1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/ErrorHandling.h" 21 #include "llvm/TableGen/Error.h" 22 #include "llvm/TableGen/Record.h" 23 #include <algorithm> 24 #include <cstdio> 25 #include <set> 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dag-patterns" 29 30 //===----------------------------------------------------------------------===// 31 // EEVT::TypeSet Implementation 32 //===----------------------------------------------------------------------===// 33 34 static inline bool isInteger(MVT::SimpleValueType VT) { 35 return MVT(VT).isInteger(); 36 } 37 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 38 return MVT(VT).isFloatingPoint(); 39 } 40 static inline bool isVector(MVT::SimpleValueType VT) { 41 return MVT(VT).isVector(); 42 } 43 static inline bool isScalar(MVT::SimpleValueType VT) { 44 return !MVT(VT).isVector(); 45 } 46 47 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 48 if (VT == MVT::iAny) 49 EnforceInteger(TP); 50 else if (VT == MVT::fAny) 51 EnforceFloatingPoint(TP); 52 else if (VT == MVT::vAny) 53 EnforceVector(TP); 54 else { 55 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 56 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); 57 TypeVec.push_back(VT); 58 } 59 } 60 61 62 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 63 assert(!VTList.empty() && "empty list?"); 64 TypeVec.append(VTList.begin(), VTList.end()); 65 66 if (!VTList.empty()) 67 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 68 VTList[0] != MVT::fAny); 69 70 // Verify no duplicates. 71 array_pod_sort(TypeVec.begin(), TypeVec.end()); 72 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 73 } 74 75 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 76 /// on completely unknown type sets. 77 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 78 bool (*Pred)(MVT::SimpleValueType), 79 const char *PredicateName) { 80 assert(isCompletelyUnknown()); 81 ArrayRef<MVT::SimpleValueType> LegalTypes = 82 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 83 84 if (TP.hasError()) 85 return false; 86 87 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 88 if (!Pred || Pred(LegalTypes[i])) 89 TypeVec.push_back(LegalTypes[i]); 90 91 // If we have nothing that matches the predicate, bail out. 92 if (TypeVec.empty()) { 93 TP.error("Type inference contradiction found, no " + 94 std::string(PredicateName) + " types found"); 95 return false; 96 } 97 // No need to sort with one element. 98 if (TypeVec.size() == 1) return true; 99 100 // Remove duplicates. 101 array_pod_sort(TypeVec.begin(), TypeVec.end()); 102 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 103 104 return true; 105 } 106 107 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 108 /// integer value type. 109 bool EEVT::TypeSet::hasIntegerTypes() const { 110 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 111 if (isInteger(TypeVec[i])) 112 return true; 113 return false; 114 } 115 116 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 117 /// a floating point value type. 118 bool EEVT::TypeSet::hasFloatingPointTypes() const { 119 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 120 if (isFloatingPoint(TypeVec[i])) 121 return true; 122 return false; 123 } 124 125 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 126 bool EEVT::TypeSet::hasScalarTypes() const { 127 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 128 if (isScalar(TypeVec[i])) 129 return true; 130 return false; 131 } 132 133 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 134 /// value type. 135 bool EEVT::TypeSet::hasVectorTypes() const { 136 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 137 if (isVector(TypeVec[i])) 138 return true; 139 return false; 140 } 141 142 143 std::string EEVT::TypeSet::getName() const { 144 if (TypeVec.empty()) return "<empty>"; 145 146 std::string Result; 147 148 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 149 std::string VTName = llvm::getEnumName(TypeVec[i]); 150 // Strip off MVT:: prefix if present. 151 if (VTName.substr(0,5) == "MVT::") 152 VTName = VTName.substr(5); 153 if (i) Result += ':'; 154 Result += VTName; 155 } 156 157 if (TypeVec.size() == 1) 158 return Result; 159 return "{" + Result + "}"; 160 } 161 162 /// MergeInTypeInfo - This merges in type information from the specified 163 /// argument. If 'this' changes, it returns true. If the two types are 164 /// contradictory (e.g. merge f32 into i32) then this flags an error. 165 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 166 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 167 return false; 168 169 if (isCompletelyUnknown()) { 170 *this = InVT; 171 return true; 172 } 173 174 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 175 176 // Handle the abstract cases, seeing if we can resolve them better. 177 switch (TypeVec[0]) { 178 default: break; 179 case MVT::iPTR: 180 case MVT::iPTRAny: 181 if (InVT.hasIntegerTypes()) { 182 EEVT::TypeSet InCopy(InVT); 183 InCopy.EnforceInteger(TP); 184 InCopy.EnforceScalar(TP); 185 186 if (InCopy.isConcrete()) { 187 // If the RHS has one integer type, upgrade iPTR to i32. 188 TypeVec[0] = InVT.TypeVec[0]; 189 return true; 190 } 191 192 // If the input has multiple scalar integers, this doesn't add any info. 193 if (!InCopy.isCompletelyUnknown()) 194 return false; 195 } 196 break; 197 } 198 199 // If the input constraint is iAny/iPTR and this is an integer type list, 200 // remove non-integer types from the list. 201 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 202 hasIntegerTypes()) { 203 bool MadeChange = EnforceInteger(TP); 204 205 // If we're merging in iPTR/iPTRAny and the node currently has a list of 206 // multiple different integer types, replace them with a single iPTR. 207 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 208 TypeVec.size() != 1) { 209 TypeVec.resize(1); 210 TypeVec[0] = InVT.TypeVec[0]; 211 MadeChange = true; 212 } 213 214 return MadeChange; 215 } 216 217 // If this is a type list and the RHS is a typelist as well, eliminate entries 218 // from this list that aren't in the other one. 219 bool MadeChange = false; 220 TypeSet InputSet(*this); 221 222 for (unsigned i = 0; i != TypeVec.size(); ++i) { 223 bool InInVT = false; 224 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 225 if (TypeVec[i] == InVT.TypeVec[j]) { 226 InInVT = true; 227 break; 228 } 229 230 if (InInVT) continue; 231 TypeVec.erase(TypeVec.begin()+i--); 232 MadeChange = true; 233 } 234 235 // If we removed all of our types, we have a type contradiction. 236 if (!TypeVec.empty()) 237 return MadeChange; 238 239 // FIXME: Really want an SMLoc here! 240 TP.error("Type inference contradiction found, merging '" + 241 InVT.getName() + "' into '" + InputSet.getName() + "'"); 242 return false; 243 } 244 245 /// EnforceInteger - Remove all non-integer types from this set. 246 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 247 if (TP.hasError()) 248 return false; 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isInteger, "integer"); 252 if (!hasFloatingPointTypes()) 253 return false; 254 255 TypeSet InputSet(*this); 256 257 // Filter out all the fp types. 258 for (unsigned i = 0; i != TypeVec.size(); ++i) 259 if (!isInteger(TypeVec[i])) 260 TypeVec.erase(TypeVec.begin()+i--); 261 262 if (TypeVec.empty()) { 263 TP.error("Type inference contradiction found, '" + 264 InputSet.getName() + "' needs to be integer"); 265 return false; 266 } 267 return true; 268 } 269 270 /// EnforceFloatingPoint - Remove all integer types from this set. 271 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 272 if (TP.hasError()) 273 return false; 274 // If we know nothing, then get the full set. 275 if (TypeVec.empty()) 276 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 277 278 if (!hasIntegerTypes()) 279 return false; 280 281 TypeSet InputSet(*this); 282 283 // Filter out all the fp types. 284 for (unsigned i = 0; i != TypeVec.size(); ++i) 285 if (!isFloatingPoint(TypeVec[i])) 286 TypeVec.erase(TypeVec.begin()+i--); 287 288 if (TypeVec.empty()) { 289 TP.error("Type inference contradiction found, '" + 290 InputSet.getName() + "' needs to be floating point"); 291 return false; 292 } 293 return true; 294 } 295 296 /// EnforceScalar - Remove all vector types from this. 297 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 298 if (TP.hasError()) 299 return false; 300 301 // If we know nothing, then get the full set. 302 if (TypeVec.empty()) 303 return FillWithPossibleTypes(TP, isScalar, "scalar"); 304 305 if (!hasVectorTypes()) 306 return false; 307 308 TypeSet InputSet(*this); 309 310 // Filter out all the vector types. 311 for (unsigned i = 0; i != TypeVec.size(); ++i) 312 if (!isScalar(TypeVec[i])) 313 TypeVec.erase(TypeVec.begin()+i--); 314 315 if (TypeVec.empty()) { 316 TP.error("Type inference contradiction found, '" + 317 InputSet.getName() + "' needs to be scalar"); 318 return false; 319 } 320 return true; 321 } 322 323 /// EnforceVector - Remove all vector types from this. 324 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 325 if (TP.hasError()) 326 return false; 327 328 // If we know nothing, then get the full set. 329 if (TypeVec.empty()) 330 return FillWithPossibleTypes(TP, isVector, "vector"); 331 332 TypeSet InputSet(*this); 333 bool MadeChange = false; 334 335 // Filter out all the scalar types. 336 for (unsigned i = 0; i != TypeVec.size(); ++i) 337 if (!isVector(TypeVec[i])) { 338 TypeVec.erase(TypeVec.begin()+i--); 339 MadeChange = true; 340 } 341 342 if (TypeVec.empty()) { 343 TP.error("Type inference contradiction found, '" + 344 InputSet.getName() + "' needs to be a vector"); 345 return false; 346 } 347 return MadeChange; 348 } 349 350 351 352 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 353 /// this shoud be based on the element type. Update this and other based on 354 /// this information. 355 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 356 if (TP.hasError()) 357 return false; 358 359 // Both operands must be integer or FP, but we don't care which. 360 bool MadeChange = false; 361 362 if (isCompletelyUnknown()) 363 MadeChange = FillWithPossibleTypes(TP); 364 365 if (Other.isCompletelyUnknown()) 366 MadeChange = Other.FillWithPossibleTypes(TP); 367 368 // If one side is known to be integer or known to be FP but the other side has 369 // no information, get at least the type integrality info in there. 370 if (!hasFloatingPointTypes()) 371 MadeChange |= Other.EnforceInteger(TP); 372 else if (!hasIntegerTypes()) 373 MadeChange |= Other.EnforceFloatingPoint(TP); 374 if (!Other.hasFloatingPointTypes()) 375 MadeChange |= EnforceInteger(TP); 376 else if (!Other.hasIntegerTypes()) 377 MadeChange |= EnforceFloatingPoint(TP); 378 379 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 380 "Should have a type list now"); 381 382 // If one contains vectors but the other doesn't pull vectors out. 383 if (!hasVectorTypes()) 384 MadeChange |= Other.EnforceScalar(TP); 385 else if (!hasScalarTypes()) 386 MadeChange |= Other.EnforceVector(TP); 387 if (!Other.hasVectorTypes()) 388 MadeChange |= EnforceScalar(TP); 389 else if (!Other.hasScalarTypes()) 390 MadeChange |= EnforceVector(TP); 391 392 // For vectors we need to ensure that smaller size doesn't produce larger 393 // vector and vice versa. 394 if (isConcrete() && isVector(getConcrete())) { 395 MVT IVT = getConcrete(); 396 unsigned Size = IVT.getSizeInBits(); 397 398 // Only keep types that have at least as many bits. 399 TypeSet InputSet(Other); 400 401 for (unsigned i = 0; i != Other.TypeVec.size(); ++i) { 402 assert(isVector(Other.TypeVec[i]) && "EnforceVector didn't work"); 403 if (MVT(Other.TypeVec[i]).getSizeInBits() < Size) { 404 Other.TypeVec.erase(Other.TypeVec.begin()+i--); 405 MadeChange = true; 406 } 407 } 408 409 if (Other.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 410 TP.error("Type inference contradiction found, forcing '" + 411 InputSet.getName() + "' to have at least as many bits as " + 412 getName() + "'"); 413 return false; 414 } 415 } else if (Other.isConcrete() && isVector(Other.getConcrete())) { 416 MVT IVT = Other.getConcrete(); 417 unsigned Size = IVT.getSizeInBits(); 418 419 // Only keep types with the same or fewer total bits 420 TypeSet InputSet(*this); 421 422 for (unsigned i = 0; i != TypeVec.size(); ++i) { 423 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 424 if (MVT(TypeVec[i]).getSizeInBits() > Size) { 425 TypeVec.erase(TypeVec.begin()+i--); 426 MadeChange = true; 427 } 428 } 429 430 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 431 TP.error("Type inference contradiction found, forcing '" + 432 InputSet.getName() + "' to have the same or fewer bits than " + 433 Other.getName() + "'"); 434 return false; 435 } 436 } 437 438 // This code does not currently handle nodes which have multiple types, 439 // where some types are integer, and some are fp. Assert that this is not 440 // the case. 441 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 442 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 443 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 444 445 if (TP.hasError()) 446 return false; 447 448 // Okay, find the smallest scalar type from the other set and remove 449 // anything the same or smaller from the current set. 450 TypeSet InputSet(Other); 451 MVT::SimpleValueType Smallest = TypeVec[0]; 452 for (unsigned i = 0; i != Other.TypeVec.size(); ++i) { 453 if (Other.TypeVec[i] <= Smallest) { 454 Other.TypeVec.erase(Other.TypeVec.begin()+i--); 455 MadeChange = true; 456 } 457 } 458 459 if (Other.TypeVec.empty()) { 460 TP.error("Type inference contradiction found, '" + InputSet.getName() + 461 "' has nothing larger than '" + getName() +"'!"); 462 return false; 463 } 464 465 // Okay, find the largest scalar type from the other set and remove 466 // anything the same or larger from the current set. 467 InputSet = TypeSet(*this); 468 MVT::SimpleValueType Largest = Other.TypeVec[Other.TypeVec.size()-1]; 469 for (unsigned i = 0; i != TypeVec.size(); ++i) { 470 if (TypeVec[i] >= Largest) { 471 TypeVec.erase(TypeVec.begin()+i--); 472 MadeChange = true; 473 } 474 } 475 476 if (TypeVec.empty()) { 477 TP.error("Type inference contradiction found, '" + InputSet.getName() + 478 "' has nothing smaller than '" + Other.getName() +"'!"); 479 return false; 480 } 481 482 return MadeChange; 483 } 484 485 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 486 /// whose element is specified by VTOperand. 487 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 488 TreePattern &TP) { 489 if (TP.hasError()) 490 return false; 491 492 // "This" must be a vector and "VTOperand" must be a scalar. 493 bool MadeChange = false; 494 MadeChange |= EnforceVector(TP); 495 MadeChange |= VTOperand.EnforceScalar(TP); 496 497 // If we know the vector type, it forces the scalar to agree. 498 if (isConcrete()) { 499 MVT IVT = getConcrete(); 500 IVT = IVT.getVectorElementType(); 501 return MadeChange | 502 VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 503 } 504 505 // If the scalar type is known, filter out vector types whose element types 506 // disagree. 507 if (!VTOperand.isConcrete()) 508 return MadeChange; 509 510 MVT::SimpleValueType VT = VTOperand.getConcrete(); 511 512 TypeSet InputSet(*this); 513 514 // Filter out all the types which don't have the right element type. 515 for (unsigned i = 0; i != TypeVec.size(); ++i) { 516 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 517 if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) { 518 TypeVec.erase(TypeVec.begin()+i--); 519 MadeChange = true; 520 } 521 } 522 523 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 524 TP.error("Type inference contradiction found, forcing '" + 525 InputSet.getName() + "' to have a vector element"); 526 return false; 527 } 528 return MadeChange; 529 } 530 531 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 532 /// vector type specified by VTOperand. 533 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 534 TreePattern &TP) { 535 if (TP.hasError()) 536 return false; 537 538 // "This" must be a vector and "VTOperand" must be a vector. 539 bool MadeChange = false; 540 MadeChange |= EnforceVector(TP); 541 MadeChange |= VTOperand.EnforceVector(TP); 542 543 // If one side is known to be integer or known to be FP but the other side has 544 // no information, get at least the type integrality info in there. 545 if (!hasFloatingPointTypes()) 546 MadeChange |= VTOperand.EnforceInteger(TP); 547 else if (!hasIntegerTypes()) 548 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 549 if (!VTOperand.hasFloatingPointTypes()) 550 MadeChange |= EnforceInteger(TP); 551 else if (!VTOperand.hasIntegerTypes()) 552 MadeChange |= EnforceFloatingPoint(TP); 553 554 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 555 "Should have a type list now"); 556 557 // If we know the vector type, it forces the scalar types to agree. 558 // Also force one vector to have more elements than the other. 559 if (isConcrete()) { 560 MVT IVT = getConcrete(); 561 unsigned NumElems = IVT.getVectorNumElements(); 562 IVT = IVT.getVectorElementType(); 563 564 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 565 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 566 567 // Only keep types that have less elements than VTOperand. 568 TypeSet InputSet(VTOperand); 569 570 for (unsigned i = 0; i != VTOperand.TypeVec.size(); ++i) { 571 assert(isVector(VTOperand.TypeVec[i]) && "EnforceVector didn't work"); 572 if (MVT(VTOperand.TypeVec[i]).getVectorNumElements() >= NumElems) { 573 VTOperand.TypeVec.erase(VTOperand.TypeVec.begin()+i--); 574 MadeChange = true; 575 } 576 } 577 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 578 TP.error("Type inference contradiction found, forcing '" + 579 InputSet.getName() + "' to have less vector elements than '" + 580 getName() + "'"); 581 return false; 582 } 583 } else if (VTOperand.isConcrete()) { 584 MVT IVT = VTOperand.getConcrete(); 585 unsigned NumElems = IVT.getVectorNumElements(); 586 IVT = IVT.getVectorElementType(); 587 588 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 589 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 590 591 // Only keep types that have more elements than 'this'. 592 TypeSet InputSet(*this); 593 594 for (unsigned i = 0; i != TypeVec.size(); ++i) { 595 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 596 if (MVT(TypeVec[i]).getVectorNumElements() <= NumElems) { 597 TypeVec.erase(TypeVec.begin()+i--); 598 MadeChange = true; 599 } 600 } 601 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 602 TP.error("Type inference contradiction found, forcing '" + 603 InputSet.getName() + "' to have more vector elements than '" + 604 VTOperand.getName() + "'"); 605 return false; 606 } 607 } 608 609 return MadeChange; 610 } 611 612 //===----------------------------------------------------------------------===// 613 // Helpers for working with extended types. 614 615 /// Dependent variable map for CodeGenDAGPattern variant generation 616 typedef std::map<std::string, int> DepVarMap; 617 618 /// Const iterator shorthand for DepVarMap 619 typedef DepVarMap::const_iterator DepVarMap_citer; 620 621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 622 if (N->isLeaf()) { 623 if (isa<DefInit>(N->getLeafValue())) 624 DepMap[N->getName()]++; 625 } else { 626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 627 FindDepVarsOf(N->getChild(i), DepMap); 628 } 629 } 630 631 /// Find dependent variables within child patterns 632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 633 DepVarMap depcounts; 634 FindDepVarsOf(N, depcounts); 635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 636 if (i->second > 1) // std::pair<std::string, int> 637 DepVars.insert(i->first); 638 } 639 } 640 641 #ifndef NDEBUG 642 /// Dump the dependent variable set: 643 static void DumpDepVars(MultipleUseVarSet &DepVars) { 644 if (DepVars.empty()) { 645 DEBUG(errs() << "<empty set>"); 646 } else { 647 DEBUG(errs() << "[ "); 648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 649 e = DepVars.end(); i != e; ++i) { 650 DEBUG(errs() << (*i) << " "); 651 } 652 DEBUG(errs() << "]"); 653 } 654 } 655 #endif 656 657 658 //===----------------------------------------------------------------------===// 659 // TreePredicateFn Implementation 660 //===----------------------------------------------------------------------===// 661 662 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 664 assert((getPredCode().empty() || getImmCode().empty()) && 665 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 666 } 667 668 std::string TreePredicateFn::getPredCode() const { 669 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 670 } 671 672 std::string TreePredicateFn::getImmCode() const { 673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 674 } 675 676 677 /// isAlwaysTrue - Return true if this is a noop predicate. 678 bool TreePredicateFn::isAlwaysTrue() const { 679 return getPredCode().empty() && getImmCode().empty(); 680 } 681 682 /// Return the name to use in the generated code to reference this, this is 683 /// "Predicate_foo" if from a pattern fragment "foo". 684 std::string TreePredicateFn::getFnName() const { 685 return "Predicate_" + PatFragRec->getRecord()->getName(); 686 } 687 688 /// getCodeToRunOnSDNode - Return the code for the function body that 689 /// evaluates this predicate. The argument is expected to be in "Node", 690 /// not N. This handles casting and conversion to a concrete node type as 691 /// appropriate. 692 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 693 // Handle immediate predicates first. 694 std::string ImmCode = getImmCode(); 695 if (!ImmCode.empty()) { 696 std::string Result = 697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 698 return Result + ImmCode; 699 } 700 701 // Handle arbitrary node predicates. 702 assert(!getPredCode().empty() && "Don't have any predicate code!"); 703 std::string ClassName; 704 if (PatFragRec->getOnlyTree()->isLeaf()) 705 ClassName = "SDNode"; 706 else { 707 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 709 } 710 std::string Result; 711 if (ClassName == "SDNode") 712 Result = " SDNode *N = Node;\n"; 713 else 714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 715 716 return Result + getPredCode(); 717 } 718 719 //===----------------------------------------------------------------------===// 720 // PatternToMatch implementation 721 // 722 723 724 /// getPatternSize - Return the 'size' of this pattern. We want to match large 725 /// patterns before small ones. This is used to determine the size of a 726 /// pattern. 727 static unsigned getPatternSize(const TreePatternNode *P, 728 const CodeGenDAGPatterns &CGP) { 729 unsigned Size = 3; // The node itself. 730 // If the root node is a ConstantSDNode, increases its size. 731 // e.g. (set R32:$dst, 0). 732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 733 Size += 2; 734 735 // FIXME: This is a hack to statically increase the priority of patterns 736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 737 // Later we can allow complexity / cost for each pattern to be (optionally) 738 // specified. To get best possible pattern match we'll need to dynamically 739 // calculate the complexity of all patterns a dag can potentially map to. 740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 741 if (AM) { 742 Size += AM->getNumOperands() * 3; 743 744 // We don't want to count any children twice, so return early. 745 return Size; 746 } 747 748 // If this node has some predicate function that must match, it adds to the 749 // complexity of this node. 750 if (!P->getPredicateFns().empty()) 751 ++Size; 752 753 // Count children in the count if they are also nodes. 754 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 755 TreePatternNode *Child = P->getChild(i); 756 if (!Child->isLeaf() && Child->getNumTypes() && 757 Child->getType(0) != MVT::Other) 758 Size += getPatternSize(Child, CGP); 759 else if (Child->isLeaf()) { 760 if (isa<IntInit>(Child->getLeafValue())) 761 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 762 else if (Child->getComplexPatternInfo(CGP)) 763 Size += getPatternSize(Child, CGP); 764 else if (!Child->getPredicateFns().empty()) 765 ++Size; 766 } 767 } 768 769 return Size; 770 } 771 772 /// Compute the complexity metric for the input pattern. This roughly 773 /// corresponds to the number of nodes that are covered. 774 int PatternToMatch:: 775 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 776 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 777 } 778 779 780 /// getPredicateCheck - Return a single string containing all of this 781 /// pattern's predicates concatenated with "&&" operators. 782 /// 783 std::string PatternToMatch::getPredicateCheck() const { 784 std::string PredicateCheck; 785 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 786 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) { 787 Record *Def = Pred->getDef(); 788 if (!Def->isSubClassOf("Predicate")) { 789 #ifndef NDEBUG 790 Def->dump(); 791 #endif 792 llvm_unreachable("Unknown predicate type!"); 793 } 794 if (!PredicateCheck.empty()) 795 PredicateCheck += " && "; 796 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 797 } 798 } 799 800 return PredicateCheck; 801 } 802 803 //===----------------------------------------------------------------------===// 804 // SDTypeConstraint implementation 805 // 806 807 SDTypeConstraint::SDTypeConstraint(Record *R) { 808 OperandNo = R->getValueAsInt("OperandNum"); 809 810 if (R->isSubClassOf("SDTCisVT")) { 811 ConstraintType = SDTCisVT; 812 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 813 if (x.SDTCisVT_Info.VT == MVT::isVoid) 814 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 815 816 } else if (R->isSubClassOf("SDTCisPtrTy")) { 817 ConstraintType = SDTCisPtrTy; 818 } else if (R->isSubClassOf("SDTCisInt")) { 819 ConstraintType = SDTCisInt; 820 } else if (R->isSubClassOf("SDTCisFP")) { 821 ConstraintType = SDTCisFP; 822 } else if (R->isSubClassOf("SDTCisVec")) { 823 ConstraintType = SDTCisVec; 824 } else if (R->isSubClassOf("SDTCisSameAs")) { 825 ConstraintType = SDTCisSameAs; 826 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 827 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 828 ConstraintType = SDTCisVTSmallerThanOp; 829 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 830 R->getValueAsInt("OtherOperandNum"); 831 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 832 ConstraintType = SDTCisOpSmallerThanOp; 833 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 834 R->getValueAsInt("BigOperandNum"); 835 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 836 ConstraintType = SDTCisEltOfVec; 837 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 838 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 839 ConstraintType = SDTCisSubVecOfVec; 840 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 841 R->getValueAsInt("OtherOpNum"); 842 } else { 843 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 844 exit(1); 845 } 846 } 847 848 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 849 /// N, and the result number in ResNo. 850 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 851 const SDNodeInfo &NodeInfo, 852 unsigned &ResNo) { 853 unsigned NumResults = NodeInfo.getNumResults(); 854 if (OpNo < NumResults) { 855 ResNo = OpNo; 856 return N; 857 } 858 859 OpNo -= NumResults; 860 861 if (OpNo >= N->getNumChildren()) { 862 errs() << "Invalid operand number in type constraint " 863 << (OpNo+NumResults) << " "; 864 N->dump(); 865 errs() << '\n'; 866 exit(1); 867 } 868 869 return N->getChild(OpNo); 870 } 871 872 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 873 /// constraint to the nodes operands. This returns true if it makes a 874 /// change, false otherwise. If a type contradiction is found, flag an error. 875 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 876 const SDNodeInfo &NodeInfo, 877 TreePattern &TP) const { 878 if (TP.hasError()) 879 return false; 880 881 unsigned ResNo = 0; // The result number being referenced. 882 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 883 884 switch (ConstraintType) { 885 case SDTCisVT: 886 // Operand must be a particular type. 887 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 888 case SDTCisPtrTy: 889 // Operand must be same as target pointer type. 890 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 891 case SDTCisInt: 892 // Require it to be one of the legal integer VTs. 893 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 894 case SDTCisFP: 895 // Require it to be one of the legal fp VTs. 896 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 897 case SDTCisVec: 898 // Require it to be one of the legal vector VTs. 899 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 900 case SDTCisSameAs: { 901 unsigned OResNo = 0; 902 TreePatternNode *OtherNode = 903 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 904 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 905 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 906 } 907 case SDTCisVTSmallerThanOp: { 908 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 909 // have an integer type that is smaller than the VT. 910 if (!NodeToApply->isLeaf() || 911 !isa<DefInit>(NodeToApply->getLeafValue()) || 912 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 913 ->isSubClassOf("ValueType")) { 914 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 915 return false; 916 } 917 MVT::SimpleValueType VT = 918 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 919 920 EEVT::TypeSet TypeListTmp(VT, TP); 921 922 unsigned OResNo = 0; 923 TreePatternNode *OtherNode = 924 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 925 OResNo); 926 927 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 928 } 929 case SDTCisOpSmallerThanOp: { 930 unsigned BResNo = 0; 931 TreePatternNode *BigOperand = 932 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 933 BResNo); 934 return NodeToApply->getExtType(ResNo). 935 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 936 } 937 case SDTCisEltOfVec: { 938 unsigned VResNo = 0; 939 TreePatternNode *VecOperand = 940 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 941 VResNo); 942 943 // Filter vector types out of VecOperand that don't have the right element 944 // type. 945 return VecOperand->getExtType(VResNo). 946 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 947 } 948 case SDTCisSubVecOfVec: { 949 unsigned VResNo = 0; 950 TreePatternNode *BigVecOperand = 951 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 952 VResNo); 953 954 // Filter vector types out of BigVecOperand that don't have the 955 // right subvector type. 956 return BigVecOperand->getExtType(VResNo). 957 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 958 } 959 } 960 llvm_unreachable("Invalid ConstraintType!"); 961 } 962 963 // Update the node type to match an instruction operand or result as specified 964 // in the ins or outs lists on the instruction definition. Return true if the 965 // type was actually changed. 966 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 967 Record *Operand, 968 TreePattern &TP) { 969 // The 'unknown' operand indicates that types should be inferred from the 970 // context. 971 if (Operand->isSubClassOf("unknown_class")) 972 return false; 973 974 // The Operand class specifies a type directly. 975 if (Operand->isSubClassOf("Operand")) 976 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 977 TP); 978 979 // PointerLikeRegClass has a type that is determined at runtime. 980 if (Operand->isSubClassOf("PointerLikeRegClass")) 981 return UpdateNodeType(ResNo, MVT::iPTR, TP); 982 983 // Both RegisterClass and RegisterOperand operands derive their types from a 984 // register class def. 985 Record *RC = nullptr; 986 if (Operand->isSubClassOf("RegisterClass")) 987 RC = Operand; 988 else if (Operand->isSubClassOf("RegisterOperand")) 989 RC = Operand->getValueAsDef("RegClass"); 990 991 assert(RC && "Unknown operand type"); 992 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 993 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 994 } 995 996 997 //===----------------------------------------------------------------------===// 998 // SDNodeInfo implementation 999 // 1000 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1001 EnumName = R->getValueAsString("Opcode"); 1002 SDClassName = R->getValueAsString("SDClass"); 1003 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1004 NumResults = TypeProfile->getValueAsInt("NumResults"); 1005 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1006 1007 // Parse the properties. 1008 Properties = 0; 1009 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 1010 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 1011 if (PropList[i]->getName() == "SDNPCommutative") { 1012 Properties |= 1 << SDNPCommutative; 1013 } else if (PropList[i]->getName() == "SDNPAssociative") { 1014 Properties |= 1 << SDNPAssociative; 1015 } else if (PropList[i]->getName() == "SDNPHasChain") { 1016 Properties |= 1 << SDNPHasChain; 1017 } else if (PropList[i]->getName() == "SDNPOutGlue") { 1018 Properties |= 1 << SDNPOutGlue; 1019 } else if (PropList[i]->getName() == "SDNPInGlue") { 1020 Properties |= 1 << SDNPInGlue; 1021 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 1022 Properties |= 1 << SDNPOptInGlue; 1023 } else if (PropList[i]->getName() == "SDNPMayStore") { 1024 Properties |= 1 << SDNPMayStore; 1025 } else if (PropList[i]->getName() == "SDNPMayLoad") { 1026 Properties |= 1 << SDNPMayLoad; 1027 } else if (PropList[i]->getName() == "SDNPSideEffect") { 1028 Properties |= 1 << SDNPSideEffect; 1029 } else if (PropList[i]->getName() == "SDNPMemOperand") { 1030 Properties |= 1 << SDNPMemOperand; 1031 } else if (PropList[i]->getName() == "SDNPVariadic") { 1032 Properties |= 1 << SDNPVariadic; 1033 } else { 1034 errs() << "Unknown SD Node property '" << PropList[i]->getName() 1035 << "' on node '" << R->getName() << "'!\n"; 1036 exit(1); 1037 } 1038 } 1039 1040 1041 // Parse the type constraints. 1042 std::vector<Record*> ConstraintList = 1043 TypeProfile->getValueAsListOfDefs("Constraints"); 1044 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1045 } 1046 1047 /// getKnownType - If the type constraints on this node imply a fixed type 1048 /// (e.g. all stores return void, etc), then return it as an 1049 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1050 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1051 unsigned NumResults = getNumResults(); 1052 assert(NumResults <= 1 && 1053 "We only work with nodes with zero or one result so far!"); 1054 assert(ResNo == 0 && "Only handles single result nodes so far"); 1055 1056 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 1057 // Make sure that this applies to the correct node result. 1058 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 1059 continue; 1060 1061 switch (TypeConstraints[i].ConstraintType) { 1062 default: break; 1063 case SDTypeConstraint::SDTCisVT: 1064 return TypeConstraints[i].x.SDTCisVT_Info.VT; 1065 case SDTypeConstraint::SDTCisPtrTy: 1066 return MVT::iPTR; 1067 } 1068 } 1069 return MVT::Other; 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // TreePatternNode implementation 1074 // 1075 1076 TreePatternNode::~TreePatternNode() { 1077 #if 0 // FIXME: implement refcounted tree nodes! 1078 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1079 delete getChild(i); 1080 #endif 1081 } 1082 1083 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1084 if (Operator->getName() == "set" || 1085 Operator->getName() == "implicit") 1086 return 0; // All return nothing. 1087 1088 if (Operator->isSubClassOf("Intrinsic")) 1089 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1090 1091 if (Operator->isSubClassOf("SDNode")) 1092 return CDP.getSDNodeInfo(Operator).getNumResults(); 1093 1094 if (Operator->isSubClassOf("PatFrag")) { 1095 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1096 // the forward reference case where one pattern fragment references another 1097 // before it is processed. 1098 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1099 return PFRec->getOnlyTree()->getNumTypes(); 1100 1101 // Get the result tree. 1102 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1103 Record *Op = nullptr; 1104 if (Tree) 1105 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1106 Op = DI->getDef(); 1107 assert(Op && "Invalid Fragment"); 1108 return GetNumNodeResults(Op, CDP); 1109 } 1110 1111 if (Operator->isSubClassOf("Instruction")) { 1112 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1113 1114 // FIXME: Should allow access to all the results here. 1115 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1116 1117 // Add on one implicit def if it has a resolvable type. 1118 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1119 ++NumDefsToAdd; 1120 return NumDefsToAdd; 1121 } 1122 1123 if (Operator->isSubClassOf("SDNodeXForm")) 1124 return 1; // FIXME: Generalize SDNodeXForm 1125 1126 if (Operator->isSubClassOf("ValueType")) 1127 return 1; // A type-cast of one result. 1128 1129 if (Operator->isSubClassOf("ComplexPattern")) 1130 return 1; 1131 1132 Operator->dump(); 1133 errs() << "Unhandled node in GetNumNodeResults\n"; 1134 exit(1); 1135 } 1136 1137 void TreePatternNode::print(raw_ostream &OS) const { 1138 if (isLeaf()) 1139 OS << *getLeafValue(); 1140 else 1141 OS << '(' << getOperator()->getName(); 1142 1143 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1144 OS << ':' << getExtType(i).getName(); 1145 1146 if (!isLeaf()) { 1147 if (getNumChildren() != 0) { 1148 OS << " "; 1149 getChild(0)->print(OS); 1150 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1151 OS << ", "; 1152 getChild(i)->print(OS); 1153 } 1154 } 1155 OS << ")"; 1156 } 1157 1158 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1159 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1160 if (TransformFn) 1161 OS << "<<X:" << TransformFn->getName() << ">>"; 1162 if (!getName().empty()) 1163 OS << ":$" << getName(); 1164 1165 } 1166 void TreePatternNode::dump() const { 1167 print(errs()); 1168 } 1169 1170 /// isIsomorphicTo - Return true if this node is recursively 1171 /// isomorphic to the specified node. For this comparison, the node's 1172 /// entire state is considered. The assigned name is ignored, since 1173 /// nodes with differing names are considered isomorphic. However, if 1174 /// the assigned name is present in the dependent variable set, then 1175 /// the assigned name is considered significant and the node is 1176 /// isomorphic if the names match. 1177 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1178 const MultipleUseVarSet &DepVars) const { 1179 if (N == this) return true; 1180 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1181 getPredicateFns() != N->getPredicateFns() || 1182 getTransformFn() != N->getTransformFn()) 1183 return false; 1184 1185 if (isLeaf()) { 1186 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1187 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1188 return ((DI->getDef() == NDI->getDef()) 1189 && (DepVars.find(getName()) == DepVars.end() 1190 || getName() == N->getName())); 1191 } 1192 } 1193 return getLeafValue() == N->getLeafValue(); 1194 } 1195 1196 if (N->getOperator() != getOperator() || 1197 N->getNumChildren() != getNumChildren()) return false; 1198 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1199 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1200 return false; 1201 return true; 1202 } 1203 1204 /// clone - Make a copy of this tree and all of its children. 1205 /// 1206 TreePatternNode *TreePatternNode::clone() const { 1207 TreePatternNode *New; 1208 if (isLeaf()) { 1209 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1210 } else { 1211 std::vector<TreePatternNode*> CChildren; 1212 CChildren.reserve(Children.size()); 1213 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1214 CChildren.push_back(getChild(i)->clone()); 1215 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1216 } 1217 New->setName(getName()); 1218 New->Types = Types; 1219 New->setPredicateFns(getPredicateFns()); 1220 New->setTransformFn(getTransformFn()); 1221 return New; 1222 } 1223 1224 /// RemoveAllTypes - Recursively strip all the types of this tree. 1225 void TreePatternNode::RemoveAllTypes() { 1226 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1227 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1228 if (isLeaf()) return; 1229 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1230 getChild(i)->RemoveAllTypes(); 1231 } 1232 1233 1234 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1235 /// with actual values specified by ArgMap. 1236 void TreePatternNode:: 1237 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1238 if (isLeaf()) return; 1239 1240 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1241 TreePatternNode *Child = getChild(i); 1242 if (Child->isLeaf()) { 1243 Init *Val = Child->getLeafValue(); 1244 // Note that, when substituting into an output pattern, Val might be an 1245 // UnsetInit. 1246 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1247 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1248 // We found a use of a formal argument, replace it with its value. 1249 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1250 assert(NewChild && "Couldn't find formal argument!"); 1251 assert((Child->getPredicateFns().empty() || 1252 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1253 "Non-empty child predicate clobbered!"); 1254 setChild(i, NewChild); 1255 } 1256 } else { 1257 getChild(i)->SubstituteFormalArguments(ArgMap); 1258 } 1259 } 1260 } 1261 1262 1263 /// InlinePatternFragments - If this pattern refers to any pattern 1264 /// fragments, inline them into place, giving us a pattern without any 1265 /// PatFrag references. 1266 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1267 if (TP.hasError()) 1268 return nullptr; 1269 1270 if (isLeaf()) 1271 return this; // nothing to do. 1272 Record *Op = getOperator(); 1273 1274 if (!Op->isSubClassOf("PatFrag")) { 1275 // Just recursively inline children nodes. 1276 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1277 TreePatternNode *Child = getChild(i); 1278 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1279 1280 assert((Child->getPredicateFns().empty() || 1281 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1282 "Non-empty child predicate clobbered!"); 1283 1284 setChild(i, NewChild); 1285 } 1286 return this; 1287 } 1288 1289 // Otherwise, we found a reference to a fragment. First, look up its 1290 // TreePattern record. 1291 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1292 1293 // Verify that we are passing the right number of operands. 1294 if (Frag->getNumArgs() != Children.size()) { 1295 TP.error("'" + Op->getName() + "' fragment requires " + 1296 utostr(Frag->getNumArgs()) + " operands!"); 1297 return nullptr; 1298 } 1299 1300 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1301 1302 TreePredicateFn PredFn(Frag); 1303 if (!PredFn.isAlwaysTrue()) 1304 FragTree->addPredicateFn(PredFn); 1305 1306 // Resolve formal arguments to their actual value. 1307 if (Frag->getNumArgs()) { 1308 // Compute the map of formal to actual arguments. 1309 std::map<std::string, TreePatternNode*> ArgMap; 1310 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1311 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1312 1313 FragTree->SubstituteFormalArguments(ArgMap); 1314 } 1315 1316 FragTree->setName(getName()); 1317 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1318 FragTree->UpdateNodeType(i, getExtType(i), TP); 1319 1320 // Transfer in the old predicates. 1321 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1322 FragTree->addPredicateFn(getPredicateFns()[i]); 1323 1324 // Get a new copy of this fragment to stitch into here. 1325 //delete this; // FIXME: implement refcounting! 1326 1327 // The fragment we inlined could have recursive inlining that is needed. See 1328 // if there are any pattern fragments in it and inline them as needed. 1329 return FragTree->InlinePatternFragments(TP); 1330 } 1331 1332 /// getImplicitType - Check to see if the specified record has an implicit 1333 /// type which should be applied to it. This will infer the type of register 1334 /// references from the register file information, for example. 1335 /// 1336 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1337 /// the F8RC register class argument in: 1338 /// 1339 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1340 /// 1341 /// When Unnamed is false, return the type of a named DAG operand such as the 1342 /// GPR:$src operand above. 1343 /// 1344 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1345 bool NotRegisters, 1346 bool Unnamed, 1347 TreePattern &TP) { 1348 // Check to see if this is a register operand. 1349 if (R->isSubClassOf("RegisterOperand")) { 1350 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1351 if (NotRegisters) 1352 return EEVT::TypeSet(); // Unknown. 1353 Record *RegClass = R->getValueAsDef("RegClass"); 1354 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1355 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1356 } 1357 1358 // Check to see if this is a register or a register class. 1359 if (R->isSubClassOf("RegisterClass")) { 1360 assert(ResNo == 0 && "Regclass ref only has one result!"); 1361 // An unnamed register class represents itself as an i32 immediate, for 1362 // example on a COPY_TO_REGCLASS instruction. 1363 if (Unnamed) 1364 return EEVT::TypeSet(MVT::i32, TP); 1365 1366 // In a named operand, the register class provides the possible set of 1367 // types. 1368 if (NotRegisters) 1369 return EEVT::TypeSet(); // Unknown. 1370 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1371 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1372 } 1373 1374 if (R->isSubClassOf("PatFrag")) { 1375 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1376 // Pattern fragment types will be resolved when they are inlined. 1377 return EEVT::TypeSet(); // Unknown. 1378 } 1379 1380 if (R->isSubClassOf("Register")) { 1381 assert(ResNo == 0 && "Registers only produce one result!"); 1382 if (NotRegisters) 1383 return EEVT::TypeSet(); // Unknown. 1384 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1385 return EEVT::TypeSet(T.getRegisterVTs(R)); 1386 } 1387 1388 if (R->isSubClassOf("SubRegIndex")) { 1389 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1390 return EEVT::TypeSet(MVT::i32, TP); 1391 } 1392 1393 if (R->isSubClassOf("ValueType")) { 1394 assert(ResNo == 0 && "This node only has one result!"); 1395 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1396 // 1397 // (sext_inreg GPR:$src, i16) 1398 // ~~~ 1399 if (Unnamed) 1400 return EEVT::TypeSet(MVT::Other, TP); 1401 // With a name, the ValueType simply provides the type of the named 1402 // variable. 1403 // 1404 // (sext_inreg i32:$src, i16) 1405 // ~~~~~~~~ 1406 if (NotRegisters) 1407 return EEVT::TypeSet(); // Unknown. 1408 return EEVT::TypeSet(getValueType(R), TP); 1409 } 1410 1411 if (R->isSubClassOf("CondCode")) { 1412 assert(ResNo == 0 && "This node only has one result!"); 1413 // Using a CondCodeSDNode. 1414 return EEVT::TypeSet(MVT::Other, TP); 1415 } 1416 1417 if (R->isSubClassOf("ComplexPattern")) { 1418 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1419 if (NotRegisters) 1420 return EEVT::TypeSet(); // Unknown. 1421 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1422 TP); 1423 } 1424 if (R->isSubClassOf("PointerLikeRegClass")) { 1425 assert(ResNo == 0 && "Regclass can only have one result!"); 1426 return EEVT::TypeSet(MVT::iPTR, TP); 1427 } 1428 1429 if (R->getName() == "node" || R->getName() == "srcvalue" || 1430 R->getName() == "zero_reg") { 1431 // Placeholder. 1432 return EEVT::TypeSet(); // Unknown. 1433 } 1434 1435 if (R->isSubClassOf("Operand")) 1436 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1437 1438 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1439 return EEVT::TypeSet(MVT::Other, TP); 1440 } 1441 1442 1443 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1444 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1445 const CodeGenIntrinsic *TreePatternNode:: 1446 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1447 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1448 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1449 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1450 return nullptr; 1451 1452 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1453 return &CDP.getIntrinsicInfo(IID); 1454 } 1455 1456 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1457 /// return the ComplexPattern information, otherwise return null. 1458 const ComplexPattern * 1459 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1460 Record *Rec; 1461 if (isLeaf()) { 1462 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1463 if (!DI) 1464 return nullptr; 1465 Rec = DI->getDef(); 1466 } else 1467 Rec = getOperator(); 1468 1469 if (!Rec->isSubClassOf("ComplexPattern")) 1470 return nullptr; 1471 return &CGP.getComplexPattern(Rec); 1472 } 1473 1474 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1475 // A ComplexPattern specifically declares how many results it fills in. 1476 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1477 return CP->getNumOperands(); 1478 1479 // If MIOperandInfo is specified, that gives the count. 1480 if (isLeaf()) { 1481 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1482 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1483 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1484 if (MIOps->getNumArgs()) 1485 return MIOps->getNumArgs(); 1486 } 1487 } 1488 1489 // Otherwise there is just one result. 1490 return 1; 1491 } 1492 1493 /// NodeHasProperty - Return true if this node has the specified property. 1494 bool TreePatternNode::NodeHasProperty(SDNP Property, 1495 const CodeGenDAGPatterns &CGP) const { 1496 if (isLeaf()) { 1497 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1498 return CP->hasProperty(Property); 1499 return false; 1500 } 1501 1502 Record *Operator = getOperator(); 1503 if (!Operator->isSubClassOf("SDNode")) return false; 1504 1505 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1506 } 1507 1508 1509 1510 1511 /// TreeHasProperty - Return true if any node in this tree has the specified 1512 /// property. 1513 bool TreePatternNode::TreeHasProperty(SDNP Property, 1514 const CodeGenDAGPatterns &CGP) const { 1515 if (NodeHasProperty(Property, CGP)) 1516 return true; 1517 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1518 if (getChild(i)->TreeHasProperty(Property, CGP)) 1519 return true; 1520 return false; 1521 } 1522 1523 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1524 /// commutative intrinsic. 1525 bool 1526 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1527 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1528 return Int->isCommutative; 1529 return false; 1530 } 1531 1532 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 1533 if (!N->isLeaf()) 1534 return N->getOperator()->isSubClassOf(Class); 1535 1536 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 1537 if (DI && DI->getDef()->isSubClassOf(Class)) 1538 return true; 1539 1540 return false; 1541 } 1542 1543 static void emitTooManyOperandsError(TreePattern &TP, 1544 StringRef InstName, 1545 unsigned Expected, 1546 unsigned Actual) { 1547 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 1548 " operands but expected only " + Twine(Expected) + "!"); 1549 } 1550 1551 static void emitTooFewOperandsError(TreePattern &TP, 1552 StringRef InstName, 1553 unsigned Actual) { 1554 TP.error("Instruction '" + InstName + 1555 "' expects more than the provided " + Twine(Actual) + " operands!"); 1556 } 1557 1558 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1559 /// this node and its children in the tree. This returns true if it makes a 1560 /// change, false otherwise. If a type contradiction is found, flag an error. 1561 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1562 if (TP.hasError()) 1563 return false; 1564 1565 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1566 if (isLeaf()) { 1567 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1568 // If it's a regclass or something else known, include the type. 1569 bool MadeChange = false; 1570 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1571 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1572 NotRegisters, 1573 !hasName(), TP), TP); 1574 return MadeChange; 1575 } 1576 1577 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1578 assert(Types.size() == 1 && "Invalid IntInit"); 1579 1580 // Int inits are always integers. :) 1581 bool MadeChange = Types[0].EnforceInteger(TP); 1582 1583 if (!Types[0].isConcrete()) 1584 return MadeChange; 1585 1586 MVT::SimpleValueType VT = getType(0); 1587 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1588 return MadeChange; 1589 1590 unsigned Size = MVT(VT).getSizeInBits(); 1591 // Make sure that the value is representable for this type. 1592 if (Size >= 32) return MadeChange; 1593 1594 // Check that the value doesn't use more bits than we have. It must either 1595 // be a sign- or zero-extended equivalent of the original. 1596 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1597 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1598 return MadeChange; 1599 1600 TP.error("Integer value '" + itostr(II->getValue()) + 1601 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1602 return false; 1603 } 1604 return false; 1605 } 1606 1607 // special handling for set, which isn't really an SDNode. 1608 if (getOperator()->getName() == "set") { 1609 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1610 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1611 unsigned NC = getNumChildren(); 1612 1613 TreePatternNode *SetVal = getChild(NC-1); 1614 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1615 1616 for (unsigned i = 0; i < NC-1; ++i) { 1617 TreePatternNode *Child = getChild(i); 1618 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1619 1620 // Types of operands must match. 1621 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1622 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1623 } 1624 return MadeChange; 1625 } 1626 1627 if (getOperator()->getName() == "implicit") { 1628 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1629 1630 bool MadeChange = false; 1631 for (unsigned i = 0; i < getNumChildren(); ++i) 1632 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1633 return MadeChange; 1634 } 1635 1636 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1637 bool MadeChange = false; 1638 1639 // Apply the result type to the node. 1640 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1641 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1642 1643 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1644 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1645 1646 if (getNumChildren() != NumParamVTs + 1) { 1647 TP.error("Intrinsic '" + Int->Name + "' expects " + 1648 utostr(NumParamVTs) + " operands, not " + 1649 utostr(getNumChildren() - 1) + " operands!"); 1650 return false; 1651 } 1652 1653 // Apply type info to the intrinsic ID. 1654 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1655 1656 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1657 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1658 1659 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1660 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1661 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1662 } 1663 return MadeChange; 1664 } 1665 1666 if (getOperator()->isSubClassOf("SDNode")) { 1667 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1668 1669 // Check that the number of operands is sane. Negative operands -> varargs. 1670 if (NI.getNumOperands() >= 0 && 1671 getNumChildren() != (unsigned)NI.getNumOperands()) { 1672 TP.error(getOperator()->getName() + " node requires exactly " + 1673 itostr(NI.getNumOperands()) + " operands!"); 1674 return false; 1675 } 1676 1677 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1678 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1679 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1680 return MadeChange; 1681 } 1682 1683 if (getOperator()->isSubClassOf("Instruction")) { 1684 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1685 CodeGenInstruction &InstInfo = 1686 CDP.getTargetInfo().getInstruction(getOperator()); 1687 1688 bool MadeChange = false; 1689 1690 // Apply the result types to the node, these come from the things in the 1691 // (outs) list of the instruction. 1692 // FIXME: Cap at one result so far. 1693 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1694 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1695 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1696 1697 // If the instruction has implicit defs, we apply the first one as a result. 1698 // FIXME: This sucks, it should apply all implicit defs. 1699 if (!InstInfo.ImplicitDefs.empty()) { 1700 unsigned ResNo = NumResultsToAdd; 1701 1702 // FIXME: Generalize to multiple possible types and multiple possible 1703 // ImplicitDefs. 1704 MVT::SimpleValueType VT = 1705 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1706 1707 if (VT != MVT::Other) 1708 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1709 } 1710 1711 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1712 // be the same. 1713 if (getOperator()->getName() == "INSERT_SUBREG") { 1714 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1715 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1716 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1717 } else if (getOperator()->getName() == "REG_SEQUENCE") { 1718 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 1719 // variadic. 1720 1721 unsigned NChild = getNumChildren(); 1722 if (NChild < 3) { 1723 TP.error("REG_SEQUENCE requires at least 3 operands!"); 1724 return false; 1725 } 1726 1727 if (NChild % 2 == 0) { 1728 TP.error("REG_SEQUENCE requires an odd number of operands!"); 1729 return false; 1730 } 1731 1732 if (!isOperandClass(getChild(0), "RegisterClass")) { 1733 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 1734 return false; 1735 } 1736 1737 for (unsigned I = 1; I < NChild; I += 2) { 1738 TreePatternNode *SubIdxChild = getChild(I + 1); 1739 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 1740 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 1741 itostr(I + 1) + "!"); 1742 return false; 1743 } 1744 } 1745 } 1746 1747 unsigned ChildNo = 0; 1748 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1749 Record *OperandNode = Inst.getOperand(i); 1750 1751 // If the instruction expects a predicate or optional def operand, we 1752 // codegen this by setting the operand to it's default value if it has a 1753 // non-empty DefaultOps field. 1754 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1755 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1756 continue; 1757 1758 // Verify that we didn't run out of provided operands. 1759 if (ChildNo >= getNumChildren()) { 1760 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 1761 return false; 1762 } 1763 1764 TreePatternNode *Child = getChild(ChildNo++); 1765 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1766 1767 // If the operand has sub-operands, they may be provided by distinct 1768 // child patterns, so attempt to match each sub-operand separately. 1769 if (OperandNode->isSubClassOf("Operand")) { 1770 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1771 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1772 // But don't do that if the whole operand is being provided by 1773 // a single ComplexPattern-related Operand. 1774 1775 if (Child->getNumMIResults(CDP) < NumArgs) { 1776 // Match first sub-operand against the child we already have. 1777 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1778 MadeChange |= 1779 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1780 1781 // And the remaining sub-operands against subsequent children. 1782 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1783 if (ChildNo >= getNumChildren()) { 1784 emitTooFewOperandsError(TP, getOperator()->getName(), 1785 getNumChildren()); 1786 return false; 1787 } 1788 Child = getChild(ChildNo++); 1789 1790 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1791 MadeChange |= 1792 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1793 } 1794 continue; 1795 } 1796 } 1797 } 1798 1799 // If we didn't match by pieces above, attempt to match the whole 1800 // operand now. 1801 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1802 } 1803 1804 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 1805 emitTooManyOperandsError(TP, getOperator()->getName(), 1806 ChildNo, getNumChildren()); 1807 return false; 1808 } 1809 1810 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1811 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1812 return MadeChange; 1813 } 1814 1815 if (getOperator()->isSubClassOf("ComplexPattern")) { 1816 bool MadeChange = false; 1817 1818 for (unsigned i = 0; i < getNumChildren(); ++i) 1819 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1820 1821 return MadeChange; 1822 } 1823 1824 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1825 1826 // Node transforms always take one operand. 1827 if (getNumChildren() != 1) { 1828 TP.error("Node transform '" + getOperator()->getName() + 1829 "' requires one operand!"); 1830 return false; 1831 } 1832 1833 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1834 1835 1836 // If either the output or input of the xform does not have exact 1837 // type info. We assume they must be the same. Otherwise, it is perfectly 1838 // legal to transform from one type to a completely different type. 1839 #if 0 1840 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1841 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1842 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1843 return MadeChange; 1844 } 1845 #endif 1846 return MadeChange; 1847 } 1848 1849 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1850 /// RHS of a commutative operation, not the on LHS. 1851 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1852 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1853 return true; 1854 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1855 return true; 1856 return false; 1857 } 1858 1859 1860 /// canPatternMatch - If it is impossible for this pattern to match on this 1861 /// target, fill in Reason and return false. Otherwise, return true. This is 1862 /// used as a sanity check for .td files (to prevent people from writing stuff 1863 /// that can never possibly work), and to prevent the pattern permuter from 1864 /// generating stuff that is useless. 1865 bool TreePatternNode::canPatternMatch(std::string &Reason, 1866 const CodeGenDAGPatterns &CDP) { 1867 if (isLeaf()) return true; 1868 1869 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1870 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1871 return false; 1872 1873 // If this is an intrinsic, handle cases that would make it not match. For 1874 // example, if an operand is required to be an immediate. 1875 if (getOperator()->isSubClassOf("Intrinsic")) { 1876 // TODO: 1877 return true; 1878 } 1879 1880 if (getOperator()->isSubClassOf("ComplexPattern")) 1881 return true; 1882 1883 // If this node is a commutative operator, check that the LHS isn't an 1884 // immediate. 1885 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1886 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1887 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1888 // Scan all of the operands of the node and make sure that only the last one 1889 // is a constant node, unless the RHS also is. 1890 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1891 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1892 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1893 if (OnlyOnRHSOfCommutative(getChild(i))) { 1894 Reason="Immediate value must be on the RHS of commutative operators!"; 1895 return false; 1896 } 1897 } 1898 } 1899 1900 return true; 1901 } 1902 1903 //===----------------------------------------------------------------------===// 1904 // TreePattern implementation 1905 // 1906 1907 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1908 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1909 isInputPattern(isInput), HasError(false) { 1910 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1911 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1912 } 1913 1914 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1915 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1916 isInputPattern(isInput), HasError(false) { 1917 Trees.push_back(ParseTreePattern(Pat, "")); 1918 } 1919 1920 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1921 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1922 isInputPattern(isInput), HasError(false) { 1923 Trees.push_back(Pat); 1924 } 1925 1926 void TreePattern::error(const Twine &Msg) { 1927 if (HasError) 1928 return; 1929 dump(); 1930 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1931 HasError = true; 1932 } 1933 1934 void TreePattern::ComputeNamedNodes() { 1935 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1936 ComputeNamedNodes(Trees[i]); 1937 } 1938 1939 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1940 if (!N->getName().empty()) 1941 NamedNodes[N->getName()].push_back(N); 1942 1943 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1944 ComputeNamedNodes(N->getChild(i)); 1945 } 1946 1947 1948 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1949 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 1950 Record *R = DI->getDef(); 1951 1952 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1953 // TreePatternNode of its own. For example: 1954 /// (foo GPR, imm) -> (foo GPR, (imm)) 1955 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1956 return ParseTreePattern( 1957 DagInit::get(DI, "", 1958 std::vector<std::pair<Init*, std::string> >()), 1959 OpName); 1960 1961 // Input argument? 1962 TreePatternNode *Res = new TreePatternNode(DI, 1); 1963 if (R->getName() == "node" && !OpName.empty()) { 1964 if (OpName.empty()) 1965 error("'node' argument requires a name to match with operand list"); 1966 Args.push_back(OpName); 1967 } 1968 1969 Res->setName(OpName); 1970 return Res; 1971 } 1972 1973 // ?:$name or just $name. 1974 if (TheInit == UnsetInit::get()) { 1975 if (OpName.empty()) 1976 error("'?' argument requires a name to match with operand list"); 1977 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 1978 Args.push_back(OpName); 1979 Res->setName(OpName); 1980 return Res; 1981 } 1982 1983 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 1984 if (!OpName.empty()) 1985 error("Constant int argument should not have a name!"); 1986 return new TreePatternNode(II, 1); 1987 } 1988 1989 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 1990 // Turn this into an IntInit. 1991 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1992 if (!II || !isa<IntInit>(II)) 1993 error("Bits value must be constants!"); 1994 return ParseTreePattern(II, OpName); 1995 } 1996 1997 DagInit *Dag = dyn_cast<DagInit>(TheInit); 1998 if (!Dag) { 1999 TheInit->dump(); 2000 error("Pattern has unexpected init kind!"); 2001 } 2002 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2003 if (!OpDef) error("Pattern has unexpected operator type!"); 2004 Record *Operator = OpDef->getDef(); 2005 2006 if (Operator->isSubClassOf("ValueType")) { 2007 // If the operator is a ValueType, then this must be "type cast" of a leaf 2008 // node. 2009 if (Dag->getNumArgs() != 1) 2010 error("Type cast only takes one operand!"); 2011 2012 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 2013 2014 // Apply the type cast. 2015 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2016 New->UpdateNodeType(0, getValueType(Operator), *this); 2017 2018 if (!OpName.empty()) 2019 error("ValueType cast should not have a name!"); 2020 return New; 2021 } 2022 2023 // Verify that this is something that makes sense for an operator. 2024 if (!Operator->isSubClassOf("PatFrag") && 2025 !Operator->isSubClassOf("SDNode") && 2026 !Operator->isSubClassOf("Instruction") && 2027 !Operator->isSubClassOf("SDNodeXForm") && 2028 !Operator->isSubClassOf("Intrinsic") && 2029 !Operator->isSubClassOf("ComplexPattern") && 2030 Operator->getName() != "set" && 2031 Operator->getName() != "implicit") 2032 error("Unrecognized node '" + Operator->getName() + "'!"); 2033 2034 // Check to see if this is something that is illegal in an input pattern. 2035 if (isInputPattern) { 2036 if (Operator->isSubClassOf("Instruction") || 2037 Operator->isSubClassOf("SDNodeXForm")) 2038 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2039 } else { 2040 if (Operator->isSubClassOf("Intrinsic")) 2041 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2042 2043 if (Operator->isSubClassOf("SDNode") && 2044 Operator->getName() != "imm" && 2045 Operator->getName() != "fpimm" && 2046 Operator->getName() != "tglobaltlsaddr" && 2047 Operator->getName() != "tconstpool" && 2048 Operator->getName() != "tjumptable" && 2049 Operator->getName() != "tframeindex" && 2050 Operator->getName() != "texternalsym" && 2051 Operator->getName() != "tblockaddress" && 2052 Operator->getName() != "tglobaladdr" && 2053 Operator->getName() != "bb" && 2054 Operator->getName() != "vt") 2055 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2056 } 2057 2058 std::vector<TreePatternNode*> Children; 2059 2060 // Parse all the operands. 2061 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2062 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 2063 2064 // If the operator is an intrinsic, then this is just syntactic sugar for for 2065 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2066 // convert the intrinsic name to a number. 2067 if (Operator->isSubClassOf("Intrinsic")) { 2068 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2069 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2070 2071 // If this intrinsic returns void, it must have side-effects and thus a 2072 // chain. 2073 if (Int.IS.RetVTs.empty()) 2074 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2075 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2076 // Has side-effects, requires chain. 2077 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2078 else // Otherwise, no chain. 2079 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2080 2081 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2082 Children.insert(Children.begin(), IIDNode); 2083 } 2084 2085 if (Operator->isSubClassOf("ComplexPattern")) { 2086 for (unsigned i = 0; i < Children.size(); ++i) { 2087 TreePatternNode *Child = Children[i]; 2088 2089 if (Child->getName().empty()) 2090 error("All arguments to a ComplexPattern must be named"); 2091 2092 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2093 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2094 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2095 auto OperandId = std::make_pair(Operator, i); 2096 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2097 if (PrevOp != ComplexPatternOperands.end()) { 2098 if (PrevOp->getValue() != OperandId) 2099 error("All ComplexPattern operands must appear consistently: " 2100 "in the same order in just one ComplexPattern instance."); 2101 } else 2102 ComplexPatternOperands[Child->getName()] = OperandId; 2103 } 2104 } 2105 2106 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2107 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2108 Result->setName(OpName); 2109 2110 if (!Dag->getName().empty()) { 2111 assert(Result->getName().empty()); 2112 Result->setName(Dag->getName()); 2113 } 2114 return Result; 2115 } 2116 2117 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2118 /// will never match in favor of something obvious that will. This is here 2119 /// strictly as a convenience to target authors because it allows them to write 2120 /// more type generic things and have useless type casts fold away. 2121 /// 2122 /// This returns true if any change is made. 2123 static bool SimplifyTree(TreePatternNode *&N) { 2124 if (N->isLeaf()) 2125 return false; 2126 2127 // If we have a bitconvert with a resolved type and if the source and 2128 // destination types are the same, then the bitconvert is useless, remove it. 2129 if (N->getOperator()->getName() == "bitconvert" && 2130 N->getExtType(0).isConcrete() && 2131 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2132 N->getName().empty()) { 2133 N = N->getChild(0); 2134 SimplifyTree(N); 2135 return true; 2136 } 2137 2138 // Walk all children. 2139 bool MadeChange = false; 2140 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2141 TreePatternNode *Child = N->getChild(i); 2142 MadeChange |= SimplifyTree(Child); 2143 N->setChild(i, Child); 2144 } 2145 return MadeChange; 2146 } 2147 2148 2149 2150 /// InferAllTypes - Infer/propagate as many types throughout the expression 2151 /// patterns as possible. Return true if all types are inferred, false 2152 /// otherwise. Flags an error if a type contradiction is found. 2153 bool TreePattern:: 2154 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2155 if (NamedNodes.empty()) 2156 ComputeNamedNodes(); 2157 2158 bool MadeChange = true; 2159 while (MadeChange) { 2160 MadeChange = false; 2161 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 2162 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 2163 MadeChange |= SimplifyTree(Trees[i]); 2164 } 2165 2166 // If there are constraints on our named nodes, apply them. 2167 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 2168 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 2169 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 2170 2171 // If we have input named node types, propagate their types to the named 2172 // values here. 2173 if (InNamedTypes) { 2174 if (!InNamedTypes->count(I->getKey())) { 2175 error("Node '" + std::string(I->getKey()) + 2176 "' in output pattern but not input pattern"); 2177 return true; 2178 } 2179 2180 const SmallVectorImpl<TreePatternNode*> &InNodes = 2181 InNamedTypes->find(I->getKey())->second; 2182 2183 // The input types should be fully resolved by now. 2184 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 2185 // If this node is a register class, and it is the root of the pattern 2186 // then we're mapping something onto an input register. We allow 2187 // changing the type of the input register in this case. This allows 2188 // us to match things like: 2189 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2190 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 2191 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue()); 2192 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2193 DI->getDef()->isSubClassOf("RegisterOperand"))) 2194 continue; 2195 } 2196 2197 assert(Nodes[i]->getNumTypes() == 1 && 2198 InNodes[0]->getNumTypes() == 1 && 2199 "FIXME: cannot name multiple result nodes yet"); 2200 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 2201 *this); 2202 } 2203 } 2204 2205 // If there are multiple nodes with the same name, they must all have the 2206 // same type. 2207 if (I->second.size() > 1) { 2208 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2209 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2210 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2211 "FIXME: cannot name multiple result nodes yet"); 2212 2213 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2214 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2215 } 2216 } 2217 } 2218 } 2219 2220 bool HasUnresolvedTypes = false; 2221 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 2222 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 2223 return !HasUnresolvedTypes; 2224 } 2225 2226 void TreePattern::print(raw_ostream &OS) const { 2227 OS << getRecord()->getName(); 2228 if (!Args.empty()) { 2229 OS << "(" << Args[0]; 2230 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2231 OS << ", " << Args[i]; 2232 OS << ")"; 2233 } 2234 OS << ": "; 2235 2236 if (Trees.size() > 1) 2237 OS << "[\n"; 2238 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 2239 OS << "\t"; 2240 Trees[i]->print(OS); 2241 OS << "\n"; 2242 } 2243 2244 if (Trees.size() > 1) 2245 OS << "]\n"; 2246 } 2247 2248 void TreePattern::dump() const { print(errs()); } 2249 2250 //===----------------------------------------------------------------------===// 2251 // CodeGenDAGPatterns implementation 2252 // 2253 2254 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2255 Records(R), Target(R) { 2256 2257 Intrinsics = LoadIntrinsics(Records, false); 2258 TgtIntrinsics = LoadIntrinsics(Records, true); 2259 ParseNodeInfo(); 2260 ParseNodeTransforms(); 2261 ParseComplexPatterns(); 2262 ParsePatternFragments(); 2263 ParseDefaultOperands(); 2264 ParseInstructions(); 2265 ParsePatternFragments(/*OutFrags*/true); 2266 ParsePatterns(); 2267 2268 // Generate variants. For example, commutative patterns can match 2269 // multiple ways. Add them to PatternsToMatch as well. 2270 GenerateVariants(); 2271 2272 // Infer instruction flags. For example, we can detect loads, 2273 // stores, and side effects in many cases by examining an 2274 // instruction's pattern. 2275 InferInstructionFlags(); 2276 2277 // Verify that instruction flags match the patterns. 2278 VerifyInstructionFlags(); 2279 } 2280 2281 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2282 Record *N = Records.getDef(Name); 2283 if (!N || !N->isSubClassOf("SDNode")) { 2284 errs() << "Error getting SDNode '" << Name << "'!\n"; 2285 exit(1); 2286 } 2287 return N; 2288 } 2289 2290 // Parse all of the SDNode definitions for the target, populating SDNodes. 2291 void CodeGenDAGPatterns::ParseNodeInfo() { 2292 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2293 while (!Nodes.empty()) { 2294 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2295 Nodes.pop_back(); 2296 } 2297 2298 // Get the builtin intrinsic nodes. 2299 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2300 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2301 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2302 } 2303 2304 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2305 /// map, and emit them to the file as functions. 2306 void CodeGenDAGPatterns::ParseNodeTransforms() { 2307 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2308 while (!Xforms.empty()) { 2309 Record *XFormNode = Xforms.back(); 2310 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2311 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2312 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2313 2314 Xforms.pop_back(); 2315 } 2316 } 2317 2318 void CodeGenDAGPatterns::ParseComplexPatterns() { 2319 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2320 while (!AMs.empty()) { 2321 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2322 AMs.pop_back(); 2323 } 2324 } 2325 2326 2327 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2328 /// file, building up the PatternFragments map. After we've collected them all, 2329 /// inline fragments together as necessary, so that there are no references left 2330 /// inside a pattern fragment to a pattern fragment. 2331 /// 2332 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2333 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2334 2335 // First step, parse all of the fragments. 2336 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2337 if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag")) 2338 continue; 2339 2340 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2341 TreePattern *P = 2342 (PatternFragments[Fragments[i]] = llvm::make_unique<TreePattern>( 2343 Fragments[i], Tree, !Fragments[i]->isSubClassOf("OutPatFrag"), 2344 *this)).get(); 2345 2346 // Validate the argument list, converting it to set, to discard duplicates. 2347 std::vector<std::string> &Args = P->getArgList(); 2348 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2349 2350 if (OperandsSet.count("")) 2351 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2352 2353 // Parse the operands list. 2354 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2355 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2356 // Special cases: ops == outs == ins. Different names are used to 2357 // improve readability. 2358 if (!OpsOp || 2359 (OpsOp->getDef()->getName() != "ops" && 2360 OpsOp->getDef()->getName() != "outs" && 2361 OpsOp->getDef()->getName() != "ins")) 2362 P->error("Operands list should start with '(ops ... '!"); 2363 2364 // Copy over the arguments. 2365 Args.clear(); 2366 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2367 if (!isa<DefInit>(OpsList->getArg(j)) || 2368 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2369 P->error("Operands list should all be 'node' values."); 2370 if (OpsList->getArgName(j).empty()) 2371 P->error("Operands list should have names for each operand!"); 2372 if (!OperandsSet.count(OpsList->getArgName(j))) 2373 P->error("'" + OpsList->getArgName(j) + 2374 "' does not occur in pattern or was multiply specified!"); 2375 OperandsSet.erase(OpsList->getArgName(j)); 2376 Args.push_back(OpsList->getArgName(j)); 2377 } 2378 2379 if (!OperandsSet.empty()) 2380 P->error("Operands list does not contain an entry for operand '" + 2381 *OperandsSet.begin() + "'!"); 2382 2383 // If there is a code init for this fragment, keep track of the fact that 2384 // this fragment uses it. 2385 TreePredicateFn PredFn(P); 2386 if (!PredFn.isAlwaysTrue()) 2387 P->getOnlyTree()->addPredicateFn(PredFn); 2388 2389 // If there is a node transformation corresponding to this, keep track of 2390 // it. 2391 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2392 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2393 P->getOnlyTree()->setTransformFn(Transform); 2394 } 2395 2396 // Now that we've parsed all of the tree fragments, do a closure on them so 2397 // that there are not references to PatFrags left inside of them. 2398 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2399 if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag")) 2400 continue; 2401 2402 TreePattern &ThePat = *PatternFragments[Fragments[i]]; 2403 ThePat.InlinePatternFragments(); 2404 2405 // Infer as many types as possible. Don't worry about it if we don't infer 2406 // all of them, some may depend on the inputs of the pattern. 2407 ThePat.InferAllTypes(); 2408 ThePat.resetError(); 2409 2410 // If debugging, print out the pattern fragment result. 2411 DEBUG(ThePat.dump()); 2412 } 2413 } 2414 2415 void CodeGenDAGPatterns::ParseDefaultOperands() { 2416 std::vector<Record*> DefaultOps; 2417 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2418 2419 // Find some SDNode. 2420 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2421 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2422 2423 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2424 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2425 2426 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2427 // SomeSDnode so that we can parse this. 2428 std::vector<std::pair<Init*, std::string> > Ops; 2429 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2430 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2431 DefaultInfo->getArgName(op))); 2432 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2433 2434 // Create a TreePattern to parse this. 2435 TreePattern P(DefaultOps[i], DI, false, *this); 2436 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2437 2438 // Copy the operands over into a DAGDefaultOperand. 2439 DAGDefaultOperand DefaultOpInfo; 2440 2441 TreePatternNode *T = P.getTree(0); 2442 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2443 TreePatternNode *TPN = T->getChild(op); 2444 while (TPN->ApplyTypeConstraints(P, false)) 2445 /* Resolve all types */; 2446 2447 if (TPN->ContainsUnresolvedType()) { 2448 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2449 DefaultOps[i]->getName() + 2450 "' doesn't have a concrete type!"); 2451 } 2452 DefaultOpInfo.DefaultOps.push_back(TPN); 2453 } 2454 2455 // Insert it into the DefaultOperands map so we can find it later. 2456 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2457 } 2458 } 2459 2460 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2461 /// instruction input. Return true if this is a real use. 2462 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2463 std::map<std::string, TreePatternNode*> &InstInputs) { 2464 // No name -> not interesting. 2465 if (Pat->getName().empty()) { 2466 if (Pat->isLeaf()) { 2467 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2468 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2469 DI->getDef()->isSubClassOf("RegisterOperand"))) 2470 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2471 } 2472 return false; 2473 } 2474 2475 Record *Rec; 2476 if (Pat->isLeaf()) { 2477 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2478 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2479 Rec = DI->getDef(); 2480 } else { 2481 Rec = Pat->getOperator(); 2482 } 2483 2484 // SRCVALUE nodes are ignored. 2485 if (Rec->getName() == "srcvalue") 2486 return false; 2487 2488 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2489 if (!Slot) { 2490 Slot = Pat; 2491 return true; 2492 } 2493 Record *SlotRec; 2494 if (Slot->isLeaf()) { 2495 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2496 } else { 2497 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2498 SlotRec = Slot->getOperator(); 2499 } 2500 2501 // Ensure that the inputs agree if we've already seen this input. 2502 if (Rec != SlotRec) 2503 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2504 if (Slot->getExtTypes() != Pat->getExtTypes()) 2505 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2506 return true; 2507 } 2508 2509 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2510 /// part of "I", the instruction), computing the set of inputs and outputs of 2511 /// the pattern. Report errors if we see anything naughty. 2512 void CodeGenDAGPatterns:: 2513 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2514 std::map<std::string, TreePatternNode*> &InstInputs, 2515 std::map<std::string, TreePatternNode*>&InstResults, 2516 std::vector<Record*> &InstImpResults) { 2517 if (Pat->isLeaf()) { 2518 bool isUse = HandleUse(I, Pat, InstInputs); 2519 if (!isUse && Pat->getTransformFn()) 2520 I->error("Cannot specify a transform function for a non-input value!"); 2521 return; 2522 } 2523 2524 if (Pat->getOperator()->getName() == "implicit") { 2525 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2526 TreePatternNode *Dest = Pat->getChild(i); 2527 if (!Dest->isLeaf()) 2528 I->error("implicitly defined value should be a register!"); 2529 2530 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2531 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2532 I->error("implicitly defined value should be a register!"); 2533 InstImpResults.push_back(Val->getDef()); 2534 } 2535 return; 2536 } 2537 2538 if (Pat->getOperator()->getName() != "set") { 2539 // If this is not a set, verify that the children nodes are not void typed, 2540 // and recurse. 2541 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2542 if (Pat->getChild(i)->getNumTypes() == 0) 2543 I->error("Cannot have void nodes inside of patterns!"); 2544 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2545 InstImpResults); 2546 } 2547 2548 // If this is a non-leaf node with no children, treat it basically as if 2549 // it were a leaf. This handles nodes like (imm). 2550 bool isUse = HandleUse(I, Pat, InstInputs); 2551 2552 if (!isUse && Pat->getTransformFn()) 2553 I->error("Cannot specify a transform function for a non-input value!"); 2554 return; 2555 } 2556 2557 // Otherwise, this is a set, validate and collect instruction results. 2558 if (Pat->getNumChildren() == 0) 2559 I->error("set requires operands!"); 2560 2561 if (Pat->getTransformFn()) 2562 I->error("Cannot specify a transform function on a set node!"); 2563 2564 // Check the set destinations. 2565 unsigned NumDests = Pat->getNumChildren()-1; 2566 for (unsigned i = 0; i != NumDests; ++i) { 2567 TreePatternNode *Dest = Pat->getChild(i); 2568 if (!Dest->isLeaf()) 2569 I->error("set destination should be a register!"); 2570 2571 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2572 if (!Val) { 2573 I->error("set destination should be a register!"); 2574 continue; 2575 } 2576 2577 if (Val->getDef()->isSubClassOf("RegisterClass") || 2578 Val->getDef()->isSubClassOf("ValueType") || 2579 Val->getDef()->isSubClassOf("RegisterOperand") || 2580 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2581 if (Dest->getName().empty()) 2582 I->error("set destination must have a name!"); 2583 if (InstResults.count(Dest->getName())) 2584 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2585 InstResults[Dest->getName()] = Dest; 2586 } else if (Val->getDef()->isSubClassOf("Register")) { 2587 InstImpResults.push_back(Val->getDef()); 2588 } else { 2589 I->error("set destination should be a register!"); 2590 } 2591 } 2592 2593 // Verify and collect info from the computation. 2594 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2595 InstInputs, InstResults, InstImpResults); 2596 } 2597 2598 //===----------------------------------------------------------------------===// 2599 // Instruction Analysis 2600 //===----------------------------------------------------------------------===// 2601 2602 class InstAnalyzer { 2603 const CodeGenDAGPatterns &CDP; 2604 public: 2605 bool hasSideEffects; 2606 bool mayStore; 2607 bool mayLoad; 2608 bool isBitcast; 2609 bool isVariadic; 2610 2611 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2612 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2613 isBitcast(false), isVariadic(false) {} 2614 2615 void Analyze(const TreePattern *Pat) { 2616 // Assume only the first tree is the pattern. The others are clobber nodes. 2617 AnalyzeNode(Pat->getTree(0)); 2618 } 2619 2620 void Analyze(const PatternToMatch *Pat) { 2621 AnalyzeNode(Pat->getSrcPattern()); 2622 } 2623 2624 private: 2625 bool IsNodeBitcast(const TreePatternNode *N) const { 2626 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2627 return false; 2628 2629 if (N->getNumChildren() != 2) 2630 return false; 2631 2632 const TreePatternNode *N0 = N->getChild(0); 2633 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2634 return false; 2635 2636 const TreePatternNode *N1 = N->getChild(1); 2637 if (N1->isLeaf()) 2638 return false; 2639 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2640 return false; 2641 2642 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2643 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2644 return false; 2645 return OpInfo.getEnumName() == "ISD::BITCAST"; 2646 } 2647 2648 public: 2649 void AnalyzeNode(const TreePatternNode *N) { 2650 if (N->isLeaf()) { 2651 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2652 Record *LeafRec = DI->getDef(); 2653 // Handle ComplexPattern leaves. 2654 if (LeafRec->isSubClassOf("ComplexPattern")) { 2655 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2656 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2657 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2658 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2659 } 2660 } 2661 return; 2662 } 2663 2664 // Analyze children. 2665 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2666 AnalyzeNode(N->getChild(i)); 2667 2668 // Ignore set nodes, which are not SDNodes. 2669 if (N->getOperator()->getName() == "set") { 2670 isBitcast = IsNodeBitcast(N); 2671 return; 2672 } 2673 2674 // Notice properties of the node. 2675 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2676 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2677 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2678 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2679 2680 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2681 // If this is an intrinsic, analyze it. 2682 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2683 mayLoad = true;// These may load memory. 2684 2685 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2686 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2687 2688 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2689 // WriteMem intrinsics can have other strange effects. 2690 hasSideEffects = true; 2691 } 2692 } 2693 2694 }; 2695 2696 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2697 const InstAnalyzer &PatInfo, 2698 Record *PatDef) { 2699 bool Error = false; 2700 2701 // Remember where InstInfo got its flags. 2702 if (InstInfo.hasUndefFlags()) 2703 InstInfo.InferredFrom = PatDef; 2704 2705 // Check explicitly set flags for consistency. 2706 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2707 !InstInfo.hasSideEffects_Unset) { 2708 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2709 // the pattern has no side effects. That could be useful for div/rem 2710 // instructions that may trap. 2711 if (!InstInfo.hasSideEffects) { 2712 Error = true; 2713 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2714 Twine(InstInfo.hasSideEffects)); 2715 } 2716 } 2717 2718 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2719 Error = true; 2720 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2721 Twine(InstInfo.mayStore)); 2722 } 2723 2724 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2725 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2726 // Some targets translate imediates to loads. 2727 if (!InstInfo.mayLoad) { 2728 Error = true; 2729 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2730 Twine(InstInfo.mayLoad)); 2731 } 2732 } 2733 2734 // Transfer inferred flags. 2735 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2736 InstInfo.mayStore |= PatInfo.mayStore; 2737 InstInfo.mayLoad |= PatInfo.mayLoad; 2738 2739 // These flags are silently added without any verification. 2740 InstInfo.isBitcast |= PatInfo.isBitcast; 2741 2742 // Don't infer isVariadic. This flag means something different on SDNodes and 2743 // instructions. For example, a CALL SDNode is variadic because it has the 2744 // call arguments as operands, but a CALL instruction is not variadic - it 2745 // has argument registers as implicit, not explicit uses. 2746 2747 return Error; 2748 } 2749 2750 /// hasNullFragReference - Return true if the DAG has any reference to the 2751 /// null_frag operator. 2752 static bool hasNullFragReference(DagInit *DI) { 2753 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2754 if (!OpDef) return false; 2755 Record *Operator = OpDef->getDef(); 2756 2757 // If this is the null fragment, return true. 2758 if (Operator->getName() == "null_frag") return true; 2759 // If any of the arguments reference the null fragment, return true. 2760 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2761 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2762 if (Arg && hasNullFragReference(Arg)) 2763 return true; 2764 } 2765 2766 return false; 2767 } 2768 2769 /// hasNullFragReference - Return true if any DAG in the list references 2770 /// the null_frag operator. 2771 static bool hasNullFragReference(ListInit *LI) { 2772 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { 2773 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i)); 2774 assert(DI && "non-dag in an instruction Pattern list?!"); 2775 if (hasNullFragReference(DI)) 2776 return true; 2777 } 2778 return false; 2779 } 2780 2781 /// Get all the instructions in a tree. 2782 static void 2783 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2784 if (Tree->isLeaf()) 2785 return; 2786 if (Tree->getOperator()->isSubClassOf("Instruction")) 2787 Instrs.push_back(Tree->getOperator()); 2788 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2789 getInstructionsInTree(Tree->getChild(i), Instrs); 2790 } 2791 2792 /// Check the class of a pattern leaf node against the instruction operand it 2793 /// represents. 2794 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2795 Record *Leaf) { 2796 if (OI.Rec == Leaf) 2797 return true; 2798 2799 // Allow direct value types to be used in instruction set patterns. 2800 // The type will be checked later. 2801 if (Leaf->isSubClassOf("ValueType")) 2802 return true; 2803 2804 // Patterns can also be ComplexPattern instances. 2805 if (Leaf->isSubClassOf("ComplexPattern")) 2806 return true; 2807 2808 return false; 2809 } 2810 2811 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2812 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2813 2814 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2815 2816 // Parse the instruction. 2817 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2818 // Inline pattern fragments into it. 2819 I->InlinePatternFragments(); 2820 2821 // Infer as many types as possible. If we cannot infer all of them, we can 2822 // never do anything with this instruction pattern: report it to the user. 2823 if (!I->InferAllTypes()) 2824 I->error("Could not infer all types in pattern!"); 2825 2826 // InstInputs - Keep track of all of the inputs of the instruction, along 2827 // with the record they are declared as. 2828 std::map<std::string, TreePatternNode*> InstInputs; 2829 2830 // InstResults - Keep track of all the virtual registers that are 'set' 2831 // in the instruction, including what reg class they are. 2832 std::map<std::string, TreePatternNode*> InstResults; 2833 2834 std::vector<Record*> InstImpResults; 2835 2836 // Verify that the top-level forms in the instruction are of void type, and 2837 // fill in the InstResults map. 2838 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2839 TreePatternNode *Pat = I->getTree(j); 2840 if (Pat->getNumTypes() != 0) 2841 I->error("Top-level forms in instruction pattern should have" 2842 " void types"); 2843 2844 // Find inputs and outputs, and verify the structure of the uses/defs. 2845 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2846 InstImpResults); 2847 } 2848 2849 // Now that we have inputs and outputs of the pattern, inspect the operands 2850 // list for the instruction. This determines the order that operands are 2851 // added to the machine instruction the node corresponds to. 2852 unsigned NumResults = InstResults.size(); 2853 2854 // Parse the operands list from the (ops) list, validating it. 2855 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2856 2857 // Check that all of the results occur first in the list. 2858 std::vector<Record*> Results; 2859 TreePatternNode *Res0Node = nullptr; 2860 for (unsigned i = 0; i != NumResults; ++i) { 2861 if (i == CGI.Operands.size()) 2862 I->error("'" + InstResults.begin()->first + 2863 "' set but does not appear in operand list!"); 2864 const std::string &OpName = CGI.Operands[i].Name; 2865 2866 // Check that it exists in InstResults. 2867 TreePatternNode *RNode = InstResults[OpName]; 2868 if (!RNode) 2869 I->error("Operand $" + OpName + " does not exist in operand list!"); 2870 2871 if (i == 0) 2872 Res0Node = RNode; 2873 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 2874 if (!R) 2875 I->error("Operand $" + OpName + " should be a set destination: all " 2876 "outputs must occur before inputs in operand list!"); 2877 2878 if (!checkOperandClass(CGI.Operands[i], R)) 2879 I->error("Operand $" + OpName + " class mismatch!"); 2880 2881 // Remember the return type. 2882 Results.push_back(CGI.Operands[i].Rec); 2883 2884 // Okay, this one checks out. 2885 InstResults.erase(OpName); 2886 } 2887 2888 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2889 // the copy while we're checking the inputs. 2890 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2891 2892 std::vector<TreePatternNode*> ResultNodeOperands; 2893 std::vector<Record*> Operands; 2894 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2895 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2896 const std::string &OpName = Op.Name; 2897 if (OpName.empty()) 2898 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2899 2900 if (!InstInputsCheck.count(OpName)) { 2901 // If this is an operand with a DefaultOps set filled in, we can ignore 2902 // this. When we codegen it, we will do so as always executed. 2903 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 2904 // Does it have a non-empty DefaultOps field? If so, ignore this 2905 // operand. 2906 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2907 continue; 2908 } 2909 I->error("Operand $" + OpName + 2910 " does not appear in the instruction pattern"); 2911 } 2912 TreePatternNode *InVal = InstInputsCheck[OpName]; 2913 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2914 2915 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 2916 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2917 if (!checkOperandClass(Op, InRec)) 2918 I->error("Operand $" + OpName + "'s register class disagrees" 2919 " between the operand and pattern"); 2920 } 2921 Operands.push_back(Op.Rec); 2922 2923 // Construct the result for the dest-pattern operand list. 2924 TreePatternNode *OpNode = InVal->clone(); 2925 2926 // No predicate is useful on the result. 2927 OpNode->clearPredicateFns(); 2928 2929 // Promote the xform function to be an explicit node if set. 2930 if (Record *Xform = OpNode->getTransformFn()) { 2931 OpNode->setTransformFn(nullptr); 2932 std::vector<TreePatternNode*> Children; 2933 Children.push_back(OpNode); 2934 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2935 } 2936 2937 ResultNodeOperands.push_back(OpNode); 2938 } 2939 2940 if (!InstInputsCheck.empty()) 2941 I->error("Input operand $" + InstInputsCheck.begin()->first + 2942 " occurs in pattern but not in operands list!"); 2943 2944 TreePatternNode *ResultPattern = 2945 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2946 GetNumNodeResults(I->getRecord(), *this)); 2947 // Copy fully inferred output node type to instruction result pattern. 2948 for (unsigned i = 0; i != NumResults; ++i) 2949 ResultPattern->setType(i, Res0Node->getExtType(i)); 2950 2951 // Create and insert the instruction. 2952 // FIXME: InstImpResults should not be part of DAGInstruction. 2953 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2954 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 2955 2956 // Use a temporary tree pattern to infer all types and make sure that the 2957 // constructed result is correct. This depends on the instruction already 2958 // being inserted into the DAGInsts map. 2959 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2960 Temp.InferAllTypes(&I->getNamedNodesMap()); 2961 2962 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 2963 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2964 2965 return TheInsertedInst; 2966 } 2967 2968 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2969 /// any fragments involved. This populates the Instructions list with fully 2970 /// resolved instructions. 2971 void CodeGenDAGPatterns::ParseInstructions() { 2972 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2973 2974 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2975 ListInit *LI = nullptr; 2976 2977 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern"))) 2978 LI = Instrs[i]->getValueAsListInit("Pattern"); 2979 2980 // If there is no pattern, only collect minimal information about the 2981 // instruction for its operand list. We have to assume that there is one 2982 // result, as we have no detailed info. A pattern which references the 2983 // null_frag operator is as-if no pattern were specified. Normally this 2984 // is from a multiclass expansion w/ a SDPatternOperator passed in as 2985 // null_frag. 2986 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) { 2987 std::vector<Record*> Results; 2988 std::vector<Record*> Operands; 2989 2990 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2991 2992 if (InstInfo.Operands.size() != 0) { 2993 if (InstInfo.Operands.NumDefs == 0) { 2994 // These produce no results 2995 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2996 Operands.push_back(InstInfo.Operands[j].Rec); 2997 } else { 2998 // Assume the first operand is the result. 2999 Results.push_back(InstInfo.Operands[0].Rec); 3000 3001 // The rest are inputs. 3002 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 3003 Operands.push_back(InstInfo.Operands[j].Rec); 3004 } 3005 } 3006 3007 // Create and insert the instruction. 3008 std::vector<Record*> ImpResults; 3009 Instructions.insert(std::make_pair(Instrs[i], 3010 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3011 continue; // no pattern. 3012 } 3013 3014 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 3015 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3016 3017 (void)DI; 3018 DEBUG(DI.getPattern()->dump()); 3019 } 3020 3021 // If we can, convert the instructions to be patterns that are matched! 3022 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II = 3023 Instructions.begin(), 3024 E = Instructions.end(); II != E; ++II) { 3025 DAGInstruction &TheInst = II->second; 3026 TreePattern *I = TheInst.getPattern(); 3027 if (!I) continue; // No pattern. 3028 3029 // FIXME: Assume only the first tree is the pattern. The others are clobber 3030 // nodes. 3031 TreePatternNode *Pattern = I->getTree(0); 3032 TreePatternNode *SrcPattern; 3033 if (Pattern->getOperator()->getName() == "set") { 3034 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3035 } else{ 3036 // Not a set (store or something?) 3037 SrcPattern = Pattern; 3038 } 3039 3040 Record *Instr = II->first; 3041 AddPatternToMatch(I, 3042 PatternToMatch(Instr, 3043 Instr->getValueAsListInit("Predicates"), 3044 SrcPattern, 3045 TheInst.getResultPattern(), 3046 TheInst.getImpResults(), 3047 Instr->getValueAsInt("AddedComplexity"), 3048 Instr->getID())); 3049 } 3050 } 3051 3052 3053 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3054 3055 static void FindNames(const TreePatternNode *P, 3056 std::map<std::string, NameRecord> &Names, 3057 TreePattern *PatternTop) { 3058 if (!P->getName().empty()) { 3059 NameRecord &Rec = Names[P->getName()]; 3060 // If this is the first instance of the name, remember the node. 3061 if (Rec.second++ == 0) 3062 Rec.first = P; 3063 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3064 PatternTop->error("repetition of value: $" + P->getName() + 3065 " where different uses have different types!"); 3066 } 3067 3068 if (!P->isLeaf()) { 3069 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3070 FindNames(P->getChild(i), Names, PatternTop); 3071 } 3072 } 3073 3074 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3075 const PatternToMatch &PTM) { 3076 // Do some sanity checking on the pattern we're about to match. 3077 std::string Reason; 3078 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3079 PrintWarning(Pattern->getRecord()->getLoc(), 3080 Twine("Pattern can never match: ") + Reason); 3081 return; 3082 } 3083 3084 // If the source pattern's root is a complex pattern, that complex pattern 3085 // must specify the nodes it can potentially match. 3086 if (const ComplexPattern *CP = 3087 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3088 if (CP->getRootNodes().empty()) 3089 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3090 " could match"); 3091 3092 3093 // Find all of the named values in the input and output, ensure they have the 3094 // same type. 3095 std::map<std::string, NameRecord> SrcNames, DstNames; 3096 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3097 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3098 3099 // Scan all of the named values in the destination pattern, rejecting them if 3100 // they don't exist in the input pattern. 3101 for (std::map<std::string, NameRecord>::iterator 3102 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 3103 if (SrcNames[I->first].first == nullptr) 3104 Pattern->error("Pattern has input without matching name in output: $" + 3105 I->first); 3106 } 3107 3108 // Scan all of the named values in the source pattern, rejecting them if the 3109 // name isn't used in the dest, and isn't used to tie two values together. 3110 for (std::map<std::string, NameRecord>::iterator 3111 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 3112 if (DstNames[I->first].first == nullptr && SrcNames[I->first].second == 1) 3113 Pattern->error("Pattern has dead named input: $" + I->first); 3114 3115 PatternsToMatch.push_back(PTM); 3116 } 3117 3118 3119 3120 void CodeGenDAGPatterns::InferInstructionFlags() { 3121 const std::vector<const CodeGenInstruction*> &Instructions = 3122 Target.getInstructionsByEnumValue(); 3123 3124 // First try to infer flags from the primary instruction pattern, if any. 3125 SmallVector<CodeGenInstruction*, 8> Revisit; 3126 unsigned Errors = 0; 3127 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3128 CodeGenInstruction &InstInfo = 3129 const_cast<CodeGenInstruction &>(*Instructions[i]); 3130 3131 // Get the primary instruction pattern. 3132 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3133 if (!Pattern) { 3134 if (InstInfo.hasUndefFlags()) 3135 Revisit.push_back(&InstInfo); 3136 continue; 3137 } 3138 InstAnalyzer PatInfo(*this); 3139 PatInfo.Analyze(Pattern); 3140 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3141 } 3142 3143 // Second, look for single-instruction patterns defined outside the 3144 // instruction. 3145 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3146 const PatternToMatch &PTM = *I; 3147 3148 // We can only infer from single-instruction patterns, otherwise we won't 3149 // know which instruction should get the flags. 3150 SmallVector<Record*, 8> PatInstrs; 3151 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3152 if (PatInstrs.size() != 1) 3153 continue; 3154 3155 // Get the single instruction. 3156 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3157 3158 // Only infer properties from the first pattern. We'll verify the others. 3159 if (InstInfo.InferredFrom) 3160 continue; 3161 3162 InstAnalyzer PatInfo(*this); 3163 PatInfo.Analyze(&PTM); 3164 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3165 } 3166 3167 if (Errors) 3168 PrintFatalError("pattern conflicts"); 3169 3170 // Revisit instructions with undefined flags and no pattern. 3171 if (Target.guessInstructionProperties()) { 3172 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 3173 CodeGenInstruction &InstInfo = *Revisit[i]; 3174 if (InstInfo.InferredFrom) 3175 continue; 3176 // The mayLoad and mayStore flags default to false. 3177 // Conservatively assume hasSideEffects if it wasn't explicit. 3178 if (InstInfo.hasSideEffects_Unset) 3179 InstInfo.hasSideEffects = true; 3180 } 3181 return; 3182 } 3183 3184 // Complain about any flags that are still undefined. 3185 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 3186 CodeGenInstruction &InstInfo = *Revisit[i]; 3187 if (InstInfo.InferredFrom) 3188 continue; 3189 if (InstInfo.hasSideEffects_Unset) 3190 PrintError(InstInfo.TheDef->getLoc(), 3191 "Can't infer hasSideEffects from patterns"); 3192 if (InstInfo.mayStore_Unset) 3193 PrintError(InstInfo.TheDef->getLoc(), 3194 "Can't infer mayStore from patterns"); 3195 if (InstInfo.mayLoad_Unset) 3196 PrintError(InstInfo.TheDef->getLoc(), 3197 "Can't infer mayLoad from patterns"); 3198 } 3199 } 3200 3201 3202 /// Verify instruction flags against pattern node properties. 3203 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3204 unsigned Errors = 0; 3205 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3206 const PatternToMatch &PTM = *I; 3207 SmallVector<Record*, 8> Instrs; 3208 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3209 if (Instrs.empty()) 3210 continue; 3211 3212 // Count the number of instructions with each flag set. 3213 unsigned NumSideEffects = 0; 3214 unsigned NumStores = 0; 3215 unsigned NumLoads = 0; 3216 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 3217 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 3218 NumSideEffects += InstInfo.hasSideEffects; 3219 NumStores += InstInfo.mayStore; 3220 NumLoads += InstInfo.mayLoad; 3221 } 3222 3223 // Analyze the source pattern. 3224 InstAnalyzer PatInfo(*this); 3225 PatInfo.Analyze(&PTM); 3226 3227 // Collect error messages. 3228 SmallVector<std::string, 4> Msgs; 3229 3230 // Check for missing flags in the output. 3231 // Permit extra flags for now at least. 3232 if (PatInfo.hasSideEffects && !NumSideEffects) 3233 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3234 3235 // Don't verify store flags on instructions with side effects. At least for 3236 // intrinsics, side effects implies mayStore. 3237 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3238 Msgs.push_back("pattern may store, but mayStore isn't set"); 3239 3240 // Similarly, mayStore implies mayLoad on intrinsics. 3241 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3242 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3243 3244 // Print error messages. 3245 if (Msgs.empty()) 3246 continue; 3247 ++Errors; 3248 3249 for (unsigned i = 0, e = Msgs.size(); i != e; ++i) 3250 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + 3251 (Instrs.size() == 1 ? 3252 "instruction" : "output instructions")); 3253 // Provide the location of the relevant instruction definitions. 3254 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 3255 if (Instrs[i] != PTM.getSrcRecord()) 3256 PrintError(Instrs[i]->getLoc(), "defined here"); 3257 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 3258 if (InstInfo.InferredFrom && 3259 InstInfo.InferredFrom != InstInfo.TheDef && 3260 InstInfo.InferredFrom != PTM.getSrcRecord()) 3261 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); 3262 } 3263 } 3264 if (Errors) 3265 PrintFatalError("Errors in DAG patterns"); 3266 } 3267 3268 /// Given a pattern result with an unresolved type, see if we can find one 3269 /// instruction with an unresolved result type. Force this result type to an 3270 /// arbitrary element if it's possible types to converge results. 3271 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3272 if (N->isLeaf()) 3273 return false; 3274 3275 // Analyze children. 3276 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3277 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3278 return true; 3279 3280 if (!N->getOperator()->isSubClassOf("Instruction")) 3281 return false; 3282 3283 // If this type is already concrete or completely unknown we can't do 3284 // anything. 3285 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3286 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3287 continue; 3288 3289 // Otherwise, force its type to the first possibility (an arbitrary choice). 3290 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3291 return true; 3292 } 3293 3294 return false; 3295 } 3296 3297 void CodeGenDAGPatterns::ParsePatterns() { 3298 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3299 3300 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 3301 Record *CurPattern = Patterns[i]; 3302 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3303 3304 // If the pattern references the null_frag, there's nothing to do. 3305 if (hasNullFragReference(Tree)) 3306 continue; 3307 3308 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3309 3310 // Inline pattern fragments into it. 3311 Pattern->InlinePatternFragments(); 3312 3313 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3314 if (LI->getSize() == 0) continue; // no pattern. 3315 3316 // Parse the instruction. 3317 TreePattern Result(CurPattern, LI, false, *this); 3318 3319 // Inline pattern fragments into it. 3320 Result.InlinePatternFragments(); 3321 3322 if (Result.getNumTrees() != 1) 3323 Result.error("Cannot handle instructions producing instructions " 3324 "with temporaries yet!"); 3325 3326 bool IterateInference; 3327 bool InferredAllPatternTypes, InferredAllResultTypes; 3328 do { 3329 // Infer as many types as possible. If we cannot infer all of them, we 3330 // can never do anything with this pattern: report it to the user. 3331 InferredAllPatternTypes = 3332 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3333 3334 // Infer as many types as possible. If we cannot infer all of them, we 3335 // can never do anything with this pattern: report it to the user. 3336 InferredAllResultTypes = 3337 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3338 3339 IterateInference = false; 3340 3341 // Apply the type of the result to the source pattern. This helps us 3342 // resolve cases where the input type is known to be a pointer type (which 3343 // is considered resolved), but the result knows it needs to be 32- or 3344 // 64-bits. Infer the other way for good measure. 3345 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3346 Pattern->getTree(0)->getNumTypes()); 3347 i != e; ++i) { 3348 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3349 i, Result.getTree(0)->getExtType(i), Result); 3350 IterateInference |= Result.getTree(0)->UpdateNodeType( 3351 i, Pattern->getTree(0)->getExtType(i), Result); 3352 } 3353 3354 // If our iteration has converged and the input pattern's types are fully 3355 // resolved but the result pattern is not fully resolved, we may have a 3356 // situation where we have two instructions in the result pattern and 3357 // the instructions require a common register class, but don't care about 3358 // what actual MVT is used. This is actually a bug in our modelling: 3359 // output patterns should have register classes, not MVTs. 3360 // 3361 // In any case, to handle this, we just go through and disambiguate some 3362 // arbitrary types to the result pattern's nodes. 3363 if (!IterateInference && InferredAllPatternTypes && 3364 !InferredAllResultTypes) 3365 IterateInference = 3366 ForceArbitraryInstResultType(Result.getTree(0), Result); 3367 } while (IterateInference); 3368 3369 // Verify that we inferred enough types that we can do something with the 3370 // pattern and result. If these fire the user has to add type casts. 3371 if (!InferredAllPatternTypes) 3372 Pattern->error("Could not infer all types in pattern!"); 3373 if (!InferredAllResultTypes) { 3374 Pattern->dump(); 3375 Result.error("Could not infer all types in pattern result!"); 3376 } 3377 3378 // Validate that the input pattern is correct. 3379 std::map<std::string, TreePatternNode*> InstInputs; 3380 std::map<std::string, TreePatternNode*> InstResults; 3381 std::vector<Record*> InstImpResults; 3382 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3383 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3384 InstInputs, InstResults, 3385 InstImpResults); 3386 3387 // Promote the xform function to be an explicit node if set. 3388 TreePatternNode *DstPattern = Result.getOnlyTree(); 3389 std::vector<TreePatternNode*> ResultNodeOperands; 3390 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3391 TreePatternNode *OpNode = DstPattern->getChild(ii); 3392 if (Record *Xform = OpNode->getTransformFn()) { 3393 OpNode->setTransformFn(nullptr); 3394 std::vector<TreePatternNode*> Children; 3395 Children.push_back(OpNode); 3396 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3397 } 3398 ResultNodeOperands.push_back(OpNode); 3399 } 3400 DstPattern = Result.getOnlyTree(); 3401 if (!DstPattern->isLeaf()) 3402 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3403 ResultNodeOperands, 3404 DstPattern->getNumTypes()); 3405 3406 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3407 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3408 3409 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3410 Temp.InferAllTypes(); 3411 3412 3413 AddPatternToMatch(Pattern, 3414 PatternToMatch(CurPattern, 3415 CurPattern->getValueAsListInit("Predicates"), 3416 Pattern->getTree(0), 3417 Temp.getOnlyTree(), InstImpResults, 3418 CurPattern->getValueAsInt("AddedComplexity"), 3419 CurPattern->getID())); 3420 } 3421 } 3422 3423 /// CombineChildVariants - Given a bunch of permutations of each child of the 3424 /// 'operator' node, put them together in all possible ways. 3425 static void CombineChildVariants(TreePatternNode *Orig, 3426 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3427 std::vector<TreePatternNode*> &OutVariants, 3428 CodeGenDAGPatterns &CDP, 3429 const MultipleUseVarSet &DepVars) { 3430 // Make sure that each operand has at least one variant to choose from. 3431 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3432 if (ChildVariants[i].empty()) 3433 return; 3434 3435 // The end result is an all-pairs construction of the resultant pattern. 3436 std::vector<unsigned> Idxs; 3437 Idxs.resize(ChildVariants.size()); 3438 bool NotDone; 3439 do { 3440 #ifndef NDEBUG 3441 DEBUG(if (!Idxs.empty()) { 3442 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3443 for (unsigned i = 0; i < Idxs.size(); ++i) { 3444 errs() << Idxs[i] << " "; 3445 } 3446 errs() << "]\n"; 3447 }); 3448 #endif 3449 // Create the variant and add it to the output list. 3450 std::vector<TreePatternNode*> NewChildren; 3451 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3452 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3453 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3454 Orig->getNumTypes()); 3455 3456 // Copy over properties. 3457 R->setName(Orig->getName()); 3458 R->setPredicateFns(Orig->getPredicateFns()); 3459 R->setTransformFn(Orig->getTransformFn()); 3460 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3461 R->setType(i, Orig->getExtType(i)); 3462 3463 // If this pattern cannot match, do not include it as a variant. 3464 std::string ErrString; 3465 if (!R->canPatternMatch(ErrString, CDP)) { 3466 delete R; 3467 } else { 3468 bool AlreadyExists = false; 3469 3470 // Scan to see if this pattern has already been emitted. We can get 3471 // duplication due to things like commuting: 3472 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3473 // which are the same pattern. Ignore the dups. 3474 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3475 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3476 AlreadyExists = true; 3477 break; 3478 } 3479 3480 if (AlreadyExists) 3481 delete R; 3482 else 3483 OutVariants.push_back(R); 3484 } 3485 3486 // Increment indices to the next permutation by incrementing the 3487 // indicies from last index backward, e.g., generate the sequence 3488 // [0, 0], [0, 1], [1, 0], [1, 1]. 3489 int IdxsIdx; 3490 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3491 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3492 Idxs[IdxsIdx] = 0; 3493 else 3494 break; 3495 } 3496 NotDone = (IdxsIdx >= 0); 3497 } while (NotDone); 3498 } 3499 3500 /// CombineChildVariants - A helper function for binary operators. 3501 /// 3502 static void CombineChildVariants(TreePatternNode *Orig, 3503 const std::vector<TreePatternNode*> &LHS, 3504 const std::vector<TreePatternNode*> &RHS, 3505 std::vector<TreePatternNode*> &OutVariants, 3506 CodeGenDAGPatterns &CDP, 3507 const MultipleUseVarSet &DepVars) { 3508 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3509 ChildVariants.push_back(LHS); 3510 ChildVariants.push_back(RHS); 3511 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3512 } 3513 3514 3515 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3516 std::vector<TreePatternNode *> &Children) { 3517 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3518 Record *Operator = N->getOperator(); 3519 3520 // Only permit raw nodes. 3521 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3522 N->getTransformFn()) { 3523 Children.push_back(N); 3524 return; 3525 } 3526 3527 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3528 Children.push_back(N->getChild(0)); 3529 else 3530 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3531 3532 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3533 Children.push_back(N->getChild(1)); 3534 else 3535 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3536 } 3537 3538 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3539 /// the (potentially recursive) pattern by using algebraic laws. 3540 /// 3541 static void GenerateVariantsOf(TreePatternNode *N, 3542 std::vector<TreePatternNode*> &OutVariants, 3543 CodeGenDAGPatterns &CDP, 3544 const MultipleUseVarSet &DepVars) { 3545 // We cannot permute leaves or ComplexPattern uses. 3546 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3547 OutVariants.push_back(N); 3548 return; 3549 } 3550 3551 // Look up interesting info about the node. 3552 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3553 3554 // If this node is associative, re-associate. 3555 if (NodeInfo.hasProperty(SDNPAssociative)) { 3556 // Re-associate by pulling together all of the linked operators 3557 std::vector<TreePatternNode*> MaximalChildren; 3558 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3559 3560 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3561 // permutations. 3562 if (MaximalChildren.size() == 3) { 3563 // Find the variants of all of our maximal children. 3564 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3565 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3566 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3567 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3568 3569 // There are only two ways we can permute the tree: 3570 // (A op B) op C and A op (B op C) 3571 // Within these forms, we can also permute A/B/C. 3572 3573 // Generate legal pair permutations of A/B/C. 3574 std::vector<TreePatternNode*> ABVariants; 3575 std::vector<TreePatternNode*> BAVariants; 3576 std::vector<TreePatternNode*> ACVariants; 3577 std::vector<TreePatternNode*> CAVariants; 3578 std::vector<TreePatternNode*> BCVariants; 3579 std::vector<TreePatternNode*> CBVariants; 3580 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3581 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3582 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3583 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3584 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3585 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3586 3587 // Combine those into the result: (x op x) op x 3588 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3589 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3590 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3591 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3592 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3593 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3594 3595 // Combine those into the result: x op (x op x) 3596 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3597 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3598 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3599 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3600 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3601 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3602 return; 3603 } 3604 } 3605 3606 // Compute permutations of all children. 3607 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3608 ChildVariants.resize(N->getNumChildren()); 3609 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3610 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3611 3612 // Build all permutations based on how the children were formed. 3613 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3614 3615 // If this node is commutative, consider the commuted order. 3616 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3617 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3618 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3619 "Commutative but doesn't have 2 children!"); 3620 // Don't count children which are actually register references. 3621 unsigned NC = 0; 3622 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3623 TreePatternNode *Child = N->getChild(i); 3624 if (Child->isLeaf()) 3625 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3626 Record *RR = DI->getDef(); 3627 if (RR->isSubClassOf("Register")) 3628 continue; 3629 } 3630 NC++; 3631 } 3632 // Consider the commuted order. 3633 if (isCommIntrinsic) { 3634 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3635 // operands are the commutative operands, and there might be more operands 3636 // after those. 3637 assert(NC >= 3 && 3638 "Commutative intrinsic should have at least 3 childrean!"); 3639 std::vector<std::vector<TreePatternNode*> > Variants; 3640 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3641 Variants.push_back(ChildVariants[2]); 3642 Variants.push_back(ChildVariants[1]); 3643 for (unsigned i = 3; i != NC; ++i) 3644 Variants.push_back(ChildVariants[i]); 3645 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3646 } else if (NC == 2) 3647 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3648 OutVariants, CDP, DepVars); 3649 } 3650 } 3651 3652 3653 // GenerateVariants - Generate variants. For example, commutative patterns can 3654 // match multiple ways. Add them to PatternsToMatch as well. 3655 void CodeGenDAGPatterns::GenerateVariants() { 3656 DEBUG(errs() << "Generating instruction variants.\n"); 3657 3658 // Loop over all of the patterns we've collected, checking to see if we can 3659 // generate variants of the instruction, through the exploitation of 3660 // identities. This permits the target to provide aggressive matching without 3661 // the .td file having to contain tons of variants of instructions. 3662 // 3663 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3664 // intentionally do not reconsider these. Any variants of added patterns have 3665 // already been added. 3666 // 3667 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3668 MultipleUseVarSet DepVars; 3669 std::vector<TreePatternNode*> Variants; 3670 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3671 DEBUG(errs() << "Dependent/multiply used variables: "); 3672 DEBUG(DumpDepVars(DepVars)); 3673 DEBUG(errs() << "\n"); 3674 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3675 DepVars); 3676 3677 assert(!Variants.empty() && "Must create at least original variant!"); 3678 Variants.erase(Variants.begin()); // Remove the original pattern. 3679 3680 if (Variants.empty()) // No variants for this pattern. 3681 continue; 3682 3683 DEBUG(errs() << "FOUND VARIANTS OF: "; 3684 PatternsToMatch[i].getSrcPattern()->dump(); 3685 errs() << "\n"); 3686 3687 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3688 TreePatternNode *Variant = Variants[v]; 3689 3690 DEBUG(errs() << " VAR#" << v << ": "; 3691 Variant->dump(); 3692 errs() << "\n"); 3693 3694 // Scan to see if an instruction or explicit pattern already matches this. 3695 bool AlreadyExists = false; 3696 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3697 // Skip if the top level predicates do not match. 3698 if (PatternsToMatch[i].getPredicates() != 3699 PatternsToMatch[p].getPredicates()) 3700 continue; 3701 // Check to see if this variant already exists. 3702 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3703 DepVars)) { 3704 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3705 AlreadyExists = true; 3706 break; 3707 } 3708 } 3709 // If we already have it, ignore the variant. 3710 if (AlreadyExists) continue; 3711 3712 // Otherwise, add it to the list of patterns we have. 3713 PatternsToMatch. 3714 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3715 PatternsToMatch[i].getPredicates(), 3716 Variant, PatternsToMatch[i].getDstPattern(), 3717 PatternsToMatch[i].getDstRegs(), 3718 PatternsToMatch[i].getAddedComplexity(), 3719 Record::getNewUID())); 3720 } 3721 3722 DEBUG(errs() << "\n"); 3723 } 3724 } 3725