1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/TableGen/Error.h" 23 #include "llvm/TableGen/Record.h" 24 #include <algorithm> 25 #include <cstdio> 26 #include <set> 27 using namespace llvm; 28 29 #define DEBUG_TYPE "dag-patterns" 30 31 //===----------------------------------------------------------------------===// 32 // EEVT::TypeSet Implementation 33 //===----------------------------------------------------------------------===// 34 35 static inline bool isInteger(MVT::SimpleValueType VT) { 36 return MVT(VT).isInteger(); 37 } 38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 39 return MVT(VT).isFloatingPoint(); 40 } 41 static inline bool isVector(MVT::SimpleValueType VT) { 42 return MVT(VT).isVector(); 43 } 44 static inline bool isScalar(MVT::SimpleValueType VT) { 45 return !MVT(VT).isVector(); 46 } 47 48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 49 if (VT == MVT::iAny) 50 EnforceInteger(TP); 51 else if (VT == MVT::fAny) 52 EnforceFloatingPoint(TP); 53 else if (VT == MVT::vAny) 54 EnforceVector(TP); 55 else { 56 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 57 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); 58 TypeVec.push_back(VT); 59 } 60 } 61 62 63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 64 assert(!VTList.empty() && "empty list?"); 65 TypeVec.append(VTList.begin(), VTList.end()); 66 67 if (!VTList.empty()) 68 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 69 VTList[0] != MVT::fAny); 70 71 // Verify no duplicates. 72 array_pod_sort(TypeVec.begin(), TypeVec.end()); 73 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 74 } 75 76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 77 /// on completely unknown type sets. 78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 79 bool (*Pred)(MVT::SimpleValueType), 80 const char *PredicateName) { 81 assert(isCompletelyUnknown()); 82 ArrayRef<MVT::SimpleValueType> LegalTypes = 83 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 84 85 if (TP.hasError()) 86 return false; 87 88 for (MVT::SimpleValueType VT : LegalTypes) 89 if (!Pred || Pred(VT)) 90 TypeVec.push_back(VT); 91 92 // If we have nothing that matches the predicate, bail out. 93 if (TypeVec.empty()) { 94 TP.error("Type inference contradiction found, no " + 95 std::string(PredicateName) + " types found"); 96 return false; 97 } 98 // No need to sort with one element. 99 if (TypeVec.size() == 1) return true; 100 101 // Remove duplicates. 102 array_pod_sort(TypeVec.begin(), TypeVec.end()); 103 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 104 105 return true; 106 } 107 108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 109 /// integer value type. 110 bool EEVT::TypeSet::hasIntegerTypes() const { 111 return any_of(TypeVec, isInteger); 112 } 113 114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 115 /// a floating point value type. 116 bool EEVT::TypeSet::hasFloatingPointTypes() const { 117 return any_of(TypeVec, isFloatingPoint); 118 } 119 120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 121 bool EEVT::TypeSet::hasScalarTypes() const { 122 return any_of(TypeVec, isScalar); 123 } 124 125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 126 /// value type. 127 bool EEVT::TypeSet::hasVectorTypes() const { 128 return any_of(TypeVec, isVector); 129 } 130 131 132 std::string EEVT::TypeSet::getName() const { 133 if (TypeVec.empty()) return "<empty>"; 134 135 std::string Result; 136 137 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 138 std::string VTName = llvm::getEnumName(TypeVec[i]); 139 // Strip off MVT:: prefix if present. 140 if (VTName.substr(0,5) == "MVT::") 141 VTName = VTName.substr(5); 142 if (i) Result += ':'; 143 Result += VTName; 144 } 145 146 if (TypeVec.size() == 1) 147 return Result; 148 return "{" + Result + "}"; 149 } 150 151 /// MergeInTypeInfo - This merges in type information from the specified 152 /// argument. If 'this' changes, it returns true. If the two types are 153 /// contradictory (e.g. merge f32 into i32) then this flags an error. 154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 155 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 156 return false; 157 158 if (isCompletelyUnknown()) { 159 *this = InVT; 160 return true; 161 } 162 163 assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns"); 164 165 // Handle the abstract cases, seeing if we can resolve them better. 166 switch (TypeVec[0]) { 167 default: break; 168 case MVT::iPTR: 169 case MVT::iPTRAny: 170 if (InVT.hasIntegerTypes()) { 171 EEVT::TypeSet InCopy(InVT); 172 InCopy.EnforceInteger(TP); 173 InCopy.EnforceScalar(TP); 174 175 if (InCopy.isConcrete()) { 176 // If the RHS has one integer type, upgrade iPTR to i32. 177 TypeVec[0] = InVT.TypeVec[0]; 178 return true; 179 } 180 181 // If the input has multiple scalar integers, this doesn't add any info. 182 if (!InCopy.isCompletelyUnknown()) 183 return false; 184 } 185 break; 186 } 187 188 // If the input constraint is iAny/iPTR and this is an integer type list, 189 // remove non-integer types from the list. 190 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 191 hasIntegerTypes()) { 192 bool MadeChange = EnforceInteger(TP); 193 194 // If we're merging in iPTR/iPTRAny and the node currently has a list of 195 // multiple different integer types, replace them with a single iPTR. 196 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 197 TypeVec.size() != 1) { 198 TypeVec.assign(1, InVT.TypeVec[0]); 199 MadeChange = true; 200 } 201 202 return MadeChange; 203 } 204 205 // If this is a type list and the RHS is a typelist as well, eliminate entries 206 // from this list that aren't in the other one. 207 TypeSet InputSet(*this); 208 209 TypeVec.clear(); 210 std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(), 211 InVT.TypeVec.begin(), InVT.TypeVec.end(), 212 std::back_inserter(TypeVec)); 213 214 // If the intersection is the same size as the original set then we're done. 215 if (TypeVec.size() == InputSet.TypeVec.size()) 216 return false; 217 218 // If we removed all of our types, we have a type contradiction. 219 if (!TypeVec.empty()) 220 return true; 221 222 // FIXME: Really want an SMLoc here! 223 TP.error("Type inference contradiction found, merging '" + 224 InVT.getName() + "' into '" + InputSet.getName() + "'"); 225 return false; 226 } 227 228 /// EnforceInteger - Remove all non-integer types from this set. 229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 230 if (TP.hasError()) 231 return false; 232 // If we know nothing, then get the full set. 233 if (TypeVec.empty()) 234 return FillWithPossibleTypes(TP, isInteger, "integer"); 235 236 if (!hasFloatingPointTypes()) 237 return false; 238 239 TypeSet InputSet(*this); 240 241 // Filter out all the fp types. 242 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isInteger))), 243 TypeVec.end()); 244 245 if (TypeVec.empty()) { 246 TP.error("Type inference contradiction found, '" + 247 InputSet.getName() + "' needs to be integer"); 248 return false; 249 } 250 return true; 251 } 252 253 /// EnforceFloatingPoint - Remove all integer types from this set. 254 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 255 if (TP.hasError()) 256 return false; 257 // If we know nothing, then get the full set. 258 if (TypeVec.empty()) 259 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 260 261 if (!hasIntegerTypes()) 262 return false; 263 264 TypeSet InputSet(*this); 265 266 // Filter out all the integer types. 267 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isFloatingPoint))), 268 TypeVec.end()); 269 270 if (TypeVec.empty()) { 271 TP.error("Type inference contradiction found, '" + 272 InputSet.getName() + "' needs to be floating point"); 273 return false; 274 } 275 return true; 276 } 277 278 /// EnforceScalar - Remove all vector types from this. 279 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 280 if (TP.hasError()) 281 return false; 282 283 // If we know nothing, then get the full set. 284 if (TypeVec.empty()) 285 return FillWithPossibleTypes(TP, isScalar, "scalar"); 286 287 if (!hasVectorTypes()) 288 return false; 289 290 TypeSet InputSet(*this); 291 292 // Filter out all the vector types. 293 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isScalar))), 294 TypeVec.end()); 295 296 if (TypeVec.empty()) { 297 TP.error("Type inference contradiction found, '" + 298 InputSet.getName() + "' needs to be scalar"); 299 return false; 300 } 301 return true; 302 } 303 304 /// EnforceVector - Remove all vector types from this. 305 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 306 if (TP.hasError()) 307 return false; 308 309 // If we know nothing, then get the full set. 310 if (TypeVec.empty()) 311 return FillWithPossibleTypes(TP, isVector, "vector"); 312 313 TypeSet InputSet(*this); 314 bool MadeChange = false; 315 316 // Filter out all the scalar types. 317 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isVector))), 318 TypeVec.end()); 319 320 if (TypeVec.empty()) { 321 TP.error("Type inference contradiction found, '" + 322 InputSet.getName() + "' needs to be a vector"); 323 return false; 324 } 325 return MadeChange; 326 } 327 328 329 330 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 331 /// this should be based on the element type. Update this and other based on 332 /// this information. 333 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 334 if (TP.hasError()) 335 return false; 336 337 // Both operands must be integer or FP, but we don't care which. 338 bool MadeChange = false; 339 340 if (isCompletelyUnknown()) 341 MadeChange = FillWithPossibleTypes(TP); 342 343 if (Other.isCompletelyUnknown()) 344 MadeChange = Other.FillWithPossibleTypes(TP); 345 346 // If one side is known to be integer or known to be FP but the other side has 347 // no information, get at least the type integrality info in there. 348 if (!hasFloatingPointTypes()) 349 MadeChange |= Other.EnforceInteger(TP); 350 else if (!hasIntegerTypes()) 351 MadeChange |= Other.EnforceFloatingPoint(TP); 352 if (!Other.hasFloatingPointTypes()) 353 MadeChange |= EnforceInteger(TP); 354 else if (!Other.hasIntegerTypes()) 355 MadeChange |= EnforceFloatingPoint(TP); 356 357 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 358 "Should have a type list now"); 359 360 // If one contains vectors but the other doesn't pull vectors out. 361 if (!hasVectorTypes()) 362 MadeChange |= Other.EnforceScalar(TP); 363 else if (!hasScalarTypes()) 364 MadeChange |= Other.EnforceVector(TP); 365 if (!Other.hasVectorTypes()) 366 MadeChange |= EnforceScalar(TP); 367 else if (!Other.hasScalarTypes()) 368 MadeChange |= EnforceVector(TP); 369 370 // This code does not currently handle nodes which have multiple types, 371 // where some types are integer, and some are fp. Assert that this is not 372 // the case. 373 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 374 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 375 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 376 377 if (TP.hasError()) 378 return false; 379 380 // Okay, find the smallest type from current set and remove anything the 381 // same or smaller from the other set. We need to ensure that the scalar 382 // type size is smaller than the scalar size of the smallest type. For 383 // vectors, we also need to make sure that the total size is no larger than 384 // the size of the smallest type. 385 { 386 TypeSet InputSet(Other); 387 MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(), 388 [](MVT A, MVT B) { 389 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 390 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 391 A.getSizeInBits() < B.getSizeInBits()); 392 }); 393 394 auto I = remove_if(Other.TypeVec, [Smallest](MVT OtherVT) { 395 // Don't compare vector and non-vector types. 396 if (OtherVT.isVector() != Smallest.isVector()) 397 return false; 398 // The getSizeInBits() check here is only needed for vectors, but is 399 // a subset of the scalar check for scalars so no need to qualify. 400 return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() || 401 OtherVT.getSizeInBits() < Smallest.getSizeInBits(); 402 }); 403 MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types. 404 Other.TypeVec.erase(I, Other.TypeVec.end()); 405 406 if (Other.TypeVec.empty()) { 407 TP.error("Type inference contradiction found, '" + InputSet.getName() + 408 "' has nothing larger than '" + getName() +"'!"); 409 return false; 410 } 411 } 412 413 // Okay, find the largest type from the other set and remove anything the 414 // same or smaller from the current set. We need to ensure that the scalar 415 // type size is larger than the scalar size of the largest type. For 416 // vectors, we also need to make sure that the total size is no smaller than 417 // the size of the largest type. 418 { 419 TypeSet InputSet(*this); 420 MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(), 421 [](MVT A, MVT B) { 422 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 423 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 424 A.getSizeInBits() < B.getSizeInBits()); 425 }); 426 auto I = remove_if(TypeVec, [Largest](MVT OtherVT) { 427 // Don't compare vector and non-vector types. 428 if (OtherVT.isVector() != Largest.isVector()) 429 return false; 430 return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || 431 OtherVT.getSizeInBits() > Largest.getSizeInBits(); 432 }); 433 MadeChange |= I != TypeVec.end(); // If we're about to remove types. 434 TypeVec.erase(I, TypeVec.end()); 435 436 if (TypeVec.empty()) { 437 TP.error("Type inference contradiction found, '" + InputSet.getName() + 438 "' has nothing smaller than '" + Other.getName() +"'!"); 439 return false; 440 } 441 } 442 443 return MadeChange; 444 } 445 446 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 447 /// whose element is specified by VTOperand. 448 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, 449 TreePattern &TP) { 450 bool MadeChange = false; 451 452 MadeChange |= EnforceVector(TP); 453 454 TypeSet InputSet(*this); 455 456 // Filter out all the types which don't have the right element type. 457 auto I = remove_if(TypeVec, [VT](MVT VVT) { 458 return VVT.getVectorElementType().SimpleTy != VT; 459 }); 460 MadeChange |= I != TypeVec.end(); 461 TypeVec.erase(I, TypeVec.end()); 462 463 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 464 TP.error("Type inference contradiction found, forcing '" + 465 InputSet.getName() + "' to have a vector element of type " + 466 getEnumName(VT)); 467 return false; 468 } 469 470 return MadeChange; 471 } 472 473 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 474 /// whose element is specified by VTOperand. 475 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 476 TreePattern &TP) { 477 if (TP.hasError()) 478 return false; 479 480 // "This" must be a vector and "VTOperand" must be a scalar. 481 bool MadeChange = false; 482 MadeChange |= EnforceVector(TP); 483 MadeChange |= VTOperand.EnforceScalar(TP); 484 485 // If we know the vector type, it forces the scalar to agree. 486 if (isConcrete()) { 487 MVT IVT = getConcrete(); 488 IVT = IVT.getVectorElementType(); 489 return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 490 } 491 492 // If the scalar type is known, filter out vector types whose element types 493 // disagree. 494 if (!VTOperand.isConcrete()) 495 return MadeChange; 496 497 MVT::SimpleValueType VT = VTOperand.getConcrete(); 498 499 MadeChange |= EnforceVectorEltTypeIs(VT, TP); 500 501 return MadeChange; 502 } 503 504 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a 505 /// vector type specified by VTOperand. 506 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 507 TreePattern &TP) { 508 if (TP.hasError()) 509 return false; 510 511 // "This" must be a vector and "VTOperand" must be a vector. 512 bool MadeChange = false; 513 MadeChange |= EnforceVector(TP); 514 MadeChange |= VTOperand.EnforceVector(TP); 515 516 // If one side is known to be integer or known to be FP but the other side has 517 // no information, get at least the type integrality info in there. 518 if (!hasFloatingPointTypes()) 519 MadeChange |= VTOperand.EnforceInteger(TP); 520 else if (!hasIntegerTypes()) 521 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 522 if (!VTOperand.hasFloatingPointTypes()) 523 MadeChange |= EnforceInteger(TP); 524 else if (!VTOperand.hasIntegerTypes()) 525 MadeChange |= EnforceFloatingPoint(TP); 526 527 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 528 "Should have a type list now"); 529 530 // If we know the vector type, it forces the scalar types to agree. 531 // Also force one vector to have more elements than the other. 532 if (isConcrete()) { 533 MVT IVT = getConcrete(); 534 unsigned NumElems = IVT.getVectorNumElements(); 535 IVT = IVT.getVectorElementType(); 536 537 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 538 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 539 540 // Only keep types that have less elements than VTOperand. 541 TypeSet InputSet(VTOperand); 542 543 auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { 544 return VVT.getVectorNumElements() >= NumElems; 545 }); 546 MadeChange |= I != VTOperand.TypeVec.end(); 547 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 548 549 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 550 TP.error("Type inference contradiction found, forcing '" + 551 InputSet.getName() + "' to have less vector elements than '" + 552 getName() + "'"); 553 return false; 554 } 555 } else if (VTOperand.isConcrete()) { 556 MVT IVT = VTOperand.getConcrete(); 557 unsigned NumElems = IVT.getVectorNumElements(); 558 IVT = IVT.getVectorElementType(); 559 560 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 561 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 562 563 // Only keep types that have more elements than 'this'. 564 TypeSet InputSet(*this); 565 566 auto I = remove_if(TypeVec, [NumElems](MVT VVT) { 567 return VVT.getVectorNumElements() <= NumElems; 568 }); 569 MadeChange |= I != TypeVec.end(); 570 TypeVec.erase(I, TypeVec.end()); 571 572 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 573 TP.error("Type inference contradiction found, forcing '" + 574 InputSet.getName() + "' to have more vector elements than '" + 575 VTOperand.getName() + "'"); 576 return false; 577 } 578 } 579 580 return MadeChange; 581 } 582 583 /// EnforceVectorSameNumElts - 'this' is now constrained to 584 /// be a vector with same num elements as VTOperand. 585 bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand, 586 TreePattern &TP) { 587 if (TP.hasError()) 588 return false; 589 590 // "This" must be a vector and "VTOperand" must be a vector. 591 bool MadeChange = false; 592 MadeChange |= EnforceVector(TP); 593 MadeChange |= VTOperand.EnforceVector(TP); 594 595 // If we know one of the vector types, it forces the other type to agree. 596 if (isConcrete()) { 597 MVT IVT = getConcrete(); 598 unsigned NumElems = IVT.getVectorNumElements(); 599 600 // Only keep types that have same elements as 'this'. 601 TypeSet InputSet(VTOperand); 602 603 auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { 604 return VVT.getVectorNumElements() != NumElems; 605 }); 606 MadeChange |= I != VTOperand.TypeVec.end(); 607 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 608 609 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 610 TP.error("Type inference contradiction found, forcing '" + 611 InputSet.getName() + "' to have same number elements as '" + 612 getName() + "'"); 613 return false; 614 } 615 } else if (VTOperand.isConcrete()) { 616 MVT IVT = VTOperand.getConcrete(); 617 unsigned NumElems = IVT.getVectorNumElements(); 618 619 // Only keep types that have same elements as VTOperand. 620 TypeSet InputSet(*this); 621 622 auto I = remove_if(TypeVec, [NumElems](MVT VVT) { 623 return VVT.getVectorNumElements() != NumElems; 624 }); 625 MadeChange |= I != TypeVec.end(); 626 TypeVec.erase(I, TypeVec.end()); 627 628 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 629 TP.error("Type inference contradiction found, forcing '" + 630 InputSet.getName() + "' to have same number elements than '" + 631 VTOperand.getName() + "'"); 632 return false; 633 } 634 } 635 636 return MadeChange; 637 } 638 639 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand. 640 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand, 641 TreePattern &TP) { 642 if (TP.hasError()) 643 return false; 644 645 bool MadeChange = false; 646 647 // If we know one of the types, it forces the other type agree. 648 if (isConcrete()) { 649 MVT IVT = getConcrete(); 650 unsigned Size = IVT.getSizeInBits(); 651 652 // Only keep types that have the same size as 'this'. 653 TypeSet InputSet(VTOperand); 654 655 auto I = remove_if(VTOperand.TypeVec, 656 [&](MVT VT) { return VT.getSizeInBits() != Size; }); 657 MadeChange |= I != VTOperand.TypeVec.end(); 658 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 659 660 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 661 TP.error("Type inference contradiction found, forcing '" + 662 InputSet.getName() + "' to have same size as '" + 663 getName() + "'"); 664 return false; 665 } 666 } else if (VTOperand.isConcrete()) { 667 MVT IVT = VTOperand.getConcrete(); 668 unsigned Size = IVT.getSizeInBits(); 669 670 // Only keep types that have the same size as VTOperand. 671 TypeSet InputSet(*this); 672 673 auto I = 674 remove_if(TypeVec, [&](MVT VT) { return VT.getSizeInBits() != Size; }); 675 MadeChange |= I != TypeVec.end(); 676 TypeVec.erase(I, TypeVec.end()); 677 678 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 679 TP.error("Type inference contradiction found, forcing '" + 680 InputSet.getName() + "' to have same size as '" + 681 VTOperand.getName() + "'"); 682 return false; 683 } 684 } 685 686 return MadeChange; 687 } 688 689 //===----------------------------------------------------------------------===// 690 // Helpers for working with extended types. 691 692 /// Dependent variable map for CodeGenDAGPattern variant generation 693 typedef std::map<std::string, int> DepVarMap; 694 695 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 696 if (N->isLeaf()) { 697 if (isa<DefInit>(N->getLeafValue())) 698 DepMap[N->getName()]++; 699 } else { 700 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 701 FindDepVarsOf(N->getChild(i), DepMap); 702 } 703 } 704 705 /// Find dependent variables within child patterns 706 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 707 DepVarMap depcounts; 708 FindDepVarsOf(N, depcounts); 709 for (const std::pair<std::string, int> &Pair : depcounts) { 710 if (Pair.second > 1) 711 DepVars.insert(Pair.first); 712 } 713 } 714 715 #ifndef NDEBUG 716 /// Dump the dependent variable set: 717 static void DumpDepVars(MultipleUseVarSet &DepVars) { 718 if (DepVars.empty()) { 719 DEBUG(errs() << "<empty set>"); 720 } else { 721 DEBUG(errs() << "[ "); 722 for (const std::string &DepVar : DepVars) { 723 DEBUG(errs() << DepVar << " "); 724 } 725 DEBUG(errs() << "]"); 726 } 727 } 728 #endif 729 730 731 //===----------------------------------------------------------------------===// 732 // TreePredicateFn Implementation 733 //===----------------------------------------------------------------------===// 734 735 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 736 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 737 assert((getPredCode().empty() || getImmCode().empty()) && 738 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 739 } 740 741 std::string TreePredicateFn::getPredCode() const { 742 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 743 } 744 745 std::string TreePredicateFn::getImmCode() const { 746 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 747 } 748 749 750 /// isAlwaysTrue - Return true if this is a noop predicate. 751 bool TreePredicateFn::isAlwaysTrue() const { 752 return getPredCode().empty() && getImmCode().empty(); 753 } 754 755 /// Return the name to use in the generated code to reference this, this is 756 /// "Predicate_foo" if from a pattern fragment "foo". 757 std::string TreePredicateFn::getFnName() const { 758 return "Predicate_" + PatFragRec->getRecord()->getName(); 759 } 760 761 /// getCodeToRunOnSDNode - Return the code for the function body that 762 /// evaluates this predicate. The argument is expected to be in "Node", 763 /// not N. This handles casting and conversion to a concrete node type as 764 /// appropriate. 765 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 766 // Handle immediate predicates first. 767 std::string ImmCode = getImmCode(); 768 if (!ImmCode.empty()) { 769 std::string Result = 770 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 771 return Result + ImmCode; 772 } 773 774 // Handle arbitrary node predicates. 775 assert(!getPredCode().empty() && "Don't have any predicate code!"); 776 std::string ClassName; 777 if (PatFragRec->getOnlyTree()->isLeaf()) 778 ClassName = "SDNode"; 779 else { 780 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 781 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 782 } 783 std::string Result; 784 if (ClassName == "SDNode") 785 Result = " SDNode *N = Node;\n"; 786 else 787 Result = " auto *N = cast<" + ClassName + ">(Node);\n"; 788 789 return Result + getPredCode(); 790 } 791 792 //===----------------------------------------------------------------------===// 793 // PatternToMatch implementation 794 // 795 796 797 /// getPatternSize - Return the 'size' of this pattern. We want to match large 798 /// patterns before small ones. This is used to determine the size of a 799 /// pattern. 800 static unsigned getPatternSize(const TreePatternNode *P, 801 const CodeGenDAGPatterns &CGP) { 802 unsigned Size = 3; // The node itself. 803 // If the root node is a ConstantSDNode, increases its size. 804 // e.g. (set R32:$dst, 0). 805 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 806 Size += 2; 807 808 // FIXME: This is a hack to statically increase the priority of patterns 809 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 810 // Later we can allow complexity / cost for each pattern to be (optionally) 811 // specified. To get best possible pattern match we'll need to dynamically 812 // calculate the complexity of all patterns a dag can potentially map to. 813 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 814 if (AM) { 815 Size += AM->getNumOperands() * 3; 816 817 // We don't want to count any children twice, so return early. 818 return Size; 819 } 820 821 // If this node has some predicate function that must match, it adds to the 822 // complexity of this node. 823 if (!P->getPredicateFns().empty()) 824 ++Size; 825 826 // Count children in the count if they are also nodes. 827 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 828 TreePatternNode *Child = P->getChild(i); 829 if (!Child->isLeaf() && Child->getNumTypes() && 830 Child->getType(0) != MVT::Other) 831 Size += getPatternSize(Child, CGP); 832 else if (Child->isLeaf()) { 833 if (isa<IntInit>(Child->getLeafValue())) 834 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 835 else if (Child->getComplexPatternInfo(CGP)) 836 Size += getPatternSize(Child, CGP); 837 else if (!Child->getPredicateFns().empty()) 838 ++Size; 839 } 840 } 841 842 return Size; 843 } 844 845 /// Compute the complexity metric for the input pattern. This roughly 846 /// corresponds to the number of nodes that are covered. 847 int PatternToMatch:: 848 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 849 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 850 } 851 852 853 /// getPredicateCheck - Return a single string containing all of this 854 /// pattern's predicates concatenated with "&&" operators. 855 /// 856 std::string PatternToMatch::getPredicateCheck() const { 857 SmallVector<Record *, 4> PredicateRecs; 858 for (Init *I : Predicates->getValues()) { 859 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 860 Record *Def = Pred->getDef(); 861 if (!Def->isSubClassOf("Predicate")) { 862 #ifndef NDEBUG 863 Def->dump(); 864 #endif 865 llvm_unreachable("Unknown predicate type!"); 866 } 867 PredicateRecs.push_back(Def); 868 } 869 } 870 // Sort so that different orders get canonicalized to the same string. 871 std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord()); 872 873 SmallString<128> PredicateCheck; 874 for (Record *Pred : PredicateRecs) { 875 if (!PredicateCheck.empty()) 876 PredicateCheck += " && "; 877 PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")"; 878 } 879 880 return PredicateCheck.str(); 881 } 882 883 //===----------------------------------------------------------------------===// 884 // SDTypeConstraint implementation 885 // 886 887 SDTypeConstraint::SDTypeConstraint(Record *R) { 888 OperandNo = R->getValueAsInt("OperandNum"); 889 890 if (R->isSubClassOf("SDTCisVT")) { 891 ConstraintType = SDTCisVT; 892 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 893 if (x.SDTCisVT_Info.VT == MVT::isVoid) 894 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 895 896 } else if (R->isSubClassOf("SDTCisPtrTy")) { 897 ConstraintType = SDTCisPtrTy; 898 } else if (R->isSubClassOf("SDTCisInt")) { 899 ConstraintType = SDTCisInt; 900 } else if (R->isSubClassOf("SDTCisFP")) { 901 ConstraintType = SDTCisFP; 902 } else if (R->isSubClassOf("SDTCisVec")) { 903 ConstraintType = SDTCisVec; 904 } else if (R->isSubClassOf("SDTCisSameAs")) { 905 ConstraintType = SDTCisSameAs; 906 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 907 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 908 ConstraintType = SDTCisVTSmallerThanOp; 909 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 910 R->getValueAsInt("OtherOperandNum"); 911 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 912 ConstraintType = SDTCisOpSmallerThanOp; 913 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 914 R->getValueAsInt("BigOperandNum"); 915 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 916 ConstraintType = SDTCisEltOfVec; 917 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 918 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 919 ConstraintType = SDTCisSubVecOfVec; 920 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 921 R->getValueAsInt("OtherOpNum"); 922 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 923 ConstraintType = SDTCVecEltisVT; 924 x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 925 if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) 926 PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); 927 if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && 928 !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) 929 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 930 "as SDTCVecEltisVT"); 931 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 932 ConstraintType = SDTCisSameNumEltsAs; 933 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 934 R->getValueAsInt("OtherOperandNum"); 935 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 936 ConstraintType = SDTCisSameSizeAs; 937 x.SDTCisSameSizeAs_Info.OtherOperandNum = 938 R->getValueAsInt("OtherOperandNum"); 939 } else { 940 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 941 } 942 } 943 944 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 945 /// N, and the result number in ResNo. 946 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 947 const SDNodeInfo &NodeInfo, 948 unsigned &ResNo) { 949 unsigned NumResults = NodeInfo.getNumResults(); 950 if (OpNo < NumResults) { 951 ResNo = OpNo; 952 return N; 953 } 954 955 OpNo -= NumResults; 956 957 if (OpNo >= N->getNumChildren()) { 958 std::string S; 959 raw_string_ostream OS(S); 960 OS << "Invalid operand number in type constraint " 961 << (OpNo+NumResults) << " "; 962 N->print(OS); 963 PrintFatalError(OS.str()); 964 } 965 966 return N->getChild(OpNo); 967 } 968 969 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 970 /// constraint to the nodes operands. This returns true if it makes a 971 /// change, false otherwise. If a type contradiction is found, flag an error. 972 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 973 const SDNodeInfo &NodeInfo, 974 TreePattern &TP) const { 975 if (TP.hasError()) 976 return false; 977 978 unsigned ResNo = 0; // The result number being referenced. 979 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 980 981 switch (ConstraintType) { 982 case SDTCisVT: 983 // Operand must be a particular type. 984 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 985 case SDTCisPtrTy: 986 // Operand must be same as target pointer type. 987 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 988 case SDTCisInt: 989 // Require it to be one of the legal integer VTs. 990 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 991 case SDTCisFP: 992 // Require it to be one of the legal fp VTs. 993 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 994 case SDTCisVec: 995 // Require it to be one of the legal vector VTs. 996 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 997 case SDTCisSameAs: { 998 unsigned OResNo = 0; 999 TreePatternNode *OtherNode = 1000 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1001 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1002 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1003 } 1004 case SDTCisVTSmallerThanOp: { 1005 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1006 // have an integer type that is smaller than the VT. 1007 if (!NodeToApply->isLeaf() || 1008 !isa<DefInit>(NodeToApply->getLeafValue()) || 1009 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1010 ->isSubClassOf("ValueType")) { 1011 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1012 return false; 1013 } 1014 MVT::SimpleValueType VT = 1015 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 1016 1017 EEVT::TypeSet TypeListTmp(VT, TP); 1018 1019 unsigned OResNo = 0; 1020 TreePatternNode *OtherNode = 1021 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1022 OResNo); 1023 1024 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 1025 } 1026 case SDTCisOpSmallerThanOp: { 1027 unsigned BResNo = 0; 1028 TreePatternNode *BigOperand = 1029 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1030 BResNo); 1031 return NodeToApply->getExtType(ResNo). 1032 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 1033 } 1034 case SDTCisEltOfVec: { 1035 unsigned VResNo = 0; 1036 TreePatternNode *VecOperand = 1037 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1038 VResNo); 1039 1040 // Filter vector types out of VecOperand that don't have the right element 1041 // type. 1042 return VecOperand->getExtType(VResNo). 1043 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 1044 } 1045 case SDTCisSubVecOfVec: { 1046 unsigned VResNo = 0; 1047 TreePatternNode *BigVecOperand = 1048 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1049 VResNo); 1050 1051 // Filter vector types out of BigVecOperand that don't have the 1052 // right subvector type. 1053 return BigVecOperand->getExtType(VResNo). 1054 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 1055 } 1056 case SDTCVecEltisVT: { 1057 return NodeToApply->getExtType(ResNo). 1058 EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); 1059 } 1060 case SDTCisSameNumEltsAs: { 1061 unsigned OResNo = 0; 1062 TreePatternNode *OtherNode = 1063 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1064 N, NodeInfo, OResNo); 1065 return OtherNode->getExtType(OResNo). 1066 EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP); 1067 } 1068 case SDTCisSameSizeAs: { 1069 unsigned OResNo = 0; 1070 TreePatternNode *OtherNode = 1071 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1072 N, NodeInfo, OResNo); 1073 return OtherNode->getExtType(OResNo). 1074 EnforceSameSize(NodeToApply->getExtType(ResNo), TP); 1075 } 1076 } 1077 llvm_unreachable("Invalid ConstraintType!"); 1078 } 1079 1080 // Update the node type to match an instruction operand or result as specified 1081 // in the ins or outs lists on the instruction definition. Return true if the 1082 // type was actually changed. 1083 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1084 Record *Operand, 1085 TreePattern &TP) { 1086 // The 'unknown' operand indicates that types should be inferred from the 1087 // context. 1088 if (Operand->isSubClassOf("unknown_class")) 1089 return false; 1090 1091 // The Operand class specifies a type directly. 1092 if (Operand->isSubClassOf("Operand")) 1093 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 1094 TP); 1095 1096 // PointerLikeRegClass has a type that is determined at runtime. 1097 if (Operand->isSubClassOf("PointerLikeRegClass")) 1098 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1099 1100 // Both RegisterClass and RegisterOperand operands derive their types from a 1101 // register class def. 1102 Record *RC = nullptr; 1103 if (Operand->isSubClassOf("RegisterClass")) 1104 RC = Operand; 1105 else if (Operand->isSubClassOf("RegisterOperand")) 1106 RC = Operand->getValueAsDef("RegClass"); 1107 1108 assert(RC && "Unknown operand type"); 1109 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1110 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1111 } 1112 1113 1114 //===----------------------------------------------------------------------===// 1115 // SDNodeInfo implementation 1116 // 1117 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1118 EnumName = R->getValueAsString("Opcode"); 1119 SDClassName = R->getValueAsString("SDClass"); 1120 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1121 NumResults = TypeProfile->getValueAsInt("NumResults"); 1122 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1123 1124 // Parse the properties. 1125 Properties = 0; 1126 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1127 if (Property->getName() == "SDNPCommutative") { 1128 Properties |= 1 << SDNPCommutative; 1129 } else if (Property->getName() == "SDNPAssociative") { 1130 Properties |= 1 << SDNPAssociative; 1131 } else if (Property->getName() == "SDNPHasChain") { 1132 Properties |= 1 << SDNPHasChain; 1133 } else if (Property->getName() == "SDNPOutGlue") { 1134 Properties |= 1 << SDNPOutGlue; 1135 } else if (Property->getName() == "SDNPInGlue") { 1136 Properties |= 1 << SDNPInGlue; 1137 } else if (Property->getName() == "SDNPOptInGlue") { 1138 Properties |= 1 << SDNPOptInGlue; 1139 } else if (Property->getName() == "SDNPMayStore") { 1140 Properties |= 1 << SDNPMayStore; 1141 } else if (Property->getName() == "SDNPMayLoad") { 1142 Properties |= 1 << SDNPMayLoad; 1143 } else if (Property->getName() == "SDNPSideEffect") { 1144 Properties |= 1 << SDNPSideEffect; 1145 } else if (Property->getName() == "SDNPMemOperand") { 1146 Properties |= 1 << SDNPMemOperand; 1147 } else if (Property->getName() == "SDNPVariadic") { 1148 Properties |= 1 << SDNPVariadic; 1149 } else { 1150 PrintFatalError("Unknown SD Node property '" + 1151 Property->getName() + "' on node '" + 1152 R->getName() + "'!"); 1153 } 1154 } 1155 1156 1157 // Parse the type constraints. 1158 std::vector<Record*> ConstraintList = 1159 TypeProfile->getValueAsListOfDefs("Constraints"); 1160 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1161 } 1162 1163 /// getKnownType - If the type constraints on this node imply a fixed type 1164 /// (e.g. all stores return void, etc), then return it as an 1165 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1166 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1167 unsigned NumResults = getNumResults(); 1168 assert(NumResults <= 1 && 1169 "We only work with nodes with zero or one result so far!"); 1170 assert(ResNo == 0 && "Only handles single result nodes so far"); 1171 1172 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1173 // Make sure that this applies to the correct node result. 1174 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1175 continue; 1176 1177 switch (Constraint.ConstraintType) { 1178 default: break; 1179 case SDTypeConstraint::SDTCisVT: 1180 return Constraint.x.SDTCisVT_Info.VT; 1181 case SDTypeConstraint::SDTCisPtrTy: 1182 return MVT::iPTR; 1183 } 1184 } 1185 return MVT::Other; 1186 } 1187 1188 //===----------------------------------------------------------------------===// 1189 // TreePatternNode implementation 1190 // 1191 1192 TreePatternNode::~TreePatternNode() { 1193 #if 0 // FIXME: implement refcounted tree nodes! 1194 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1195 delete getChild(i); 1196 #endif 1197 } 1198 1199 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1200 if (Operator->getName() == "set" || 1201 Operator->getName() == "implicit") 1202 return 0; // All return nothing. 1203 1204 if (Operator->isSubClassOf("Intrinsic")) 1205 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1206 1207 if (Operator->isSubClassOf("SDNode")) 1208 return CDP.getSDNodeInfo(Operator).getNumResults(); 1209 1210 if (Operator->isSubClassOf("PatFrag")) { 1211 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1212 // the forward reference case where one pattern fragment references another 1213 // before it is processed. 1214 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1215 return PFRec->getOnlyTree()->getNumTypes(); 1216 1217 // Get the result tree. 1218 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1219 Record *Op = nullptr; 1220 if (Tree) 1221 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1222 Op = DI->getDef(); 1223 assert(Op && "Invalid Fragment"); 1224 return GetNumNodeResults(Op, CDP); 1225 } 1226 1227 if (Operator->isSubClassOf("Instruction")) { 1228 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1229 1230 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1231 1232 // Subtract any defaulted outputs. 1233 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1234 Record *OperandNode = InstInfo.Operands[i].Rec; 1235 1236 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1237 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1238 --NumDefsToAdd; 1239 } 1240 1241 // Add on one implicit def if it has a resolvable type. 1242 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1243 ++NumDefsToAdd; 1244 return NumDefsToAdd; 1245 } 1246 1247 if (Operator->isSubClassOf("SDNodeXForm")) 1248 return 1; // FIXME: Generalize SDNodeXForm 1249 1250 if (Operator->isSubClassOf("ValueType")) 1251 return 1; // A type-cast of one result. 1252 1253 if (Operator->isSubClassOf("ComplexPattern")) 1254 return 1; 1255 1256 Operator->dump(); 1257 PrintFatalError("Unhandled node in GetNumNodeResults"); 1258 } 1259 1260 void TreePatternNode::print(raw_ostream &OS) const { 1261 if (isLeaf()) 1262 OS << *getLeafValue(); 1263 else 1264 OS << '(' << getOperator()->getName(); 1265 1266 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1267 OS << ':' << getExtType(i).getName(); 1268 1269 if (!isLeaf()) { 1270 if (getNumChildren() != 0) { 1271 OS << " "; 1272 getChild(0)->print(OS); 1273 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1274 OS << ", "; 1275 getChild(i)->print(OS); 1276 } 1277 } 1278 OS << ")"; 1279 } 1280 1281 for (const TreePredicateFn &Pred : PredicateFns) 1282 OS << "<<P:" << Pred.getFnName() << ">>"; 1283 if (TransformFn) 1284 OS << "<<X:" << TransformFn->getName() << ">>"; 1285 if (!getName().empty()) 1286 OS << ":$" << getName(); 1287 1288 } 1289 void TreePatternNode::dump() const { 1290 print(errs()); 1291 } 1292 1293 /// isIsomorphicTo - Return true if this node is recursively 1294 /// isomorphic to the specified node. For this comparison, the node's 1295 /// entire state is considered. The assigned name is ignored, since 1296 /// nodes with differing names are considered isomorphic. However, if 1297 /// the assigned name is present in the dependent variable set, then 1298 /// the assigned name is considered significant and the node is 1299 /// isomorphic if the names match. 1300 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1301 const MultipleUseVarSet &DepVars) const { 1302 if (N == this) return true; 1303 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1304 getPredicateFns() != N->getPredicateFns() || 1305 getTransformFn() != N->getTransformFn()) 1306 return false; 1307 1308 if (isLeaf()) { 1309 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1310 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1311 return ((DI->getDef() == NDI->getDef()) 1312 && (DepVars.find(getName()) == DepVars.end() 1313 || getName() == N->getName())); 1314 } 1315 } 1316 return getLeafValue() == N->getLeafValue(); 1317 } 1318 1319 if (N->getOperator() != getOperator() || 1320 N->getNumChildren() != getNumChildren()) return false; 1321 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1322 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1323 return false; 1324 return true; 1325 } 1326 1327 /// clone - Make a copy of this tree and all of its children. 1328 /// 1329 TreePatternNode *TreePatternNode::clone() const { 1330 TreePatternNode *New; 1331 if (isLeaf()) { 1332 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1333 } else { 1334 std::vector<TreePatternNode*> CChildren; 1335 CChildren.reserve(Children.size()); 1336 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1337 CChildren.push_back(getChild(i)->clone()); 1338 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1339 } 1340 New->setName(getName()); 1341 New->Types = Types; 1342 New->setPredicateFns(getPredicateFns()); 1343 New->setTransformFn(getTransformFn()); 1344 return New; 1345 } 1346 1347 /// RemoveAllTypes - Recursively strip all the types of this tree. 1348 void TreePatternNode::RemoveAllTypes() { 1349 // Reset to unknown type. 1350 std::fill(Types.begin(), Types.end(), EEVT::TypeSet()); 1351 if (isLeaf()) return; 1352 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1353 getChild(i)->RemoveAllTypes(); 1354 } 1355 1356 1357 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1358 /// with actual values specified by ArgMap. 1359 void TreePatternNode:: 1360 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1361 if (isLeaf()) return; 1362 1363 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1364 TreePatternNode *Child = getChild(i); 1365 if (Child->isLeaf()) { 1366 Init *Val = Child->getLeafValue(); 1367 // Note that, when substituting into an output pattern, Val might be an 1368 // UnsetInit. 1369 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1370 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1371 // We found a use of a formal argument, replace it with its value. 1372 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1373 assert(NewChild && "Couldn't find formal argument!"); 1374 assert((Child->getPredicateFns().empty() || 1375 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1376 "Non-empty child predicate clobbered!"); 1377 setChild(i, NewChild); 1378 } 1379 } else { 1380 getChild(i)->SubstituteFormalArguments(ArgMap); 1381 } 1382 } 1383 } 1384 1385 1386 /// InlinePatternFragments - If this pattern refers to any pattern 1387 /// fragments, inline them into place, giving us a pattern without any 1388 /// PatFrag references. 1389 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1390 if (TP.hasError()) 1391 return nullptr; 1392 1393 if (isLeaf()) 1394 return this; // nothing to do. 1395 Record *Op = getOperator(); 1396 1397 if (!Op->isSubClassOf("PatFrag")) { 1398 // Just recursively inline children nodes. 1399 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1400 TreePatternNode *Child = getChild(i); 1401 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1402 1403 assert((Child->getPredicateFns().empty() || 1404 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1405 "Non-empty child predicate clobbered!"); 1406 1407 setChild(i, NewChild); 1408 } 1409 return this; 1410 } 1411 1412 // Otherwise, we found a reference to a fragment. First, look up its 1413 // TreePattern record. 1414 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1415 1416 // Verify that we are passing the right number of operands. 1417 if (Frag->getNumArgs() != Children.size()) { 1418 TP.error("'" + Op->getName() + "' fragment requires " + 1419 utostr(Frag->getNumArgs()) + " operands!"); 1420 return nullptr; 1421 } 1422 1423 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1424 1425 TreePredicateFn PredFn(Frag); 1426 if (!PredFn.isAlwaysTrue()) 1427 FragTree->addPredicateFn(PredFn); 1428 1429 // Resolve formal arguments to their actual value. 1430 if (Frag->getNumArgs()) { 1431 // Compute the map of formal to actual arguments. 1432 std::map<std::string, TreePatternNode*> ArgMap; 1433 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1434 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1435 1436 FragTree->SubstituteFormalArguments(ArgMap); 1437 } 1438 1439 FragTree->setName(getName()); 1440 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1441 FragTree->UpdateNodeType(i, getExtType(i), TP); 1442 1443 // Transfer in the old predicates. 1444 for (const TreePredicateFn &Pred : getPredicateFns()) 1445 FragTree->addPredicateFn(Pred); 1446 1447 // Get a new copy of this fragment to stitch into here. 1448 //delete this; // FIXME: implement refcounting! 1449 1450 // The fragment we inlined could have recursive inlining that is needed. See 1451 // if there are any pattern fragments in it and inline them as needed. 1452 return FragTree->InlinePatternFragments(TP); 1453 } 1454 1455 /// getImplicitType - Check to see if the specified record has an implicit 1456 /// type which should be applied to it. This will infer the type of register 1457 /// references from the register file information, for example. 1458 /// 1459 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1460 /// the F8RC register class argument in: 1461 /// 1462 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1463 /// 1464 /// When Unnamed is false, return the type of a named DAG operand such as the 1465 /// GPR:$src operand above. 1466 /// 1467 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1468 bool NotRegisters, 1469 bool Unnamed, 1470 TreePattern &TP) { 1471 // Check to see if this is a register operand. 1472 if (R->isSubClassOf("RegisterOperand")) { 1473 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1474 if (NotRegisters) 1475 return EEVT::TypeSet(); // Unknown. 1476 Record *RegClass = R->getValueAsDef("RegClass"); 1477 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1478 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1479 } 1480 1481 // Check to see if this is a register or a register class. 1482 if (R->isSubClassOf("RegisterClass")) { 1483 assert(ResNo == 0 && "Regclass ref only has one result!"); 1484 // An unnamed register class represents itself as an i32 immediate, for 1485 // example on a COPY_TO_REGCLASS instruction. 1486 if (Unnamed) 1487 return EEVT::TypeSet(MVT::i32, TP); 1488 1489 // In a named operand, the register class provides the possible set of 1490 // types. 1491 if (NotRegisters) 1492 return EEVT::TypeSet(); // Unknown. 1493 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1494 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1495 } 1496 1497 if (R->isSubClassOf("PatFrag")) { 1498 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1499 // Pattern fragment types will be resolved when they are inlined. 1500 return EEVT::TypeSet(); // Unknown. 1501 } 1502 1503 if (R->isSubClassOf("Register")) { 1504 assert(ResNo == 0 && "Registers only produce one result!"); 1505 if (NotRegisters) 1506 return EEVT::TypeSet(); // Unknown. 1507 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1508 return EEVT::TypeSet(T.getRegisterVTs(R)); 1509 } 1510 1511 if (R->isSubClassOf("SubRegIndex")) { 1512 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1513 return EEVT::TypeSet(MVT::i32, TP); 1514 } 1515 1516 if (R->isSubClassOf("ValueType")) { 1517 assert(ResNo == 0 && "This node only has one result!"); 1518 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1519 // 1520 // (sext_inreg GPR:$src, i16) 1521 // ~~~ 1522 if (Unnamed) 1523 return EEVT::TypeSet(MVT::Other, TP); 1524 // With a name, the ValueType simply provides the type of the named 1525 // variable. 1526 // 1527 // (sext_inreg i32:$src, i16) 1528 // ~~~~~~~~ 1529 if (NotRegisters) 1530 return EEVT::TypeSet(); // Unknown. 1531 return EEVT::TypeSet(getValueType(R), TP); 1532 } 1533 1534 if (R->isSubClassOf("CondCode")) { 1535 assert(ResNo == 0 && "This node only has one result!"); 1536 // Using a CondCodeSDNode. 1537 return EEVT::TypeSet(MVT::Other, TP); 1538 } 1539 1540 if (R->isSubClassOf("ComplexPattern")) { 1541 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1542 if (NotRegisters) 1543 return EEVT::TypeSet(); // Unknown. 1544 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1545 TP); 1546 } 1547 if (R->isSubClassOf("PointerLikeRegClass")) { 1548 assert(ResNo == 0 && "Regclass can only have one result!"); 1549 return EEVT::TypeSet(MVT::iPTR, TP); 1550 } 1551 1552 if (R->getName() == "node" || R->getName() == "srcvalue" || 1553 R->getName() == "zero_reg") { 1554 // Placeholder. 1555 return EEVT::TypeSet(); // Unknown. 1556 } 1557 1558 if (R->isSubClassOf("Operand")) 1559 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1560 1561 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1562 return EEVT::TypeSet(MVT::Other, TP); 1563 } 1564 1565 1566 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1567 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1568 const CodeGenIntrinsic *TreePatternNode:: 1569 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1570 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1571 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1572 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1573 return nullptr; 1574 1575 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1576 return &CDP.getIntrinsicInfo(IID); 1577 } 1578 1579 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1580 /// return the ComplexPattern information, otherwise return null. 1581 const ComplexPattern * 1582 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1583 Record *Rec; 1584 if (isLeaf()) { 1585 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1586 if (!DI) 1587 return nullptr; 1588 Rec = DI->getDef(); 1589 } else 1590 Rec = getOperator(); 1591 1592 if (!Rec->isSubClassOf("ComplexPattern")) 1593 return nullptr; 1594 return &CGP.getComplexPattern(Rec); 1595 } 1596 1597 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1598 // A ComplexPattern specifically declares how many results it fills in. 1599 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1600 return CP->getNumOperands(); 1601 1602 // If MIOperandInfo is specified, that gives the count. 1603 if (isLeaf()) { 1604 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1605 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1606 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1607 if (MIOps->getNumArgs()) 1608 return MIOps->getNumArgs(); 1609 } 1610 } 1611 1612 // Otherwise there is just one result. 1613 return 1; 1614 } 1615 1616 /// NodeHasProperty - Return true if this node has the specified property. 1617 bool TreePatternNode::NodeHasProperty(SDNP Property, 1618 const CodeGenDAGPatterns &CGP) const { 1619 if (isLeaf()) { 1620 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1621 return CP->hasProperty(Property); 1622 return false; 1623 } 1624 1625 Record *Operator = getOperator(); 1626 if (!Operator->isSubClassOf("SDNode")) return false; 1627 1628 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1629 } 1630 1631 1632 1633 1634 /// TreeHasProperty - Return true if any node in this tree has the specified 1635 /// property. 1636 bool TreePatternNode::TreeHasProperty(SDNP Property, 1637 const CodeGenDAGPatterns &CGP) const { 1638 if (NodeHasProperty(Property, CGP)) 1639 return true; 1640 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1641 if (getChild(i)->TreeHasProperty(Property, CGP)) 1642 return true; 1643 return false; 1644 } 1645 1646 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1647 /// commutative intrinsic. 1648 bool 1649 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1650 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1651 return Int->isCommutative; 1652 return false; 1653 } 1654 1655 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 1656 if (!N->isLeaf()) 1657 return N->getOperator()->isSubClassOf(Class); 1658 1659 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 1660 if (DI && DI->getDef()->isSubClassOf(Class)) 1661 return true; 1662 1663 return false; 1664 } 1665 1666 static void emitTooManyOperandsError(TreePattern &TP, 1667 StringRef InstName, 1668 unsigned Expected, 1669 unsigned Actual) { 1670 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 1671 " operands but expected only " + Twine(Expected) + "!"); 1672 } 1673 1674 static void emitTooFewOperandsError(TreePattern &TP, 1675 StringRef InstName, 1676 unsigned Actual) { 1677 TP.error("Instruction '" + InstName + 1678 "' expects more than the provided " + Twine(Actual) + " operands!"); 1679 } 1680 1681 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1682 /// this node and its children in the tree. This returns true if it makes a 1683 /// change, false otherwise. If a type contradiction is found, flag an error. 1684 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1685 if (TP.hasError()) 1686 return false; 1687 1688 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1689 if (isLeaf()) { 1690 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1691 // If it's a regclass or something else known, include the type. 1692 bool MadeChange = false; 1693 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1694 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1695 NotRegisters, 1696 !hasName(), TP), TP); 1697 return MadeChange; 1698 } 1699 1700 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1701 assert(Types.size() == 1 && "Invalid IntInit"); 1702 1703 // Int inits are always integers. :) 1704 bool MadeChange = Types[0].EnforceInteger(TP); 1705 1706 if (!Types[0].isConcrete()) 1707 return MadeChange; 1708 1709 MVT::SimpleValueType VT = getType(0); 1710 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1711 return MadeChange; 1712 1713 unsigned Size = MVT(VT).getSizeInBits(); 1714 // Make sure that the value is representable for this type. 1715 if (Size >= 32) return MadeChange; 1716 1717 // Check that the value doesn't use more bits than we have. It must either 1718 // be a sign- or zero-extended equivalent of the original. 1719 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1720 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1721 return MadeChange; 1722 1723 TP.error("Integer value '" + itostr(II->getValue()) + 1724 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1725 return false; 1726 } 1727 return false; 1728 } 1729 1730 // special handling for set, which isn't really an SDNode. 1731 if (getOperator()->getName() == "set") { 1732 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1733 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1734 unsigned NC = getNumChildren(); 1735 1736 TreePatternNode *SetVal = getChild(NC-1); 1737 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1738 1739 for (unsigned i = 0; i < NC-1; ++i) { 1740 TreePatternNode *Child = getChild(i); 1741 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1742 1743 // Types of operands must match. 1744 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1745 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1746 } 1747 return MadeChange; 1748 } 1749 1750 if (getOperator()->getName() == "implicit") { 1751 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1752 1753 bool MadeChange = false; 1754 for (unsigned i = 0; i < getNumChildren(); ++i) 1755 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1756 return MadeChange; 1757 } 1758 1759 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1760 bool MadeChange = false; 1761 1762 // Apply the result type to the node. 1763 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1764 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1765 1766 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1767 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1768 1769 if (getNumChildren() != NumParamVTs + 1) { 1770 TP.error("Intrinsic '" + Int->Name + "' expects " + 1771 utostr(NumParamVTs) + " operands, not " + 1772 utostr(getNumChildren() - 1) + " operands!"); 1773 return false; 1774 } 1775 1776 // Apply type info to the intrinsic ID. 1777 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1778 1779 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1780 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1781 1782 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1783 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1784 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1785 } 1786 return MadeChange; 1787 } 1788 1789 if (getOperator()->isSubClassOf("SDNode")) { 1790 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1791 1792 // Check that the number of operands is sane. Negative operands -> varargs. 1793 if (NI.getNumOperands() >= 0 && 1794 getNumChildren() != (unsigned)NI.getNumOperands()) { 1795 TP.error(getOperator()->getName() + " node requires exactly " + 1796 itostr(NI.getNumOperands()) + " operands!"); 1797 return false; 1798 } 1799 1800 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1801 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1802 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1803 return MadeChange; 1804 } 1805 1806 if (getOperator()->isSubClassOf("Instruction")) { 1807 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1808 CodeGenInstruction &InstInfo = 1809 CDP.getTargetInfo().getInstruction(getOperator()); 1810 1811 bool MadeChange = false; 1812 1813 // Apply the result types to the node, these come from the things in the 1814 // (outs) list of the instruction. 1815 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 1816 Inst.getNumResults()); 1817 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1818 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1819 1820 // If the instruction has implicit defs, we apply the first one as a result. 1821 // FIXME: This sucks, it should apply all implicit defs. 1822 if (!InstInfo.ImplicitDefs.empty()) { 1823 unsigned ResNo = NumResultsToAdd; 1824 1825 // FIXME: Generalize to multiple possible types and multiple possible 1826 // ImplicitDefs. 1827 MVT::SimpleValueType VT = 1828 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1829 1830 if (VT != MVT::Other) 1831 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1832 } 1833 1834 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1835 // be the same. 1836 if (getOperator()->getName() == "INSERT_SUBREG") { 1837 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1838 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1839 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1840 } else if (getOperator()->getName() == "REG_SEQUENCE") { 1841 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 1842 // variadic. 1843 1844 unsigned NChild = getNumChildren(); 1845 if (NChild < 3) { 1846 TP.error("REG_SEQUENCE requires at least 3 operands!"); 1847 return false; 1848 } 1849 1850 if (NChild % 2 == 0) { 1851 TP.error("REG_SEQUENCE requires an odd number of operands!"); 1852 return false; 1853 } 1854 1855 if (!isOperandClass(getChild(0), "RegisterClass")) { 1856 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 1857 return false; 1858 } 1859 1860 for (unsigned I = 1; I < NChild; I += 2) { 1861 TreePatternNode *SubIdxChild = getChild(I + 1); 1862 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 1863 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 1864 itostr(I + 1) + "!"); 1865 return false; 1866 } 1867 } 1868 } 1869 1870 unsigned ChildNo = 0; 1871 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1872 Record *OperandNode = Inst.getOperand(i); 1873 1874 // If the instruction expects a predicate or optional def operand, we 1875 // codegen this by setting the operand to it's default value if it has a 1876 // non-empty DefaultOps field. 1877 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1878 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1879 continue; 1880 1881 // Verify that we didn't run out of provided operands. 1882 if (ChildNo >= getNumChildren()) { 1883 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 1884 return false; 1885 } 1886 1887 TreePatternNode *Child = getChild(ChildNo++); 1888 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1889 1890 // If the operand has sub-operands, they may be provided by distinct 1891 // child patterns, so attempt to match each sub-operand separately. 1892 if (OperandNode->isSubClassOf("Operand")) { 1893 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1894 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1895 // But don't do that if the whole operand is being provided by 1896 // a single ComplexPattern-related Operand. 1897 1898 if (Child->getNumMIResults(CDP) < NumArgs) { 1899 // Match first sub-operand against the child we already have. 1900 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1901 MadeChange |= 1902 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1903 1904 // And the remaining sub-operands against subsequent children. 1905 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1906 if (ChildNo >= getNumChildren()) { 1907 emitTooFewOperandsError(TP, getOperator()->getName(), 1908 getNumChildren()); 1909 return false; 1910 } 1911 Child = getChild(ChildNo++); 1912 1913 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1914 MadeChange |= 1915 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1916 } 1917 continue; 1918 } 1919 } 1920 } 1921 1922 // If we didn't match by pieces above, attempt to match the whole 1923 // operand now. 1924 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1925 } 1926 1927 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 1928 emitTooManyOperandsError(TP, getOperator()->getName(), 1929 ChildNo, getNumChildren()); 1930 return false; 1931 } 1932 1933 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1934 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1935 return MadeChange; 1936 } 1937 1938 if (getOperator()->isSubClassOf("ComplexPattern")) { 1939 bool MadeChange = false; 1940 1941 for (unsigned i = 0; i < getNumChildren(); ++i) 1942 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1943 1944 return MadeChange; 1945 } 1946 1947 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1948 1949 // Node transforms always take one operand. 1950 if (getNumChildren() != 1) { 1951 TP.error("Node transform '" + getOperator()->getName() + 1952 "' requires one operand!"); 1953 return false; 1954 } 1955 1956 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1957 1958 1959 // If either the output or input of the xform does not have exact 1960 // type info. We assume they must be the same. Otherwise, it is perfectly 1961 // legal to transform from one type to a completely different type. 1962 #if 0 1963 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1964 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1965 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1966 return MadeChange; 1967 } 1968 #endif 1969 return MadeChange; 1970 } 1971 1972 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1973 /// RHS of a commutative operation, not the on LHS. 1974 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1975 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1976 return true; 1977 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1978 return true; 1979 return false; 1980 } 1981 1982 1983 /// canPatternMatch - If it is impossible for this pattern to match on this 1984 /// target, fill in Reason and return false. Otherwise, return true. This is 1985 /// used as a sanity check for .td files (to prevent people from writing stuff 1986 /// that can never possibly work), and to prevent the pattern permuter from 1987 /// generating stuff that is useless. 1988 bool TreePatternNode::canPatternMatch(std::string &Reason, 1989 const CodeGenDAGPatterns &CDP) { 1990 if (isLeaf()) return true; 1991 1992 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1993 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1994 return false; 1995 1996 // If this is an intrinsic, handle cases that would make it not match. For 1997 // example, if an operand is required to be an immediate. 1998 if (getOperator()->isSubClassOf("Intrinsic")) { 1999 // TODO: 2000 return true; 2001 } 2002 2003 if (getOperator()->isSubClassOf("ComplexPattern")) 2004 return true; 2005 2006 // If this node is a commutative operator, check that the LHS isn't an 2007 // immediate. 2008 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2009 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2010 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2011 // Scan all of the operands of the node and make sure that only the last one 2012 // is a constant node, unless the RHS also is. 2013 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2014 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2015 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2016 if (OnlyOnRHSOfCommutative(getChild(i))) { 2017 Reason="Immediate value must be on the RHS of commutative operators!"; 2018 return false; 2019 } 2020 } 2021 } 2022 2023 return true; 2024 } 2025 2026 //===----------------------------------------------------------------------===// 2027 // TreePattern implementation 2028 // 2029 2030 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2031 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2032 isInputPattern(isInput), HasError(false) { 2033 for (Init *I : RawPat->getValues()) 2034 Trees.push_back(ParseTreePattern(I, "")); 2035 } 2036 2037 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2038 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2039 isInputPattern(isInput), HasError(false) { 2040 Trees.push_back(ParseTreePattern(Pat, "")); 2041 } 2042 2043 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2044 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2045 isInputPattern(isInput), HasError(false) { 2046 Trees.push_back(Pat); 2047 } 2048 2049 void TreePattern::error(const Twine &Msg) { 2050 if (HasError) 2051 return; 2052 dump(); 2053 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2054 HasError = true; 2055 } 2056 2057 void TreePattern::ComputeNamedNodes() { 2058 for (TreePatternNode *Tree : Trees) 2059 ComputeNamedNodes(Tree); 2060 } 2061 2062 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2063 if (!N->getName().empty()) 2064 NamedNodes[N->getName()].push_back(N); 2065 2066 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2067 ComputeNamedNodes(N->getChild(i)); 2068 } 2069 2070 2071 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2072 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2073 Record *R = DI->getDef(); 2074 2075 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2076 // TreePatternNode of its own. For example: 2077 /// (foo GPR, imm) -> (foo GPR, (imm)) 2078 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2079 return ParseTreePattern( 2080 DagInit::get(DI, "", 2081 std::vector<std::pair<Init*, std::string> >()), 2082 OpName); 2083 2084 // Input argument? 2085 TreePatternNode *Res = new TreePatternNode(DI, 1); 2086 if (R->getName() == "node" && !OpName.empty()) { 2087 if (OpName.empty()) 2088 error("'node' argument requires a name to match with operand list"); 2089 Args.push_back(OpName); 2090 } 2091 2092 Res->setName(OpName); 2093 return Res; 2094 } 2095 2096 // ?:$name or just $name. 2097 if (isa<UnsetInit>(TheInit)) { 2098 if (OpName.empty()) 2099 error("'?' argument requires a name to match with operand list"); 2100 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2101 Args.push_back(OpName); 2102 Res->setName(OpName); 2103 return Res; 2104 } 2105 2106 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2107 if (!OpName.empty()) 2108 error("Constant int argument should not have a name!"); 2109 return new TreePatternNode(II, 1); 2110 } 2111 2112 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2113 // Turn this into an IntInit. 2114 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2115 if (!II || !isa<IntInit>(II)) 2116 error("Bits value must be constants!"); 2117 return ParseTreePattern(II, OpName); 2118 } 2119 2120 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2121 if (!Dag) { 2122 TheInit->dump(); 2123 error("Pattern has unexpected init kind!"); 2124 } 2125 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2126 if (!OpDef) error("Pattern has unexpected operator type!"); 2127 Record *Operator = OpDef->getDef(); 2128 2129 if (Operator->isSubClassOf("ValueType")) { 2130 // If the operator is a ValueType, then this must be "type cast" of a leaf 2131 // node. 2132 if (Dag->getNumArgs() != 1) 2133 error("Type cast only takes one operand!"); 2134 2135 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 2136 2137 // Apply the type cast. 2138 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2139 New->UpdateNodeType(0, getValueType(Operator), *this); 2140 2141 if (!OpName.empty()) 2142 error("ValueType cast should not have a name!"); 2143 return New; 2144 } 2145 2146 // Verify that this is something that makes sense for an operator. 2147 if (!Operator->isSubClassOf("PatFrag") && 2148 !Operator->isSubClassOf("SDNode") && 2149 !Operator->isSubClassOf("Instruction") && 2150 !Operator->isSubClassOf("SDNodeXForm") && 2151 !Operator->isSubClassOf("Intrinsic") && 2152 !Operator->isSubClassOf("ComplexPattern") && 2153 Operator->getName() != "set" && 2154 Operator->getName() != "implicit") 2155 error("Unrecognized node '" + Operator->getName() + "'!"); 2156 2157 // Check to see if this is something that is illegal in an input pattern. 2158 if (isInputPattern) { 2159 if (Operator->isSubClassOf("Instruction") || 2160 Operator->isSubClassOf("SDNodeXForm")) 2161 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2162 } else { 2163 if (Operator->isSubClassOf("Intrinsic")) 2164 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2165 2166 if (Operator->isSubClassOf("SDNode") && 2167 Operator->getName() != "imm" && 2168 Operator->getName() != "fpimm" && 2169 Operator->getName() != "tglobaltlsaddr" && 2170 Operator->getName() != "tconstpool" && 2171 Operator->getName() != "tjumptable" && 2172 Operator->getName() != "tframeindex" && 2173 Operator->getName() != "texternalsym" && 2174 Operator->getName() != "tblockaddress" && 2175 Operator->getName() != "tglobaladdr" && 2176 Operator->getName() != "bb" && 2177 Operator->getName() != "vt" && 2178 Operator->getName() != "mcsym") 2179 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2180 } 2181 2182 std::vector<TreePatternNode*> Children; 2183 2184 // Parse all the operands. 2185 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2186 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 2187 2188 // If the operator is an intrinsic, then this is just syntactic sugar for for 2189 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2190 // convert the intrinsic name to a number. 2191 if (Operator->isSubClassOf("Intrinsic")) { 2192 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2193 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2194 2195 // If this intrinsic returns void, it must have side-effects and thus a 2196 // chain. 2197 if (Int.IS.RetVTs.empty()) 2198 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2199 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2200 // Has side-effects, requires chain. 2201 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2202 else // Otherwise, no chain. 2203 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2204 2205 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2206 Children.insert(Children.begin(), IIDNode); 2207 } 2208 2209 if (Operator->isSubClassOf("ComplexPattern")) { 2210 for (unsigned i = 0; i < Children.size(); ++i) { 2211 TreePatternNode *Child = Children[i]; 2212 2213 if (Child->getName().empty()) 2214 error("All arguments to a ComplexPattern must be named"); 2215 2216 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2217 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2218 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2219 auto OperandId = std::make_pair(Operator, i); 2220 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2221 if (PrevOp != ComplexPatternOperands.end()) { 2222 if (PrevOp->getValue() != OperandId) 2223 error("All ComplexPattern operands must appear consistently: " 2224 "in the same order in just one ComplexPattern instance."); 2225 } else 2226 ComplexPatternOperands[Child->getName()] = OperandId; 2227 } 2228 } 2229 2230 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2231 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2232 Result->setName(OpName); 2233 2234 if (!Dag->getName().empty()) { 2235 assert(Result->getName().empty()); 2236 Result->setName(Dag->getName()); 2237 } 2238 return Result; 2239 } 2240 2241 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2242 /// will never match in favor of something obvious that will. This is here 2243 /// strictly as a convenience to target authors because it allows them to write 2244 /// more type generic things and have useless type casts fold away. 2245 /// 2246 /// This returns true if any change is made. 2247 static bool SimplifyTree(TreePatternNode *&N) { 2248 if (N->isLeaf()) 2249 return false; 2250 2251 // If we have a bitconvert with a resolved type and if the source and 2252 // destination types are the same, then the bitconvert is useless, remove it. 2253 if (N->getOperator()->getName() == "bitconvert" && 2254 N->getExtType(0).isConcrete() && 2255 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2256 N->getName().empty()) { 2257 N = N->getChild(0); 2258 SimplifyTree(N); 2259 return true; 2260 } 2261 2262 // Walk all children. 2263 bool MadeChange = false; 2264 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2265 TreePatternNode *Child = N->getChild(i); 2266 MadeChange |= SimplifyTree(Child); 2267 N->setChild(i, Child); 2268 } 2269 return MadeChange; 2270 } 2271 2272 2273 2274 /// InferAllTypes - Infer/propagate as many types throughout the expression 2275 /// patterns as possible. Return true if all types are inferred, false 2276 /// otherwise. Flags an error if a type contradiction is found. 2277 bool TreePattern:: 2278 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2279 if (NamedNodes.empty()) 2280 ComputeNamedNodes(); 2281 2282 bool MadeChange = true; 2283 while (MadeChange) { 2284 MadeChange = false; 2285 for (TreePatternNode *Tree : Trees) { 2286 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2287 MadeChange |= SimplifyTree(Tree); 2288 } 2289 2290 // If there are constraints on our named nodes, apply them. 2291 for (auto &Entry : NamedNodes) { 2292 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2293 2294 // If we have input named node types, propagate their types to the named 2295 // values here. 2296 if (InNamedTypes) { 2297 if (!InNamedTypes->count(Entry.getKey())) { 2298 error("Node '" + std::string(Entry.getKey()) + 2299 "' in output pattern but not input pattern"); 2300 return true; 2301 } 2302 2303 const SmallVectorImpl<TreePatternNode*> &InNodes = 2304 InNamedTypes->find(Entry.getKey())->second; 2305 2306 // The input types should be fully resolved by now. 2307 for (TreePatternNode *Node : Nodes) { 2308 // If this node is a register class, and it is the root of the pattern 2309 // then we're mapping something onto an input register. We allow 2310 // changing the type of the input register in this case. This allows 2311 // us to match things like: 2312 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2313 if (Node == Trees[0] && Node->isLeaf()) { 2314 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2315 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2316 DI->getDef()->isSubClassOf("RegisterOperand"))) 2317 continue; 2318 } 2319 2320 assert(Node->getNumTypes() == 1 && 2321 InNodes[0]->getNumTypes() == 1 && 2322 "FIXME: cannot name multiple result nodes yet"); 2323 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2324 *this); 2325 } 2326 } 2327 2328 // If there are multiple nodes with the same name, they must all have the 2329 // same type. 2330 if (Entry.second.size() > 1) { 2331 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2332 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2333 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2334 "FIXME: cannot name multiple result nodes yet"); 2335 2336 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2337 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2338 } 2339 } 2340 } 2341 } 2342 2343 bool HasUnresolvedTypes = false; 2344 for (const TreePatternNode *Tree : Trees) 2345 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(); 2346 return !HasUnresolvedTypes; 2347 } 2348 2349 void TreePattern::print(raw_ostream &OS) const { 2350 OS << getRecord()->getName(); 2351 if (!Args.empty()) { 2352 OS << "(" << Args[0]; 2353 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2354 OS << ", " << Args[i]; 2355 OS << ")"; 2356 } 2357 OS << ": "; 2358 2359 if (Trees.size() > 1) 2360 OS << "[\n"; 2361 for (const TreePatternNode *Tree : Trees) { 2362 OS << "\t"; 2363 Tree->print(OS); 2364 OS << "\n"; 2365 } 2366 2367 if (Trees.size() > 1) 2368 OS << "]\n"; 2369 } 2370 2371 void TreePattern::dump() const { print(errs()); } 2372 2373 //===----------------------------------------------------------------------===// 2374 // CodeGenDAGPatterns implementation 2375 // 2376 2377 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2378 Records(R), Target(R) { 2379 2380 Intrinsics = CodeGenIntrinsicTable(Records, false); 2381 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2382 ParseNodeInfo(); 2383 ParseNodeTransforms(); 2384 ParseComplexPatterns(); 2385 ParsePatternFragments(); 2386 ParseDefaultOperands(); 2387 ParseInstructions(); 2388 ParsePatternFragments(/*OutFrags*/true); 2389 ParsePatterns(); 2390 2391 // Generate variants. For example, commutative patterns can match 2392 // multiple ways. Add them to PatternsToMatch as well. 2393 GenerateVariants(); 2394 2395 // Infer instruction flags. For example, we can detect loads, 2396 // stores, and side effects in many cases by examining an 2397 // instruction's pattern. 2398 InferInstructionFlags(); 2399 2400 // Verify that instruction flags match the patterns. 2401 VerifyInstructionFlags(); 2402 } 2403 2404 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2405 Record *N = Records.getDef(Name); 2406 if (!N || !N->isSubClassOf("SDNode")) 2407 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2408 2409 return N; 2410 } 2411 2412 // Parse all of the SDNode definitions for the target, populating SDNodes. 2413 void CodeGenDAGPatterns::ParseNodeInfo() { 2414 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2415 while (!Nodes.empty()) { 2416 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2417 Nodes.pop_back(); 2418 } 2419 2420 // Get the builtin intrinsic nodes. 2421 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2422 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2423 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2424 } 2425 2426 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2427 /// map, and emit them to the file as functions. 2428 void CodeGenDAGPatterns::ParseNodeTransforms() { 2429 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2430 while (!Xforms.empty()) { 2431 Record *XFormNode = Xforms.back(); 2432 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2433 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2434 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2435 2436 Xforms.pop_back(); 2437 } 2438 } 2439 2440 void CodeGenDAGPatterns::ParseComplexPatterns() { 2441 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2442 while (!AMs.empty()) { 2443 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2444 AMs.pop_back(); 2445 } 2446 } 2447 2448 2449 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2450 /// file, building up the PatternFragments map. After we've collected them all, 2451 /// inline fragments together as necessary, so that there are no references left 2452 /// inside a pattern fragment to a pattern fragment. 2453 /// 2454 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2455 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2456 2457 // First step, parse all of the fragments. 2458 for (Record *Frag : Fragments) { 2459 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2460 continue; 2461 2462 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2463 TreePattern *P = 2464 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2465 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2466 *this)).get(); 2467 2468 // Validate the argument list, converting it to set, to discard duplicates. 2469 std::vector<std::string> &Args = P->getArgList(); 2470 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2471 2472 if (OperandsSet.count("")) 2473 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2474 2475 // Parse the operands list. 2476 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2477 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2478 // Special cases: ops == outs == ins. Different names are used to 2479 // improve readability. 2480 if (!OpsOp || 2481 (OpsOp->getDef()->getName() != "ops" && 2482 OpsOp->getDef()->getName() != "outs" && 2483 OpsOp->getDef()->getName() != "ins")) 2484 P->error("Operands list should start with '(ops ... '!"); 2485 2486 // Copy over the arguments. 2487 Args.clear(); 2488 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2489 if (!isa<DefInit>(OpsList->getArg(j)) || 2490 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2491 P->error("Operands list should all be 'node' values."); 2492 if (OpsList->getArgName(j).empty()) 2493 P->error("Operands list should have names for each operand!"); 2494 if (!OperandsSet.count(OpsList->getArgName(j))) 2495 P->error("'" + OpsList->getArgName(j) + 2496 "' does not occur in pattern or was multiply specified!"); 2497 OperandsSet.erase(OpsList->getArgName(j)); 2498 Args.push_back(OpsList->getArgName(j)); 2499 } 2500 2501 if (!OperandsSet.empty()) 2502 P->error("Operands list does not contain an entry for operand '" + 2503 *OperandsSet.begin() + "'!"); 2504 2505 // If there is a code init for this fragment, keep track of the fact that 2506 // this fragment uses it. 2507 TreePredicateFn PredFn(P); 2508 if (!PredFn.isAlwaysTrue()) 2509 P->getOnlyTree()->addPredicateFn(PredFn); 2510 2511 // If there is a node transformation corresponding to this, keep track of 2512 // it. 2513 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2514 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2515 P->getOnlyTree()->setTransformFn(Transform); 2516 } 2517 2518 // Now that we've parsed all of the tree fragments, do a closure on them so 2519 // that there are not references to PatFrags left inside of them. 2520 for (Record *Frag : Fragments) { 2521 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2522 continue; 2523 2524 TreePattern &ThePat = *PatternFragments[Frag]; 2525 ThePat.InlinePatternFragments(); 2526 2527 // Infer as many types as possible. Don't worry about it if we don't infer 2528 // all of them, some may depend on the inputs of the pattern. 2529 ThePat.InferAllTypes(); 2530 ThePat.resetError(); 2531 2532 // If debugging, print out the pattern fragment result. 2533 DEBUG(ThePat.dump()); 2534 } 2535 } 2536 2537 void CodeGenDAGPatterns::ParseDefaultOperands() { 2538 std::vector<Record*> DefaultOps; 2539 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2540 2541 // Find some SDNode. 2542 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2543 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2544 2545 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2546 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2547 2548 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2549 // SomeSDnode so that we can parse this. 2550 std::vector<std::pair<Init*, std::string> > Ops; 2551 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2552 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2553 DefaultInfo->getArgName(op))); 2554 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2555 2556 // Create a TreePattern to parse this. 2557 TreePattern P(DefaultOps[i], DI, false, *this); 2558 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2559 2560 // Copy the operands over into a DAGDefaultOperand. 2561 DAGDefaultOperand DefaultOpInfo; 2562 2563 TreePatternNode *T = P.getTree(0); 2564 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2565 TreePatternNode *TPN = T->getChild(op); 2566 while (TPN->ApplyTypeConstraints(P, false)) 2567 /* Resolve all types */; 2568 2569 if (TPN->ContainsUnresolvedType()) { 2570 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2571 DefaultOps[i]->getName() + 2572 "' doesn't have a concrete type!"); 2573 } 2574 DefaultOpInfo.DefaultOps.push_back(TPN); 2575 } 2576 2577 // Insert it into the DefaultOperands map so we can find it later. 2578 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2579 } 2580 } 2581 2582 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2583 /// instruction input. Return true if this is a real use. 2584 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2585 std::map<std::string, TreePatternNode*> &InstInputs) { 2586 // No name -> not interesting. 2587 if (Pat->getName().empty()) { 2588 if (Pat->isLeaf()) { 2589 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2590 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2591 DI->getDef()->isSubClassOf("RegisterOperand"))) 2592 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2593 } 2594 return false; 2595 } 2596 2597 Record *Rec; 2598 if (Pat->isLeaf()) { 2599 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2600 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2601 Rec = DI->getDef(); 2602 } else { 2603 Rec = Pat->getOperator(); 2604 } 2605 2606 // SRCVALUE nodes are ignored. 2607 if (Rec->getName() == "srcvalue") 2608 return false; 2609 2610 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2611 if (!Slot) { 2612 Slot = Pat; 2613 return true; 2614 } 2615 Record *SlotRec; 2616 if (Slot->isLeaf()) { 2617 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2618 } else { 2619 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2620 SlotRec = Slot->getOperator(); 2621 } 2622 2623 // Ensure that the inputs agree if we've already seen this input. 2624 if (Rec != SlotRec) 2625 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2626 if (Slot->getExtTypes() != Pat->getExtTypes()) 2627 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2628 return true; 2629 } 2630 2631 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2632 /// part of "I", the instruction), computing the set of inputs and outputs of 2633 /// the pattern. Report errors if we see anything naughty. 2634 void CodeGenDAGPatterns:: 2635 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2636 std::map<std::string, TreePatternNode*> &InstInputs, 2637 std::map<std::string, TreePatternNode*>&InstResults, 2638 std::vector<Record*> &InstImpResults) { 2639 if (Pat->isLeaf()) { 2640 bool isUse = HandleUse(I, Pat, InstInputs); 2641 if (!isUse && Pat->getTransformFn()) 2642 I->error("Cannot specify a transform function for a non-input value!"); 2643 return; 2644 } 2645 2646 if (Pat->getOperator()->getName() == "implicit") { 2647 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2648 TreePatternNode *Dest = Pat->getChild(i); 2649 if (!Dest->isLeaf()) 2650 I->error("implicitly defined value should be a register!"); 2651 2652 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2653 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2654 I->error("implicitly defined value should be a register!"); 2655 InstImpResults.push_back(Val->getDef()); 2656 } 2657 return; 2658 } 2659 2660 if (Pat->getOperator()->getName() != "set") { 2661 // If this is not a set, verify that the children nodes are not void typed, 2662 // and recurse. 2663 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2664 if (Pat->getChild(i)->getNumTypes() == 0) 2665 I->error("Cannot have void nodes inside of patterns!"); 2666 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2667 InstImpResults); 2668 } 2669 2670 // If this is a non-leaf node with no children, treat it basically as if 2671 // it were a leaf. This handles nodes like (imm). 2672 bool isUse = HandleUse(I, Pat, InstInputs); 2673 2674 if (!isUse && Pat->getTransformFn()) 2675 I->error("Cannot specify a transform function for a non-input value!"); 2676 return; 2677 } 2678 2679 // Otherwise, this is a set, validate and collect instruction results. 2680 if (Pat->getNumChildren() == 0) 2681 I->error("set requires operands!"); 2682 2683 if (Pat->getTransformFn()) 2684 I->error("Cannot specify a transform function on a set node!"); 2685 2686 // Check the set destinations. 2687 unsigned NumDests = Pat->getNumChildren()-1; 2688 for (unsigned i = 0; i != NumDests; ++i) { 2689 TreePatternNode *Dest = Pat->getChild(i); 2690 if (!Dest->isLeaf()) 2691 I->error("set destination should be a register!"); 2692 2693 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2694 if (!Val) { 2695 I->error("set destination should be a register!"); 2696 continue; 2697 } 2698 2699 if (Val->getDef()->isSubClassOf("RegisterClass") || 2700 Val->getDef()->isSubClassOf("ValueType") || 2701 Val->getDef()->isSubClassOf("RegisterOperand") || 2702 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2703 if (Dest->getName().empty()) 2704 I->error("set destination must have a name!"); 2705 if (InstResults.count(Dest->getName())) 2706 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2707 InstResults[Dest->getName()] = Dest; 2708 } else if (Val->getDef()->isSubClassOf("Register")) { 2709 InstImpResults.push_back(Val->getDef()); 2710 } else { 2711 I->error("set destination should be a register!"); 2712 } 2713 } 2714 2715 // Verify and collect info from the computation. 2716 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2717 InstInputs, InstResults, InstImpResults); 2718 } 2719 2720 //===----------------------------------------------------------------------===// 2721 // Instruction Analysis 2722 //===----------------------------------------------------------------------===// 2723 2724 class InstAnalyzer { 2725 const CodeGenDAGPatterns &CDP; 2726 public: 2727 bool hasSideEffects; 2728 bool mayStore; 2729 bool mayLoad; 2730 bool isBitcast; 2731 bool isVariadic; 2732 2733 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2734 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2735 isBitcast(false), isVariadic(false) {} 2736 2737 void Analyze(const TreePattern *Pat) { 2738 // Assume only the first tree is the pattern. The others are clobber nodes. 2739 AnalyzeNode(Pat->getTree(0)); 2740 } 2741 2742 void Analyze(const PatternToMatch *Pat) { 2743 AnalyzeNode(Pat->getSrcPattern()); 2744 } 2745 2746 private: 2747 bool IsNodeBitcast(const TreePatternNode *N) const { 2748 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2749 return false; 2750 2751 if (N->getNumChildren() != 2) 2752 return false; 2753 2754 const TreePatternNode *N0 = N->getChild(0); 2755 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2756 return false; 2757 2758 const TreePatternNode *N1 = N->getChild(1); 2759 if (N1->isLeaf()) 2760 return false; 2761 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2762 return false; 2763 2764 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2765 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2766 return false; 2767 return OpInfo.getEnumName() == "ISD::BITCAST"; 2768 } 2769 2770 public: 2771 void AnalyzeNode(const TreePatternNode *N) { 2772 if (N->isLeaf()) { 2773 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2774 Record *LeafRec = DI->getDef(); 2775 // Handle ComplexPattern leaves. 2776 if (LeafRec->isSubClassOf("ComplexPattern")) { 2777 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2778 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2779 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2780 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2781 } 2782 } 2783 return; 2784 } 2785 2786 // Analyze children. 2787 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2788 AnalyzeNode(N->getChild(i)); 2789 2790 // Ignore set nodes, which are not SDNodes. 2791 if (N->getOperator()->getName() == "set") { 2792 isBitcast = IsNodeBitcast(N); 2793 return; 2794 } 2795 2796 // Notice properties of the node. 2797 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2798 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2799 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2800 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2801 2802 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2803 // If this is an intrinsic, analyze it. 2804 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 2805 mayLoad = true;// These may load memory. 2806 2807 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 2808 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2809 2810 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2811 // ReadWriteMem intrinsics can have other strange effects. 2812 hasSideEffects = true; 2813 } 2814 } 2815 2816 }; 2817 2818 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2819 const InstAnalyzer &PatInfo, 2820 Record *PatDef) { 2821 bool Error = false; 2822 2823 // Remember where InstInfo got its flags. 2824 if (InstInfo.hasUndefFlags()) 2825 InstInfo.InferredFrom = PatDef; 2826 2827 // Check explicitly set flags for consistency. 2828 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2829 !InstInfo.hasSideEffects_Unset) { 2830 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2831 // the pattern has no side effects. That could be useful for div/rem 2832 // instructions that may trap. 2833 if (!InstInfo.hasSideEffects) { 2834 Error = true; 2835 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2836 Twine(InstInfo.hasSideEffects)); 2837 } 2838 } 2839 2840 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2841 Error = true; 2842 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2843 Twine(InstInfo.mayStore)); 2844 } 2845 2846 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2847 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2848 // Some targets translate immediates to loads. 2849 if (!InstInfo.mayLoad) { 2850 Error = true; 2851 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2852 Twine(InstInfo.mayLoad)); 2853 } 2854 } 2855 2856 // Transfer inferred flags. 2857 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2858 InstInfo.mayStore |= PatInfo.mayStore; 2859 InstInfo.mayLoad |= PatInfo.mayLoad; 2860 2861 // These flags are silently added without any verification. 2862 InstInfo.isBitcast |= PatInfo.isBitcast; 2863 2864 // Don't infer isVariadic. This flag means something different on SDNodes and 2865 // instructions. For example, a CALL SDNode is variadic because it has the 2866 // call arguments as operands, but a CALL instruction is not variadic - it 2867 // has argument registers as implicit, not explicit uses. 2868 2869 return Error; 2870 } 2871 2872 /// hasNullFragReference - Return true if the DAG has any reference to the 2873 /// null_frag operator. 2874 static bool hasNullFragReference(DagInit *DI) { 2875 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2876 if (!OpDef) return false; 2877 Record *Operator = OpDef->getDef(); 2878 2879 // If this is the null fragment, return true. 2880 if (Operator->getName() == "null_frag") return true; 2881 // If any of the arguments reference the null fragment, return true. 2882 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2883 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2884 if (Arg && hasNullFragReference(Arg)) 2885 return true; 2886 } 2887 2888 return false; 2889 } 2890 2891 /// hasNullFragReference - Return true if any DAG in the list references 2892 /// the null_frag operator. 2893 static bool hasNullFragReference(ListInit *LI) { 2894 for (Init *I : LI->getValues()) { 2895 DagInit *DI = dyn_cast<DagInit>(I); 2896 assert(DI && "non-dag in an instruction Pattern list?!"); 2897 if (hasNullFragReference(DI)) 2898 return true; 2899 } 2900 return false; 2901 } 2902 2903 /// Get all the instructions in a tree. 2904 static void 2905 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2906 if (Tree->isLeaf()) 2907 return; 2908 if (Tree->getOperator()->isSubClassOf("Instruction")) 2909 Instrs.push_back(Tree->getOperator()); 2910 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2911 getInstructionsInTree(Tree->getChild(i), Instrs); 2912 } 2913 2914 /// Check the class of a pattern leaf node against the instruction operand it 2915 /// represents. 2916 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2917 Record *Leaf) { 2918 if (OI.Rec == Leaf) 2919 return true; 2920 2921 // Allow direct value types to be used in instruction set patterns. 2922 // The type will be checked later. 2923 if (Leaf->isSubClassOf("ValueType")) 2924 return true; 2925 2926 // Patterns can also be ComplexPattern instances. 2927 if (Leaf->isSubClassOf("ComplexPattern")) 2928 return true; 2929 2930 return false; 2931 } 2932 2933 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2934 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2935 2936 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2937 2938 // Parse the instruction. 2939 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2940 // Inline pattern fragments into it. 2941 I->InlinePatternFragments(); 2942 2943 // Infer as many types as possible. If we cannot infer all of them, we can 2944 // never do anything with this instruction pattern: report it to the user. 2945 if (!I->InferAllTypes()) 2946 I->error("Could not infer all types in pattern!"); 2947 2948 // InstInputs - Keep track of all of the inputs of the instruction, along 2949 // with the record they are declared as. 2950 std::map<std::string, TreePatternNode*> InstInputs; 2951 2952 // InstResults - Keep track of all the virtual registers that are 'set' 2953 // in the instruction, including what reg class they are. 2954 std::map<std::string, TreePatternNode*> InstResults; 2955 2956 std::vector<Record*> InstImpResults; 2957 2958 // Verify that the top-level forms in the instruction are of void type, and 2959 // fill in the InstResults map. 2960 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2961 TreePatternNode *Pat = I->getTree(j); 2962 if (Pat->getNumTypes() != 0) { 2963 std::string Types; 2964 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 2965 if (k > 0) 2966 Types += ", "; 2967 Types += Pat->getExtType(k).getName(); 2968 } 2969 I->error("Top-level forms in instruction pattern should have" 2970 " void types, has types " + Types); 2971 } 2972 2973 // Find inputs and outputs, and verify the structure of the uses/defs. 2974 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2975 InstImpResults); 2976 } 2977 2978 // Now that we have inputs and outputs of the pattern, inspect the operands 2979 // list for the instruction. This determines the order that operands are 2980 // added to the machine instruction the node corresponds to. 2981 unsigned NumResults = InstResults.size(); 2982 2983 // Parse the operands list from the (ops) list, validating it. 2984 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2985 2986 // Check that all of the results occur first in the list. 2987 std::vector<Record*> Results; 2988 SmallVector<TreePatternNode *, 2> ResNodes; 2989 for (unsigned i = 0; i != NumResults; ++i) { 2990 if (i == CGI.Operands.size()) 2991 I->error("'" + InstResults.begin()->first + 2992 "' set but does not appear in operand list!"); 2993 const std::string &OpName = CGI.Operands[i].Name; 2994 2995 // Check that it exists in InstResults. 2996 TreePatternNode *RNode = InstResults[OpName]; 2997 if (!RNode) 2998 I->error("Operand $" + OpName + " does not exist in operand list!"); 2999 3000 ResNodes.push_back(RNode); 3001 3002 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3003 if (!R) 3004 I->error("Operand $" + OpName + " should be a set destination: all " 3005 "outputs must occur before inputs in operand list!"); 3006 3007 if (!checkOperandClass(CGI.Operands[i], R)) 3008 I->error("Operand $" + OpName + " class mismatch!"); 3009 3010 // Remember the return type. 3011 Results.push_back(CGI.Operands[i].Rec); 3012 3013 // Okay, this one checks out. 3014 InstResults.erase(OpName); 3015 } 3016 3017 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3018 // the copy while we're checking the inputs. 3019 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3020 3021 std::vector<TreePatternNode*> ResultNodeOperands; 3022 std::vector<Record*> Operands; 3023 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3024 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3025 const std::string &OpName = Op.Name; 3026 if (OpName.empty()) 3027 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 3028 3029 if (!InstInputsCheck.count(OpName)) { 3030 // If this is an operand with a DefaultOps set filled in, we can ignore 3031 // this. When we codegen it, we will do so as always executed. 3032 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3033 // Does it have a non-empty DefaultOps field? If so, ignore this 3034 // operand. 3035 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3036 continue; 3037 } 3038 I->error("Operand $" + OpName + 3039 " does not appear in the instruction pattern"); 3040 } 3041 TreePatternNode *InVal = InstInputsCheck[OpName]; 3042 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3043 3044 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3045 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3046 if (!checkOperandClass(Op, InRec)) 3047 I->error("Operand $" + OpName + "'s register class disagrees" 3048 " between the operand and pattern"); 3049 } 3050 Operands.push_back(Op.Rec); 3051 3052 // Construct the result for the dest-pattern operand list. 3053 TreePatternNode *OpNode = InVal->clone(); 3054 3055 // No predicate is useful on the result. 3056 OpNode->clearPredicateFns(); 3057 3058 // Promote the xform function to be an explicit node if set. 3059 if (Record *Xform = OpNode->getTransformFn()) { 3060 OpNode->setTransformFn(nullptr); 3061 std::vector<TreePatternNode*> Children; 3062 Children.push_back(OpNode); 3063 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3064 } 3065 3066 ResultNodeOperands.push_back(OpNode); 3067 } 3068 3069 if (!InstInputsCheck.empty()) 3070 I->error("Input operand $" + InstInputsCheck.begin()->first + 3071 " occurs in pattern but not in operands list!"); 3072 3073 TreePatternNode *ResultPattern = 3074 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3075 GetNumNodeResults(I->getRecord(), *this)); 3076 // Copy fully inferred output node types to instruction result pattern. 3077 for (unsigned i = 0; i != NumResults; ++i) { 3078 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3079 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3080 } 3081 3082 // Create and insert the instruction. 3083 // FIXME: InstImpResults should not be part of DAGInstruction. 3084 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3085 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3086 3087 // Use a temporary tree pattern to infer all types and make sure that the 3088 // constructed result is correct. This depends on the instruction already 3089 // being inserted into the DAGInsts map. 3090 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3091 Temp.InferAllTypes(&I->getNamedNodesMap()); 3092 3093 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3094 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3095 3096 return TheInsertedInst; 3097 } 3098 3099 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3100 /// any fragments involved. This populates the Instructions list with fully 3101 /// resolved instructions. 3102 void CodeGenDAGPatterns::ParseInstructions() { 3103 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3104 3105 for (Record *Instr : Instrs) { 3106 ListInit *LI = nullptr; 3107 3108 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3109 LI = Instr->getValueAsListInit("Pattern"); 3110 3111 // If there is no pattern, only collect minimal information about the 3112 // instruction for its operand list. We have to assume that there is one 3113 // result, as we have no detailed info. A pattern which references the 3114 // null_frag operator is as-if no pattern were specified. Normally this 3115 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3116 // null_frag. 3117 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3118 std::vector<Record*> Results; 3119 std::vector<Record*> Operands; 3120 3121 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3122 3123 if (InstInfo.Operands.size() != 0) { 3124 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3125 Results.push_back(InstInfo.Operands[j].Rec); 3126 3127 // The rest are inputs. 3128 for (unsigned j = InstInfo.Operands.NumDefs, 3129 e = InstInfo.Operands.size(); j < e; ++j) 3130 Operands.push_back(InstInfo.Operands[j].Rec); 3131 } 3132 3133 // Create and insert the instruction. 3134 std::vector<Record*> ImpResults; 3135 Instructions.insert(std::make_pair(Instr, 3136 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3137 continue; // no pattern. 3138 } 3139 3140 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3141 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3142 3143 (void)DI; 3144 DEBUG(DI.getPattern()->dump()); 3145 } 3146 3147 // If we can, convert the instructions to be patterns that are matched! 3148 for (auto &Entry : Instructions) { 3149 DAGInstruction &TheInst = Entry.second; 3150 TreePattern *I = TheInst.getPattern(); 3151 if (!I) continue; // No pattern. 3152 3153 // FIXME: Assume only the first tree is the pattern. The others are clobber 3154 // nodes. 3155 TreePatternNode *Pattern = I->getTree(0); 3156 TreePatternNode *SrcPattern; 3157 if (Pattern->getOperator()->getName() == "set") { 3158 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3159 } else{ 3160 // Not a set (store or something?) 3161 SrcPattern = Pattern; 3162 } 3163 3164 Record *Instr = Entry.first; 3165 AddPatternToMatch(I, 3166 PatternToMatch(Instr, 3167 Instr->getValueAsListInit("Predicates"), 3168 SrcPattern, 3169 TheInst.getResultPattern(), 3170 TheInst.getImpResults(), 3171 Instr->getValueAsInt("AddedComplexity"), 3172 Instr->getID())); 3173 } 3174 } 3175 3176 3177 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3178 3179 static void FindNames(const TreePatternNode *P, 3180 std::map<std::string, NameRecord> &Names, 3181 TreePattern *PatternTop) { 3182 if (!P->getName().empty()) { 3183 NameRecord &Rec = Names[P->getName()]; 3184 // If this is the first instance of the name, remember the node. 3185 if (Rec.second++ == 0) 3186 Rec.first = P; 3187 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3188 PatternTop->error("repetition of value: $" + P->getName() + 3189 " where different uses have different types!"); 3190 } 3191 3192 if (!P->isLeaf()) { 3193 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3194 FindNames(P->getChild(i), Names, PatternTop); 3195 } 3196 } 3197 3198 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3199 const PatternToMatch &PTM) { 3200 // Do some sanity checking on the pattern we're about to match. 3201 std::string Reason; 3202 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3203 PrintWarning(Pattern->getRecord()->getLoc(), 3204 Twine("Pattern can never match: ") + Reason); 3205 return; 3206 } 3207 3208 // If the source pattern's root is a complex pattern, that complex pattern 3209 // must specify the nodes it can potentially match. 3210 if (const ComplexPattern *CP = 3211 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3212 if (CP->getRootNodes().empty()) 3213 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3214 " could match"); 3215 3216 3217 // Find all of the named values in the input and output, ensure they have the 3218 // same type. 3219 std::map<std::string, NameRecord> SrcNames, DstNames; 3220 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3221 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3222 3223 // Scan all of the named values in the destination pattern, rejecting them if 3224 // they don't exist in the input pattern. 3225 for (const auto &Entry : DstNames) { 3226 if (SrcNames[Entry.first].first == nullptr) 3227 Pattern->error("Pattern has input without matching name in output: $" + 3228 Entry.first); 3229 } 3230 3231 // Scan all of the named values in the source pattern, rejecting them if the 3232 // name isn't used in the dest, and isn't used to tie two values together. 3233 for (const auto &Entry : SrcNames) 3234 if (DstNames[Entry.first].first == nullptr && 3235 SrcNames[Entry.first].second == 1) 3236 Pattern->error("Pattern has dead named input: $" + Entry.first); 3237 3238 PatternsToMatch.push_back(PTM); 3239 } 3240 3241 3242 3243 void CodeGenDAGPatterns::InferInstructionFlags() { 3244 ArrayRef<const CodeGenInstruction*> Instructions = 3245 Target.getInstructionsByEnumValue(); 3246 3247 // First try to infer flags from the primary instruction pattern, if any. 3248 SmallVector<CodeGenInstruction*, 8> Revisit; 3249 unsigned Errors = 0; 3250 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3251 CodeGenInstruction &InstInfo = 3252 const_cast<CodeGenInstruction &>(*Instructions[i]); 3253 3254 // Get the primary instruction pattern. 3255 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3256 if (!Pattern) { 3257 if (InstInfo.hasUndefFlags()) 3258 Revisit.push_back(&InstInfo); 3259 continue; 3260 } 3261 InstAnalyzer PatInfo(*this); 3262 PatInfo.Analyze(Pattern); 3263 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3264 } 3265 3266 // Second, look for single-instruction patterns defined outside the 3267 // instruction. 3268 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3269 const PatternToMatch &PTM = *I; 3270 3271 // We can only infer from single-instruction patterns, otherwise we won't 3272 // know which instruction should get the flags. 3273 SmallVector<Record*, 8> PatInstrs; 3274 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3275 if (PatInstrs.size() != 1) 3276 continue; 3277 3278 // Get the single instruction. 3279 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3280 3281 // Only infer properties from the first pattern. We'll verify the others. 3282 if (InstInfo.InferredFrom) 3283 continue; 3284 3285 InstAnalyzer PatInfo(*this); 3286 PatInfo.Analyze(&PTM); 3287 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3288 } 3289 3290 if (Errors) 3291 PrintFatalError("pattern conflicts"); 3292 3293 // Revisit instructions with undefined flags and no pattern. 3294 if (Target.guessInstructionProperties()) { 3295 for (CodeGenInstruction *InstInfo : Revisit) { 3296 if (InstInfo->InferredFrom) 3297 continue; 3298 // The mayLoad and mayStore flags default to false. 3299 // Conservatively assume hasSideEffects if it wasn't explicit. 3300 if (InstInfo->hasSideEffects_Unset) 3301 InstInfo->hasSideEffects = true; 3302 } 3303 return; 3304 } 3305 3306 // Complain about any flags that are still undefined. 3307 for (CodeGenInstruction *InstInfo : Revisit) { 3308 if (InstInfo->InferredFrom) 3309 continue; 3310 if (InstInfo->hasSideEffects_Unset) 3311 PrintError(InstInfo->TheDef->getLoc(), 3312 "Can't infer hasSideEffects from patterns"); 3313 if (InstInfo->mayStore_Unset) 3314 PrintError(InstInfo->TheDef->getLoc(), 3315 "Can't infer mayStore from patterns"); 3316 if (InstInfo->mayLoad_Unset) 3317 PrintError(InstInfo->TheDef->getLoc(), 3318 "Can't infer mayLoad from patterns"); 3319 } 3320 } 3321 3322 3323 /// Verify instruction flags against pattern node properties. 3324 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3325 unsigned Errors = 0; 3326 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3327 const PatternToMatch &PTM = *I; 3328 SmallVector<Record*, 8> Instrs; 3329 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3330 if (Instrs.empty()) 3331 continue; 3332 3333 // Count the number of instructions with each flag set. 3334 unsigned NumSideEffects = 0; 3335 unsigned NumStores = 0; 3336 unsigned NumLoads = 0; 3337 for (const Record *Instr : Instrs) { 3338 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3339 NumSideEffects += InstInfo.hasSideEffects; 3340 NumStores += InstInfo.mayStore; 3341 NumLoads += InstInfo.mayLoad; 3342 } 3343 3344 // Analyze the source pattern. 3345 InstAnalyzer PatInfo(*this); 3346 PatInfo.Analyze(&PTM); 3347 3348 // Collect error messages. 3349 SmallVector<std::string, 4> Msgs; 3350 3351 // Check for missing flags in the output. 3352 // Permit extra flags for now at least. 3353 if (PatInfo.hasSideEffects && !NumSideEffects) 3354 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3355 3356 // Don't verify store flags on instructions with side effects. At least for 3357 // intrinsics, side effects implies mayStore. 3358 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3359 Msgs.push_back("pattern may store, but mayStore isn't set"); 3360 3361 // Similarly, mayStore implies mayLoad on intrinsics. 3362 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3363 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3364 3365 // Print error messages. 3366 if (Msgs.empty()) 3367 continue; 3368 ++Errors; 3369 3370 for (const std::string &Msg : Msgs) 3371 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3372 (Instrs.size() == 1 ? 3373 "instruction" : "output instructions")); 3374 // Provide the location of the relevant instruction definitions. 3375 for (const Record *Instr : Instrs) { 3376 if (Instr != PTM.getSrcRecord()) 3377 PrintError(Instr->getLoc(), "defined here"); 3378 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3379 if (InstInfo.InferredFrom && 3380 InstInfo.InferredFrom != InstInfo.TheDef && 3381 InstInfo.InferredFrom != PTM.getSrcRecord()) 3382 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3383 } 3384 } 3385 if (Errors) 3386 PrintFatalError("Errors in DAG patterns"); 3387 } 3388 3389 /// Given a pattern result with an unresolved type, see if we can find one 3390 /// instruction with an unresolved result type. Force this result type to an 3391 /// arbitrary element if it's possible types to converge results. 3392 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3393 if (N->isLeaf()) 3394 return false; 3395 3396 // Analyze children. 3397 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3398 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3399 return true; 3400 3401 if (!N->getOperator()->isSubClassOf("Instruction")) 3402 return false; 3403 3404 // If this type is already concrete or completely unknown we can't do 3405 // anything. 3406 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3407 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3408 continue; 3409 3410 // Otherwise, force its type to the first possibility (an arbitrary choice). 3411 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3412 return true; 3413 } 3414 3415 return false; 3416 } 3417 3418 void CodeGenDAGPatterns::ParsePatterns() { 3419 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3420 3421 for (Record *CurPattern : Patterns) { 3422 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3423 3424 // If the pattern references the null_frag, there's nothing to do. 3425 if (hasNullFragReference(Tree)) 3426 continue; 3427 3428 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3429 3430 // Inline pattern fragments into it. 3431 Pattern->InlinePatternFragments(); 3432 3433 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3434 if (LI->empty()) continue; // no pattern. 3435 3436 // Parse the instruction. 3437 TreePattern Result(CurPattern, LI, false, *this); 3438 3439 // Inline pattern fragments into it. 3440 Result.InlinePatternFragments(); 3441 3442 if (Result.getNumTrees() != 1) 3443 Result.error("Cannot handle instructions producing instructions " 3444 "with temporaries yet!"); 3445 3446 bool IterateInference; 3447 bool InferredAllPatternTypes, InferredAllResultTypes; 3448 do { 3449 // Infer as many types as possible. If we cannot infer all of them, we 3450 // can never do anything with this pattern: report it to the user. 3451 InferredAllPatternTypes = 3452 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3453 3454 // Infer as many types as possible. If we cannot infer all of them, we 3455 // can never do anything with this pattern: report it to the user. 3456 InferredAllResultTypes = 3457 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3458 3459 IterateInference = false; 3460 3461 // Apply the type of the result to the source pattern. This helps us 3462 // resolve cases where the input type is known to be a pointer type (which 3463 // is considered resolved), but the result knows it needs to be 32- or 3464 // 64-bits. Infer the other way for good measure. 3465 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3466 Pattern->getTree(0)->getNumTypes()); 3467 i != e; ++i) { 3468 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3469 i, Result.getTree(0)->getExtType(i), Result); 3470 IterateInference |= Result.getTree(0)->UpdateNodeType( 3471 i, Pattern->getTree(0)->getExtType(i), Result); 3472 } 3473 3474 // If our iteration has converged and the input pattern's types are fully 3475 // resolved but the result pattern is not fully resolved, we may have a 3476 // situation where we have two instructions in the result pattern and 3477 // the instructions require a common register class, but don't care about 3478 // what actual MVT is used. This is actually a bug in our modelling: 3479 // output patterns should have register classes, not MVTs. 3480 // 3481 // In any case, to handle this, we just go through and disambiguate some 3482 // arbitrary types to the result pattern's nodes. 3483 if (!IterateInference && InferredAllPatternTypes && 3484 !InferredAllResultTypes) 3485 IterateInference = 3486 ForceArbitraryInstResultType(Result.getTree(0), Result); 3487 } while (IterateInference); 3488 3489 // Verify that we inferred enough types that we can do something with the 3490 // pattern and result. If these fire the user has to add type casts. 3491 if (!InferredAllPatternTypes) 3492 Pattern->error("Could not infer all types in pattern!"); 3493 if (!InferredAllResultTypes) { 3494 Pattern->dump(); 3495 Result.error("Could not infer all types in pattern result!"); 3496 } 3497 3498 // Validate that the input pattern is correct. 3499 std::map<std::string, TreePatternNode*> InstInputs; 3500 std::map<std::string, TreePatternNode*> InstResults; 3501 std::vector<Record*> InstImpResults; 3502 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3503 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3504 InstInputs, InstResults, 3505 InstImpResults); 3506 3507 // Promote the xform function to be an explicit node if set. 3508 TreePatternNode *DstPattern = Result.getOnlyTree(); 3509 std::vector<TreePatternNode*> ResultNodeOperands; 3510 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3511 TreePatternNode *OpNode = DstPattern->getChild(ii); 3512 if (Record *Xform = OpNode->getTransformFn()) { 3513 OpNode->setTransformFn(nullptr); 3514 std::vector<TreePatternNode*> Children; 3515 Children.push_back(OpNode); 3516 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3517 } 3518 ResultNodeOperands.push_back(OpNode); 3519 } 3520 DstPattern = Result.getOnlyTree(); 3521 if (!DstPattern->isLeaf()) 3522 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3523 ResultNodeOperands, 3524 DstPattern->getNumTypes()); 3525 3526 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3527 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3528 3529 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3530 Temp.InferAllTypes(); 3531 3532 3533 AddPatternToMatch(Pattern, 3534 PatternToMatch(CurPattern, 3535 CurPattern->getValueAsListInit("Predicates"), 3536 Pattern->getTree(0), 3537 Temp.getOnlyTree(), InstImpResults, 3538 CurPattern->getValueAsInt("AddedComplexity"), 3539 CurPattern->getID())); 3540 } 3541 } 3542 3543 /// CombineChildVariants - Given a bunch of permutations of each child of the 3544 /// 'operator' node, put them together in all possible ways. 3545 static void CombineChildVariants(TreePatternNode *Orig, 3546 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3547 std::vector<TreePatternNode*> &OutVariants, 3548 CodeGenDAGPatterns &CDP, 3549 const MultipleUseVarSet &DepVars) { 3550 // Make sure that each operand has at least one variant to choose from. 3551 for (const auto &Variants : ChildVariants) 3552 if (Variants.empty()) 3553 return; 3554 3555 // The end result is an all-pairs construction of the resultant pattern. 3556 std::vector<unsigned> Idxs; 3557 Idxs.resize(ChildVariants.size()); 3558 bool NotDone; 3559 do { 3560 #ifndef NDEBUG 3561 DEBUG(if (!Idxs.empty()) { 3562 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3563 for (unsigned Idx : Idxs) { 3564 errs() << Idx << " "; 3565 } 3566 errs() << "]\n"; 3567 }); 3568 #endif 3569 // Create the variant and add it to the output list. 3570 std::vector<TreePatternNode*> NewChildren; 3571 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3572 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3573 auto R = llvm::make_unique<TreePatternNode>( 3574 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 3575 3576 // Copy over properties. 3577 R->setName(Orig->getName()); 3578 R->setPredicateFns(Orig->getPredicateFns()); 3579 R->setTransformFn(Orig->getTransformFn()); 3580 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3581 R->setType(i, Orig->getExtType(i)); 3582 3583 // If this pattern cannot match, do not include it as a variant. 3584 std::string ErrString; 3585 // Scan to see if this pattern has already been emitted. We can get 3586 // duplication due to things like commuting: 3587 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3588 // which are the same pattern. Ignore the dups. 3589 if (R->canPatternMatch(ErrString, CDP) && 3590 none_of(OutVariants, [&](TreePatternNode *Variant) { 3591 return R->isIsomorphicTo(Variant, DepVars); 3592 })) 3593 OutVariants.push_back(R.release()); 3594 3595 // Increment indices to the next permutation by incrementing the 3596 // indices from last index backward, e.g., generate the sequence 3597 // [0, 0], [0, 1], [1, 0], [1, 1]. 3598 int IdxsIdx; 3599 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3600 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3601 Idxs[IdxsIdx] = 0; 3602 else 3603 break; 3604 } 3605 NotDone = (IdxsIdx >= 0); 3606 } while (NotDone); 3607 } 3608 3609 /// CombineChildVariants - A helper function for binary operators. 3610 /// 3611 static void CombineChildVariants(TreePatternNode *Orig, 3612 const std::vector<TreePatternNode*> &LHS, 3613 const std::vector<TreePatternNode*> &RHS, 3614 std::vector<TreePatternNode*> &OutVariants, 3615 CodeGenDAGPatterns &CDP, 3616 const MultipleUseVarSet &DepVars) { 3617 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3618 ChildVariants.push_back(LHS); 3619 ChildVariants.push_back(RHS); 3620 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3621 } 3622 3623 3624 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3625 std::vector<TreePatternNode *> &Children) { 3626 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3627 Record *Operator = N->getOperator(); 3628 3629 // Only permit raw nodes. 3630 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3631 N->getTransformFn()) { 3632 Children.push_back(N); 3633 return; 3634 } 3635 3636 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3637 Children.push_back(N->getChild(0)); 3638 else 3639 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3640 3641 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3642 Children.push_back(N->getChild(1)); 3643 else 3644 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3645 } 3646 3647 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3648 /// the (potentially recursive) pattern by using algebraic laws. 3649 /// 3650 static void GenerateVariantsOf(TreePatternNode *N, 3651 std::vector<TreePatternNode*> &OutVariants, 3652 CodeGenDAGPatterns &CDP, 3653 const MultipleUseVarSet &DepVars) { 3654 // We cannot permute leaves or ComplexPattern uses. 3655 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3656 OutVariants.push_back(N); 3657 return; 3658 } 3659 3660 // Look up interesting info about the node. 3661 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3662 3663 // If this node is associative, re-associate. 3664 if (NodeInfo.hasProperty(SDNPAssociative)) { 3665 // Re-associate by pulling together all of the linked operators 3666 std::vector<TreePatternNode*> MaximalChildren; 3667 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3668 3669 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3670 // permutations. 3671 if (MaximalChildren.size() == 3) { 3672 // Find the variants of all of our maximal children. 3673 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3674 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3675 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3676 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3677 3678 // There are only two ways we can permute the tree: 3679 // (A op B) op C and A op (B op C) 3680 // Within these forms, we can also permute A/B/C. 3681 3682 // Generate legal pair permutations of A/B/C. 3683 std::vector<TreePatternNode*> ABVariants; 3684 std::vector<TreePatternNode*> BAVariants; 3685 std::vector<TreePatternNode*> ACVariants; 3686 std::vector<TreePatternNode*> CAVariants; 3687 std::vector<TreePatternNode*> BCVariants; 3688 std::vector<TreePatternNode*> CBVariants; 3689 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3690 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3691 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3692 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3693 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3694 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3695 3696 // Combine those into the result: (x op x) op x 3697 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3698 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3699 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3700 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3701 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3702 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3703 3704 // Combine those into the result: x op (x op x) 3705 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3706 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3707 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3708 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3709 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3710 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3711 return; 3712 } 3713 } 3714 3715 // Compute permutations of all children. 3716 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3717 ChildVariants.resize(N->getNumChildren()); 3718 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3719 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3720 3721 // Build all permutations based on how the children were formed. 3722 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3723 3724 // If this node is commutative, consider the commuted order. 3725 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3726 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3727 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3728 "Commutative but doesn't have 2 children!"); 3729 // Don't count children which are actually register references. 3730 unsigned NC = 0; 3731 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3732 TreePatternNode *Child = N->getChild(i); 3733 if (Child->isLeaf()) 3734 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3735 Record *RR = DI->getDef(); 3736 if (RR->isSubClassOf("Register")) 3737 continue; 3738 } 3739 NC++; 3740 } 3741 // Consider the commuted order. 3742 if (isCommIntrinsic) { 3743 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3744 // operands are the commutative operands, and there might be more operands 3745 // after those. 3746 assert(NC >= 3 && 3747 "Commutative intrinsic should have at least 3 children!"); 3748 std::vector<std::vector<TreePatternNode*> > Variants; 3749 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3750 Variants.push_back(ChildVariants[2]); 3751 Variants.push_back(ChildVariants[1]); 3752 for (unsigned i = 3; i != NC; ++i) 3753 Variants.push_back(ChildVariants[i]); 3754 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3755 } else if (NC == 2) 3756 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3757 OutVariants, CDP, DepVars); 3758 } 3759 } 3760 3761 3762 // GenerateVariants - Generate variants. For example, commutative patterns can 3763 // match multiple ways. Add them to PatternsToMatch as well. 3764 void CodeGenDAGPatterns::GenerateVariants() { 3765 DEBUG(errs() << "Generating instruction variants.\n"); 3766 3767 // Loop over all of the patterns we've collected, checking to see if we can 3768 // generate variants of the instruction, through the exploitation of 3769 // identities. This permits the target to provide aggressive matching without 3770 // the .td file having to contain tons of variants of instructions. 3771 // 3772 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3773 // intentionally do not reconsider these. Any variants of added patterns have 3774 // already been added. 3775 // 3776 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3777 MultipleUseVarSet DepVars; 3778 std::vector<TreePatternNode*> Variants; 3779 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3780 DEBUG(errs() << "Dependent/multiply used variables: "); 3781 DEBUG(DumpDepVars(DepVars)); 3782 DEBUG(errs() << "\n"); 3783 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3784 DepVars); 3785 3786 assert(!Variants.empty() && "Must create at least original variant!"); 3787 Variants.erase(Variants.begin()); // Remove the original pattern. 3788 3789 if (Variants.empty()) // No variants for this pattern. 3790 continue; 3791 3792 DEBUG(errs() << "FOUND VARIANTS OF: "; 3793 PatternsToMatch[i].getSrcPattern()->dump(); 3794 errs() << "\n"); 3795 3796 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3797 TreePatternNode *Variant = Variants[v]; 3798 3799 DEBUG(errs() << " VAR#" << v << ": "; 3800 Variant->dump(); 3801 errs() << "\n"); 3802 3803 // Scan to see if an instruction or explicit pattern already matches this. 3804 bool AlreadyExists = false; 3805 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3806 // Skip if the top level predicates do not match. 3807 if (PatternsToMatch[i].getPredicates() != 3808 PatternsToMatch[p].getPredicates()) 3809 continue; 3810 // Check to see if this variant already exists. 3811 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3812 DepVars)) { 3813 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3814 AlreadyExists = true; 3815 break; 3816 } 3817 } 3818 // If we already have it, ignore the variant. 3819 if (AlreadyExists) continue; 3820 3821 // Otherwise, add it to the list of patterns we have. 3822 PatternsToMatch.emplace_back( 3823 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 3824 Variant, PatternsToMatch[i].getDstPattern(), 3825 PatternsToMatch[i].getDstRegs(), 3826 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()); 3827 } 3828 3829 DEBUG(errs() << "\n"); 3830 } 3831 } 3832