1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "CodeGenInstruction.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/TypeSize.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include <algorithm> 30 #include <cstdio> 31 #include <iterator> 32 #include <set> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "dag-patterns" 36 37 static inline bool isIntegerOrPtr(MVT VT) { 38 return VT.isInteger() || VT == MVT::iPTR; 39 } 40 static inline bool isFloatingPoint(MVT VT) { 41 return VT.isFloatingPoint(); 42 } 43 static inline bool isVector(MVT VT) { 44 return VT.isVector(); 45 } 46 static inline bool isScalar(MVT VT) { 47 return !VT.isVector(); 48 } 49 static inline bool isScalarInteger(MVT VT) { 50 return VT.isScalarInteger(); 51 } 52 53 template <typename Predicate> 54 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 55 bool Erased = false; 56 // It is ok to iterate over MachineValueTypeSet and remove elements from it 57 // at the same time. 58 for (MVT T : S) { 59 if (!P(T)) 60 continue; 61 Erased = true; 62 S.erase(T); 63 } 64 return Erased; 65 } 66 67 void MachineValueTypeSet::writeToStream(raw_ostream &OS) const { 68 SmallVector<MVT, 4> Types(begin(), end()); 69 array_pod_sort(Types.begin(), Types.end()); 70 71 OS << '['; 72 ListSeparator LS(" "); 73 for (const MVT &T : Types) 74 OS << LS << ValueTypeByHwMode::getMVTName(T); 75 OS << ']'; 76 } 77 78 // --- TypeSetByHwMode 79 80 // This is a parameterized type-set class. For each mode there is a list 81 // of types that are currently possible for a given tree node. Type 82 // inference will apply to each mode separately. 83 84 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 85 for (const ValueTypeByHwMode &VVT : VTList) { 86 insert(VVT); 87 AddrSpaces.push_back(VVT.PtrAddrSpace); 88 } 89 } 90 91 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 92 for (const auto &I : *this) { 93 if (I.second.size() > 1) 94 return false; 95 if (!AllowEmpty && I.second.empty()) 96 return false; 97 } 98 return true; 99 } 100 101 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 102 assert(isValueTypeByHwMode(true) && 103 "The type set has multiple types for at least one HW mode"); 104 ValueTypeByHwMode VVT; 105 auto ASI = AddrSpaces.begin(); 106 107 for (const auto &I : *this) { 108 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 109 VVT.getOrCreateTypeForMode(I.first, T); 110 if (ASI != AddrSpaces.end()) 111 VVT.PtrAddrSpace = *ASI++; 112 } 113 return VVT; 114 } 115 116 bool TypeSetByHwMode::isPossible() const { 117 for (const auto &I : *this) 118 if (!I.second.empty()) 119 return true; 120 return false; 121 } 122 123 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 124 bool Changed = false; 125 bool ContainsDefault = false; 126 MVT DT = MVT::Other; 127 128 for (const auto &P : VVT) { 129 unsigned M = P.first; 130 // Make sure there exists a set for each specific mode from VVT. 131 Changed |= getOrCreate(M).insert(P.second).second; 132 // Cache VVT's default mode. 133 if (DefaultMode == M) { 134 ContainsDefault = true; 135 DT = P.second; 136 } 137 } 138 139 // If VVT has a default mode, add the corresponding type to all 140 // modes in "this" that do not exist in VVT. 141 if (ContainsDefault) 142 for (auto &I : *this) 143 if (!VVT.hasMode(I.first)) 144 Changed |= I.second.insert(DT).second; 145 146 return Changed; 147 } 148 149 // Constrain the type set to be the intersection with VTS. 150 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 151 bool Changed = false; 152 if (hasDefault()) { 153 for (const auto &I : VTS) { 154 unsigned M = I.first; 155 if (M == DefaultMode || hasMode(M)) 156 continue; 157 Map.insert({M, Map.at(DefaultMode)}); 158 Changed = true; 159 } 160 } 161 162 for (auto &I : *this) { 163 unsigned M = I.first; 164 SetType &S = I.second; 165 if (VTS.hasMode(M) || VTS.hasDefault()) { 166 Changed |= intersect(I.second, VTS.get(M)); 167 } else if (!S.empty()) { 168 S.clear(); 169 Changed = true; 170 } 171 } 172 return Changed; 173 } 174 175 template <typename Predicate> 176 bool TypeSetByHwMode::constrain(Predicate P) { 177 bool Changed = false; 178 for (auto &I : *this) 179 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 180 return Changed; 181 } 182 183 template <typename Predicate> 184 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 185 assert(empty()); 186 for (const auto &I : VTS) { 187 SetType &S = getOrCreate(I.first); 188 for (auto J : I.second) 189 if (P(J)) 190 S.insert(J); 191 } 192 return !empty(); 193 } 194 195 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 196 SmallVector<unsigned, 4> Modes; 197 Modes.reserve(Map.size()); 198 199 for (const auto &I : *this) 200 Modes.push_back(I.first); 201 if (Modes.empty()) { 202 OS << "{}"; 203 return; 204 } 205 array_pod_sort(Modes.begin(), Modes.end()); 206 207 OS << '{'; 208 for (unsigned M : Modes) { 209 OS << ' ' << getModeName(M) << ':'; 210 get(M).writeToStream(OS); 211 } 212 OS << " }"; 213 } 214 215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 216 // The isSimple call is much quicker than hasDefault - check this first. 217 bool IsSimple = isSimple(); 218 bool VTSIsSimple = VTS.isSimple(); 219 if (IsSimple && VTSIsSimple) 220 return *begin() == *VTS.begin(); 221 222 // Speedup: We have a default if the set is simple. 223 bool HaveDefault = IsSimple || hasDefault(); 224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 225 if (HaveDefault != VTSHaveDefault) 226 return false; 227 228 SmallSet<unsigned, 4> Modes; 229 for (auto &I : *this) 230 Modes.insert(I.first); 231 for (const auto &I : VTS) 232 Modes.insert(I.first); 233 234 if (HaveDefault) { 235 // Both sets have default mode. 236 for (unsigned M : Modes) { 237 if (get(M) != VTS.get(M)) 238 return false; 239 } 240 } else { 241 // Neither set has default mode. 242 for (unsigned M : Modes) { 243 // If there is no default mode, an empty set is equivalent to not having 244 // the corresponding mode. 245 bool NoModeThis = !hasMode(M) || get(M).empty(); 246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 247 if (NoModeThis != NoModeVTS) 248 return false; 249 if (!NoModeThis) 250 if (get(M) != VTS.get(M)) 251 return false; 252 } 253 } 254 255 return true; 256 } 257 258 namespace llvm { 259 raw_ostream &operator<<(raw_ostream &OS, const MachineValueTypeSet &T) { 260 T.writeToStream(OS); 261 return OS; 262 } 263 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 264 T.writeToStream(OS); 265 return OS; 266 } 267 } 268 269 LLVM_DUMP_METHOD 270 void TypeSetByHwMode::dump() const { 271 dbgs() << *this << '\n'; 272 } 273 274 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 275 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 276 // Complement of In. 277 auto CompIn = [&In](MVT T) -> bool { return !In.count(T); }; 278 279 if (OutP == InP) 280 return berase_if(Out, CompIn); 281 282 // Compute the intersection of scalars separately to account for only 283 // one set containing iPTR. 284 // The intersection of iPTR with a set of integer scalar types that does not 285 // include iPTR will result in the most specific scalar type: 286 // - iPTR is more specific than any set with two elements or more 287 // - iPTR is less specific than any single integer scalar type. 288 // For example 289 // { iPTR } * { i32 } -> { i32 } 290 // { iPTR } * { i32 i64 } -> { iPTR } 291 // and 292 // { iPTR i32 } * { i32 } -> { i32 } 293 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 294 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 295 296 // Let In' = elements only in In, Out' = elements only in Out, and 297 // IO = elements common to both. Normally IO would be returned as the result 298 // of the intersection, but we need to account for iPTR being a "wildcard" of 299 // sorts. Since elements in IO are those that match both sets exactly, they 300 // will all belong to the output. If any of the "leftovers" (i.e. In' or 301 // Out') contain iPTR, it means that the other set doesn't have it, but it 302 // could have (1) a more specific type, or (2) a set of types that is less 303 // specific. The "leftovers" from the other set is what we want to examine 304 // more closely. 305 306 auto subtract = [](const SetType &A, const SetType &B) { 307 SetType Diff = A; 308 berase_if(Diff, [&B](MVT T) { return B.count(T); }); 309 return Diff; 310 }; 311 312 if (InP) { 313 SetType OutOnly = subtract(Out, In); 314 if (OutOnly.empty()) { 315 // This means that Out \subset In, so no change to Out. 316 return false; 317 } 318 unsigned NumI = llvm::count_if(OutOnly, isScalarInteger); 319 if (NumI == 1 && OutOnly.size() == 1) { 320 // There is only one element in Out', and it happens to be a scalar 321 // integer that should be kept as a match for iPTR in In. 322 return false; 323 } 324 berase_if(Out, CompIn); 325 if (NumI == 1) { 326 // Replace the iPTR with the leftover scalar integer. 327 Out.insert(*llvm::find_if(OutOnly, isScalarInteger)); 328 } else if (NumI > 1) { 329 Out.insert(MVT::iPTR); 330 } 331 return true; 332 } 333 334 // OutP == true 335 SetType InOnly = subtract(In, Out); 336 unsigned SizeOut = Out.size(); 337 berase_if(Out, CompIn); // This will remove at least the iPTR. 338 unsigned NumI = llvm::count_if(InOnly, isScalarInteger); 339 if (NumI == 0) { 340 // iPTR deleted from Out. 341 return true; 342 } 343 if (NumI == 1) { 344 // Replace the iPTR with the leftover scalar integer. 345 Out.insert(*llvm::find_if(InOnly, isScalarInteger)); 346 return true; 347 } 348 349 // NumI > 1: Keep the iPTR in Out. 350 Out.insert(MVT::iPTR); 351 // If iPTR was the only element initially removed from Out, then Out 352 // has not changed. 353 return SizeOut != Out.size(); 354 } 355 356 bool TypeSetByHwMode::validate() const { 357 #ifndef NDEBUG 358 if (empty()) 359 return true; 360 bool AllEmpty = true; 361 for (const auto &I : *this) 362 AllEmpty &= I.second.empty(); 363 return !AllEmpty; 364 #endif 365 return true; 366 } 367 368 // --- TypeInfer 369 370 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 371 const TypeSetByHwMode &In) { 372 ValidateOnExit _1(Out, *this); 373 In.validate(); 374 if (In.empty() || Out == In || TP.hasError()) 375 return false; 376 if (Out.empty()) { 377 Out = In; 378 return true; 379 } 380 381 bool Changed = Out.constrain(In); 382 if (Changed && Out.empty()) 383 TP.error("Type contradiction"); 384 385 return Changed; 386 } 387 388 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 389 ValidateOnExit _1(Out, *this); 390 if (TP.hasError()) 391 return false; 392 assert(!Out.empty() && "cannot pick from an empty set"); 393 394 bool Changed = false; 395 for (auto &I : Out) { 396 TypeSetByHwMode::SetType &S = I.second; 397 if (S.size() <= 1) 398 continue; 399 MVT T = *S.begin(); // Pick the first element. 400 S.clear(); 401 S.insert(T); 402 Changed = true; 403 } 404 return Changed; 405 } 406 407 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 408 ValidateOnExit _1(Out, *this); 409 if (TP.hasError()) 410 return false; 411 if (!Out.empty()) 412 return Out.constrain(isIntegerOrPtr); 413 414 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 415 } 416 417 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 418 ValidateOnExit _1(Out, *this); 419 if (TP.hasError()) 420 return false; 421 if (!Out.empty()) 422 return Out.constrain(isFloatingPoint); 423 424 return Out.assign_if(getLegalTypes(), isFloatingPoint); 425 } 426 427 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 428 ValidateOnExit _1(Out, *this); 429 if (TP.hasError()) 430 return false; 431 if (!Out.empty()) 432 return Out.constrain(isScalar); 433 434 return Out.assign_if(getLegalTypes(), isScalar); 435 } 436 437 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 438 ValidateOnExit _1(Out, *this); 439 if (TP.hasError()) 440 return false; 441 if (!Out.empty()) 442 return Out.constrain(isVector); 443 444 return Out.assign_if(getLegalTypes(), isVector); 445 } 446 447 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 448 ValidateOnExit _1(Out, *this); 449 if (TP.hasError() || !Out.empty()) 450 return false; 451 452 Out = getLegalTypes(); 453 return true; 454 } 455 456 template <typename Iter, typename Pred, typename Less> 457 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 458 if (B == E) 459 return E; 460 Iter Min = E; 461 for (Iter I = B; I != E; ++I) { 462 if (!P(*I)) 463 continue; 464 if (Min == E || L(*I, *Min)) 465 Min = I; 466 } 467 return Min; 468 } 469 470 template <typename Iter, typename Pred, typename Less> 471 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 472 if (B == E) 473 return E; 474 Iter Max = E; 475 for (Iter I = B; I != E; ++I) { 476 if (!P(*I)) 477 continue; 478 if (Max == E || L(*Max, *I)) 479 Max = I; 480 } 481 return Max; 482 } 483 484 /// Make sure that for each type in Small, there exists a larger type in Big. 485 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big, 486 bool SmallIsVT) { 487 ValidateOnExit _1(Small, *this), _2(Big, *this); 488 if (TP.hasError()) 489 return false; 490 bool Changed = false; 491 492 assert((!SmallIsVT || !Small.empty()) && 493 "Small should not be empty for SDTCisVTSmallerThanOp"); 494 495 if (Small.empty()) 496 Changed |= EnforceAny(Small); 497 if (Big.empty()) 498 Changed |= EnforceAny(Big); 499 500 assert(Small.hasDefault() && Big.hasDefault()); 501 502 SmallVector<unsigned, 4> Modes; 503 union_modes(Small, Big, Modes); 504 505 // 1. Only allow integer or floating point types and make sure that 506 // both sides are both integer or both floating point. 507 // 2. Make sure that either both sides have vector types, or neither 508 // of them does. 509 for (unsigned M : Modes) { 510 TypeSetByHwMode::SetType &S = Small.get(M); 511 TypeSetByHwMode::SetType &B = Big.get(M); 512 513 assert((!SmallIsVT || !S.empty()) && "Expected non-empty type"); 514 515 if (any_of(S, isIntegerOrPtr) && any_of(B, isIntegerOrPtr)) { 516 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 517 Changed |= berase_if(S, NotInt); 518 Changed |= berase_if(B, NotInt); 519 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 520 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 521 Changed |= berase_if(S, NotFP); 522 Changed |= berase_if(B, NotFP); 523 } else if (SmallIsVT && B.empty()) { 524 // B is empty and since S is a specific VT, it will never be empty. Don't 525 // report this as a change, just clear S and continue. This prevents an 526 // infinite loop. 527 S.clear(); 528 } else if (S.empty() || B.empty()) { 529 Changed = !S.empty() || !B.empty(); 530 S.clear(); 531 B.clear(); 532 } else { 533 TP.error("Incompatible types"); 534 return Changed; 535 } 536 537 if (none_of(S, isVector) || none_of(B, isVector)) { 538 Changed |= berase_if(S, isVector); 539 Changed |= berase_if(B, isVector); 540 } 541 } 542 543 auto LT = [](MVT A, MVT B) -> bool { 544 // Always treat non-scalable MVTs as smaller than scalable MVTs for the 545 // purposes of ordering. 546 auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(), 547 A.getSizeInBits().getKnownMinSize()); 548 auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(), 549 B.getSizeInBits().getKnownMinSize()); 550 return ASize < BSize; 551 }; 552 auto SameKindLE = [](MVT A, MVT B) -> bool { 553 // This function is used when removing elements: when a vector is compared 554 // to a non-vector or a scalable vector to any non-scalable MVT, it should 555 // return false (to avoid removal). 556 if (std::make_tuple(A.isVector(), A.isScalableVector()) != 557 std::make_tuple(B.isVector(), B.isScalableVector())) 558 return false; 559 560 return std::make_tuple(A.getScalarSizeInBits(), 561 A.getSizeInBits().getKnownMinSize()) <= 562 std::make_tuple(B.getScalarSizeInBits(), 563 B.getSizeInBits().getKnownMinSize()); 564 }; 565 566 for (unsigned M : Modes) { 567 TypeSetByHwMode::SetType &S = Small.get(M); 568 TypeSetByHwMode::SetType &B = Big.get(M); 569 // MinS = min scalar in Small, remove all scalars from Big that are 570 // smaller-or-equal than MinS. 571 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 572 if (MinS != S.end()) 573 Changed |= berase_if(B, std::bind(SameKindLE, 574 std::placeholders::_1, *MinS)); 575 576 // MaxS = max scalar in Big, remove all scalars from Small that are 577 // larger than MaxS. 578 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 579 if (MaxS != B.end()) 580 Changed |= berase_if(S, std::bind(SameKindLE, 581 *MaxS, std::placeholders::_1)); 582 583 // MinV = min vector in Small, remove all vectors from Big that are 584 // smaller-or-equal than MinV. 585 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 586 if (MinV != S.end()) 587 Changed |= berase_if(B, std::bind(SameKindLE, 588 std::placeholders::_1, *MinV)); 589 590 // MaxV = max vector in Big, remove all vectors from Small that are 591 // larger than MaxV. 592 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 593 if (MaxV != B.end()) 594 Changed |= berase_if(S, std::bind(SameKindLE, 595 *MaxV, std::placeholders::_1)); 596 } 597 598 return Changed; 599 } 600 601 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 602 /// for each type U in Elem, U is a scalar type. 603 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 604 /// type T in Vec, such that U is the element type of T. 605 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 606 TypeSetByHwMode &Elem) { 607 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 608 if (TP.hasError()) 609 return false; 610 bool Changed = false; 611 612 if (Vec.empty()) 613 Changed |= EnforceVector(Vec); 614 if (Elem.empty()) 615 Changed |= EnforceScalar(Elem); 616 617 SmallVector<unsigned, 4> Modes; 618 union_modes(Vec, Elem, Modes); 619 for (unsigned M : Modes) { 620 TypeSetByHwMode::SetType &V = Vec.get(M); 621 TypeSetByHwMode::SetType &E = Elem.get(M); 622 623 Changed |= berase_if(V, isScalar); // Scalar = !vector 624 Changed |= berase_if(E, isVector); // Vector = !scalar 625 assert(!V.empty() && !E.empty()); 626 627 MachineValueTypeSet VT, ST; 628 // Collect element types from the "vector" set. 629 for (MVT T : V) 630 VT.insert(T.getVectorElementType()); 631 // Collect scalar types from the "element" set. 632 for (MVT T : E) 633 ST.insert(T); 634 635 // Remove from V all (vector) types whose element type is not in S. 636 Changed |= berase_if(V, [&ST](MVT T) -> bool { 637 return !ST.count(T.getVectorElementType()); 638 }); 639 // Remove from E all (scalar) types, for which there is no corresponding 640 // type in V. 641 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 642 } 643 644 return Changed; 645 } 646 647 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 648 const ValueTypeByHwMode &VVT) { 649 TypeSetByHwMode Tmp(VVT); 650 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 651 return EnforceVectorEltTypeIs(Vec, Tmp); 652 } 653 654 /// Ensure that for each type T in Sub, T is a vector type, and there 655 /// exists a type U in Vec such that U is a vector type with the same 656 /// element type as T and at least as many elements as T. 657 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 658 TypeSetByHwMode &Sub) { 659 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 660 if (TP.hasError()) 661 return false; 662 663 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 664 auto IsSubVec = [](MVT B, MVT P) -> bool { 665 if (!B.isVector() || !P.isVector()) 666 return false; 667 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 668 // but until there are obvious use-cases for this, keep the 669 // types separate. 670 if (B.isScalableVector() != P.isScalableVector()) 671 return false; 672 if (B.getVectorElementType() != P.getVectorElementType()) 673 return false; 674 return B.getVectorMinNumElements() < P.getVectorMinNumElements(); 675 }; 676 677 /// Return true if S has no element (vector type) that T is a sub-vector of, 678 /// i.e. has the same element type as T and more elements. 679 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 680 for (auto I : S) 681 if (IsSubVec(T, I)) 682 return false; 683 return true; 684 }; 685 686 /// Return true if S has no element (vector type) that T is a super-vector 687 /// of, i.e. has the same element type as T and fewer elements. 688 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 689 for (auto I : S) 690 if (IsSubVec(I, T)) 691 return false; 692 return true; 693 }; 694 695 bool Changed = false; 696 697 if (Vec.empty()) 698 Changed |= EnforceVector(Vec); 699 if (Sub.empty()) 700 Changed |= EnforceVector(Sub); 701 702 SmallVector<unsigned, 4> Modes; 703 union_modes(Vec, Sub, Modes); 704 for (unsigned M : Modes) { 705 TypeSetByHwMode::SetType &S = Sub.get(M); 706 TypeSetByHwMode::SetType &V = Vec.get(M); 707 708 Changed |= berase_if(S, isScalar); 709 710 // Erase all types from S that are not sub-vectors of a type in V. 711 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 712 713 // Erase all types from V that are not super-vectors of a type in S. 714 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 715 } 716 717 return Changed; 718 } 719 720 /// 1. Ensure that V has a scalar type iff W has a scalar type. 721 /// 2. Ensure that for each vector type T in V, there exists a vector 722 /// type U in W, such that T and U have the same number of elements. 723 /// 3. Ensure that for each vector type U in W, there exists a vector 724 /// type T in V, such that T and U have the same number of elements 725 /// (reverse of 2). 726 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 727 ValidateOnExit _1(V, *this), _2(W, *this); 728 if (TP.hasError()) 729 return false; 730 731 bool Changed = false; 732 if (V.empty()) 733 Changed |= EnforceAny(V); 734 if (W.empty()) 735 Changed |= EnforceAny(W); 736 737 // An actual vector type cannot have 0 elements, so we can treat scalars 738 // as zero-length vectors. This way both vectors and scalars can be 739 // processed identically. 740 auto NoLength = [](const SmallDenseSet<ElementCount> &Lengths, 741 MVT T) -> bool { 742 return !Lengths.count(T.isVector() ? T.getVectorElementCount() 743 : ElementCount::getNull()); 744 }; 745 746 SmallVector<unsigned, 4> Modes; 747 union_modes(V, W, Modes); 748 for (unsigned M : Modes) { 749 TypeSetByHwMode::SetType &VS = V.get(M); 750 TypeSetByHwMode::SetType &WS = W.get(M); 751 752 SmallDenseSet<ElementCount> VN, WN; 753 for (MVT T : VS) 754 VN.insert(T.isVector() ? T.getVectorElementCount() 755 : ElementCount::getNull()); 756 for (MVT T : WS) 757 WN.insert(T.isVector() ? T.getVectorElementCount() 758 : ElementCount::getNull()); 759 760 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 761 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 762 } 763 return Changed; 764 } 765 766 namespace { 767 struct TypeSizeComparator { 768 bool operator()(const TypeSize &LHS, const TypeSize &RHS) const { 769 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 770 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 771 } 772 }; 773 } // end anonymous namespace 774 775 /// 1. Ensure that for each type T in A, there exists a type U in B, 776 /// such that T and U have equal size in bits. 777 /// 2. Ensure that for each type U in B, there exists a type T in A 778 /// such that T and U have equal size in bits (reverse of 1). 779 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 780 ValidateOnExit _1(A, *this), _2(B, *this); 781 if (TP.hasError()) 782 return false; 783 bool Changed = false; 784 if (A.empty()) 785 Changed |= EnforceAny(A); 786 if (B.empty()) 787 Changed |= EnforceAny(B); 788 789 typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet; 790 791 auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool { 792 return !Sizes.count(T.getSizeInBits()); 793 }; 794 795 SmallVector<unsigned, 4> Modes; 796 union_modes(A, B, Modes); 797 for (unsigned M : Modes) { 798 TypeSetByHwMode::SetType &AS = A.get(M); 799 TypeSetByHwMode::SetType &BS = B.get(M); 800 TypeSizeSet AN, BN; 801 802 for (MVT T : AS) 803 AN.insert(T.getSizeInBits()); 804 for (MVT T : BS) 805 BN.insert(T.getSizeInBits()); 806 807 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 808 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 809 } 810 811 return Changed; 812 } 813 814 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 815 ValidateOnExit _1(VTS, *this); 816 const TypeSetByHwMode &Legal = getLegalTypes(); 817 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 818 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 819 820 for (auto &I : VTS) 821 expandOverloads(I.second, LegalTypes); 822 } 823 824 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 825 const TypeSetByHwMode::SetType &Legal) { 826 std::set<MVT> Ovs; 827 for (MVT T : Out) { 828 if (!T.isOverloaded()) 829 continue; 830 831 Ovs.insert(T); 832 // MachineValueTypeSet allows iteration and erasing. 833 Out.erase(T); 834 } 835 836 for (MVT Ov : Ovs) { 837 switch (Ov.SimpleTy) { 838 case MVT::iPTRAny: 839 Out.insert(MVT::iPTR); 840 return; 841 case MVT::iAny: 842 for (MVT T : MVT::integer_valuetypes()) 843 if (Legal.count(T)) 844 Out.insert(T); 845 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 846 if (Legal.count(T)) 847 Out.insert(T); 848 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 849 if (Legal.count(T)) 850 Out.insert(T); 851 return; 852 case MVT::fAny: 853 for (MVT T : MVT::fp_valuetypes()) 854 if (Legal.count(T)) 855 Out.insert(T); 856 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 857 if (Legal.count(T)) 858 Out.insert(T); 859 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 860 if (Legal.count(T)) 861 Out.insert(T); 862 return; 863 case MVT::vAny: 864 for (MVT T : MVT::vector_valuetypes()) 865 if (Legal.count(T)) 866 Out.insert(T); 867 return; 868 case MVT::Any: 869 for (MVT T : MVT::all_valuetypes()) 870 if (Legal.count(T)) 871 Out.insert(T); 872 return; 873 default: 874 break; 875 } 876 } 877 } 878 879 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 880 if (!LegalTypesCached) { 881 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 882 // Stuff all types from all modes into the default mode. 883 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 884 for (const auto &I : LTS) 885 LegalTypes.insert(I.second); 886 LegalTypesCached = true; 887 } 888 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 889 return LegalCache; 890 } 891 892 #ifndef NDEBUG 893 TypeInfer::ValidateOnExit::~ValidateOnExit() { 894 if (Infer.Validate && !VTS.validate()) { 895 dbgs() << "Type set is empty for each HW mode:\n" 896 "possible type contradiction in the pattern below " 897 "(use -print-records with llvm-tblgen to see all " 898 "expanded records).\n"; 899 Infer.TP.dump(); 900 dbgs() << "Generated from record:\n"; 901 Infer.TP.getRecord()->dump(); 902 PrintFatalError(Infer.TP.getRecord()->getLoc(), 903 "Type set is empty for each HW mode in '" + 904 Infer.TP.getRecord()->getName() + "'"); 905 } 906 } 907 #endif 908 909 910 //===----------------------------------------------------------------------===// 911 // ScopedName Implementation 912 //===----------------------------------------------------------------------===// 913 914 bool ScopedName::operator==(const ScopedName &o) const { 915 return Scope == o.Scope && Identifier == o.Identifier; 916 } 917 918 bool ScopedName::operator!=(const ScopedName &o) const { 919 return !(*this == o); 920 } 921 922 923 //===----------------------------------------------------------------------===// 924 // TreePredicateFn Implementation 925 //===----------------------------------------------------------------------===// 926 927 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 928 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 929 assert( 930 (!hasPredCode() || !hasImmCode()) && 931 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 932 } 933 934 bool TreePredicateFn::hasPredCode() const { 935 return isLoad() || isStore() || isAtomic() || 936 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 937 } 938 939 std::string TreePredicateFn::getPredCode() const { 940 std::string Code; 941 942 if (!isLoad() && !isStore() && !isAtomic()) { 943 Record *MemoryVT = getMemoryVT(); 944 945 if (MemoryVT) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "MemoryVT requires IsLoad or IsStore"); 948 } 949 950 if (!isLoad() && !isStore()) { 951 if (isUnindexed()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsUnindexed requires IsLoad or IsStore"); 954 955 Record *ScalarMemoryVT = getScalarMemoryVT(); 956 957 if (ScalarMemoryVT) 958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 959 "ScalarMemoryVT requires IsLoad or IsStore"); 960 } 961 962 if (isLoad() + isStore() + isAtomic() > 1) 963 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 964 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 965 966 if (isLoad()) { 967 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 968 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 969 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 970 getMinAlignment() < 1) 971 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 972 "IsLoad cannot be used by itself"); 973 } else { 974 if (isNonExtLoad()) 975 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 976 "IsNonExtLoad requires IsLoad"); 977 if (isAnyExtLoad()) 978 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 979 "IsAnyExtLoad requires IsLoad"); 980 if (isSignExtLoad()) 981 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 982 "IsSignExtLoad requires IsLoad"); 983 if (isZeroExtLoad()) 984 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 985 "IsZeroExtLoad requires IsLoad"); 986 } 987 988 if (isStore()) { 989 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 990 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 991 getAddressSpaces() == nullptr && getMinAlignment() < 1) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsStore cannot be used by itself"); 994 } else { 995 if (isNonTruncStore()) 996 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 997 "IsNonTruncStore requires IsStore"); 998 if (isTruncStore()) 999 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1000 "IsTruncStore requires IsStore"); 1001 } 1002 1003 if (isAtomic()) { 1004 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 1005 getAddressSpaces() == nullptr && 1006 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 1007 !isAtomicOrderingAcquireRelease() && 1008 !isAtomicOrderingSequentiallyConsistent() && 1009 !isAtomicOrderingAcquireOrStronger() && 1010 !isAtomicOrderingReleaseOrStronger() && 1011 !isAtomicOrderingWeakerThanAcquire() && 1012 !isAtomicOrderingWeakerThanRelease()) 1013 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1014 "IsAtomic cannot be used by itself"); 1015 } else { 1016 if (isAtomicOrderingMonotonic()) 1017 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1018 "IsAtomicOrderingMonotonic requires IsAtomic"); 1019 if (isAtomicOrderingAcquire()) 1020 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1021 "IsAtomicOrderingAcquire requires IsAtomic"); 1022 if (isAtomicOrderingRelease()) 1023 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1024 "IsAtomicOrderingRelease requires IsAtomic"); 1025 if (isAtomicOrderingAcquireRelease()) 1026 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1027 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 1028 if (isAtomicOrderingSequentiallyConsistent()) 1029 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1030 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 1031 if (isAtomicOrderingAcquireOrStronger()) 1032 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1033 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 1034 if (isAtomicOrderingReleaseOrStronger()) 1035 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1036 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 1037 if (isAtomicOrderingWeakerThanAcquire()) 1038 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1039 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 1040 } 1041 1042 if (isLoad() || isStore() || isAtomic()) { 1043 if (ListInit *AddressSpaces = getAddressSpaces()) { 1044 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 1045 " if ("; 1046 1047 ListSeparator LS(" && "); 1048 for (Init *Val : AddressSpaces->getValues()) { 1049 Code += LS; 1050 1051 IntInit *IntVal = dyn_cast<IntInit>(Val); 1052 if (!IntVal) { 1053 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1054 "AddressSpaces element must be integer"); 1055 } 1056 1057 Code += "AddrSpace != " + utostr(IntVal->getValue()); 1058 } 1059 1060 Code += ")\nreturn false;\n"; 1061 } 1062 1063 int64_t MinAlign = getMinAlignment(); 1064 if (MinAlign > 0) { 1065 Code += "if (cast<MemSDNode>(N)->getAlign() < Align("; 1066 Code += utostr(MinAlign); 1067 Code += "))\nreturn false;\n"; 1068 } 1069 1070 Record *MemoryVT = getMemoryVT(); 1071 1072 if (MemoryVT) 1073 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1074 MemoryVT->getName() + ") return false;\n") 1075 .str(); 1076 } 1077 1078 if (isAtomic() && isAtomicOrderingMonotonic()) 1079 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1080 "AtomicOrdering::Monotonic) return false;\n"; 1081 if (isAtomic() && isAtomicOrderingAcquire()) 1082 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1083 "AtomicOrdering::Acquire) return false;\n"; 1084 if (isAtomic() && isAtomicOrderingRelease()) 1085 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1086 "AtomicOrdering::Release) return false;\n"; 1087 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1088 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1089 "AtomicOrdering::AcquireRelease) return false;\n"; 1090 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1091 Code += "if (cast<AtomicSDNode>(N)->getMergedOrdering() != " 1092 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1093 1094 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1095 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1096 "return false;\n"; 1097 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1098 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1099 "return false;\n"; 1100 1101 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1102 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1103 "return false;\n"; 1104 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1105 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getMergedOrdering())) " 1106 "return false;\n"; 1107 1108 if (isLoad() || isStore()) { 1109 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1110 1111 if (isUnindexed()) 1112 Code += ("if (cast<" + SDNodeName + 1113 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1114 "return false;\n") 1115 .str(); 1116 1117 if (isLoad()) { 1118 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1119 isZeroExtLoad()) > 1) 1120 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1121 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1122 "IsZeroExtLoad are mutually exclusive"); 1123 if (isNonExtLoad()) 1124 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1125 "ISD::NON_EXTLOAD) return false;\n"; 1126 if (isAnyExtLoad()) 1127 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1128 "return false;\n"; 1129 if (isSignExtLoad()) 1130 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1131 "return false;\n"; 1132 if (isZeroExtLoad()) 1133 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1134 "return false;\n"; 1135 } else { 1136 if ((isNonTruncStore() + isTruncStore()) > 1) 1137 PrintFatalError( 1138 getOrigPatFragRecord()->getRecord()->getLoc(), 1139 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1140 if (isNonTruncStore()) 1141 Code += 1142 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1143 if (isTruncStore()) 1144 Code += 1145 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1146 } 1147 1148 Record *ScalarMemoryVT = getScalarMemoryVT(); 1149 1150 if (ScalarMemoryVT) 1151 Code += ("if (cast<" + SDNodeName + 1152 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1153 ScalarMemoryVT->getName() + ") return false;\n") 1154 .str(); 1155 } 1156 1157 std::string PredicateCode = 1158 std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode")); 1159 1160 Code += PredicateCode; 1161 1162 if (PredicateCode.empty() && !Code.empty()) 1163 Code += "return true;\n"; 1164 1165 return Code; 1166 } 1167 1168 bool TreePredicateFn::hasImmCode() const { 1169 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1170 } 1171 1172 std::string TreePredicateFn::getImmCode() const { 1173 return std::string( 1174 PatFragRec->getRecord()->getValueAsString("ImmediateCode")); 1175 } 1176 1177 bool TreePredicateFn::immCodeUsesAPInt() const { 1178 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1179 } 1180 1181 bool TreePredicateFn::immCodeUsesAPFloat() const { 1182 bool Unset; 1183 // The return value will be false when IsAPFloat is unset. 1184 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1185 Unset); 1186 } 1187 1188 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1189 bool Value) const { 1190 bool Unset; 1191 bool Result = 1192 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1193 if (Unset) 1194 return false; 1195 return Result == Value; 1196 } 1197 bool TreePredicateFn::usesOperands() const { 1198 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1199 } 1200 bool TreePredicateFn::isLoad() const { 1201 return isPredefinedPredicateEqualTo("IsLoad", true); 1202 } 1203 bool TreePredicateFn::isStore() const { 1204 return isPredefinedPredicateEqualTo("IsStore", true); 1205 } 1206 bool TreePredicateFn::isAtomic() const { 1207 return isPredefinedPredicateEqualTo("IsAtomic", true); 1208 } 1209 bool TreePredicateFn::isUnindexed() const { 1210 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1211 } 1212 bool TreePredicateFn::isNonExtLoad() const { 1213 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1214 } 1215 bool TreePredicateFn::isAnyExtLoad() const { 1216 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1217 } 1218 bool TreePredicateFn::isSignExtLoad() const { 1219 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1220 } 1221 bool TreePredicateFn::isZeroExtLoad() const { 1222 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1223 } 1224 bool TreePredicateFn::isNonTruncStore() const { 1225 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1226 } 1227 bool TreePredicateFn::isTruncStore() const { 1228 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1229 } 1230 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1231 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1232 } 1233 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1234 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1235 } 1236 bool TreePredicateFn::isAtomicOrderingRelease() const { 1237 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1238 } 1239 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1240 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1241 } 1242 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1243 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1244 true); 1245 } 1246 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1247 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1248 } 1249 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1250 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1251 } 1252 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1253 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1254 } 1255 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1256 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1257 } 1258 Record *TreePredicateFn::getMemoryVT() const { 1259 Record *R = getOrigPatFragRecord()->getRecord(); 1260 if (R->isValueUnset("MemoryVT")) 1261 return nullptr; 1262 return R->getValueAsDef("MemoryVT"); 1263 } 1264 1265 ListInit *TreePredicateFn::getAddressSpaces() const { 1266 Record *R = getOrigPatFragRecord()->getRecord(); 1267 if (R->isValueUnset("AddressSpaces")) 1268 return nullptr; 1269 return R->getValueAsListInit("AddressSpaces"); 1270 } 1271 1272 int64_t TreePredicateFn::getMinAlignment() const { 1273 Record *R = getOrigPatFragRecord()->getRecord(); 1274 if (R->isValueUnset("MinAlignment")) 1275 return 0; 1276 return R->getValueAsInt("MinAlignment"); 1277 } 1278 1279 Record *TreePredicateFn::getScalarMemoryVT() const { 1280 Record *R = getOrigPatFragRecord()->getRecord(); 1281 if (R->isValueUnset("ScalarMemoryVT")) 1282 return nullptr; 1283 return R->getValueAsDef("ScalarMemoryVT"); 1284 } 1285 bool TreePredicateFn::hasGISelPredicateCode() const { 1286 return !PatFragRec->getRecord() 1287 ->getValueAsString("GISelPredicateCode") 1288 .empty(); 1289 } 1290 std::string TreePredicateFn::getGISelPredicateCode() const { 1291 return std::string( 1292 PatFragRec->getRecord()->getValueAsString("GISelPredicateCode")); 1293 } 1294 1295 StringRef TreePredicateFn::getImmType() const { 1296 if (immCodeUsesAPInt()) 1297 return "const APInt &"; 1298 if (immCodeUsesAPFloat()) 1299 return "const APFloat &"; 1300 return "int64_t"; 1301 } 1302 1303 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1304 if (immCodeUsesAPInt()) 1305 return "APInt"; 1306 if (immCodeUsesAPFloat()) 1307 return "APFloat"; 1308 return "I64"; 1309 } 1310 1311 /// isAlwaysTrue - Return true if this is a noop predicate. 1312 bool TreePredicateFn::isAlwaysTrue() const { 1313 return !hasPredCode() && !hasImmCode(); 1314 } 1315 1316 /// Return the name to use in the generated code to reference this, this is 1317 /// "Predicate_foo" if from a pattern fragment "foo". 1318 std::string TreePredicateFn::getFnName() const { 1319 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1320 } 1321 1322 /// getCodeToRunOnSDNode - Return the code for the function body that 1323 /// evaluates this predicate. The argument is expected to be in "Node", 1324 /// not N. This handles casting and conversion to a concrete node type as 1325 /// appropriate. 1326 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1327 // Handle immediate predicates first. 1328 std::string ImmCode = getImmCode(); 1329 if (!ImmCode.empty()) { 1330 if (isLoad()) 1331 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1332 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1333 if (isStore()) 1334 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1335 "IsStore cannot be used with ImmLeaf or its subclasses"); 1336 if (isUnindexed()) 1337 PrintFatalError( 1338 getOrigPatFragRecord()->getRecord()->getLoc(), 1339 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1340 if (isNonExtLoad()) 1341 PrintFatalError( 1342 getOrigPatFragRecord()->getRecord()->getLoc(), 1343 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1344 if (isAnyExtLoad()) 1345 PrintFatalError( 1346 getOrigPatFragRecord()->getRecord()->getLoc(), 1347 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1348 if (isSignExtLoad()) 1349 PrintFatalError( 1350 getOrigPatFragRecord()->getRecord()->getLoc(), 1351 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1352 if (isZeroExtLoad()) 1353 PrintFatalError( 1354 getOrigPatFragRecord()->getRecord()->getLoc(), 1355 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1356 if (isNonTruncStore()) 1357 PrintFatalError( 1358 getOrigPatFragRecord()->getRecord()->getLoc(), 1359 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1360 if (isTruncStore()) 1361 PrintFatalError( 1362 getOrigPatFragRecord()->getRecord()->getLoc(), 1363 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1364 if (getMemoryVT()) 1365 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1366 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1367 if (getScalarMemoryVT()) 1368 PrintFatalError( 1369 getOrigPatFragRecord()->getRecord()->getLoc(), 1370 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1371 1372 std::string Result = (" " + getImmType() + " Imm = ").str(); 1373 if (immCodeUsesAPFloat()) 1374 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1375 else if (immCodeUsesAPInt()) 1376 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1377 else 1378 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1379 return Result + ImmCode; 1380 } 1381 1382 // Handle arbitrary node predicates. 1383 assert(hasPredCode() && "Don't have any predicate code!"); 1384 1385 // If this is using PatFrags, there are multiple trees to search. They should 1386 // all have the same class. FIXME: Is there a way to find a common 1387 // superclass? 1388 StringRef ClassName; 1389 for (const auto &Tree : PatFragRec->getTrees()) { 1390 StringRef TreeClassName; 1391 if (Tree->isLeaf()) 1392 TreeClassName = "SDNode"; 1393 else { 1394 Record *Op = Tree->getOperator(); 1395 const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op); 1396 TreeClassName = Info.getSDClassName(); 1397 } 1398 1399 if (ClassName.empty()) 1400 ClassName = TreeClassName; 1401 else if (ClassName != TreeClassName) { 1402 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1403 "PatFrags trees do not have consistent class"); 1404 } 1405 } 1406 1407 std::string Result; 1408 if (ClassName == "SDNode") 1409 Result = " SDNode *N = Node;\n"; 1410 else 1411 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1412 1413 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1414 } 1415 1416 //===----------------------------------------------------------------------===// 1417 // PatternToMatch implementation 1418 // 1419 1420 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1421 if (!P->isLeaf()) 1422 return false; 1423 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1424 if (!DI) 1425 return false; 1426 1427 Record *R = DI->getDef(); 1428 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1429 } 1430 1431 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1432 /// patterns before small ones. This is used to determine the size of a 1433 /// pattern. 1434 static unsigned getPatternSize(const TreePatternNode *P, 1435 const CodeGenDAGPatterns &CGP) { 1436 unsigned Size = 3; // The node itself. 1437 // If the root node is a ConstantSDNode, increases its size. 1438 // e.g. (set R32:$dst, 0). 1439 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1440 Size += 2; 1441 1442 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1443 Size += AM->getComplexity(); 1444 // We don't want to count any children twice, so return early. 1445 return Size; 1446 } 1447 1448 // If this node has some predicate function that must match, it adds to the 1449 // complexity of this node. 1450 if (!P->getPredicateCalls().empty()) 1451 ++Size; 1452 1453 // Count children in the count if they are also nodes. 1454 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1455 const TreePatternNode *Child = P->getChild(i); 1456 if (!Child->isLeaf() && Child->getNumTypes()) { 1457 const TypeSetByHwMode &T0 = Child->getExtType(0); 1458 // At this point, all variable type sets should be simple, i.e. only 1459 // have a default mode. 1460 if (T0.getMachineValueType() != MVT::Other) { 1461 Size += getPatternSize(Child, CGP); 1462 continue; 1463 } 1464 } 1465 if (Child->isLeaf()) { 1466 if (isa<IntInit>(Child->getLeafValue())) 1467 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1468 else if (Child->getComplexPatternInfo(CGP)) 1469 Size += getPatternSize(Child, CGP); 1470 else if (isImmAllOnesAllZerosMatch(Child)) 1471 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1472 else if (!Child->getPredicateCalls().empty()) 1473 ++Size; 1474 } 1475 } 1476 1477 return Size; 1478 } 1479 1480 /// Compute the complexity metric for the input pattern. This roughly 1481 /// corresponds to the number of nodes that are covered. 1482 int PatternToMatch:: 1483 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1484 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1485 } 1486 1487 void PatternToMatch::getPredicateRecords( 1488 SmallVectorImpl<Record *> &PredicateRecs) const { 1489 for (Init *I : Predicates->getValues()) { 1490 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 1491 Record *Def = Pred->getDef(); 1492 if (!Def->isSubClassOf("Predicate")) { 1493 #ifndef NDEBUG 1494 Def->dump(); 1495 #endif 1496 llvm_unreachable("Unknown predicate type!"); 1497 } 1498 PredicateRecs.push_back(Def); 1499 } 1500 } 1501 // Sort so that different orders get canonicalized to the same string. 1502 llvm::sort(PredicateRecs, LessRecord()); 1503 } 1504 1505 /// getPredicateCheck - Return a single string containing all of this 1506 /// pattern's predicates concatenated with "&&" operators. 1507 /// 1508 std::string PatternToMatch::getPredicateCheck() const { 1509 SmallVector<Record *, 4> PredicateRecs; 1510 getPredicateRecords(PredicateRecs); 1511 1512 SmallString<128> PredicateCheck; 1513 for (Record *Pred : PredicateRecs) { 1514 StringRef CondString = Pred->getValueAsString("CondString"); 1515 if (CondString.empty()) 1516 continue; 1517 if (!PredicateCheck.empty()) 1518 PredicateCheck += " && "; 1519 PredicateCheck += "("; 1520 PredicateCheck += CondString; 1521 PredicateCheck += ")"; 1522 } 1523 1524 if (!HwModeFeatures.empty()) { 1525 if (!PredicateCheck.empty()) 1526 PredicateCheck += " && "; 1527 PredicateCheck += HwModeFeatures; 1528 } 1529 1530 return std::string(PredicateCheck); 1531 } 1532 1533 //===----------------------------------------------------------------------===// 1534 // SDTypeConstraint implementation 1535 // 1536 1537 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1538 OperandNo = R->getValueAsInt("OperandNum"); 1539 1540 if (R->isSubClassOf("SDTCisVT")) { 1541 ConstraintType = SDTCisVT; 1542 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1543 for (const auto &P : VVT) 1544 if (P.second == MVT::isVoid) 1545 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1546 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1547 ConstraintType = SDTCisPtrTy; 1548 } else if (R->isSubClassOf("SDTCisInt")) { 1549 ConstraintType = SDTCisInt; 1550 } else if (R->isSubClassOf("SDTCisFP")) { 1551 ConstraintType = SDTCisFP; 1552 } else if (R->isSubClassOf("SDTCisVec")) { 1553 ConstraintType = SDTCisVec; 1554 } else if (R->isSubClassOf("SDTCisSameAs")) { 1555 ConstraintType = SDTCisSameAs; 1556 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1557 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1558 ConstraintType = SDTCisVTSmallerThanOp; 1559 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1560 R->getValueAsInt("OtherOperandNum"); 1561 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1562 ConstraintType = SDTCisOpSmallerThanOp; 1563 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1564 R->getValueAsInt("BigOperandNum"); 1565 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1566 ConstraintType = SDTCisEltOfVec; 1567 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1568 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1569 ConstraintType = SDTCisSubVecOfVec; 1570 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1571 R->getValueAsInt("OtherOpNum"); 1572 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1573 ConstraintType = SDTCVecEltisVT; 1574 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1575 for (const auto &P : VVT) { 1576 MVT T = P.second; 1577 if (T.isVector()) 1578 PrintFatalError(R->getLoc(), 1579 "Cannot use vector type as SDTCVecEltisVT"); 1580 if (!T.isInteger() && !T.isFloatingPoint()) 1581 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1582 "as SDTCVecEltisVT"); 1583 } 1584 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1585 ConstraintType = SDTCisSameNumEltsAs; 1586 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1587 R->getValueAsInt("OtherOperandNum"); 1588 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1589 ConstraintType = SDTCisSameSizeAs; 1590 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1591 R->getValueAsInt("OtherOperandNum"); 1592 } else { 1593 PrintFatalError(R->getLoc(), 1594 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1595 } 1596 } 1597 1598 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1599 /// N, and the result number in ResNo. 1600 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1601 const SDNodeInfo &NodeInfo, 1602 unsigned &ResNo) { 1603 unsigned NumResults = NodeInfo.getNumResults(); 1604 if (OpNo < NumResults) { 1605 ResNo = OpNo; 1606 return N; 1607 } 1608 1609 OpNo -= NumResults; 1610 1611 if (OpNo >= N->getNumChildren()) { 1612 std::string S; 1613 raw_string_ostream OS(S); 1614 OS << "Invalid operand number in type constraint " 1615 << (OpNo+NumResults) << " "; 1616 N->print(OS); 1617 PrintFatalError(S); 1618 } 1619 1620 return N->getChild(OpNo); 1621 } 1622 1623 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1624 /// constraint to the nodes operands. This returns true if it makes a 1625 /// change, false otherwise. If a type contradiction is found, flag an error. 1626 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1627 const SDNodeInfo &NodeInfo, 1628 TreePattern &TP) const { 1629 if (TP.hasError()) 1630 return false; 1631 1632 unsigned ResNo = 0; // The result number being referenced. 1633 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1634 TypeInfer &TI = TP.getInfer(); 1635 1636 switch (ConstraintType) { 1637 case SDTCisVT: 1638 // Operand must be a particular type. 1639 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1640 case SDTCisPtrTy: 1641 // Operand must be same as target pointer type. 1642 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1643 case SDTCisInt: 1644 // Require it to be one of the legal integer VTs. 1645 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1646 case SDTCisFP: 1647 // Require it to be one of the legal fp VTs. 1648 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1649 case SDTCisVec: 1650 // Require it to be one of the legal vector VTs. 1651 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1652 case SDTCisSameAs: { 1653 unsigned OResNo = 0; 1654 TreePatternNode *OtherNode = 1655 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1656 return (int)NodeToApply->UpdateNodeType(ResNo, 1657 OtherNode->getExtType(OResNo), TP) | 1658 (int)OtherNode->UpdateNodeType(OResNo, 1659 NodeToApply->getExtType(ResNo), TP); 1660 } 1661 case SDTCisVTSmallerThanOp: { 1662 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1663 // have an integer type that is smaller than the VT. 1664 if (!NodeToApply->isLeaf() || 1665 !isa<DefInit>(NodeToApply->getLeafValue()) || 1666 !cast<DefInit>(NodeToApply->getLeafValue())->getDef() 1667 ->isSubClassOf("ValueType")) { 1668 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1669 return false; 1670 } 1671 DefInit *DI = cast<DefInit>(NodeToApply->getLeafValue()); 1672 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1673 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1674 TypeSetByHwMode TypeListTmp(VVT); 1675 1676 unsigned OResNo = 0; 1677 TreePatternNode *OtherNode = 1678 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1679 OResNo); 1680 1681 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo), 1682 /*SmallIsVT*/ true); 1683 } 1684 case SDTCisOpSmallerThanOp: { 1685 unsigned BResNo = 0; 1686 TreePatternNode *BigOperand = 1687 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1688 BResNo); 1689 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1690 BigOperand->getExtType(BResNo)); 1691 } 1692 case SDTCisEltOfVec: { 1693 unsigned VResNo = 0; 1694 TreePatternNode *VecOperand = 1695 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1696 VResNo); 1697 // Filter vector types out of VecOperand that don't have the right element 1698 // type. 1699 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1700 NodeToApply->getExtType(ResNo)); 1701 } 1702 case SDTCisSubVecOfVec: { 1703 unsigned VResNo = 0; 1704 TreePatternNode *BigVecOperand = 1705 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1706 VResNo); 1707 1708 // Filter vector types out of BigVecOperand that don't have the 1709 // right subvector type. 1710 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1711 NodeToApply->getExtType(ResNo)); 1712 } 1713 case SDTCVecEltisVT: { 1714 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1715 } 1716 case SDTCisSameNumEltsAs: { 1717 unsigned OResNo = 0; 1718 TreePatternNode *OtherNode = 1719 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1720 N, NodeInfo, OResNo); 1721 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1722 NodeToApply->getExtType(ResNo)); 1723 } 1724 case SDTCisSameSizeAs: { 1725 unsigned OResNo = 0; 1726 TreePatternNode *OtherNode = 1727 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1728 N, NodeInfo, OResNo); 1729 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1730 NodeToApply->getExtType(ResNo)); 1731 } 1732 } 1733 llvm_unreachable("Invalid ConstraintType!"); 1734 } 1735 1736 // Update the node type to match an instruction operand or result as specified 1737 // in the ins or outs lists on the instruction definition. Return true if the 1738 // type was actually changed. 1739 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1740 Record *Operand, 1741 TreePattern &TP) { 1742 // The 'unknown' operand indicates that types should be inferred from the 1743 // context. 1744 if (Operand->isSubClassOf("unknown_class")) 1745 return false; 1746 1747 // The Operand class specifies a type directly. 1748 if (Operand->isSubClassOf("Operand")) { 1749 Record *R = Operand->getValueAsDef("Type"); 1750 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1751 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1752 } 1753 1754 // PointerLikeRegClass has a type that is determined at runtime. 1755 if (Operand->isSubClassOf("PointerLikeRegClass")) 1756 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1757 1758 // Both RegisterClass and RegisterOperand operands derive their types from a 1759 // register class def. 1760 Record *RC = nullptr; 1761 if (Operand->isSubClassOf("RegisterClass")) 1762 RC = Operand; 1763 else if (Operand->isSubClassOf("RegisterOperand")) 1764 RC = Operand->getValueAsDef("RegClass"); 1765 1766 assert(RC && "Unknown operand type"); 1767 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1768 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1769 } 1770 1771 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1772 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1773 if (!TP.getInfer().isConcrete(Types[i], true)) 1774 return true; 1775 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1776 if (getChild(i)->ContainsUnresolvedType(TP)) 1777 return true; 1778 return false; 1779 } 1780 1781 bool TreePatternNode::hasProperTypeByHwMode() const { 1782 for (const TypeSetByHwMode &S : Types) 1783 if (!S.isDefaultOnly()) 1784 return true; 1785 for (const TreePatternNodePtr &C : Children) 1786 if (C->hasProperTypeByHwMode()) 1787 return true; 1788 return false; 1789 } 1790 1791 bool TreePatternNode::hasPossibleType() const { 1792 for (const TypeSetByHwMode &S : Types) 1793 if (!S.isPossible()) 1794 return false; 1795 for (const TreePatternNodePtr &C : Children) 1796 if (!C->hasPossibleType()) 1797 return false; 1798 return true; 1799 } 1800 1801 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1802 for (TypeSetByHwMode &S : Types) { 1803 S.makeSimple(Mode); 1804 // Check if the selected mode had a type conflict. 1805 if (S.get(DefaultMode).empty()) 1806 return false; 1807 } 1808 for (const TreePatternNodePtr &C : Children) 1809 if (!C->setDefaultMode(Mode)) 1810 return false; 1811 return true; 1812 } 1813 1814 //===----------------------------------------------------------------------===// 1815 // SDNodeInfo implementation 1816 // 1817 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1818 EnumName = R->getValueAsString("Opcode"); 1819 SDClassName = R->getValueAsString("SDClass"); 1820 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1821 NumResults = TypeProfile->getValueAsInt("NumResults"); 1822 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1823 1824 // Parse the properties. 1825 Properties = parseSDPatternOperatorProperties(R); 1826 1827 // Parse the type constraints. 1828 std::vector<Record*> ConstraintList = 1829 TypeProfile->getValueAsListOfDefs("Constraints"); 1830 for (Record *R : ConstraintList) 1831 TypeConstraints.emplace_back(R, CGH); 1832 } 1833 1834 /// getKnownType - If the type constraints on this node imply a fixed type 1835 /// (e.g. all stores return void, etc), then return it as an 1836 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1837 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1838 unsigned NumResults = getNumResults(); 1839 assert(NumResults <= 1 && 1840 "We only work with nodes with zero or one result so far!"); 1841 assert(ResNo == 0 && "Only handles single result nodes so far"); 1842 1843 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1844 // Make sure that this applies to the correct node result. 1845 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1846 continue; 1847 1848 switch (Constraint.ConstraintType) { 1849 default: break; 1850 case SDTypeConstraint::SDTCisVT: 1851 if (Constraint.VVT.isSimple()) 1852 return Constraint.VVT.getSimple().SimpleTy; 1853 break; 1854 case SDTypeConstraint::SDTCisPtrTy: 1855 return MVT::iPTR; 1856 } 1857 } 1858 return MVT::Other; 1859 } 1860 1861 //===----------------------------------------------------------------------===// 1862 // TreePatternNode implementation 1863 // 1864 1865 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1866 if (Operator->getName() == "set" || 1867 Operator->getName() == "implicit") 1868 return 0; // All return nothing. 1869 1870 if (Operator->isSubClassOf("Intrinsic")) 1871 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1872 1873 if (Operator->isSubClassOf("SDNode")) 1874 return CDP.getSDNodeInfo(Operator).getNumResults(); 1875 1876 if (Operator->isSubClassOf("PatFrags")) { 1877 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1878 // the forward reference case where one pattern fragment references another 1879 // before it is processed. 1880 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1881 // The number of results of a fragment with alternative records is the 1882 // maximum number of results across all alternatives. 1883 unsigned NumResults = 0; 1884 for (const auto &T : PFRec->getTrees()) 1885 NumResults = std::max(NumResults, T->getNumTypes()); 1886 return NumResults; 1887 } 1888 1889 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1890 assert(LI && "Invalid Fragment"); 1891 unsigned NumResults = 0; 1892 for (Init *I : LI->getValues()) { 1893 Record *Op = nullptr; 1894 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1895 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1896 Op = DI->getDef(); 1897 assert(Op && "Invalid Fragment"); 1898 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1899 } 1900 return NumResults; 1901 } 1902 1903 if (Operator->isSubClassOf("Instruction")) { 1904 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1905 1906 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1907 1908 // Subtract any defaulted outputs. 1909 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1910 Record *OperandNode = InstInfo.Operands[i].Rec; 1911 1912 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1913 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1914 --NumDefsToAdd; 1915 } 1916 1917 // Add on one implicit def if it has a resolvable type. 1918 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1919 ++NumDefsToAdd; 1920 return NumDefsToAdd; 1921 } 1922 1923 if (Operator->isSubClassOf("SDNodeXForm")) 1924 return 1; // FIXME: Generalize SDNodeXForm 1925 1926 if (Operator->isSubClassOf("ValueType")) 1927 return 1; // A type-cast of one result. 1928 1929 if (Operator->isSubClassOf("ComplexPattern")) 1930 return 1; 1931 1932 errs() << *Operator; 1933 PrintFatalError("Unhandled node in GetNumNodeResults"); 1934 } 1935 1936 void TreePatternNode::print(raw_ostream &OS) const { 1937 if (isLeaf()) 1938 OS << *getLeafValue(); 1939 else 1940 OS << '(' << getOperator()->getName(); 1941 1942 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1943 OS << ':'; 1944 getExtType(i).writeToStream(OS); 1945 } 1946 1947 if (!isLeaf()) { 1948 if (getNumChildren() != 0) { 1949 OS << " "; 1950 ListSeparator LS; 1951 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1952 OS << LS; 1953 getChild(i)->print(OS); 1954 } 1955 } 1956 OS << ")"; 1957 } 1958 1959 for (const TreePredicateCall &Pred : PredicateCalls) { 1960 OS << "<<P:"; 1961 if (Pred.Scope) 1962 OS << Pred.Scope << ":"; 1963 OS << Pred.Fn.getFnName() << ">>"; 1964 } 1965 if (TransformFn) 1966 OS << "<<X:" << TransformFn->getName() << ">>"; 1967 if (!getName().empty()) 1968 OS << ":$" << getName(); 1969 1970 for (const ScopedName &Name : NamesAsPredicateArg) 1971 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1972 } 1973 void TreePatternNode::dump() const { 1974 print(errs()); 1975 } 1976 1977 /// isIsomorphicTo - Return true if this node is recursively 1978 /// isomorphic to the specified node. For this comparison, the node's 1979 /// entire state is considered. The assigned name is ignored, since 1980 /// nodes with differing names are considered isomorphic. However, if 1981 /// the assigned name is present in the dependent variable set, then 1982 /// the assigned name is considered significant and the node is 1983 /// isomorphic if the names match. 1984 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1985 const MultipleUseVarSet &DepVars) const { 1986 if (N == this) return true; 1987 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1988 getPredicateCalls() != N->getPredicateCalls() || 1989 getTransformFn() != N->getTransformFn()) 1990 return false; 1991 1992 if (isLeaf()) { 1993 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1994 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1995 return ((DI->getDef() == NDI->getDef()) 1996 && (DepVars.find(getName()) == DepVars.end() 1997 || getName() == N->getName())); 1998 } 1999 } 2000 return getLeafValue() == N->getLeafValue(); 2001 } 2002 2003 if (N->getOperator() != getOperator() || 2004 N->getNumChildren() != getNumChildren()) return false; 2005 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2006 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 2007 return false; 2008 return true; 2009 } 2010 2011 /// clone - Make a copy of this tree and all of its children. 2012 /// 2013 TreePatternNodePtr TreePatternNode::clone() const { 2014 TreePatternNodePtr New; 2015 if (isLeaf()) { 2016 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 2017 } else { 2018 std::vector<TreePatternNodePtr> CChildren; 2019 CChildren.reserve(Children.size()); 2020 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2021 CChildren.push_back(getChild(i)->clone()); 2022 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 2023 getNumTypes()); 2024 } 2025 New->setName(getName()); 2026 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2027 New->Types = Types; 2028 New->setPredicateCalls(getPredicateCalls()); 2029 New->setTransformFn(getTransformFn()); 2030 return New; 2031 } 2032 2033 /// RemoveAllTypes - Recursively strip all the types of this tree. 2034 void TreePatternNode::RemoveAllTypes() { 2035 // Reset to unknown type. 2036 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 2037 if (isLeaf()) return; 2038 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2039 getChild(i)->RemoveAllTypes(); 2040 } 2041 2042 2043 /// SubstituteFormalArguments - Replace the formal arguments in this tree 2044 /// with actual values specified by ArgMap. 2045 void TreePatternNode::SubstituteFormalArguments( 2046 std::map<std::string, TreePatternNodePtr> &ArgMap) { 2047 if (isLeaf()) return; 2048 2049 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2050 TreePatternNode *Child = getChild(i); 2051 if (Child->isLeaf()) { 2052 Init *Val = Child->getLeafValue(); 2053 // Note that, when substituting into an output pattern, Val might be an 2054 // UnsetInit. 2055 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 2056 cast<DefInit>(Val)->getDef()->getName() == "node")) { 2057 // We found a use of a formal argument, replace it with its value. 2058 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 2059 assert(NewChild && "Couldn't find formal argument!"); 2060 assert((Child->getPredicateCalls().empty() || 2061 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 2062 "Non-empty child predicate clobbered!"); 2063 setChild(i, std::move(NewChild)); 2064 } 2065 } else { 2066 getChild(i)->SubstituteFormalArguments(ArgMap); 2067 } 2068 } 2069 } 2070 2071 2072 /// InlinePatternFragments - If this pattern refers to any pattern 2073 /// fragments, return the set of inlined versions (this can be more than 2074 /// one if a PatFrags record has multiple alternatives). 2075 void TreePatternNode::InlinePatternFragments( 2076 TreePatternNodePtr T, TreePattern &TP, 2077 std::vector<TreePatternNodePtr> &OutAlternatives) { 2078 2079 if (TP.hasError()) 2080 return; 2081 2082 if (isLeaf()) { 2083 OutAlternatives.push_back(T); // nothing to do. 2084 return; 2085 } 2086 2087 Record *Op = getOperator(); 2088 2089 if (!Op->isSubClassOf("PatFrags")) { 2090 if (getNumChildren() == 0) { 2091 OutAlternatives.push_back(T); 2092 return; 2093 } 2094 2095 // Recursively inline children nodes. 2096 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 2097 ChildAlternatives.resize(getNumChildren()); 2098 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 2099 TreePatternNodePtr Child = getChildShared(i); 2100 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 2101 // If there are no alternatives for any child, there are no 2102 // alternatives for this expression as whole. 2103 if (ChildAlternatives[i].empty()) 2104 return; 2105 2106 assert((Child->getPredicateCalls().empty() || 2107 llvm::all_of(ChildAlternatives[i], 2108 [&](const TreePatternNodePtr &NewChild) { 2109 return NewChild->getPredicateCalls() == 2110 Child->getPredicateCalls(); 2111 })) && 2112 "Non-empty child predicate clobbered!"); 2113 } 2114 2115 // The end result is an all-pairs construction of the resultant pattern. 2116 std::vector<unsigned> Idxs; 2117 Idxs.resize(ChildAlternatives.size()); 2118 bool NotDone; 2119 do { 2120 // Create the variant and add it to the output list. 2121 std::vector<TreePatternNodePtr> NewChildren; 2122 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 2123 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 2124 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2125 getOperator(), std::move(NewChildren), getNumTypes()); 2126 2127 // Copy over properties. 2128 R->setName(getName()); 2129 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2130 R->setPredicateCalls(getPredicateCalls()); 2131 R->setTransformFn(getTransformFn()); 2132 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2133 R->setType(i, getExtType(i)); 2134 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2135 R->setResultIndex(i, getResultIndex(i)); 2136 2137 // Register alternative. 2138 OutAlternatives.push_back(R); 2139 2140 // Increment indices to the next permutation by incrementing the 2141 // indices from last index backward, e.g., generate the sequence 2142 // [0, 0], [0, 1], [1, 0], [1, 1]. 2143 int IdxsIdx; 2144 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2145 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2146 Idxs[IdxsIdx] = 0; 2147 else 2148 break; 2149 } 2150 NotDone = (IdxsIdx >= 0); 2151 } while (NotDone); 2152 2153 return; 2154 } 2155 2156 // Otherwise, we found a reference to a fragment. First, look up its 2157 // TreePattern record. 2158 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2159 2160 // Verify that we are passing the right number of operands. 2161 if (Frag->getNumArgs() != Children.size()) { 2162 TP.error("'" + Op->getName() + "' fragment requires " + 2163 Twine(Frag->getNumArgs()) + " operands!"); 2164 return; 2165 } 2166 2167 TreePredicateFn PredFn(Frag); 2168 unsigned Scope = 0; 2169 if (TreePredicateFn(Frag).usesOperands()) 2170 Scope = TP.getDAGPatterns().allocateScope(); 2171 2172 // Compute the map of formal to actual arguments. 2173 std::map<std::string, TreePatternNodePtr> ArgMap; 2174 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2175 TreePatternNodePtr Child = getChildShared(i); 2176 if (Scope != 0) { 2177 Child = Child->clone(); 2178 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2179 } 2180 ArgMap[Frag->getArgName(i)] = Child; 2181 } 2182 2183 // Loop over all fragment alternatives. 2184 for (const auto &Alternative : Frag->getTrees()) { 2185 TreePatternNodePtr FragTree = Alternative->clone(); 2186 2187 if (!PredFn.isAlwaysTrue()) 2188 FragTree->addPredicateCall(PredFn, Scope); 2189 2190 // Resolve formal arguments to their actual value. 2191 if (Frag->getNumArgs()) 2192 FragTree->SubstituteFormalArguments(ArgMap); 2193 2194 // Transfer types. Note that the resolved alternative may have fewer 2195 // (but not more) results than the PatFrags node. 2196 FragTree->setName(getName()); 2197 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2198 FragTree->UpdateNodeType(i, getExtType(i), TP); 2199 2200 // Transfer in the old predicates. 2201 for (const TreePredicateCall &Pred : getPredicateCalls()) 2202 FragTree->addPredicateCall(Pred); 2203 2204 // The fragment we inlined could have recursive inlining that is needed. See 2205 // if there are any pattern fragments in it and inline them as needed. 2206 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2207 } 2208 } 2209 2210 /// getImplicitType - Check to see if the specified record has an implicit 2211 /// type which should be applied to it. This will infer the type of register 2212 /// references from the register file information, for example. 2213 /// 2214 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2215 /// the F8RC register class argument in: 2216 /// 2217 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2218 /// 2219 /// When Unnamed is false, return the type of a named DAG operand such as the 2220 /// GPR:$src operand above. 2221 /// 2222 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2223 bool NotRegisters, 2224 bool Unnamed, 2225 TreePattern &TP) { 2226 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2227 2228 // Check to see if this is a register operand. 2229 if (R->isSubClassOf("RegisterOperand")) { 2230 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2231 if (NotRegisters) 2232 return TypeSetByHwMode(); // Unknown. 2233 Record *RegClass = R->getValueAsDef("RegClass"); 2234 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2235 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2236 } 2237 2238 // Check to see if this is a register or a register class. 2239 if (R->isSubClassOf("RegisterClass")) { 2240 assert(ResNo == 0 && "Regclass ref only has one result!"); 2241 // An unnamed register class represents itself as an i32 immediate, for 2242 // example on a COPY_TO_REGCLASS instruction. 2243 if (Unnamed) 2244 return TypeSetByHwMode(MVT::i32); 2245 2246 // In a named operand, the register class provides the possible set of 2247 // types. 2248 if (NotRegisters) 2249 return TypeSetByHwMode(); // Unknown. 2250 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2251 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2252 } 2253 2254 if (R->isSubClassOf("PatFrags")) { 2255 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2256 // Pattern fragment types will be resolved when they are inlined. 2257 return TypeSetByHwMode(); // Unknown. 2258 } 2259 2260 if (R->isSubClassOf("Register")) { 2261 assert(ResNo == 0 && "Registers only produce one result!"); 2262 if (NotRegisters) 2263 return TypeSetByHwMode(); // Unknown. 2264 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2265 return TypeSetByHwMode(T.getRegisterVTs(R)); 2266 } 2267 2268 if (R->isSubClassOf("SubRegIndex")) { 2269 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2270 return TypeSetByHwMode(MVT::i32); 2271 } 2272 2273 if (R->isSubClassOf("ValueType")) { 2274 assert(ResNo == 0 && "This node only has one result!"); 2275 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2276 // 2277 // (sext_inreg GPR:$src, i16) 2278 // ~~~ 2279 if (Unnamed) 2280 return TypeSetByHwMode(MVT::Other); 2281 // With a name, the ValueType simply provides the type of the named 2282 // variable. 2283 // 2284 // (sext_inreg i32:$src, i16) 2285 // ~~~~~~~~ 2286 if (NotRegisters) 2287 return TypeSetByHwMode(); // Unknown. 2288 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2289 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2290 } 2291 2292 if (R->isSubClassOf("CondCode")) { 2293 assert(ResNo == 0 && "This node only has one result!"); 2294 // Using a CondCodeSDNode. 2295 return TypeSetByHwMode(MVT::Other); 2296 } 2297 2298 if (R->isSubClassOf("ComplexPattern")) { 2299 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2300 if (NotRegisters) 2301 return TypeSetByHwMode(); // Unknown. 2302 Record *T = CDP.getComplexPattern(R).getValueType(); 2303 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2304 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2305 } 2306 if (R->isSubClassOf("PointerLikeRegClass")) { 2307 assert(ResNo == 0 && "Regclass can only have one result!"); 2308 TypeSetByHwMode VTS(MVT::iPTR); 2309 TP.getInfer().expandOverloads(VTS); 2310 return VTS; 2311 } 2312 2313 if (R->getName() == "node" || R->getName() == "srcvalue" || 2314 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2315 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2316 // Placeholder. 2317 return TypeSetByHwMode(); // Unknown. 2318 } 2319 2320 if (R->isSubClassOf("Operand")) { 2321 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2322 Record *T = R->getValueAsDef("Type"); 2323 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2324 } 2325 2326 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2327 return TypeSetByHwMode(MVT::Other); 2328 } 2329 2330 2331 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2332 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2333 const CodeGenIntrinsic *TreePatternNode:: 2334 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2335 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2336 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2337 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2338 return nullptr; 2339 2340 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2341 return &CDP.getIntrinsicInfo(IID); 2342 } 2343 2344 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2345 /// return the ComplexPattern information, otherwise return null. 2346 const ComplexPattern * 2347 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2348 Record *Rec; 2349 if (isLeaf()) { 2350 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2351 if (!DI) 2352 return nullptr; 2353 Rec = DI->getDef(); 2354 } else 2355 Rec = getOperator(); 2356 2357 if (!Rec->isSubClassOf("ComplexPattern")) 2358 return nullptr; 2359 return &CGP.getComplexPattern(Rec); 2360 } 2361 2362 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2363 // A ComplexPattern specifically declares how many results it fills in. 2364 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2365 return CP->getNumOperands(); 2366 2367 // If MIOperandInfo is specified, that gives the count. 2368 if (isLeaf()) { 2369 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2370 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2371 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2372 if (MIOps->getNumArgs()) 2373 return MIOps->getNumArgs(); 2374 } 2375 } 2376 2377 // Otherwise there is just one result. 2378 return 1; 2379 } 2380 2381 /// NodeHasProperty - Return true if this node has the specified property. 2382 bool TreePatternNode::NodeHasProperty(SDNP Property, 2383 const CodeGenDAGPatterns &CGP) const { 2384 if (isLeaf()) { 2385 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2386 return CP->hasProperty(Property); 2387 2388 return false; 2389 } 2390 2391 if (Property != SDNPHasChain) { 2392 // The chain proprety is already present on the different intrinsic node 2393 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2394 // on the intrinsic. Anything else is specific to the individual intrinsic. 2395 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2396 return Int->hasProperty(Property); 2397 } 2398 2399 if (!Operator->isSubClassOf("SDPatternOperator")) 2400 return false; 2401 2402 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2403 } 2404 2405 2406 2407 2408 /// TreeHasProperty - Return true if any node in this tree has the specified 2409 /// property. 2410 bool TreePatternNode::TreeHasProperty(SDNP Property, 2411 const CodeGenDAGPatterns &CGP) const { 2412 if (NodeHasProperty(Property, CGP)) 2413 return true; 2414 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2415 if (getChild(i)->TreeHasProperty(Property, CGP)) 2416 return true; 2417 return false; 2418 } 2419 2420 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2421 /// commutative intrinsic. 2422 bool 2423 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2424 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2425 return Int->isCommutative; 2426 return false; 2427 } 2428 2429 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2430 if (!N->isLeaf()) 2431 return N->getOperator()->isSubClassOf(Class); 2432 2433 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2434 if (DI && DI->getDef()->isSubClassOf(Class)) 2435 return true; 2436 2437 return false; 2438 } 2439 2440 static void emitTooManyOperandsError(TreePattern &TP, 2441 StringRef InstName, 2442 unsigned Expected, 2443 unsigned Actual) { 2444 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2445 " operands but expected only " + Twine(Expected) + "!"); 2446 } 2447 2448 static void emitTooFewOperandsError(TreePattern &TP, 2449 StringRef InstName, 2450 unsigned Actual) { 2451 TP.error("Instruction '" + InstName + 2452 "' expects more than the provided " + Twine(Actual) + " operands!"); 2453 } 2454 2455 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2456 /// this node and its children in the tree. This returns true if it makes a 2457 /// change, false otherwise. If a type contradiction is found, flag an error. 2458 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2459 if (TP.hasError()) 2460 return false; 2461 2462 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2463 if (isLeaf()) { 2464 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2465 // If it's a regclass or something else known, include the type. 2466 bool MadeChange = false; 2467 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2468 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2469 NotRegisters, 2470 !hasName(), TP), TP); 2471 return MadeChange; 2472 } 2473 2474 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2475 assert(Types.size() == 1 && "Invalid IntInit"); 2476 2477 // Int inits are always integers. :) 2478 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2479 2480 if (!TP.getInfer().isConcrete(Types[0], false)) 2481 return MadeChange; 2482 2483 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2484 for (auto &P : VVT) { 2485 MVT::SimpleValueType VT = P.second.SimpleTy; 2486 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2487 continue; 2488 unsigned Size = MVT(VT).getFixedSizeInBits(); 2489 // Make sure that the value is representable for this type. 2490 if (Size >= 32) 2491 continue; 2492 // Check that the value doesn't use more bits than we have. It must 2493 // either be a sign- or zero-extended equivalent of the original. 2494 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2495 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2496 SignBitAndAbove == 1) 2497 continue; 2498 2499 TP.error("Integer value '" + Twine(II->getValue()) + 2500 "' is out of range for type '" + getEnumName(VT) + "'!"); 2501 break; 2502 } 2503 return MadeChange; 2504 } 2505 2506 return false; 2507 } 2508 2509 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2510 bool MadeChange = false; 2511 2512 // Apply the result type to the node. 2513 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2514 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2515 2516 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2517 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2518 2519 if (getNumChildren() != NumParamVTs + 1) { 2520 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2521 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2522 return false; 2523 } 2524 2525 // Apply type info to the intrinsic ID. 2526 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2527 2528 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2529 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2530 2531 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2532 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2533 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2534 } 2535 return MadeChange; 2536 } 2537 2538 if (getOperator()->isSubClassOf("SDNode")) { 2539 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2540 2541 // Check that the number of operands is sane. Negative operands -> varargs. 2542 if (NI.getNumOperands() >= 0 && 2543 getNumChildren() != (unsigned)NI.getNumOperands()) { 2544 TP.error(getOperator()->getName() + " node requires exactly " + 2545 Twine(NI.getNumOperands()) + " operands!"); 2546 return false; 2547 } 2548 2549 bool MadeChange = false; 2550 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2551 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2552 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2553 return MadeChange; 2554 } 2555 2556 if (getOperator()->isSubClassOf("Instruction")) { 2557 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2558 CodeGenInstruction &InstInfo = 2559 CDP.getTargetInfo().getInstruction(getOperator()); 2560 2561 bool MadeChange = false; 2562 2563 // Apply the result types to the node, these come from the things in the 2564 // (outs) list of the instruction. 2565 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2566 Inst.getNumResults()); 2567 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2568 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2569 2570 // If the instruction has implicit defs, we apply the first one as a result. 2571 // FIXME: This sucks, it should apply all implicit defs. 2572 if (!InstInfo.ImplicitDefs.empty()) { 2573 unsigned ResNo = NumResultsToAdd; 2574 2575 // FIXME: Generalize to multiple possible types and multiple possible 2576 // ImplicitDefs. 2577 MVT::SimpleValueType VT = 2578 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2579 2580 if (VT != MVT::Other) 2581 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2582 } 2583 2584 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2585 // be the same. 2586 if (getOperator()->getName() == "INSERT_SUBREG") { 2587 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2588 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2589 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2590 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2591 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2592 // variadic. 2593 2594 unsigned NChild = getNumChildren(); 2595 if (NChild < 3) { 2596 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2597 return false; 2598 } 2599 2600 if (NChild % 2 == 0) { 2601 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2602 return false; 2603 } 2604 2605 if (!isOperandClass(getChild(0), "RegisterClass")) { 2606 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2607 return false; 2608 } 2609 2610 for (unsigned I = 1; I < NChild; I += 2) { 2611 TreePatternNode *SubIdxChild = getChild(I + 1); 2612 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2613 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2614 Twine(I + 1) + "!"); 2615 return false; 2616 } 2617 } 2618 } 2619 2620 unsigned NumResults = Inst.getNumResults(); 2621 unsigned NumFixedOperands = InstInfo.Operands.size(); 2622 2623 // If one or more operands with a default value appear at the end of the 2624 // formal operand list for an instruction, we allow them to be overridden 2625 // by optional operands provided in the pattern. 2626 // 2627 // But if an operand B without a default appears at any point after an 2628 // operand A with a default, then we don't allow A to be overridden, 2629 // because there would be no way to specify whether the next operand in 2630 // the pattern was intended to override A or skip it. 2631 unsigned NonOverridableOperands = NumFixedOperands; 2632 while (NonOverridableOperands > NumResults && 2633 CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec)) 2634 --NonOverridableOperands; 2635 2636 unsigned ChildNo = 0; 2637 assert(NumResults <= NumFixedOperands); 2638 for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) { 2639 Record *OperandNode = InstInfo.Operands[i].Rec; 2640 2641 // If the operand has a default value, do we use it? We must use the 2642 // default if we've run out of children of the pattern DAG to consume, 2643 // or if the operand is followed by a non-defaulted one. 2644 if (CDP.operandHasDefault(OperandNode) && 2645 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2646 continue; 2647 2648 // If we have run out of child nodes and there _isn't_ a default 2649 // value we can use for the next operand, give an error. 2650 if (ChildNo >= getNumChildren()) { 2651 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2652 return false; 2653 } 2654 2655 TreePatternNode *Child = getChild(ChildNo++); 2656 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2657 2658 // If the operand has sub-operands, they may be provided by distinct 2659 // child patterns, so attempt to match each sub-operand separately. 2660 if (OperandNode->isSubClassOf("Operand")) { 2661 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2662 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2663 // But don't do that if the whole operand is being provided by 2664 // a single ComplexPattern-related Operand. 2665 2666 if (Child->getNumMIResults(CDP) < NumArgs) { 2667 // Match first sub-operand against the child we already have. 2668 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2669 MadeChange |= 2670 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2671 2672 // And the remaining sub-operands against subsequent children. 2673 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2674 if (ChildNo >= getNumChildren()) { 2675 emitTooFewOperandsError(TP, getOperator()->getName(), 2676 getNumChildren()); 2677 return false; 2678 } 2679 Child = getChild(ChildNo++); 2680 2681 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2682 MadeChange |= 2683 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2684 } 2685 continue; 2686 } 2687 } 2688 } 2689 2690 // If we didn't match by pieces above, attempt to match the whole 2691 // operand now. 2692 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2693 } 2694 2695 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2696 emitTooManyOperandsError(TP, getOperator()->getName(), 2697 ChildNo, getNumChildren()); 2698 return false; 2699 } 2700 2701 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2702 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2703 return MadeChange; 2704 } 2705 2706 if (getOperator()->isSubClassOf("ComplexPattern")) { 2707 bool MadeChange = false; 2708 2709 if (!NotRegisters) { 2710 assert(Types.size() == 1 && "ComplexPatterns only produce one result!"); 2711 Record *T = CDP.getComplexPattern(getOperator()).getValueType(); 2712 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2713 const ValueTypeByHwMode VVT = getValueTypeByHwMode(T, CGH); 2714 // TODO: AArch64 and AMDGPU use ComplexPattern<untyped, ...> and then 2715 // exclusively use those as non-leaf nodes with explicit type casts, so 2716 // for backwards compatibility we do no inference in that case. This is 2717 // not supported when the ComplexPattern is used as a leaf value, 2718 // however; this inconsistency should be resolved, either by adding this 2719 // case there or by altering the backends to not do this (e.g. using Any 2720 // instead may work). 2721 if (!VVT.isSimple() || VVT.getSimple() != MVT::Untyped) 2722 MadeChange |= UpdateNodeType(0, VVT, TP); 2723 } 2724 2725 for (unsigned i = 0; i < getNumChildren(); ++i) 2726 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2727 2728 return MadeChange; 2729 } 2730 2731 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2732 2733 // Node transforms always take one operand. 2734 if (getNumChildren() != 1) { 2735 TP.error("Node transform '" + getOperator()->getName() + 2736 "' requires one operand!"); 2737 return false; 2738 } 2739 2740 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2741 return MadeChange; 2742 } 2743 2744 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2745 /// RHS of a commutative operation, not the on LHS. 2746 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2747 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2748 return true; 2749 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2750 return true; 2751 if (isImmAllOnesAllZerosMatch(N)) 2752 return true; 2753 return false; 2754 } 2755 2756 2757 /// canPatternMatch - If it is impossible for this pattern to match on this 2758 /// target, fill in Reason and return false. Otherwise, return true. This is 2759 /// used as a sanity check for .td files (to prevent people from writing stuff 2760 /// that can never possibly work), and to prevent the pattern permuter from 2761 /// generating stuff that is useless. 2762 bool TreePatternNode::canPatternMatch(std::string &Reason, 2763 const CodeGenDAGPatterns &CDP) { 2764 if (isLeaf()) return true; 2765 2766 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2767 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2768 return false; 2769 2770 // If this is an intrinsic, handle cases that would make it not match. For 2771 // example, if an operand is required to be an immediate. 2772 if (getOperator()->isSubClassOf("Intrinsic")) { 2773 // TODO: 2774 return true; 2775 } 2776 2777 if (getOperator()->isSubClassOf("ComplexPattern")) 2778 return true; 2779 2780 // If this node is a commutative operator, check that the LHS isn't an 2781 // immediate. 2782 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2783 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2784 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2785 // Scan all of the operands of the node and make sure that only the last one 2786 // is a constant node, unless the RHS also is. 2787 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2788 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2789 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2790 if (OnlyOnRHSOfCommutative(getChild(i))) { 2791 Reason="Immediate value must be on the RHS of commutative operators!"; 2792 return false; 2793 } 2794 } 2795 } 2796 2797 return true; 2798 } 2799 2800 //===----------------------------------------------------------------------===// 2801 // TreePattern implementation 2802 // 2803 2804 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2805 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2806 isInputPattern(isInput), HasError(false), 2807 Infer(*this) { 2808 for (Init *I : RawPat->getValues()) 2809 Trees.push_back(ParseTreePattern(I, "")); 2810 } 2811 2812 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2813 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2814 isInputPattern(isInput), HasError(false), 2815 Infer(*this) { 2816 Trees.push_back(ParseTreePattern(Pat, "")); 2817 } 2818 2819 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2820 CodeGenDAGPatterns &cdp) 2821 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2822 Infer(*this) { 2823 Trees.push_back(Pat); 2824 } 2825 2826 void TreePattern::error(const Twine &Msg) { 2827 if (HasError) 2828 return; 2829 dump(); 2830 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2831 HasError = true; 2832 } 2833 2834 void TreePattern::ComputeNamedNodes() { 2835 for (TreePatternNodePtr &Tree : Trees) 2836 ComputeNamedNodes(Tree.get()); 2837 } 2838 2839 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2840 if (!N->getName().empty()) 2841 NamedNodes[N->getName()].push_back(N); 2842 2843 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2844 ComputeNamedNodes(N->getChild(i)); 2845 } 2846 2847 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2848 StringRef OpName) { 2849 RecordKeeper &RK = TheInit->getRecordKeeper(); 2850 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2851 Record *R = DI->getDef(); 2852 2853 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2854 // TreePatternNode of its own. For example: 2855 /// (foo GPR, imm) -> (foo GPR, (imm)) 2856 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2857 return ParseTreePattern( 2858 DagInit::get(DI, nullptr, 2859 std::vector<std::pair<Init*, StringInit*> >()), 2860 OpName); 2861 2862 // Input argument? 2863 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2864 if (R->getName() == "node" && !OpName.empty()) { 2865 if (OpName.empty()) 2866 error("'node' argument requires a name to match with operand list"); 2867 Args.push_back(std::string(OpName)); 2868 } 2869 2870 Res->setName(OpName); 2871 return Res; 2872 } 2873 2874 // ?:$name or just $name. 2875 if (isa<UnsetInit>(TheInit)) { 2876 if (OpName.empty()) 2877 error("'?' argument requires a name to match with operand list"); 2878 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2879 Args.push_back(std::string(OpName)); 2880 Res->setName(OpName); 2881 return Res; 2882 } 2883 2884 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2885 if (!OpName.empty()) 2886 error("Constant int or bit argument should not have a name!"); 2887 if (isa<BitInit>(TheInit)) 2888 TheInit = TheInit->convertInitializerTo(IntRecTy::get(RK)); 2889 return std::make_shared<TreePatternNode>(TheInit, 1); 2890 } 2891 2892 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2893 // Turn this into an IntInit. 2894 Init *II = BI->convertInitializerTo(IntRecTy::get(RK)); 2895 if (!II || !isa<IntInit>(II)) 2896 error("Bits value must be constants!"); 2897 return ParseTreePattern(II, OpName); 2898 } 2899 2900 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2901 if (!Dag) { 2902 TheInit->print(errs()); 2903 error("Pattern has unexpected init kind!"); 2904 } 2905 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2906 if (!OpDef) error("Pattern has unexpected operator type!"); 2907 Record *Operator = OpDef->getDef(); 2908 2909 if (Operator->isSubClassOf("ValueType")) { 2910 // If the operator is a ValueType, then this must be "type cast" of a leaf 2911 // node. 2912 if (Dag->getNumArgs() != 1) 2913 error("Type cast only takes one operand!"); 2914 2915 TreePatternNodePtr New = 2916 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2917 2918 // Apply the type cast. 2919 if (New->getNumTypes() != 1) 2920 error("Type cast can only have one type!"); 2921 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2922 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2923 2924 if (!OpName.empty()) 2925 error("ValueType cast should not have a name!"); 2926 return New; 2927 } 2928 2929 // Verify that this is something that makes sense for an operator. 2930 if (!Operator->isSubClassOf("PatFrags") && 2931 !Operator->isSubClassOf("SDNode") && 2932 !Operator->isSubClassOf("Instruction") && 2933 !Operator->isSubClassOf("SDNodeXForm") && 2934 !Operator->isSubClassOf("Intrinsic") && 2935 !Operator->isSubClassOf("ComplexPattern") && 2936 Operator->getName() != "set" && 2937 Operator->getName() != "implicit") 2938 error("Unrecognized node '" + Operator->getName() + "'!"); 2939 2940 // Check to see if this is something that is illegal in an input pattern. 2941 if (isInputPattern) { 2942 if (Operator->isSubClassOf("Instruction") || 2943 Operator->isSubClassOf("SDNodeXForm")) 2944 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2945 } else { 2946 if (Operator->isSubClassOf("Intrinsic")) 2947 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2948 2949 if (Operator->isSubClassOf("SDNode") && 2950 Operator->getName() != "imm" && 2951 Operator->getName() != "timm" && 2952 Operator->getName() != "fpimm" && 2953 Operator->getName() != "tglobaltlsaddr" && 2954 Operator->getName() != "tconstpool" && 2955 Operator->getName() != "tjumptable" && 2956 Operator->getName() != "tframeindex" && 2957 Operator->getName() != "texternalsym" && 2958 Operator->getName() != "tblockaddress" && 2959 Operator->getName() != "tglobaladdr" && 2960 Operator->getName() != "bb" && 2961 Operator->getName() != "vt" && 2962 Operator->getName() != "mcsym") 2963 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2964 } 2965 2966 std::vector<TreePatternNodePtr> Children; 2967 2968 // Parse all the operands. 2969 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2970 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2971 2972 // Get the actual number of results before Operator is converted to an intrinsic 2973 // node (which is hard-coded to have either zero or one result). 2974 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2975 2976 // If the operator is an intrinsic, then this is just syntactic sugar for 2977 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2978 // convert the intrinsic name to a number. 2979 if (Operator->isSubClassOf("Intrinsic")) { 2980 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2981 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2982 2983 // If this intrinsic returns void, it must have side-effects and thus a 2984 // chain. 2985 if (Int.IS.RetVTs.empty()) 2986 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2987 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2988 // Has side-effects, requires chain. 2989 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2990 else // Otherwise, no chain. 2991 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2992 2993 Children.insert(Children.begin(), std::make_shared<TreePatternNode>( 2994 IntInit::get(RK, IID), 1)); 2995 } 2996 2997 if (Operator->isSubClassOf("ComplexPattern")) { 2998 for (unsigned i = 0; i < Children.size(); ++i) { 2999 TreePatternNodePtr Child = Children[i]; 3000 3001 if (Child->getName().empty()) 3002 error("All arguments to a ComplexPattern must be named"); 3003 3004 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 3005 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 3006 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 3007 auto OperandId = std::make_pair(Operator, i); 3008 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 3009 if (PrevOp != ComplexPatternOperands.end()) { 3010 if (PrevOp->getValue() != OperandId) 3011 error("All ComplexPattern operands must appear consistently: " 3012 "in the same order in just one ComplexPattern instance."); 3013 } else 3014 ComplexPatternOperands[Child->getName()] = OperandId; 3015 } 3016 } 3017 3018 TreePatternNodePtr Result = 3019 std::make_shared<TreePatternNode>(Operator, std::move(Children), 3020 NumResults); 3021 Result->setName(OpName); 3022 3023 if (Dag->getName()) { 3024 assert(Result->getName().empty()); 3025 Result->setName(Dag->getNameStr()); 3026 } 3027 return Result; 3028 } 3029 3030 /// SimplifyTree - See if we can simplify this tree to eliminate something that 3031 /// will never match in favor of something obvious that will. This is here 3032 /// strictly as a convenience to target authors because it allows them to write 3033 /// more type generic things and have useless type casts fold away. 3034 /// 3035 /// This returns true if any change is made. 3036 static bool SimplifyTree(TreePatternNodePtr &N) { 3037 if (N->isLeaf()) 3038 return false; 3039 3040 // If we have a bitconvert with a resolved type and if the source and 3041 // destination types are the same, then the bitconvert is useless, remove it. 3042 // 3043 // We make an exception if the types are completely empty. This can come up 3044 // when the pattern being simplified is in the Fragments list of a PatFrags, 3045 // so that the operand is just an untyped "node". In that situation we leave 3046 // bitconverts unsimplified, and simplify them later once the fragment is 3047 // expanded into its true context. 3048 if (N->getOperator()->getName() == "bitconvert" && 3049 N->getExtType(0).isValueTypeByHwMode(false) && 3050 !N->getExtType(0).empty() && 3051 N->getExtType(0) == N->getChild(0)->getExtType(0) && 3052 N->getName().empty()) { 3053 N = N->getChildShared(0); 3054 SimplifyTree(N); 3055 return true; 3056 } 3057 3058 // Walk all children. 3059 bool MadeChange = false; 3060 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3061 TreePatternNodePtr Child = N->getChildShared(i); 3062 MadeChange |= SimplifyTree(Child); 3063 N->setChild(i, std::move(Child)); 3064 } 3065 return MadeChange; 3066 } 3067 3068 3069 3070 /// InferAllTypes - Infer/propagate as many types throughout the expression 3071 /// patterns as possible. Return true if all types are inferred, false 3072 /// otherwise. Flags an error if a type contradiction is found. 3073 bool TreePattern:: 3074 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 3075 if (NamedNodes.empty()) 3076 ComputeNamedNodes(); 3077 3078 bool MadeChange = true; 3079 while (MadeChange) { 3080 MadeChange = false; 3081 for (TreePatternNodePtr &Tree : Trees) { 3082 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 3083 MadeChange |= SimplifyTree(Tree); 3084 } 3085 3086 // If there are constraints on our named nodes, apply them. 3087 for (auto &Entry : NamedNodes) { 3088 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 3089 3090 // If we have input named node types, propagate their types to the named 3091 // values here. 3092 if (InNamedTypes) { 3093 if (!InNamedTypes->count(Entry.getKey())) { 3094 error("Node '" + std::string(Entry.getKey()) + 3095 "' in output pattern but not input pattern"); 3096 return true; 3097 } 3098 3099 const SmallVectorImpl<TreePatternNode*> &InNodes = 3100 InNamedTypes->find(Entry.getKey())->second; 3101 3102 // The input types should be fully resolved by now. 3103 for (TreePatternNode *Node : Nodes) { 3104 // If this node is a register class, and it is the root of the pattern 3105 // then we're mapping something onto an input register. We allow 3106 // changing the type of the input register in this case. This allows 3107 // us to match things like: 3108 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 3109 if (Node == Trees[0].get() && Node->isLeaf()) { 3110 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 3111 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3112 DI->getDef()->isSubClassOf("RegisterOperand"))) 3113 continue; 3114 } 3115 3116 assert(Node->getNumTypes() == 1 && 3117 InNodes[0]->getNumTypes() == 1 && 3118 "FIXME: cannot name multiple result nodes yet"); 3119 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 3120 *this); 3121 } 3122 } 3123 3124 // If there are multiple nodes with the same name, they must all have the 3125 // same type. 3126 if (Entry.second.size() > 1) { 3127 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 3128 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 3129 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 3130 "FIXME: cannot name multiple result nodes yet"); 3131 3132 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 3133 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 3134 } 3135 } 3136 } 3137 } 3138 3139 bool HasUnresolvedTypes = false; 3140 for (const TreePatternNodePtr &Tree : Trees) 3141 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 3142 return !HasUnresolvedTypes; 3143 } 3144 3145 void TreePattern::print(raw_ostream &OS) const { 3146 OS << getRecord()->getName(); 3147 if (!Args.empty()) { 3148 OS << "("; 3149 ListSeparator LS; 3150 for (const std::string &Arg : Args) 3151 OS << LS << Arg; 3152 OS << ")"; 3153 } 3154 OS << ": "; 3155 3156 if (Trees.size() > 1) 3157 OS << "[\n"; 3158 for (const TreePatternNodePtr &Tree : Trees) { 3159 OS << "\t"; 3160 Tree->print(OS); 3161 OS << "\n"; 3162 } 3163 3164 if (Trees.size() > 1) 3165 OS << "]\n"; 3166 } 3167 3168 void TreePattern::dump() const { print(errs()); } 3169 3170 //===----------------------------------------------------------------------===// 3171 // CodeGenDAGPatterns implementation 3172 // 3173 3174 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3175 PatternRewriterFn PatternRewriter) 3176 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3177 PatternRewriter(PatternRewriter) { 3178 3179 Intrinsics = CodeGenIntrinsicTable(Records); 3180 ParseNodeInfo(); 3181 ParseNodeTransforms(); 3182 ParseComplexPatterns(); 3183 ParsePatternFragments(); 3184 ParseDefaultOperands(); 3185 ParseInstructions(); 3186 ParsePatternFragments(/*OutFrags*/true); 3187 ParsePatterns(); 3188 3189 // Generate variants. For example, commutative patterns can match 3190 // multiple ways. Add them to PatternsToMatch as well. 3191 GenerateVariants(); 3192 3193 // Break patterns with parameterized types into a series of patterns, 3194 // where each one has a fixed type and is predicated on the conditions 3195 // of the associated HW mode. 3196 ExpandHwModeBasedTypes(); 3197 3198 // Infer instruction flags. For example, we can detect loads, 3199 // stores, and side effects in many cases by examining an 3200 // instruction's pattern. 3201 InferInstructionFlags(); 3202 3203 // Verify that instruction flags match the patterns. 3204 VerifyInstructionFlags(); 3205 } 3206 3207 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const { 3208 Record *N = Records.getDef(Name); 3209 if (!N || !N->isSubClassOf("SDNode")) 3210 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3211 3212 return N; 3213 } 3214 3215 // Parse all of the SDNode definitions for the target, populating SDNodes. 3216 void CodeGenDAGPatterns::ParseNodeInfo() { 3217 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3218 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3219 3220 while (!Nodes.empty()) { 3221 Record *R = Nodes.back(); 3222 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3223 Nodes.pop_back(); 3224 } 3225 3226 // Get the builtin intrinsic nodes. 3227 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3228 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3229 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3230 } 3231 3232 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3233 /// map, and emit them to the file as functions. 3234 void CodeGenDAGPatterns::ParseNodeTransforms() { 3235 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3236 while (!Xforms.empty()) { 3237 Record *XFormNode = Xforms.back(); 3238 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3239 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3240 SDNodeXForms.insert( 3241 std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code)))); 3242 3243 Xforms.pop_back(); 3244 } 3245 } 3246 3247 void CodeGenDAGPatterns::ParseComplexPatterns() { 3248 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3249 while (!AMs.empty()) { 3250 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3251 AMs.pop_back(); 3252 } 3253 } 3254 3255 3256 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3257 /// file, building up the PatternFragments map. After we've collected them all, 3258 /// inline fragments together as necessary, so that there are no references left 3259 /// inside a pattern fragment to a pattern fragment. 3260 /// 3261 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3262 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3263 3264 // First step, parse all of the fragments. 3265 for (Record *Frag : Fragments) { 3266 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3267 continue; 3268 3269 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3270 TreePattern *P = 3271 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3272 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3273 *this)).get(); 3274 3275 // Validate the argument list, converting it to set, to discard duplicates. 3276 std::vector<std::string> &Args = P->getArgList(); 3277 // Copy the args so we can take StringRefs to them. 3278 auto ArgsCopy = Args; 3279 SmallDenseSet<StringRef, 4> OperandsSet; 3280 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3281 3282 if (OperandsSet.count("")) 3283 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3284 3285 // Parse the operands list. 3286 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3287 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3288 // Special cases: ops == outs == ins. Different names are used to 3289 // improve readability. 3290 if (!OpsOp || 3291 (OpsOp->getDef()->getName() != "ops" && 3292 OpsOp->getDef()->getName() != "outs" && 3293 OpsOp->getDef()->getName() != "ins")) 3294 P->error("Operands list should start with '(ops ... '!"); 3295 3296 // Copy over the arguments. 3297 Args.clear(); 3298 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3299 if (!isa<DefInit>(OpsList->getArg(j)) || 3300 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3301 P->error("Operands list should all be 'node' values."); 3302 if (!OpsList->getArgName(j)) 3303 P->error("Operands list should have names for each operand!"); 3304 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3305 if (!OperandsSet.count(ArgNameStr)) 3306 P->error("'" + ArgNameStr + 3307 "' does not occur in pattern or was multiply specified!"); 3308 OperandsSet.erase(ArgNameStr); 3309 Args.push_back(std::string(ArgNameStr)); 3310 } 3311 3312 if (!OperandsSet.empty()) 3313 P->error("Operands list does not contain an entry for operand '" + 3314 *OperandsSet.begin() + "'!"); 3315 3316 // If there is a node transformation corresponding to this, keep track of 3317 // it. 3318 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3319 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3320 for (const auto &T : P->getTrees()) 3321 T->setTransformFn(Transform); 3322 } 3323 3324 // Now that we've parsed all of the tree fragments, do a closure on them so 3325 // that there are not references to PatFrags left inside of them. 3326 for (Record *Frag : Fragments) { 3327 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3328 continue; 3329 3330 TreePattern &ThePat = *PatternFragments[Frag]; 3331 ThePat.InlinePatternFragments(); 3332 3333 // Infer as many types as possible. Don't worry about it if we don't infer 3334 // all of them, some may depend on the inputs of the pattern. Also, don't 3335 // validate type sets; validation may cause spurious failures e.g. if a 3336 // fragment needs floating-point types but the current target does not have 3337 // any (this is only an error if that fragment is ever used!). 3338 { 3339 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3340 ThePat.InferAllTypes(); 3341 ThePat.resetError(); 3342 } 3343 3344 // If debugging, print out the pattern fragment result. 3345 LLVM_DEBUG(ThePat.dump()); 3346 } 3347 } 3348 3349 void CodeGenDAGPatterns::ParseDefaultOperands() { 3350 std::vector<Record*> DefaultOps; 3351 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3352 3353 // Find some SDNode. 3354 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3355 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3356 3357 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3358 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3359 3360 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3361 // SomeSDnode so that we can parse this. 3362 std::vector<std::pair<Init*, StringInit*> > Ops; 3363 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3364 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3365 DefaultInfo->getArgName(op))); 3366 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3367 3368 // Create a TreePattern to parse this. 3369 TreePattern P(DefaultOps[i], DI, false, *this); 3370 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3371 3372 // Copy the operands over into a DAGDefaultOperand. 3373 DAGDefaultOperand DefaultOpInfo; 3374 3375 const TreePatternNodePtr &T = P.getTree(0); 3376 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3377 TreePatternNodePtr TPN = T->getChildShared(op); 3378 while (TPN->ApplyTypeConstraints(P, false)) 3379 /* Resolve all types */; 3380 3381 if (TPN->ContainsUnresolvedType(P)) { 3382 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3383 DefaultOps[i]->getName() + 3384 "' doesn't have a concrete type!"); 3385 } 3386 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3387 } 3388 3389 // Insert it into the DefaultOperands map so we can find it later. 3390 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3391 } 3392 } 3393 3394 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3395 /// instruction input. Return true if this is a real use. 3396 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3397 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3398 // No name -> not interesting. 3399 if (Pat->getName().empty()) { 3400 if (Pat->isLeaf()) { 3401 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3402 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3403 DI->getDef()->isSubClassOf("RegisterOperand"))) 3404 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3405 } 3406 return false; 3407 } 3408 3409 Record *Rec; 3410 if (Pat->isLeaf()) { 3411 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3412 if (!DI) 3413 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3414 Rec = DI->getDef(); 3415 } else { 3416 Rec = Pat->getOperator(); 3417 } 3418 3419 // SRCVALUE nodes are ignored. 3420 if (Rec->getName() == "srcvalue") 3421 return false; 3422 3423 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3424 if (!Slot) { 3425 Slot = Pat; 3426 return true; 3427 } 3428 Record *SlotRec; 3429 if (Slot->isLeaf()) { 3430 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3431 } else { 3432 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3433 SlotRec = Slot->getOperator(); 3434 } 3435 3436 // Ensure that the inputs agree if we've already seen this input. 3437 if (Rec != SlotRec) 3438 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3439 // Ensure that the types can agree as well. 3440 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3441 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3442 if (Slot->getExtTypes() != Pat->getExtTypes()) 3443 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3444 return true; 3445 } 3446 3447 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3448 /// part of "I", the instruction), computing the set of inputs and outputs of 3449 /// the pattern. Report errors if we see anything naughty. 3450 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3451 TreePattern &I, TreePatternNodePtr Pat, 3452 std::map<std::string, TreePatternNodePtr> &InstInputs, 3453 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3454 &InstResults, 3455 std::vector<Record *> &InstImpResults) { 3456 3457 // The instruction pattern still has unresolved fragments. For *named* 3458 // nodes we must resolve those here. This may not result in multiple 3459 // alternatives. 3460 if (!Pat->getName().empty()) { 3461 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3462 SrcPattern.InlinePatternFragments(); 3463 SrcPattern.InferAllTypes(); 3464 Pat = SrcPattern.getOnlyTree(); 3465 } 3466 3467 if (Pat->isLeaf()) { 3468 bool isUse = HandleUse(I, Pat, InstInputs); 3469 if (!isUse && Pat->getTransformFn()) 3470 I.error("Cannot specify a transform function for a non-input value!"); 3471 return; 3472 } 3473 3474 if (Pat->getOperator()->getName() == "implicit") { 3475 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3476 TreePatternNode *Dest = Pat->getChild(i); 3477 if (!Dest->isLeaf()) 3478 I.error("implicitly defined value should be a register!"); 3479 3480 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3481 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3482 I.error("implicitly defined value should be a register!"); 3483 InstImpResults.push_back(Val->getDef()); 3484 } 3485 return; 3486 } 3487 3488 if (Pat->getOperator()->getName() != "set") { 3489 // If this is not a set, verify that the children nodes are not void typed, 3490 // and recurse. 3491 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3492 if (Pat->getChild(i)->getNumTypes() == 0) 3493 I.error("Cannot have void nodes inside of patterns!"); 3494 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3495 InstResults, InstImpResults); 3496 } 3497 3498 // If this is a non-leaf node with no children, treat it basically as if 3499 // it were a leaf. This handles nodes like (imm). 3500 bool isUse = HandleUse(I, Pat, InstInputs); 3501 3502 if (!isUse && Pat->getTransformFn()) 3503 I.error("Cannot specify a transform function for a non-input value!"); 3504 return; 3505 } 3506 3507 // Otherwise, this is a set, validate and collect instruction results. 3508 if (Pat->getNumChildren() == 0) 3509 I.error("set requires operands!"); 3510 3511 if (Pat->getTransformFn()) 3512 I.error("Cannot specify a transform function on a set node!"); 3513 3514 // Check the set destinations. 3515 unsigned NumDests = Pat->getNumChildren()-1; 3516 for (unsigned i = 0; i != NumDests; ++i) { 3517 TreePatternNodePtr Dest = Pat->getChildShared(i); 3518 // For set destinations we also must resolve fragments here. 3519 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3520 DestPattern.InlinePatternFragments(); 3521 DestPattern.InferAllTypes(); 3522 Dest = DestPattern.getOnlyTree(); 3523 3524 if (!Dest->isLeaf()) 3525 I.error("set destination should be a register!"); 3526 3527 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3528 if (!Val) { 3529 I.error("set destination should be a register!"); 3530 continue; 3531 } 3532 3533 if (Val->getDef()->isSubClassOf("RegisterClass") || 3534 Val->getDef()->isSubClassOf("ValueType") || 3535 Val->getDef()->isSubClassOf("RegisterOperand") || 3536 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3537 if (Dest->getName().empty()) 3538 I.error("set destination must have a name!"); 3539 if (InstResults.count(Dest->getName())) 3540 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3541 InstResults[Dest->getName()] = Dest; 3542 } else if (Val->getDef()->isSubClassOf("Register")) { 3543 InstImpResults.push_back(Val->getDef()); 3544 } else { 3545 I.error("set destination should be a register!"); 3546 } 3547 } 3548 3549 // Verify and collect info from the computation. 3550 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3551 InstResults, InstImpResults); 3552 } 3553 3554 //===----------------------------------------------------------------------===// 3555 // Instruction Analysis 3556 //===----------------------------------------------------------------------===// 3557 3558 class InstAnalyzer { 3559 const CodeGenDAGPatterns &CDP; 3560 public: 3561 bool hasSideEffects; 3562 bool mayStore; 3563 bool mayLoad; 3564 bool isBitcast; 3565 bool isVariadic; 3566 bool hasChain; 3567 3568 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3569 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3570 isBitcast(false), isVariadic(false), hasChain(false) {} 3571 3572 void Analyze(const PatternToMatch &Pat) { 3573 const TreePatternNode *N = Pat.getSrcPattern(); 3574 AnalyzeNode(N); 3575 // These properties are detected only on the root node. 3576 isBitcast = IsNodeBitcast(N); 3577 } 3578 3579 private: 3580 bool IsNodeBitcast(const TreePatternNode *N) const { 3581 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3582 return false; 3583 3584 if (N->isLeaf()) 3585 return false; 3586 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3587 return false; 3588 3589 if (N->getOperator()->isSubClassOf("ComplexPattern")) 3590 return false; 3591 3592 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3593 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3594 return false; 3595 return OpInfo.getEnumName() == "ISD::BITCAST"; 3596 } 3597 3598 public: 3599 void AnalyzeNode(const TreePatternNode *N) { 3600 if (N->isLeaf()) { 3601 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3602 Record *LeafRec = DI->getDef(); 3603 // Handle ComplexPattern leaves. 3604 if (LeafRec->isSubClassOf("ComplexPattern")) { 3605 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3606 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3607 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3608 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3609 } 3610 } 3611 return; 3612 } 3613 3614 // Analyze children. 3615 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3616 AnalyzeNode(N->getChild(i)); 3617 3618 // Notice properties of the node. 3619 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3620 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3621 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3622 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3623 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3624 3625 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3626 // If this is an intrinsic, analyze it. 3627 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3628 mayLoad = true;// These may load memory. 3629 3630 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3631 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3632 3633 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3634 IntInfo->hasSideEffects) 3635 // ReadWriteMem intrinsics can have other strange effects. 3636 hasSideEffects = true; 3637 } 3638 } 3639 3640 }; 3641 3642 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3643 const InstAnalyzer &PatInfo, 3644 Record *PatDef) { 3645 bool Error = false; 3646 3647 // Remember where InstInfo got its flags. 3648 if (InstInfo.hasUndefFlags()) 3649 InstInfo.InferredFrom = PatDef; 3650 3651 // Check explicitly set flags for consistency. 3652 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3653 !InstInfo.hasSideEffects_Unset) { 3654 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3655 // the pattern has no side effects. That could be useful for div/rem 3656 // instructions that may trap. 3657 if (!InstInfo.hasSideEffects) { 3658 Error = true; 3659 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3660 Twine(InstInfo.hasSideEffects)); 3661 } 3662 } 3663 3664 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3665 Error = true; 3666 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3667 Twine(InstInfo.mayStore)); 3668 } 3669 3670 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3671 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3672 // Some targets translate immediates to loads. 3673 if (!InstInfo.mayLoad) { 3674 Error = true; 3675 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3676 Twine(InstInfo.mayLoad)); 3677 } 3678 } 3679 3680 // Transfer inferred flags. 3681 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3682 InstInfo.mayStore |= PatInfo.mayStore; 3683 InstInfo.mayLoad |= PatInfo.mayLoad; 3684 3685 // These flags are silently added without any verification. 3686 // FIXME: To match historical behavior of TableGen, for now add those flags 3687 // only when we're inferring from the primary instruction pattern. 3688 if (PatDef->isSubClassOf("Instruction")) { 3689 InstInfo.isBitcast |= PatInfo.isBitcast; 3690 InstInfo.hasChain |= PatInfo.hasChain; 3691 InstInfo.hasChain_Inferred = true; 3692 } 3693 3694 // Don't infer isVariadic. This flag means something different on SDNodes and 3695 // instructions. For example, a CALL SDNode is variadic because it has the 3696 // call arguments as operands, but a CALL instruction is not variadic - it 3697 // has argument registers as implicit, not explicit uses. 3698 3699 return Error; 3700 } 3701 3702 /// hasNullFragReference - Return true if the DAG has any reference to the 3703 /// null_frag operator. 3704 static bool hasNullFragReference(DagInit *DI) { 3705 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3706 if (!OpDef) return false; 3707 Record *Operator = OpDef->getDef(); 3708 3709 // If this is the null fragment, return true. 3710 if (Operator->getName() == "null_frag") return true; 3711 // If any of the arguments reference the null fragment, return true. 3712 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3713 if (auto Arg = dyn_cast<DefInit>(DI->getArg(i))) 3714 if (Arg->getDef()->getName() == "null_frag") 3715 return true; 3716 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3717 if (Arg && hasNullFragReference(Arg)) 3718 return true; 3719 } 3720 3721 return false; 3722 } 3723 3724 /// hasNullFragReference - Return true if any DAG in the list references 3725 /// the null_frag operator. 3726 static bool hasNullFragReference(ListInit *LI) { 3727 for (Init *I : LI->getValues()) { 3728 DagInit *DI = dyn_cast<DagInit>(I); 3729 assert(DI && "non-dag in an instruction Pattern list?!"); 3730 if (hasNullFragReference(DI)) 3731 return true; 3732 } 3733 return false; 3734 } 3735 3736 /// Get all the instructions in a tree. 3737 static void 3738 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3739 if (Tree->isLeaf()) 3740 return; 3741 if (Tree->getOperator()->isSubClassOf("Instruction")) 3742 Instrs.push_back(Tree->getOperator()); 3743 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3744 getInstructionsInTree(Tree->getChild(i), Instrs); 3745 } 3746 3747 /// Check the class of a pattern leaf node against the instruction operand it 3748 /// represents. 3749 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3750 Record *Leaf) { 3751 if (OI.Rec == Leaf) 3752 return true; 3753 3754 // Allow direct value types to be used in instruction set patterns. 3755 // The type will be checked later. 3756 if (Leaf->isSubClassOf("ValueType")) 3757 return true; 3758 3759 // Patterns can also be ComplexPattern instances. 3760 if (Leaf->isSubClassOf("ComplexPattern")) 3761 return true; 3762 3763 return false; 3764 } 3765 3766 void CodeGenDAGPatterns::parseInstructionPattern( 3767 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3768 3769 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3770 3771 // Parse the instruction. 3772 TreePattern I(CGI.TheDef, Pat, true, *this); 3773 3774 // InstInputs - Keep track of all of the inputs of the instruction, along 3775 // with the record they are declared as. 3776 std::map<std::string, TreePatternNodePtr> InstInputs; 3777 3778 // InstResults - Keep track of all the virtual registers that are 'set' 3779 // in the instruction, including what reg class they are. 3780 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3781 InstResults; 3782 3783 std::vector<Record*> InstImpResults; 3784 3785 // Verify that the top-level forms in the instruction are of void type, and 3786 // fill in the InstResults map. 3787 SmallString<32> TypesString; 3788 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3789 TypesString.clear(); 3790 TreePatternNodePtr Pat = I.getTree(j); 3791 if (Pat->getNumTypes() != 0) { 3792 raw_svector_ostream OS(TypesString); 3793 ListSeparator LS; 3794 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3795 OS << LS; 3796 Pat->getExtType(k).writeToStream(OS); 3797 } 3798 I.error("Top-level forms in instruction pattern should have" 3799 " void types, has types " + 3800 OS.str()); 3801 } 3802 3803 // Find inputs and outputs, and verify the structure of the uses/defs. 3804 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3805 InstImpResults); 3806 } 3807 3808 // Now that we have inputs and outputs of the pattern, inspect the operands 3809 // list for the instruction. This determines the order that operands are 3810 // added to the machine instruction the node corresponds to. 3811 unsigned NumResults = InstResults.size(); 3812 3813 // Parse the operands list from the (ops) list, validating it. 3814 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3815 3816 // Check that all of the results occur first in the list. 3817 std::vector<Record*> Results; 3818 std::vector<unsigned> ResultIndices; 3819 SmallVector<TreePatternNodePtr, 2> ResNodes; 3820 for (unsigned i = 0; i != NumResults; ++i) { 3821 if (i == CGI.Operands.size()) { 3822 const std::string &OpName = 3823 llvm::find_if( 3824 InstResults, 3825 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3826 return P.second; 3827 }) 3828 ->first; 3829 3830 I.error("'" + OpName + "' set but does not appear in operand list!"); 3831 } 3832 3833 const std::string &OpName = CGI.Operands[i].Name; 3834 3835 // Check that it exists in InstResults. 3836 auto InstResultIter = InstResults.find(OpName); 3837 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3838 I.error("Operand $" + OpName + " does not exist in operand list!"); 3839 3840 TreePatternNodePtr RNode = InstResultIter->second; 3841 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3842 ResNodes.push_back(std::move(RNode)); 3843 if (!R) 3844 I.error("Operand $" + OpName + " should be a set destination: all " 3845 "outputs must occur before inputs in operand list!"); 3846 3847 if (!checkOperandClass(CGI.Operands[i], R)) 3848 I.error("Operand $" + OpName + " class mismatch!"); 3849 3850 // Remember the return type. 3851 Results.push_back(CGI.Operands[i].Rec); 3852 3853 // Remember the result index. 3854 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3855 3856 // Okay, this one checks out. 3857 InstResultIter->second = nullptr; 3858 } 3859 3860 // Loop over the inputs next. 3861 std::vector<TreePatternNodePtr> ResultNodeOperands; 3862 std::vector<Record*> Operands; 3863 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3864 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3865 const std::string &OpName = Op.Name; 3866 if (OpName.empty()) 3867 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3868 3869 if (!InstInputs.count(OpName)) { 3870 // If this is an operand with a DefaultOps set filled in, we can ignore 3871 // this. When we codegen it, we will do so as always executed. 3872 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3873 // Does it have a non-empty DefaultOps field? If so, ignore this 3874 // operand. 3875 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3876 continue; 3877 } 3878 I.error("Operand $" + OpName + 3879 " does not appear in the instruction pattern"); 3880 } 3881 TreePatternNodePtr InVal = InstInputs[OpName]; 3882 InstInputs.erase(OpName); // It occurred, remove from map. 3883 3884 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3885 Record *InRec = cast<DefInit>(InVal->getLeafValue())->getDef(); 3886 if (!checkOperandClass(Op, InRec)) 3887 I.error("Operand $" + OpName + "'s register class disagrees" 3888 " between the operand and pattern"); 3889 } 3890 Operands.push_back(Op.Rec); 3891 3892 // Construct the result for the dest-pattern operand list. 3893 TreePatternNodePtr OpNode = InVal->clone(); 3894 3895 // No predicate is useful on the result. 3896 OpNode->clearPredicateCalls(); 3897 3898 // Promote the xform function to be an explicit node if set. 3899 if (Record *Xform = OpNode->getTransformFn()) { 3900 OpNode->setTransformFn(nullptr); 3901 std::vector<TreePatternNodePtr> Children; 3902 Children.push_back(OpNode); 3903 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3904 OpNode->getNumTypes()); 3905 } 3906 3907 ResultNodeOperands.push_back(std::move(OpNode)); 3908 } 3909 3910 if (!InstInputs.empty()) 3911 I.error("Input operand $" + InstInputs.begin()->first + 3912 " occurs in pattern but not in operands list!"); 3913 3914 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3915 I.getRecord(), std::move(ResultNodeOperands), 3916 GetNumNodeResults(I.getRecord(), *this)); 3917 // Copy fully inferred output node types to instruction result pattern. 3918 for (unsigned i = 0; i != NumResults; ++i) { 3919 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3920 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3921 ResultPattern->setResultIndex(i, ResultIndices[i]); 3922 } 3923 3924 // FIXME: Assume only the first tree is the pattern. The others are clobber 3925 // nodes. 3926 TreePatternNodePtr Pattern = I.getTree(0); 3927 TreePatternNodePtr SrcPattern; 3928 if (Pattern->getOperator()->getName() == "set") { 3929 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3930 } else{ 3931 // Not a set (store or something?) 3932 SrcPattern = Pattern; 3933 } 3934 3935 // Create and insert the instruction. 3936 // FIXME: InstImpResults should not be part of DAGInstruction. 3937 Record *R = I.getRecord(); 3938 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3939 std::forward_as_tuple(Results, Operands, InstImpResults, 3940 SrcPattern, ResultPattern)); 3941 3942 LLVM_DEBUG(I.dump()); 3943 } 3944 3945 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3946 /// any fragments involved. This populates the Instructions list with fully 3947 /// resolved instructions. 3948 void CodeGenDAGPatterns::ParseInstructions() { 3949 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3950 3951 for (Record *Instr : Instrs) { 3952 ListInit *LI = nullptr; 3953 3954 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3955 LI = Instr->getValueAsListInit("Pattern"); 3956 3957 // If there is no pattern, only collect minimal information about the 3958 // instruction for its operand list. We have to assume that there is one 3959 // result, as we have no detailed info. A pattern which references the 3960 // null_frag operator is as-if no pattern were specified. Normally this 3961 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3962 // null_frag. 3963 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3964 std::vector<Record*> Results; 3965 std::vector<Record*> Operands; 3966 3967 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3968 3969 if (InstInfo.Operands.size() != 0) { 3970 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3971 Results.push_back(InstInfo.Operands[j].Rec); 3972 3973 // The rest are inputs. 3974 for (unsigned j = InstInfo.Operands.NumDefs, 3975 e = InstInfo.Operands.size(); j < e; ++j) 3976 Operands.push_back(InstInfo.Operands[j].Rec); 3977 } 3978 3979 // Create and insert the instruction. 3980 std::vector<Record*> ImpResults; 3981 Instructions.insert(std::make_pair(Instr, 3982 DAGInstruction(Results, Operands, ImpResults))); 3983 continue; // no pattern. 3984 } 3985 3986 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3987 parseInstructionPattern(CGI, LI, Instructions); 3988 } 3989 3990 // If we can, convert the instructions to be patterns that are matched! 3991 for (auto &Entry : Instructions) { 3992 Record *Instr = Entry.first; 3993 DAGInstruction &TheInst = Entry.second; 3994 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3995 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3996 3997 if (SrcPattern && ResultPattern) { 3998 TreePattern Pattern(Instr, SrcPattern, true, *this); 3999 TreePattern Result(Instr, ResultPattern, false, *this); 4000 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 4001 } 4002 } 4003 } 4004 4005 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 4006 4007 static void FindNames(TreePatternNode *P, 4008 std::map<std::string, NameRecord> &Names, 4009 TreePattern *PatternTop) { 4010 if (!P->getName().empty()) { 4011 NameRecord &Rec = Names[P->getName()]; 4012 // If this is the first instance of the name, remember the node. 4013 if (Rec.second++ == 0) 4014 Rec.first = P; 4015 else if (Rec.first->getExtTypes() != P->getExtTypes()) 4016 PatternTop->error("repetition of value: $" + P->getName() + 4017 " where different uses have different types!"); 4018 } 4019 4020 if (!P->isLeaf()) { 4021 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 4022 FindNames(P->getChild(i), Names, PatternTop); 4023 } 4024 } 4025 4026 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 4027 PatternToMatch &&PTM) { 4028 // Do some sanity checking on the pattern we're about to match. 4029 std::string Reason; 4030 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 4031 PrintWarning(Pattern->getRecord()->getLoc(), 4032 Twine("Pattern can never match: ") + Reason); 4033 return; 4034 } 4035 4036 // If the source pattern's root is a complex pattern, that complex pattern 4037 // must specify the nodes it can potentially match. 4038 if (const ComplexPattern *CP = 4039 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 4040 if (CP->getRootNodes().empty()) 4041 Pattern->error("ComplexPattern at root must specify list of opcodes it" 4042 " could match"); 4043 4044 4045 // Find all of the named values in the input and output, ensure they have the 4046 // same type. 4047 std::map<std::string, NameRecord> SrcNames, DstNames; 4048 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 4049 FindNames(PTM.getDstPattern(), DstNames, Pattern); 4050 4051 // Scan all of the named values in the destination pattern, rejecting them if 4052 // they don't exist in the input pattern. 4053 for (const auto &Entry : DstNames) { 4054 if (SrcNames[Entry.first].first == nullptr) 4055 Pattern->error("Pattern has input without matching name in output: $" + 4056 Entry.first); 4057 } 4058 4059 // Scan all of the named values in the source pattern, rejecting them if the 4060 // name isn't used in the dest, and isn't used to tie two values together. 4061 for (const auto &Entry : SrcNames) 4062 if (DstNames[Entry.first].first == nullptr && 4063 SrcNames[Entry.first].second == 1) 4064 Pattern->error("Pattern has dead named input: $" + Entry.first); 4065 4066 PatternsToMatch.push_back(std::move(PTM)); 4067 } 4068 4069 void CodeGenDAGPatterns::InferInstructionFlags() { 4070 ArrayRef<const CodeGenInstruction*> Instructions = 4071 Target.getInstructionsByEnumValue(); 4072 4073 unsigned Errors = 0; 4074 4075 // Try to infer flags from all patterns in PatternToMatch. These include 4076 // both the primary instruction patterns (which always come first) and 4077 // patterns defined outside the instruction. 4078 for (const PatternToMatch &PTM : ptms()) { 4079 // We can only infer from single-instruction patterns, otherwise we won't 4080 // know which instruction should get the flags. 4081 SmallVector<Record*, 8> PatInstrs; 4082 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 4083 if (PatInstrs.size() != 1) 4084 continue; 4085 4086 // Get the single instruction. 4087 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 4088 4089 // Only infer properties from the first pattern. We'll verify the others. 4090 if (InstInfo.InferredFrom) 4091 continue; 4092 4093 InstAnalyzer PatInfo(*this); 4094 PatInfo.Analyze(PTM); 4095 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 4096 } 4097 4098 if (Errors) 4099 PrintFatalError("pattern conflicts"); 4100 4101 // If requested by the target, guess any undefined properties. 4102 if (Target.guessInstructionProperties()) { 4103 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4104 CodeGenInstruction *InstInfo = 4105 const_cast<CodeGenInstruction *>(Instructions[i]); 4106 if (InstInfo->InferredFrom) 4107 continue; 4108 // The mayLoad and mayStore flags default to false. 4109 // Conservatively assume hasSideEffects if it wasn't explicit. 4110 if (InstInfo->hasSideEffects_Unset) 4111 InstInfo->hasSideEffects = true; 4112 } 4113 return; 4114 } 4115 4116 // Complain about any flags that are still undefined. 4117 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 4118 CodeGenInstruction *InstInfo = 4119 const_cast<CodeGenInstruction *>(Instructions[i]); 4120 if (InstInfo->InferredFrom) 4121 continue; 4122 if (InstInfo->hasSideEffects_Unset) 4123 PrintError(InstInfo->TheDef->getLoc(), 4124 "Can't infer hasSideEffects from patterns"); 4125 if (InstInfo->mayStore_Unset) 4126 PrintError(InstInfo->TheDef->getLoc(), 4127 "Can't infer mayStore from patterns"); 4128 if (InstInfo->mayLoad_Unset) 4129 PrintError(InstInfo->TheDef->getLoc(), 4130 "Can't infer mayLoad from patterns"); 4131 } 4132 } 4133 4134 4135 /// Verify instruction flags against pattern node properties. 4136 void CodeGenDAGPatterns::VerifyInstructionFlags() { 4137 unsigned Errors = 0; 4138 for (const PatternToMatch &PTM : ptms()) { 4139 SmallVector<Record*, 8> Instrs; 4140 getInstructionsInTree(PTM.getDstPattern(), Instrs); 4141 if (Instrs.empty()) 4142 continue; 4143 4144 // Count the number of instructions with each flag set. 4145 unsigned NumSideEffects = 0; 4146 unsigned NumStores = 0; 4147 unsigned NumLoads = 0; 4148 for (const Record *Instr : Instrs) { 4149 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4150 NumSideEffects += InstInfo.hasSideEffects; 4151 NumStores += InstInfo.mayStore; 4152 NumLoads += InstInfo.mayLoad; 4153 } 4154 4155 // Analyze the source pattern. 4156 InstAnalyzer PatInfo(*this); 4157 PatInfo.Analyze(PTM); 4158 4159 // Collect error messages. 4160 SmallVector<std::string, 4> Msgs; 4161 4162 // Check for missing flags in the output. 4163 // Permit extra flags for now at least. 4164 if (PatInfo.hasSideEffects && !NumSideEffects) 4165 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4166 4167 // Don't verify store flags on instructions with side effects. At least for 4168 // intrinsics, side effects implies mayStore. 4169 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4170 Msgs.push_back("pattern may store, but mayStore isn't set"); 4171 4172 // Similarly, mayStore implies mayLoad on intrinsics. 4173 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4174 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4175 4176 // Print error messages. 4177 if (Msgs.empty()) 4178 continue; 4179 ++Errors; 4180 4181 for (const std::string &Msg : Msgs) 4182 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4183 (Instrs.size() == 1 ? 4184 "instruction" : "output instructions")); 4185 // Provide the location of the relevant instruction definitions. 4186 for (const Record *Instr : Instrs) { 4187 if (Instr != PTM.getSrcRecord()) 4188 PrintError(Instr->getLoc(), "defined here"); 4189 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4190 if (InstInfo.InferredFrom && 4191 InstInfo.InferredFrom != InstInfo.TheDef && 4192 InstInfo.InferredFrom != PTM.getSrcRecord()) 4193 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4194 } 4195 } 4196 if (Errors) 4197 PrintFatalError("Errors in DAG patterns"); 4198 } 4199 4200 /// Given a pattern result with an unresolved type, see if we can find one 4201 /// instruction with an unresolved result type. Force this result type to an 4202 /// arbitrary element if it's possible types to converge results. 4203 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4204 if (N->isLeaf()) 4205 return false; 4206 4207 // Analyze children. 4208 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4209 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4210 return true; 4211 4212 if (!N->getOperator()->isSubClassOf("Instruction")) 4213 return false; 4214 4215 // If this type is already concrete or completely unknown we can't do 4216 // anything. 4217 TypeInfer &TI = TP.getInfer(); 4218 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4219 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4220 continue; 4221 4222 // Otherwise, force its type to an arbitrary choice. 4223 if (TI.forceArbitrary(N->getExtType(i))) 4224 return true; 4225 } 4226 4227 return false; 4228 } 4229 4230 // Promote xform function to be an explicit node wherever set. 4231 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4232 if (Record *Xform = N->getTransformFn()) { 4233 N->setTransformFn(nullptr); 4234 std::vector<TreePatternNodePtr> Children; 4235 Children.push_back(PromoteXForms(N)); 4236 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4237 N->getNumTypes()); 4238 } 4239 4240 if (!N->isLeaf()) 4241 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4242 TreePatternNodePtr Child = N->getChildShared(i); 4243 N->setChild(i, PromoteXForms(Child)); 4244 } 4245 return N; 4246 } 4247 4248 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4249 TreePattern &Pattern, TreePattern &Result, 4250 const std::vector<Record *> &InstImpResults) { 4251 4252 // Inline pattern fragments and expand multiple alternatives. 4253 Pattern.InlinePatternFragments(); 4254 Result.InlinePatternFragments(); 4255 4256 if (Result.getNumTrees() != 1) 4257 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4258 4259 // Infer types. 4260 bool IterateInference; 4261 bool InferredAllPatternTypes, InferredAllResultTypes; 4262 do { 4263 // Infer as many types as possible. If we cannot infer all of them, we 4264 // can never do anything with this pattern: report it to the user. 4265 InferredAllPatternTypes = 4266 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4267 4268 // Infer as many types as possible. If we cannot infer all of them, we 4269 // can never do anything with this pattern: report it to the user. 4270 InferredAllResultTypes = 4271 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4272 4273 IterateInference = false; 4274 4275 // Apply the type of the result to the source pattern. This helps us 4276 // resolve cases where the input type is known to be a pointer type (which 4277 // is considered resolved), but the result knows it needs to be 32- or 4278 // 64-bits. Infer the other way for good measure. 4279 for (const auto &T : Pattern.getTrees()) 4280 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4281 T->getNumTypes()); 4282 i != e; ++i) { 4283 IterateInference |= T->UpdateNodeType( 4284 i, Result.getOnlyTree()->getExtType(i), Result); 4285 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4286 i, T->getExtType(i), Result); 4287 } 4288 4289 // If our iteration has converged and the input pattern's types are fully 4290 // resolved but the result pattern is not fully resolved, we may have a 4291 // situation where we have two instructions in the result pattern and 4292 // the instructions require a common register class, but don't care about 4293 // what actual MVT is used. This is actually a bug in our modelling: 4294 // output patterns should have register classes, not MVTs. 4295 // 4296 // In any case, to handle this, we just go through and disambiguate some 4297 // arbitrary types to the result pattern's nodes. 4298 if (!IterateInference && InferredAllPatternTypes && 4299 !InferredAllResultTypes) 4300 IterateInference = 4301 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4302 } while (IterateInference); 4303 4304 // Verify that we inferred enough types that we can do something with the 4305 // pattern and result. If these fire the user has to add type casts. 4306 if (!InferredAllPatternTypes) 4307 Pattern.error("Could not infer all types in pattern!"); 4308 if (!InferredAllResultTypes) { 4309 Pattern.dump(); 4310 Result.error("Could not infer all types in pattern result!"); 4311 } 4312 4313 // Promote xform function to be an explicit node wherever set. 4314 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4315 4316 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4317 Temp.InferAllTypes(); 4318 4319 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4320 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4321 4322 if (PatternRewriter) 4323 PatternRewriter(&Pattern); 4324 4325 // A pattern may end up with an "impossible" type, i.e. a situation 4326 // where all types have been eliminated for some node in this pattern. 4327 // This could occur for intrinsics that only make sense for a specific 4328 // value type, and use a specific register class. If, for some mode, 4329 // that register class does not accept that type, the type inference 4330 // will lead to a contradiction, which is not an error however, but 4331 // a sign that this pattern will simply never match. 4332 if (Temp.getOnlyTree()->hasPossibleType()) 4333 for (const auto &T : Pattern.getTrees()) 4334 if (T->hasPossibleType()) 4335 AddPatternToMatch(&Pattern, 4336 PatternToMatch(TheDef, Preds, T, Temp.getOnlyTree(), 4337 InstImpResults, Complexity, 4338 TheDef->getID())); 4339 } 4340 4341 void CodeGenDAGPatterns::ParsePatterns() { 4342 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4343 4344 for (Record *CurPattern : Patterns) { 4345 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4346 4347 // If the pattern references the null_frag, there's nothing to do. 4348 if (hasNullFragReference(Tree)) 4349 continue; 4350 4351 TreePattern Pattern(CurPattern, Tree, true, *this); 4352 4353 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4354 if (LI->empty()) continue; // no pattern. 4355 4356 // Parse the instruction. 4357 TreePattern Result(CurPattern, LI, false, *this); 4358 4359 if (Result.getNumTrees() != 1) 4360 Result.error("Cannot handle instructions producing instructions " 4361 "with temporaries yet!"); 4362 4363 // Validate that the input pattern is correct. 4364 std::map<std::string, TreePatternNodePtr> InstInputs; 4365 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4366 InstResults; 4367 std::vector<Record*> InstImpResults; 4368 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4369 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4370 InstResults, InstImpResults); 4371 4372 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4373 } 4374 } 4375 4376 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4377 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4378 for (const auto &I : VTS) 4379 Modes.insert(I.first); 4380 4381 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4382 collectModes(Modes, N->getChild(i)); 4383 } 4384 4385 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4386 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4387 std::vector<PatternToMatch> Copy; 4388 PatternsToMatch.swap(Copy); 4389 4390 auto AppendPattern = [this](PatternToMatch &P, unsigned Mode, 4391 StringRef Check) { 4392 TreePatternNodePtr NewSrc = P.getSrcPattern()->clone(); 4393 TreePatternNodePtr NewDst = P.getDstPattern()->clone(); 4394 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4395 return; 4396 } 4397 4398 PatternsToMatch.emplace_back(P.getSrcRecord(), P.getPredicates(), 4399 std::move(NewSrc), std::move(NewDst), 4400 P.getDstRegs(), P.getAddedComplexity(), 4401 Record::getNewUID(Records), Mode, Check); 4402 }; 4403 4404 for (PatternToMatch &P : Copy) { 4405 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4406 if (P.getSrcPattern()->hasProperTypeByHwMode()) 4407 SrcP = P.getSrcPatternShared(); 4408 if (P.getDstPattern()->hasProperTypeByHwMode()) 4409 DstP = P.getDstPatternShared(); 4410 if (!SrcP && !DstP) { 4411 PatternsToMatch.push_back(P); 4412 continue; 4413 } 4414 4415 std::set<unsigned> Modes; 4416 if (SrcP) 4417 collectModes(Modes, SrcP.get()); 4418 if (DstP) 4419 collectModes(Modes, DstP.get()); 4420 4421 // The predicate for the default mode needs to be constructed for each 4422 // pattern separately. 4423 // Since not all modes must be present in each pattern, if a mode m is 4424 // absent, then there is no point in constructing a check for m. If such 4425 // a check was created, it would be equivalent to checking the default 4426 // mode, except not all modes' predicates would be a part of the checking 4427 // code. The subsequently generated check for the default mode would then 4428 // have the exact same patterns, but a different predicate code. To avoid 4429 // duplicated patterns with different predicate checks, construct the 4430 // default check as a negation of all predicates that are actually present 4431 // in the source/destination patterns. 4432 SmallString<128> DefaultCheck; 4433 4434 for (unsigned M : Modes) { 4435 if (M == DefaultMode) 4436 continue; 4437 4438 // Fill the map entry for this mode. 4439 const HwMode &HM = CGH.getMode(M); 4440 AppendPattern(P, M, "(MF->getSubtarget().checkFeatures(\"" + HM.Features + "\"))"); 4441 4442 // Add negations of the HM's predicates to the default predicate. 4443 if (!DefaultCheck.empty()) 4444 DefaultCheck += " && "; 4445 DefaultCheck += "(!(MF->getSubtarget().checkFeatures(\""; 4446 DefaultCheck += HM.Features; 4447 DefaultCheck += "\")))"; 4448 } 4449 4450 bool HasDefault = Modes.count(DefaultMode); 4451 if (HasDefault) 4452 AppendPattern(P, DefaultMode, DefaultCheck); 4453 } 4454 } 4455 4456 /// Dependent variable map for CodeGenDAGPattern variant generation 4457 typedef StringMap<int> DepVarMap; 4458 4459 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4460 if (N->isLeaf()) { 4461 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4462 DepMap[N->getName()]++; 4463 } else { 4464 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4465 FindDepVarsOf(N->getChild(i), DepMap); 4466 } 4467 } 4468 4469 /// Find dependent variables within child patterns 4470 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4471 DepVarMap depcounts; 4472 FindDepVarsOf(N, depcounts); 4473 for (const auto &Pair : depcounts) { 4474 if (Pair.getValue() > 1) 4475 DepVars.insert(Pair.getKey()); 4476 } 4477 } 4478 4479 #ifndef NDEBUG 4480 /// Dump the dependent variable set: 4481 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4482 if (DepVars.empty()) { 4483 LLVM_DEBUG(errs() << "<empty set>"); 4484 } else { 4485 LLVM_DEBUG(errs() << "[ "); 4486 for (const auto &DepVar : DepVars) { 4487 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4488 } 4489 LLVM_DEBUG(errs() << "]"); 4490 } 4491 } 4492 #endif 4493 4494 4495 /// CombineChildVariants - Given a bunch of permutations of each child of the 4496 /// 'operator' node, put them together in all possible ways. 4497 static void CombineChildVariants( 4498 TreePatternNodePtr Orig, 4499 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4500 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4501 const MultipleUseVarSet &DepVars) { 4502 // Make sure that each operand has at least one variant to choose from. 4503 for (const auto &Variants : ChildVariants) 4504 if (Variants.empty()) 4505 return; 4506 4507 // The end result is an all-pairs construction of the resultant pattern. 4508 std::vector<unsigned> Idxs; 4509 Idxs.resize(ChildVariants.size()); 4510 bool NotDone; 4511 do { 4512 #ifndef NDEBUG 4513 LLVM_DEBUG(if (!Idxs.empty()) { 4514 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4515 for (unsigned Idx : Idxs) { 4516 errs() << Idx << " "; 4517 } 4518 errs() << "]\n"; 4519 }); 4520 #endif 4521 // Create the variant and add it to the output list. 4522 std::vector<TreePatternNodePtr> NewChildren; 4523 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4524 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4525 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4526 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4527 4528 // Copy over properties. 4529 R->setName(Orig->getName()); 4530 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4531 R->setPredicateCalls(Orig->getPredicateCalls()); 4532 R->setTransformFn(Orig->getTransformFn()); 4533 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4534 R->setType(i, Orig->getExtType(i)); 4535 4536 // If this pattern cannot match, do not include it as a variant. 4537 std::string ErrString; 4538 // Scan to see if this pattern has already been emitted. We can get 4539 // duplication due to things like commuting: 4540 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4541 // which are the same pattern. Ignore the dups. 4542 if (R->canPatternMatch(ErrString, CDP) && 4543 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4544 return R->isIsomorphicTo(Variant.get(), DepVars); 4545 })) 4546 OutVariants.push_back(R); 4547 4548 // Increment indices to the next permutation by incrementing the 4549 // indices from last index backward, e.g., generate the sequence 4550 // [0, 0], [0, 1], [1, 0], [1, 1]. 4551 int IdxsIdx; 4552 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4553 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4554 Idxs[IdxsIdx] = 0; 4555 else 4556 break; 4557 } 4558 NotDone = (IdxsIdx >= 0); 4559 } while (NotDone); 4560 } 4561 4562 /// CombineChildVariants - A helper function for binary operators. 4563 /// 4564 static void CombineChildVariants(TreePatternNodePtr Orig, 4565 const std::vector<TreePatternNodePtr> &LHS, 4566 const std::vector<TreePatternNodePtr> &RHS, 4567 std::vector<TreePatternNodePtr> &OutVariants, 4568 CodeGenDAGPatterns &CDP, 4569 const MultipleUseVarSet &DepVars) { 4570 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4571 ChildVariants.push_back(LHS); 4572 ChildVariants.push_back(RHS); 4573 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4574 } 4575 4576 static void 4577 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4578 std::vector<TreePatternNodePtr> &Children) { 4579 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4580 Record *Operator = N->getOperator(); 4581 4582 // Only permit raw nodes. 4583 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4584 N->getTransformFn()) { 4585 Children.push_back(N); 4586 return; 4587 } 4588 4589 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4590 Children.push_back(N->getChildShared(0)); 4591 else 4592 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4593 4594 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4595 Children.push_back(N->getChildShared(1)); 4596 else 4597 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4598 } 4599 4600 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4601 /// the (potentially recursive) pattern by using algebraic laws. 4602 /// 4603 static void GenerateVariantsOf(TreePatternNodePtr N, 4604 std::vector<TreePatternNodePtr> &OutVariants, 4605 CodeGenDAGPatterns &CDP, 4606 const MultipleUseVarSet &DepVars) { 4607 // We cannot permute leaves or ComplexPattern uses. 4608 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4609 OutVariants.push_back(N); 4610 return; 4611 } 4612 4613 // Look up interesting info about the node. 4614 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4615 4616 // If this node is associative, re-associate. 4617 if (NodeInfo.hasProperty(SDNPAssociative)) { 4618 // Re-associate by pulling together all of the linked operators 4619 std::vector<TreePatternNodePtr> MaximalChildren; 4620 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4621 4622 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4623 // permutations. 4624 if (MaximalChildren.size() == 3) { 4625 // Find the variants of all of our maximal children. 4626 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4627 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4628 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4629 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4630 4631 // There are only two ways we can permute the tree: 4632 // (A op B) op C and A op (B op C) 4633 // Within these forms, we can also permute A/B/C. 4634 4635 // Generate legal pair permutations of A/B/C. 4636 std::vector<TreePatternNodePtr> ABVariants; 4637 std::vector<TreePatternNodePtr> BAVariants; 4638 std::vector<TreePatternNodePtr> ACVariants; 4639 std::vector<TreePatternNodePtr> CAVariants; 4640 std::vector<TreePatternNodePtr> BCVariants; 4641 std::vector<TreePatternNodePtr> CBVariants; 4642 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4643 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4644 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4645 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4646 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4647 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4648 4649 // Combine those into the result: (x op x) op x 4650 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4651 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4652 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4653 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4654 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4655 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4656 4657 // Combine those into the result: x op (x op x) 4658 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4659 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4660 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4661 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4662 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4663 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4664 return; 4665 } 4666 } 4667 4668 // Compute permutations of all children. 4669 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4670 ChildVariants.resize(N->getNumChildren()); 4671 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4672 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4673 4674 // Build all permutations based on how the children were formed. 4675 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4676 4677 // If this node is commutative, consider the commuted order. 4678 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4679 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4680 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 4681 assert(N->getNumChildren() >= (2 + Skip) && 4682 "Commutative but doesn't have 2 children!"); 4683 // Don't allow commuting children which are actually register references. 4684 bool NoRegisters = true; 4685 unsigned i = 0 + Skip; 4686 unsigned e = 2 + Skip; 4687 for (; i != e; ++i) { 4688 TreePatternNode *Child = N->getChild(i); 4689 if (Child->isLeaf()) 4690 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4691 Record *RR = DI->getDef(); 4692 if (RR->isSubClassOf("Register")) 4693 NoRegisters = false; 4694 } 4695 } 4696 // Consider the commuted order. 4697 if (NoRegisters) { 4698 std::vector<std::vector<TreePatternNodePtr>> Variants; 4699 unsigned i = 0; 4700 if (isCommIntrinsic) 4701 Variants.push_back(std::move(ChildVariants[i++])); // Intrinsic id. 4702 Variants.push_back(std::move(ChildVariants[i + 1])); 4703 Variants.push_back(std::move(ChildVariants[i])); 4704 i += 2; 4705 // Remaining operands are not commuted. 4706 for (; i != N->getNumChildren(); ++i) 4707 Variants.push_back(std::move(ChildVariants[i])); 4708 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4709 } 4710 } 4711 } 4712 4713 4714 // GenerateVariants - Generate variants. For example, commutative patterns can 4715 // match multiple ways. Add them to PatternsToMatch as well. 4716 void CodeGenDAGPatterns::GenerateVariants() { 4717 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4718 4719 // Loop over all of the patterns we've collected, checking to see if we can 4720 // generate variants of the instruction, through the exploitation of 4721 // identities. This permits the target to provide aggressive matching without 4722 // the .td file having to contain tons of variants of instructions. 4723 // 4724 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4725 // intentionally do not reconsider these. Any variants of added patterns have 4726 // already been added. 4727 // 4728 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4729 MultipleUseVarSet DepVars; 4730 std::vector<TreePatternNodePtr> Variants; 4731 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4732 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4733 LLVM_DEBUG(DumpDepVars(DepVars)); 4734 LLVM_DEBUG(errs() << "\n"); 4735 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4736 *this, DepVars); 4737 4738 assert(PatternsToMatch[i].getHwModeFeatures().empty() && 4739 "HwModes should not have been expanded yet!"); 4740 4741 assert(!Variants.empty() && "Must create at least original variant!"); 4742 if (Variants.size() == 1) // No additional variants for this pattern. 4743 continue; 4744 4745 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4746 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4747 4748 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4749 TreePatternNodePtr Variant = Variants[v]; 4750 4751 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4752 errs() << "\n"); 4753 4754 // Scan to see if an instruction or explicit pattern already matches this. 4755 bool AlreadyExists = false; 4756 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4757 // Skip if the top level predicates do not match. 4758 if ((i != p) && (PatternsToMatch[i].getPredicates() != 4759 PatternsToMatch[p].getPredicates())) 4760 continue; 4761 // Check to see if this variant already exists. 4762 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4763 DepVars)) { 4764 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4765 AlreadyExists = true; 4766 break; 4767 } 4768 } 4769 // If we already have it, ignore the variant. 4770 if (AlreadyExists) continue; 4771 4772 // Otherwise, add it to the list of patterns we have. 4773 PatternsToMatch.emplace_back( 4774 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4775 Variant, PatternsToMatch[i].getDstPatternShared(), 4776 PatternsToMatch[i].getDstRegs(), 4777 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID(Records), 4778 PatternsToMatch[i].getForceMode(), 4779 PatternsToMatch[i].getHwModeFeatures()); 4780 } 4781 4782 LLVM_DEBUG(errs() << "\n"); 4783 } 4784 } 4785