore())
1185       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1186                       "IsStore cannot be used with ImmLeaf or its subclasses");
1187     if (isUnindexed())
1188       PrintFatalError(
1189           getOrigPatFragRecord()->getRecord()->getLoc(),
1190           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1191     if (isNonExtLoad())
1192       PrintFatalError(
1193           getOrigPatFragRecord()->getRecord()->getLoc(),
1194           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1195     if (isAnyExtLoad())
1196       PrintFatalError(
1197           getOrigPatFragRecord()->getRecord()->getLoc(),
1198           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1199     if (isSignExtLoad())
1200       PrintFatalError(
1201           getOrigPatFragRecord()->getRecord()->getLoc(),
1202           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1203     if (isZeroExtLoad())
1204       PrintFatalError(
1205           getOrigPatFragRecord()->getRecord()->getLoc(),
1206           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1207     if (isNonTruncStore())
1208       PrintFatalError(
1209           getOrigPatFragRecord()->getRecord()->getLoc(),
1210           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1211     if (isTruncStore())
1212       PrintFatalError(
1213           getOrigPatFragRecord()->getRecord()->getLoc(),
1214           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1215     if (getMemoryVT())
1216       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1217                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1218     if (getScalarMemoryVT())
1219       PrintFatalError(
1220           getOrigPatFragRecord()->getRecord()->getLoc(),
1221           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1222 
1223     std::string Result = ("    " + getImmType() + " Imm = ").str();
1224     if (immCodeUsesAPFloat())
1225       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1226     else if (immCodeUsesAPInt())
1227       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1228     else
1229       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1230     return Result + ImmCode;
1231   }
1232 
1233   // Handle arbitrary node predicates.
1234   assert(hasPredCode() && "Don't have any predicate code!");
1235   StringRef ClassName;
1236   if (PatFragRec->getOnlyTree()->isLeaf())
1237     ClassName = "SDNode";
1238   else {
1239     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1240     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1241   }
1242   std::string Result;
1243   if (ClassName == "SDNode")
1244     Result = "    SDNode *N = Node;\n";
1245   else
1246     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1247 
1248   return Result + getPredCode();
1249 }
1250 
1251 //===----------------------------------------------------------------------===//
1252 // PatternToMatch implementation
1253 //
1254 
1255 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1256 /// patterns before small ones.  This is used to determine the size of a
1257 /// pattern.
1258 static unsigned getPatternSize(const TreePatternNode *P,
1259                                const CodeGenDAGPatterns &CGP) {
1260   unsigned Size = 3;  // The node itself.
1261   // If the root node is a ConstantSDNode, increases its size.
1262   // e.g. (set R32:$dst, 0).
1263   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1264     Size += 2;
1265 
1266   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1267     Size += AM->getComplexity();
1268     // We don't want to count any children twice, so return early.
1269     return Size;
1270   }
1271 
1272   // If this node has some predicate function that must match, it adds to the
1273   // complexity of this node.
1274   if (!P->getPredicateFns().empty())
1275     ++Size;
1276 
1277   // Count children in the count if they are also nodes.
1278   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1279     const TreePatternNode *Child = P->getChild(i);
1280     if (!Child->isLeaf() && Child->getNumTypes()) {
1281       const TypeSetByHwMode &T0 = Child->getType(0);
1282       // At this point, all variable type sets should be simple, i.e. only
1283       // have a default mode.
1284       if (T0.getMachineValueType() != MVT::Other) {
1285         Size += getPatternSize(Child, CGP);
1286         continue;
1287       }
1288     }
1289     if (Child->isLeaf()) {
1290       if (isa<IntInit>(Child->getLeafValue()))
1291         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1292       else if (Child->getComplexPatternInfo(CGP))
1293         Size += getPatternSize(Child, CGP);
1294       else if (!Child->getPredicateFns().empty())
1295         ++Size;
1296     }
1297   }
1298 
1299   return Size;
1300 }
1301 
1302 /// Compute the complexity metric for the input pattern.  This roughly
1303 /// corresponds to the number of nodes that are covered.
1304 int PatternToMatch::
1305 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1306   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1307 }
1308 
1309 /// getPredicateCheck - Return a single string containing all of this
1310 /// pattern's predicates concatenated with "&&" operators.
1311 ///
1312 std::string PatternToMatch::getPredicateCheck() const {
1313   SmallVector<const Predicate*,4> PredList;
1314   for (const Predicate &P : Predicates)
1315     PredList.push_back(&P);
1316   llvm::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1317 
1318   std::string Check;
1319   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1320     if (i != 0)
1321       Check += " && ";
1322     Check += '(' + PredList[i]->getCondString() + ')';
1323   }
1324   return Check;
1325 }
1326 
1327 //===----------------------------------------------------------------------===//
1328 // SDTypeConstraint implementation
1329 //
1330 
1331 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1332   OperandNo = R->getValueAsInt("OperandNum");
1333 
1334   if (R->isSubClassOf("SDTCisVT")) {
1335     ConstraintType = SDTCisVT;
1336     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1337     for (const auto &P : VVT)
1338       if (P.second == MVT::isVoid)
1339         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1340   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1341     ConstraintType = SDTCisPtrTy;
1342   } else if (R->isSubClassOf("SDTCisInt")) {
1343     ConstraintType = SDTCisInt;
1344   } else if (R->isSubClassOf("SDTCisFP")) {
1345     ConstraintType = SDTCisFP;
1346   } else if (R->isSubClassOf("SDTCisVec")) {
1347     ConstraintType = SDTCisVec;
1348   } else if (R->isSubClassOf("SDTCisSameAs")) {
1349     ConstraintType = SDTCisSameAs;
1350     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1351   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1352     ConstraintType = SDTCisVTSmallerThanOp;
1353     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1354       R->getValueAsInt("OtherOperandNum");
1355   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1356     ConstraintType = SDTCisOpSmallerThanOp;
1357     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1358       R->getValueAsInt("BigOperandNum");
1359   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1360     ConstraintType = SDTCisEltOfVec;
1361     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1362   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1363     ConstraintType = SDTCisSubVecOfVec;
1364     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1365       R->getValueAsInt("OtherOpNum");
1366   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1367     ConstraintType = SDTCVecEltisVT;
1368     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1369     for (const auto &P : VVT) {
1370       MVT T = P.second;
1371       if (T.isVector())
1372         PrintFatalError(R->getLoc(),
1373                         "Cannot use vector type as SDTCVecEltisVT");
1374       if (!T.isInteger() && !T.isFloatingPoint())
1375         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1376                                      "as SDTCVecEltisVT");
1377     }
1378   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1379     ConstraintType = SDTCisSameNumEltsAs;
1380     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1381       R->getValueAsInt("OtherOperandNum");
1382   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1383     ConstraintType = SDTCisSameSizeAs;
1384     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1385       R->getValueAsInt("OtherOperandNum");
1386   } else {
1387     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1388   }
1389 }
1390 
1391 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1392 /// N, and the result number in ResNo.
1393 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1394                                       const SDNodeInfo &NodeInfo,
1395                                       unsigned &ResNo) {
1396   unsigned NumResults = NodeInfo.getNumResults();
1397   if (OpNo < NumResults) {
1398     ResNo = OpNo;
1399     return N;
1400   }
1401 
1402   OpNo -= NumResults;
1403 
1404   if (OpNo >= N->getNumChildren()) {
1405     std::string S;
1406     raw_string_ostream OS(S);
1407     OS << "Invalid operand number in type constraint "
1408            << (OpNo+NumResults) << " ";
1409     N->print(OS);
1410     PrintFatalError(OS.str());
1411   }
1412 
1413   return N->getChild(OpNo);
1414 }
1415 
1416 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1417 /// constraint to the nodes operands.  This returns true if it makes a
1418 /// change, false otherwise.  If a type contradiction is found, flag an error.
1419 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1420                                            const SDNodeInfo &NodeInfo,
1421                                            TreePattern &TP) const {
1422   if (TP.hasError())
1423     return false;
1424 
1425   unsigned ResNo = 0; // The result number being referenced.
1426   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1427   TypeInfer &TI = TP.getInfer();
1428 
1429   switch (ConstraintType) {
1430   case SDTCisVT:
1431     // Operand must be a particular type.
1432     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1433   case SDTCisPtrTy:
1434     // Operand must be same as target pointer type.
1435     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1436   case SDTCisInt:
1437     // Require it to be one of the legal integer VTs.
1438      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1439   case SDTCisFP:
1440     // Require it to be one of the legal fp VTs.
1441     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1442   case SDTCisVec:
1443     // Require it to be one of the legal vector VTs.
1444     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1445   case SDTCisSameAs: {
1446     unsigned OResNo = 0;
1447     TreePatternNode *OtherNode =
1448       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1449     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1450            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1451   }
1452   case SDTCisVTSmallerThanOp: {
1453     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1454     // have an integer type that is smaller than the VT.
1455     if (!NodeToApply->isLeaf() ||
1456         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1457         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1458                ->isSubClassOf("ValueType")) {
1459       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1460       return false;
1461     }
1462     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1463     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1464     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1465     TypeSetByHwMode TypeListTmp(VVT);
1466 
1467     unsigned OResNo = 0;
1468     TreePatternNode *OtherNode =
1469       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1470                     OResNo);
1471 
1472     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1473   }
1474   case SDTCisOpSmallerThanOp: {
1475     unsigned BResNo = 0;
1476     TreePatternNode *BigOperand =
1477       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1478                     BResNo);
1479     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1480                                  BigOperand->getExtType(BResNo));
1481   }
1482   case SDTCisEltOfVec: {
1483     unsigned VResNo = 0;
1484     TreePatternNode *VecOperand =
1485       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1486                     VResNo);
1487     // Filter vector types out of VecOperand that don't have the right element
1488     // type.
1489     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1490                                      NodeToApply->getExtType(ResNo));
1491   }
1492   case SDTCisSubVecOfVec: {
1493     unsigned VResNo = 0;
1494     TreePatternNode *BigVecOperand =
1495       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1496                     VResNo);
1497 
1498     // Filter vector types out of BigVecOperand that don't have the
1499     // right subvector type.
1500     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1501                                            NodeToApply->getExtType(ResNo));
1502   }
1503   case SDTCVecEltisVT: {
1504     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1505   }
1506   case SDTCisSameNumEltsAs: {
1507     unsigned OResNo = 0;
1508     TreePatternNode *OtherNode =
1509       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1510                     N, NodeInfo, OResNo);
1511     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1512                                  NodeToApply->getExtType(ResNo));
1513   }
1514   case SDTCisSameSizeAs: {
1515     unsigned OResNo = 0;
1516     TreePatternNode *OtherNode =
1517       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1518                     N, NodeInfo, OResNo);
1519     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1520                               NodeToApply->getExtType(ResNo));
1521   }
1522   }
1523   llvm_unreachable("Invalid ConstraintType!");
1524 }
1525 
1526 // Update the node type to match an instruction operand or result as specified
1527 // in the ins or outs lists on the instruction definition. Return true if the
1528 // type was actually changed.
1529 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1530                                              Record *Operand,
1531                                              TreePattern &TP) {
1532   // The 'unknown' operand indicates that types should be inferred from the
1533   // context.
1534   if (Operand->isSubClassOf("unknown_class"))
1535     return false;
1536 
1537   // The Operand class specifies a type directly.
1538   if (Operand->isSubClassOf("Operand")) {
1539     Record *R = Operand->getValueAsDef("Type");
1540     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1541     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1542   }
1543 
1544   // PointerLikeRegClass has a type that is determined at runtime.
1545   if (Operand->isSubClassOf("PointerLikeRegClass"))
1546     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1547 
1548   // Both RegisterClass and RegisterOperand operands derive their types from a
1549   // register class def.
1550   Record *RC = nullptr;
1551   if (Operand->isSubClassOf("RegisterClass"))
1552     RC = Operand;
1553   else if (Operand->isSubClassOf("RegisterOperand"))
1554     RC = Operand->getValueAsDef("RegClass");
1555 
1556   assert(RC && "Unknown operand type");
1557   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1558   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1559 }
1560 
1561 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1562   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1563     if (!TP.getInfer().isConcrete(Types[i], true))
1564       return true;
1565   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1566     if (getChild(i)->ContainsUnresolvedType(TP))
1567       return true;
1568   return false;
1569 }
1570 
1571 bool TreePatternNode::hasProperTypeByHwMode() const {
1572   for (const TypeSetByHwMode &S : Types)
1573     if (!S.isDefaultOnly())
1574       return true;
1575   for (const TreePatternNodePtr &C : Children)
1576     if (C->hasProperTypeByHwMode())
1577       return true;
1578   return false;
1579 }
1580 
1581 bool TreePatternNode::hasPossibleType() const {
1582   for (const TypeSetByHwMode &S : Types)
1583     if (!S.isPossible())
1584       return false;
1585   for (const TreePatternNodePtr &C : Children)
1586     if (!C->hasPossibleType())
1587       return false;
1588   return true;
1589 }
1590 
1591 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1592   for (TypeSetByHwMode &S : Types) {
1593     S.makeSimple(Mode);
1594     // Check if the selected mode had a type conflict.
1595     if (S.get(DefaultMode).empty())
1596       return false;
1597   }
1598   for (const TreePatternNodePtr &C : Children)
1599     if (!C->setDefaultMode(Mode))
1600       return false;
1601   return true;
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 // SDNodeInfo implementation
1606 //
1607 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1608   EnumName    = R->getValueAsString("Opcode");
1609   SDClassName = R->getValueAsString("SDClass");
1610   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1611   NumResults = TypeProfile->getValueAsInt("NumResults");
1612   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1613 
1614   // Parse the properties.
1615   Properties = parseSDPatternOperatorProperties(R);
1616 
1617   // Parse the type constraints.
1618   std::vector<Record*> ConstraintList =
1619     TypeProfile->getValueAsListOfDefs("Constraints");
1620   for (Record *R : ConstraintList)
1621     TypeConstraints.emplace_back(R, CGH);
1622 }
1623 
1624 /// getKnownType - If the type constraints on this node imply a fixed type
1625 /// (e.g. all stores return void, etc), then return it as an
1626 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1627 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1628   unsigned NumResults = getNumResults();
1629   assert(NumResults <= 1 &&
1630          "We only work with nodes with zero or one result so far!");
1631   assert(ResNo == 0 && "Only handles single result nodes so far");
1632 
1633   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1634     // Make sure that this applies to the correct node result.
1635     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1636       continue;
1637 
1638     switch (Constraint.ConstraintType) {
1639     default: break;
1640     case SDTypeConstraint::SDTCisVT:
1641       if (Constraint.VVT.isSimple())
1642         return Constraint.VVT.getSimple().SimpleTy;
1643       break;
1644     case SDTypeConstraint::SDTCisPtrTy:
1645       return MVT::iPTR;
1646     }
1647   }
1648   return MVT::Other;
1649 }
1650 
1651 //===----------------------------------------------------------------------===//
1652 // TreePatternNode implementation
1653 //
1654 
1655 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1656   if (Operator->getName() == "set" ||
1657       Operator->getName() == "implicit")
1658     return 0;  // All return nothing.
1659 
1660   if (Operator->isSubClassOf("Intrinsic"))
1661     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1662 
1663   if (Operator->isSubClassOf("SDNode"))
1664     return CDP.getSDNodeInfo(Operator).getNumResults();
1665 
1666   if (Operator->isSubClassOf("PatFrag")) {
1667     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1668     // the forward reference case where one pattern fragment references another
1669     // before it is processed.
1670     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1671       return PFRec->getOnlyTree()->getNumTypes();
1672 
1673     // Get the result tree.
1674     DagInit *Tree = Operator->getValueAsDag("Fragment");
1675     Record *Op = nullptr;
1676     if (Tree)
1677       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1678         Op = DI->getDef();
1679     assert(Op && "Invalid Fragment");
1680     return GetNumNodeResults(Op, CDP);
1681   }
1682 
1683   if (Operator->isSubClassOf("Instruction")) {
1684     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1685 
1686     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1687 
1688     // Subtract any defaulted outputs.
1689     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1690       Record *OperandNode = InstInfo.Operands[i].Rec;
1691 
1692       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1693           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1694         --NumDefsToAdd;
1695     }
1696 
1697     // Add on one implicit def if it has a resolvable type.
1698     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1699       ++NumDefsToAdd;
1700     return NumDefsToAdd;
1701   }
1702 
1703   if (Operator->isSubClassOf("SDNodeXForm"))
1704     return 1;  // FIXME: Generalize SDNodeXForm
1705 
1706   if (Operator->isSubClassOf("ValueType"))
1707     return 1;  // A type-cast of one result.
1708 
1709   if (Operator->isSubClassOf("ComplexPattern"))
1710     return 1;
1711 
1712   errs() << *Operator;
1713   PrintFatalError("Unhandled node in GetNumNodeResults");
1714 }
1715 
1716 void TreePatternNode::print(raw_ostream &OS) const {
1717   if (isLeaf())
1718     OS << *getLeafValue();
1719   else
1720     OS << '(' << getOperator()->getName();
1721 
1722   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1723     OS << ':';
1724     getExtType(i).writeToStream(OS);
1725   }
1726 
1727   if (!isLeaf()) {
1728     if (getNumChildren() != 0) {
1729       OS << " ";
1730       getChild(0)->print(OS);
1731       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1732         OS << ", ";
1733         getChild(i)->print(OS);
1734       }
1735     }
1736     OS << ")";
1737   }
1738 
1739   for (const TreePredicateFn &Pred : PredicateFns)
1740     OS << "<<P:" << Pred.getFnName() << ">>";
1741   if (TransformFn)
1742     OS << "<<X:" << TransformFn->getName() << ">>";
1743   if (!getName().empty())
1744     OS << ":$" << getName();
1745 
1746 }
1747 void TreePatternNode::dump() const {
1748   print(errs());
1749 }
1750 
1751 /// isIsomorphicTo - Return true if this node is recursively
1752 /// isomorphic to the specified node.  For this comparison, the node's
1753 /// entire state is considered. The assigned name is ignored, since
1754 /// nodes with differing names are considered isomorphic. However, if
1755 /// the assigned name is present in the dependent variable set, then
1756 /// the assigned name is considered significant and the node is
1757 /// isomorphic if the names match.
1758 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1759                                      const MultipleUseVarSet &DepVars) const {
1760   if (N == this) return true;
1761   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1762       getPredicateFns() != N->getPredicateFns() ||
1763       getTransformFn() != N->getTransformFn())
1764     return false;
1765 
1766   if (isLeaf()) {
1767     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1768       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1769         return ((DI->getDef() == NDI->getDef())
1770                 && (DepVars.find(getName()) == DepVars.end()
1771                     || getName() == N->getName()));
1772       }
1773     }
1774     return getLeafValue() == N->getLeafValue();
1775   }
1776 
1777   if (N->getOperator() != getOperator() ||
1778       N->getNumChildren() != getNumChildren()) return false;
1779   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1780     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1781       return false;
1782   return true;
1783 }
1784 
1785 /// clone - Make a copy of this tree and all of its children.
1786 ///
1787 TreePatternNodePtr TreePatternNode::clone() const {
1788   TreePatternNodePtr New;
1789   if (isLeaf()) {
1790     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1791   } else {
1792     std::vector<TreePatternNodePtr> CChildren;
1793     CChildren.reserve(Children.size());
1794     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1795       CChildren.push_back(getChild(i)->clone());
1796     New = std::make_shared<TreePatternNode>(getOperator(), CChildren,
1797                                             getNumTypes());
1798   }
1799   New->setName(getName());
1800   New->Types = Types;
1801   New->setPredicateFns(getPredicateFns());
1802   New->setTransformFn(getTransformFn());
1803   return New;
1804 }
1805 
1806 /// RemoveAllTypes - Recursively strip all the types of this tree.
1807 void TreePatternNode::RemoveAllTypes() {
1808   // Reset to unknown type.
1809   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1810   if (isLeaf()) return;
1811   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1812     getChild(i)->RemoveAllTypes();
1813 }
1814 
1815 
1816 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1817 /// with actual values specified by ArgMap.
1818 void TreePatternNode::SubstituteFormalArguments(
1819     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1820   if (isLeaf()) return;
1821 
1822   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1823     TreePatternNode *Child = getChild(i);
1824     if (Child->isLeaf()) {
1825       Init *Val = Child->getLeafValue();
1826       // Note that, when substituting into an output pattern, Val might be an
1827       // UnsetInit.
1828       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1829           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1830         // We found a use of a formal argument, replace it with its value.
1831         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1832         assert(NewChild && "Couldn't find formal argument!");
1833         assert((Child->getPredicateFns().empty() ||
1834                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1835                "Non-empty child predicate clobbered!");
1836         setChild(i, std::move(NewChild));
1837       }
1838     } else {
1839       getChild(i)->SubstituteFormalArguments(ArgMap);
1840     }
1841   }
1842 }
1843 
1844 
1845 /// InlinePatternFragments - If this pattern refers to any pattern
1846 /// fragments, inline them into place, giving us a pattern without any
1847 /// PatFrag references.
1848 TreePatternNodePtr TreePatternNode::InlinePatternFragments(TreePatternNodePtr T,
1849                                                            TreePattern &TP) {
1850   if (TP.hasError())
1851     return nullptr;
1852 
1853   if (isLeaf())
1854     return T; // nothing to do.
1855   Record *Op = getOperator();
1856 
1857   if (!Op->isSubClassOf("PatFrag")) {
1858     // Just recursively inline children nodes.
1859     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1860       TreePatternNodePtr Child = getChildShared(i);
1861       TreePatternNodePtr NewChild = Child->InlinePatternFragments(Child, TP);
1862 
1863       assert((Child->getPredicateFns().empty() ||
1864               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1865              "Non-empty child predicate clobbered!");
1866 
1867       setChild(i, std::move(NewChild));
1868     }
1869     return T;
1870   }
1871 
1872   // Otherwise, we found a reference to a fragment.  First, look up its
1873   // TreePattern record.
1874   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1875 
1876   // Verify that we are passing the right number of operands.
1877   if (Frag->getNumArgs() != Children.size()) {
1878     TP.error("'" + Op->getName() + "' fragment requires " +
1879              Twine(Frag->getNumArgs()) + " operands!");
1880     return {nullptr};
1881   }
1882 
1883   TreePatternNodePtr FragTree = Frag->getOnlyTree()->clone();
1884 
1885   TreePredicateFn PredFn(Frag);
1886   if (!PredFn.isAlwaysTrue())
1887     FragTree->addPredicateFn(PredFn);
1888 
1889   // Resolve formal arguments to their actual value.
1890   if (Frag->getNumArgs()) {
1891     // Compute the map of formal to actual arguments.
1892     std::map<std::string, TreePatternNodePtr> ArgMap;
1893     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1894       const TreePatternNodePtr &Child = getChildShared(i);
1895       ArgMap[Frag->getArgName(i)] = Child->InlinePatternFragments(Child, TP);
1896     }
1897 
1898     FragTree->SubstituteFormalArguments(ArgMap);
1899   }
1900 
1901   FragTree->setName(getName());
1902   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1903     FragTree->UpdateNodeType(i, getExtType(i), TP);
1904 
1905   // Transfer in the old predicates.
1906   for (const TreePredicateFn &Pred : getPredicateFns())
1907     FragTree->addPredicateFn(Pred);
1908 
1909   // The fragment we inlined could have recursive inlining that is needed.  See
1910   // if there are any pattern fragments in it and inline them as needed.
1911   return FragTree->InlinePatternFragments(FragTree, TP);
1912 }
1913 
1914 /// getImplicitType - Check to see if the specified record has an implicit
1915 /// type which should be applied to it.  This will infer the type of register
1916 /// references from the register file information, for example.
1917 ///
1918 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1919 /// the F8RC register class argument in:
1920 ///
1921 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1922 ///
1923 /// When Unnamed is false, return the type of a named DAG operand such as the
1924 /// GPR:$src operand above.
1925 ///
1926 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1927                                        bool NotRegisters,
1928                                        bool Unnamed,
1929                                        TreePattern &TP) {
1930   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1931 
1932   // Check to see if this is a register operand.
1933   if (R->isSubClassOf("RegisterOperand")) {
1934     assert(ResNo == 0 && "Regoperand ref only has one result!");
1935     if (NotRegisters)
1936       return TypeSetByHwMode(); // Unknown.
1937     Record *RegClass = R->getValueAsDef("RegClass");
1938     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1939     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1940   }
1941 
1942   // Check to see if this is a register or a register class.
1943   if (R->isSubClassOf("RegisterClass")) {
1944     assert(ResNo == 0 && "Regclass ref only has one result!");
1945     // An unnamed register class represents itself as an i32 immediate, for
1946     // example on a COPY_TO_REGCLASS instruction.
1947     if (Unnamed)
1948       return TypeSetByHwMode(MVT::i32);
1949 
1950     // In a named operand, the register class provides the possible set of
1951     // types.
1952     if (NotRegisters)
1953       return TypeSetByHwMode(); // Unknown.
1954     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1955     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1956   }
1957 
1958   if (R->isSubClassOf("PatFrag")) {
1959     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1960     // Pattern fragment types will be resolved when they are inlined.
1961     return TypeSetByHwMode(); // Unknown.
1962   }
1963 
1964   if (R->isSubClassOf("Register")) {
1965     assert(ResNo == 0 && "Registers only produce one result!");
1966     if (NotRegisters)
1967       return TypeSetByHwMode(); // Unknown.
1968     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1969     return TypeSetByHwMode(T.getRegisterVTs(R));
1970   }
1971 
1972   if (R->isSubClassOf("SubRegIndex")) {
1973     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1974     return TypeSetByHwMode(MVT::i32);
1975   }
1976 
1977   if (R->isSubClassOf("ValueType")) {
1978     assert(ResNo == 0 && "This node only has one result!");
1979     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1980     //
1981     //   (sext_inreg GPR:$src, i16)
1982     //                         ~~~
1983     if (Unnamed)
1984       return TypeSetByHwMode(MVT::Other);
1985     // With a name, the ValueType simply provides the type of the named
1986     // variable.
1987     //
1988     //   (sext_inreg i32:$src, i16)
1989     //               ~~~~~~~~
1990     if (NotRegisters)
1991       return TypeSetByHwMode(); // Unknown.
1992     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1993     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
1994   }
1995 
1996   if (R->isSubClassOf("CondCode")) {
1997     assert(ResNo == 0 && "This node only has one result!");
1998     // Using a CondCodeSDNode.
1999     return TypeSetByHwMode(MVT::Other);
2000   }
2001 
2002   if (R->isSubClassOf("ComplexPattern")) {
2003     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2004     if (NotRegisters)
2005       return TypeSetByHwMode(); // Unknown.
2006     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2007   }
2008   if (R->isSubClassOf("PointerLikeRegClass")) {
2009     assert(ResNo == 0 && "Regclass can only have one result!");
2010     TypeSetByHwMode VTS(MVT::iPTR);
2011     TP.getInfer().expandOverloads(VTS);
2012     return VTS;
2013   }
2014 
2015   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2016       R->getName() == "zero_reg") {
2017     // Placeholder.
2018     return TypeSetByHwMode(); // Unknown.
2019   }
2020 
2021   if (R->isSubClassOf("Operand")) {
2022     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2023     Record *T = R->getValueAsDef("Type");
2024     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2025   }
2026 
2027   TP.error("Unknown node flavor used in pattern: " + R->getName());
2028   return TypeSetByHwMode(MVT::Other);
2029 }
2030 
2031 
2032 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2033 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2034 const CodeGenIntrinsic *TreePatternNode::
2035 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2036   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2037       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2038       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2039     return nullptr;
2040 
2041   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2042   return &CDP.getIntrinsicInfo(IID);
2043 }
2044 
2045 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2046 /// return the ComplexPattern information, otherwise return null.
2047 const ComplexPattern *
2048 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2049   Record *Rec;
2050   if (isLeaf()) {
2051     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2052     if (!DI)
2053       return nullptr;
2054     Rec = DI->getDef();
2055   } else
2056     Rec = getOperator();
2057 
2058   if (!Rec->isSubClassOf("ComplexPattern"))
2059     return nullptr;
2060   return &CGP.getComplexPattern(Rec);
2061 }
2062 
2063 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2064   // A ComplexPattern specifically declares how many results it fills in.
2065   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2066     return CP->getNumOperands();
2067 
2068   // If MIOperandInfo is specified, that gives the count.
2069   if (isLeaf()) {
2070     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2071     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2072       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2073       if (MIOps->getNumArgs())
2074         return MIOps->getNumArgs();
2075     }
2076   }
2077 
2078   // Otherwise there is just one result.
2079   return 1;
2080 }
2081 
2082 /// NodeHasProperty - Return true if this node has the specified property.
2083 bool TreePatternNode::NodeHasProperty(SDNP Property,
2084                                       const CodeGenDAGPatterns &CGP) const {
2085   if (isLeaf()) {
2086     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2087       return CP->hasProperty(Property);
2088 
2089     return false;
2090   }
2091 
2092   if (Property != SDNPHasChain) {
2093     // The chain proprety is already present on the different intrinsic node
2094     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2095     // on the intrinsic. Anything else is specific to the individual intrinsic.
2096     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2097       return Int->hasProperty(Property);
2098   }
2099 
2100   if (!Operator->isSubClassOf("SDPatternOperator"))
2101     return false;
2102 
2103   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2104 }
2105 
2106 
2107 
2108 
2109 /// TreeHasProperty - Return true if any node in this tree has the specified
2110 /// property.
2111 bool TreePatternNode::TreeHasProperty(SDNP Property,
2112                                       const CodeGenDAGPatterns &CGP) const {
2113   if (NodeHasProperty(Property, CGP))
2114     return true;
2115   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2116     if (getChild(i)->TreeHasProperty(Property, CGP))
2117       return true;
2118   return false;
2119 }
2120 
2121 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2122 /// commutative intrinsic.
2123 bool
2124 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2125   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2126     return Int->isCommutative;
2127   return false;
2128 }
2129 
2130 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2131   if (!N->isLeaf())
2132     return N->getOperator()->isSubClassOf(Class);
2133 
2134   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2135   if (DI && DI->getDef()->isSubClassOf(Class))
2136     return true;
2137 
2138   return false;
2139 }
2140 
2141 static void emitTooManyOperandsError(TreePattern &TP,
2142                                      StringRef InstName,
2143                                      unsigned Expected,
2144                                      unsigned Actual) {
2145   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2146            " operands but expected only " + Twine(Expected) + "!");
2147 }
2148 
2149 static void emitTooFewOperandsError(TreePattern &TP,
2150                                     StringRef InstName,
2151                                     unsigned Actual) {
2152   TP.error("Instruction '" + InstName +
2153            "' expects more than the provided " + Twine(Actual) + " operands!");
2154 }
2155 
2156 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2157 /// this node and its children in the tree.  This returns true if it makes a
2158 /// change, false otherwise.  If a type contradiction is found, flag an error.
2159 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2160   if (TP.hasError())
2161     return false;
2162 
2163   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2164   if (isLeaf()) {
2165     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2166       // If it's a regclass or something else known, include the type.
2167       bool MadeChange = false;
2168       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2169         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2170                                                         NotRegisters,
2171                                                         !hasName(), TP), TP);
2172       return MadeChange;
2173     }
2174 
2175     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2176       assert(Types.size() == 1 && "Invalid IntInit");
2177 
2178       // Int inits are always integers. :)
2179       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2180 
2181       if (!TP.getInfer().isConcrete(Types[0], false))
2182         return MadeChange;
2183 
2184       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2185       for (auto &P : VVT) {
2186         MVT::SimpleValueType VT = P.second.SimpleTy;
2187         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2188           continue;
2189         unsigned Size = MVT(VT).getSizeInBits();
2190         // Make sure that the value is representable for this type.
2191         if (Size >= 32)
2192           continue;
2193         // Check that the value doesn't use more bits than we have. It must
2194         // either be a sign- or zero-extended equivalent of the original.
2195         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2196         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2197             SignBitAndAbove == 1)
2198           continue;
2199 
2200         TP.error("Integer value '" + Twine(II->getValue()) +
2201                  "' is out of range for type '" + getEnumName(VT) + "'!");
2202         break;
2203       }
2204       return MadeChange;
2205     }
2206 
2207     return false;
2208   }
2209 
2210   // special handling for set, which isn't really an SDNode.
2211   if (getOperator()->getName() == "set") {
2212     assert(getNumTypes() == 0 && "Set doesn't produce a value");
2213     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
2214     unsigned NC = getNumChildren();
2215 
2216     TreePatternNode *SetVal = getChild(NC-1);
2217     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
2218 
2219     for (unsigned i = 0; i < NC-1; ++i) {
2220       TreePatternNode *Child = getChild(i);
2221       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
2222 
2223       // Types of operands must match.
2224       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
2225       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
2226     }
2227     return MadeChange;
2228   }
2229 
2230   if (getOperator()->getName() == "implicit") {
2231     assert(getNumTypes() == 0 && "Node doesn't produce a value");
2232 
2233     bool MadeChange = false;
2234     for (unsigned i = 0; i < getNumChildren(); ++i)
2235       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2236     return MadeChange;
2237   }
2238 
2239   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2240     bool MadeChange = false;
2241 
2242     // Apply the result type to the node.
2243     unsigned NumRetVTs = Int->IS.RetVTs.size();
2244     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2245 
2246     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2247       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2248 
2249     if (getNumChildren() != NumParamVTs + 1) {
2250       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2251                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2252       return false;
2253     }
2254 
2255     // Apply type info to the intrinsic ID.
2256     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2257 
2258     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2259       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2260 
2261       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2262       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2263       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2264     }
2265     return MadeChange;
2266   }
2267 
2268   if (getOperator()->isSubClassOf("SDNode")) {
2269     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2270 
2271     // Check that the number of operands is sane.  Negative operands -> varargs.
2272     if (NI.getNumOperands() >= 0 &&
2273         getNumChildren() != (unsigned)NI.getNumOperands()) {
2274       TP.error(getOperator()->getName() + " node requires exactly " +
2275                Twine(NI.getNumOperands()) + " operands!");
2276       return false;
2277     }
2278 
2279     bool MadeChange = false;
2280     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2281       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2282     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2283     return MadeChange;
2284   }
2285 
2286   if (getOperator()->isSubClassOf("Instruction")) {
2287     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2288     CodeGenInstruction &InstInfo =
2289       CDP.getTargetInfo().getInstruction(getOperator());
2290 
2291     bool MadeChange = false;
2292 
2293     // Apply the result types to the node, these come from the things in the
2294     // (outs) list of the instruction.
2295     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2296                                         Inst.getNumResults());
2297     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2298       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2299 
2300     // If the instruction has implicit defs, we apply the first one as a result.
2301     // FIXME: This sucks, it should apply all implicit defs.
2302     if (!InstInfo.ImplicitDefs.empty()) {
2303       unsigned ResNo = NumResultsToAdd;
2304 
2305       // FIXME: Generalize to multiple possible types and multiple possible
2306       // ImplicitDefs.
2307       MVT::SimpleValueType VT =
2308         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2309 
2310       if (VT != MVT::Other)
2311         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2312     }
2313 
2314     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2315     // be the same.
2316     if (getOperator()->getName() == "INSERT_SUBREG") {
2317       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2318       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2319       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2320     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2321       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2322       // variadic.
2323 
2324       unsigned NChild = getNumChildren();
2325       if (NChild < 3) {
2326         TP.error("REG_SEQUENCE requires at least 3 operands!");
2327         return false;
2328       }
2329 
2330       if (NChild % 2 == 0) {
2331         TP.error("REG_SEQUENCE requires an odd number of operands!");
2332         return false;
2333       }
2334 
2335       if (!isOperandClass(getChild(0), "RegisterClass")) {
2336         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2337         return false;
2338       }
2339 
2340       for (unsigned I = 1; I < NChild; I += 2) {
2341         TreePatternNode *SubIdxChild = getChild(I + 1);
2342         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2343           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2344                    Twine(I + 1) + "!");
2345           return false;
2346         }
2347       }
2348     }
2349 
2350     unsigned ChildNo = 0;
2351     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2352       Record *OperandNode = Inst.getOperand(i);
2353 
2354       // If the instruction expects a predicate or optional def operand, we
2355       // codegen this by setting the operand to it's default value if it has a
2356       // non-empty DefaultOps field.
2357       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2358           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2359         continue;
2360 
2361       // Verify that we didn't run out of provided operands.
2362       if (ChildNo >= getNumChildren()) {
2363         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2364         return false;
2365       }
2366 
2367       TreePatternNode *Child = getChild(ChildNo++);
2368       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2369 
2370       // If the operand has sub-operands, they may be provided by distinct
2371       // child patterns, so attempt to match each sub-operand separately.
2372       if (OperandNode->isSubClassOf("Operand")) {
2373         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2374         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2375           // But don't do that if the whole operand is being provided by
2376           // a single ComplexPattern-related Operand.
2377 
2378           if (Child->getNumMIResults(CDP) < NumArgs) {
2379             // Match first sub-operand against the child we already have.
2380             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2381             MadeChange |=
2382               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2383 
2384             // And the remaining sub-operands against subsequent children.
2385             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2386               if (ChildNo >= getNumChildren()) {
2387                 emitTooFewOperandsError(TP, getOperator()->getName(),
2388                                         getNumChildren());
2389                 return false;
2390               }
2391               Child = getChild(ChildNo++);
2392 
2393               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2394               MadeChange |=
2395                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2396             }
2397             continue;
2398           }
2399         }
2400       }
2401 
2402       // If we didn't match by pieces above, attempt to match the whole
2403       // operand now.
2404       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2405     }
2406 
2407     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2408       emitTooManyOperandsError(TP, getOperator()->getName(),
2409                                ChildNo, getNumChildren());
2410       return false;
2411     }
2412 
2413     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2414       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2415     return MadeChange;
2416   }
2417 
2418   if (getOperator()->isSubClassOf("ComplexPattern")) {
2419     bool MadeChange = false;
2420 
2421     for (unsigned i = 0; i < getNumChildren(); ++i)
2422       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2423 
2424     return MadeChange;
2425   }
2426 
2427   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2428 
2429   // Node transforms always take one operand.
2430   if (getNumChildren() != 1) {
2431     TP.error("Node transform '" + getOperator()->getName() +
2432              "' requires one operand!");
2433     return false;
2434   }
2435 
2436   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2437   return MadeChange;
2438 }
2439 
2440 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2441 /// RHS of a commutative operation, not the on LHS.
2442 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2443   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2444     return true;
2445   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2446     return true;
2447   return false;
2448 }
2449 
2450 
2451 /// canPatternMatch - If it is impossible for this pattern to match on this
2452 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2453 /// used as a sanity check for .td files (to prevent people from writing stuff
2454 /// that can never possibly work), and to prevent the pattern permuter from
2455 /// generating stuff that is useless.
2456 bool TreePatternNode::canPatternMatch(std::string &Reason,
2457                                       const CodeGenDAGPatterns &CDP) {
2458   if (isLeaf()) return true;
2459 
2460   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2461     if (!getChild(i)->canPatternMatch(Reason, CDP))
2462       return false;
2463 
2464   // If this is an intrinsic, handle cases that would make it not match.  For
2465   // example, if an operand is required to be an immediate.
2466   if (getOperator()->isSubClassOf("Intrinsic")) {
2467     // TODO:
2468     return true;
2469   }
2470 
2471   if (getOperator()->isSubClassOf("ComplexPattern"))
2472     return true;
2473 
2474   // If this node is a commutative operator, check that the LHS isn't an
2475   // immediate.
2476   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2477   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2478   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2479     // Scan all of the operands of the node and make sure that only the last one
2480     // is a constant node, unless the RHS also is.
2481     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2482       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2483       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2484         if (OnlyOnRHSOfCommutative(getChild(i))) {
2485           Reason="Immediate value must be on the RHS of commutative operators!";
2486           return false;
2487         }
2488     }
2489   }
2490 
2491   return true;
2492 }
2493 
2494 //===----------------------------------------------------------------------===//
2495 // TreePattern implementation
2496 //
2497 
2498 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2499                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2500                          isInputPattern(isInput), HasError(false),
2501                          Infer(*this) {
2502   for (Init *I : RawPat->getValues())
2503     Trees.push_back(ParseTreePattern(I, ""));
2504 }
2505 
2506 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2507                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2508                          isInputPattern(isInput), HasError(false),
2509                          Infer(*this) {
2510   Trees.push_back(ParseTreePattern(Pat, ""));
2511 }
2512 
2513 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2514                          CodeGenDAGPatterns &cdp)
2515     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2516       Infer(*this) {
2517   Trees.push_back(Pat);
2518 }
2519 
2520 void TreePattern::error(const Twine &Msg) {
2521   if (HasError)
2522     return;
2523   dump();
2524   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2525   HasError = true;
2526 }
2527 
2528 void TreePattern::ComputeNamedNodes() {
2529   for (TreePatternNodePtr &Tree : Trees)
2530     ComputeNamedNodes(Tree.get());
2531 }
2532 
2533 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2534   if (!N->getName().empty())
2535     NamedNodes[N->getName()].push_back(N);
2536 
2537   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2538     ComputeNamedNodes(N->getChild(i));
2539 }
2540 
2541 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2542                                                  StringRef OpName) {
2543   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2544     Record *R = DI->getDef();
2545 
2546     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2547     // TreePatternNode of its own.  For example:
2548     ///   (foo GPR, imm) -> (foo GPR, (imm))
2549     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2550       return ParseTreePattern(
2551         DagInit::get(DI, nullptr,
2552                      std::vector<std::pair<Init*, StringInit*> >()),
2553         OpName);
2554 
2555     // Input argument?
2556     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2557     if (R->getName() == "node" && !OpName.empty()) {
2558       if (OpName.empty())
2559         error("'node' argument requires a name to match with operand list");
2560       Args.push_back(OpName);
2561     }
2562 
2563     Res->setName(OpName);
2564     return Res;
2565   }
2566 
2567   // ?:$name or just $name.
2568   if (isa<UnsetInit>(TheInit)) {
2569     if (OpName.empty())
2570       error("'?' argument requires a name to match with operand list");
2571     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2572     Args.push_back(OpName);
2573     Res->setName(OpName);
2574     return Res;
2575   }
2576 
2577   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2578     if (!OpName.empty())
2579       error("Constant int or bit argument should not have a name!");
2580     if (isa<BitInit>(TheInit))
2581       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2582     return std::make_shared<TreePatternNode>(TheInit, 1);
2583   }
2584 
2585   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2586     // Turn this into an IntInit.
2587     Init *II = BI->convertInitializerTo(IntRecTy::get());
2588     if (!II || !isa<IntInit>(II))
2589       error("Bits value must be constants!");
2590     return ParseTreePattern(II, OpName);
2591   }
2592 
2593   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2594   if (!Dag) {
2595     TheInit->print(errs());
2596     error("Pattern has unexpected init kind!");
2597   }
2598   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2599   if (!OpDef) error("Pattern has unexpected operator type!");
2600   Record *Operator = OpDef->getDef();
2601 
2602   if (Operator->isSubClassOf("ValueType")) {
2603     // If the operator is a ValueType, then this must be "type cast" of a leaf
2604     // node.
2605     if (Dag->getNumArgs() != 1)
2606       error("Type cast only takes one operand!");
2607 
2608     TreePatternNodePtr New =
2609         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2610 
2611     // Apply the type cast.
2612     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2613     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2614     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2615 
2616     if (!OpName.empty())
2617       error("ValueType cast should not have a name!");
2618     return New;
2619   }
2620 
2621   // Verify that this is something that makes sense for an operator.
2622   if (!Operator->isSubClassOf("PatFrag") &&
2623       !Operator->isSubClassOf("SDNode") &&
2624       !Operator->isSubClassOf("Instruction") &&
2625       !Operator->isSubClassOf("SDNodeXForm") &&
2626       !Operator->isSubClassOf("Intrinsic") &&
2627       !Operator->isSubClassOf("ComplexPattern") &&
2628       Operator->getName() != "set" &&
2629       Operator->getName() != "implicit")
2630     error("Unrecognized node '" + Operator->getName() + "'!");
2631 
2632   //  Check to see if this is something that is illegal in an input pattern.
2633   if (isInputPattern) {
2634     if (Operator->isSubClassOf("Instruction") ||
2635         Operator->isSubClassOf("SDNodeXForm"))
2636       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2637   } else {
2638     if (Operator->isSubClassOf("Intrinsic"))
2639       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2640 
2641     if (Operator->isSubClassOf("SDNode") &&
2642         Operator->getName() != "imm" &&
2643         Operator->getName() != "fpimm" &&
2644         Operator->getName() != "tglobaltlsaddr" &&
2645         Operator->getName() != "tconstpool" &&
2646         Operator->getName() != "tjumptable" &&
2647         Operator->getName() != "tframeindex" &&
2648         Operator->getName() != "texternalsym" &&
2649         Operator->getName() != "tblockaddress" &&
2650         Operator->getName() != "tglobaladdr" &&
2651         Operator->getName() != "bb" &&
2652         Operator->getName() != "vt" &&
2653         Operator->getName() != "mcsym")
2654       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2655   }
2656 
2657   std::vector<TreePatternNodePtr> Children;
2658 
2659   // Parse all the operands.
2660   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2661     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2662 
2663   // Get the actual number of results before Operator is converted to an intrinsic
2664   // node (which is hard-coded to have either zero or one result).
2665   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2666 
2667   // If the operator is an intrinsic, then this is just syntactic sugar for
2668   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2669   // convert the intrinsic name to a number.
2670   if (Operator->isSubClassOf("Intrinsic")) {
2671     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2672     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2673 
2674     // If this intrinsic returns void, it must have side-effects and thus a
2675     // chain.
2676     if (Int.IS.RetVTs.empty())
2677       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2678     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2679       // Has side-effects, requires chain.
2680       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2681     else // Otherwise, no chain.
2682       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2683 
2684     Children.insert(Children.begin(),
2685                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2686   }
2687 
2688   if (Operator->isSubClassOf("ComplexPattern")) {
2689     for (unsigned i = 0; i < Children.size(); ++i) {
2690       TreePatternNodePtr Child = Children[i];
2691 
2692       if (Child->getName().empty())
2693         error("All arguments to a ComplexPattern must be named");
2694 
2695       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2696       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2697       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2698       auto OperandId = std::make_pair(Operator, i);
2699       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2700       if (PrevOp != ComplexPatternOperands.end()) {
2701         if (PrevOp->getValue() != OperandId)
2702           error("All ComplexPattern operands must appear consistently: "
2703                 "in the same order in just one ComplexPattern instance.");
2704       } else
2705         ComplexPatternOperands[Child->getName()] = OperandId;
2706     }
2707   }
2708 
2709   TreePatternNodePtr Result =
2710       std::make_shared<TreePatternNode>(Operator, Children, NumResults);
2711   Result->setName(OpName);
2712 
2713   if (Dag->getName()) {
2714     assert(Result->getName().empty());
2715     Result->setName(Dag->getNameStr());
2716   }
2717   return Result;
2718 }
2719 
2720 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2721 /// will never match in favor of something obvious that will.  This is here
2722 /// strictly as a convenience to target authors because it allows them to write
2723 /// more type generic things and have useless type casts fold away.
2724 ///
2725 /// This returns true if any change is made.
2726 static bool SimplifyTree(TreePatternNodePtr &N) {
2727   if (N->isLeaf())
2728     return false;
2729 
2730   // If we have a bitconvert with a resolved type and if the source and
2731   // destination types are the same, then the bitconvert is useless, remove it.
2732   if (N->getOperator()->getName() == "bitconvert" &&
2733       N->getExtType(0).isValueTypeByHwMode(false) &&
2734       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2735       N->getName().empty()) {
2736     N = N->getChildShared(0);
2737     SimplifyTree(N);
2738     return true;
2739   }
2740 
2741   // Walk all children.
2742   bool MadeChange = false;
2743   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2744     TreePatternNodePtr Child = N->getChildShared(i);
2745     MadeChange |= SimplifyTree(Child);
2746     N->setChild(i, std::move(Child));
2747   }
2748   return MadeChange;
2749 }
2750 
2751 
2752 
2753 /// InferAllTypes - Infer/propagate as many types throughout the expression
2754 /// patterns as possible.  Return true if all types are inferred, false
2755 /// otherwise.  Flags an error if a type contradiction is found.
2756 bool TreePattern::
2757 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2758   if (NamedNodes.empty())
2759     ComputeNamedNodes();
2760 
2761   bool MadeChange = true;
2762   while (MadeChange) {
2763     MadeChange = false;
2764     for (TreePatternNodePtr &Tree : Trees) {
2765       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2766       MadeChange |= SimplifyTree(Tree);
2767     }
2768 
2769     // If there are constraints on our named nodes, apply them.
2770     for (auto &Entry : NamedNodes) {
2771       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2772 
2773       // If we have input named node types, propagate their types to the named
2774       // values here.
2775       if (InNamedTypes) {
2776         if (!InNamedTypes->count(Entry.getKey())) {
2777           error("Node '" + std::string(Entry.getKey()) +
2778                 "' in output pattern but not input pattern");
2779           return true;
2780         }
2781 
2782         const SmallVectorImpl<TreePatternNode*> &InNodes =
2783           InNamedTypes->find(Entry.getKey())->second;
2784 
2785         // The input types should be fully resolved by now.
2786         for (TreePatternNode *Node : Nodes) {
2787           // If this node is a register class, and it is the root of the pattern
2788           // then we're mapping something onto an input register.  We allow
2789           // changing the type of the input register in this case.  This allows
2790           // us to match things like:
2791           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2792           if (Node == Trees[0].get() && Node->isLeaf()) {
2793             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2794             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2795                        DI->getDef()->isSubClassOf("RegisterOperand")))
2796               continue;
2797           }
2798 
2799           assert(Node->getNumTypes() == 1 &&
2800                  InNodes[0]->getNumTypes() == 1 &&
2801                  "FIXME: cannot name multiple result nodes yet");
2802           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2803                                              *this);
2804         }
2805       }
2806 
2807       // If there are multiple nodes with the same name, they must all have the
2808       // same type.
2809       if (Entry.second.size() > 1) {
2810         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2811           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2812           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2813                  "FIXME: cannot name multiple result nodes yet");
2814 
2815           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2816           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2817         }
2818       }
2819     }
2820   }
2821 
2822   bool HasUnresolvedTypes = false;
2823   for (const TreePatternNodePtr &Tree : Trees)
2824     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2825   return !HasUnresolvedTypes;
2826 }
2827 
2828 void TreePattern::print(raw_ostream &OS) const {
2829   OS << getRecord()->getName();
2830   if (!Args.empty()) {
2831     OS << "(" << Args[0];
2832     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2833       OS << ", " << Args[i];
2834     OS << ")";
2835   }
2836   OS << ": ";
2837 
2838   if (Trees.size() > 1)
2839     OS << "[\n";
2840   for (const TreePatternNodePtr &Tree : Trees) {
2841     OS << "\t";
2842     Tree->print(OS);
2843     OS << "\n";
2844   }
2845 
2846   if (Trees.size() > 1)
2847     OS << "]\n";
2848 }
2849 
2850 void TreePattern::dump() const { print(errs()); }
2851 
2852 //===----------------------------------------------------------------------===//
2853 // CodeGenDAGPatterns implementation
2854 //
2855 
2856 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2857                                        PatternRewriterFn PatternRewriter)
2858     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2859       PatternRewriter(PatternRewriter) {
2860 
2861   Intrinsics = CodeGenIntrinsicTable(Records, false);
2862   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2863   ParseNodeInfo();
2864   ParseNodeTransforms();
2865   ParseComplexPatterns();
2866   ParsePatternFragments();
2867   ParseDefaultOperands();
2868   ParseInstructions();
2869   ParsePatternFragments(/*OutFrags*/true);
2870   ParsePatterns();
2871 
2872   // Break patterns with parameterized types into a series of patterns,
2873   // where each one has a fixed type and is predicated on the conditions
2874   // of the associated HW mode.
2875   ExpandHwModeBasedTypes();
2876 
2877   // Generate variants.  For example, commutative patterns can match
2878   // multiple ways.  Add them to PatternsToMatch as well.
2879   GenerateVariants();
2880 
2881   // Infer instruction flags.  For example, we can detect loads,
2882   // stores, and side effects in many cases by examining an
2883   // instruction's pattern.
2884   InferInstructionFlags();
2885 
2886   // Verify that instruction flags match the patterns.
2887   VerifyInstructionFlags();
2888 }
2889 
2890 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2891   Record *N = Records.getDef(Name);
2892   if (!N || !N->isSubClassOf("SDNode"))
2893     PrintFatalError("Error getting SDNode '" + Name + "'!");
2894 
2895   return N;
2896 }
2897 
2898 // Parse all of the SDNode definitions for the target, populating SDNodes.
2899 void CodeGenDAGPatterns::ParseNodeInfo() {
2900   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2901   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2902 
2903   while (!Nodes.empty()) {
2904     Record *R = Nodes.back();
2905     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2906     Nodes.pop_back();
2907   }
2908 
2909   // Get the builtin intrinsic nodes.
2910   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2911   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2912   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2913 }
2914 
2915 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2916 /// map, and emit them to the file as functions.
2917 void CodeGenDAGPatterns::ParseNodeTransforms() {
2918   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2919   while (!Xforms.empty()) {
2920     Record *XFormNode = Xforms.back();
2921     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2922     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2923     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2924 
2925     Xforms.pop_back();
2926   }
2927 }
2928 
2929 void CodeGenDAGPatterns::ParseComplexPatterns() {
2930   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2931   while (!AMs.empty()) {
2932     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2933     AMs.pop_back();
2934   }
2935 }
2936 
2937 
2938 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2939 /// file, building up the PatternFragments map.  After we've collected them all,
2940 /// inline fragments together as necessary, so that there are no references left
2941 /// inside a pattern fragment to a pattern fragment.
2942 ///
2943 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2944   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2945 
2946   // First step, parse all of the fragments.
2947   for (Record *Frag : Fragments) {
2948     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2949       continue;
2950 
2951     DagInit *Tree = Frag->getValueAsDag("Fragment");
2952     TreePattern *P =
2953         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2954              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2955              *this)).get();
2956 
2957     // Validate the argument list, converting it to set, to discard duplicates.
2958     std::vector<std::string> &Args = P->getArgList();
2959     // Copy the args so we can take StringRefs to them.
2960     auto ArgsCopy = Args;
2961     SmallDenseSet<StringRef, 4> OperandsSet;
2962     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2963 
2964     if (OperandsSet.count(""))
2965       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2966 
2967     // Parse the operands list.
2968     DagInit *OpsList = Frag->getValueAsDag("Operands");
2969     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2970     // Special cases: ops == outs == ins. Different names are used to
2971     // improve readability.
2972     if (!OpsOp ||
2973         (OpsOp->getDef()->getName() != "ops" &&
2974          OpsOp->getDef()->getName() != "outs" &&
2975          OpsOp->getDef()->getName() != "ins"))
2976       P->error("Operands list should start with '(ops ... '!");
2977 
2978     // Copy over the arguments.
2979     Args.clear();
2980     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2981       if (!isa<DefInit>(OpsList->getArg(j)) ||
2982           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2983         P->error("Operands list should all be 'node' values.");
2984       if (!OpsList->getArgName(j))
2985         P->error("Operands list should have names for each operand!");
2986       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2987       if (!OperandsSet.count(ArgNameStr))
2988         P->error("'" + ArgNameStr +
2989                  "' does not occur in pattern or was multiply specified!");
2990       OperandsSet.erase(ArgNameStr);
2991       Args.push_back(ArgNameStr);
2992     }
2993 
2994     if (!OperandsSet.empty())
2995       P->error("Operands list does not contain an entry for operand '" +
2996                *OperandsSet.begin() + "'!");
2997 
2998     // If there is a code init for this fragment, keep track of the fact that
2999     // this fragment uses it.
3000     TreePredicateFn PredFn(P);
3001     if (!PredFn.isAlwaysTrue())
3002       P->getOnlyTree()->addPredicateFn(PredFn);
3003 
3004     // If there is a node transformation corresponding to this, keep track of
3005     // it.
3006     Record *Transform = Frag->getValueAsDef("OperandTransform");
3007     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3008       P->getOnlyTree()->setTransformFn(Transform);
3009   }
3010 
3011   // Now that we've parsed all of the tree fragments, do a closure on them so
3012   // that there are not references to PatFrags left inside of them.
3013   for (Record *Frag : Fragments) {
3014     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3015       continue;
3016 
3017     TreePattern &ThePat = *PatternFragments[Frag];
3018     ThePat.InlinePatternFragments();
3019 
3020     // Infer as many types as possible.  Don't worry about it if we don't infer
3021     // all of them, some may depend on the inputs of the pattern.
3022     ThePat.InferAllTypes();
3023     ThePat.resetError();
3024 
3025     // If debugging, print out the pattern fragment result.
3026     LLVM_DEBUG(ThePat.dump());
3027   }
3028 }
3029 
3030 void CodeGenDAGPatterns::ParseDefaultOperands() {
3031   std::vector<Record*> DefaultOps;
3032   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3033 
3034   // Find some SDNode.
3035   assert(!SDNodes.empty() && "No SDNodes parsed?");
3036   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3037 
3038   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3039     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3040 
3041     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3042     // SomeSDnode so that we can parse this.
3043     std::vector<std::pair<Init*, StringInit*> > Ops;
3044     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3045       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3046                                    DefaultInfo->getArgName(op)));
3047     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3048 
3049     // Create a TreePattern to parse this.
3050     TreePattern P(DefaultOps[i], DI, false, *this);
3051     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3052 
3053     // Copy the operands over into a DAGDefaultOperand.
3054     DAGDefaultOperand DefaultOpInfo;
3055 
3056     const TreePatternNodePtr &T = P.getTree(0);
3057     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3058       TreePatternNodePtr TPN = T->getChildShared(op);
3059       while (TPN->ApplyTypeConstraints(P, false))
3060         /* Resolve all types */;
3061 
3062       if (TPN->ContainsUnresolvedType(P)) {
3063         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3064                         DefaultOps[i]->getName() +
3065                         "' doesn't have a concrete type!");
3066       }
3067       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3068     }
3069 
3070     // Insert it into the DefaultOperands map so we can find it later.
3071     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3072   }
3073 }
3074 
3075 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3076 /// instruction input.  Return true if this is a real use.
3077 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3078                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3079   // No name -> not interesting.
3080   if (Pat->getName().empty()) {
3081     if (Pat->isLeaf()) {
3082       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3083       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3084                  DI->getDef()->isSubClassOf("RegisterOperand")))
3085         I.error("Input " + DI->getDef()->getName() + " must be named!");
3086     }
3087     return false;
3088   }
3089 
3090   Record *Rec;
3091   if (Pat->isLeaf()) {
3092     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3093     if (!DI)
3094       I.error("Input $" + Pat->getName() + " must be an identifier!");
3095     Rec = DI->getDef();
3096   } else {
3097     Rec = Pat->getOperator();
3098   }
3099 
3100   // SRCVALUE nodes are ignored.
3101   if (Rec->getName() == "srcvalue")
3102     return false;
3103 
3104   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3105   if (!Slot) {
3106     Slot = Pat;
3107     return true;
3108   }
3109   Record *SlotRec;
3110   if (Slot->isLeaf()) {
3111     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3112   } else {
3113     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3114     SlotRec = Slot->getOperator();
3115   }
3116 
3117   // Ensure that the inputs agree if we've already seen this input.
3118   if (Rec != SlotRec)
3119     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3120   if (Slot->getExtTypes() != Pat->getExtTypes())
3121     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3122   return true;
3123 }
3124 
3125 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3126 /// part of "I", the instruction), computing the set of inputs and outputs of
3127 /// the pattern.  Report errors if we see anything naughty.
3128 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3129     TreePattern &I, TreePatternNodePtr Pat,
3130     std::map<std::string, TreePatternNodePtr> &InstInputs,
3131     std::map<std::string, TreePatternNodePtr> &InstResults,
3132     std::vector<Record *> &InstImpResults) {
3133   if (Pat->isLeaf()) {
3134     bool isUse = HandleUse(I, Pat, InstInputs);
3135     if (!isUse && Pat->getTransformFn())
3136       I.error("Cannot specify a transform function for a non-input value!");
3137     return;
3138   }
3139 
3140   if (Pat->getOperator()->getName() == "implicit") {
3141     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3142       TreePatternNode *Dest = Pat->getChild(i);
3143       if (!Dest->isLeaf())
3144         I.error("implicitly defined value should be a register!");
3145 
3146       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3147       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3148         I.error("implicitly defined value should be a register!");
3149       InstImpResults.push_back(Val->getDef());
3150     }
3151     return;
3152   }
3153 
3154   if (Pat->getOperator()->getName() != "set") {
3155     // If this is not a set, verify that the children nodes are not void typed,
3156     // and recurse.
3157     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3158       if (Pat->getChild(i)->getNumTypes() == 0)
3159         I.error("Cannot have void nodes inside of patterns!");
3160       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3161                                   InstResults, InstImpResults);
3162     }
3163 
3164     // If this is a non-leaf node with no children, treat it basically as if
3165     // it were a leaf.  This handles nodes like (imm).
3166     bool isUse = HandleUse(I, Pat, InstInputs);
3167 
3168     if (!isUse && Pat->getTransformFn())
3169       I.error("Cannot specify a transform function for a non-input value!");
3170     return;
3171   }
3172 
3173   // Otherwise, this is a set, validate and collect instruction results.
3174   if (Pat->getNumChildren() == 0)
3175     I.error("set requires operands!");
3176 
3177   if (Pat->getTransformFn())
3178     I.error("Cannot specify a transform function on a set node!");
3179 
3180   // Check the set destinations.
3181   unsigned NumDests = Pat->getNumChildren()-1;
3182   for (unsigned i = 0; i != NumDests; ++i) {
3183     TreePatternNodePtr Dest = Pat->getChildShared(i);
3184     if (!Dest->isLeaf())
3185       I.error("set destination should be a register!");
3186 
3187     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3188     if (!Val) {
3189       I.error("set destination should be a register!");
3190       continue;
3191     }
3192 
3193     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3194         Val->getDef()->isSubClassOf("ValueType") ||
3195         Val->getDef()->isSubClassOf("RegisterOperand") ||
3196         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3197       if (Dest->getName().empty())
3198         I.error("set destination must have a name!");
3199       if (InstResults.count(Dest->getName()))
3200         I.error("cannot set '" + Dest->getName() + "' multiple times");
3201       InstResults[Dest->getName()] = Dest;
3202     } else if (Val->getDef()->isSubClassOf("Register")) {
3203       InstImpResults.push_back(Val->getDef());
3204     } else {
3205       I.error("set destination should be a register!");
3206     }
3207   }
3208 
3209   // Verify and collect info from the computation.
3210   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3211                               InstResults, InstImpResults);
3212 }
3213 
3214 //===----------------------------------------------------------------------===//
3215 // Instruction Analysis
3216 //===----------------------------------------------------------------------===//
3217 
3218 class InstAnalyzer {
3219   const CodeGenDAGPatterns &CDP;
3220 public:
3221   bool hasSideEffects;
3222   bool mayStore;
3223   bool mayLoad;
3224   bool isBitcast;
3225   bool isVariadic;
3226 
3227   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3228     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3229       isBitcast(false), isVariadic(false) {}
3230 
3231   void Analyze(const TreePattern *Pat) {
3232     // Assume only the first tree is the pattern. The others are clobber nodes.
3233     AnalyzeNode(Pat->getTree(0).get());
3234   }
3235 
3236   void Analyze(const PatternToMatch &Pat) {
3237     AnalyzeNode(Pat.getSrcPattern());
3238   }
3239 
3240 private:
3241   bool IsNodeBitcast(const TreePatternNode *N) const {
3242     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3243       return false;
3244 
3245     if (N->getNumChildren() != 2)
3246       return false;
3247 
3248     const TreePatternNode *N0 = N->getChild(0);
3249     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
3250       return false;
3251 
3252     const TreePatternNode *N1 = N->getChild(1);
3253     if (N1->isLeaf())
3254       return false;
3255     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
3256       return false;
3257 
3258     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
3259     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3260       return false;
3261     return OpInfo.getEnumName() == "ISD::BITCAST";
3262   }
3263 
3264 public:
3265   void AnalyzeNode(const TreePatternNode *N) {
3266     if (N->isLeaf()) {
3267       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3268         Record *LeafRec = DI->getDef();
3269         // Handle ComplexPattern leaves.
3270         if (LeafRec->isSubClassOf("ComplexPattern")) {
3271           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3272           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3273           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3274           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3275         }
3276       }
3277       return;
3278     }
3279 
3280     // Analyze children.
3281     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3282       AnalyzeNode(N->getChild(i));
3283 
3284     // Ignore set nodes, which are not SDNodes.
3285     if (N->getOperator()->getName() == "set") {
3286       isBitcast = IsNodeBitcast(N);
3287       return;
3288     }
3289 
3290     // Notice properties of the node.
3291     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3292     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3293     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3294     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3295 
3296     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3297       // If this is an intrinsic, analyze it.
3298       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3299         mayLoad = true;// These may load memory.
3300 
3301       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3302         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3303 
3304       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3305           IntInfo->hasSideEffects)
3306         // ReadWriteMem intrinsics can have other strange effects.
3307         hasSideEffects = true;
3308     }
3309   }
3310 
3311 };
3312 
3313 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3314                              const InstAnalyzer &PatInfo,
3315                              Record *PatDef) {
3316   bool Error = false;
3317 
3318   // Remember where InstInfo got its flags.
3319   if (InstInfo.hasUndefFlags())
3320       InstInfo.InferredFrom = PatDef;
3321 
3322   // Check explicitly set flags for consistency.
3323   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3324       !InstInfo.hasSideEffects_Unset) {
3325     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3326     // the pattern has no side effects. That could be useful for div/rem
3327     // instructions that may trap.
3328     if (!InstInfo.hasSideEffects) {
3329       Error = true;
3330       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3331                  Twine(InstInfo.hasSideEffects));
3332     }
3333   }
3334 
3335   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3336     Error = true;
3337     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3338                Twine(InstInfo.mayStore));
3339   }
3340 
3341   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3342     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3343     // Some targets translate immediates to loads.
3344     if (!InstInfo.mayLoad) {
3345       Error = true;
3346       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3347                  Twine(InstInfo.mayLoad));
3348     }
3349   }
3350 
3351   // Transfer inferred flags.
3352   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3353   InstInfo.mayStore |= PatInfo.mayStore;
3354   InstInfo.mayLoad |= PatInfo.mayLoad;
3355 
3356   // These flags are silently added without any verification.
3357   InstInfo.isBitcast |= PatInfo.isBitcast;
3358 
3359   // Don't infer isVariadic. This flag means something different on SDNodes and
3360   // instructions. For example, a CALL SDNode is variadic because it has the
3361   // call arguments as operands, but a CALL instruction is not variadic - it
3362   // has argument registers as implicit, not explicit uses.
3363 
3364   return Error;
3365 }
3366 
3367 /// hasNullFragReference - Return true if the DAG has any reference to the
3368 /// null_frag operator.
3369 static bool hasNullFragReference(DagInit *DI) {
3370   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3371   if (!OpDef) return false;
3372   Record *Operator = OpDef->getDef();
3373 
3374   // If this is the null fragment, return true.
3375   if (Operator->getName() == "null_frag") return true;
3376   // If any of the arguments reference the null fragment, return true.
3377   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3378     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3379     if (Arg && hasNullFragReference(Arg))
3380       return true;
3381   }
3382 
3383   return false;
3384 }
3385 
3386 /// hasNullFragReference - Return true if any DAG in the list references
3387 /// the null_frag operator.
3388 static bool hasNullFragReference(ListInit *LI) {
3389   for (Init *I : LI->getValues()) {
3390     DagInit *DI = dyn_cast<DagInit>(I);
3391     assert(DI && "non-dag in an instruction Pattern list?!");
3392     if (hasNullFragReference(DI))
3393       return true;
3394   }
3395   return false;
3396 }
3397 
3398 /// Get all the instructions in a tree.
3399 static void
3400 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3401   if (Tree->isLeaf())
3402     return;
3403   if (Tree->getOperator()->isSubClassOf("Instruction"))
3404     Instrs.push_back(Tree->getOperator());
3405   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3406     getInstructionsInTree(Tree->getChild(i), Instrs);
3407 }
3408 
3409 /// Check the class of a pattern leaf node against the instruction operand it
3410 /// represents.
3411 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3412                               Record *Leaf) {
3413   if (OI.Rec == Leaf)
3414     return true;
3415 
3416   // Allow direct value types to be used in instruction set patterns.
3417   // The type will be checked later.
3418   if (Leaf->isSubClassOf("ValueType"))
3419     return true;
3420 
3421   // Patterns can also be ComplexPattern instances.
3422   if (Leaf->isSubClassOf("ComplexPattern"))
3423     return true;
3424 
3425   return false;
3426 }
3427 
3428 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3429     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3430 
3431   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3432 
3433   // Parse the instruction.
3434   auto I = llvm::make_unique<TreePattern>(CGI.TheDef, Pat, true, *this);
3435   // Inline pattern fragments into it.
3436   I->InlinePatternFragments();
3437 
3438   // Infer as many types as possible.  If we cannot infer all of them, we can
3439   // never do anything with this instruction pattern: report it to the user.
3440   if (!I->InferAllTypes())
3441     I->error("Could not infer all types in pattern!");
3442 
3443   // InstInputs - Keep track of all of the inputs of the instruction, along
3444   // with the record they are declared as.
3445   std::map<std::string, TreePatternNodePtr> InstInputs;
3446 
3447   // InstResults - Keep track of all the virtual registers that are 'set'
3448   // in the instruction, including what reg class they are.
3449   std::map<std::string, TreePatternNodePtr> InstResults;
3450 
3451   std::vector<Record*> InstImpResults;
3452 
3453   // Verify that the top-level forms in the instruction are of void type, and
3454   // fill in the InstResults map.
3455   SmallString<32> TypesString;
3456   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3457     TypesString.clear();
3458     TreePatternNodePtr Pat = I->getTree(j);
3459     if (Pat->getNumTypes() != 0) {
3460       raw_svector_ostream OS(TypesString);
3461       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3462         if (k > 0)
3463           OS << ", ";
3464         Pat->getExtType(k).writeToStream(OS);
3465       }
3466       I->error("Top-level forms in instruction pattern should have"
3467                " void types, has types " +
3468                OS.str());
3469     }
3470 
3471     // Find inputs and outputs, and verify the structure of the uses/defs.
3472     FindPatternInputsAndOutputs(*I, Pat, InstInputs, InstResults,
3473                                 InstImpResults);
3474   }
3475 
3476   // Now that we have inputs and outputs of the pattern, inspect the operands
3477   // list for the instruction.  This determines the order that operands are
3478   // added to the machine instruction the node corresponds to.
3479   unsigned NumResults = InstResults.size();
3480 
3481   // Parse the operands list from the (ops) list, validating it.
3482   assert(I->getArgList().empty() && "Args list should still be empty here!");
3483 
3484   // Check that all of the results occur first in the list.
3485   std::vector<Record*> Results;
3486   SmallVector<TreePatternNodePtr, 2> ResNodes;
3487   for (unsigned i = 0; i != NumResults; ++i) {
3488     if (i == CGI.Operands.size())
3489       I->error("'" + InstResults.begin()->first +
3490                "' set but does not appear in operand list!");
3491     const std::string &OpName = CGI.Operands[i].Name;
3492 
3493     // Check that it exists in InstResults.
3494     TreePatternNodePtr RNode = InstResults[OpName];
3495     if (!RNode)
3496       I->error("Operand $" + OpName + " does not exist in operand list!");
3497 
3498 
3499     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3500     ResNodes.push_back(std::move(RNode));
3501     if (!R)
3502       I->error("Operand $" + OpName + " should be a set destination: all "
3503                "outputs must occur before inputs in operand list!");
3504 
3505     if (!checkOperandClass(CGI.Operands[i], R))
3506       I->error("Operand $" + OpName + " class mismatch!");
3507 
3508     // Remember the return type.
3509     Results.push_back(CGI.Operands[i].Rec);
3510 
3511     // Okay, this one checks out.
3512     InstResults.erase(OpName);
3513   }
3514 
3515   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3516   // the copy while we're checking the inputs.
3517   std::map<std::string, TreePatternNodePtr> InstInputsCheck(InstInputs);
3518 
3519   std::vector<TreePatternNodePtr> ResultNodeOperands;
3520   std::vector<Record*> Operands;
3521   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3522     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3523     const std::string &OpName = Op.Name;
3524     if (OpName.empty())
3525       I->error("Operand #" + Twine(i) + " in operands list has no name!");
3526 
3527     if (!InstInputsCheck.count(OpName)) {
3528       // If this is an operand with a DefaultOps set filled in, we can ignore
3529       // this.  When we codegen it, we will do so as always executed.
3530       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3531         // Does it have a non-empty DefaultOps field?  If so, ignore this
3532         // operand.
3533         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3534           continue;
3535       }
3536       I->error("Operand $" + OpName +
3537                " does not appear in the instruction pattern");
3538     }
3539     TreePatternNodePtr InVal = InstInputsCheck[OpName];
3540     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3541 
3542     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3543       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3544       if (!checkOperandClass(Op, InRec))
3545         I->error("Operand $" + OpName + "'s register class disagrees"
3546                  " between the operand and pattern");
3547     }
3548     Operands.push_back(Op.Rec);
3549 
3550     // Construct the result for the dest-pattern operand list.
3551     TreePatternNodePtr OpNode = InVal->clone();
3552 
3553     // No predicate is useful on the result.
3554     OpNode->clearPredicateFns();
3555 
3556     // Promote the xform function to be an explicit node if set.
3557     if (Record *Xform = OpNode->getTransformFn()) {
3558       OpNode->setTransformFn(nullptr);
3559       std::vector<TreePatternNodePtr> Children;
3560       Children.push_back(OpNode);
3561       OpNode = std::make_shared<TreePatternNode>(Xform, Children,
3562                                                  OpNode->getNumTypes());
3563     }
3564 
3565     ResultNodeOperands.push_back(std::move(OpNode));
3566   }
3567 
3568   if (!InstInputsCheck.empty())
3569     I->error("Input operand $" + InstInputsCheck.begin()->first +
3570              " occurs in pattern but not in operands list!");
3571 
3572   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3573       I->getRecord(), ResultNodeOperands,
3574       GetNumNodeResults(I->getRecord(), *this));
3575   // Copy fully inferred output node types to instruction result pattern.
3576   for (unsigned i = 0; i != NumResults; ++i) {
3577     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3578     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3579   }
3580 
3581   // Create and insert the instruction.
3582   // FIXME: InstImpResults should not be part of DAGInstruction.
3583   Record *R = I->getRecord();
3584   DAGInstruction &TheInst =
3585       DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3586                        std::forward_as_tuple(std::move(I), Results, Operands,
3587                                              InstImpResults)).first->second;
3588 
3589   // Use a temporary tree pattern to infer all types and make sure that the
3590   // constructed result is correct.  This depends on the instruction already
3591   // being inserted into the DAGInsts map.
3592   TreePattern Temp(TheInst.getPattern()->getRecord(), ResultPattern, false,
3593                    *this);
3594   Temp.InferAllTypes(&TheInst.getPattern()->getNamedNodesMap());
3595 
3596   TheInst.setResultPattern(Temp.getOnlyTree());
3597 
3598   return TheInst;
3599 }
3600 
3601 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3602 /// any fragments involved.  This populates the Instructions list with fully
3603 /// resolved instructions.
3604 void CodeGenDAGPatterns::ParseInstructions() {
3605   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3606 
3607   for (Record *Instr : Instrs) {
3608     ListInit *LI = nullptr;
3609 
3610     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3611       LI = Instr->getValueAsListInit("Pattern");
3612 
3613     // If there is no pattern, only collect minimal information about the
3614     // instruction for its operand list.  We have to assume that there is one
3615     // result, as we have no detailed info. A pattern which references the
3616     // null_frag operator is as-if no pattern were specified. Normally this
3617     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3618     // null_frag.
3619     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3620       std::vector<Record*> Results;
3621       std::vector<Record*> Operands;
3622 
3623       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3624 
3625       if (InstInfo.Operands.size() != 0) {
3626         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3627           Results.push_back(InstInfo.Operands[j].Rec);
3628 
3629         // The rest are inputs.
3630         for (unsigned j = InstInfo.Operands.NumDefs,
3631                e = InstInfo.Operands.size(); j < e; ++j)
3632           Operands.push_back(InstInfo.Operands[j].Rec);
3633       }
3634 
3635       // Create and insert the instruction.
3636       std::vector<Record*> ImpResults;
3637       Instructions.insert(std::make_pair(Instr,
3638                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3639       continue;  // no pattern.
3640     }
3641 
3642     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3643     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3644 
3645     (void)DI;
3646     LLVM_DEBUG(DI.getPattern()->dump());
3647   }
3648 
3649   // If we can, convert the instructions to be patterns that are matched!
3650   for (auto &Entry : Instructions) {
3651     DAGInstruction &TheInst = Entry.second;
3652     TreePattern *I = TheInst.getPattern();
3653     if (!I) continue;  // No pattern.
3654 
3655     if (PatternRewriter)
3656       PatternRewriter(I);
3657     // FIXME: Assume only the first tree is the pattern. The others are clobber
3658     // nodes.
3659     TreePatternNodePtr Pattern = I->getTree(0);
3660     TreePatternNodePtr SrcPattern;
3661     if (Pattern->getOperator()->getName() == "set") {
3662       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3663     } else{
3664       // Not a set (store or something?)
3665       SrcPattern = Pattern;
3666     }
3667 
3668     Record *Instr = Entry.first;
3669     ListInit *Preds = Instr->getValueAsListInit("Predicates");
3670     int Complexity = Instr->getValueAsInt("AddedComplexity");
3671     AddPatternToMatch(
3672         I,
3673         PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3674                        TheInst.getResultPattern(), TheInst.getImpResults(),
3675                        Complexity, Instr->getID()));
3676   }
3677 }
3678 
3679 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3680 
3681 static void FindNames(TreePatternNode *P,
3682                       std::map<std::string, NameRecord> &Names,
3683                       TreePattern *PatternTop) {
3684   if (!P->getName().empty()) {
3685     NameRecord &Rec = Names[P->getName()];
3686     // If this is the first instance of the name, remember the node.
3687     if (Rec.second++ == 0)
3688       Rec.first = P;
3689     else if (Rec.first->getExtTypes() != P->getExtTypes())
3690       PatternTop->error("repetition of value: $" + P->getName() +
3691                         " where different uses have different types!");
3692   }
3693 
3694   if (!P->isLeaf()) {
3695     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3696       FindNames(P->getChild(i), Names, PatternTop);
3697   }
3698 }
3699 
3700 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3701   std::vector<Predicate> Preds;
3702   for (Init *I : L->getValues()) {
3703     if (DefInit *Pred = dyn_cast<DefInit>(I))
3704       Preds.push_back(Pred->getDef());
3705     else
3706       llvm_unreachable("Non-def on the list");
3707   }
3708 
3709   // Sort so that different orders get canonicalized to the same string.
3710   llvm::sort(Preds.begin(), Preds.end());
3711   return Preds;
3712 }
3713 
3714 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3715                                            PatternToMatch &&PTM) {
3716   // Do some sanity checking on the pattern we're about to match.
3717   std::string Reason;
3718   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3719     PrintWarning(Pattern->getRecord()->getLoc(),
3720       Twine("Pattern can never match: ") + Reason);
3721     return;
3722   }
3723 
3724   // If the source pattern's root is a complex pattern, that complex pattern
3725   // must specify the nodes it can potentially match.
3726   if (const ComplexPattern *CP =
3727         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3728     if (CP->getRootNodes().empty())
3729       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3730                      " could match");
3731 
3732 
3733   // Find all of the named values in the input and output, ensure they have the
3734   // same type.
3735   std::map<std::string, NameRecord> SrcNames, DstNames;
3736   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3737   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3738 
3739   // Scan all of the named values in the destination pattern, rejecting them if
3740   // they don't exist in the input pattern.
3741   for (const auto &Entry : DstNames) {
3742     if (SrcNames[Entry.first].first == nullptr)
3743       Pattern->error("Pattern has input without matching name in output: $" +
3744                      Entry.first);
3745   }
3746 
3747   // Scan all of the named values in the source pattern, rejecting them if the
3748   // name isn't used in the dest, and isn't used to tie two values together.
3749   for (const auto &Entry : SrcNames)
3750     if (DstNames[Entry.first].first == nullptr &&
3751         SrcNames[Entry.first].second == 1)
3752       Pattern->error("Pattern has dead named input: $" + Entry.first);
3753 
3754   PatternsToMatch.push_back(PTM);
3755 }
3756 
3757 void CodeGenDAGPatterns::InferInstructionFlags() {
3758   ArrayRef<const CodeGenInstruction*> Instructions =
3759     Target.getInstructionsByEnumValue();
3760 
3761   // First try to infer flags from the primary instruction pattern, if any.
3762   SmallVector<CodeGenInstruction*, 8> Revisit;
3763   unsigned Errors = 0;
3764   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3765     CodeGenInstruction &InstInfo =
3766       const_cast<CodeGenInstruction &>(*Instructions[i]);
3767 
3768     // Get the primary instruction pattern.
3769     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3770     if (!Pattern) {
3771       if (InstInfo.hasUndefFlags())
3772         Revisit.push_back(&InstInfo);
3773       continue;
3774     }
3775     InstAnalyzer PatInfo(*this);
3776     PatInfo.Analyze(Pattern);
3777     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3778   }
3779 
3780   // Second, look for single-instruction patterns defined outside the
3781   // instruction.
3782   for (const PatternToMatch &PTM : ptms()) {
3783     // We can only infer from single-instruction patterns, otherwise we won't
3784     // know which instruction should get the flags.
3785     SmallVector<Record*, 8> PatInstrs;
3786     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3787     if (PatInstrs.size() != 1)
3788       continue;
3789 
3790     // Get the single instruction.
3791     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3792 
3793     // Only infer properties from the first pattern. We'll verify the others.
3794     if (InstInfo.InferredFrom)
3795       continue;
3796 
3797     InstAnalyzer PatInfo(*this);
3798     PatInfo.Analyze(PTM);
3799     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3800   }
3801 
3802   if (Errors)
3803     PrintFatalError("pattern conflicts");
3804 
3805   // Revisit instructions with undefined flags and no pattern.
3806   if (Target.guessInstructionProperties()) {
3807     for (CodeGenInstruction *InstInfo : Revisit) {
3808       if (InstInfo->InferredFrom)
3809         continue;
3810       // The mayLoad and mayStore flags default to false.
3811       // Conservatively assume hasSideEffects if it wasn't explicit.
3812       if (InstInfo->hasSideEffects_Unset)
3813         InstInfo->hasSideEffects = true;
3814     }
3815     return;
3816   }
3817 
3818   // Complain about any flags that are still undefined.
3819   for (CodeGenInstruction *InstInfo : Revisit) {
3820     if (InstInfo->InferredFrom)
3821       continue;
3822     if (InstInfo->hasSideEffects_Unset)
3823       PrintError(InstInfo->TheDef->getLoc(),
3824                  "Can't infer hasSideEffects from patterns");
3825     if (InstInfo->mayStore_Unset)
3826       PrintError(InstInfo->TheDef->getLoc(),
3827                  "Can't infer mayStore from patterns");
3828     if (InstInfo->mayLoad_Unset)
3829       PrintError(InstInfo->TheDef->getLoc(),
3830                  "Can't infer mayLoad from patterns");
3831   }
3832 }
3833 
3834 
3835 /// Verify instruction flags against pattern node properties.
3836 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3837   unsigned Errors = 0;
3838   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3839     const PatternToMatch &PTM = *I;
3840     SmallVector<Record*, 8> Instrs;
3841     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3842     if (Instrs.empty())
3843       continue;
3844 
3845     // Count the number of instructions with each flag set.
3846     unsigned NumSideEffects = 0;
3847     unsigned NumStores = 0;
3848     unsigned NumLoads = 0;
3849     for (const Record *Instr : Instrs) {
3850       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3851       NumSideEffects += InstInfo.hasSideEffects;
3852       NumStores += InstInfo.mayStore;
3853       NumLoads += InstInfo.mayLoad;
3854     }
3855 
3856     // Analyze the source pattern.
3857     InstAnalyzer PatInfo(*this);
3858     PatInfo.Analyze(PTM);
3859 
3860     // Collect error messages.
3861     SmallVector<std::string, 4> Msgs;
3862 
3863     // Check for missing flags in the output.
3864     // Permit extra flags for now at least.
3865     if (PatInfo.hasSideEffects && !NumSideEffects)
3866       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3867 
3868     // Don't verify store flags on instructions with side effects. At least for
3869     // intrinsics, side effects implies mayStore.
3870     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3871       Msgs.push_back("pattern may store, but mayStore isn't set");
3872 
3873     // Similarly, mayStore implies mayLoad on intrinsics.
3874     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3875       Msgs.push_back("pattern may load, but mayLoad isn't set");
3876 
3877     // Print error messages.
3878     if (Msgs.empty())
3879       continue;
3880     ++Errors;
3881 
3882     for (const std::string &Msg : Msgs)
3883       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3884                  (Instrs.size() == 1 ?
3885                   "instruction" : "output instructions"));
3886     // Provide the location of the relevant instruction definitions.
3887     for (const Record *Instr : Instrs) {
3888       if (Instr != PTM.getSrcRecord())
3889         PrintError(Instr->getLoc(), "defined here");
3890       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3891       if (InstInfo.InferredFrom &&
3892           InstInfo.InferredFrom != InstInfo.TheDef &&
3893           InstInfo.InferredFrom != PTM.getSrcRecord())
3894         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3895     }
3896   }
3897   if (Errors)
3898     PrintFatalError("Errors in DAG patterns");
3899 }
3900 
3901 /// Given a pattern result with an unresolved type, see if we can find one
3902 /// instruction with an unresolved result type.  Force this result type to an
3903 /// arbitrary element if it's possible types to converge results.
3904 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3905   if (N->isLeaf())
3906     return false;
3907 
3908   // Analyze children.
3909   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3910     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3911       return true;
3912 
3913   if (!N->getOperator()->isSubClassOf("Instruction"))
3914     return false;
3915 
3916   // If this type is already concrete or completely unknown we can't do
3917   // anything.
3918   TypeInfer &TI = TP.getInfer();
3919   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3920     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3921       continue;
3922 
3923     // Otherwise, force its type to an arbitrary choice.
3924     if (TI.forceArbitrary(N->getExtType(i)))
3925       return true;
3926   }
3927 
3928   return false;
3929 }
3930 
3931 void CodeGenDAGPatterns::ParsePatterns() {
3932   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3933 
3934   for (Record *CurPattern : Patterns) {
3935     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3936 
3937     // If the pattern references the null_frag, there's nothing to do.
3938     if (hasNullFragReference(Tree))
3939       continue;
3940 
3941     TreePattern Pattern(CurPattern, Tree, true, *this);
3942 
3943     // Inline pattern fragments into it.
3944     Pattern.InlinePatternFragments();
3945 
3946     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3947     if (LI->empty()) continue;  // no pattern.
3948 
3949     // Parse the instruction.
3950     TreePattern Result(CurPattern, LI, false, *this);
3951 
3952     // Inline pattern fragments into it.
3953     Result.InlinePatternFragments();
3954 
3955     if (Result.getNumTrees() != 1)
3956       Result.error("Cannot handle instructions producing instructions "
3957                    "with temporaries yet!");
3958 
3959     bool IterateInference;
3960     bool InferredAllPatternTypes, InferredAllResultTypes;
3961     do {
3962       // Infer as many types as possible.  If we cannot infer all of them, we
3963       // can never do anything with this pattern: report it to the user.
3964       InferredAllPatternTypes =
3965           Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
3966 
3967       // Infer as many types as possible.  If we cannot infer all of them, we
3968       // can never do anything with this pattern: report it to the user.
3969       InferredAllResultTypes =
3970           Result.InferAllTypes(&Pattern.getNamedNodesMap());
3971 
3972       IterateInference = false;
3973 
3974       // Apply the type of the result to the source pattern.  This helps us
3975       // resolve cases where the input type is known to be a pointer type (which
3976       // is considered resolved), but the result knows it needs to be 32- or
3977       // 64-bits.  Infer the other way for good measure.
3978       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3979                                         Pattern.getTree(0)->getNumTypes());
3980            i != e; ++i) {
3981         IterateInference = Pattern.getTree(0)->UpdateNodeType(
3982             i, Result.getTree(0)->getExtType(i), Result);
3983         IterateInference |= Result.getTree(0)->UpdateNodeType(
3984             i, Pattern.getTree(0)->getExtType(i), Result);
3985       }
3986 
3987       // If our iteration has converged and the input pattern's types are fully
3988       // resolved but the result pattern is not fully resolved, we may have a
3989       // situation where we have two instructions in the result pattern and
3990       // the instructions require a common register class, but don't care about
3991       // what actual MVT is used.  This is actually a bug in our modelling:
3992       // output patterns should have register classes, not MVTs.
3993       //
3994       // In any case, to handle this, we just go through and disambiguate some
3995       // arbitrary types to the result pattern's nodes.
3996       if (!IterateInference && InferredAllPatternTypes &&
3997           !InferredAllResultTypes)
3998         IterateInference =
3999             ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4000     } while (IterateInference);
4001 
4002     // Verify that we inferred enough types that we can do something with the
4003     // pattern and result.  If these fire the user has to add type casts.
4004     if (!InferredAllPatternTypes)
4005       Pattern.error("Could not infer all types in pattern!");
4006     if (!InferredAllResultTypes) {
4007       Pattern.dump();
4008       Result.error("Could not infer all types in pattern result!");
4009     }
4010 
4011     // Validate that the input pattern is correct.
4012     std::map<std::string, TreePatternNodePtr> InstInputs;
4013     std::map<std::string, TreePatternNodePtr> InstResults;
4014     std::vector<Record*> InstImpResults;
4015     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4016       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4017                                   InstResults, InstImpResults);
4018 
4019     // Promote the xform function to be an explicit node if set.
4020     const TreePatternNodePtr &DstPattern = Result.getOnlyTree();
4021     std::vector<TreePatternNodePtr> ResultNodeOperands;
4022     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
4023       TreePatternNodePtr OpNode = DstPattern->getChildShared(ii);
4024       if (Record *Xform = OpNode->getTransformFn()) {
4025         OpNode->setTransformFn(nullptr);
4026         std::vector<TreePatternNodePtr> Children;
4027         Children.push_back(OpNode);
4028         OpNode = std::make_shared<TreePatternNode>(Xform, Children,
4029                                                    OpNode->getNumTypes());
4030       }
4031       ResultNodeOperands.push_back(OpNode);
4032     }
4033 
4034     TreePatternNodePtr DstShared =
4035         DstPattern->isLeaf()
4036             ? DstPattern
4037             : std::make_shared<TreePatternNode>(DstPattern->getOperator(),
4038                                                 ResultNodeOperands,
4039                                                 DstPattern->getNumTypes());
4040 
4041     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
4042       DstShared->setType(i, Result.getOnlyTree()->getExtType(i));
4043 
4044     TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4045     Temp.InferAllTypes();
4046 
4047     // A pattern may end up with an "impossible" type, i.e. a situation
4048     // where all types have been eliminated for some node in this pattern.
4049     // This could occur for intrinsics that only make sense for a specific
4050     // value type, and use a specific register class. If, for some mode,
4051     // that register class does not accept that type, the type inference
4052     // will lead to a contradiction, which is not an error however, but
4053     // a sign that this pattern will simply never match.
4054     if (Pattern.getTree(0)->hasPossibleType() &&
4055         Temp.getOnlyTree()->hasPossibleType()) {
4056       ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
4057       int Complexity = CurPattern->getValueAsInt("AddedComplexity");
4058       if (PatternRewriter)
4059         PatternRewriter(&Pattern);
4060       AddPatternToMatch(&Pattern,
4061                         PatternToMatch(CurPattern, makePredList(Preds),
4062                                        Pattern.getTree(0), Temp.getOnlyTree(),
4063                                        std::move(InstImpResults), Complexity,
4064                                        CurPattern->getID()));
4065     }
4066   }
4067 }
4068 
4069 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4070   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4071     for (const auto &I : VTS)
4072       Modes.insert(I.first);
4073 
4074   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4075     collectModes(Modes, N->getChild(i));
4076 }
4077 
4078 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4079   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4080   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4081   std::vector<PatternToMatch> Copy = PatternsToMatch;
4082   PatternsToMatch.clear();
4083 
4084   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4085     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4086     TreePatternNodePtr NewDst = P.DstPattern->clone();
4087     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4088       return;
4089     }
4090 
4091     std::vector<Predicate> Preds = P.Predicates;
4092     const std::vector<Predicate> &MC = ModeChecks[Mode];
4093     Preds.insert(Preds.end(), MC.begin(), MC.end());
4094     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4095                                  std::move(NewDst), P.getDstRegs(),
4096                                  P.getAddedComplexity(), Record::getNewUID(),
4097                                  Mode);
4098   };
4099 
4100   for (PatternToMatch &P : Copy) {
4101     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4102     if (P.SrcPattern->hasProperTypeByHwMode())
4103       SrcP = P.SrcPattern;
4104     if (P.DstPattern->hasProperTypeByHwMode())
4105       DstP = P.DstPattern;
4106     if (!SrcP && !DstP) {
4107       PatternsToMatch.push_back(P);
4108       continue;
4109     }
4110 
4111     std::set<unsigned> Modes;
4112     if (SrcP)
4113       collectModes(Modes, SrcP.get());
4114     if (DstP)
4115       collectModes(Modes, DstP.get());
4116 
4117     // The predicate for the default mode needs to be constructed for each
4118     // pattern separately.
4119     // Since not all modes must be present in each pattern, if a mode m is
4120     // absent, then there is no point in constructing a check for m. If such
4121     // a check was created, it would be equivalent to checking the default
4122     // mode, except not all modes' predicates would be a part of the checking
4123     // code. The subsequently generated check for the default mode would then
4124     // have the exact same patterns, but a different predicate code. To avoid
4125     // duplicated patterns with different predicate checks, construct the
4126     // default check as a negation of all predicates that are actually present
4127     // in the source/destination patterns.
4128     std::vector<Predicate> DefaultPred;
4129 
4130     for (unsigned M : Modes) {
4131       if (M == DefaultMode)
4132         continue;
4133       if (ModeChecks.find(M) != ModeChecks.end())
4134         continue;
4135 
4136       // Fill the map entry for this mode.
4137       const HwMode &HM = CGH.getMode(M);
4138       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4139 
4140       // Add negations of the HM's predicates to the default predicate.
4141       DefaultPred.emplace_back(Predicate(HM.Features, false));
4142     }
4143 
4144     for (unsigned M : Modes) {
4145       if (M == DefaultMode)
4146         continue;
4147       AppendPattern(P, M);
4148     }
4149 
4150     bool HasDefault = Modes.count(DefaultMode);
4151     if (HasDefault)
4152       AppendPattern(P, DefaultMode);
4153   }
4154 }
4155 
4156 /// Dependent variable map for CodeGenDAGPattern variant generation
4157 typedef StringMap<int> DepVarMap;
4158 
4159 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4160   if (N->isLeaf()) {
4161     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4162       DepMap[N->getName()]++;
4163   } else {
4164     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4165       FindDepVarsOf(N->getChild(i), DepMap);
4166   }
4167 }
4168 
4169 /// Find dependent variables within child patterns
4170 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4171   DepVarMap depcounts;
4172   FindDepVarsOf(N, depcounts);
4173   for (const auto &Pair : depcounts) {
4174     if (Pair.getValue() > 1)
4175       DepVars.insert(Pair.getKey());
4176   }
4177 }
4178 
4179 #ifndef NDEBUG
4180 /// Dump the dependent variable set:
4181 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4182   if (DepVars.empty()) {
4183     LLVM_DEBUG(errs() << "<empty set>");
4184   } else {
4185     LLVM_DEBUG(errs() << "[ ");
4186     for (const auto &DepVar : DepVars) {
4187       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4188     }
4189     LLVM_DEBUG(errs() << "]");
4190   }
4191 }
4192 #endif
4193 
4194 
4195 /// CombineChildVariants - Given a bunch of permutations of each child of the
4196 /// 'operator' node, put them together in all possible ways.
4197 static void CombineChildVariants(
4198     TreePatternNodePtr Orig,
4199     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4200     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4201     const MultipleUseVarSet &DepVars) {
4202   // Make sure that each operand has at least one variant to choose from.
4203   for (const auto &Variants : ChildVariants)
4204     if (Variants.empty())
4205       return;
4206 
4207   // The end result is an all-pairs construction of the resultant pattern.
4208   std::vector<unsigned> Idxs;
4209   Idxs.resize(ChildVariants.size());
4210   bool NotDone;
4211   do {
4212 #ifndef NDEBUG
4213     LLVM_DEBUG(if (!Idxs.empty()) {
4214       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4215       for (unsigned Idx : Idxs) {
4216         errs() << Idx << " ";
4217       }
4218       errs() << "]\n";
4219     });
4220 #endif
4221     // Create the variant and add it to the output list.
4222     std::vector<TreePatternNodePtr> NewChildren;
4223     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4224       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4225     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4226         Orig->getOperator(), NewChildren, Orig->getNumTypes());
4227 
4228     // Copy over properties.
4229     R->setName(Orig->getName());
4230     R->setPredicateFns(Orig->getPredicateFns());
4231     R->setTransformFn(Orig->getTransformFn());
4232     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4233       R->setType(i, Orig->getExtType(i));
4234 
4235     // If this pattern cannot match, do not include it as a variant.
4236     std::string ErrString;
4237     // Scan to see if this pattern has already been emitted.  We can get
4238     // duplication due to things like commuting:
4239     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4240     // which are the same pattern.  Ignore the dups.
4241     if (R->canPatternMatch(ErrString, CDP) &&
4242         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4243           return R->isIsomorphicTo(Variant.get(), DepVars);
4244         }))
4245       OutVariants.push_back(R);
4246 
4247     // Increment indices to the next permutation by incrementing the
4248     // indices from last index backward, e.g., generate the sequence
4249     // [0, 0], [0, 1], [1, 0], [1, 1].
4250     int IdxsIdx;
4251     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4252       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4253         Idxs[IdxsIdx] = 0;
4254       else
4255         break;
4256     }
4257     NotDone = (IdxsIdx >= 0);
4258   } while (NotDone);
4259 }
4260 
4261 /// CombineChildVariants - A helper function for binary operators.
4262 ///
4263 static void CombineChildVariants(TreePatternNodePtr Orig,
4264                                  const std::vector<TreePatternNodePtr> &LHS,
4265                                  const std::vector<TreePatternNodePtr> &RHS,
4266                                  std::vector<TreePatternNodePtr> &OutVariants,
4267                                  CodeGenDAGPatterns &CDP,
4268                                  const MultipleUseVarSet &DepVars) {
4269   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4270   ChildVariants.push_back(LHS);
4271   ChildVariants.push_back(RHS);
4272   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4273 }
4274 
4275 static void
4276 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4277                                   std::vector<TreePatternNodePtr> &Children) {
4278   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4279   Record *Operator = N->getOperator();
4280 
4281   // Only permit raw nodes.
4282   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4283       N->getTransformFn()) {
4284     Children.push_back(N);
4285     return;
4286   }
4287 
4288   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4289     Children.push_back(N->getChildShared(0));
4290   else
4291     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4292 
4293   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4294     Children.push_back(N->getChildShared(1));
4295   else
4296     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4297 }
4298 
4299 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4300 /// the (potentially recursive) pattern by using algebraic laws.
4301 ///
4302 static void GenerateVariantsOf(TreePatternNodePtr N,
4303                                std::vector<TreePatternNodePtr> &OutVariants,
4304                                CodeGenDAGPatterns &CDP,
4305                                const MultipleUseVarSet &DepVars) {
4306   // We cannot permute leaves or ComplexPattern uses.
4307   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4308     OutVariants.push_back(N);
4309     return;
4310   }
4311 
4312   // Look up interesting info about the node.
4313   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4314 
4315   // If this node is associative, re-associate.
4316   if (NodeInfo.hasProperty(SDNPAssociative)) {
4317     // Re-associate by pulling together all of the linked operators
4318     std::vector<TreePatternNodePtr> MaximalChildren;
4319     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4320 
4321     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4322     // permutations.
4323     if (MaximalChildren.size() == 3) {
4324       // Find the variants of all of our maximal children.
4325       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4326       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4327       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4328       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4329 
4330       // There are only two ways we can permute the tree:
4331       //   (A op B) op C    and    A op (B op C)
4332       // Within these forms, we can also permute A/B/C.
4333 
4334       // Generate legal pair permutations of A/B/C.
4335       std::vector<TreePatternNodePtr> ABVariants;
4336       std::vector<TreePatternNodePtr> BAVariants;
4337       std::vector<TreePatternNodePtr> ACVariants;
4338       std::vector<TreePatternNodePtr> CAVariants;
4339       std::vector<TreePatternNodePtr> BCVariants;
4340       std::vector<TreePatternNodePtr> CBVariants;
4341       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4342       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4343       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4344       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4345       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4346       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4347 
4348       // Combine those into the result: (x op x) op x
4349       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4350       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4351       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4352       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4353       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4354       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4355 
4356       // Combine those into the result: x op (x op x)
4357       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4358       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4359       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4360       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4361       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4362       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4363       return;
4364     }
4365   }
4366 
4367   // Compute permutations of all children.
4368   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4369   ChildVariants.resize(N->getNumChildren());
4370   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4371     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4372 
4373   // Build all permutations based on how the children were formed.
4374   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4375 
4376   // If this node is commutative, consider the commuted order.
4377   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4378   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4379     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4380            "Commutative but doesn't have 2 children!");
4381     // Don't count children which are actually register references.
4382     unsigned NC = 0;
4383     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4384       TreePatternNode *Child = N->getChild(i);
4385       if (Child->isLeaf())
4386         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4387           Record *RR = DI->getDef();
4388           if (RR->isSubClassOf("Register"))
4389             continue;
4390         }
4391       NC++;
4392     }
4393     // Consider the commuted order.
4394     if (isCommIntrinsic) {
4395       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4396       // operands are the commutative operands, and there might be more operands
4397       // after those.
4398       assert(NC >= 3 &&
4399              "Commutative intrinsic should have at least 3 children!");
4400       std::vector<std::vector<TreePatternNodePtr>> Variants;
4401       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4402       Variants.push_back(std::move(ChildVariants[2]));
4403       Variants.push_back(std::move(ChildVariants[1]));
4404       for (unsigned i = 3; i != NC; ++i)
4405         Variants.push_back(std::move(ChildVariants[i]));
4406       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4407     } else if (NC == N->getNumChildren()) {
4408       std::vector<std::vector<TreePatternNodePtr>> Variants;
4409       Variants.push_back(std::move(ChildVariants[1]));
4410       Variants.push_back(std::move(ChildVariants[0]));
4411       for (unsigned i = 2; i != NC; ++i)
4412         Variants.push_back(std::move(ChildVariants[i]));
4413       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4414     }
4415   }
4416 }
4417 
4418 
4419 // GenerateVariants - Generate variants.  For example, commutative patterns can
4420 // match multiple ways.  Add them to PatternsToMatch as well.
4421 void CodeGenDAGPatterns::GenerateVariants() {
4422   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4423 
4424   // Loop over all of the patterns we've collected, checking to see if we can
4425   // generate variants of the instruction, through the exploitation of
4426   // identities.  This permits the target to provide aggressive matching without
4427   // the .td file having to contain tons of variants of instructions.
4428   //
4429   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4430   // intentionally do not reconsider these.  Any variants of added patterns have
4431   // already been added.
4432   //
4433   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4434     MultipleUseVarSet             DepVars;
4435     std::vector<TreePatternNodePtr> Variants;
4436     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4437     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4438     LLVM_DEBUG(DumpDepVars(DepVars));
4439     LLVM_DEBUG(errs() << "\n");
4440     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4441                        *this, DepVars);
4442 
4443     assert(!Variants.empty() && "Must create at least original variant!");
4444     if (Variants.size() == 1)  // No additional variants for this pattern.
4445       continue;
4446 
4447     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4448                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4449 
4450     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4451       TreePatternNodePtr Variant = Variants[v];
4452 
4453       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4454                  errs() << "\n");
4455 
4456       // Scan to see if an instruction or explicit pattern already matches this.
4457       bool AlreadyExists = false;
4458       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4459         // Skip if the top level predicates do not match.
4460         if (PatternsToMatch[i].getPredicates() !=
4461             PatternsToMatch[p].getPredicates())
4462           continue;
4463         // Check to see if this variant already exists.
4464         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4465                                     DepVars)) {
4466           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4467           AlreadyExists = true;
4468           break;
4469         }
4470       }
4471       // If we already have it, ignore the variant.
4472       if (AlreadyExists) continue;
4473 
4474       // Otherwise, add it to the list of patterns we have.
4475       PatternsToMatch.push_back(PatternToMatch(
4476           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4477           Variant, PatternsToMatch[i].getDstPatternShared(),
4478           PatternsToMatch[i].getDstRegs(),
4479           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4480     }
4481 
4482     LLVM_DEBUG(errs() << "\n");
4483   }
4484 }
4485