1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include <set> 20 #include <algorithm> 21 #include <iostream> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // Helpers for working with extended types. 26 27 /// FilterVTs - Filter a list of VT's according to a predicate. 28 /// 29 template<typename T> 30 static std::vector<MVT::SimpleValueType> 31 FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) { 32 std::vector<MVT::SimpleValueType> Result; 33 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 34 if (Filter(InVTs[i])) 35 Result.push_back(InVTs[i]); 36 return Result; 37 } 38 39 template<typename T> 40 static std::vector<unsigned char> 41 FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { 42 std::vector<unsigned char> Result; 43 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 44 if (Filter((MVT::SimpleValueType)InVTs[i])) 45 Result.push_back(InVTs[i]); 46 return Result; 47 } 48 49 static std::vector<unsigned char> 50 ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) { 51 std::vector<unsigned char> Result; 52 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 53 Result.push_back(InVTs[i]); 54 return Result; 55 } 56 57 static inline bool isInteger(MVT::SimpleValueType VT) { 58 return EVT(VT).isInteger(); 59 } 60 61 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 62 return EVT(VT).isFloatingPoint(); 63 } 64 65 static inline bool isVector(MVT::SimpleValueType VT) { 66 return EVT(VT).isVector(); 67 } 68 69 static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, 70 const std::vector<unsigned char> &RHS) { 71 if (LHS.size() > RHS.size()) return false; 72 for (unsigned i = 0, e = LHS.size(); i != e; ++i) 73 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) 74 return false; 75 return true; 76 } 77 78 namespace llvm { 79 namespace EEVT { 80 /// isExtIntegerInVTs - Return true if the specified extended value type vector 81 /// contains iAny or an integer value type. 82 bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { 83 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); 84 return EVTs[0] == MVT::iAny || !(FilterEVTs(EVTs, isInteger).empty()); 85 } 86 87 /// isExtFloatingPointInVTs - Return true if the specified extended value type 88 /// vector contains fAny or a FP value type. 89 bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { 90 assert(!EVTs.empty() && "Cannot check for FP in empty ExtVT list!"); 91 return EVTs[0] == MVT::fAny || !(FilterEVTs(EVTs, isFloatingPoint).empty()); 92 } 93 94 /// isExtVectorInVTs - Return true if the specified extended value type 95 /// vector contains vAny or a vector value type. 96 bool isExtVectorInVTs(const std::vector<unsigned char> &EVTs) { 97 assert(!EVTs.empty() && "Cannot check for vector in empty ExtVT list!"); 98 return EVTs[0] == MVT::vAny || !(FilterEVTs(EVTs, isVector).empty()); 99 } 100 } // end namespace EEVT. 101 } // end namespace llvm. 102 103 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 104 return LHS->getID() < RHS->getID(); 105 } 106 107 /// Dependent variable map for CodeGenDAGPattern variant generation 108 typedef std::map<std::string, int> DepVarMap; 109 110 /// Const iterator shorthand for DepVarMap 111 typedef DepVarMap::const_iterator DepVarMap_citer; 112 113 namespace { 114 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 115 if (N->isLeaf()) { 116 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 117 DepMap[N->getName()]++; 118 } 119 } else { 120 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 121 FindDepVarsOf(N->getChild(i), DepMap); 122 } 123 } 124 125 //! Find dependent variables within child patterns 126 /*! 127 */ 128 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 129 DepVarMap depcounts; 130 FindDepVarsOf(N, depcounts); 131 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 132 if (i->second > 1) { // std::pair<std::string, int> 133 DepVars.insert(i->first); 134 } 135 } 136 } 137 138 //! Dump the dependent variable set: 139 void DumpDepVars(MultipleUseVarSet &DepVars) { 140 if (DepVars.empty()) { 141 DEBUG(errs() << "<empty set>"); 142 } else { 143 DEBUG(errs() << "[ "); 144 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); 145 i != e; ++i) { 146 DEBUG(errs() << (*i) << " "); 147 } 148 DEBUG(errs() << "]"); 149 } 150 } 151 } 152 153 //===----------------------------------------------------------------------===// 154 // PatternToMatch implementation 155 // 156 157 /// getPredicateCheck - Return a single string containing all of this 158 /// pattern's predicates concatenated with "&&" operators. 159 /// 160 std::string PatternToMatch::getPredicateCheck() const { 161 std::string PredicateCheck; 162 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 163 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 164 Record *Def = Pred->getDef(); 165 if (!Def->isSubClassOf("Predicate")) { 166 #ifndef NDEBUG 167 Def->dump(); 168 #endif 169 assert(0 && "Unknown predicate type!"); 170 } 171 if (!PredicateCheck.empty()) 172 PredicateCheck += " && "; 173 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 174 } 175 } 176 177 return PredicateCheck; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // SDTypeConstraint implementation 182 // 183 184 SDTypeConstraint::SDTypeConstraint(Record *R) { 185 OperandNo = R->getValueAsInt("OperandNum"); 186 187 if (R->isSubClassOf("SDTCisVT")) { 188 ConstraintType = SDTCisVT; 189 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 190 } else if (R->isSubClassOf("SDTCisPtrTy")) { 191 ConstraintType = SDTCisPtrTy; 192 } else if (R->isSubClassOf("SDTCisInt")) { 193 ConstraintType = SDTCisInt; 194 } else if (R->isSubClassOf("SDTCisFP")) { 195 ConstraintType = SDTCisFP; 196 } else if (R->isSubClassOf("SDTCisVec")) { 197 ConstraintType = SDTCisVec; 198 } else if (R->isSubClassOf("SDTCisSameAs")) { 199 ConstraintType = SDTCisSameAs; 200 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 201 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 202 ConstraintType = SDTCisVTSmallerThanOp; 203 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 204 R->getValueAsInt("OtherOperandNum"); 205 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 206 ConstraintType = SDTCisOpSmallerThanOp; 207 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 208 R->getValueAsInt("BigOperandNum"); 209 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 210 ConstraintType = SDTCisEltOfVec; 211 x.SDTCisEltOfVec_Info.OtherOperandNum = 212 R->getValueAsInt("OtherOpNum"); 213 } else { 214 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 215 exit(1); 216 } 217 } 218 219 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 220 /// N, which has NumResults results. 221 TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, 222 TreePatternNode *N, 223 unsigned NumResults) const { 224 assert(NumResults <= 1 && 225 "We only work with nodes with zero or one result so far!"); 226 227 if (OpNo >= (NumResults + N->getNumChildren())) { 228 errs() << "Invalid operand number " << OpNo << " "; 229 N->dump(); 230 errs() << '\n'; 231 exit(1); 232 } 233 234 if (OpNo < NumResults) 235 return N; // FIXME: need value # 236 else 237 return N->getChild(OpNo-NumResults); 238 } 239 240 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 241 /// constraint to the nodes operands. This returns true if it makes a 242 /// change, false otherwise. If a type contradiction is found, throw an 243 /// exception. 244 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 245 const SDNodeInfo &NodeInfo, 246 TreePattern &TP) const { 247 unsigned NumResults = NodeInfo.getNumResults(); 248 assert(NumResults <= 1 && 249 "We only work with nodes with zero or one result so far!"); 250 251 // Check that the number of operands is sane. Negative operands -> varargs. 252 if (NodeInfo.getNumOperands() >= 0) { 253 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) 254 TP.error(N->getOperator()->getName() + " node requires exactly " + 255 itostr(NodeInfo.getNumOperands()) + " operands!"); 256 } 257 258 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo(); 259 260 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); 261 262 switch (ConstraintType) { 263 default: assert(0 && "Unknown constraint type!"); 264 case SDTCisVT: 265 // Operand must be a particular type. 266 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); 267 case SDTCisPtrTy: { 268 // Operand must be same as target pointer type. 269 return NodeToApply->UpdateNodeType(MVT::iPTR, TP); 270 } 271 case SDTCisInt: { 272 // If there is only one integer type supported, this must be it. 273 std::vector<MVT::SimpleValueType> IntVTs = 274 FilterVTs(CGT.getLegalValueTypes(), isInteger); 275 276 // If we found exactly one supported integer type, apply it. 277 if (IntVTs.size() == 1) 278 return NodeToApply->UpdateNodeType(IntVTs[0], TP); 279 return NodeToApply->UpdateNodeType(MVT::iAny, TP); 280 } 281 case SDTCisFP: { 282 // If there is only one FP type supported, this must be it. 283 std::vector<MVT::SimpleValueType> FPVTs = 284 FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint); 285 286 // If we found exactly one supported FP type, apply it. 287 if (FPVTs.size() == 1) 288 return NodeToApply->UpdateNodeType(FPVTs[0], TP); 289 return NodeToApply->UpdateNodeType(MVT::fAny, TP); 290 } 291 case SDTCisVec: { 292 // If there is only one vector type supported, this must be it. 293 std::vector<MVT::SimpleValueType> VecVTs = 294 FilterVTs(CGT.getLegalValueTypes(), isVector); 295 296 // If we found exactly one supported vector type, apply it. 297 if (VecVTs.size() == 1) 298 return NodeToApply->UpdateNodeType(VecVTs[0], TP); 299 return NodeToApply->UpdateNodeType(MVT::vAny, TP); 300 } 301 case SDTCisSameAs: { 302 TreePatternNode *OtherNode = 303 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); 304 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | 305 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); 306 } 307 case SDTCisVTSmallerThanOp: { 308 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 309 // have an integer type that is smaller than the VT. 310 if (!NodeToApply->isLeaf() || 311 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 312 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 313 ->isSubClassOf("ValueType")) 314 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 315 MVT::SimpleValueType VT = 316 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 317 if (!isInteger(VT)) 318 TP.error(N->getOperator()->getName() + " VT operand must be integer!"); 319 320 TreePatternNode *OtherNode = 321 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); 322 323 // It must be integer. 324 bool MadeChange = OtherNode->UpdateNodeType(MVT::iAny, TP); 325 326 // This code only handles nodes that have one type set. Assert here so 327 // that we can change this if we ever need to deal with multiple value 328 // types at this point. 329 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); 330 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) 331 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. 332 return MadeChange; 333 } 334 case SDTCisOpSmallerThanOp: { 335 TreePatternNode *BigOperand = 336 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); 337 338 // Both operands must be integer or FP, but we don't care which. 339 bool MadeChange = false; 340 341 // This code does not currently handle nodes which have multiple types, 342 // where some types are integer, and some are fp. Assert that this is not 343 // the case. 344 assert(!(EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) && 345 EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && 346 !(EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()) && 347 EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) && 348 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 349 if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) 350 MadeChange |= BigOperand->UpdateNodeType(MVT::iAny, TP); 351 else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) 352 MadeChange |= BigOperand->UpdateNodeType(MVT::fAny, TP); 353 if (EEVT::isExtIntegerInVTs(BigOperand->getExtTypes())) 354 MadeChange |= NodeToApply->UpdateNodeType(MVT::iAny, TP); 355 else if (EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) 356 MadeChange |= NodeToApply->UpdateNodeType(MVT::fAny, TP); 357 358 std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes(); 359 360 if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) { 361 VTs = FilterVTs(VTs, isInteger); 362 } else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { 363 VTs = FilterVTs(VTs, isFloatingPoint); 364 } else { 365 VTs.clear(); 366 } 367 368 switch (VTs.size()) { 369 default: // Too many VT's to pick from. 370 case 0: break; // No info yet. 371 case 1: 372 // Only one VT of this flavor. Cannot ever satisfy the constraints. 373 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw 374 case 2: 375 // If we have exactly two possible types, the little operand must be the 376 // small one, the big operand should be the big one. Common with 377 // float/double for example. 378 assert(VTs[0] < VTs[1] && "Should be sorted!"); 379 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); 380 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); 381 break; 382 } 383 return MadeChange; 384 } 385 case SDTCisEltOfVec: { 386 TreePatternNode *OtherOperand = 387 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, 388 N, NumResults); 389 if (OtherOperand->hasTypeSet()) { 390 if (!isVector(OtherOperand->getTypeNum(0))) 391 TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); 392 EVT IVT = OtherOperand->getTypeNum(0); 393 IVT = IVT.getVectorElementType(); 394 return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP); 395 } 396 return false; 397 } 398 } 399 return false; 400 } 401 402 //===----------------------------------------------------------------------===// 403 // SDNodeInfo implementation 404 // 405 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 406 EnumName = R->getValueAsString("Opcode"); 407 SDClassName = R->getValueAsString("SDClass"); 408 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 409 NumResults = TypeProfile->getValueAsInt("NumResults"); 410 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 411 412 // Parse the properties. 413 Properties = 0; 414 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 415 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 416 if (PropList[i]->getName() == "SDNPCommutative") { 417 Properties |= 1 << SDNPCommutative; 418 } else if (PropList[i]->getName() == "SDNPAssociative") { 419 Properties |= 1 << SDNPAssociative; 420 } else if (PropList[i]->getName() == "SDNPHasChain") { 421 Properties |= 1 << SDNPHasChain; 422 } else if (PropList[i]->getName() == "SDNPOutFlag") { 423 Properties |= 1 << SDNPOutFlag; 424 } else if (PropList[i]->getName() == "SDNPInFlag") { 425 Properties |= 1 << SDNPInFlag; 426 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 427 Properties |= 1 << SDNPOptInFlag; 428 } else if (PropList[i]->getName() == "SDNPMayStore") { 429 Properties |= 1 << SDNPMayStore; 430 } else if (PropList[i]->getName() == "SDNPMayLoad") { 431 Properties |= 1 << SDNPMayLoad; 432 } else if (PropList[i]->getName() == "SDNPSideEffect") { 433 Properties |= 1 << SDNPSideEffect; 434 } else if (PropList[i]->getName() == "SDNPMemOperand") { 435 Properties |= 1 << SDNPMemOperand; 436 } else { 437 errs() << "Unknown SD Node property '" << PropList[i]->getName() 438 << "' on node '" << R->getName() << "'!\n"; 439 exit(1); 440 } 441 } 442 443 444 // Parse the type constraints. 445 std::vector<Record*> ConstraintList = 446 TypeProfile->getValueAsListOfDefs("Constraints"); 447 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 448 } 449 450 //===----------------------------------------------------------------------===// 451 // TreePatternNode implementation 452 // 453 454 TreePatternNode::~TreePatternNode() { 455 #if 0 // FIXME: implement refcounted tree nodes! 456 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 457 delete getChild(i); 458 #endif 459 } 460 461 /// UpdateNodeType - Set the node type of N to VT if VT contains 462 /// information. If N already contains a conflicting type, then throw an 463 /// exception. This returns true if any information was updated. 464 /// 465 bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, 466 TreePattern &TP) { 467 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); 468 469 if (ExtVTs[0] == EEVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) 470 return false; 471 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { 472 setTypes(ExtVTs); 473 return true; 474 } 475 476 if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) { 477 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny || 478 ExtVTs[0] == MVT::iAny) 479 return false; 480 if (EEVT::isExtIntegerInVTs(ExtVTs)) { 481 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger); 482 if (FVTs.size()) { 483 setTypes(ExtVTs); 484 return true; 485 } 486 } 487 } 488 489 // Merge vAny with iAny/fAny. The latter include vector types so keep them 490 // as the more specific information. 491 if (ExtVTs[0] == MVT::vAny && 492 (getExtTypeNum(0) == MVT::iAny || getExtTypeNum(0) == MVT::fAny)) 493 return false; 494 if (getExtTypeNum(0) == MVT::vAny && 495 (ExtVTs[0] == MVT::iAny || ExtVTs[0] == MVT::fAny)) { 496 setTypes(ExtVTs); 497 return true; 498 } 499 500 if (ExtVTs[0] == MVT::iAny && 501 EEVT::isExtIntegerInVTs(getExtTypes())) { 502 assert(hasTypeSet() && "should be handled above!"); 503 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger); 504 if (getExtTypes() == FVTs) 505 return false; 506 setTypes(FVTs); 507 return true; 508 } 509 if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) && 510 EEVT::isExtIntegerInVTs(getExtTypes())) { 511 //assert(hasTypeSet() && "should be handled above!"); 512 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger); 513 if (getExtTypes() == FVTs) 514 return false; 515 if (FVTs.size()) { 516 setTypes(FVTs); 517 return true; 518 } 519 } 520 if (ExtVTs[0] == MVT::fAny && 521 EEVT::isExtFloatingPointInVTs(getExtTypes())) { 522 assert(hasTypeSet() && "should be handled above!"); 523 std::vector<unsigned char> FVTs = 524 FilterEVTs(getExtTypes(), isFloatingPoint); 525 if (getExtTypes() == FVTs) 526 return false; 527 setTypes(FVTs); 528 return true; 529 } 530 if (ExtVTs[0] == MVT::vAny && 531 EEVT::isExtVectorInVTs(getExtTypes())) { 532 assert(hasTypeSet() && "should be handled above!"); 533 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isVector); 534 if (getExtTypes() == FVTs) 535 return false; 536 setTypes(FVTs); 537 return true; 538 } 539 540 // If we know this is an int, FP, or vector type, and we are told it is a 541 // specific one, take the advice. 542 // 543 // Similarly, we should probably set the type here to the intersection of 544 // {iAny|fAny|vAny} and ExtVTs 545 if ((getExtTypeNum(0) == MVT::iAny && 546 EEVT::isExtIntegerInVTs(ExtVTs)) || 547 (getExtTypeNum(0) == MVT::fAny && 548 EEVT::isExtFloatingPointInVTs(ExtVTs)) || 549 (getExtTypeNum(0) == MVT::vAny && 550 EEVT::isExtVectorInVTs(ExtVTs))) { 551 setTypes(ExtVTs); 552 return true; 553 } 554 if (getExtTypeNum(0) == MVT::iAny && 555 (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) { 556 setTypes(ExtVTs); 557 return true; 558 } 559 560 if (isLeaf()) { 561 dump(); 562 errs() << " "; 563 TP.error("Type inference contradiction found in node!"); 564 } else { 565 TP.error("Type inference contradiction found in node " + 566 getOperator()->getName() + "!"); 567 } 568 return true; // unreachable 569 } 570 571 572 void TreePatternNode::print(raw_ostream &OS) const { 573 if (isLeaf()) { 574 OS << *getLeafValue(); 575 } else { 576 OS << "(" << getOperator()->getName(); 577 } 578 579 // FIXME: At some point we should handle printing all the value types for 580 // nodes that are multiply typed. 581 switch (getExtTypeNum(0)) { 582 case MVT::Other: OS << ":Other"; break; 583 case MVT::iAny: OS << ":iAny"; break; 584 case MVT::fAny : OS << ":fAny"; break; 585 case MVT::vAny: OS << ":vAny"; break; 586 case EEVT::isUnknown: ; /*OS << ":?";*/ break; 587 case MVT::iPTR: OS << ":iPTR"; break; 588 case MVT::iPTRAny: OS << ":iPTRAny"; break; 589 default: { 590 std::string VTName = llvm::getName(getTypeNum(0)); 591 // Strip off EVT:: prefix if present. 592 if (VTName.substr(0,5) == "MVT::") 593 VTName = VTName.substr(5); 594 OS << ":" << VTName; 595 break; 596 } 597 } 598 599 if (!isLeaf()) { 600 if (getNumChildren() != 0) { 601 OS << " "; 602 getChild(0)->print(OS); 603 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 604 OS << ", "; 605 getChild(i)->print(OS); 606 } 607 } 608 OS << ")"; 609 } 610 611 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 612 OS << "<<P:" << PredicateFns[i] << ">>"; 613 if (TransformFn) 614 OS << "<<X:" << TransformFn->getName() << ">>"; 615 if (!getName().empty()) 616 OS << ":$" << getName(); 617 618 } 619 void TreePatternNode::dump() const { 620 print(errs()); 621 } 622 623 /// isIsomorphicTo - Return true if this node is recursively 624 /// isomorphic to the specified node. For this comparison, the node's 625 /// entire state is considered. The assigned name is ignored, since 626 /// nodes with differing names are considered isomorphic. However, if 627 /// the assigned name is present in the dependent variable set, then 628 /// the assigned name is considered significant and the node is 629 /// isomorphic if the names match. 630 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 631 const MultipleUseVarSet &DepVars) const { 632 if (N == this) return true; 633 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 634 getPredicateFns() != N->getPredicateFns() || 635 getTransformFn() != N->getTransformFn()) 636 return false; 637 638 if (isLeaf()) { 639 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 640 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 641 return ((DI->getDef() == NDI->getDef()) 642 && (DepVars.find(getName()) == DepVars.end() 643 || getName() == N->getName())); 644 } 645 } 646 return getLeafValue() == N->getLeafValue(); 647 } 648 649 if (N->getOperator() != getOperator() || 650 N->getNumChildren() != getNumChildren()) return false; 651 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 652 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 653 return false; 654 return true; 655 } 656 657 /// clone - Make a copy of this tree and all of its children. 658 /// 659 TreePatternNode *TreePatternNode::clone() const { 660 TreePatternNode *New; 661 if (isLeaf()) { 662 New = new TreePatternNode(getLeafValue()); 663 } else { 664 std::vector<TreePatternNode*> CChildren; 665 CChildren.reserve(Children.size()); 666 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 667 CChildren.push_back(getChild(i)->clone()); 668 New = new TreePatternNode(getOperator(), CChildren); 669 } 670 New->setName(getName()); 671 New->setTypes(getExtTypes()); 672 New->setPredicateFns(getPredicateFns()); 673 New->setTransformFn(getTransformFn()); 674 return New; 675 } 676 677 /// RemoveAllTypes - Recursively strip all the types of this tree. 678 void TreePatternNode::RemoveAllTypes() { 679 removeTypes(); 680 if (isLeaf()) return; 681 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 682 getChild(i)->RemoveAllTypes(); 683 } 684 685 686 /// SubstituteFormalArguments - Replace the formal arguments in this tree 687 /// with actual values specified by ArgMap. 688 void TreePatternNode:: 689 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 690 if (isLeaf()) return; 691 692 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 693 TreePatternNode *Child = getChild(i); 694 if (Child->isLeaf()) { 695 Init *Val = Child->getLeafValue(); 696 if (dynamic_cast<DefInit*>(Val) && 697 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 698 // We found a use of a formal argument, replace it with its value. 699 TreePatternNode *NewChild = ArgMap[Child->getName()]; 700 assert(NewChild && "Couldn't find formal argument!"); 701 assert((Child->getPredicateFns().empty() || 702 NewChild->getPredicateFns() == Child->getPredicateFns()) && 703 "Non-empty child predicate clobbered!"); 704 setChild(i, NewChild); 705 } 706 } else { 707 getChild(i)->SubstituteFormalArguments(ArgMap); 708 } 709 } 710 } 711 712 713 /// InlinePatternFragments - If this pattern refers to any pattern 714 /// fragments, inline them into place, giving us a pattern without any 715 /// PatFrag references. 716 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 717 if (isLeaf()) return this; // nothing to do. 718 Record *Op = getOperator(); 719 720 if (!Op->isSubClassOf("PatFrag")) { 721 // Just recursively inline children nodes. 722 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 723 TreePatternNode *Child = getChild(i); 724 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 725 726 assert((Child->getPredicateFns().empty() || 727 NewChild->getPredicateFns() == Child->getPredicateFns()) && 728 "Non-empty child predicate clobbered!"); 729 730 setChild(i, NewChild); 731 } 732 return this; 733 } 734 735 // Otherwise, we found a reference to a fragment. First, look up its 736 // TreePattern record. 737 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 738 739 // Verify that we are passing the right number of operands. 740 if (Frag->getNumArgs() != Children.size()) 741 TP.error("'" + Op->getName() + "' fragment requires " + 742 utostr(Frag->getNumArgs()) + " operands!"); 743 744 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 745 746 std::string Code = Op->getValueAsCode("Predicate"); 747 if (!Code.empty()) 748 FragTree->addPredicateFn("Predicate_"+Op->getName()); 749 750 // Resolve formal arguments to their actual value. 751 if (Frag->getNumArgs()) { 752 // Compute the map of formal to actual arguments. 753 std::map<std::string, TreePatternNode*> ArgMap; 754 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 755 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 756 757 FragTree->SubstituteFormalArguments(ArgMap); 758 } 759 760 FragTree->setName(getName()); 761 FragTree->UpdateNodeType(getExtTypes(), TP); 762 763 // Transfer in the old predicates. 764 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 765 FragTree->addPredicateFn(getPredicateFns()[i]); 766 767 // Get a new copy of this fragment to stitch into here. 768 //delete this; // FIXME: implement refcounting! 769 770 // The fragment we inlined could have recursive inlining that is needed. See 771 // if there are any pattern fragments in it and inline them as needed. 772 return FragTree->InlinePatternFragments(TP); 773 } 774 775 /// getImplicitType - Check to see if the specified record has an implicit 776 /// type which should be applied to it. This will infer the type of register 777 /// references from the register file information, for example. 778 /// 779 static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, 780 TreePattern &TP) { 781 // Some common return values 782 std::vector<unsigned char> Unknown(1, EEVT::isUnknown); 783 std::vector<unsigned char> Other(1, MVT::Other); 784 785 // Check to see if this is a register or a register class... 786 if (R->isSubClassOf("RegisterClass")) { 787 if (NotRegisters) 788 return Unknown; 789 const CodeGenRegisterClass &RC = 790 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R); 791 return ConvertVTs(RC.getValueTypes()); 792 } else if (R->isSubClassOf("PatFrag")) { 793 // Pattern fragment types will be resolved when they are inlined. 794 return Unknown; 795 } else if (R->isSubClassOf("Register")) { 796 if (NotRegisters) 797 return Unknown; 798 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 799 return T.getRegisterVTs(R); 800 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 801 // Using a VTSDNode or CondCodeSDNode. 802 return Other; 803 } else if (R->isSubClassOf("ComplexPattern")) { 804 if (NotRegisters) 805 return Unknown; 806 std::vector<unsigned char> 807 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType()); 808 return ComplexPat; 809 } else if (R->isSubClassOf("PointerLikeRegClass")) { 810 Other[0] = MVT::iPTR; 811 return Other; 812 } else if (R->getName() == "node" || R->getName() == "srcvalue" || 813 R->getName() == "zero_reg") { 814 // Placeholder. 815 return Unknown; 816 } 817 818 TP.error("Unknown node flavor used in pattern: " + R->getName()); 819 return Other; 820 } 821 822 823 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 824 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 825 const CodeGenIntrinsic *TreePatternNode:: 826 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 827 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 828 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 829 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 830 return 0; 831 832 unsigned IID = 833 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 834 return &CDP.getIntrinsicInfo(IID); 835 } 836 837 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 838 /// return the ComplexPattern information, otherwise return null. 839 const ComplexPattern * 840 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 841 if (!isLeaf()) return 0; 842 843 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 844 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 845 return &CGP.getComplexPattern(DI->getDef()); 846 return 0; 847 } 848 849 /// NodeHasProperty - Return true if this node has the specified property. 850 bool TreePatternNode::NodeHasProperty(SDNP Property, 851 const CodeGenDAGPatterns &CGP) const { 852 if (isLeaf()) { 853 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 854 return CP->hasProperty(Property); 855 return false; 856 } 857 858 Record *Operator = getOperator(); 859 if (!Operator->isSubClassOf("SDNode")) return false; 860 861 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 862 } 863 864 865 866 867 /// TreeHasProperty - Return true if any node in this tree has the specified 868 /// property. 869 bool TreePatternNode::TreeHasProperty(SDNP Property, 870 const CodeGenDAGPatterns &CGP) const { 871 if (NodeHasProperty(Property, CGP)) 872 return true; 873 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 874 if (getChild(i)->TreeHasProperty(Property, CGP)) 875 return true; 876 return false; 877 } 878 879 /// isCommutativeIntrinsic - Return true if the node corresponds to a 880 /// commutative intrinsic. 881 bool 882 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 883 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 884 return Int->isCommutative; 885 return false; 886 } 887 888 889 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 890 /// this node and its children in the tree. This returns true if it makes a 891 /// change, false otherwise. If a type contradiction is found, throw an 892 /// exception. 893 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 894 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 895 if (isLeaf()) { 896 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 897 // If it's a regclass or something else known, include the type. 898 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); 899 } 900 901 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 902 // Int inits are always integers. :) 903 bool MadeChange = UpdateNodeType(MVT::iAny, TP); 904 905 if (hasTypeSet()) { 906 // At some point, it may make sense for this tree pattern to have 907 // multiple types. Assert here that it does not, so we revisit this 908 // code when appropriate. 909 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); 910 MVT::SimpleValueType VT = getTypeNum(0); 911 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) 912 assert(getTypeNum(i) == VT && "TreePattern has too many types!"); 913 914 VT = getTypeNum(0); 915 if (VT != MVT::iPTR && VT != MVT::iPTRAny) { 916 unsigned Size = EVT(VT).getSizeInBits(); 917 // Make sure that the value is representable for this type. 918 if (Size < 32) { 919 int Val = (II->getValue() << (32-Size)) >> (32-Size); 920 if (Val != II->getValue()) { 921 // If sign-extended doesn't fit, does it fit as unsigned? 922 unsigned ValueMask; 923 unsigned UnsignedVal; 924 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 925 UnsignedVal = unsigned(II->getValue()); 926 927 if ((ValueMask & UnsignedVal) != UnsignedVal) { 928 TP.error("Integer value '" + itostr(II->getValue())+ 929 "' is out of range for type '" + 930 getEnumName(getTypeNum(0)) + "'!"); 931 } 932 } 933 } 934 } 935 } 936 937 return MadeChange; 938 } 939 return false; 940 } 941 942 // special handling for set, which isn't really an SDNode. 943 if (getOperator()->getName() == "set") { 944 assert (getNumChildren() >= 2 && "Missing RHS of a set?"); 945 unsigned NC = getNumChildren(); 946 bool MadeChange = false; 947 for (unsigned i = 0; i < NC-1; ++i) { 948 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 949 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters); 950 951 // Types of operands must match. 952 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(), 953 TP); 954 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(), 955 TP); 956 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 957 } 958 return MadeChange; 959 } else if (getOperator()->getName() == "implicit" || 960 getOperator()->getName() == "parallel") { 961 bool MadeChange = false; 962 for (unsigned i = 0; i < getNumChildren(); ++i) 963 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 964 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 965 return MadeChange; 966 } else if (getOperator()->getName() == "COPY_TO_REGCLASS") { 967 bool MadeChange = false; 968 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 969 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 970 return MadeChange; 971 } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 972 bool MadeChange = false; 973 974 // Apply the result type to the node. 975 unsigned NumRetVTs = Int->IS.RetVTs.size(); 976 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 977 978 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 979 MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP); 980 981 if (getNumChildren() != NumParamVTs + NumRetVTs) 982 TP.error("Intrinsic '" + Int->Name + "' expects " + 983 utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " + 984 utostr(getNumChildren() - 1) + " operands!"); 985 986 // Apply type info to the intrinsic ID. 987 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); 988 989 for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) { 990 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs]; 991 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); 992 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 993 } 994 return MadeChange; 995 } else if (getOperator()->isSubClassOf("SDNode")) { 996 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 997 998 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 999 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1000 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1001 // Branch, etc. do not produce results and top-level forms in instr pattern 1002 // must have void types. 1003 if (NI.getNumResults() == 0) 1004 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 1005 1006 return MadeChange; 1007 } else if (getOperator()->isSubClassOf("Instruction")) { 1008 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1009 bool MadeChange = false; 1010 unsigned NumResults = Inst.getNumResults(); 1011 1012 assert(NumResults <= 1 && 1013 "Only supports zero or one result instrs!"); 1014 1015 CodeGenInstruction &InstInfo = 1016 CDP.getTargetInfo().getInstruction(getOperator()->getName()); 1017 // Apply the result type to the node 1018 if (NumResults == 0 || InstInfo.NumDefs == 0) { 1019 MadeChange = UpdateNodeType(MVT::isVoid, TP); 1020 } else { 1021 Record *ResultNode = Inst.getResult(0); 1022 1023 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1024 std::vector<unsigned char> VT; 1025 VT.push_back(MVT::iPTR); 1026 MadeChange = UpdateNodeType(VT, TP); 1027 } else if (ResultNode->getName() == "unknown") { 1028 std::vector<unsigned char> VT; 1029 VT.push_back(EEVT::isUnknown); 1030 MadeChange = UpdateNodeType(VT, TP); 1031 } else { 1032 assert(ResultNode->isSubClassOf("RegisterClass") && 1033 "Operands should be register classes!"); 1034 1035 const CodeGenRegisterClass &RC = 1036 CDP.getTargetInfo().getRegisterClass(ResultNode); 1037 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); 1038 } 1039 } 1040 1041 unsigned ChildNo = 0; 1042 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1043 Record *OperandNode = Inst.getOperand(i); 1044 1045 // If the instruction expects a predicate or optional def operand, we 1046 // codegen this by setting the operand to it's default value if it has a 1047 // non-empty DefaultOps field. 1048 if ((OperandNode->isSubClassOf("PredicateOperand") || 1049 OperandNode->isSubClassOf("OptionalDefOperand")) && 1050 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1051 continue; 1052 1053 // Verify that we didn't run out of provided operands. 1054 if (ChildNo >= getNumChildren()) 1055 TP.error("Instruction '" + getOperator()->getName() + 1056 "' expects more operands than were provided."); 1057 1058 MVT::SimpleValueType VT; 1059 TreePatternNode *Child = getChild(ChildNo++); 1060 if (OperandNode->isSubClassOf("RegisterClass")) { 1061 const CodeGenRegisterClass &RC = 1062 CDP.getTargetInfo().getRegisterClass(OperandNode); 1063 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); 1064 } else if (OperandNode->isSubClassOf("Operand")) { 1065 VT = getValueType(OperandNode->getValueAsDef("Type")); 1066 MadeChange |= Child->UpdateNodeType(VT, TP); 1067 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1068 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); 1069 } else if (OperandNode->getName() == "unknown") { 1070 MadeChange |= Child->UpdateNodeType(EEVT::isUnknown, TP); 1071 } else { 1072 assert(0 && "Unknown operand type!"); 1073 abort(); 1074 } 1075 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1076 } 1077 1078 if (ChildNo != getNumChildren()) 1079 TP.error("Instruction '" + getOperator()->getName() + 1080 "' was provided too many operands!"); 1081 1082 return MadeChange; 1083 } else { 1084 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1085 1086 // Node transforms always take one operand. 1087 if (getNumChildren() != 1) 1088 TP.error("Node transform '" + getOperator()->getName() + 1089 "' requires one operand!"); 1090 1091 // If either the output or input of the xform does not have exact 1092 // type info. We assume they must be the same. Otherwise, it is perfectly 1093 // legal to transform from one type to a completely different type. 1094 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1095 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); 1096 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); 1097 return MadeChange; 1098 } 1099 return false; 1100 } 1101 } 1102 1103 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1104 /// RHS of a commutative operation, not the on LHS. 1105 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1106 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1107 return true; 1108 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1109 return true; 1110 return false; 1111 } 1112 1113 1114 /// canPatternMatch - If it is impossible for this pattern to match on this 1115 /// target, fill in Reason and return false. Otherwise, return true. This is 1116 /// used as a sanity check for .td files (to prevent people from writing stuff 1117 /// that can never possibly work), and to prevent the pattern permuter from 1118 /// generating stuff that is useless. 1119 bool TreePatternNode::canPatternMatch(std::string &Reason, 1120 const CodeGenDAGPatterns &CDP) { 1121 if (isLeaf()) return true; 1122 1123 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1124 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1125 return false; 1126 1127 // If this is an intrinsic, handle cases that would make it not match. For 1128 // example, if an operand is required to be an immediate. 1129 if (getOperator()->isSubClassOf("Intrinsic")) { 1130 // TODO: 1131 return true; 1132 } 1133 1134 // If this node is a commutative operator, check that the LHS isn't an 1135 // immediate. 1136 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1137 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1138 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1139 // Scan all of the operands of the node and make sure that only the last one 1140 // is a constant node, unless the RHS also is. 1141 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1142 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1143 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1144 if (OnlyOnRHSOfCommutative(getChild(i))) { 1145 Reason="Immediate value must be on the RHS of commutative operators!"; 1146 return false; 1147 } 1148 } 1149 } 1150 1151 return true; 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // TreePattern implementation 1156 // 1157 1158 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1159 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1160 isInputPattern = isInput; 1161 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1162 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); 1163 } 1164 1165 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1166 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1167 isInputPattern = isInput; 1168 Trees.push_back(ParseTreePattern(Pat)); 1169 } 1170 1171 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1172 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1173 isInputPattern = isInput; 1174 Trees.push_back(Pat); 1175 } 1176 1177 1178 1179 void TreePattern::error(const std::string &Msg) const { 1180 dump(); 1181 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1182 } 1183 1184 TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { 1185 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1186 if (!OpDef) error("Pattern has unexpected operator type!"); 1187 Record *Operator = OpDef->getDef(); 1188 1189 if (Operator->isSubClassOf("ValueType")) { 1190 // If the operator is a ValueType, then this must be "type cast" of a leaf 1191 // node. 1192 if (Dag->getNumArgs() != 1) 1193 error("Type cast only takes one operand!"); 1194 1195 Init *Arg = Dag->getArg(0); 1196 TreePatternNode *New; 1197 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { 1198 Record *R = DI->getDef(); 1199 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { 1200 Dag->setArg(0, new DagInit(DI, "", 1201 std::vector<std::pair<Init*, std::string> >())); 1202 return ParseTreePattern(Dag); 1203 } 1204 New = new TreePatternNode(DI); 1205 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { 1206 New = ParseTreePattern(DI); 1207 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { 1208 New = new TreePatternNode(II); 1209 if (!Dag->getArgName(0).empty()) 1210 error("Constant int argument should not have a name!"); 1211 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { 1212 // Turn this into an IntInit. 1213 Init *II = BI->convertInitializerTo(new IntRecTy()); 1214 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1215 error("Bits value must be constants!"); 1216 1217 New = new TreePatternNode(dynamic_cast<IntInit*>(II)); 1218 if (!Dag->getArgName(0).empty()) 1219 error("Constant int argument should not have a name!"); 1220 } else { 1221 Arg->dump(); 1222 error("Unknown leaf value for tree pattern!"); 1223 return 0; 1224 } 1225 1226 // Apply the type cast. 1227 New->UpdateNodeType(getValueType(Operator), *this); 1228 if (New->getNumChildren() == 0) 1229 New->setName(Dag->getArgName(0)); 1230 return New; 1231 } 1232 1233 // Verify that this is something that makes sense for an operator. 1234 if (!Operator->isSubClassOf("PatFrag") && 1235 !Operator->isSubClassOf("SDNode") && 1236 !Operator->isSubClassOf("Instruction") && 1237 !Operator->isSubClassOf("SDNodeXForm") && 1238 !Operator->isSubClassOf("Intrinsic") && 1239 Operator->getName() != "set" && 1240 Operator->getName() != "implicit" && 1241 Operator->getName() != "parallel") 1242 error("Unrecognized node '" + Operator->getName() + "'!"); 1243 1244 // Check to see if this is something that is illegal in an input pattern. 1245 if (isInputPattern && (Operator->isSubClassOf("Instruction") || 1246 Operator->isSubClassOf("SDNodeXForm"))) 1247 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1248 1249 std::vector<TreePatternNode*> Children; 1250 1251 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { 1252 Init *Arg = Dag->getArg(i); 1253 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { 1254 Children.push_back(ParseTreePattern(DI)); 1255 if (Children.back()->getName().empty()) 1256 Children.back()->setName(Dag->getArgName(i)); 1257 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { 1258 Record *R = DefI->getDef(); 1259 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1260 // TreePatternNode if its own. 1261 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { 1262 Dag->setArg(i, new DagInit(DefI, "", 1263 std::vector<std::pair<Init*, std::string> >())); 1264 --i; // Revisit this node... 1265 } else { 1266 TreePatternNode *Node = new TreePatternNode(DefI); 1267 Node->setName(Dag->getArgName(i)); 1268 Children.push_back(Node); 1269 1270 // Input argument? 1271 if (R->getName() == "node") { 1272 if (Dag->getArgName(i).empty()) 1273 error("'node' argument requires a name to match with operand list"); 1274 Args.push_back(Dag->getArgName(i)); 1275 } 1276 } 1277 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { 1278 TreePatternNode *Node = new TreePatternNode(II); 1279 if (!Dag->getArgName(i).empty()) 1280 error("Constant int argument should not have a name!"); 1281 Children.push_back(Node); 1282 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { 1283 // Turn this into an IntInit. 1284 Init *II = BI->convertInitializerTo(new IntRecTy()); 1285 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1286 error("Bits value must be constants!"); 1287 1288 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); 1289 if (!Dag->getArgName(i).empty()) 1290 error("Constant int argument should not have a name!"); 1291 Children.push_back(Node); 1292 } else { 1293 errs() << '"'; 1294 Arg->dump(); 1295 errs() << "\": "; 1296 error("Unknown leaf value for tree pattern!"); 1297 } 1298 } 1299 1300 // If the operator is an intrinsic, then this is just syntactic sugar for for 1301 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1302 // convert the intrinsic name to a number. 1303 if (Operator->isSubClassOf("Intrinsic")) { 1304 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1305 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1306 1307 // If this intrinsic returns void, it must have side-effects and thus a 1308 // chain. 1309 if (Int.IS.RetVTs[0] == MVT::isVoid) { 1310 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1311 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { 1312 // Has side-effects, requires chain. 1313 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1314 } else { 1315 // Otherwise, no chain. 1316 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1317 } 1318 1319 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); 1320 Children.insert(Children.begin(), IIDNode); 1321 } 1322 1323 TreePatternNode *Result = new TreePatternNode(Operator, Children); 1324 Result->setName(Dag->getName()); 1325 return Result; 1326 } 1327 1328 /// InferAllTypes - Infer/propagate as many types throughout the expression 1329 /// patterns as possible. Return true if all types are inferred, false 1330 /// otherwise. Throw an exception if a type contradiction is found. 1331 bool TreePattern::InferAllTypes() { 1332 bool MadeChange = true; 1333 while (MadeChange) { 1334 MadeChange = false; 1335 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1336 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1337 } 1338 1339 bool HasUnresolvedTypes = false; 1340 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1341 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1342 return !HasUnresolvedTypes; 1343 } 1344 1345 void TreePattern::print(raw_ostream &OS) const { 1346 OS << getRecord()->getName(); 1347 if (!Args.empty()) { 1348 OS << "(" << Args[0]; 1349 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1350 OS << ", " << Args[i]; 1351 OS << ")"; 1352 } 1353 OS << ": "; 1354 1355 if (Trees.size() > 1) 1356 OS << "[\n"; 1357 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1358 OS << "\t"; 1359 Trees[i]->print(OS); 1360 OS << "\n"; 1361 } 1362 1363 if (Trees.size() > 1) 1364 OS << "]\n"; 1365 } 1366 1367 void TreePattern::dump() const { print(errs()); } 1368 1369 //===----------------------------------------------------------------------===// 1370 // CodeGenDAGPatterns implementation 1371 // 1372 1373 // FIXME: REMOVE OSTREAM ARGUMENT 1374 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { 1375 Intrinsics = LoadIntrinsics(Records, false); 1376 TgtIntrinsics = LoadIntrinsics(Records, true); 1377 ParseNodeInfo(); 1378 ParseNodeTransforms(); 1379 ParseComplexPatterns(); 1380 ParsePatternFragments(); 1381 ParseDefaultOperands(); 1382 ParseInstructions(); 1383 ParsePatterns(); 1384 1385 // Generate variants. For example, commutative patterns can match 1386 // multiple ways. Add them to PatternsToMatch as well. 1387 GenerateVariants(); 1388 1389 // Infer instruction flags. For example, we can detect loads, 1390 // stores, and side effects in many cases by examining an 1391 // instruction's pattern. 1392 InferInstructionFlags(); 1393 } 1394 1395 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1396 for (pf_iterator I = PatternFragments.begin(), 1397 E = PatternFragments.end(); I != E; ++I) 1398 delete I->second; 1399 } 1400 1401 1402 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1403 Record *N = Records.getDef(Name); 1404 if (!N || !N->isSubClassOf("SDNode")) { 1405 errs() << "Error getting SDNode '" << Name << "'!\n"; 1406 exit(1); 1407 } 1408 return N; 1409 } 1410 1411 // Parse all of the SDNode definitions for the target, populating SDNodes. 1412 void CodeGenDAGPatterns::ParseNodeInfo() { 1413 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1414 while (!Nodes.empty()) { 1415 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1416 Nodes.pop_back(); 1417 } 1418 1419 // Get the builtin intrinsic nodes. 1420 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1421 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1422 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1423 } 1424 1425 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1426 /// map, and emit them to the file as functions. 1427 void CodeGenDAGPatterns::ParseNodeTransforms() { 1428 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1429 while (!Xforms.empty()) { 1430 Record *XFormNode = Xforms.back(); 1431 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1432 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1433 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1434 1435 Xforms.pop_back(); 1436 } 1437 } 1438 1439 void CodeGenDAGPatterns::ParseComplexPatterns() { 1440 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 1441 while (!AMs.empty()) { 1442 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 1443 AMs.pop_back(); 1444 } 1445 } 1446 1447 1448 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 1449 /// file, building up the PatternFragments map. After we've collected them all, 1450 /// inline fragments together as necessary, so that there are no references left 1451 /// inside a pattern fragment to a pattern fragment. 1452 /// 1453 void CodeGenDAGPatterns::ParsePatternFragments() { 1454 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 1455 1456 // First step, parse all of the fragments. 1457 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1458 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 1459 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 1460 PatternFragments[Fragments[i]] = P; 1461 1462 // Validate the argument list, converting it to set, to discard duplicates. 1463 std::vector<std::string> &Args = P->getArgList(); 1464 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 1465 1466 if (OperandsSet.count("")) 1467 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 1468 1469 // Parse the operands list. 1470 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 1471 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 1472 // Special cases: ops == outs == ins. Different names are used to 1473 // improve readability. 1474 if (!OpsOp || 1475 (OpsOp->getDef()->getName() != "ops" && 1476 OpsOp->getDef()->getName() != "outs" && 1477 OpsOp->getDef()->getName() != "ins")) 1478 P->error("Operands list should start with '(ops ... '!"); 1479 1480 // Copy over the arguments. 1481 Args.clear(); 1482 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 1483 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 1484 static_cast<DefInit*>(OpsList->getArg(j))-> 1485 getDef()->getName() != "node") 1486 P->error("Operands list should all be 'node' values."); 1487 if (OpsList->getArgName(j).empty()) 1488 P->error("Operands list should have names for each operand!"); 1489 if (!OperandsSet.count(OpsList->getArgName(j))) 1490 P->error("'" + OpsList->getArgName(j) + 1491 "' does not occur in pattern or was multiply specified!"); 1492 OperandsSet.erase(OpsList->getArgName(j)); 1493 Args.push_back(OpsList->getArgName(j)); 1494 } 1495 1496 if (!OperandsSet.empty()) 1497 P->error("Operands list does not contain an entry for operand '" + 1498 *OperandsSet.begin() + "'!"); 1499 1500 // If there is a code init for this fragment, keep track of the fact that 1501 // this fragment uses it. 1502 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 1503 if (!Code.empty()) 1504 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 1505 1506 // If there is a node transformation corresponding to this, keep track of 1507 // it. 1508 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 1509 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 1510 P->getOnlyTree()->setTransformFn(Transform); 1511 } 1512 1513 // Now that we've parsed all of the tree fragments, do a closure on them so 1514 // that there are not references to PatFrags left inside of them. 1515 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1516 TreePattern *ThePat = PatternFragments[Fragments[i]]; 1517 ThePat->InlinePatternFragments(); 1518 1519 // Infer as many types as possible. Don't worry about it if we don't infer 1520 // all of them, some may depend on the inputs of the pattern. 1521 try { 1522 ThePat->InferAllTypes(); 1523 } catch (...) { 1524 // If this pattern fragment is not supported by this target (no types can 1525 // satisfy its constraints), just ignore it. If the bogus pattern is 1526 // actually used by instructions, the type consistency error will be 1527 // reported there. 1528 } 1529 1530 // If debugging, print out the pattern fragment result. 1531 DEBUG(ThePat->dump()); 1532 } 1533 } 1534 1535 void CodeGenDAGPatterns::ParseDefaultOperands() { 1536 std::vector<Record*> DefaultOps[2]; 1537 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 1538 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 1539 1540 // Find some SDNode. 1541 assert(!SDNodes.empty() && "No SDNodes parsed?"); 1542 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 1543 1544 for (unsigned iter = 0; iter != 2; ++iter) { 1545 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 1546 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 1547 1548 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 1549 // SomeSDnode so that we can parse this. 1550 std::vector<std::pair<Init*, std::string> > Ops; 1551 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 1552 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 1553 DefaultInfo->getArgName(op))); 1554 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 1555 1556 // Create a TreePattern to parse this. 1557 TreePattern P(DefaultOps[iter][i], DI, false, *this); 1558 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 1559 1560 // Copy the operands over into a DAGDefaultOperand. 1561 DAGDefaultOperand DefaultOpInfo; 1562 1563 TreePatternNode *T = P.getTree(0); 1564 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 1565 TreePatternNode *TPN = T->getChild(op); 1566 while (TPN->ApplyTypeConstraints(P, false)) 1567 /* Resolve all types */; 1568 1569 if (TPN->ContainsUnresolvedType()) { 1570 if (iter == 0) 1571 throw "Value #" + utostr(i) + " of PredicateOperand '" + 1572 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; 1573 else 1574 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 1575 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; 1576 } 1577 DefaultOpInfo.DefaultOps.push_back(TPN); 1578 } 1579 1580 // Insert it into the DefaultOperands map so we can find it later. 1581 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 1582 } 1583 } 1584 } 1585 1586 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 1587 /// instruction input. Return true if this is a real use. 1588 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 1589 std::map<std::string, TreePatternNode*> &InstInputs, 1590 std::vector<Record*> &InstImpInputs) { 1591 // No name -> not interesting. 1592 if (Pat->getName().empty()) { 1593 if (Pat->isLeaf()) { 1594 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 1595 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1596 I->error("Input " + DI->getDef()->getName() + " must be named!"); 1597 else if (DI && DI->getDef()->isSubClassOf("Register")) 1598 InstImpInputs.push_back(DI->getDef()); 1599 } 1600 return false; 1601 } 1602 1603 Record *Rec; 1604 if (Pat->isLeaf()) { 1605 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 1606 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 1607 Rec = DI->getDef(); 1608 } else { 1609 Rec = Pat->getOperator(); 1610 } 1611 1612 // SRCVALUE nodes are ignored. 1613 if (Rec->getName() == "srcvalue") 1614 return false; 1615 1616 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 1617 if (!Slot) { 1618 Slot = Pat; 1619 } else { 1620 Record *SlotRec; 1621 if (Slot->isLeaf()) { 1622 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 1623 } else { 1624 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 1625 SlotRec = Slot->getOperator(); 1626 } 1627 1628 // Ensure that the inputs agree if we've already seen this input. 1629 if (Rec != SlotRec) 1630 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 1631 if (Slot->getExtTypes() != Pat->getExtTypes()) 1632 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 1633 } 1634 return true; 1635 } 1636 1637 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 1638 /// part of "I", the instruction), computing the set of inputs and outputs of 1639 /// the pattern. Report errors if we see anything naughty. 1640 void CodeGenDAGPatterns:: 1641 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 1642 std::map<std::string, TreePatternNode*> &InstInputs, 1643 std::map<std::string, TreePatternNode*>&InstResults, 1644 std::vector<Record*> &InstImpInputs, 1645 std::vector<Record*> &InstImpResults) { 1646 if (Pat->isLeaf()) { 1647 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); 1648 if (!isUse && Pat->getTransformFn()) 1649 I->error("Cannot specify a transform function for a non-input value!"); 1650 return; 1651 } 1652 1653 if (Pat->getOperator()->getName() == "implicit") { 1654 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 1655 TreePatternNode *Dest = Pat->getChild(i); 1656 if (!Dest->isLeaf()) 1657 I->error("implicitly defined value should be a register!"); 1658 1659 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 1660 if (!Val || !Val->getDef()->isSubClassOf("Register")) 1661 I->error("implicitly defined value should be a register!"); 1662 InstImpResults.push_back(Val->getDef()); 1663 } 1664 return; 1665 } 1666 1667 if (Pat->getOperator()->getName() != "set") { 1668 // If this is not a set, verify that the children nodes are not void typed, 1669 // and recurse. 1670 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 1671 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) 1672 I->error("Cannot have void nodes inside of patterns!"); 1673 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 1674 InstImpInputs, InstImpResults); 1675 } 1676 1677 // If this is a non-leaf node with no children, treat it basically as if 1678 // it were a leaf. This handles nodes like (imm). 1679 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); 1680 1681 if (!isUse && Pat->getTransformFn()) 1682 I->error("Cannot specify a transform function for a non-input value!"); 1683 return; 1684 } 1685 1686 // Otherwise, this is a set, validate and collect instruction results. 1687 if (Pat->getNumChildren() == 0) 1688 I->error("set requires operands!"); 1689 1690 if (Pat->getTransformFn()) 1691 I->error("Cannot specify a transform function on a set node!"); 1692 1693 // Check the set destinations. 1694 unsigned NumDests = Pat->getNumChildren()-1; 1695 for (unsigned i = 0; i != NumDests; ++i) { 1696 TreePatternNode *Dest = Pat->getChild(i); 1697 if (!Dest->isLeaf()) 1698 I->error("set destination should be a register!"); 1699 1700 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 1701 if (!Val) 1702 I->error("set destination should be a register!"); 1703 1704 if (Val->getDef()->isSubClassOf("RegisterClass") || 1705 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 1706 if (Dest->getName().empty()) 1707 I->error("set destination must have a name!"); 1708 if (InstResults.count(Dest->getName())) 1709 I->error("cannot set '" + Dest->getName() +"' multiple times"); 1710 InstResults[Dest->getName()] = Dest; 1711 } else if (Val->getDef()->isSubClassOf("Register")) { 1712 InstImpResults.push_back(Val->getDef()); 1713 } else { 1714 I->error("set destination should be a register!"); 1715 } 1716 } 1717 1718 // Verify and collect info from the computation. 1719 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 1720 InstInputs, InstResults, 1721 InstImpInputs, InstImpResults); 1722 } 1723 1724 //===----------------------------------------------------------------------===// 1725 // Instruction Analysis 1726 //===----------------------------------------------------------------------===// 1727 1728 class InstAnalyzer { 1729 const CodeGenDAGPatterns &CDP; 1730 bool &mayStore; 1731 bool &mayLoad; 1732 bool &HasSideEffects; 1733 public: 1734 InstAnalyzer(const CodeGenDAGPatterns &cdp, 1735 bool &maystore, bool &mayload, bool &hse) 1736 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){ 1737 } 1738 1739 /// Analyze - Analyze the specified instruction, returning true if the 1740 /// instruction had a pattern. 1741 bool Analyze(Record *InstRecord) { 1742 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 1743 if (Pattern == 0) { 1744 HasSideEffects = 1; 1745 return false; // No pattern. 1746 } 1747 1748 // FIXME: Assume only the first tree is the pattern. The others are clobber 1749 // nodes. 1750 AnalyzeNode(Pattern->getTree(0)); 1751 return true; 1752 } 1753 1754 private: 1755 void AnalyzeNode(const TreePatternNode *N) { 1756 if (N->isLeaf()) { 1757 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1758 Record *LeafRec = DI->getDef(); 1759 // Handle ComplexPattern leaves. 1760 if (LeafRec->isSubClassOf("ComplexPattern")) { 1761 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 1762 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 1763 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 1764 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 1765 } 1766 } 1767 return; 1768 } 1769 1770 // Analyze children. 1771 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1772 AnalyzeNode(N->getChild(i)); 1773 1774 // Ignore set nodes, which are not SDNodes. 1775 if (N->getOperator()->getName() == "set") 1776 return; 1777 1778 // Get information about the SDNode for the operator. 1779 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 1780 1781 // Notice properties of the node. 1782 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 1783 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 1784 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 1785 1786 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 1787 // If this is an intrinsic, analyze it. 1788 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 1789 mayLoad = true;// These may load memory. 1790 1791 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) 1792 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 1793 1794 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem) 1795 // WriteMem intrinsics can have other strange effects. 1796 HasSideEffects = true; 1797 } 1798 } 1799 1800 }; 1801 1802 static void InferFromPattern(const CodeGenInstruction &Inst, 1803 bool &MayStore, bool &MayLoad, 1804 bool &HasSideEffects, 1805 const CodeGenDAGPatterns &CDP) { 1806 MayStore = MayLoad = HasSideEffects = false; 1807 1808 bool HadPattern = 1809 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef); 1810 1811 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 1812 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 1813 // If we decided that this is a store from the pattern, then the .td file 1814 // entry is redundant. 1815 if (MayStore) 1816 fprintf(stderr, 1817 "Warning: mayStore flag explicitly set on instruction '%s'" 1818 " but flag already inferred from pattern.\n", 1819 Inst.TheDef->getName().c_str()); 1820 MayStore = true; 1821 } 1822 1823 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 1824 // If we decided that this is a load from the pattern, then the .td file 1825 // entry is redundant. 1826 if (MayLoad) 1827 fprintf(stderr, 1828 "Warning: mayLoad flag explicitly set on instruction '%s'" 1829 " but flag already inferred from pattern.\n", 1830 Inst.TheDef->getName().c_str()); 1831 MayLoad = true; 1832 } 1833 1834 if (Inst.neverHasSideEffects) { 1835 if (HadPattern) 1836 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 1837 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 1838 HasSideEffects = false; 1839 } 1840 1841 if (Inst.hasSideEffects) { 1842 if (HasSideEffects) 1843 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 1844 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 1845 HasSideEffects = true; 1846 } 1847 } 1848 1849 /// ParseInstructions - Parse all of the instructions, inlining and resolving 1850 /// any fragments involved. This populates the Instructions list with fully 1851 /// resolved instructions. 1852 void CodeGenDAGPatterns::ParseInstructions() { 1853 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 1854 1855 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 1856 ListInit *LI = 0; 1857 1858 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 1859 LI = Instrs[i]->getValueAsListInit("Pattern"); 1860 1861 // If there is no pattern, only collect minimal information about the 1862 // instruction for its operand list. We have to assume that there is one 1863 // result, as we have no detailed info. 1864 if (!LI || LI->getSize() == 0) { 1865 std::vector<Record*> Results; 1866 std::vector<Record*> Operands; 1867 1868 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); 1869 1870 if (InstInfo.OperandList.size() != 0) { 1871 if (InstInfo.NumDefs == 0) { 1872 // These produce no results 1873 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) 1874 Operands.push_back(InstInfo.OperandList[j].Rec); 1875 } else { 1876 // Assume the first operand is the result. 1877 Results.push_back(InstInfo.OperandList[0].Rec); 1878 1879 // The rest are inputs. 1880 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) 1881 Operands.push_back(InstInfo.OperandList[j].Rec); 1882 } 1883 } 1884 1885 // Create and insert the instruction. 1886 std::vector<Record*> ImpResults; 1887 std::vector<Record*> ImpOperands; 1888 Instructions.insert(std::make_pair(Instrs[i], 1889 DAGInstruction(0, Results, Operands, ImpResults, 1890 ImpOperands))); 1891 continue; // no pattern. 1892 } 1893 1894 // Parse the instruction. 1895 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 1896 // Inline pattern fragments into it. 1897 I->InlinePatternFragments(); 1898 1899 // Infer as many types as possible. If we cannot infer all of them, we can 1900 // never do anything with this instruction pattern: report it to the user. 1901 if (!I->InferAllTypes()) 1902 I->error("Could not infer all types in pattern!"); 1903 1904 // InstInputs - Keep track of all of the inputs of the instruction, along 1905 // with the record they are declared as. 1906 std::map<std::string, TreePatternNode*> InstInputs; 1907 1908 // InstResults - Keep track of all the virtual registers that are 'set' 1909 // in the instruction, including what reg class they are. 1910 std::map<std::string, TreePatternNode*> InstResults; 1911 1912 std::vector<Record*> InstImpInputs; 1913 std::vector<Record*> InstImpResults; 1914 1915 // Verify that the top-level forms in the instruction are of void type, and 1916 // fill in the InstResults map. 1917 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 1918 TreePatternNode *Pat = I->getTree(j); 1919 if (Pat->getExtTypeNum(0) != MVT::isVoid) 1920 I->error("Top-level forms in instruction pattern should have" 1921 " void types"); 1922 1923 // Find inputs and outputs, and verify the structure of the uses/defs. 1924 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 1925 InstImpInputs, InstImpResults); 1926 } 1927 1928 // Now that we have inputs and outputs of the pattern, inspect the operands 1929 // list for the instruction. This determines the order that operands are 1930 // added to the machine instruction the node corresponds to. 1931 unsigned NumResults = InstResults.size(); 1932 1933 // Parse the operands list from the (ops) list, validating it. 1934 assert(I->getArgList().empty() && "Args list should still be empty here!"); 1935 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); 1936 1937 // Check that all of the results occur first in the list. 1938 std::vector<Record*> Results; 1939 TreePatternNode *Res0Node = NULL; 1940 for (unsigned i = 0; i != NumResults; ++i) { 1941 if (i == CGI.OperandList.size()) 1942 I->error("'" + InstResults.begin()->first + 1943 "' set but does not appear in operand list!"); 1944 const std::string &OpName = CGI.OperandList[i].Name; 1945 1946 // Check that it exists in InstResults. 1947 TreePatternNode *RNode = InstResults[OpName]; 1948 if (RNode == 0) 1949 I->error("Operand $" + OpName + " does not exist in operand list!"); 1950 1951 if (i == 0) 1952 Res0Node = RNode; 1953 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 1954 if (R == 0) 1955 I->error("Operand $" + OpName + " should be a set destination: all " 1956 "outputs must occur before inputs in operand list!"); 1957 1958 if (CGI.OperandList[i].Rec != R) 1959 I->error("Operand $" + OpName + " class mismatch!"); 1960 1961 // Remember the return type. 1962 Results.push_back(CGI.OperandList[i].Rec); 1963 1964 // Okay, this one checks out. 1965 InstResults.erase(OpName); 1966 } 1967 1968 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 1969 // the copy while we're checking the inputs. 1970 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 1971 1972 std::vector<TreePatternNode*> ResultNodeOperands; 1973 std::vector<Record*> Operands; 1974 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { 1975 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; 1976 const std::string &OpName = Op.Name; 1977 if (OpName.empty()) 1978 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 1979 1980 if (!InstInputsCheck.count(OpName)) { 1981 // If this is an predicate operand or optional def operand with an 1982 // DefaultOps set filled in, we can ignore this. When we codegen it, 1983 // we will do so as always executed. 1984 if (Op.Rec->isSubClassOf("PredicateOperand") || 1985 Op.Rec->isSubClassOf("OptionalDefOperand")) { 1986 // Does it have a non-empty DefaultOps field? If so, ignore this 1987 // operand. 1988 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 1989 continue; 1990 } 1991 I->error("Operand $" + OpName + 1992 " does not appear in the instruction pattern"); 1993 } 1994 TreePatternNode *InVal = InstInputsCheck[OpName]; 1995 InstInputsCheck.erase(OpName); // It occurred, remove from map. 1996 1997 if (InVal->isLeaf() && 1998 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 1999 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2000 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2001 I->error("Operand $" + OpName + "'s register class disagrees" 2002 " between the operand and pattern"); 2003 } 2004 Operands.push_back(Op.Rec); 2005 2006 // Construct the result for the dest-pattern operand list. 2007 TreePatternNode *OpNode = InVal->clone(); 2008 2009 // No predicate is useful on the result. 2010 OpNode->clearPredicateFns(); 2011 2012 // Promote the xform function to be an explicit node if set. 2013 if (Record *Xform = OpNode->getTransformFn()) { 2014 OpNode->setTransformFn(0); 2015 std::vector<TreePatternNode*> Children; 2016 Children.push_back(OpNode); 2017 OpNode = new TreePatternNode(Xform, Children); 2018 } 2019 2020 ResultNodeOperands.push_back(OpNode); 2021 } 2022 2023 if (!InstInputsCheck.empty()) 2024 I->error("Input operand $" + InstInputsCheck.begin()->first + 2025 " occurs in pattern but not in operands list!"); 2026 2027 TreePatternNode *ResultPattern = 2028 new TreePatternNode(I->getRecord(), ResultNodeOperands); 2029 // Copy fully inferred output node type to instruction result pattern. 2030 if (NumResults > 0) 2031 ResultPattern->setTypes(Res0Node->getExtTypes()); 2032 2033 // Create and insert the instruction. 2034 // FIXME: InstImpResults and InstImpInputs should not be part of 2035 // DAGInstruction. 2036 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); 2037 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2038 2039 // Use a temporary tree pattern to infer all types and make sure that the 2040 // constructed result is correct. This depends on the instruction already 2041 // being inserted into the Instructions map. 2042 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2043 Temp.InferAllTypes(); 2044 2045 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2046 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2047 2048 DEBUG(I->dump()); 2049 } 2050 2051 // If we can, convert the instructions to be patterns that are matched! 2052 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2053 Instructions.begin(), 2054 E = Instructions.end(); II != E; ++II) { 2055 DAGInstruction &TheInst = II->second; 2056 const TreePattern *I = TheInst.getPattern(); 2057 if (I == 0) continue; // No pattern. 2058 2059 // FIXME: Assume only the first tree is the pattern. The others are clobber 2060 // nodes. 2061 TreePatternNode *Pattern = I->getTree(0); 2062 TreePatternNode *SrcPattern; 2063 if (Pattern->getOperator()->getName() == "set") { 2064 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2065 } else{ 2066 // Not a set (store or something?) 2067 SrcPattern = Pattern; 2068 } 2069 2070 std::string Reason; 2071 if (!SrcPattern->canPatternMatch(Reason, *this)) 2072 I->error("Instruction can never match: " + Reason); 2073 2074 Record *Instr = II->first; 2075 TreePatternNode *DstPattern = TheInst.getResultPattern(); 2076 PatternsToMatch. 2077 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), 2078 SrcPattern, DstPattern, TheInst.getImpResults(), 2079 Instr->getValueAsInt("AddedComplexity"))); 2080 } 2081 } 2082 2083 2084 void CodeGenDAGPatterns::InferInstructionFlags() { 2085 std::map<std::string, CodeGenInstruction> &InstrDescs = 2086 Target.getInstructions(); 2087 for (std::map<std::string, CodeGenInstruction>::iterator 2088 II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) { 2089 CodeGenInstruction &InstInfo = II->second; 2090 // Determine properties of the instruction from its pattern. 2091 bool MayStore, MayLoad, HasSideEffects; 2092 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this); 2093 InstInfo.mayStore = MayStore; 2094 InstInfo.mayLoad = MayLoad; 2095 InstInfo.hasSideEffects = HasSideEffects; 2096 } 2097 } 2098 2099 void CodeGenDAGPatterns::ParsePatterns() { 2100 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2101 2102 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2103 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); 2104 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator()); 2105 Record *Operator = OpDef->getDef(); 2106 TreePattern *Pattern; 2107 if (Operator->getName() != "parallel") 2108 Pattern = new TreePattern(Patterns[i], Tree, true, *this); 2109 else { 2110 std::vector<Init*> Values; 2111 RecTy *ListTy = 0; 2112 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) { 2113 Values.push_back(Tree->getArg(j)); 2114 TypedInit *TArg = dynamic_cast<TypedInit*>(Tree->getArg(j)); 2115 if (TArg == 0) { 2116 errs() << "In dag: " << Tree->getAsString(); 2117 errs() << " -- Untyped argument in pattern\n"; 2118 assert(0 && "Untyped argument in pattern"); 2119 } 2120 if (ListTy != 0) { 2121 ListTy = resolveTypes(ListTy, TArg->getType()); 2122 if (ListTy == 0) { 2123 errs() << "In dag: " << Tree->getAsString(); 2124 errs() << " -- Incompatible types in pattern arguments\n"; 2125 assert(0 && "Incompatible types in pattern arguments"); 2126 } 2127 } 2128 else { 2129 ListTy = TArg->getType(); 2130 } 2131 } 2132 ListInit *LI = new ListInit(Values, new ListRecTy(ListTy)); 2133 Pattern = new TreePattern(Patterns[i], LI, true, *this); 2134 } 2135 2136 // Inline pattern fragments into it. 2137 Pattern->InlinePatternFragments(); 2138 2139 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); 2140 if (LI->getSize() == 0) continue; // no pattern. 2141 2142 // Parse the instruction. 2143 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); 2144 2145 // Inline pattern fragments into it. 2146 Result->InlinePatternFragments(); 2147 2148 if (Result->getNumTrees() != 1) 2149 Result->error("Cannot handle instructions producing instructions " 2150 "with temporaries yet!"); 2151 2152 bool IterateInference; 2153 bool InferredAllPatternTypes, InferredAllResultTypes; 2154 do { 2155 // Infer as many types as possible. If we cannot infer all of them, we 2156 // can never do anything with this pattern: report it to the user. 2157 InferredAllPatternTypes = Pattern->InferAllTypes(); 2158 2159 // Infer as many types as possible. If we cannot infer all of them, we 2160 // can never do anything with this pattern: report it to the user. 2161 InferredAllResultTypes = Result->InferAllTypes(); 2162 2163 // Apply the type of the result to the source pattern. This helps us 2164 // resolve cases where the input type is known to be a pointer type (which 2165 // is considered resolved), but the result knows it needs to be 32- or 2166 // 64-bits. Infer the other way for good measure. 2167 IterateInference = Pattern->getTree(0)-> 2168 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result); 2169 IterateInference |= Result->getTree(0)-> 2170 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result); 2171 } while (IterateInference); 2172 2173 // Verify that we inferred enough types that we can do something with the 2174 // pattern and result. If these fire the user has to add type casts. 2175 if (!InferredAllPatternTypes) 2176 Pattern->error("Could not infer all types in pattern!"); 2177 if (!InferredAllResultTypes) 2178 Result->error("Could not infer all types in pattern result!"); 2179 2180 // Validate that the input pattern is correct. 2181 std::map<std::string, TreePatternNode*> InstInputs; 2182 std::map<std::string, TreePatternNode*> InstResults; 2183 std::vector<Record*> InstImpInputs; 2184 std::vector<Record*> InstImpResults; 2185 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2186 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2187 InstInputs, InstResults, 2188 InstImpInputs, InstImpResults); 2189 2190 // Promote the xform function to be an explicit node if set. 2191 TreePatternNode *DstPattern = Result->getOnlyTree(); 2192 std::vector<TreePatternNode*> ResultNodeOperands; 2193 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2194 TreePatternNode *OpNode = DstPattern->getChild(ii); 2195 if (Record *Xform = OpNode->getTransformFn()) { 2196 OpNode->setTransformFn(0); 2197 std::vector<TreePatternNode*> Children; 2198 Children.push_back(OpNode); 2199 OpNode = new TreePatternNode(Xform, Children); 2200 } 2201 ResultNodeOperands.push_back(OpNode); 2202 } 2203 DstPattern = Result->getOnlyTree(); 2204 if (!DstPattern->isLeaf()) 2205 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2206 ResultNodeOperands); 2207 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); 2208 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2209 Temp.InferAllTypes(); 2210 2211 std::string Reason; 2212 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this)) 2213 Pattern->error("Pattern can never match: " + Reason); 2214 2215 PatternsToMatch. 2216 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), 2217 Pattern->getTree(0), 2218 Temp.getOnlyTree(), InstImpResults, 2219 Patterns[i]->getValueAsInt("AddedComplexity"))); 2220 } 2221 } 2222 2223 /// CombineChildVariants - Given a bunch of permutations of each child of the 2224 /// 'operator' node, put them together in all possible ways. 2225 static void CombineChildVariants(TreePatternNode *Orig, 2226 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2227 std::vector<TreePatternNode*> &OutVariants, 2228 CodeGenDAGPatterns &CDP, 2229 const MultipleUseVarSet &DepVars) { 2230 // Make sure that each operand has at least one variant to choose from. 2231 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2232 if (ChildVariants[i].empty()) 2233 return; 2234 2235 // The end result is an all-pairs construction of the resultant pattern. 2236 std::vector<unsigned> Idxs; 2237 Idxs.resize(ChildVariants.size()); 2238 bool NotDone; 2239 do { 2240 #ifndef NDEBUG 2241 if (DebugFlag && !Idxs.empty()) { 2242 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2243 for (unsigned i = 0; i < Idxs.size(); ++i) { 2244 errs() << Idxs[i] << " "; 2245 } 2246 errs() << "]\n"; 2247 } 2248 #endif 2249 // Create the variant and add it to the output list. 2250 std::vector<TreePatternNode*> NewChildren; 2251 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2252 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2253 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); 2254 2255 // Copy over properties. 2256 R->setName(Orig->getName()); 2257 R->setPredicateFns(Orig->getPredicateFns()); 2258 R->setTransformFn(Orig->getTransformFn()); 2259 R->setTypes(Orig->getExtTypes()); 2260 2261 // If this pattern cannot match, do not include it as a variant. 2262 std::string ErrString; 2263 if (!R->canPatternMatch(ErrString, CDP)) { 2264 delete R; 2265 } else { 2266 bool AlreadyExists = false; 2267 2268 // Scan to see if this pattern has already been emitted. We can get 2269 // duplication due to things like commuting: 2270 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2271 // which are the same pattern. Ignore the dups. 2272 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2273 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2274 AlreadyExists = true; 2275 break; 2276 } 2277 2278 if (AlreadyExists) 2279 delete R; 2280 else 2281 OutVariants.push_back(R); 2282 } 2283 2284 // Increment indices to the next permutation by incrementing the 2285 // indicies from last index backward, e.g., generate the sequence 2286 // [0, 0], [0, 1], [1, 0], [1, 1]. 2287 int IdxsIdx; 2288 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2289 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2290 Idxs[IdxsIdx] = 0; 2291 else 2292 break; 2293 } 2294 NotDone = (IdxsIdx >= 0); 2295 } while (NotDone); 2296 } 2297 2298 /// CombineChildVariants - A helper function for binary operators. 2299 /// 2300 static void CombineChildVariants(TreePatternNode *Orig, 2301 const std::vector<TreePatternNode*> &LHS, 2302 const std::vector<TreePatternNode*> &RHS, 2303 std::vector<TreePatternNode*> &OutVariants, 2304 CodeGenDAGPatterns &CDP, 2305 const MultipleUseVarSet &DepVars) { 2306 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2307 ChildVariants.push_back(LHS); 2308 ChildVariants.push_back(RHS); 2309 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2310 } 2311 2312 2313 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2314 std::vector<TreePatternNode *> &Children) { 2315 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 2316 Record *Operator = N->getOperator(); 2317 2318 // Only permit raw nodes. 2319 if (!N->getName().empty() || !N->getPredicateFns().empty() || 2320 N->getTransformFn()) { 2321 Children.push_back(N); 2322 return; 2323 } 2324 2325 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 2326 Children.push_back(N->getChild(0)); 2327 else 2328 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 2329 2330 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 2331 Children.push_back(N->getChild(1)); 2332 else 2333 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 2334 } 2335 2336 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 2337 /// the (potentially recursive) pattern by using algebraic laws. 2338 /// 2339 static void GenerateVariantsOf(TreePatternNode *N, 2340 std::vector<TreePatternNode*> &OutVariants, 2341 CodeGenDAGPatterns &CDP, 2342 const MultipleUseVarSet &DepVars) { 2343 // We cannot permute leaves. 2344 if (N->isLeaf()) { 2345 OutVariants.push_back(N); 2346 return; 2347 } 2348 2349 // Look up interesting info about the node. 2350 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 2351 2352 // If this node is associative, re-associate. 2353 if (NodeInfo.hasProperty(SDNPAssociative)) { 2354 // Re-associate by pulling together all of the linked operators 2355 std::vector<TreePatternNode*> MaximalChildren; 2356 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 2357 2358 // Only handle child sizes of 3. Otherwise we'll end up trying too many 2359 // permutations. 2360 if (MaximalChildren.size() == 3) { 2361 // Find the variants of all of our maximal children. 2362 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 2363 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 2364 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 2365 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 2366 2367 // There are only two ways we can permute the tree: 2368 // (A op B) op C and A op (B op C) 2369 // Within these forms, we can also permute A/B/C. 2370 2371 // Generate legal pair permutations of A/B/C. 2372 std::vector<TreePatternNode*> ABVariants; 2373 std::vector<TreePatternNode*> BAVariants; 2374 std::vector<TreePatternNode*> ACVariants; 2375 std::vector<TreePatternNode*> CAVariants; 2376 std::vector<TreePatternNode*> BCVariants; 2377 std::vector<TreePatternNode*> CBVariants; 2378 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 2379 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 2380 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 2381 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 2382 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 2383 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 2384 2385 // Combine those into the result: (x op x) op x 2386 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 2387 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 2388 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 2389 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 2390 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 2391 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 2392 2393 // Combine those into the result: x op (x op x) 2394 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 2395 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 2396 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 2397 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 2398 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 2399 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 2400 return; 2401 } 2402 } 2403 2404 // Compute permutations of all children. 2405 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2406 ChildVariants.resize(N->getNumChildren()); 2407 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2408 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 2409 2410 // Build all permutations based on how the children were formed. 2411 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 2412 2413 // If this node is commutative, consider the commuted order. 2414 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 2415 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2416 assert((N->getNumChildren()==2 || isCommIntrinsic) && 2417 "Commutative but doesn't have 2 children!"); 2418 // Don't count children which are actually register references. 2419 unsigned NC = 0; 2420 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2421 TreePatternNode *Child = N->getChild(i); 2422 if (Child->isLeaf()) 2423 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 2424 Record *RR = DI->getDef(); 2425 if (RR->isSubClassOf("Register")) 2426 continue; 2427 } 2428 NC++; 2429 } 2430 // Consider the commuted order. 2431 if (isCommIntrinsic) { 2432 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 2433 // operands are the commutative operands, and there might be more operands 2434 // after those. 2435 assert(NC >= 3 && 2436 "Commutative intrinsic should have at least 3 childrean!"); 2437 std::vector<std::vector<TreePatternNode*> > Variants; 2438 Variants.push_back(ChildVariants[0]); // Intrinsic id. 2439 Variants.push_back(ChildVariants[2]); 2440 Variants.push_back(ChildVariants[1]); 2441 for (unsigned i = 3; i != NC; ++i) 2442 Variants.push_back(ChildVariants[i]); 2443 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 2444 } else if (NC == 2) 2445 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 2446 OutVariants, CDP, DepVars); 2447 } 2448 } 2449 2450 2451 // GenerateVariants - Generate variants. For example, commutative patterns can 2452 // match multiple ways. Add them to PatternsToMatch as well. 2453 void CodeGenDAGPatterns::GenerateVariants() { 2454 DEBUG(errs() << "Generating instruction variants.\n"); 2455 2456 // Loop over all of the patterns we've collected, checking to see if we can 2457 // generate variants of the instruction, through the exploitation of 2458 // identities. This permits the target to provide aggressive matching without 2459 // the .td file having to contain tons of variants of instructions. 2460 // 2461 // Note that this loop adds new patterns to the PatternsToMatch list, but we 2462 // intentionally do not reconsider these. Any variants of added patterns have 2463 // already been added. 2464 // 2465 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 2466 MultipleUseVarSet DepVars; 2467 std::vector<TreePatternNode*> Variants; 2468 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 2469 DEBUG(errs() << "Dependent/multiply used variables: "); 2470 DEBUG(DumpDepVars(DepVars)); 2471 DEBUG(errs() << "\n"); 2472 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); 2473 2474 assert(!Variants.empty() && "Must create at least original variant!"); 2475 Variants.erase(Variants.begin()); // Remove the original pattern. 2476 2477 if (Variants.empty()) // No variants for this pattern. 2478 continue; 2479 2480 DEBUG(errs() << "FOUND VARIANTS OF: "; 2481 PatternsToMatch[i].getSrcPattern()->dump(); 2482 errs() << "\n"); 2483 2484 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 2485 TreePatternNode *Variant = Variants[v]; 2486 2487 DEBUG(errs() << " VAR#" << v << ": "; 2488 Variant->dump(); 2489 errs() << "\n"); 2490 2491 // Scan to see if an instruction or explicit pattern already matches this. 2492 bool AlreadyExists = false; 2493 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 2494 // Skip if the top level predicates do not match. 2495 if (PatternsToMatch[i].getPredicates() != 2496 PatternsToMatch[p].getPredicates()) 2497 continue; 2498 // Check to see if this variant already exists. 2499 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { 2500 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 2501 AlreadyExists = true; 2502 break; 2503 } 2504 } 2505 // If we already have it, ignore the variant. 2506 if (AlreadyExists) continue; 2507 2508 // Otherwise, add it to the list of patterns we have. 2509 PatternsToMatch. 2510 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), 2511 Variant, PatternsToMatch[i].getDstPattern(), 2512 PatternsToMatch[i].getDstRegs(), 2513 PatternsToMatch[i].getAddedComplexity())); 2514 } 2515 2516 DEBUG(errs() << "\n"); 2517 } 2518 } 2519 2520