1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList)
71     insert(VVT);
72 }
73 
74 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
75   for (const auto &I : *this) {
76     if (I.second.size() > 1)
77       return false;
78     if (!AllowEmpty && I.second.empty())
79       return false;
80   }
81   return true;
82 }
83 
84 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
85   assert(isValueTypeByHwMode(true) &&
86          "The type set has multiple types for at least one HW mode");
87   ValueTypeByHwMode VVT;
88   for (const auto &I : *this) {
89     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
90     VVT.getOrCreateTypeForMode(I.first, T);
91   }
92   return VVT;
93 }
94 
95 bool TypeSetByHwMode::isPossible() const {
96   for (const auto &I : *this)
97     if (!I.second.empty())
98       return true;
99   return false;
100 }
101 
102 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
103   bool Changed = false;
104   bool ContainsDefault = false;
105   MVT DT = MVT::Other;
106 
107   SmallDenseSet<unsigned, 4> Modes;
108   for (const auto &P : VVT) {
109     unsigned M = P.first;
110     Modes.insert(M);
111     // Make sure there exists a set for each specific mode from VVT.
112     Changed |= getOrCreate(M).insert(P.second).second;
113     // Cache VVT's default mode.
114     if (DefaultMode == M) {
115       ContainsDefault = true;
116       DT = P.second;
117     }
118   }
119 
120   // If VVT has a default mode, add the corresponding type to all
121   // modes in "this" that do not exist in VVT.
122   if (ContainsDefault)
123     for (auto &I : *this)
124       if (!Modes.count(I.first))
125         Changed |= I.second.insert(DT).second;
126 
127   return Changed;
128 }
129 
130 // Constrain the type set to be the intersection with VTS.
131 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
132   bool Changed = false;
133   if (hasDefault()) {
134     for (const auto &I : VTS) {
135       unsigned M = I.first;
136       if (M == DefaultMode || hasMode(M))
137         continue;
138       Map.insert({M, Map.at(DefaultMode)});
139       Changed = true;
140     }
141   }
142 
143   for (auto &I : *this) {
144     unsigned M = I.first;
145     SetType &S = I.second;
146     if (VTS.hasMode(M) || VTS.hasDefault()) {
147       Changed |= intersect(I.second, VTS.get(M));
148     } else if (!S.empty()) {
149       S.clear();
150       Changed = true;
151     }
152   }
153   return Changed;
154 }
155 
156 template <typename Predicate>
157 bool TypeSetByHwMode::constrain(Predicate P) {
158   bool Changed = false;
159   for (auto &I : *this)
160     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
161   return Changed;
162 }
163 
164 template <typename Predicate>
165 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
166   assert(empty());
167   for (const auto &I : VTS) {
168     SetType &S = getOrCreate(I.first);
169     for (auto J : I.second)
170       if (P(J))
171         S.insert(J);
172   }
173   return !empty();
174 }
175 
176 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
177   SmallVector<unsigned, 4> Modes;
178   Modes.reserve(Map.size());
179 
180   for (const auto &I : *this)
181     Modes.push_back(I.first);
182   if (Modes.empty()) {
183     OS << "{}";
184     return;
185   }
186   array_pod_sort(Modes.begin(), Modes.end());
187 
188   OS << '{';
189   for (unsigned M : Modes) {
190     OS << ' ' << getModeName(M) << ':';
191     writeToStream(get(M), OS);
192   }
193   OS << " }";
194 }
195 
196 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
197   SmallVector<MVT, 4> Types(S.begin(), S.end());
198   array_pod_sort(Types.begin(), Types.end());
199 
200   OS << '[';
201   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
202     OS << ValueTypeByHwMode::getMVTName(Types[i]);
203     if (i != e-1)
204       OS << ' ';
205   }
206   OS << ']';
207 }
208 
209 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
210   // The isSimple call is much quicker than hasDefault - check this first.
211   bool IsSimple = isSimple();
212   bool VTSIsSimple = VTS.isSimple();
213   if (IsSimple && VTSIsSimple)
214     return *begin() == *VTS.begin();
215 
216   // Speedup: We have a default if the set is simple.
217   bool HaveDefault = IsSimple || hasDefault();
218   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
219   if (HaveDefault != VTSHaveDefault)
220     return false;
221 
222   SmallDenseSet<unsigned, 4> Modes;
223   for (auto &I : *this)
224     Modes.insert(I.first);
225   for (const auto &I : VTS)
226     Modes.insert(I.first);
227 
228   if (HaveDefault) {
229     // Both sets have default mode.
230     for (unsigned M : Modes) {
231       if (get(M) != VTS.get(M))
232         return false;
233     }
234   } else {
235     // Neither set has default mode.
236     for (unsigned M : Modes) {
237       // If there is no default mode, an empty set is equivalent to not having
238       // the corresponding mode.
239       bool NoModeThis = !hasMode(M) || get(M).empty();
240       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
241       if (NoModeThis != NoModeVTS)
242         return false;
243       if (!NoModeThis)
244         if (get(M) != VTS.get(M))
245           return false;
246     }
247   }
248 
249   return true;
250 }
251 
252 namespace llvm {
253   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
254     T.writeToStream(OS);
255     return OS;
256   }
257 }
258 
259 LLVM_DUMP_METHOD
260 void TypeSetByHwMode::dump() const {
261   dbgs() << *this << '\n';
262 }
263 
264 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
265   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
266   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
267 
268   if (OutP == InP)
269     return berase_if(Out, Int);
270 
271   // Compute the intersection of scalars separately to account for only
272   // one set containing iPTR.
273   // The itersection of iPTR with a set of integer scalar types that does not
274   // include iPTR will result in the most specific scalar type:
275   // - iPTR is more specific than any set with two elements or more
276   // - iPTR is less specific than any single integer scalar type.
277   // For example
278   // { iPTR } * { i32 }     -> { i32 }
279   // { iPTR } * { i32 i64 } -> { iPTR }
280   // and
281   // { iPTR i32 } * { i32 }          -> { i32 }
282   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
283   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
284 
285   // Compute the difference between the two sets in such a way that the
286   // iPTR is in the set that is being subtracted. This is to see if there
287   // are any extra scalars in the set without iPTR that are not in the
288   // set containing iPTR. Then the iPTR could be considered a "wildcard"
289   // matching these scalars. If there is only one such scalar, it would
290   // replace the iPTR, if there are more, the iPTR would be retained.
291   SetType Diff;
292   if (InP) {
293     Diff = Out;
294     berase_if(Diff, [&In](MVT T) { return In.count(T); });
295     // Pre-remove these elements and rely only on InP/OutP to determine
296     // whether a change has been made.
297     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
298   } else {
299     Diff = In;
300     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
301     Out.erase(MVT::iPTR);
302   }
303 
304   // The actual intersection.
305   bool Changed = berase_if(Out, Int);
306   unsigned NumD = Diff.size();
307   if (NumD == 0)
308     return Changed;
309 
310   if (NumD == 1) {
311     Out.insert(*Diff.begin());
312     // This is a change only if Out was the one with iPTR (which is now
313     // being replaced).
314     Changed |= OutP;
315   } else {
316     // Multiple elements from Out are now replaced with iPTR.
317     Out.insert(MVT::iPTR);
318     Changed |= !OutP;
319   }
320   return Changed;
321 }
322 
323 bool TypeSetByHwMode::validate() const {
324 #ifndef NDEBUG
325   if (empty())
326     return true;
327   bool AllEmpty = true;
328   for (const auto &I : *this)
329     AllEmpty &= I.second.empty();
330   return !AllEmpty;
331 #endif
332   return true;
333 }
334 
335 // --- TypeInfer
336 
337 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
338                                 const TypeSetByHwMode &In) {
339   ValidateOnExit _1(Out, *this);
340   In.validate();
341   if (In.empty() || Out == In || TP.hasError())
342     return false;
343   if (Out.empty()) {
344     Out = In;
345     return true;
346   }
347 
348   bool Changed = Out.constrain(In);
349   if (Changed && Out.empty())
350     TP.error("Type contradiction");
351 
352   return Changed;
353 }
354 
355 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
356   ValidateOnExit _1(Out, *this);
357   if (TP.hasError())
358     return false;
359   assert(!Out.empty() && "cannot pick from an empty set");
360 
361   bool Changed = false;
362   for (auto &I : Out) {
363     TypeSetByHwMode::SetType &S = I.second;
364     if (S.size() <= 1)
365       continue;
366     MVT T = *S.begin(); // Pick the first element.
367     S.clear();
368     S.insert(T);
369     Changed = true;
370   }
371   return Changed;
372 }
373 
374 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
375   ValidateOnExit _1(Out, *this);
376   if (TP.hasError())
377     return false;
378   if (!Out.empty())
379     return Out.constrain(isIntegerOrPtr);
380 
381   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
382 }
383 
384 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
385   ValidateOnExit _1(Out, *this);
386   if (TP.hasError())
387     return false;
388   if (!Out.empty())
389     return Out.constrain(isFloatingPoint);
390 
391   return Out.assign_if(getLegalTypes(), isFloatingPoint);
392 }
393 
394 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
395   ValidateOnExit _1(Out, *this);
396   if (TP.hasError())
397     return false;
398   if (!Out.empty())
399     return Out.constrain(isScalar);
400 
401   return Out.assign_if(getLegalTypes(), isScalar);
402 }
403 
404 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
405   ValidateOnExit _1(Out, *this);
406   if (TP.hasError())
407     return false;
408   if (!Out.empty())
409     return Out.constrain(isVector);
410 
411   return Out.assign_if(getLegalTypes(), isVector);
412 }
413 
414 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
415   ValidateOnExit _1(Out, *this);
416   if (TP.hasError() || !Out.empty())
417     return false;
418 
419   Out = getLegalTypes();
420   return true;
421 }
422 
423 template <typename Iter, typename Pred, typename Less>
424 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
425   if (B == E)
426     return E;
427   Iter Min = E;
428   for (Iter I = B; I != E; ++I) {
429     if (!P(*I))
430       continue;
431     if (Min == E || L(*I, *Min))
432       Min = I;
433   }
434   return Min;
435 }
436 
437 template <typename Iter, typename Pred, typename Less>
438 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
439   if (B == E)
440     return E;
441   Iter Max = E;
442   for (Iter I = B; I != E; ++I) {
443     if (!P(*I))
444       continue;
445     if (Max == E || L(*Max, *I))
446       Max = I;
447   }
448   return Max;
449 }
450 
451 /// Make sure that for each type in Small, there exists a larger type in Big.
452 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
453                                    TypeSetByHwMode &Big) {
454   ValidateOnExit _1(Small, *this), _2(Big, *this);
455   if (TP.hasError())
456     return false;
457   bool Changed = false;
458 
459   if (Small.empty())
460     Changed |= EnforceAny(Small);
461   if (Big.empty())
462     Changed |= EnforceAny(Big);
463 
464   assert(Small.hasDefault() && Big.hasDefault());
465 
466   std::vector<unsigned> Modes = union_modes(Small, Big);
467 
468   // 1. Only allow integer or floating point types and make sure that
469   //    both sides are both integer or both floating point.
470   // 2. Make sure that either both sides have vector types, or neither
471   //    of them does.
472   for (unsigned M : Modes) {
473     TypeSetByHwMode::SetType &S = Small.get(M);
474     TypeSetByHwMode::SetType &B = Big.get(M);
475 
476     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
477       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
478       Changed |= berase_if(S, NotInt) |
479                  berase_if(B, NotInt);
480     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
481       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
482       Changed |= berase_if(S, NotFP) |
483                  berase_if(B, NotFP);
484     } else if (S.empty() || B.empty()) {
485       Changed = !S.empty() || !B.empty();
486       S.clear();
487       B.clear();
488     } else {
489       TP.error("Incompatible types");
490       return Changed;
491     }
492 
493     if (none_of(S, isVector) || none_of(B, isVector)) {
494       Changed |= berase_if(S, isVector) |
495                  berase_if(B, isVector);
496     }
497   }
498 
499   auto LT = [](MVT A, MVT B) -> bool {
500     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
501            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
502             A.getSizeInBits() < B.getSizeInBits());
503   };
504   auto LE = [](MVT A, MVT B) -> bool {
505     // This function is used when removing elements: when a vector is compared
506     // to a non-vector, it should return false (to avoid removal).
507     if (A.isVector() != B.isVector())
508       return false;
509 
510     // Note on the < comparison below:
511     // X86 has patterns like
512     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
513     // where the truncated vector is given a type v16i8, while the source
514     // vector has type v4i32. They both have the same size in bits.
515     // The minimal type in the result is obviously v16i8, and when we remove
516     // all types from the source that are smaller-or-equal than v8i16, the
517     // only source type would also be removed (since it's equal in size).
518     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
519            A.getSizeInBits() < B.getSizeInBits();
520   };
521 
522   for (unsigned M : Modes) {
523     TypeSetByHwMode::SetType &S = Small.get(M);
524     TypeSetByHwMode::SetType &B = Big.get(M);
525     // MinS = min scalar in Small, remove all scalars from Big that are
526     // smaller-or-equal than MinS.
527     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
528     if (MinS != S.end())
529       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
530 
531     // MaxS = max scalar in Big, remove all scalars from Small that are
532     // larger than MaxS.
533     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
534     if (MaxS != B.end())
535       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
536 
537     // MinV = min vector in Small, remove all vectors from Big that are
538     // smaller-or-equal than MinV.
539     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
540     if (MinV != S.end())
541       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
542 
543     // MaxV = max vector in Big, remove all vectors from Small that are
544     // larger than MaxV.
545     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
546     if (MaxV != B.end())
547       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
548   }
549 
550   return Changed;
551 }
552 
553 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
554 ///    for each type U in Elem, U is a scalar type.
555 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
556 ///    type T in Vec, such that U is the element type of T.
557 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
558                                        TypeSetByHwMode &Elem) {
559   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
560   if (TP.hasError())
561     return false;
562   bool Changed = false;
563 
564   if (Vec.empty())
565     Changed |= EnforceVector(Vec);
566   if (Elem.empty())
567     Changed |= EnforceScalar(Elem);
568 
569   for (unsigned M : union_modes(Vec, Elem)) {
570     TypeSetByHwMode::SetType &V = Vec.get(M);
571     TypeSetByHwMode::SetType &E = Elem.get(M);
572 
573     Changed |= berase_if(V, isScalar);  // Scalar = !vector
574     Changed |= berase_if(E, isVector);  // Vector = !scalar
575     assert(!V.empty() && !E.empty());
576 
577     SmallSet<MVT,4> VT, ST;
578     // Collect element types from the "vector" set.
579     for (MVT T : V)
580       VT.insert(T.getVectorElementType());
581     // Collect scalar types from the "element" set.
582     for (MVT T : E)
583       ST.insert(T);
584 
585     // Remove from V all (vector) types whose element type is not in S.
586     Changed |= berase_if(V, [&ST](MVT T) -> bool {
587                               return !ST.count(T.getVectorElementType());
588                             });
589     // Remove from E all (scalar) types, for which there is no corresponding
590     // type in V.
591     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
592   }
593 
594   return Changed;
595 }
596 
597 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
598                                        const ValueTypeByHwMode &VVT) {
599   TypeSetByHwMode Tmp(VVT);
600   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
601   return EnforceVectorEltTypeIs(Vec, Tmp);
602 }
603 
604 /// Ensure that for each type T in Sub, T is a vector type, and there
605 /// exists a type U in Vec such that U is a vector type with the same
606 /// element type as T and at least as many elements as T.
607 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
608                                              TypeSetByHwMode &Sub) {
609   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
610   if (TP.hasError())
611     return false;
612 
613   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
614   auto IsSubVec = [](MVT B, MVT P) -> bool {
615     if (!B.isVector() || !P.isVector())
616       return false;
617     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
618     // but until there are obvious use-cases for this, keep the
619     // types separate.
620     if (B.isScalableVector() != P.isScalableVector())
621       return false;
622     if (B.getVectorElementType() != P.getVectorElementType())
623       return false;
624     return B.getVectorNumElements() < P.getVectorNumElements();
625   };
626 
627   /// Return true if S has no element (vector type) that T is a sub-vector of,
628   /// i.e. has the same element type as T and more elements.
629   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
630     for (const auto &I : S)
631       if (IsSubVec(T, I))
632         return false;
633     return true;
634   };
635 
636   /// Return true if S has no element (vector type) that T is a super-vector
637   /// of, i.e. has the same element type as T and fewer elements.
638   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639     for (const auto &I : S)
640       if (IsSubVec(I, T))
641         return false;
642     return true;
643   };
644 
645   bool Changed = false;
646 
647   if (Vec.empty())
648     Changed |= EnforceVector(Vec);
649   if (Sub.empty())
650     Changed |= EnforceVector(Sub);
651 
652   for (unsigned M : union_modes(Vec, Sub)) {
653     TypeSetByHwMode::SetType &S = Sub.get(M);
654     TypeSetByHwMode::SetType &V = Vec.get(M);
655 
656     Changed |= berase_if(S, isScalar);
657 
658     // Erase all types from S that are not sub-vectors of a type in V.
659     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
660 
661     // Erase all types from V that are not super-vectors of a type in S.
662     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
663   }
664 
665   return Changed;
666 }
667 
668 /// 1. Ensure that V has a scalar type iff W has a scalar type.
669 /// 2. Ensure that for each vector type T in V, there exists a vector
670 ///    type U in W, such that T and U have the same number of elements.
671 /// 3. Ensure that for each vector type U in W, there exists a vector
672 ///    type T in V, such that T and U have the same number of elements
673 ///    (reverse of 2).
674 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
675   ValidateOnExit _1(V, *this), _2(W, *this);
676   if (TP.hasError())
677     return false;
678 
679   bool Changed = false;
680   if (V.empty())
681     Changed |= EnforceAny(V);
682   if (W.empty())
683     Changed |= EnforceAny(W);
684 
685   // An actual vector type cannot have 0 elements, so we can treat scalars
686   // as zero-length vectors. This way both vectors and scalars can be
687   // processed identically.
688   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
689     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
690   };
691 
692   for (unsigned M : union_modes(V, W)) {
693     TypeSetByHwMode::SetType &VS = V.get(M);
694     TypeSetByHwMode::SetType &WS = W.get(M);
695 
696     SmallSet<unsigned,2> VN, WN;
697     for (MVT T : VS)
698       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699     for (MVT T : WS)
700       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
701 
702     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
703     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
704   }
705   return Changed;
706 }
707 
708 /// 1. Ensure that for each type T in A, there exists a type U in B,
709 ///    such that T and U have equal size in bits.
710 /// 2. Ensure that for each type U in B, there exists a type T in A
711 ///    such that T and U have equal size in bits (reverse of 1).
712 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
713   ValidateOnExit _1(A, *this), _2(B, *this);
714   if (TP.hasError())
715     return false;
716   bool Changed = false;
717   if (A.empty())
718     Changed |= EnforceAny(A);
719   if (B.empty())
720     Changed |= EnforceAny(B);
721 
722   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
723     return !Sizes.count(T.getSizeInBits());
724   };
725 
726   for (unsigned M : union_modes(A, B)) {
727     TypeSetByHwMode::SetType &AS = A.get(M);
728     TypeSetByHwMode::SetType &BS = B.get(M);
729     SmallSet<unsigned,2> AN, BN;
730 
731     for (MVT T : AS)
732       AN.insert(T.getSizeInBits());
733     for (MVT T : BS)
734       BN.insert(T.getSizeInBits());
735 
736     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
737     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
738   }
739 
740   return Changed;
741 }
742 
743 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
744   ValidateOnExit _1(VTS, *this);
745   const TypeSetByHwMode &Legal = getLegalTypes();
746   assert(Legal.isDefaultOnly() && "Default-mode only expected");
747   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
748 
749   for (auto &I : VTS)
750     expandOverloads(I.second, LegalTypes);
751 }
752 
753 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
754                                 const TypeSetByHwMode::SetType &Legal) {
755   std::set<MVT> Ovs;
756   for (MVT T : Out) {
757     if (!T.isOverloaded())
758       continue;
759 
760     Ovs.insert(T);
761     // MachineValueTypeSet allows iteration and erasing.
762     Out.erase(T);
763   }
764 
765   for (MVT Ov : Ovs) {
766     switch (Ov.SimpleTy) {
767       case MVT::iPTRAny:
768         Out.insert(MVT::iPTR);
769         return;
770       case MVT::iAny:
771         for (MVT T : MVT::integer_valuetypes())
772           if (Legal.count(T))
773             Out.insert(T);
774         for (MVT T : MVT::integer_vector_valuetypes())
775           if (Legal.count(T))
776             Out.insert(T);
777         return;
778       case MVT::fAny:
779         for (MVT T : MVT::fp_valuetypes())
780           if (Legal.count(T))
781             Out.insert(T);
782         for (MVT T : MVT::fp_vector_valuetypes())
783           if (Legal.count(T))
784             Out.insert(T);
785         return;
786       case MVT::vAny:
787         for (MVT T : MVT::vector_valuetypes())
788           if (Legal.count(T))
789             Out.insert(T);
790         return;
791       case MVT::Any:
792         for (MVT T : MVT::all_valuetypes())
793           if (Legal.count(T))
794             Out.insert(T);
795         return;
796       default:
797         break;
798     }
799   }
800 }
801 
802 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
803   if (!LegalTypesCached) {
804     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
805     // Stuff all types from all modes into the default mode.
806     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
807     for (const auto &I : LTS)
808       LegalTypes.insert(I.second);
809     LegalTypesCached = true;
810   }
811   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
812   return LegalCache;
813 }
814 
815 #ifndef NDEBUG
816 TypeInfer::ValidateOnExit::~ValidateOnExit() {
817   if (Infer.Validate && !VTS.validate()) {
818     dbgs() << "Type set is empty for each HW mode:\n"
819               "possible type contradiction in the pattern below "
820               "(use -print-records with llvm-tblgen to see all "
821               "expanded records).\n";
822     Infer.TP.dump();
823     llvm_unreachable(nullptr);
824   }
825 }
826 #endif
827 
828 
829 //===----------------------------------------------------------------------===//
830 // ScopedName Implementation
831 //===----------------------------------------------------------------------===//
832 
833 bool ScopedName::operator==(const ScopedName &o) const {
834   return Scope == o.Scope && Identifier == o.Identifier;
835 }
836 
837 bool ScopedName::operator!=(const ScopedName &o) const {
838   return !(*this == o);
839 }
840 
841 
842 //===----------------------------------------------------------------------===//
843 // TreePredicateFn Implementation
844 //===----------------------------------------------------------------------===//
845 
846 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
847 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
848   assert(
849       (!hasPredCode() || !hasImmCode()) &&
850       ".td file corrupt: can't have a node predicate *and* an imm predicate");
851 }
852 
853 bool TreePredicateFn::hasPredCode() const {
854   return isLoad() || isStore() || isAtomic() ||
855          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
856 }
857 
858 std::string TreePredicateFn::getPredCode() const {
859   std::string Code = "";
860 
861   if (!isLoad() && !isStore() && !isAtomic()) {
862     Record *MemoryVT = getMemoryVT();
863 
864     if (MemoryVT)
865       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
866                       "MemoryVT requires IsLoad or IsStore");
867   }
868 
869   if (!isLoad() && !isStore()) {
870     if (isUnindexed())
871       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
872                       "IsUnindexed requires IsLoad or IsStore");
873 
874     Record *ScalarMemoryVT = getScalarMemoryVT();
875 
876     if (ScalarMemoryVT)
877       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
878                       "ScalarMemoryVT requires IsLoad or IsStore");
879   }
880 
881   if (isLoad() + isStore() + isAtomic() > 1)
882     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
883                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
884 
885   if (isLoad()) {
886     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
887         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
888         getScalarMemoryVT() == nullptr)
889       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
890                       "IsLoad cannot be used by itself");
891   } else {
892     if (isNonExtLoad())
893       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894                       "IsNonExtLoad requires IsLoad");
895     if (isAnyExtLoad())
896       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                       "IsAnyExtLoad requires IsLoad");
898     if (isSignExtLoad())
899       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
900                       "IsSignExtLoad requires IsLoad");
901     if (isZeroExtLoad())
902       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
903                       "IsZeroExtLoad requires IsLoad");
904   }
905 
906   if (isStore()) {
907     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
908         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsStore cannot be used by itself");
911   } else {
912     if (isNonTruncStore())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsNonTruncStore requires IsStore");
915     if (isTruncStore())
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "IsTruncStore requires IsStore");
918   }
919 
920   if (isAtomic()) {
921     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
922         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
923         !isAtomicOrderingAcquireRelease() &&
924         !isAtomicOrderingSequentiallyConsistent() &&
925         !isAtomicOrderingAcquireOrStronger() &&
926         !isAtomicOrderingReleaseOrStronger() &&
927         !isAtomicOrderingWeakerThanAcquire() &&
928         !isAtomicOrderingWeakerThanRelease())
929       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930                       "IsAtomic cannot be used by itself");
931   } else {
932     if (isAtomicOrderingMonotonic())
933       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                       "IsAtomicOrderingMonotonic requires IsAtomic");
935     if (isAtomicOrderingAcquire())
936       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937                       "IsAtomicOrderingAcquire requires IsAtomic");
938     if (isAtomicOrderingRelease())
939       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
940                       "IsAtomicOrderingRelease requires IsAtomic");
941     if (isAtomicOrderingAcquireRelease())
942       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
943                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
944     if (isAtomicOrderingSequentiallyConsistent())
945       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
946                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
947     if (isAtomicOrderingAcquireOrStronger())
948       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
950     if (isAtomicOrderingReleaseOrStronger())
951       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
952                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
953     if (isAtomicOrderingWeakerThanAcquire())
954       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
955                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
956   }
957 
958   if (isLoad() || isStore() || isAtomic()) {
959     StringRef SDNodeName =
960         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
961 
962     Record *MemoryVT = getMemoryVT();
963 
964     if (MemoryVT)
965       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
966                MemoryVT->getName() + ") return false;\n")
967                   .str();
968   }
969 
970   if (isAtomic() && isAtomicOrderingMonotonic())
971     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
972             "AtomicOrdering::Monotonic) return false;\n";
973   if (isAtomic() && isAtomicOrderingAcquire())
974     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
975             "AtomicOrdering::Acquire) return false;\n";
976   if (isAtomic() && isAtomicOrderingRelease())
977     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
978             "AtomicOrdering::Release) return false;\n";
979   if (isAtomic() && isAtomicOrderingAcquireRelease())
980     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
981             "AtomicOrdering::AcquireRelease) return false;\n";
982   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
983     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
984             "AtomicOrdering::SequentiallyConsistent) return false;\n";
985 
986   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
987     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
988             "return false;\n";
989   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
990     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
991             "return false;\n";
992 
993   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
994     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
995             "return false;\n";
996   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
997     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
998             "return false;\n";
999 
1000   if (isLoad() || isStore()) {
1001     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1002 
1003     if (isUnindexed())
1004       Code += ("if (cast<" + SDNodeName +
1005                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1006                "return false;\n")
1007                   .str();
1008 
1009     if (isLoad()) {
1010       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1011            isZeroExtLoad()) > 1)
1012         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1013                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1014                         "IsZeroExtLoad are mutually exclusive");
1015       if (isNonExtLoad())
1016         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1017                 "ISD::NON_EXTLOAD) return false;\n";
1018       if (isAnyExtLoad())
1019         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1020                 "return false;\n";
1021       if (isSignExtLoad())
1022         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1023                 "return false;\n";
1024       if (isZeroExtLoad())
1025         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1026                 "return false;\n";
1027     } else {
1028       if ((isNonTruncStore() + isTruncStore()) > 1)
1029         PrintFatalError(
1030             getOrigPatFragRecord()->getRecord()->getLoc(),
1031             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1032       if (isNonTruncStore())
1033         Code +=
1034             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1035       if (isTruncStore())
1036         Code +=
1037             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1038     }
1039 
1040     Record *ScalarMemoryVT = getScalarMemoryVT();
1041 
1042     if (ScalarMemoryVT)
1043       Code += ("if (cast<" + SDNodeName +
1044                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1045                ScalarMemoryVT->getName() + ") return false;\n")
1046                   .str();
1047   }
1048 
1049   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1050 
1051   Code += PredicateCode;
1052 
1053   if (PredicateCode.empty() && !Code.empty())
1054     Code += "return true;\n";
1055 
1056   return Code;
1057 }
1058 
1059 bool TreePredicateFn::hasImmCode() const {
1060   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1061 }
1062 
1063 std::string TreePredicateFn::getImmCode() const {
1064   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1065 }
1066 
1067 bool TreePredicateFn::immCodeUsesAPInt() const {
1068   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1069 }
1070 
1071 bool TreePredicateFn::immCodeUsesAPFloat() const {
1072   bool Unset;
1073   // The return value will be false when IsAPFloat is unset.
1074   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1075                                                                    Unset);
1076 }
1077 
1078 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1079                                                    bool Value) const {
1080   bool Unset;
1081   bool Result =
1082       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1083   if (Unset)
1084     return false;
1085   return Result == Value;
1086 }
1087 bool TreePredicateFn::usesOperands() const {
1088   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1089 }
1090 bool TreePredicateFn::isLoad() const {
1091   return isPredefinedPredicateEqualTo("IsLoad", true);
1092 }
1093 bool TreePredicateFn::isStore() const {
1094   return isPredefinedPredicateEqualTo("IsStore", true);
1095 }
1096 bool TreePredicateFn::isAtomic() const {
1097   return isPredefinedPredicateEqualTo("IsAtomic", true);
1098 }
1099 bool TreePredicateFn::isUnindexed() const {
1100   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1101 }
1102 bool TreePredicateFn::isNonExtLoad() const {
1103   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1104 }
1105 bool TreePredicateFn::isAnyExtLoad() const {
1106   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1107 }
1108 bool TreePredicateFn::isSignExtLoad() const {
1109   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1110 }
1111 bool TreePredicateFn::isZeroExtLoad() const {
1112   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1113 }
1114 bool TreePredicateFn::isNonTruncStore() const {
1115   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1116 }
1117 bool TreePredicateFn::isTruncStore() const {
1118   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1119 }
1120 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1121   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1122 }
1123 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1124   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1125 }
1126 bool TreePredicateFn::isAtomicOrderingRelease() const {
1127   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1128 }
1129 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1130   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1131 }
1132 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1133   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1134                                       true);
1135 }
1136 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1137   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1138 }
1139 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1140   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1141 }
1142 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1143   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1144 }
1145 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1146   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1147 }
1148 Record *TreePredicateFn::getMemoryVT() const {
1149   Record *R = getOrigPatFragRecord()->getRecord();
1150   if (R->isValueUnset("MemoryVT"))
1151     return nullptr;
1152   return R->getValueAsDef("MemoryVT");
1153 }
1154 Record *TreePredicateFn::getScalarMemoryVT() const {
1155   Record *R = getOrigPatFragRecord()->getRecord();
1156   if (R->isValueUnset("ScalarMemoryVT"))
1157     return nullptr;
1158   return R->getValueAsDef("ScalarMemoryVT");
1159 }
1160 bool TreePredicateFn::hasGISelPredicateCode() const {
1161   return !PatFragRec->getRecord()
1162               ->getValueAsString("GISelPredicateCode")
1163               .empty();
1164 }
1165 std::string TreePredicateFn::getGISelPredicateCode() const {
1166   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1167 }
1168 
1169 StringRef TreePredicateFn::getImmType() const {
1170   if (immCodeUsesAPInt())
1171     return "const APInt &";
1172   if (immCodeUsesAPFloat())
1173     return "const APFloat &";
1174   return "int64_t";
1175 }
1176 
1177 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1178   if (immCodeUsesAPInt())
1179     return "APInt";
1180   else if (immCodeUsesAPFloat())
1181     return "APFloat";
1182   return "I64";
1183 }
1184 
1185 /// isAlwaysTrue - Return true if this is a noop predicate.
1186 bool TreePredicateFn::isAlwaysTrue() const {
1187   return !hasPredCode() && !hasImmCode();
1188 }
1189 
1190 /// Return the name to use in the generated code to reference this, this is
1191 /// "Predicate_foo" if from a pattern fragment "foo".
1192 std::string TreePredicateFn::getFnName() const {
1193   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1194 }
1195 
1196 /// getCodeToRunOnSDNode - Return the code for the function body that
1197 /// evaluates this predicate.  The argument is expected to be in "Node",
1198 /// not N.  This handles casting and conversion to a concrete node type as
1199 /// appropriate.
1200 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1201   // Handle immediate predicates first.
1202   std::string ImmCode = getImmCode();
1203   if (!ImmCode.empty()) {
1204     if (isLoad())
1205       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1206                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1207     if (isStore())
1208       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1209                       "IsStore cannot be used with ImmLeaf or its subclasses");
1210     if (isUnindexed())
1211       PrintFatalError(
1212           getOrigPatFragRecord()->getRecord()->getLoc(),
1213           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1214     if (isNonExtLoad())
1215       PrintFatalError(
1216           getOrigPatFragRecord()->getRecord()->getLoc(),
1217           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1218     if (isAnyExtLoad())
1219       PrintFatalError(
1220           getOrigPatFragRecord()->getRecord()->getLoc(),
1221           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1222     if (isSignExtLoad())
1223       PrintFatalError(
1224           getOrigPatFragRecord()->getRecord()->getLoc(),
1225           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1226     if (isZeroExtLoad())
1227       PrintFatalError(
1228           getOrigPatFragRecord()->getRecord()->getLoc(),
1229           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1230     if (isNonTruncStore())
1231       PrintFatalError(
1232           getOrigPatFragRecord()->getRecord()->getLoc(),
1233           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1234     if (isTruncStore())
1235       PrintFatalError(
1236           getOrigPatFragRecord()->getRecord()->getLoc(),
1237           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1238     if (getMemoryVT())
1239       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1240                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1241     if (getScalarMemoryVT())
1242       PrintFatalError(
1243           getOrigPatFragRecord()->getRecord()->getLoc(),
1244           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1245 
1246     std::string Result = ("    " + getImmType() + " Imm = ").str();
1247     if (immCodeUsesAPFloat())
1248       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1249     else if (immCodeUsesAPInt())
1250       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1251     else
1252       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1253     return Result + ImmCode;
1254   }
1255 
1256   // Handle arbitrary node predicates.
1257   assert(hasPredCode() && "Don't have any predicate code!");
1258   StringRef ClassName;
1259   if (PatFragRec->getOnlyTree()->isLeaf())
1260     ClassName = "SDNode";
1261   else {
1262     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1263     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1264   }
1265   std::string Result;
1266   if (ClassName == "SDNode")
1267     Result = "    SDNode *N = Node;\n";
1268   else
1269     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1270 
1271   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1272 }
1273 
1274 //===----------------------------------------------------------------------===//
1275 // PatternToMatch implementation
1276 //
1277 
1278 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1279 /// patterns before small ones.  This is used to determine the size of a
1280 /// pattern.
1281 static unsigned getPatternSize(const TreePatternNode *P,
1282                                const CodeGenDAGPatterns &CGP) {
1283   unsigned Size = 3;  // The node itself.
1284   // If the root node is a ConstantSDNode, increases its size.
1285   // e.g. (set R32:$dst, 0).
1286   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1287     Size += 2;
1288 
1289   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1290     Size += AM->getComplexity();
1291     // We don't want to count any children twice, so return early.
1292     return Size;
1293   }
1294 
1295   // If this node has some predicate function that must match, it adds to the
1296   // complexity of this node.
1297   if (!P->getPredicateCalls().empty())
1298     ++Size;
1299 
1300   // Count children in the count if they are also nodes.
1301   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1302     const TreePatternNode *Child = P->getChild(i);
1303     if (!Child->isLeaf() && Child->getNumTypes()) {
1304       const TypeSetByHwMode &T0 = Child->getExtType(0);
1305       // At this point, all variable type sets should be simple, i.e. only
1306       // have a default mode.
1307       if (T0.getMachineValueType() != MVT::Other) {
1308         Size += getPatternSize(Child, CGP);
1309         continue;
1310       }
1311     }
1312     if (Child->isLeaf()) {
1313       if (isa<IntInit>(Child->getLeafValue()))
1314         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1315       else if (Child->getComplexPatternInfo(CGP))
1316         Size += getPatternSize(Child, CGP);
1317       else if (!Child->getPredicateCalls().empty())
1318         ++Size;
1319     }
1320   }
1321 
1322   return Size;
1323 }
1324 
1325 /// Compute the complexity metric for the input pattern.  This roughly
1326 /// corresponds to the number of nodes that are covered.
1327 int PatternToMatch::
1328 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1329   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1330 }
1331 
1332 /// getPredicateCheck - Return a single string containing all of this
1333 /// pattern's predicates concatenated with "&&" operators.
1334 ///
1335 std::string PatternToMatch::getPredicateCheck() const {
1336   SmallVector<const Predicate*,4> PredList;
1337   for (const Predicate &P : Predicates)
1338     PredList.push_back(&P);
1339   llvm::sort(PredList, deref<llvm::less>());
1340 
1341   std::string Check;
1342   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1343     if (i != 0)
1344       Check += " && ";
1345     Check += '(' + PredList[i]->getCondString() + ')';
1346   }
1347   return Check;
1348 }
1349 
1350 //===----------------------------------------------------------------------===//
1351 // SDTypeConstraint implementation
1352 //
1353 
1354 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1355   OperandNo = R->getValueAsInt("OperandNum");
1356 
1357   if (R->isSubClassOf("SDTCisVT")) {
1358     ConstraintType = SDTCisVT;
1359     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1360     for (const auto &P : VVT)
1361       if (P.second == MVT::isVoid)
1362         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1363   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1364     ConstraintType = SDTCisPtrTy;
1365   } else if (R->isSubClassOf("SDTCisInt")) {
1366     ConstraintType = SDTCisInt;
1367   } else if (R->isSubClassOf("SDTCisFP")) {
1368     ConstraintType = SDTCisFP;
1369   } else if (R->isSubClassOf("SDTCisVec")) {
1370     ConstraintType = SDTCisVec;
1371   } else if (R->isSubClassOf("SDTCisSameAs")) {
1372     ConstraintType = SDTCisSameAs;
1373     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1374   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1375     ConstraintType = SDTCisVTSmallerThanOp;
1376     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1377       R->getValueAsInt("OtherOperandNum");
1378   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1379     ConstraintType = SDTCisOpSmallerThanOp;
1380     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1381       R->getValueAsInt("BigOperandNum");
1382   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1383     ConstraintType = SDTCisEltOfVec;
1384     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1385   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1386     ConstraintType = SDTCisSubVecOfVec;
1387     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1388       R->getValueAsInt("OtherOpNum");
1389   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1390     ConstraintType = SDTCVecEltisVT;
1391     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1392     for (const auto &P : VVT) {
1393       MVT T = P.second;
1394       if (T.isVector())
1395         PrintFatalError(R->getLoc(),
1396                         "Cannot use vector type as SDTCVecEltisVT");
1397       if (!T.isInteger() && !T.isFloatingPoint())
1398         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1399                                      "as SDTCVecEltisVT");
1400     }
1401   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1402     ConstraintType = SDTCisSameNumEltsAs;
1403     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1404       R->getValueAsInt("OtherOperandNum");
1405   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1406     ConstraintType = SDTCisSameSizeAs;
1407     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1408       R->getValueAsInt("OtherOperandNum");
1409   } else {
1410     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1411   }
1412 }
1413 
1414 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1415 /// N, and the result number in ResNo.
1416 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1417                                       const SDNodeInfo &NodeInfo,
1418                                       unsigned &ResNo) {
1419   unsigned NumResults = NodeInfo.getNumResults();
1420   if (OpNo < NumResults) {
1421     ResNo = OpNo;
1422     return N;
1423   }
1424 
1425   OpNo -= NumResults;
1426 
1427   if (OpNo >= N->getNumChildren()) {
1428     std::string S;
1429     raw_string_ostream OS(S);
1430     OS << "Invalid operand number in type constraint "
1431            << (OpNo+NumResults) << " ";
1432     N->print(OS);
1433     PrintFatalError(OS.str());
1434   }
1435 
1436   return N->getChild(OpNo);
1437 }
1438 
1439 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1440 /// constraint to the nodes operands.  This returns true if it makes a
1441 /// change, false otherwise.  If a type contradiction is found, flag an error.
1442 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1443                                            const SDNodeInfo &NodeInfo,
1444                                            TreePattern &TP) const {
1445   if (TP.hasError())
1446     return false;
1447 
1448   unsigned ResNo = 0; // The result number being referenced.
1449   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1450   TypeInfer &TI = TP.getInfer();
1451 
1452   switch (ConstraintType) {
1453   case SDTCisVT:
1454     // Operand must be a particular type.
1455     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1456   case SDTCisPtrTy:
1457     // Operand must be same as target pointer type.
1458     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1459   case SDTCisInt:
1460     // Require it to be one of the legal integer VTs.
1461      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1462   case SDTCisFP:
1463     // Require it to be one of the legal fp VTs.
1464     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1465   case SDTCisVec:
1466     // Require it to be one of the legal vector VTs.
1467     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1468   case SDTCisSameAs: {
1469     unsigned OResNo = 0;
1470     TreePatternNode *OtherNode =
1471       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1472     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1473            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1474   }
1475   case SDTCisVTSmallerThanOp: {
1476     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1477     // have an integer type that is smaller than the VT.
1478     if (!NodeToApply->isLeaf() ||
1479         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1480         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1481                ->isSubClassOf("ValueType")) {
1482       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1483       return false;
1484     }
1485     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1486     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1487     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1488     TypeSetByHwMode TypeListTmp(VVT);
1489 
1490     unsigned OResNo = 0;
1491     TreePatternNode *OtherNode =
1492       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1493                     OResNo);
1494 
1495     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1496   }
1497   case SDTCisOpSmallerThanOp: {
1498     unsigned BResNo = 0;
1499     TreePatternNode *BigOperand =
1500       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1501                     BResNo);
1502     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1503                                  BigOperand->getExtType(BResNo));
1504   }
1505   case SDTCisEltOfVec: {
1506     unsigned VResNo = 0;
1507     TreePatternNode *VecOperand =
1508       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1509                     VResNo);
1510     // Filter vector types out of VecOperand that don't have the right element
1511     // type.
1512     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1513                                      NodeToApply->getExtType(ResNo));
1514   }
1515   case SDTCisSubVecOfVec: {
1516     unsigned VResNo = 0;
1517     TreePatternNode *BigVecOperand =
1518       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1519                     VResNo);
1520 
1521     // Filter vector types out of BigVecOperand that don't have the
1522     // right subvector type.
1523     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1524                                            NodeToApply->getExtType(ResNo));
1525   }
1526   case SDTCVecEltisVT: {
1527     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1528   }
1529   case SDTCisSameNumEltsAs: {
1530     unsigned OResNo = 0;
1531     TreePatternNode *OtherNode =
1532       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1533                     N, NodeInfo, OResNo);
1534     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1535                                  NodeToApply->getExtType(ResNo));
1536   }
1537   case SDTCisSameSizeAs: {
1538     unsigned OResNo = 0;
1539     TreePatternNode *OtherNode =
1540       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1541                     N, NodeInfo, OResNo);
1542     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1543                               NodeToApply->getExtType(ResNo));
1544   }
1545   }
1546   llvm_unreachable("Invalid ConstraintType!");
1547 }
1548 
1549 // Update the node type to match an instruction operand or result as specified
1550 // in the ins or outs lists on the instruction definition. Return true if the
1551 // type was actually changed.
1552 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1553                                              Record *Operand,
1554                                              TreePattern &TP) {
1555   // The 'unknown' operand indicates that types should be inferred from the
1556   // context.
1557   if (Operand->isSubClassOf("unknown_class"))
1558     return false;
1559 
1560   // The Operand class specifies a type directly.
1561   if (Operand->isSubClassOf("Operand")) {
1562     Record *R = Operand->getValueAsDef("Type");
1563     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1564     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1565   }
1566 
1567   // PointerLikeRegClass has a type that is determined at runtime.
1568   if (Operand->isSubClassOf("PointerLikeRegClass"))
1569     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1570 
1571   // Both RegisterClass and RegisterOperand operands derive their types from a
1572   // register class def.
1573   Record *RC = nullptr;
1574   if (Operand->isSubClassOf("RegisterClass"))
1575     RC = Operand;
1576   else if (Operand->isSubClassOf("RegisterOperand"))
1577     RC = Operand->getValueAsDef("RegClass");
1578 
1579   assert(RC && "Unknown operand type");
1580   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1581   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1582 }
1583 
1584 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1585   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1586     if (!TP.getInfer().isConcrete(Types[i], true))
1587       return true;
1588   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1589     if (getChild(i)->ContainsUnresolvedType(TP))
1590       return true;
1591   return false;
1592 }
1593 
1594 bool TreePatternNode::hasProperTypeByHwMode() const {
1595   for (const TypeSetByHwMode &S : Types)
1596     if (!S.isDefaultOnly())
1597       return true;
1598   for (const TreePatternNodePtr &C : Children)
1599     if (C->hasProperTypeByHwMode())
1600       return true;
1601   return false;
1602 }
1603 
1604 bool TreePatternNode::hasPossibleType() const {
1605   for (const TypeSetByHwMode &S : Types)
1606     if (!S.isPossible())
1607       return false;
1608   for (const TreePatternNodePtr &C : Children)
1609     if (!C->hasPossibleType())
1610       return false;
1611   return true;
1612 }
1613 
1614 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1615   for (TypeSetByHwMode &S : Types) {
1616     S.makeSimple(Mode);
1617     // Check if the selected mode had a type conflict.
1618     if (S.get(DefaultMode).empty())
1619       return false;
1620   }
1621   for (const TreePatternNodePtr &C : Children)
1622     if (!C->setDefaultMode(Mode))
1623       return false;
1624   return true;
1625 }
1626 
1627 //===----------------------------------------------------------------------===//
1628 // SDNodeInfo implementation
1629 //
1630 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1631   EnumName    = R->getValueAsString("Opcode");
1632   SDClassName = R->getValueAsString("SDClass");
1633   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1634   NumResults = TypeProfile->getValueAsInt("NumResults");
1635   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1636 
1637   // Parse the properties.
1638   Properties = parseSDPatternOperatorProperties(R);
1639 
1640   // Parse the type constraints.
1641   std::vector<Record*> ConstraintList =
1642     TypeProfile->getValueAsListOfDefs("Constraints");
1643   for (Record *R : ConstraintList)
1644     TypeConstraints.emplace_back(R, CGH);
1645 }
1646 
1647 /// getKnownType - If the type constraints on this node imply a fixed type
1648 /// (e.g. all stores return void, etc), then return it as an
1649 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1650 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1651   unsigned NumResults = getNumResults();
1652   assert(NumResults <= 1 &&
1653          "We only work with nodes with zero or one result so far!");
1654   assert(ResNo == 0 && "Only handles single result nodes so far");
1655 
1656   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1657     // Make sure that this applies to the correct node result.
1658     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1659       continue;
1660 
1661     switch (Constraint.ConstraintType) {
1662     default: break;
1663     case SDTypeConstraint::SDTCisVT:
1664       if (Constraint.VVT.isSimple())
1665         return Constraint.VVT.getSimple().SimpleTy;
1666       break;
1667     case SDTypeConstraint::SDTCisPtrTy:
1668       return MVT::iPTR;
1669     }
1670   }
1671   return MVT::Other;
1672 }
1673 
1674 //===----------------------------------------------------------------------===//
1675 // TreePatternNode implementation
1676 //
1677 
1678 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1679   if (Operator->getName() == "set" ||
1680       Operator->getName() == "implicit")
1681     return 0;  // All return nothing.
1682 
1683   if (Operator->isSubClassOf("Intrinsic"))
1684     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1685 
1686   if (Operator->isSubClassOf("SDNode"))
1687     return CDP.getSDNodeInfo(Operator).getNumResults();
1688 
1689   if (Operator->isSubClassOf("PatFrags")) {
1690     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1691     // the forward reference case where one pattern fragment references another
1692     // before it is processed.
1693     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1694       // The number of results of a fragment with alternative records is the
1695       // maximum number of results across all alternatives.
1696       unsigned NumResults = 0;
1697       for (auto T : PFRec->getTrees())
1698         NumResults = std::max(NumResults, T->getNumTypes());
1699       return NumResults;
1700     }
1701 
1702     ListInit *LI = Operator->getValueAsListInit("Fragments");
1703     assert(LI && "Invalid Fragment");
1704     unsigned NumResults = 0;
1705     for (Init *I : LI->getValues()) {
1706       Record *Op = nullptr;
1707       if (DagInit *Dag = dyn_cast<DagInit>(I))
1708         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1709           Op = DI->getDef();
1710       assert(Op && "Invalid Fragment");
1711       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1712     }
1713     return NumResults;
1714   }
1715 
1716   if (Operator->isSubClassOf("Instruction")) {
1717     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1718 
1719     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1720 
1721     // Subtract any defaulted outputs.
1722     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1723       Record *OperandNode = InstInfo.Operands[i].Rec;
1724 
1725       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1726           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1727         --NumDefsToAdd;
1728     }
1729 
1730     // Add on one implicit def if it has a resolvable type.
1731     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1732       ++NumDefsToAdd;
1733     return NumDefsToAdd;
1734   }
1735 
1736   if (Operator->isSubClassOf("SDNodeXForm"))
1737     return 1;  // FIXME: Generalize SDNodeXForm
1738 
1739   if (Operator->isSubClassOf("ValueType"))
1740     return 1;  // A type-cast of one result.
1741 
1742   if (Operator->isSubClassOf("ComplexPattern"))
1743     return 1;
1744 
1745   errs() << *Operator;
1746   PrintFatalError("Unhandled node in GetNumNodeResults");
1747 }
1748 
1749 void TreePatternNode::print(raw_ostream &OS) const {
1750   if (isLeaf())
1751     OS << *getLeafValue();
1752   else
1753     OS << '(' << getOperator()->getName();
1754 
1755   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1756     OS << ':';
1757     getExtType(i).writeToStream(OS);
1758   }
1759 
1760   if (!isLeaf()) {
1761     if (getNumChildren() != 0) {
1762       OS << " ";
1763       getChild(0)->print(OS);
1764       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1765         OS << ", ";
1766         getChild(i)->print(OS);
1767       }
1768     }
1769     OS << ")";
1770   }
1771 
1772   for (const TreePredicateCall &Pred : PredicateCalls) {
1773     OS << "<<P:";
1774     if (Pred.Scope)
1775       OS << Pred.Scope << ":";
1776     OS << Pred.Fn.getFnName() << ">>";
1777   }
1778   if (TransformFn)
1779     OS << "<<X:" << TransformFn->getName() << ">>";
1780   if (!getName().empty())
1781     OS << ":$" << getName();
1782 
1783   for (const ScopedName &Name : NamesAsPredicateArg)
1784     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1785 }
1786 void TreePatternNode::dump() const {
1787   print(errs());
1788 }
1789 
1790 /// isIsomorphicTo - Return true if this node is recursively
1791 /// isomorphic to the specified node.  For this comparison, the node's
1792 /// entire state is considered. The assigned name is ignored, since
1793 /// nodes with differing names are considered isomorphic. However, if
1794 /// the assigned name is present in the dependent variable set, then
1795 /// the assigned name is considered significant and the node is
1796 /// isomorphic if the names match.
1797 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1798                                      const MultipleUseVarSet &DepVars) const {
1799   if (N == this) return true;
1800   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1801       getPredicateCalls() != N->getPredicateCalls() ||
1802       getTransformFn() != N->getTransformFn())
1803     return false;
1804 
1805   if (isLeaf()) {
1806     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1807       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1808         return ((DI->getDef() == NDI->getDef())
1809                 && (DepVars.find(getName()) == DepVars.end()
1810                     || getName() == N->getName()));
1811       }
1812     }
1813     return getLeafValue() == N->getLeafValue();
1814   }
1815 
1816   if (N->getOperator() != getOperator() ||
1817       N->getNumChildren() != getNumChildren()) return false;
1818   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1819     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1820       return false;
1821   return true;
1822 }
1823 
1824 /// clone - Make a copy of this tree and all of its children.
1825 ///
1826 TreePatternNodePtr TreePatternNode::clone() const {
1827   TreePatternNodePtr New;
1828   if (isLeaf()) {
1829     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1830   } else {
1831     std::vector<TreePatternNodePtr> CChildren;
1832     CChildren.reserve(Children.size());
1833     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1834       CChildren.push_back(getChild(i)->clone());
1835     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1836                                             getNumTypes());
1837   }
1838   New->setName(getName());
1839   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1840   New->Types = Types;
1841   New->setPredicateCalls(getPredicateCalls());
1842   New->setTransformFn(getTransformFn());
1843   return New;
1844 }
1845 
1846 /// RemoveAllTypes - Recursively strip all the types of this tree.
1847 void TreePatternNode::RemoveAllTypes() {
1848   // Reset to unknown type.
1849   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1850   if (isLeaf()) return;
1851   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1852     getChild(i)->RemoveAllTypes();
1853 }
1854 
1855 
1856 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1857 /// with actual values specified by ArgMap.
1858 void TreePatternNode::SubstituteFormalArguments(
1859     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1860   if (isLeaf()) return;
1861 
1862   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1863     TreePatternNode *Child = getChild(i);
1864     if (Child->isLeaf()) {
1865       Init *Val = Child->getLeafValue();
1866       // Note that, when substituting into an output pattern, Val might be an
1867       // UnsetInit.
1868       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1869           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1870         // We found a use of a formal argument, replace it with its value.
1871         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1872         assert(NewChild && "Couldn't find formal argument!");
1873         assert((Child->getPredicateCalls().empty() ||
1874                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1875                "Non-empty child predicate clobbered!");
1876         setChild(i, std::move(NewChild));
1877       }
1878     } else {
1879       getChild(i)->SubstituteFormalArguments(ArgMap);
1880     }
1881   }
1882 }
1883 
1884 
1885 /// InlinePatternFragments - If this pattern refers to any pattern
1886 /// fragments, return the set of inlined versions (this can be more than
1887 /// one if a PatFrags record has multiple alternatives).
1888 void TreePatternNode::InlinePatternFragments(
1889   TreePatternNodePtr T, TreePattern &TP,
1890   std::vector<TreePatternNodePtr> &OutAlternatives) {
1891 
1892   if (TP.hasError())
1893     return;
1894 
1895   if (isLeaf()) {
1896     OutAlternatives.push_back(T);  // nothing to do.
1897     return;
1898   }
1899 
1900   Record *Op = getOperator();
1901 
1902   if (!Op->isSubClassOf("PatFrags")) {
1903     if (getNumChildren() == 0) {
1904       OutAlternatives.push_back(T);
1905       return;
1906     }
1907 
1908     // Recursively inline children nodes.
1909     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1910     ChildAlternatives.resize(getNumChildren());
1911     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1912       TreePatternNodePtr Child = getChildShared(i);
1913       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1914       // If there are no alternatives for any child, there are no
1915       // alternatives for this expression as whole.
1916       if (ChildAlternatives[i].empty())
1917         return;
1918 
1919       for (auto NewChild : ChildAlternatives[i])
1920         assert((Child->getPredicateCalls().empty() ||
1921                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1922                "Non-empty child predicate clobbered!");
1923     }
1924 
1925     // The end result is an all-pairs construction of the resultant pattern.
1926     std::vector<unsigned> Idxs;
1927     Idxs.resize(ChildAlternatives.size());
1928     bool NotDone;
1929     do {
1930       // Create the variant and add it to the output list.
1931       std::vector<TreePatternNodePtr> NewChildren;
1932       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1933         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1934       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1935           getOperator(), std::move(NewChildren), getNumTypes());
1936 
1937       // Copy over properties.
1938       R->setName(getName());
1939       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1940       R->setPredicateCalls(getPredicateCalls());
1941       R->setTransformFn(getTransformFn());
1942       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1943         R->setType(i, getExtType(i));
1944       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
1945         R->setResultIndex(i, getResultIndex(i));
1946 
1947       // Register alternative.
1948       OutAlternatives.push_back(R);
1949 
1950       // Increment indices to the next permutation by incrementing the
1951       // indices from last index backward, e.g., generate the sequence
1952       // [0, 0], [0, 1], [1, 0], [1, 1].
1953       int IdxsIdx;
1954       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1955         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1956           Idxs[IdxsIdx] = 0;
1957         else
1958           break;
1959       }
1960       NotDone = (IdxsIdx >= 0);
1961     } while (NotDone);
1962 
1963     return;
1964   }
1965 
1966   // Otherwise, we found a reference to a fragment.  First, look up its
1967   // TreePattern record.
1968   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1969 
1970   // Verify that we are passing the right number of operands.
1971   if (Frag->getNumArgs() != Children.size()) {
1972     TP.error("'" + Op->getName() + "' fragment requires " +
1973              Twine(Frag->getNumArgs()) + " operands!");
1974     return;
1975   }
1976 
1977   TreePredicateFn PredFn(Frag);
1978   unsigned Scope = 0;
1979   if (TreePredicateFn(Frag).usesOperands())
1980     Scope = TP.getDAGPatterns().allocateScope();
1981 
1982   // Compute the map of formal to actual arguments.
1983   std::map<std::string, TreePatternNodePtr> ArgMap;
1984   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1985     TreePatternNodePtr Child = getChildShared(i);
1986     if (Scope != 0) {
1987       Child = Child->clone();
1988       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
1989     }
1990     ArgMap[Frag->getArgName(i)] = Child;
1991   }
1992 
1993   // Loop over all fragment alternatives.
1994   for (auto Alternative : Frag->getTrees()) {
1995     TreePatternNodePtr FragTree = Alternative->clone();
1996 
1997     if (!PredFn.isAlwaysTrue())
1998       FragTree->addPredicateCall(PredFn, Scope);
1999 
2000     // Resolve formal arguments to their actual value.
2001     if (Frag->getNumArgs())
2002       FragTree->SubstituteFormalArguments(ArgMap);
2003 
2004     // Transfer types.  Note that the resolved alternative may have fewer
2005     // (but not more) results than the PatFrags node.
2006     FragTree->setName(getName());
2007     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2008       FragTree->UpdateNodeType(i, getExtType(i), TP);
2009 
2010     // Transfer in the old predicates.
2011     for (const TreePredicateCall &Pred : getPredicateCalls())
2012       FragTree->addPredicateCall(Pred);
2013 
2014     // The fragment we inlined could have recursive inlining that is needed.  See
2015     // if there are any pattern fragments in it and inline them as needed.
2016     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2017   }
2018 }
2019 
2020 /// getImplicitType - Check to see if the specified record has an implicit
2021 /// type which should be applied to it.  This will infer the type of register
2022 /// references from the register file information, for example.
2023 ///
2024 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2025 /// the F8RC register class argument in:
2026 ///
2027 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2028 ///
2029 /// When Unnamed is false, return the type of a named DAG operand such as the
2030 /// GPR:$src operand above.
2031 ///
2032 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2033                                        bool NotRegisters,
2034                                        bool Unnamed,
2035                                        TreePattern &TP) {
2036   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2037 
2038   // Check to see if this is a register operand.
2039   if (R->isSubClassOf("RegisterOperand")) {
2040     assert(ResNo == 0 && "Regoperand ref only has one result!");
2041     if (NotRegisters)
2042       return TypeSetByHwMode(); // Unknown.
2043     Record *RegClass = R->getValueAsDef("RegClass");
2044     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2045     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2046   }
2047 
2048   // Check to see if this is a register or a register class.
2049   if (R->isSubClassOf("RegisterClass")) {
2050     assert(ResNo == 0 && "Regclass ref only has one result!");
2051     // An unnamed register class represents itself as an i32 immediate, for
2052     // example on a COPY_TO_REGCLASS instruction.
2053     if (Unnamed)
2054       return TypeSetByHwMode(MVT::i32);
2055 
2056     // In a named operand, the register class provides the possible set of
2057     // types.
2058     if (NotRegisters)
2059       return TypeSetByHwMode(); // Unknown.
2060     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2061     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2062   }
2063 
2064   if (R->isSubClassOf("PatFrags")) {
2065     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2066     // Pattern fragment types will be resolved when they are inlined.
2067     return TypeSetByHwMode(); // Unknown.
2068   }
2069 
2070   if (R->isSubClassOf("Register")) {
2071     assert(ResNo == 0 && "Registers only produce one result!");
2072     if (NotRegisters)
2073       return TypeSetByHwMode(); // Unknown.
2074     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2075     return TypeSetByHwMode(T.getRegisterVTs(R));
2076   }
2077 
2078   if (R->isSubClassOf("SubRegIndex")) {
2079     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2080     return TypeSetByHwMode(MVT::i32);
2081   }
2082 
2083   if (R->isSubClassOf("ValueType")) {
2084     assert(ResNo == 0 && "This node only has one result!");
2085     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2086     //
2087     //   (sext_inreg GPR:$src, i16)
2088     //                         ~~~
2089     if (Unnamed)
2090       return TypeSetByHwMode(MVT::Other);
2091     // With a name, the ValueType simply provides the type of the named
2092     // variable.
2093     //
2094     //   (sext_inreg i32:$src, i16)
2095     //               ~~~~~~~~
2096     if (NotRegisters)
2097       return TypeSetByHwMode(); // Unknown.
2098     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2099     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2100   }
2101 
2102   if (R->isSubClassOf("CondCode")) {
2103     assert(ResNo == 0 && "This node only has one result!");
2104     // Using a CondCodeSDNode.
2105     return TypeSetByHwMode(MVT::Other);
2106   }
2107 
2108   if (R->isSubClassOf("ComplexPattern")) {
2109     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2110     if (NotRegisters)
2111       return TypeSetByHwMode(); // Unknown.
2112     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2113   }
2114   if (R->isSubClassOf("PointerLikeRegClass")) {
2115     assert(ResNo == 0 && "Regclass can only have one result!");
2116     TypeSetByHwMode VTS(MVT::iPTR);
2117     TP.getInfer().expandOverloads(VTS);
2118     return VTS;
2119   }
2120 
2121   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2122       R->getName() == "zero_reg") {
2123     // Placeholder.
2124     return TypeSetByHwMode(); // Unknown.
2125   }
2126 
2127   if (R->isSubClassOf("Operand")) {
2128     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2129     Record *T = R->getValueAsDef("Type");
2130     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2131   }
2132 
2133   TP.error("Unknown node flavor used in pattern: " + R->getName());
2134   return TypeSetByHwMode(MVT::Other);
2135 }
2136 
2137 
2138 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2139 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2140 const CodeGenIntrinsic *TreePatternNode::
2141 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2142   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2143       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2144       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2145     return nullptr;
2146 
2147   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2148   return &CDP.getIntrinsicInfo(IID);
2149 }
2150 
2151 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2152 /// return the ComplexPattern information, otherwise return null.
2153 const ComplexPattern *
2154 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2155   Record *Rec;
2156   if (isLeaf()) {
2157     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2158     if (!DI)
2159       return nullptr;
2160     Rec = DI->getDef();
2161   } else
2162     Rec = getOperator();
2163 
2164   if (!Rec->isSubClassOf("ComplexPattern"))
2165     return nullptr;
2166   return &CGP.getComplexPattern(Rec);
2167 }
2168 
2169 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2170   // A ComplexPattern specifically declares how many results it fills in.
2171   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2172     return CP->getNumOperands();
2173 
2174   // If MIOperandInfo is specified, that gives the count.
2175   if (isLeaf()) {
2176     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2177     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2178       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2179       if (MIOps->getNumArgs())
2180         return MIOps->getNumArgs();
2181     }
2182   }
2183 
2184   // Otherwise there is just one result.
2185   return 1;
2186 }
2187 
2188 /// NodeHasProperty - Return true if this node has the specified property.
2189 bool TreePatternNode::NodeHasProperty(SDNP Property,
2190                                       const CodeGenDAGPatterns &CGP) const {
2191   if (isLeaf()) {
2192     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2193       return CP->hasProperty(Property);
2194 
2195     return false;
2196   }
2197 
2198   if (Property != SDNPHasChain) {
2199     // The chain proprety is already present on the different intrinsic node
2200     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2201     // on the intrinsic. Anything else is specific to the individual intrinsic.
2202     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2203       return Int->hasProperty(Property);
2204   }
2205 
2206   if (!Operator->isSubClassOf("SDPatternOperator"))
2207     return false;
2208 
2209   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2210 }
2211 
2212 
2213 
2214 
2215 /// TreeHasProperty - Return true if any node in this tree has the specified
2216 /// property.
2217 bool TreePatternNode::TreeHasProperty(SDNP Property,
2218                                       const CodeGenDAGPatterns &CGP) const {
2219   if (NodeHasProperty(Property, CGP))
2220     return true;
2221   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2222     if (getChild(i)->TreeHasProperty(Property, CGP))
2223       return true;
2224   return false;
2225 }
2226 
2227 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2228 /// commutative intrinsic.
2229 bool
2230 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2231   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2232     return Int->isCommutative;
2233   return false;
2234 }
2235 
2236 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2237   if (!N->isLeaf())
2238     return N->getOperator()->isSubClassOf(Class);
2239 
2240   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2241   if (DI && DI->getDef()->isSubClassOf(Class))
2242     return true;
2243 
2244   return false;
2245 }
2246 
2247 static void emitTooManyOperandsError(TreePattern &TP,
2248                                      StringRef InstName,
2249                                      unsigned Expected,
2250                                      unsigned Actual) {
2251   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2252            " operands but expected only " + Twine(Expected) + "!");
2253 }
2254 
2255 static void emitTooFewOperandsError(TreePattern &TP,
2256                                     StringRef InstName,
2257                                     unsigned Actual) {
2258   TP.error("Instruction '" + InstName +
2259            "' expects more than the provided " + Twine(Actual) + " operands!");
2260 }
2261 
2262 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2263 /// this node and its children in the tree.  This returns true if it makes a
2264 /// change, false otherwise.  If a type contradiction is found, flag an error.
2265 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2266   if (TP.hasError())
2267     return false;
2268 
2269   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2270   if (isLeaf()) {
2271     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2272       // If it's a regclass or something else known, include the type.
2273       bool MadeChange = false;
2274       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2275         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2276                                                         NotRegisters,
2277                                                         !hasName(), TP), TP);
2278       return MadeChange;
2279     }
2280 
2281     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2282       assert(Types.size() == 1 && "Invalid IntInit");
2283 
2284       // Int inits are always integers. :)
2285       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2286 
2287       if (!TP.getInfer().isConcrete(Types[0], false))
2288         return MadeChange;
2289 
2290       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2291       for (auto &P : VVT) {
2292         MVT::SimpleValueType VT = P.second.SimpleTy;
2293         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2294           continue;
2295         unsigned Size = MVT(VT).getSizeInBits();
2296         // Make sure that the value is representable for this type.
2297         if (Size >= 32)
2298           continue;
2299         // Check that the value doesn't use more bits than we have. It must
2300         // either be a sign- or zero-extended equivalent of the original.
2301         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2302         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2303             SignBitAndAbove == 1)
2304           continue;
2305 
2306         TP.error("Integer value '" + Twine(II->getValue()) +
2307                  "' is out of range for type '" + getEnumName(VT) + "'!");
2308         break;
2309       }
2310       return MadeChange;
2311     }
2312 
2313     return false;
2314   }
2315 
2316   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2317     bool MadeChange = false;
2318 
2319     // Apply the result type to the node.
2320     unsigned NumRetVTs = Int->IS.RetVTs.size();
2321     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2322 
2323     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2324       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2325 
2326     if (getNumChildren() != NumParamVTs + 1) {
2327       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2328                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2329       return false;
2330     }
2331 
2332     // Apply type info to the intrinsic ID.
2333     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2334 
2335     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2336       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2337 
2338       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2339       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2340       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2341     }
2342     return MadeChange;
2343   }
2344 
2345   if (getOperator()->isSubClassOf("SDNode")) {
2346     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2347 
2348     // Check that the number of operands is sane.  Negative operands -> varargs.
2349     if (NI.getNumOperands() >= 0 &&
2350         getNumChildren() != (unsigned)NI.getNumOperands()) {
2351       TP.error(getOperator()->getName() + " node requires exactly " +
2352                Twine(NI.getNumOperands()) + " operands!");
2353       return false;
2354     }
2355 
2356     bool MadeChange = false;
2357     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2358       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2359     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2360     return MadeChange;
2361   }
2362 
2363   if (getOperator()->isSubClassOf("Instruction")) {
2364     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2365     CodeGenInstruction &InstInfo =
2366       CDP.getTargetInfo().getInstruction(getOperator());
2367 
2368     bool MadeChange = false;
2369 
2370     // Apply the result types to the node, these come from the things in the
2371     // (outs) list of the instruction.
2372     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2373                                         Inst.getNumResults());
2374     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2375       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2376 
2377     // If the instruction has implicit defs, we apply the first one as a result.
2378     // FIXME: This sucks, it should apply all implicit defs.
2379     if (!InstInfo.ImplicitDefs.empty()) {
2380       unsigned ResNo = NumResultsToAdd;
2381 
2382       // FIXME: Generalize to multiple possible types and multiple possible
2383       // ImplicitDefs.
2384       MVT::SimpleValueType VT =
2385         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2386 
2387       if (VT != MVT::Other)
2388         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2389     }
2390 
2391     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2392     // be the same.
2393     if (getOperator()->getName() == "INSERT_SUBREG") {
2394       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2395       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2396       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2397     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2398       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2399       // variadic.
2400 
2401       unsigned NChild = getNumChildren();
2402       if (NChild < 3) {
2403         TP.error("REG_SEQUENCE requires at least 3 operands!");
2404         return false;
2405       }
2406 
2407       if (NChild % 2 == 0) {
2408         TP.error("REG_SEQUENCE requires an odd number of operands!");
2409         return false;
2410       }
2411 
2412       if (!isOperandClass(getChild(0), "RegisterClass")) {
2413         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2414         return false;
2415       }
2416 
2417       for (unsigned I = 1; I < NChild; I += 2) {
2418         TreePatternNode *SubIdxChild = getChild(I + 1);
2419         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2420           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2421                    Twine(I + 1) + "!");
2422           return false;
2423         }
2424       }
2425     }
2426 
2427     unsigned ChildNo = 0;
2428     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2429       Record *OperandNode = Inst.getOperand(i);
2430 
2431       // If the instruction expects a predicate or optional def operand, we
2432       // codegen this by setting the operand to it's default value if it has a
2433       // non-empty DefaultOps field.
2434       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2435           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2436         continue;
2437 
2438       // Verify that we didn't run out of provided operands.
2439       if (ChildNo >= getNumChildren()) {
2440         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2441         return false;
2442       }
2443 
2444       TreePatternNode *Child = getChild(ChildNo++);
2445       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2446 
2447       // If the operand has sub-operands, they may be provided by distinct
2448       // child patterns, so attempt to match each sub-operand separately.
2449       if (OperandNode->isSubClassOf("Operand")) {
2450         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2451         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2452           // But don't do that if the whole operand is being provided by
2453           // a single ComplexPattern-related Operand.
2454 
2455           if (Child->getNumMIResults(CDP) < NumArgs) {
2456             // Match first sub-operand against the child we already have.
2457             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2458             MadeChange |=
2459               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2460 
2461             // And the remaining sub-operands against subsequent children.
2462             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2463               if (ChildNo >= getNumChildren()) {
2464                 emitTooFewOperandsError(TP, getOperator()->getName(),
2465                                         getNumChildren());
2466                 return false;
2467               }
2468               Child = getChild(ChildNo++);
2469 
2470               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2471               MadeChange |=
2472                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2473             }
2474             continue;
2475           }
2476         }
2477       }
2478 
2479       // If we didn't match by pieces above, attempt to match the whole
2480       // operand now.
2481       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2482     }
2483 
2484     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2485       emitTooManyOperandsError(TP, getOperator()->getName(),
2486                                ChildNo, getNumChildren());
2487       return false;
2488     }
2489 
2490     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2491       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2492     return MadeChange;
2493   }
2494 
2495   if (getOperator()->isSubClassOf("ComplexPattern")) {
2496     bool MadeChange = false;
2497 
2498     for (unsigned i = 0; i < getNumChildren(); ++i)
2499       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2500 
2501     return MadeChange;
2502   }
2503 
2504   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2505 
2506   // Node transforms always take one operand.
2507   if (getNumChildren() != 1) {
2508     TP.error("Node transform '" + getOperator()->getName() +
2509              "' requires one operand!");
2510     return false;
2511   }
2512 
2513   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2514   return MadeChange;
2515 }
2516 
2517 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2518 /// RHS of a commutative operation, not the on LHS.
2519 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2520   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2521     return true;
2522   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2523     return true;
2524   return false;
2525 }
2526 
2527 
2528 /// canPatternMatch - If it is impossible for this pattern to match on this
2529 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2530 /// used as a sanity check for .td files (to prevent people from writing stuff
2531 /// that can never possibly work), and to prevent the pattern permuter from
2532 /// generating stuff that is useless.
2533 bool TreePatternNode::canPatternMatch(std::string &Reason,
2534                                       const CodeGenDAGPatterns &CDP) {
2535   if (isLeaf()) return true;
2536 
2537   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2538     if (!getChild(i)->canPatternMatch(Reason, CDP))
2539       return false;
2540 
2541   // If this is an intrinsic, handle cases that would make it not match.  For
2542   // example, if an operand is required to be an immediate.
2543   if (getOperator()->isSubClassOf("Intrinsic")) {
2544     // TODO:
2545     return true;
2546   }
2547 
2548   if (getOperator()->isSubClassOf("ComplexPattern"))
2549     return true;
2550 
2551   // If this node is a commutative operator, check that the LHS isn't an
2552   // immediate.
2553   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2554   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2555   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2556     // Scan all of the operands of the node and make sure that only the last one
2557     // is a constant node, unless the RHS also is.
2558     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2559       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2560       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2561         if (OnlyOnRHSOfCommutative(getChild(i))) {
2562           Reason="Immediate value must be on the RHS of commutative operators!";
2563           return false;
2564         }
2565     }
2566   }
2567 
2568   return true;
2569 }
2570 
2571 //===----------------------------------------------------------------------===//
2572 // TreePattern implementation
2573 //
2574 
2575 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2576                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2577                          isInputPattern(isInput), HasError(false),
2578                          Infer(*this) {
2579   for (Init *I : RawPat->getValues())
2580     Trees.push_back(ParseTreePattern(I, ""));
2581 }
2582 
2583 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2584                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2585                          isInputPattern(isInput), HasError(false),
2586                          Infer(*this) {
2587   Trees.push_back(ParseTreePattern(Pat, ""));
2588 }
2589 
2590 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2591                          CodeGenDAGPatterns &cdp)
2592     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2593       Infer(*this) {
2594   Trees.push_back(Pat);
2595 }
2596 
2597 void TreePattern::error(const Twine &Msg) {
2598   if (HasError)
2599     return;
2600   dump();
2601   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2602   HasError = true;
2603 }
2604 
2605 void TreePattern::ComputeNamedNodes() {
2606   for (TreePatternNodePtr &Tree : Trees)
2607     ComputeNamedNodes(Tree.get());
2608 }
2609 
2610 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2611   if (!N->getName().empty())
2612     NamedNodes[N->getName()].push_back(N);
2613 
2614   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2615     ComputeNamedNodes(N->getChild(i));
2616 }
2617 
2618 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2619                                                  StringRef OpName) {
2620   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2621     Record *R = DI->getDef();
2622 
2623     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2624     // TreePatternNode of its own.  For example:
2625     ///   (foo GPR, imm) -> (foo GPR, (imm))
2626     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2627       return ParseTreePattern(
2628         DagInit::get(DI, nullptr,
2629                      std::vector<std::pair<Init*, StringInit*> >()),
2630         OpName);
2631 
2632     // Input argument?
2633     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2634     if (R->getName() == "node" && !OpName.empty()) {
2635       if (OpName.empty())
2636         error("'node' argument requires a name to match with operand list");
2637       Args.push_back(OpName);
2638     }
2639 
2640     Res->setName(OpName);
2641     return Res;
2642   }
2643 
2644   // ?:$name or just $name.
2645   if (isa<UnsetInit>(TheInit)) {
2646     if (OpName.empty())
2647       error("'?' argument requires a name to match with operand list");
2648     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2649     Args.push_back(OpName);
2650     Res->setName(OpName);
2651     return Res;
2652   }
2653 
2654   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2655     if (!OpName.empty())
2656       error("Constant int or bit argument should not have a name!");
2657     if (isa<BitInit>(TheInit))
2658       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2659     return std::make_shared<TreePatternNode>(TheInit, 1);
2660   }
2661 
2662   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2663     // Turn this into an IntInit.
2664     Init *II = BI->convertInitializerTo(IntRecTy::get());
2665     if (!II || !isa<IntInit>(II))
2666       error("Bits value must be constants!");
2667     return ParseTreePattern(II, OpName);
2668   }
2669 
2670   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2671   if (!Dag) {
2672     TheInit->print(errs());
2673     error("Pattern has unexpected init kind!");
2674   }
2675   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2676   if (!OpDef) error("Pattern has unexpected operator type!");
2677   Record *Operator = OpDef->getDef();
2678 
2679   if (Operator->isSubClassOf("ValueType")) {
2680     // If the operator is a ValueType, then this must be "type cast" of a leaf
2681     // node.
2682     if (Dag->getNumArgs() != 1)
2683       error("Type cast only takes one operand!");
2684 
2685     TreePatternNodePtr New =
2686         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2687 
2688     // Apply the type cast.
2689     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2690     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2691     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2692 
2693     if (!OpName.empty())
2694       error("ValueType cast should not have a name!");
2695     return New;
2696   }
2697 
2698   // Verify that this is something that makes sense for an operator.
2699   if (!Operator->isSubClassOf("PatFrags") &&
2700       !Operator->isSubClassOf("SDNode") &&
2701       !Operator->isSubClassOf("Instruction") &&
2702       !Operator->isSubClassOf("SDNodeXForm") &&
2703       !Operator->isSubClassOf("Intrinsic") &&
2704       !Operator->isSubClassOf("ComplexPattern") &&
2705       Operator->getName() != "set" &&
2706       Operator->getName() != "implicit")
2707     error("Unrecognized node '" + Operator->getName() + "'!");
2708 
2709   //  Check to see if this is something that is illegal in an input pattern.
2710   if (isInputPattern) {
2711     if (Operator->isSubClassOf("Instruction") ||
2712         Operator->isSubClassOf("SDNodeXForm"))
2713       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2714   } else {
2715     if (Operator->isSubClassOf("Intrinsic"))
2716       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2717 
2718     if (Operator->isSubClassOf("SDNode") &&
2719         Operator->getName() != "imm" &&
2720         Operator->getName() != "fpimm" &&
2721         Operator->getName() != "tglobaltlsaddr" &&
2722         Operator->getName() != "tconstpool" &&
2723         Operator->getName() != "tjumptable" &&
2724         Operator->getName() != "tframeindex" &&
2725         Operator->getName() != "texternalsym" &&
2726         Operator->getName() != "tblockaddress" &&
2727         Operator->getName() != "tglobaladdr" &&
2728         Operator->getName() != "bb" &&
2729         Operator->getName() != "vt" &&
2730         Operator->getName() != "mcsym")
2731       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2732   }
2733 
2734   std::vector<TreePatternNodePtr> Children;
2735 
2736   // Parse all the operands.
2737   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2738     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2739 
2740   // Get the actual number of results before Operator is converted to an intrinsic
2741   // node (which is hard-coded to have either zero or one result).
2742   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2743 
2744   // If the operator is an intrinsic, then this is just syntactic sugar for
2745   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2746   // convert the intrinsic name to a number.
2747   if (Operator->isSubClassOf("Intrinsic")) {
2748     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2749     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2750 
2751     // If this intrinsic returns void, it must have side-effects and thus a
2752     // chain.
2753     if (Int.IS.RetVTs.empty())
2754       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2755     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2756       // Has side-effects, requires chain.
2757       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2758     else // Otherwise, no chain.
2759       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2760 
2761     Children.insert(Children.begin(),
2762                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2763   }
2764 
2765   if (Operator->isSubClassOf("ComplexPattern")) {
2766     for (unsigned i = 0; i < Children.size(); ++i) {
2767       TreePatternNodePtr Child = Children[i];
2768 
2769       if (Child->getName().empty())
2770         error("All arguments to a ComplexPattern must be named");
2771 
2772       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2773       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2774       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2775       auto OperandId = std::make_pair(Operator, i);
2776       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2777       if (PrevOp != ComplexPatternOperands.end()) {
2778         if (PrevOp->getValue() != OperandId)
2779           error("All ComplexPattern operands must appear consistently: "
2780                 "in the same order in just one ComplexPattern instance.");
2781       } else
2782         ComplexPatternOperands[Child->getName()] = OperandId;
2783     }
2784   }
2785 
2786   TreePatternNodePtr Result =
2787       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2788                                         NumResults);
2789   Result->setName(OpName);
2790 
2791   if (Dag->getName()) {
2792     assert(Result->getName().empty());
2793     Result->setName(Dag->getNameStr());
2794   }
2795   return Result;
2796 }
2797 
2798 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2799 /// will never match in favor of something obvious that will.  This is here
2800 /// strictly as a convenience to target authors because it allows them to write
2801 /// more type generic things and have useless type casts fold away.
2802 ///
2803 /// This returns true if any change is made.
2804 static bool SimplifyTree(TreePatternNodePtr &N) {
2805   if (N->isLeaf())
2806     return false;
2807 
2808   // If we have a bitconvert with a resolved type and if the source and
2809   // destination types are the same, then the bitconvert is useless, remove it.
2810   if (N->getOperator()->getName() == "bitconvert" &&
2811       N->getExtType(0).isValueTypeByHwMode(false) &&
2812       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2813       N->getName().empty()) {
2814     N = N->getChildShared(0);
2815     SimplifyTree(N);
2816     return true;
2817   }
2818 
2819   // Walk all children.
2820   bool MadeChange = false;
2821   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2822     TreePatternNodePtr Child = N->getChildShared(i);
2823     MadeChange |= SimplifyTree(Child);
2824     N->setChild(i, std::move(Child));
2825   }
2826   return MadeChange;
2827 }
2828 
2829 
2830 
2831 /// InferAllTypes - Infer/propagate as many types throughout the expression
2832 /// patterns as possible.  Return true if all types are inferred, false
2833 /// otherwise.  Flags an error if a type contradiction is found.
2834 bool TreePattern::
2835 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2836   if (NamedNodes.empty())
2837     ComputeNamedNodes();
2838 
2839   bool MadeChange = true;
2840   while (MadeChange) {
2841     MadeChange = false;
2842     for (TreePatternNodePtr &Tree : Trees) {
2843       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2844       MadeChange |= SimplifyTree(Tree);
2845     }
2846 
2847     // If there are constraints on our named nodes, apply them.
2848     for (auto &Entry : NamedNodes) {
2849       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2850 
2851       // If we have input named node types, propagate their types to the named
2852       // values here.
2853       if (InNamedTypes) {
2854         if (!InNamedTypes->count(Entry.getKey())) {
2855           error("Node '" + std::string(Entry.getKey()) +
2856                 "' in output pattern but not input pattern");
2857           return true;
2858         }
2859 
2860         const SmallVectorImpl<TreePatternNode*> &InNodes =
2861           InNamedTypes->find(Entry.getKey())->second;
2862 
2863         // The input types should be fully resolved by now.
2864         for (TreePatternNode *Node : Nodes) {
2865           // If this node is a register class, and it is the root of the pattern
2866           // then we're mapping something onto an input register.  We allow
2867           // changing the type of the input register in this case.  This allows
2868           // us to match things like:
2869           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2870           if (Node == Trees[0].get() && Node->isLeaf()) {
2871             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2872             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2873                        DI->getDef()->isSubClassOf("RegisterOperand")))
2874               continue;
2875           }
2876 
2877           assert(Node->getNumTypes() == 1 &&
2878                  InNodes[0]->getNumTypes() == 1 &&
2879                  "FIXME: cannot name multiple result nodes yet");
2880           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2881                                              *this);
2882         }
2883       }
2884 
2885       // If there are multiple nodes with the same name, they must all have the
2886       // same type.
2887       if (Entry.second.size() > 1) {
2888         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2889           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2890           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2891                  "FIXME: cannot name multiple result nodes yet");
2892 
2893           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2894           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2895         }
2896       }
2897     }
2898   }
2899 
2900   bool HasUnresolvedTypes = false;
2901   for (const TreePatternNodePtr &Tree : Trees)
2902     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2903   return !HasUnresolvedTypes;
2904 }
2905 
2906 void TreePattern::print(raw_ostream &OS) const {
2907   OS << getRecord()->getName();
2908   if (!Args.empty()) {
2909     OS << "(" << Args[0];
2910     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2911       OS << ", " << Args[i];
2912     OS << ")";
2913   }
2914   OS << ": ";
2915 
2916   if (Trees.size() > 1)
2917     OS << "[\n";
2918   for (const TreePatternNodePtr &Tree : Trees) {
2919     OS << "\t";
2920     Tree->print(OS);
2921     OS << "\n";
2922   }
2923 
2924   if (Trees.size() > 1)
2925     OS << "]\n";
2926 }
2927 
2928 void TreePattern::dump() const { print(errs()); }
2929 
2930 //===----------------------------------------------------------------------===//
2931 // CodeGenDAGPatterns implementation
2932 //
2933 
2934 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2935                                        PatternRewriterFn PatternRewriter)
2936     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2937       PatternRewriter(PatternRewriter) {
2938 
2939   Intrinsics = CodeGenIntrinsicTable(Records, false);
2940   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2941   ParseNodeInfo();
2942   ParseNodeTransforms();
2943   ParseComplexPatterns();
2944   ParsePatternFragments();
2945   ParseDefaultOperands();
2946   ParseInstructions();
2947   ParsePatternFragments(/*OutFrags*/true);
2948   ParsePatterns();
2949 
2950   // Break patterns with parameterized types into a series of patterns,
2951   // where each one has a fixed type and is predicated on the conditions
2952   // of the associated HW mode.
2953   ExpandHwModeBasedTypes();
2954 
2955   // Generate variants.  For example, commutative patterns can match
2956   // multiple ways.  Add them to PatternsToMatch as well.
2957   GenerateVariants();
2958 
2959   // Infer instruction flags.  For example, we can detect loads,
2960   // stores, and side effects in many cases by examining an
2961   // instruction's pattern.
2962   InferInstructionFlags();
2963 
2964   // Verify that instruction flags match the patterns.
2965   VerifyInstructionFlags();
2966 }
2967 
2968 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2969   Record *N = Records.getDef(Name);
2970   if (!N || !N->isSubClassOf("SDNode"))
2971     PrintFatalError("Error getting SDNode '" + Name + "'!");
2972 
2973   return N;
2974 }
2975 
2976 // Parse all of the SDNode definitions for the target, populating SDNodes.
2977 void CodeGenDAGPatterns::ParseNodeInfo() {
2978   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2979   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2980 
2981   while (!Nodes.empty()) {
2982     Record *R = Nodes.back();
2983     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2984     Nodes.pop_back();
2985   }
2986 
2987   // Get the builtin intrinsic nodes.
2988   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2989   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2990   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2991 }
2992 
2993 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2994 /// map, and emit them to the file as functions.
2995 void CodeGenDAGPatterns::ParseNodeTransforms() {
2996   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2997   while (!Xforms.empty()) {
2998     Record *XFormNode = Xforms.back();
2999     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3000     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3001     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3002 
3003     Xforms.pop_back();
3004   }
3005 }
3006 
3007 void CodeGenDAGPatterns::ParseComplexPatterns() {
3008   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3009   while (!AMs.empty()) {
3010     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3011     AMs.pop_back();
3012   }
3013 }
3014 
3015 
3016 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3017 /// file, building up the PatternFragments map.  After we've collected them all,
3018 /// inline fragments together as necessary, so that there are no references left
3019 /// inside a pattern fragment to a pattern fragment.
3020 ///
3021 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3022   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3023 
3024   // First step, parse all of the fragments.
3025   for (Record *Frag : Fragments) {
3026     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3027       continue;
3028 
3029     ListInit *LI = Frag->getValueAsListInit("Fragments");
3030     TreePattern *P =
3031         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
3032              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3033              *this)).get();
3034 
3035     // Validate the argument list, converting it to set, to discard duplicates.
3036     std::vector<std::string> &Args = P->getArgList();
3037     // Copy the args so we can take StringRefs to them.
3038     auto ArgsCopy = Args;
3039     SmallDenseSet<StringRef, 4> OperandsSet;
3040     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3041 
3042     if (OperandsSet.count(""))
3043       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3044 
3045     // Parse the operands list.
3046     DagInit *OpsList = Frag->getValueAsDag("Operands");
3047     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3048     // Special cases: ops == outs == ins. Different names are used to
3049     // improve readability.
3050     if (!OpsOp ||
3051         (OpsOp->getDef()->getName() != "ops" &&
3052          OpsOp->getDef()->getName() != "outs" &&
3053          OpsOp->getDef()->getName() != "ins"))
3054       P->error("Operands list should start with '(ops ... '!");
3055 
3056     // Copy over the arguments.
3057     Args.clear();
3058     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3059       if (!isa<DefInit>(OpsList->getArg(j)) ||
3060           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3061         P->error("Operands list should all be 'node' values.");
3062       if (!OpsList->getArgName(j))
3063         P->error("Operands list should have names for each operand!");
3064       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3065       if (!OperandsSet.count(ArgNameStr))
3066         P->error("'" + ArgNameStr +
3067                  "' does not occur in pattern or was multiply specified!");
3068       OperandsSet.erase(ArgNameStr);
3069       Args.push_back(ArgNameStr);
3070     }
3071 
3072     if (!OperandsSet.empty())
3073       P->error("Operands list does not contain an entry for operand '" +
3074                *OperandsSet.begin() + "'!");
3075 
3076     // If there is a node transformation corresponding to this, keep track of
3077     // it.
3078     Record *Transform = Frag->getValueAsDef("OperandTransform");
3079     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3080       for (auto T : P->getTrees())
3081         T->setTransformFn(Transform);
3082   }
3083 
3084   // Now that we've parsed all of the tree fragments, do a closure on them so
3085   // that there are not references to PatFrags left inside of them.
3086   for (Record *Frag : Fragments) {
3087     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3088       continue;
3089 
3090     TreePattern &ThePat = *PatternFragments[Frag];
3091     ThePat.InlinePatternFragments();
3092 
3093     // Infer as many types as possible.  Don't worry about it if we don't infer
3094     // all of them, some may depend on the inputs of the pattern.  Also, don't
3095     // validate type sets; validation may cause spurious failures e.g. if a
3096     // fragment needs floating-point types but the current target does not have
3097     // any (this is only an error if that fragment is ever used!).
3098     {
3099       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3100       ThePat.InferAllTypes();
3101       ThePat.resetError();
3102     }
3103 
3104     // If debugging, print out the pattern fragment result.
3105     LLVM_DEBUG(ThePat.dump());
3106   }
3107 }
3108 
3109 void CodeGenDAGPatterns::ParseDefaultOperands() {
3110   std::vector<Record*> DefaultOps;
3111   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3112 
3113   // Find some SDNode.
3114   assert(!SDNodes.empty() && "No SDNodes parsed?");
3115   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3116 
3117   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3118     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3119 
3120     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3121     // SomeSDnode so that we can parse this.
3122     std::vector<std::pair<Init*, StringInit*> > Ops;
3123     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3124       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3125                                    DefaultInfo->getArgName(op)));
3126     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3127 
3128     // Create a TreePattern to parse this.
3129     TreePattern P(DefaultOps[i], DI, false, *this);
3130     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3131 
3132     // Copy the operands over into a DAGDefaultOperand.
3133     DAGDefaultOperand DefaultOpInfo;
3134 
3135     const TreePatternNodePtr &T = P.getTree(0);
3136     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3137       TreePatternNodePtr TPN = T->getChildShared(op);
3138       while (TPN->ApplyTypeConstraints(P, false))
3139         /* Resolve all types */;
3140 
3141       if (TPN->ContainsUnresolvedType(P)) {
3142         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3143                         DefaultOps[i]->getName() +
3144                         "' doesn't have a concrete type!");
3145       }
3146       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3147     }
3148 
3149     // Insert it into the DefaultOperands map so we can find it later.
3150     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3151   }
3152 }
3153 
3154 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3155 /// instruction input.  Return true if this is a real use.
3156 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3157                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3158   // No name -> not interesting.
3159   if (Pat->getName().empty()) {
3160     if (Pat->isLeaf()) {
3161       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3162       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3163                  DI->getDef()->isSubClassOf("RegisterOperand")))
3164         I.error("Input " + DI->getDef()->getName() + " must be named!");
3165     }
3166     return false;
3167   }
3168 
3169   Record *Rec;
3170   if (Pat->isLeaf()) {
3171     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3172     if (!DI)
3173       I.error("Input $" + Pat->getName() + " must be an identifier!");
3174     Rec = DI->getDef();
3175   } else {
3176     Rec = Pat->getOperator();
3177   }
3178 
3179   // SRCVALUE nodes are ignored.
3180   if (Rec->getName() == "srcvalue")
3181     return false;
3182 
3183   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3184   if (!Slot) {
3185     Slot = Pat;
3186     return true;
3187   }
3188   Record *SlotRec;
3189   if (Slot->isLeaf()) {
3190     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3191   } else {
3192     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3193     SlotRec = Slot->getOperator();
3194   }
3195 
3196   // Ensure that the inputs agree if we've already seen this input.
3197   if (Rec != SlotRec)
3198     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3199   // Ensure that the types can agree as well.
3200   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3201   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3202   if (Slot->getExtTypes() != Pat->getExtTypes())
3203     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3204   return true;
3205 }
3206 
3207 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3208 /// part of "I", the instruction), computing the set of inputs and outputs of
3209 /// the pattern.  Report errors if we see anything naughty.
3210 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3211     TreePattern &I, TreePatternNodePtr Pat,
3212     std::map<std::string, TreePatternNodePtr> &InstInputs,
3213     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3214         &InstResults,
3215     std::vector<Record *> &InstImpResults) {
3216 
3217   // The instruction pattern still has unresolved fragments.  For *named*
3218   // nodes we must resolve those here.  This may not result in multiple
3219   // alternatives.
3220   if (!Pat->getName().empty()) {
3221     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3222     SrcPattern.InlinePatternFragments();
3223     SrcPattern.InferAllTypes();
3224     Pat = SrcPattern.getOnlyTree();
3225   }
3226 
3227   if (Pat->isLeaf()) {
3228     bool isUse = HandleUse(I, Pat, InstInputs);
3229     if (!isUse && Pat->getTransformFn())
3230       I.error("Cannot specify a transform function for a non-input value!");
3231     return;
3232   }
3233 
3234   if (Pat->getOperator()->getName() == "implicit") {
3235     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3236       TreePatternNode *Dest = Pat->getChild(i);
3237       if (!Dest->isLeaf())
3238         I.error("implicitly defined value should be a register!");
3239 
3240       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3241       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3242         I.error("implicitly defined value should be a register!");
3243       InstImpResults.push_back(Val->getDef());
3244     }
3245     return;
3246   }
3247 
3248   if (Pat->getOperator()->getName() != "set") {
3249     // If this is not a set, verify that the children nodes are not void typed,
3250     // and recurse.
3251     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3252       if (Pat->getChild(i)->getNumTypes() == 0)
3253         I.error("Cannot have void nodes inside of patterns!");
3254       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3255                                   InstResults, InstImpResults);
3256     }
3257 
3258     // If this is a non-leaf node with no children, treat it basically as if
3259     // it were a leaf.  This handles nodes like (imm).
3260     bool isUse = HandleUse(I, Pat, InstInputs);
3261 
3262     if (!isUse && Pat->getTransformFn())
3263       I.error("Cannot specify a transform function for a non-input value!");
3264     return;
3265   }
3266 
3267   // Otherwise, this is a set, validate and collect instruction results.
3268   if (Pat->getNumChildren() == 0)
3269     I.error("set requires operands!");
3270 
3271   if (Pat->getTransformFn())
3272     I.error("Cannot specify a transform function on a set node!");
3273 
3274   // Check the set destinations.
3275   unsigned NumDests = Pat->getNumChildren()-1;
3276   for (unsigned i = 0; i != NumDests; ++i) {
3277     TreePatternNodePtr Dest = Pat->getChildShared(i);
3278     // For set destinations we also must resolve fragments here.
3279     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3280     DestPattern.InlinePatternFragments();
3281     DestPattern.InferAllTypes();
3282     Dest = DestPattern.getOnlyTree();
3283 
3284     if (!Dest->isLeaf())
3285       I.error("set destination should be a register!");
3286 
3287     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3288     if (!Val) {
3289       I.error("set destination should be a register!");
3290       continue;
3291     }
3292 
3293     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3294         Val->getDef()->isSubClassOf("ValueType") ||
3295         Val->getDef()->isSubClassOf("RegisterOperand") ||
3296         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3297       if (Dest->getName().empty())
3298         I.error("set destination must have a name!");
3299       if (InstResults.count(Dest->getName()))
3300         I.error("cannot set '" + Dest->getName() + "' multiple times");
3301       InstResults[Dest->getName()] = Dest;
3302     } else if (Val->getDef()->isSubClassOf("Register")) {
3303       InstImpResults.push_back(Val->getDef());
3304     } else {
3305       I.error("set destination should be a register!");
3306     }
3307   }
3308 
3309   // Verify and collect info from the computation.
3310   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3311                               InstResults, InstImpResults);
3312 }
3313 
3314 //===----------------------------------------------------------------------===//
3315 // Instruction Analysis
3316 //===----------------------------------------------------------------------===//
3317 
3318 class InstAnalyzer {
3319   const CodeGenDAGPatterns &CDP;
3320 public:
3321   bool hasSideEffects;
3322   bool mayStore;
3323   bool mayLoad;
3324   bool isBitcast;
3325   bool isVariadic;
3326   bool hasChain;
3327 
3328   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3329     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3330       isBitcast(false), isVariadic(false), hasChain(false) {}
3331 
3332   void Analyze(const PatternToMatch &Pat) {
3333     const TreePatternNode *N = Pat.getSrcPattern();
3334     AnalyzeNode(N);
3335     // These properties are detected only on the root node.
3336     isBitcast = IsNodeBitcast(N);
3337   }
3338 
3339 private:
3340   bool IsNodeBitcast(const TreePatternNode *N) const {
3341     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3342       return false;
3343 
3344     if (N->isLeaf())
3345       return false;
3346     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3347       return false;
3348 
3349     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3350     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3351       return false;
3352     return OpInfo.getEnumName() == "ISD::BITCAST";
3353   }
3354 
3355 public:
3356   void AnalyzeNode(const TreePatternNode *N) {
3357     if (N->isLeaf()) {
3358       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3359         Record *LeafRec = DI->getDef();
3360         // Handle ComplexPattern leaves.
3361         if (LeafRec->isSubClassOf("ComplexPattern")) {
3362           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3363           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3364           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3365           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3366         }
3367       }
3368       return;
3369     }
3370 
3371     // Analyze children.
3372     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3373       AnalyzeNode(N->getChild(i));
3374 
3375     // Notice properties of the node.
3376     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3377     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3378     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3379     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3380     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3381 
3382     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3383       // If this is an intrinsic, analyze it.
3384       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3385         mayLoad = true;// These may load memory.
3386 
3387       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3388         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3389 
3390       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3391           IntInfo->hasSideEffects)
3392         // ReadWriteMem intrinsics can have other strange effects.
3393         hasSideEffects = true;
3394     }
3395   }
3396 
3397 };
3398 
3399 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3400                              const InstAnalyzer &PatInfo,
3401                              Record *PatDef) {
3402   bool Error = false;
3403 
3404   // Remember where InstInfo got its flags.
3405   if (InstInfo.hasUndefFlags())
3406       InstInfo.InferredFrom = PatDef;
3407 
3408   // Check explicitly set flags for consistency.
3409   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3410       !InstInfo.hasSideEffects_Unset) {
3411     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3412     // the pattern has no side effects. That could be useful for div/rem
3413     // instructions that may trap.
3414     if (!InstInfo.hasSideEffects) {
3415       Error = true;
3416       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3417                  Twine(InstInfo.hasSideEffects));
3418     }
3419   }
3420 
3421   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3422     Error = true;
3423     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3424                Twine(InstInfo.mayStore));
3425   }
3426 
3427   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3428     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3429     // Some targets translate immediates to loads.
3430     if (!InstInfo.mayLoad) {
3431       Error = true;
3432       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3433                  Twine(InstInfo.mayLoad));
3434     }
3435   }
3436 
3437   // Transfer inferred flags.
3438   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3439   InstInfo.mayStore |= PatInfo.mayStore;
3440   InstInfo.mayLoad |= PatInfo.mayLoad;
3441 
3442   // These flags are silently added without any verification.
3443   // FIXME: To match historical behavior of TableGen, for now add those flags
3444   // only when we're inferring from the primary instruction pattern.
3445   if (PatDef->isSubClassOf("Instruction")) {
3446     InstInfo.isBitcast |= PatInfo.isBitcast;
3447     InstInfo.hasChain |= PatInfo.hasChain;
3448     InstInfo.hasChain_Inferred = true;
3449   }
3450 
3451   // Don't infer isVariadic. This flag means something different on SDNodes and
3452   // instructions. For example, a CALL SDNode is variadic because it has the
3453   // call arguments as operands, but a CALL instruction is not variadic - it
3454   // has argument registers as implicit, not explicit uses.
3455 
3456   return Error;
3457 }
3458 
3459 /// hasNullFragReference - Return true if the DAG has any reference to the
3460 /// null_frag operator.
3461 static bool hasNullFragReference(DagInit *DI) {
3462   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3463   if (!OpDef) return false;
3464   Record *Operator = OpDef->getDef();
3465 
3466   // If this is the null fragment, return true.
3467   if (Operator->getName() == "null_frag") return true;
3468   // If any of the arguments reference the null fragment, return true.
3469   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3470     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3471     if (Arg && hasNullFragReference(Arg))
3472       return true;
3473   }
3474 
3475   return false;
3476 }
3477 
3478 /// hasNullFragReference - Return true if any DAG in the list references
3479 /// the null_frag operator.
3480 static bool hasNullFragReference(ListInit *LI) {
3481   for (Init *I : LI->getValues()) {
3482     DagInit *DI = dyn_cast<DagInit>(I);
3483     assert(DI && "non-dag in an instruction Pattern list?!");
3484     if (hasNullFragReference(DI))
3485       return true;
3486   }
3487   return false;
3488 }
3489 
3490 /// Get all the instructions in a tree.
3491 static void
3492 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3493   if (Tree->isLeaf())
3494     return;
3495   if (Tree->getOperator()->isSubClassOf("Instruction"))
3496     Instrs.push_back(Tree->getOperator());
3497   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3498     getInstructionsInTree(Tree->getChild(i), Instrs);
3499 }
3500 
3501 /// Check the class of a pattern leaf node against the instruction operand it
3502 /// represents.
3503 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3504                               Record *Leaf) {
3505   if (OI.Rec == Leaf)
3506     return true;
3507 
3508   // Allow direct value types to be used in instruction set patterns.
3509   // The type will be checked later.
3510   if (Leaf->isSubClassOf("ValueType"))
3511     return true;
3512 
3513   // Patterns can also be ComplexPattern instances.
3514   if (Leaf->isSubClassOf("ComplexPattern"))
3515     return true;
3516 
3517   return false;
3518 }
3519 
3520 void CodeGenDAGPatterns::parseInstructionPattern(
3521     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3522 
3523   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3524 
3525   // Parse the instruction.
3526   TreePattern I(CGI.TheDef, Pat, true, *this);
3527 
3528   // InstInputs - Keep track of all of the inputs of the instruction, along
3529   // with the record they are declared as.
3530   std::map<std::string, TreePatternNodePtr> InstInputs;
3531 
3532   // InstResults - Keep track of all the virtual registers that are 'set'
3533   // in the instruction, including what reg class they are.
3534   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3535       InstResults;
3536 
3537   std::vector<Record*> InstImpResults;
3538 
3539   // Verify that the top-level forms in the instruction are of void type, and
3540   // fill in the InstResults map.
3541   SmallString<32> TypesString;
3542   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3543     TypesString.clear();
3544     TreePatternNodePtr Pat = I.getTree(j);
3545     if (Pat->getNumTypes() != 0) {
3546       raw_svector_ostream OS(TypesString);
3547       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3548         if (k > 0)
3549           OS << ", ";
3550         Pat->getExtType(k).writeToStream(OS);
3551       }
3552       I.error("Top-level forms in instruction pattern should have"
3553                " void types, has types " +
3554                OS.str());
3555     }
3556 
3557     // Find inputs and outputs, and verify the structure of the uses/defs.
3558     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3559                                 InstImpResults);
3560   }
3561 
3562   // Now that we have inputs and outputs of the pattern, inspect the operands
3563   // list for the instruction.  This determines the order that operands are
3564   // added to the machine instruction the node corresponds to.
3565   unsigned NumResults = InstResults.size();
3566 
3567   // Parse the operands list from the (ops) list, validating it.
3568   assert(I.getArgList().empty() && "Args list should still be empty here!");
3569 
3570   // Check that all of the results occur first in the list.
3571   std::vector<Record*> Results;
3572   std::vector<unsigned> ResultIndices;
3573   SmallVector<TreePatternNodePtr, 2> ResNodes;
3574   for (unsigned i = 0; i != NumResults; ++i) {
3575     if (i == CGI.Operands.size()) {
3576       const std::string &OpName =
3577           std::find_if(InstResults.begin(), InstResults.end(),
3578                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3579                          return P.second;
3580                        })
3581               ->first;
3582 
3583       I.error("'" + OpName + "' set but does not appear in operand list!");
3584     }
3585 
3586     const std::string &OpName = CGI.Operands[i].Name;
3587 
3588     // Check that it exists in InstResults.
3589     auto InstResultIter = InstResults.find(OpName);
3590     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3591       I.error("Operand $" + OpName + " does not exist in operand list!");
3592 
3593     TreePatternNodePtr RNode = InstResultIter->second;
3594     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3595     ResNodes.push_back(std::move(RNode));
3596     if (!R)
3597       I.error("Operand $" + OpName + " should be a set destination: all "
3598                "outputs must occur before inputs in operand list!");
3599 
3600     if (!checkOperandClass(CGI.Operands[i], R))
3601       I.error("Operand $" + OpName + " class mismatch!");
3602 
3603     // Remember the return type.
3604     Results.push_back(CGI.Operands[i].Rec);
3605 
3606     // Remember the result index.
3607     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3608 
3609     // Okay, this one checks out.
3610     InstResultIter->second = nullptr;
3611   }
3612 
3613   // Loop over the inputs next.
3614   std::vector<TreePatternNodePtr> ResultNodeOperands;
3615   std::vector<Record*> Operands;
3616   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3617     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3618     const std::string &OpName = Op.Name;
3619     if (OpName.empty())
3620       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3621 
3622     if (!InstInputs.count(OpName)) {
3623       // If this is an operand with a DefaultOps set filled in, we can ignore
3624       // this.  When we codegen it, we will do so as always executed.
3625       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3626         // Does it have a non-empty DefaultOps field?  If so, ignore this
3627         // operand.
3628         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3629           continue;
3630       }
3631       I.error("Operand $" + OpName +
3632                " does not appear in the instruction pattern");
3633     }
3634     TreePatternNodePtr InVal = InstInputs[OpName];
3635     InstInputs.erase(OpName);   // It occurred, remove from map.
3636 
3637     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3638       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3639       if (!checkOperandClass(Op, InRec))
3640         I.error("Operand $" + OpName + "'s register class disagrees"
3641                  " between the operand and pattern");
3642     }
3643     Operands.push_back(Op.Rec);
3644 
3645     // Construct the result for the dest-pattern operand list.
3646     TreePatternNodePtr OpNode = InVal->clone();
3647 
3648     // No predicate is useful on the result.
3649     OpNode->clearPredicateCalls();
3650 
3651     // Promote the xform function to be an explicit node if set.
3652     if (Record *Xform = OpNode->getTransformFn()) {
3653       OpNode->setTransformFn(nullptr);
3654       std::vector<TreePatternNodePtr> Children;
3655       Children.push_back(OpNode);
3656       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3657                                                  OpNode->getNumTypes());
3658     }
3659 
3660     ResultNodeOperands.push_back(std::move(OpNode));
3661   }
3662 
3663   if (!InstInputs.empty())
3664     I.error("Input operand $" + InstInputs.begin()->first +
3665             " occurs in pattern but not in operands list!");
3666 
3667   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3668       I.getRecord(), std::move(ResultNodeOperands),
3669       GetNumNodeResults(I.getRecord(), *this));
3670   // Copy fully inferred output node types to instruction result pattern.
3671   for (unsigned i = 0; i != NumResults; ++i) {
3672     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3673     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3674     ResultPattern->setResultIndex(i, ResultIndices[i]);
3675   }
3676 
3677   // FIXME: Assume only the first tree is the pattern. The others are clobber
3678   // nodes.
3679   TreePatternNodePtr Pattern = I.getTree(0);
3680   TreePatternNodePtr SrcPattern;
3681   if (Pattern->getOperator()->getName() == "set") {
3682     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3683   } else{
3684     // Not a set (store or something?)
3685     SrcPattern = Pattern;
3686   }
3687 
3688   // Create and insert the instruction.
3689   // FIXME: InstImpResults should not be part of DAGInstruction.
3690   Record *R = I.getRecord();
3691   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3692                    std::forward_as_tuple(Results, Operands, InstImpResults,
3693                                          SrcPattern, ResultPattern));
3694 
3695   LLVM_DEBUG(I.dump());
3696 }
3697 
3698 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3699 /// any fragments involved.  This populates the Instructions list with fully
3700 /// resolved instructions.
3701 void CodeGenDAGPatterns::ParseInstructions() {
3702   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3703 
3704   for (Record *Instr : Instrs) {
3705     ListInit *LI = nullptr;
3706 
3707     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3708       LI = Instr->getValueAsListInit("Pattern");
3709 
3710     // If there is no pattern, only collect minimal information about the
3711     // instruction for its operand list.  We have to assume that there is one
3712     // result, as we have no detailed info. A pattern which references the
3713     // null_frag operator is as-if no pattern were specified. Normally this
3714     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3715     // null_frag.
3716     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3717       std::vector<Record*> Results;
3718       std::vector<Record*> Operands;
3719 
3720       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3721 
3722       if (InstInfo.Operands.size() != 0) {
3723         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3724           Results.push_back(InstInfo.Operands[j].Rec);
3725 
3726         // The rest are inputs.
3727         for (unsigned j = InstInfo.Operands.NumDefs,
3728                e = InstInfo.Operands.size(); j < e; ++j)
3729           Operands.push_back(InstInfo.Operands[j].Rec);
3730       }
3731 
3732       // Create and insert the instruction.
3733       std::vector<Record*> ImpResults;
3734       Instructions.insert(std::make_pair(Instr,
3735                             DAGInstruction(Results, Operands, ImpResults)));
3736       continue;  // no pattern.
3737     }
3738 
3739     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3740     parseInstructionPattern(CGI, LI, Instructions);
3741   }
3742 
3743   // If we can, convert the instructions to be patterns that are matched!
3744   for (auto &Entry : Instructions) {
3745     Record *Instr = Entry.first;
3746     DAGInstruction &TheInst = Entry.second;
3747     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3748     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3749 
3750     if (SrcPattern && ResultPattern) {
3751       TreePattern Pattern(Instr, SrcPattern, true, *this);
3752       TreePattern Result(Instr, ResultPattern, false, *this);
3753       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3754     }
3755   }
3756 }
3757 
3758 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3759 
3760 static void FindNames(TreePatternNode *P,
3761                       std::map<std::string, NameRecord> &Names,
3762                       TreePattern *PatternTop) {
3763   if (!P->getName().empty()) {
3764     NameRecord &Rec = Names[P->getName()];
3765     // If this is the first instance of the name, remember the node.
3766     if (Rec.second++ == 0)
3767       Rec.first = P;
3768     else if (Rec.first->getExtTypes() != P->getExtTypes())
3769       PatternTop->error("repetition of value: $" + P->getName() +
3770                         " where different uses have different types!");
3771   }
3772 
3773   if (!P->isLeaf()) {
3774     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3775       FindNames(P->getChild(i), Names, PatternTop);
3776   }
3777 }
3778 
3779 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3780   std::vector<Predicate> Preds;
3781   for (Init *I : L->getValues()) {
3782     if (DefInit *Pred = dyn_cast<DefInit>(I))
3783       Preds.push_back(Pred->getDef());
3784     else
3785       llvm_unreachable("Non-def on the list");
3786   }
3787 
3788   // Sort so that different orders get canonicalized to the same string.
3789   llvm::sort(Preds);
3790   return Preds;
3791 }
3792 
3793 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3794                                            PatternToMatch &&PTM) {
3795   // Do some sanity checking on the pattern we're about to match.
3796   std::string Reason;
3797   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3798     PrintWarning(Pattern->getRecord()->getLoc(),
3799       Twine("Pattern can never match: ") + Reason);
3800     return;
3801   }
3802 
3803   // If the source pattern's root is a complex pattern, that complex pattern
3804   // must specify the nodes it can potentially match.
3805   if (const ComplexPattern *CP =
3806         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3807     if (CP->getRootNodes().empty())
3808       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3809                      " could match");
3810 
3811 
3812   // Find all of the named values in the input and output, ensure they have the
3813   // same type.
3814   std::map<std::string, NameRecord> SrcNames, DstNames;
3815   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3816   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3817 
3818   // Scan all of the named values in the destination pattern, rejecting them if
3819   // they don't exist in the input pattern.
3820   for (const auto &Entry : DstNames) {
3821     if (SrcNames[Entry.first].first == nullptr)
3822       Pattern->error("Pattern has input without matching name in output: $" +
3823                      Entry.first);
3824   }
3825 
3826   // Scan all of the named values in the source pattern, rejecting them if the
3827   // name isn't used in the dest, and isn't used to tie two values together.
3828   for (const auto &Entry : SrcNames)
3829     if (DstNames[Entry.first].first == nullptr &&
3830         SrcNames[Entry.first].second == 1)
3831       Pattern->error("Pattern has dead named input: $" + Entry.first);
3832 
3833   PatternsToMatch.push_back(PTM);
3834 }
3835 
3836 void CodeGenDAGPatterns::InferInstructionFlags() {
3837   ArrayRef<const CodeGenInstruction*> Instructions =
3838     Target.getInstructionsByEnumValue();
3839 
3840   unsigned Errors = 0;
3841 
3842   // Try to infer flags from all patterns in PatternToMatch.  These include
3843   // both the primary instruction patterns (which always come first) and
3844   // patterns defined outside the instruction.
3845   for (const PatternToMatch &PTM : ptms()) {
3846     // We can only infer from single-instruction patterns, otherwise we won't
3847     // know which instruction should get the flags.
3848     SmallVector<Record*, 8> PatInstrs;
3849     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3850     if (PatInstrs.size() != 1)
3851       continue;
3852 
3853     // Get the single instruction.
3854     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3855 
3856     // Only infer properties from the first pattern. We'll verify the others.
3857     if (InstInfo.InferredFrom)
3858       continue;
3859 
3860     InstAnalyzer PatInfo(*this);
3861     PatInfo.Analyze(PTM);
3862     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3863   }
3864 
3865   if (Errors)
3866     PrintFatalError("pattern conflicts");
3867 
3868   // If requested by the target, guess any undefined properties.
3869   if (Target.guessInstructionProperties()) {
3870     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3871       CodeGenInstruction *InstInfo =
3872         const_cast<CodeGenInstruction *>(Instructions[i]);
3873       if (InstInfo->InferredFrom)
3874         continue;
3875       // The mayLoad and mayStore flags default to false.
3876       // Conservatively assume hasSideEffects if it wasn't explicit.
3877       if (InstInfo->hasSideEffects_Unset)
3878         InstInfo->hasSideEffects = true;
3879     }
3880     return;
3881   }
3882 
3883   // Complain about any flags that are still undefined.
3884   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3885     CodeGenInstruction *InstInfo =
3886       const_cast<CodeGenInstruction *>(Instructions[i]);
3887     if (InstInfo->InferredFrom)
3888       continue;
3889     if (InstInfo->hasSideEffects_Unset)
3890       PrintError(InstInfo->TheDef->getLoc(),
3891                  "Can't infer hasSideEffects from patterns");
3892     if (InstInfo->mayStore_Unset)
3893       PrintError(InstInfo->TheDef->getLoc(),
3894                  "Can't infer mayStore from patterns");
3895     if (InstInfo->mayLoad_Unset)
3896       PrintError(InstInfo->TheDef->getLoc(),
3897                  "Can't infer mayLoad from patterns");
3898   }
3899 }
3900 
3901 
3902 /// Verify instruction flags against pattern node properties.
3903 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3904   unsigned Errors = 0;
3905   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3906     const PatternToMatch &PTM = *I;
3907     SmallVector<Record*, 8> Instrs;
3908     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3909     if (Instrs.empty())
3910       continue;
3911 
3912     // Count the number of instructions with each flag set.
3913     unsigned NumSideEffects = 0;
3914     unsigned NumStores = 0;
3915     unsigned NumLoads = 0;
3916     for (const Record *Instr : Instrs) {
3917       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3918       NumSideEffects += InstInfo.hasSideEffects;
3919       NumStores += InstInfo.mayStore;
3920       NumLoads += InstInfo.mayLoad;
3921     }
3922 
3923     // Analyze the source pattern.
3924     InstAnalyzer PatInfo(*this);
3925     PatInfo.Analyze(PTM);
3926 
3927     // Collect error messages.
3928     SmallVector<std::string, 4> Msgs;
3929 
3930     // Check for missing flags in the output.
3931     // Permit extra flags for now at least.
3932     if (PatInfo.hasSideEffects && !NumSideEffects)
3933       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3934 
3935     // Don't verify store flags on instructions with side effects. At least for
3936     // intrinsics, side effects implies mayStore.
3937     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3938       Msgs.push_back("pattern may store, but mayStore isn't set");
3939 
3940     // Similarly, mayStore implies mayLoad on intrinsics.
3941     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3942       Msgs.push_back("pattern may load, but mayLoad isn't set");
3943 
3944     // Print error messages.
3945     if (Msgs.empty())
3946       continue;
3947     ++Errors;
3948 
3949     for (const std::string &Msg : Msgs)
3950       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3951                  (Instrs.size() == 1 ?
3952                   "instruction" : "output instructions"));
3953     // Provide the location of the relevant instruction definitions.
3954     for (const Record *Instr : Instrs) {
3955       if (Instr != PTM.getSrcRecord())
3956         PrintError(Instr->getLoc(), "defined here");
3957       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3958       if (InstInfo.InferredFrom &&
3959           InstInfo.InferredFrom != InstInfo.TheDef &&
3960           InstInfo.InferredFrom != PTM.getSrcRecord())
3961         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3962     }
3963   }
3964   if (Errors)
3965     PrintFatalError("Errors in DAG patterns");
3966 }
3967 
3968 /// Given a pattern result with an unresolved type, see if we can find one
3969 /// instruction with an unresolved result type.  Force this result type to an
3970 /// arbitrary element if it's possible types to converge results.
3971 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3972   if (N->isLeaf())
3973     return false;
3974 
3975   // Analyze children.
3976   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3977     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3978       return true;
3979 
3980   if (!N->getOperator()->isSubClassOf("Instruction"))
3981     return false;
3982 
3983   // If this type is already concrete or completely unknown we can't do
3984   // anything.
3985   TypeInfer &TI = TP.getInfer();
3986   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3987     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3988       continue;
3989 
3990     // Otherwise, force its type to an arbitrary choice.
3991     if (TI.forceArbitrary(N->getExtType(i)))
3992       return true;
3993   }
3994 
3995   return false;
3996 }
3997 
3998 // Promote xform function to be an explicit node wherever set.
3999 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4000   if (Record *Xform = N->getTransformFn()) {
4001       N->setTransformFn(nullptr);
4002       std::vector<TreePatternNodePtr> Children;
4003       Children.push_back(PromoteXForms(N));
4004       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4005                                                N->getNumTypes());
4006   }
4007 
4008   if (!N->isLeaf())
4009     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4010       TreePatternNodePtr Child = N->getChildShared(i);
4011       N->setChild(i, PromoteXForms(Child));
4012     }
4013   return N;
4014 }
4015 
4016 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4017        TreePattern &Pattern, TreePattern &Result,
4018        const std::vector<Record *> &InstImpResults) {
4019 
4020   // Inline pattern fragments and expand multiple alternatives.
4021   Pattern.InlinePatternFragments();
4022   Result.InlinePatternFragments();
4023 
4024   if (Result.getNumTrees() != 1)
4025     Result.error("Cannot use multi-alternative fragments in result pattern!");
4026 
4027   // Infer types.
4028   bool IterateInference;
4029   bool InferredAllPatternTypes, InferredAllResultTypes;
4030   do {
4031     // Infer as many types as possible.  If we cannot infer all of them, we
4032     // can never do anything with this pattern: report it to the user.
4033     InferredAllPatternTypes =
4034         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4035 
4036     // Infer as many types as possible.  If we cannot infer all of them, we
4037     // can never do anything with this pattern: report it to the user.
4038     InferredAllResultTypes =
4039         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4040 
4041     IterateInference = false;
4042 
4043     // Apply the type of the result to the source pattern.  This helps us
4044     // resolve cases where the input type is known to be a pointer type (which
4045     // is considered resolved), but the result knows it needs to be 32- or
4046     // 64-bits.  Infer the other way for good measure.
4047     for (auto T : Pattern.getTrees())
4048       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4049                                         T->getNumTypes());
4050          i != e; ++i) {
4051         IterateInference |= T->UpdateNodeType(
4052             i, Result.getOnlyTree()->getExtType(i), Result);
4053         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4054             i, T->getExtType(i), Result);
4055       }
4056 
4057     // If our iteration has converged and the input pattern's types are fully
4058     // resolved but the result pattern is not fully resolved, we may have a
4059     // situation where we have two instructions in the result pattern and
4060     // the instructions require a common register class, but don't care about
4061     // what actual MVT is used.  This is actually a bug in our modelling:
4062     // output patterns should have register classes, not MVTs.
4063     //
4064     // In any case, to handle this, we just go through and disambiguate some
4065     // arbitrary types to the result pattern's nodes.
4066     if (!IterateInference && InferredAllPatternTypes &&
4067         !InferredAllResultTypes)
4068       IterateInference =
4069           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4070   } while (IterateInference);
4071 
4072   // Verify that we inferred enough types that we can do something with the
4073   // pattern and result.  If these fire the user has to add type casts.
4074   if (!InferredAllPatternTypes)
4075     Pattern.error("Could not infer all types in pattern!");
4076   if (!InferredAllResultTypes) {
4077     Pattern.dump();
4078     Result.error("Could not infer all types in pattern result!");
4079   }
4080 
4081   // Promote xform function to be an explicit node wherever set.
4082   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4083 
4084   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4085   Temp.InferAllTypes();
4086 
4087   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4088   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4089 
4090   if (PatternRewriter)
4091     PatternRewriter(&Pattern);
4092 
4093   // A pattern may end up with an "impossible" type, i.e. a situation
4094   // where all types have been eliminated for some node in this pattern.
4095   // This could occur for intrinsics that only make sense for a specific
4096   // value type, and use a specific register class. If, for some mode,
4097   // that register class does not accept that type, the type inference
4098   // will lead to a contradiction, which is not an error however, but
4099   // a sign that this pattern will simply never match.
4100   if (Temp.getOnlyTree()->hasPossibleType())
4101     for (auto T : Pattern.getTrees())
4102       if (T->hasPossibleType())
4103         AddPatternToMatch(&Pattern,
4104                           PatternToMatch(TheDef, makePredList(Preds),
4105                                          T, Temp.getOnlyTree(),
4106                                          InstImpResults, Complexity,
4107                                          TheDef->getID()));
4108 }
4109 
4110 void CodeGenDAGPatterns::ParsePatterns() {
4111   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4112 
4113   for (Record *CurPattern : Patterns) {
4114     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4115 
4116     // If the pattern references the null_frag, there's nothing to do.
4117     if (hasNullFragReference(Tree))
4118       continue;
4119 
4120     TreePattern Pattern(CurPattern, Tree, true, *this);
4121 
4122     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4123     if (LI->empty()) continue;  // no pattern.
4124 
4125     // Parse the instruction.
4126     TreePattern Result(CurPattern, LI, false, *this);
4127 
4128     if (Result.getNumTrees() != 1)
4129       Result.error("Cannot handle instructions producing instructions "
4130                    "with temporaries yet!");
4131 
4132     // Validate that the input pattern is correct.
4133     std::map<std::string, TreePatternNodePtr> InstInputs;
4134     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4135         InstResults;
4136     std::vector<Record*> InstImpResults;
4137     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4138       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4139                                   InstResults, InstImpResults);
4140 
4141     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4142   }
4143 }
4144 
4145 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4146   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4147     for (const auto &I : VTS)
4148       Modes.insert(I.first);
4149 
4150   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4151     collectModes(Modes, N->getChild(i));
4152 }
4153 
4154 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4155   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4156   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4157   std::vector<PatternToMatch> Copy = PatternsToMatch;
4158   PatternsToMatch.clear();
4159 
4160   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4161     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4162     TreePatternNodePtr NewDst = P.DstPattern->clone();
4163     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4164       return;
4165     }
4166 
4167     std::vector<Predicate> Preds = P.Predicates;
4168     const std::vector<Predicate> &MC = ModeChecks[Mode];
4169     Preds.insert(Preds.end(), MC.begin(), MC.end());
4170     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4171                                  std::move(NewDst), P.getDstRegs(),
4172                                  P.getAddedComplexity(), Record::getNewUID(),
4173                                  Mode);
4174   };
4175 
4176   for (PatternToMatch &P : Copy) {
4177     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4178     if (P.SrcPattern->hasProperTypeByHwMode())
4179       SrcP = P.SrcPattern;
4180     if (P.DstPattern->hasProperTypeByHwMode())
4181       DstP = P.DstPattern;
4182     if (!SrcP && !DstP) {
4183       PatternsToMatch.push_back(P);
4184       continue;
4185     }
4186 
4187     std::set<unsigned> Modes;
4188     if (SrcP)
4189       collectModes(Modes, SrcP.get());
4190     if (DstP)
4191       collectModes(Modes, DstP.get());
4192 
4193     // The predicate for the default mode needs to be constructed for each
4194     // pattern separately.
4195     // Since not all modes must be present in each pattern, if a mode m is
4196     // absent, then there is no point in constructing a check for m. If such
4197     // a check was created, it would be equivalent to checking the default
4198     // mode, except not all modes' predicates would be a part of the checking
4199     // code. The subsequently generated check for the default mode would then
4200     // have the exact same patterns, but a different predicate code. To avoid
4201     // duplicated patterns with different predicate checks, construct the
4202     // default check as a negation of all predicates that are actually present
4203     // in the source/destination patterns.
4204     std::vector<Predicate> DefaultPred;
4205 
4206     for (unsigned M : Modes) {
4207       if (M == DefaultMode)
4208         continue;
4209       if (ModeChecks.find(M) != ModeChecks.end())
4210         continue;
4211 
4212       // Fill the map entry for this mode.
4213       const HwMode &HM = CGH.getMode(M);
4214       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4215 
4216       // Add negations of the HM's predicates to the default predicate.
4217       DefaultPred.emplace_back(Predicate(HM.Features, false));
4218     }
4219 
4220     for (unsigned M : Modes) {
4221       if (M == DefaultMode)
4222         continue;
4223       AppendPattern(P, M);
4224     }
4225 
4226     bool HasDefault = Modes.count(DefaultMode);
4227     if (HasDefault)
4228       AppendPattern(P, DefaultMode);
4229   }
4230 }
4231 
4232 /// Dependent variable map for CodeGenDAGPattern variant generation
4233 typedef StringMap<int> DepVarMap;
4234 
4235 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4236   if (N->isLeaf()) {
4237     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4238       DepMap[N->getName()]++;
4239   } else {
4240     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4241       FindDepVarsOf(N->getChild(i), DepMap);
4242   }
4243 }
4244 
4245 /// Find dependent variables within child patterns
4246 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4247   DepVarMap depcounts;
4248   FindDepVarsOf(N, depcounts);
4249   for (const auto &Pair : depcounts) {
4250     if (Pair.getValue() > 1)
4251       DepVars.insert(Pair.getKey());
4252   }
4253 }
4254 
4255 #ifndef NDEBUG
4256 /// Dump the dependent variable set:
4257 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4258   if (DepVars.empty()) {
4259     LLVM_DEBUG(errs() << "<empty set>");
4260   } else {
4261     LLVM_DEBUG(errs() << "[ ");
4262     for (const auto &DepVar : DepVars) {
4263       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4264     }
4265     LLVM_DEBUG(errs() << "]");
4266   }
4267 }
4268 #endif
4269 
4270 
4271 /// CombineChildVariants - Given a bunch of permutations of each child of the
4272 /// 'operator' node, put them together in all possible ways.
4273 static void CombineChildVariants(
4274     TreePatternNodePtr Orig,
4275     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4276     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4277     const MultipleUseVarSet &DepVars) {
4278   // Make sure that each operand has at least one variant to choose from.
4279   for (const auto &Variants : ChildVariants)
4280     if (Variants.empty())
4281       return;
4282 
4283   // The end result is an all-pairs construction of the resultant pattern.
4284   std::vector<unsigned> Idxs;
4285   Idxs.resize(ChildVariants.size());
4286   bool NotDone;
4287   do {
4288 #ifndef NDEBUG
4289     LLVM_DEBUG(if (!Idxs.empty()) {
4290       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4291       for (unsigned Idx : Idxs) {
4292         errs() << Idx << " ";
4293       }
4294       errs() << "]\n";
4295     });
4296 #endif
4297     // Create the variant and add it to the output list.
4298     std::vector<TreePatternNodePtr> NewChildren;
4299     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4300       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4301     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4302         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4303 
4304     // Copy over properties.
4305     R->setName(Orig->getName());
4306     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4307     R->setPredicateCalls(Orig->getPredicateCalls());
4308     R->setTransformFn(Orig->getTransformFn());
4309     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4310       R->setType(i, Orig->getExtType(i));
4311 
4312     // If this pattern cannot match, do not include it as a variant.
4313     std::string ErrString;
4314     // Scan to see if this pattern has already been emitted.  We can get
4315     // duplication due to things like commuting:
4316     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4317     // which are the same pattern.  Ignore the dups.
4318     if (R->canPatternMatch(ErrString, CDP) &&
4319         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4320           return R->isIsomorphicTo(Variant.get(), DepVars);
4321         }))
4322       OutVariants.push_back(R);
4323 
4324     // Increment indices to the next permutation by incrementing the
4325     // indices from last index backward, e.g., generate the sequence
4326     // [0, 0], [0, 1], [1, 0], [1, 1].
4327     int IdxsIdx;
4328     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4329       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4330         Idxs[IdxsIdx] = 0;
4331       else
4332         break;
4333     }
4334     NotDone = (IdxsIdx >= 0);
4335   } while (NotDone);
4336 }
4337 
4338 /// CombineChildVariants - A helper function for binary operators.
4339 ///
4340 static void CombineChildVariants(TreePatternNodePtr Orig,
4341                                  const std::vector<TreePatternNodePtr> &LHS,
4342                                  const std::vector<TreePatternNodePtr> &RHS,
4343                                  std::vector<TreePatternNodePtr> &OutVariants,
4344                                  CodeGenDAGPatterns &CDP,
4345                                  const MultipleUseVarSet &DepVars) {
4346   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4347   ChildVariants.push_back(LHS);
4348   ChildVariants.push_back(RHS);
4349   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4350 }
4351 
4352 static void
4353 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4354                                   std::vector<TreePatternNodePtr> &Children) {
4355   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4356   Record *Operator = N->getOperator();
4357 
4358   // Only permit raw nodes.
4359   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4360       N->getTransformFn()) {
4361     Children.push_back(N);
4362     return;
4363   }
4364 
4365   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4366     Children.push_back(N->getChildShared(0));
4367   else
4368     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4369 
4370   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4371     Children.push_back(N->getChildShared(1));
4372   else
4373     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4374 }
4375 
4376 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4377 /// the (potentially recursive) pattern by using algebraic laws.
4378 ///
4379 static void GenerateVariantsOf(TreePatternNodePtr N,
4380                                std::vector<TreePatternNodePtr> &OutVariants,
4381                                CodeGenDAGPatterns &CDP,
4382                                const MultipleUseVarSet &DepVars) {
4383   // We cannot permute leaves or ComplexPattern uses.
4384   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4385     OutVariants.push_back(N);
4386     return;
4387   }
4388 
4389   // Look up interesting info about the node.
4390   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4391 
4392   // If this node is associative, re-associate.
4393   if (NodeInfo.hasProperty(SDNPAssociative)) {
4394     // Re-associate by pulling together all of the linked operators
4395     std::vector<TreePatternNodePtr> MaximalChildren;
4396     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4397 
4398     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4399     // permutations.
4400     if (MaximalChildren.size() == 3) {
4401       // Find the variants of all of our maximal children.
4402       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4403       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4404       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4405       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4406 
4407       // There are only two ways we can permute the tree:
4408       //   (A op B) op C    and    A op (B op C)
4409       // Within these forms, we can also permute A/B/C.
4410 
4411       // Generate legal pair permutations of A/B/C.
4412       std::vector<TreePatternNodePtr> ABVariants;
4413       std::vector<TreePatternNodePtr> BAVariants;
4414       std::vector<TreePatternNodePtr> ACVariants;
4415       std::vector<TreePatternNodePtr> CAVariants;
4416       std::vector<TreePatternNodePtr> BCVariants;
4417       std::vector<TreePatternNodePtr> CBVariants;
4418       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4419       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4420       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4421       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4422       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4423       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4424 
4425       // Combine those into the result: (x op x) op x
4426       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4427       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4428       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4429       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4430       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4431       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4432 
4433       // Combine those into the result: x op (x op x)
4434       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4435       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4436       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4437       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4438       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4439       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4440       return;
4441     }
4442   }
4443 
4444   // Compute permutations of all children.
4445   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4446   ChildVariants.resize(N->getNumChildren());
4447   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4448     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4449 
4450   // Build all permutations based on how the children were formed.
4451   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4452 
4453   // If this node is commutative, consider the commuted order.
4454   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4455   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4456     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4457            "Commutative but doesn't have 2 children!");
4458     // Don't count children which are actually register references.
4459     unsigned NC = 0;
4460     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4461       TreePatternNode *Child = N->getChild(i);
4462       if (Child->isLeaf())
4463         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4464           Record *RR = DI->getDef();
4465           if (RR->isSubClassOf("Register"))
4466             continue;
4467         }
4468       NC++;
4469     }
4470     // Consider the commuted order.
4471     if (isCommIntrinsic) {
4472       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4473       // operands are the commutative operands, and there might be more operands
4474       // after those.
4475       assert(NC >= 3 &&
4476              "Commutative intrinsic should have at least 3 children!");
4477       std::vector<std::vector<TreePatternNodePtr>> Variants;
4478       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4479       Variants.push_back(std::move(ChildVariants[2]));
4480       Variants.push_back(std::move(ChildVariants[1]));
4481       for (unsigned i = 3; i != NC; ++i)
4482         Variants.push_back(std::move(ChildVariants[i]));
4483       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4484     } else if (NC == N->getNumChildren()) {
4485       std::vector<std::vector<TreePatternNodePtr>> Variants;
4486       Variants.push_back(std::move(ChildVariants[1]));
4487       Variants.push_back(std::move(ChildVariants[0]));
4488       for (unsigned i = 2; i != NC; ++i)
4489         Variants.push_back(std::move(ChildVariants[i]));
4490       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4491     }
4492   }
4493 }
4494 
4495 
4496 // GenerateVariants - Generate variants.  For example, commutative patterns can
4497 // match multiple ways.  Add them to PatternsToMatch as well.
4498 void CodeGenDAGPatterns::GenerateVariants() {
4499   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4500 
4501   // Loop over all of the patterns we've collected, checking to see if we can
4502   // generate variants of the instruction, through the exploitation of
4503   // identities.  This permits the target to provide aggressive matching without
4504   // the .td file having to contain tons of variants of instructions.
4505   //
4506   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4507   // intentionally do not reconsider these.  Any variants of added patterns have
4508   // already been added.
4509   //
4510   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4511   BitVector MatchedPatterns(NumOriginalPatterns);
4512   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4513                                            BitVector(NumOriginalPatterns));
4514 
4515   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4516       DepsAndVariants;
4517   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4518 
4519   // Collect patterns with more than one variant.
4520   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4521     MultipleUseVarSet DepVars;
4522     std::vector<TreePatternNodePtr> Variants;
4523     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4524     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4525     LLVM_DEBUG(DumpDepVars(DepVars));
4526     LLVM_DEBUG(errs() << "\n");
4527     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4528                        *this, DepVars);
4529 
4530     assert(!Variants.empty() && "Must create at least original variant!");
4531     if (Variants.size() == 1) // No additional variants for this pattern.
4532       continue;
4533 
4534     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4535                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4536 
4537     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4538 
4539     // Cache matching predicates.
4540     if (MatchedPatterns[i])
4541       continue;
4542 
4543     const std::vector<Predicate> &Predicates =
4544         PatternsToMatch[i].getPredicates();
4545 
4546     BitVector &Matches = MatchedPredicates[i];
4547     MatchedPatterns.set(i);
4548     Matches.set(i);
4549 
4550     // Don't test patterns that have already been cached - it won't match.
4551     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4552       if (!MatchedPatterns[p])
4553         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4554 
4555     // Copy this to all the matching patterns.
4556     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4557       if (p != (int)i) {
4558         MatchedPatterns.set(p);
4559         MatchedPredicates[p] = Matches;
4560       }
4561   }
4562 
4563   for (auto it : PatternsWithVariants) {
4564     unsigned i = it.first;
4565     const MultipleUseVarSet &DepVars = it.second.first;
4566     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4567 
4568     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4569       TreePatternNodePtr Variant = Variants[v];
4570       BitVector &Matches = MatchedPredicates[i];
4571 
4572       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4573                  errs() << "\n");
4574 
4575       // Scan to see if an instruction or explicit pattern already matches this.
4576       bool AlreadyExists = false;
4577       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4578         // Skip if the top level predicates do not match.
4579         if (!Matches[p])
4580           continue;
4581         // Check to see if this variant already exists.
4582         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4583                                     DepVars)) {
4584           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4585           AlreadyExists = true;
4586           break;
4587         }
4588       }
4589       // If we already have it, ignore the variant.
4590       if (AlreadyExists) continue;
4591 
4592       // Otherwise, add it to the list of patterns we have.
4593       PatternsToMatch.push_back(PatternToMatch(
4594           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4595           Variant, PatternsToMatch[i].getDstPatternShared(),
4596           PatternsToMatch[i].getDstRegs(),
4597           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4598       MatchedPredicates.push_back(Matches);
4599 
4600       // Add a new match the same as this pattern.
4601       for (auto &P : MatchedPredicates)
4602         P.push_back(P[i]);
4603     }
4604 
4605     LLVM_DEBUG(errs() << "\n");
4606   }
4607 }
4608