1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/Debug.h" 19 #include <set> 20 #include <algorithm> 21 #include <iostream> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // Helpers for working with extended types. 26 27 /// FilterVTs - Filter a list of VT's according to a predicate. 28 /// 29 template<typename T> 30 static std::vector<MVT::SimpleValueType> 31 FilterVTs(const std::vector<MVT::SimpleValueType> &InVTs, T Filter) { 32 std::vector<MVT::SimpleValueType> Result; 33 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 34 if (Filter(InVTs[i])) 35 Result.push_back(InVTs[i]); 36 return Result; 37 } 38 39 template<typename T> 40 static std::vector<unsigned char> 41 FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { 42 std::vector<unsigned char> Result; 43 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 44 if (Filter((MVT::SimpleValueType)InVTs[i])) 45 Result.push_back(InVTs[i]); 46 return Result; 47 } 48 49 static std::vector<unsigned char> 50 ConvertVTs(const std::vector<MVT::SimpleValueType> &InVTs) { 51 std::vector<unsigned char> Result; 52 for (unsigned i = 0, e = InVTs.size(); i != e; ++i) 53 Result.push_back(InVTs[i]); 54 return Result; 55 } 56 57 static inline bool isInteger(MVT::SimpleValueType VT) { 58 return EVT(VT).isInteger(); 59 } 60 61 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 62 return EVT(VT).isFloatingPoint(); 63 } 64 65 static inline bool isVector(MVT::SimpleValueType VT) { 66 return EVT(VT).isVector(); 67 } 68 69 static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, 70 const std::vector<unsigned char> &RHS) { 71 if (LHS.size() > RHS.size()) return false; 72 for (unsigned i = 0, e = LHS.size(); i != e; ++i) 73 if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) 74 return false; 75 return true; 76 } 77 78 namespace llvm { 79 namespace EEVT { 80 /// isExtIntegerInVTs - Return true if the specified extended value type vector 81 /// contains iAny or an integer value type. 82 bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { 83 assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); 84 return EVTs[0] == MVT::iAny || !(FilterEVTs(EVTs, isInteger).empty()); 85 } 86 87 /// isExtFloatingPointInVTs - Return true if the specified extended value type 88 /// vector contains fAny or a FP value type. 89 bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { 90 assert(!EVTs.empty() && "Cannot check for FP in empty ExtVT list!"); 91 return EVTs[0] == MVT::fAny || !(FilterEVTs(EVTs, isFloatingPoint).empty()); 92 } 93 94 /// isExtVectorInVTs - Return true if the specified extended value type 95 /// vector contains vAny or a vector value type. 96 bool isExtVectorInVTs(const std::vector<unsigned char> &EVTs) { 97 assert(!EVTs.empty() && "Cannot check for vector in empty ExtVT list!"); 98 return EVTs[0] == MVT::vAny || !(FilterEVTs(EVTs, isVector).empty()); 99 } 100 } // end namespace EEVT. 101 } // end namespace llvm. 102 103 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 104 return LHS->getID() < RHS->getID(); 105 } 106 107 /// Dependent variable map for CodeGenDAGPattern variant generation 108 typedef std::map<std::string, int> DepVarMap; 109 110 /// Const iterator shorthand for DepVarMap 111 typedef DepVarMap::const_iterator DepVarMap_citer; 112 113 namespace { 114 void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 115 if (N->isLeaf()) { 116 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) { 117 DepMap[N->getName()]++; 118 } 119 } else { 120 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 121 FindDepVarsOf(N->getChild(i), DepMap); 122 } 123 } 124 125 //! Find dependent variables within child patterns 126 /*! 127 */ 128 void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 129 DepVarMap depcounts; 130 FindDepVarsOf(N, depcounts); 131 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 132 if (i->second > 1) { // std::pair<std::string, int> 133 DepVars.insert(i->first); 134 } 135 } 136 } 137 138 //! Dump the dependent variable set: 139 void DumpDepVars(MultipleUseVarSet &DepVars) { 140 if (DepVars.empty()) { 141 DEBUG(errs() << "<empty set>"); 142 } else { 143 DEBUG(errs() << "[ "); 144 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), e = DepVars.end(); 145 i != e; ++i) { 146 DEBUG(errs() << (*i) << " "); 147 } 148 DEBUG(errs() << "]"); 149 } 150 } 151 } 152 153 //===----------------------------------------------------------------------===// 154 // PatternToMatch implementation 155 // 156 157 /// getPredicateCheck - Return a single string containing all of this 158 /// pattern's predicates concatenated with "&&" operators. 159 /// 160 std::string PatternToMatch::getPredicateCheck() const { 161 std::string PredicateCheck; 162 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 163 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 164 Record *Def = Pred->getDef(); 165 if (!Def->isSubClassOf("Predicate")) { 166 #ifndef NDEBUG 167 Def->dump(); 168 #endif 169 assert(0 && "Unknown predicate type!"); 170 } 171 if (!PredicateCheck.empty()) 172 PredicateCheck += " && "; 173 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 174 } 175 } 176 177 return PredicateCheck; 178 } 179 180 //===----------------------------------------------------------------------===// 181 // SDTypeConstraint implementation 182 // 183 184 SDTypeConstraint::SDTypeConstraint(Record *R) { 185 OperandNo = R->getValueAsInt("OperandNum"); 186 187 if (R->isSubClassOf("SDTCisVT")) { 188 ConstraintType = SDTCisVT; 189 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 190 } else if (R->isSubClassOf("SDTCisPtrTy")) { 191 ConstraintType = SDTCisPtrTy; 192 } else if (R->isSubClassOf("SDTCisInt")) { 193 ConstraintType = SDTCisInt; 194 } else if (R->isSubClassOf("SDTCisFP")) { 195 ConstraintType = SDTCisFP; 196 } else if (R->isSubClassOf("SDTCisVec")) { 197 ConstraintType = SDTCisVec; 198 } else if (R->isSubClassOf("SDTCisSameAs")) { 199 ConstraintType = SDTCisSameAs; 200 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 201 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 202 ConstraintType = SDTCisVTSmallerThanOp; 203 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 204 R->getValueAsInt("OtherOperandNum"); 205 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 206 ConstraintType = SDTCisOpSmallerThanOp; 207 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 208 R->getValueAsInt("BigOperandNum"); 209 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 210 ConstraintType = SDTCisEltOfVec; 211 x.SDTCisEltOfVec_Info.OtherOperandNum = 212 R->getValueAsInt("OtherOpNum"); 213 } else { 214 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 215 exit(1); 216 } 217 } 218 219 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 220 /// N, which has NumResults results. 221 TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, 222 TreePatternNode *N, 223 unsigned NumResults) const { 224 assert(NumResults <= 1 && 225 "We only work with nodes with zero or one result so far!"); 226 227 if (OpNo >= (NumResults + N->getNumChildren())) { 228 errs() << "Invalid operand number " << OpNo << " "; 229 N->dump(); 230 errs() << '\n'; 231 exit(1); 232 } 233 234 if (OpNo < NumResults) 235 return N; // FIXME: need value # 236 else 237 return N->getChild(OpNo-NumResults); 238 } 239 240 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 241 /// constraint to the nodes operands. This returns true if it makes a 242 /// change, false otherwise. If a type contradiction is found, throw an 243 /// exception. 244 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 245 const SDNodeInfo &NodeInfo, 246 TreePattern &TP) const { 247 unsigned NumResults = NodeInfo.getNumResults(); 248 assert(NumResults <= 1 && 249 "We only work with nodes with zero or one result so far!"); 250 251 // Check that the number of operands is sane. Negative operands -> varargs. 252 if (NodeInfo.getNumOperands() >= 0) { 253 if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) 254 TP.error(N->getOperator()->getName() + " node requires exactly " + 255 itostr(NodeInfo.getNumOperands()) + " operands!"); 256 } 257 258 const CodeGenTarget &CGT = TP.getDAGPatterns().getTargetInfo(); 259 260 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); 261 262 switch (ConstraintType) { 263 default: assert(0 && "Unknown constraint type!"); 264 case SDTCisVT: 265 // Operand must be a particular type. 266 return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); 267 case SDTCisPtrTy: { 268 // Operand must be same as target pointer type. 269 return NodeToApply->UpdateNodeType(MVT::iPTR, TP); 270 } 271 case SDTCisInt: { 272 // If there is only one integer type supported, this must be it. 273 std::vector<MVT::SimpleValueType> IntVTs = 274 FilterVTs(CGT.getLegalValueTypes(), isInteger); 275 276 // If we found exactly one supported integer type, apply it. 277 if (IntVTs.size() == 1) 278 return NodeToApply->UpdateNodeType(IntVTs[0], TP); 279 return NodeToApply->UpdateNodeType(MVT::iAny, TP); 280 } 281 case SDTCisFP: { 282 // If there is only one FP type supported, this must be it. 283 std::vector<MVT::SimpleValueType> FPVTs = 284 FilterVTs(CGT.getLegalValueTypes(), isFloatingPoint); 285 286 // If we found exactly one supported FP type, apply it. 287 if (FPVTs.size() == 1) 288 return NodeToApply->UpdateNodeType(FPVTs[0], TP); 289 return NodeToApply->UpdateNodeType(MVT::fAny, TP); 290 } 291 case SDTCisVec: { 292 // If there is only one vector type supported, this must be it. 293 std::vector<MVT::SimpleValueType> VecVTs = 294 FilterVTs(CGT.getLegalValueTypes(), isVector); 295 296 // If we found exactly one supported vector type, apply it. 297 if (VecVTs.size() == 1) 298 return NodeToApply->UpdateNodeType(VecVTs[0], TP); 299 return NodeToApply->UpdateNodeType(MVT::vAny, TP); 300 } 301 case SDTCisSameAs: { 302 TreePatternNode *OtherNode = 303 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); 304 return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | 305 OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); 306 } 307 case SDTCisVTSmallerThanOp: { 308 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 309 // have an integer type that is smaller than the VT. 310 if (!NodeToApply->isLeaf() || 311 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 312 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 313 ->isSubClassOf("ValueType")) 314 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 315 MVT::SimpleValueType VT = 316 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 317 if (!isInteger(VT)) 318 TP.error(N->getOperator()->getName() + " VT operand must be integer!"); 319 320 TreePatternNode *OtherNode = 321 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); 322 323 // It must be integer. 324 bool MadeChange = OtherNode->UpdateNodeType(MVT::iAny, TP); 325 326 // This code only handles nodes that have one type set. Assert here so 327 // that we can change this if we ever need to deal with multiple value 328 // types at this point. 329 assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); 330 if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) 331 OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error. 332 return MadeChange; 333 } 334 case SDTCisOpSmallerThanOp: { 335 TreePatternNode *BigOperand = 336 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); 337 338 // Both operands must be integer or FP, but we don't care which. 339 bool MadeChange = false; 340 341 // This code does not currently handle nodes which have multiple types, 342 // where some types are integer, and some are fp. Assert that this is not 343 // the case. 344 assert(!(EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes()) && 345 EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && 346 !(EEVT::isExtIntegerInVTs(BigOperand->getExtTypes()) && 347 EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) && 348 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 349 if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) 350 MadeChange |= BigOperand->UpdateNodeType(MVT::iAny, TP); 351 else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) 352 MadeChange |= BigOperand->UpdateNodeType(MVT::fAny, TP); 353 if (EEVT::isExtIntegerInVTs(BigOperand->getExtTypes())) 354 MadeChange |= NodeToApply->UpdateNodeType(MVT::iAny, TP); 355 else if (EEVT::isExtFloatingPointInVTs(BigOperand->getExtTypes())) 356 MadeChange |= NodeToApply->UpdateNodeType(MVT::fAny, TP); 357 358 std::vector<MVT::SimpleValueType> VTs = CGT.getLegalValueTypes(); 359 360 if (EEVT::isExtIntegerInVTs(NodeToApply->getExtTypes())) { 361 VTs = FilterVTs(VTs, isInteger); 362 } else if (EEVT::isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { 363 VTs = FilterVTs(VTs, isFloatingPoint); 364 } else { 365 VTs.clear(); 366 } 367 368 switch (VTs.size()) { 369 default: // Too many VT's to pick from. 370 case 0: break; // No info yet. 371 case 1: 372 // Only one VT of this flavor. Cannot ever satisfy the constraints. 373 return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw 374 case 2: 375 // If we have exactly two possible types, the little operand must be the 376 // small one, the big operand should be the big one. Common with 377 // float/double for example. 378 assert(VTs[0] < VTs[1] && "Should be sorted!"); 379 MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); 380 MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); 381 break; 382 } 383 return MadeChange; 384 } 385 case SDTCisEltOfVec: { 386 TreePatternNode *OtherOperand = 387 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, 388 N, NumResults); 389 if (OtherOperand->hasTypeSet()) { 390 if (!isVector(OtherOperand->getTypeNum(0))) 391 TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); 392 EVT IVT = OtherOperand->getTypeNum(0); 393 IVT = IVT.getVectorElementType(); 394 return NodeToApply->UpdateNodeType(IVT.getSimpleVT().SimpleTy, TP); 395 } 396 return false; 397 } 398 } 399 return false; 400 } 401 402 //===----------------------------------------------------------------------===// 403 // SDNodeInfo implementation 404 // 405 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 406 EnumName = R->getValueAsString("Opcode"); 407 SDClassName = R->getValueAsString("SDClass"); 408 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 409 NumResults = TypeProfile->getValueAsInt("NumResults"); 410 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 411 412 // Parse the properties. 413 Properties = 0; 414 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 415 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 416 if (PropList[i]->getName() == "SDNPCommutative") { 417 Properties |= 1 << SDNPCommutative; 418 } else if (PropList[i]->getName() == "SDNPAssociative") { 419 Properties |= 1 << SDNPAssociative; 420 } else if (PropList[i]->getName() == "SDNPHasChain") { 421 Properties |= 1 << SDNPHasChain; 422 } else if (PropList[i]->getName() == "SDNPOutFlag") { 423 Properties |= 1 << SDNPOutFlag; 424 } else if (PropList[i]->getName() == "SDNPInFlag") { 425 Properties |= 1 << SDNPInFlag; 426 } else if (PropList[i]->getName() == "SDNPOptInFlag") { 427 Properties |= 1 << SDNPOptInFlag; 428 } else if (PropList[i]->getName() == "SDNPMayStore") { 429 Properties |= 1 << SDNPMayStore; 430 } else if (PropList[i]->getName() == "SDNPMayLoad") { 431 Properties |= 1 << SDNPMayLoad; 432 } else if (PropList[i]->getName() == "SDNPSideEffect") { 433 Properties |= 1 << SDNPSideEffect; 434 } else if (PropList[i]->getName() == "SDNPMemOperand") { 435 Properties |= 1 << SDNPMemOperand; 436 } else { 437 errs() << "Unknown SD Node property '" << PropList[i]->getName() 438 << "' on node '" << R->getName() << "'!\n"; 439 exit(1); 440 } 441 } 442 443 444 // Parse the type constraints. 445 std::vector<Record*> ConstraintList = 446 TypeProfile->getValueAsListOfDefs("Constraints"); 447 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 448 } 449 450 //===----------------------------------------------------------------------===// 451 // TreePatternNode implementation 452 // 453 454 TreePatternNode::~TreePatternNode() { 455 #if 0 // FIXME: implement refcounted tree nodes! 456 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 457 delete getChild(i); 458 #endif 459 } 460 461 /// UpdateNodeType - Set the node type of N to VT if VT contains 462 /// information. If N already contains a conflicting type, then throw an 463 /// exception. This returns true if any information was updated. 464 /// 465 bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, 466 TreePattern &TP) { 467 assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); 468 469 if (ExtVTs[0] == EEVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) 470 return false; 471 if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { 472 setTypes(ExtVTs); 473 return true; 474 } 475 476 if (getExtTypeNum(0) == MVT::iPTR || getExtTypeNum(0) == MVT::iPTRAny) { 477 if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny || 478 ExtVTs[0] == MVT::iAny) 479 return false; 480 if (EEVT::isExtIntegerInVTs(ExtVTs)) { 481 std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, isInteger); 482 if (FVTs.size()) { 483 setTypes(ExtVTs); 484 return true; 485 } 486 } 487 } 488 489 // Merge vAny with iAny/fAny. The latter include vector types so keep them 490 // as the more specific information. 491 if (ExtVTs[0] == MVT::vAny && 492 (getExtTypeNum(0) == MVT::iAny || getExtTypeNum(0) == MVT::fAny)) 493 return false; 494 if (getExtTypeNum(0) == MVT::vAny && 495 (ExtVTs[0] == MVT::iAny || ExtVTs[0] == MVT::fAny)) { 496 setTypes(ExtVTs); 497 return true; 498 } 499 500 if (ExtVTs[0] == MVT::iAny && 501 EEVT::isExtIntegerInVTs(getExtTypes())) { 502 assert(hasTypeSet() && "should be handled above!"); 503 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger); 504 if (getExtTypes() == FVTs) 505 return false; 506 setTypes(FVTs); 507 return true; 508 } 509 if ((ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny) && 510 EEVT::isExtIntegerInVTs(getExtTypes())) { 511 //assert(hasTypeSet() && "should be handled above!"); 512 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isInteger); 513 if (getExtTypes() == FVTs) 514 return false; 515 if (FVTs.size()) { 516 setTypes(FVTs); 517 return true; 518 } 519 } 520 if (ExtVTs[0] == MVT::fAny && 521 EEVT::isExtFloatingPointInVTs(getExtTypes())) { 522 assert(hasTypeSet() && "should be handled above!"); 523 std::vector<unsigned char> FVTs = 524 FilterEVTs(getExtTypes(), isFloatingPoint); 525 if (getExtTypes() == FVTs) 526 return false; 527 setTypes(FVTs); 528 return true; 529 } 530 if (ExtVTs[0] == MVT::vAny && 531 EEVT::isExtVectorInVTs(getExtTypes())) { 532 assert(hasTypeSet() && "should be handled above!"); 533 std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), isVector); 534 if (getExtTypes() == FVTs) 535 return false; 536 setTypes(FVTs); 537 return true; 538 } 539 540 // If we know this is an int, FP, or vector type, and we are told it is a 541 // specific one, take the advice. 542 // 543 // Similarly, we should probably set the type here to the intersection of 544 // {iAny|fAny|vAny} and ExtVTs 545 if ((getExtTypeNum(0) == MVT::iAny && 546 EEVT::isExtIntegerInVTs(ExtVTs)) || 547 (getExtTypeNum(0) == MVT::fAny && 548 EEVT::isExtFloatingPointInVTs(ExtVTs)) || 549 (getExtTypeNum(0) == MVT::vAny && 550 EEVT::isExtVectorInVTs(ExtVTs))) { 551 setTypes(ExtVTs); 552 return true; 553 } 554 if (getExtTypeNum(0) == MVT::iAny && 555 (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::iPTRAny)) { 556 setTypes(ExtVTs); 557 return true; 558 } 559 560 if (isLeaf()) { 561 dump(); 562 errs() << " "; 563 TP.error("Type inference contradiction found in node!"); 564 } else { 565 TP.error("Type inference contradiction found in node " + 566 getOperator()->getName() + "!"); 567 } 568 return true; // unreachable 569 } 570 571 572 void TreePatternNode::print(raw_ostream &OS) const { 573 if (isLeaf()) { 574 OS << *getLeafValue(); 575 } else { 576 OS << "(" << getOperator()->getName(); 577 } 578 579 // FIXME: At some point we should handle printing all the value types for 580 // nodes that are multiply typed. 581 switch (getExtTypeNum(0)) { 582 case MVT::Other: OS << ":Other"; break; 583 case MVT::iAny: OS << ":iAny"; break; 584 case MVT::fAny : OS << ":fAny"; break; 585 case MVT::vAny: OS << ":vAny"; break; 586 case EEVT::isUnknown: ; /*OS << ":?";*/ break; 587 case MVT::iPTR: OS << ":iPTR"; break; 588 case MVT::iPTRAny: OS << ":iPTRAny"; break; 589 default: { 590 std::string VTName = llvm::getName(getTypeNum(0)); 591 // Strip off EVT:: prefix if present. 592 if (VTName.substr(0,5) == "MVT::") 593 VTName = VTName.substr(5); 594 OS << ":" << VTName; 595 break; 596 } 597 } 598 599 if (!isLeaf()) { 600 if (getNumChildren() != 0) { 601 OS << " "; 602 getChild(0)->print(OS); 603 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 604 OS << ", "; 605 getChild(i)->print(OS); 606 } 607 } 608 OS << ")"; 609 } 610 611 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 612 OS << "<<P:" << PredicateFns[i] << ">>"; 613 if (TransformFn) 614 OS << "<<X:" << TransformFn->getName() << ">>"; 615 if (!getName().empty()) 616 OS << ":$" << getName(); 617 618 } 619 void TreePatternNode::dump() const { 620 print(errs()); 621 } 622 623 /// isIsomorphicTo - Return true if this node is recursively 624 /// isomorphic to the specified node. For this comparison, the node's 625 /// entire state is considered. The assigned name is ignored, since 626 /// nodes with differing names are considered isomorphic. However, if 627 /// the assigned name is present in the dependent variable set, then 628 /// the assigned name is considered significant and the node is 629 /// isomorphic if the names match. 630 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 631 const MultipleUseVarSet &DepVars) const { 632 if (N == this) return true; 633 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 634 getPredicateFns() != N->getPredicateFns() || 635 getTransformFn() != N->getTransformFn()) 636 return false; 637 638 if (isLeaf()) { 639 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 640 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 641 return ((DI->getDef() == NDI->getDef()) 642 && (DepVars.find(getName()) == DepVars.end() 643 || getName() == N->getName())); 644 } 645 } 646 return getLeafValue() == N->getLeafValue(); 647 } 648 649 if (N->getOperator() != getOperator() || 650 N->getNumChildren() != getNumChildren()) return false; 651 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 652 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 653 return false; 654 return true; 655 } 656 657 /// clone - Make a copy of this tree and all of its children. 658 /// 659 TreePatternNode *TreePatternNode::clone() const { 660 TreePatternNode *New; 661 if (isLeaf()) { 662 New = new TreePatternNode(getLeafValue()); 663 } else { 664 std::vector<TreePatternNode*> CChildren; 665 CChildren.reserve(Children.size()); 666 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 667 CChildren.push_back(getChild(i)->clone()); 668 New = new TreePatternNode(getOperator(), CChildren); 669 } 670 New->setName(getName()); 671 New->setTypes(getExtTypes()); 672 New->setPredicateFns(getPredicateFns()); 673 New->setTransformFn(getTransformFn()); 674 return New; 675 } 676 677 /// SubstituteFormalArguments - Replace the formal arguments in this tree 678 /// with actual values specified by ArgMap. 679 void TreePatternNode:: 680 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 681 if (isLeaf()) return; 682 683 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 684 TreePatternNode *Child = getChild(i); 685 if (Child->isLeaf()) { 686 Init *Val = Child->getLeafValue(); 687 if (dynamic_cast<DefInit*>(Val) && 688 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 689 // We found a use of a formal argument, replace it with its value. 690 TreePatternNode *NewChild = ArgMap[Child->getName()]; 691 assert(NewChild && "Couldn't find formal argument!"); 692 assert((Child->getPredicateFns().empty() || 693 NewChild->getPredicateFns() == Child->getPredicateFns()) && 694 "Non-empty child predicate clobbered!"); 695 setChild(i, NewChild); 696 } 697 } else { 698 getChild(i)->SubstituteFormalArguments(ArgMap); 699 } 700 } 701 } 702 703 704 /// InlinePatternFragments - If this pattern refers to any pattern 705 /// fragments, inline them into place, giving us a pattern without any 706 /// PatFrag references. 707 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 708 if (isLeaf()) return this; // nothing to do. 709 Record *Op = getOperator(); 710 711 if (!Op->isSubClassOf("PatFrag")) { 712 // Just recursively inline children nodes. 713 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 714 TreePatternNode *Child = getChild(i); 715 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 716 717 assert((Child->getPredicateFns().empty() || 718 NewChild->getPredicateFns() == Child->getPredicateFns()) && 719 "Non-empty child predicate clobbered!"); 720 721 setChild(i, NewChild); 722 } 723 return this; 724 } 725 726 // Otherwise, we found a reference to a fragment. First, look up its 727 // TreePattern record. 728 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 729 730 // Verify that we are passing the right number of operands. 731 if (Frag->getNumArgs() != Children.size()) 732 TP.error("'" + Op->getName() + "' fragment requires " + 733 utostr(Frag->getNumArgs()) + " operands!"); 734 735 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 736 737 std::string Code = Op->getValueAsCode("Predicate"); 738 if (!Code.empty()) 739 FragTree->addPredicateFn("Predicate_"+Op->getName()); 740 741 // Resolve formal arguments to their actual value. 742 if (Frag->getNumArgs()) { 743 // Compute the map of formal to actual arguments. 744 std::map<std::string, TreePatternNode*> ArgMap; 745 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 746 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 747 748 FragTree->SubstituteFormalArguments(ArgMap); 749 } 750 751 FragTree->setName(getName()); 752 FragTree->UpdateNodeType(getExtTypes(), TP); 753 754 // Transfer in the old predicates. 755 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 756 FragTree->addPredicateFn(getPredicateFns()[i]); 757 758 // Get a new copy of this fragment to stitch into here. 759 //delete this; // FIXME: implement refcounting! 760 761 // The fragment we inlined could have recursive inlining that is needed. See 762 // if there are any pattern fragments in it and inline them as needed. 763 return FragTree->InlinePatternFragments(TP); 764 } 765 766 /// getImplicitType - Check to see if the specified record has an implicit 767 /// type which should be applied to it. This will infer the type of register 768 /// references from the register file information, for example. 769 /// 770 static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, 771 TreePattern &TP) { 772 // Some common return values 773 std::vector<unsigned char> Unknown(1, EEVT::isUnknown); 774 std::vector<unsigned char> Other(1, MVT::Other); 775 776 // Check to see if this is a register or a register class... 777 if (R->isSubClassOf("RegisterClass")) { 778 if (NotRegisters) 779 return Unknown; 780 const CodeGenRegisterClass &RC = 781 TP.getDAGPatterns().getTargetInfo().getRegisterClass(R); 782 return ConvertVTs(RC.getValueTypes()); 783 } else if (R->isSubClassOf("PatFrag")) { 784 // Pattern fragment types will be resolved when they are inlined. 785 return Unknown; 786 } else if (R->isSubClassOf("Register")) { 787 if (NotRegisters) 788 return Unknown; 789 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 790 return T.getRegisterVTs(R); 791 } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 792 // Using a VTSDNode or CondCodeSDNode. 793 return Other; 794 } else if (R->isSubClassOf("ComplexPattern")) { 795 if (NotRegisters) 796 return Unknown; 797 std::vector<unsigned char> 798 ComplexPat(1, TP.getDAGPatterns().getComplexPattern(R).getValueType()); 799 return ComplexPat; 800 } else if (R->isSubClassOf("PointerLikeRegClass")) { 801 Other[0] = MVT::iPTR; 802 return Other; 803 } else if (R->getName() == "node" || R->getName() == "srcvalue" || 804 R->getName() == "zero_reg") { 805 // Placeholder. 806 return Unknown; 807 } 808 809 TP.error("Unknown node flavor used in pattern: " + R->getName()); 810 return Other; 811 } 812 813 814 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 815 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 816 const CodeGenIntrinsic *TreePatternNode:: 817 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 818 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 819 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 820 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 821 return 0; 822 823 unsigned IID = 824 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 825 return &CDP.getIntrinsicInfo(IID); 826 } 827 828 /// isCommutativeIntrinsic - Return true if the node corresponds to a 829 /// commutative intrinsic. 830 bool 831 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 832 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 833 return Int->isCommutative; 834 return false; 835 } 836 837 838 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 839 /// this node and its children in the tree. This returns true if it makes a 840 /// change, false otherwise. If a type contradiction is found, throw an 841 /// exception. 842 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 843 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 844 if (isLeaf()) { 845 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 846 // If it's a regclass or something else known, include the type. 847 return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); 848 } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 849 // Int inits are always integers. :) 850 bool MadeChange = UpdateNodeType(MVT::iAny, TP); 851 852 if (hasTypeSet()) { 853 // At some point, it may make sense for this tree pattern to have 854 // multiple types. Assert here that it does not, so we revisit this 855 // code when appropriate. 856 assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); 857 MVT::SimpleValueType VT = getTypeNum(0); 858 for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) 859 assert(getTypeNum(i) == VT && "TreePattern has too many types!"); 860 861 VT = getTypeNum(0); 862 if (VT != MVT::iPTR && VT != MVT::iPTRAny) { 863 unsigned Size = EVT(VT).getSizeInBits(); 864 // Make sure that the value is representable for this type. 865 if (Size < 32) { 866 int Val = (II->getValue() << (32-Size)) >> (32-Size); 867 if (Val != II->getValue()) { 868 // If sign-extended doesn't fit, does it fit as unsigned? 869 unsigned ValueMask; 870 unsigned UnsignedVal; 871 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 872 UnsignedVal = unsigned(II->getValue()); 873 874 if ((ValueMask & UnsignedVal) != UnsignedVal) { 875 TP.error("Integer value '" + itostr(II->getValue())+ 876 "' is out of range for type '" + 877 getEnumName(getTypeNum(0)) + "'!"); 878 } 879 } 880 } 881 } 882 } 883 884 return MadeChange; 885 } 886 return false; 887 } 888 889 // special handling for set, which isn't really an SDNode. 890 if (getOperator()->getName() == "set") { 891 assert (getNumChildren() >= 2 && "Missing RHS of a set?"); 892 unsigned NC = getNumChildren(); 893 bool MadeChange = false; 894 for (unsigned i = 0; i < NC-1; ++i) { 895 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 896 MadeChange |= getChild(NC-1)->ApplyTypeConstraints(TP, NotRegisters); 897 898 // Types of operands must match. 899 MadeChange |= getChild(i)->UpdateNodeType(getChild(NC-1)->getExtTypes(), 900 TP); 901 MadeChange |= getChild(NC-1)->UpdateNodeType(getChild(i)->getExtTypes(), 902 TP); 903 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 904 } 905 return MadeChange; 906 } else if (getOperator()->getName() == "implicit" || 907 getOperator()->getName() == "parallel") { 908 bool MadeChange = false; 909 for (unsigned i = 0; i < getNumChildren(); ++i) 910 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 911 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 912 return MadeChange; 913 } else if (getOperator()->getName() == "COPY_TO_REGCLASS") { 914 bool MadeChange = false; 915 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 916 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 917 return MadeChange; 918 } else if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 919 bool MadeChange = false; 920 921 // Apply the result type to the node. 922 unsigned NumRetVTs = Int->IS.RetVTs.size(); 923 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 924 925 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 926 MadeChange |= UpdateNodeType(Int->IS.RetVTs[i], TP); 927 928 if (getNumChildren() != NumParamVTs + NumRetVTs) 929 TP.error("Intrinsic '" + Int->Name + "' expects " + 930 utostr(NumParamVTs + NumRetVTs - 1) + " operands, not " + 931 utostr(getNumChildren() - 1) + " operands!"); 932 933 // Apply type info to the intrinsic ID. 934 MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); 935 936 for (unsigned i = NumRetVTs, e = getNumChildren(); i != e; ++i) { 937 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i - NumRetVTs]; 938 MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); 939 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 940 } 941 return MadeChange; 942 } else if (getOperator()->isSubClassOf("SDNode")) { 943 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 944 945 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 946 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 947 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 948 // Branch, etc. do not produce results and top-level forms in instr pattern 949 // must have void types. 950 if (NI.getNumResults() == 0) 951 MadeChange |= UpdateNodeType(MVT::isVoid, TP); 952 953 return MadeChange; 954 } else if (getOperator()->isSubClassOf("Instruction")) { 955 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 956 bool MadeChange = false; 957 unsigned NumResults = Inst.getNumResults(); 958 959 assert(NumResults <= 1 && 960 "Only supports zero or one result instrs!"); 961 962 CodeGenInstruction &InstInfo = 963 CDP.getTargetInfo().getInstruction(getOperator()->getName()); 964 // Apply the result type to the node 965 if (NumResults == 0 || InstInfo.NumDefs == 0) { 966 MadeChange = UpdateNodeType(MVT::isVoid, TP); 967 } else { 968 Record *ResultNode = Inst.getResult(0); 969 970 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 971 std::vector<unsigned char> VT; 972 VT.push_back(MVT::iPTR); 973 MadeChange = UpdateNodeType(VT, TP); 974 } else if (ResultNode->getName() == "unknown") { 975 std::vector<unsigned char> VT; 976 VT.push_back(EEVT::isUnknown); 977 MadeChange = UpdateNodeType(VT, TP); 978 } else { 979 assert(ResultNode->isSubClassOf("RegisterClass") && 980 "Operands should be register classes!"); 981 982 const CodeGenRegisterClass &RC = 983 CDP.getTargetInfo().getRegisterClass(ResultNode); 984 MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); 985 } 986 } 987 988 unsigned ChildNo = 0; 989 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 990 Record *OperandNode = Inst.getOperand(i); 991 992 // If the instruction expects a predicate or optional def operand, we 993 // codegen this by setting the operand to it's default value if it has a 994 // non-empty DefaultOps field. 995 if ((OperandNode->isSubClassOf("PredicateOperand") || 996 OperandNode->isSubClassOf("OptionalDefOperand")) && 997 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 998 continue; 999 1000 // Verify that we didn't run out of provided operands. 1001 if (ChildNo >= getNumChildren()) 1002 TP.error("Instruction '" + getOperator()->getName() + 1003 "' expects more operands than were provided."); 1004 1005 MVT::SimpleValueType VT; 1006 TreePatternNode *Child = getChild(ChildNo++); 1007 if (OperandNode->isSubClassOf("RegisterClass")) { 1008 const CodeGenRegisterClass &RC = 1009 CDP.getTargetInfo().getRegisterClass(OperandNode); 1010 MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); 1011 } else if (OperandNode->isSubClassOf("Operand")) { 1012 VT = getValueType(OperandNode->getValueAsDef("Type")); 1013 MadeChange |= Child->UpdateNodeType(VT, TP); 1014 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1015 MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP); 1016 } else if (OperandNode->getName() == "unknown") { 1017 MadeChange |= Child->UpdateNodeType(EEVT::isUnknown, TP); 1018 } else { 1019 assert(0 && "Unknown operand type!"); 1020 abort(); 1021 } 1022 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1023 } 1024 1025 if (ChildNo != getNumChildren()) 1026 TP.error("Instruction '" + getOperator()->getName() + 1027 "' was provided too many operands!"); 1028 1029 return MadeChange; 1030 } else { 1031 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1032 1033 // Node transforms always take one operand. 1034 if (getNumChildren() != 1) 1035 TP.error("Node transform '" + getOperator()->getName() + 1036 "' requires one operand!"); 1037 1038 // If either the output or input of the xform does not have exact 1039 // type info. We assume they must be the same. Otherwise, it is perfectly 1040 // legal to transform from one type to a completely different type. 1041 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1042 bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); 1043 MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); 1044 return MadeChange; 1045 } 1046 return false; 1047 } 1048 } 1049 1050 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1051 /// RHS of a commutative operation, not the on LHS. 1052 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1053 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1054 return true; 1055 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1056 return true; 1057 return false; 1058 } 1059 1060 1061 /// canPatternMatch - If it is impossible for this pattern to match on this 1062 /// target, fill in Reason and return false. Otherwise, return true. This is 1063 /// used as a sanity check for .td files (to prevent people from writing stuff 1064 /// that can never possibly work), and to prevent the pattern permuter from 1065 /// generating stuff that is useless. 1066 bool TreePatternNode::canPatternMatch(std::string &Reason, 1067 const CodeGenDAGPatterns &CDP) { 1068 if (isLeaf()) return true; 1069 1070 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1071 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1072 return false; 1073 1074 // If this is an intrinsic, handle cases that would make it not match. For 1075 // example, if an operand is required to be an immediate. 1076 if (getOperator()->isSubClassOf("Intrinsic")) { 1077 // TODO: 1078 return true; 1079 } 1080 1081 // If this node is a commutative operator, check that the LHS isn't an 1082 // immediate. 1083 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1084 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1085 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1086 // Scan all of the operands of the node and make sure that only the last one 1087 // is a constant node, unless the RHS also is. 1088 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1089 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1090 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1091 if (OnlyOnRHSOfCommutative(getChild(i))) { 1092 Reason="Immediate value must be on the RHS of commutative operators!"; 1093 return false; 1094 } 1095 } 1096 } 1097 1098 return true; 1099 } 1100 1101 //===----------------------------------------------------------------------===// 1102 // TreePattern implementation 1103 // 1104 1105 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1106 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1107 isInputPattern = isInput; 1108 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1109 Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); 1110 } 1111 1112 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1113 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1114 isInputPattern = isInput; 1115 Trees.push_back(ParseTreePattern(Pat)); 1116 } 1117 1118 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1119 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1120 isInputPattern = isInput; 1121 Trees.push_back(Pat); 1122 } 1123 1124 1125 1126 void TreePattern::error(const std::string &Msg) const { 1127 dump(); 1128 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1129 } 1130 1131 TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { 1132 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1133 if (!OpDef) error("Pattern has unexpected operator type!"); 1134 Record *Operator = OpDef->getDef(); 1135 1136 if (Operator->isSubClassOf("ValueType")) { 1137 // If the operator is a ValueType, then this must be "type cast" of a leaf 1138 // node. 1139 if (Dag->getNumArgs() != 1) 1140 error("Type cast only takes one operand!"); 1141 1142 Init *Arg = Dag->getArg(0); 1143 TreePatternNode *New; 1144 if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { 1145 Record *R = DI->getDef(); 1146 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { 1147 Dag->setArg(0, new DagInit(DI, "", 1148 std::vector<std::pair<Init*, std::string> >())); 1149 return ParseTreePattern(Dag); 1150 } 1151 New = new TreePatternNode(DI); 1152 } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { 1153 New = ParseTreePattern(DI); 1154 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { 1155 New = new TreePatternNode(II); 1156 if (!Dag->getArgName(0).empty()) 1157 error("Constant int argument should not have a name!"); 1158 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { 1159 // Turn this into an IntInit. 1160 Init *II = BI->convertInitializerTo(new IntRecTy()); 1161 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1162 error("Bits value must be constants!"); 1163 1164 New = new TreePatternNode(dynamic_cast<IntInit*>(II)); 1165 if (!Dag->getArgName(0).empty()) 1166 error("Constant int argument should not have a name!"); 1167 } else { 1168 Arg->dump(); 1169 error("Unknown leaf value for tree pattern!"); 1170 return 0; 1171 } 1172 1173 // Apply the type cast. 1174 New->UpdateNodeType(getValueType(Operator), *this); 1175 if (New->getNumChildren() == 0) 1176 New->setName(Dag->getArgName(0)); 1177 return New; 1178 } 1179 1180 // Verify that this is something that makes sense for an operator. 1181 if (!Operator->isSubClassOf("PatFrag") && 1182 !Operator->isSubClassOf("SDNode") && 1183 !Operator->isSubClassOf("Instruction") && 1184 !Operator->isSubClassOf("SDNodeXForm") && 1185 !Operator->isSubClassOf("Intrinsic") && 1186 Operator->getName() != "set" && 1187 Operator->getName() != "implicit" && 1188 Operator->getName() != "parallel") 1189 error("Unrecognized node '" + Operator->getName() + "'!"); 1190 1191 // Check to see if this is something that is illegal in an input pattern. 1192 if (isInputPattern && (Operator->isSubClassOf("Instruction") || 1193 Operator->isSubClassOf("SDNodeXForm"))) 1194 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1195 1196 std::vector<TreePatternNode*> Children; 1197 1198 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { 1199 Init *Arg = Dag->getArg(i); 1200 if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { 1201 Children.push_back(ParseTreePattern(DI)); 1202 if (Children.back()->getName().empty()) 1203 Children.back()->setName(Dag->getArgName(i)); 1204 } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { 1205 Record *R = DefI->getDef(); 1206 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1207 // TreePatternNode if its own. 1208 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { 1209 Dag->setArg(i, new DagInit(DefI, "", 1210 std::vector<std::pair<Init*, std::string> >())); 1211 --i; // Revisit this node... 1212 } else { 1213 TreePatternNode *Node = new TreePatternNode(DefI); 1214 Node->setName(Dag->getArgName(i)); 1215 Children.push_back(Node); 1216 1217 // Input argument? 1218 if (R->getName() == "node") { 1219 if (Dag->getArgName(i).empty()) 1220 error("'node' argument requires a name to match with operand list"); 1221 Args.push_back(Dag->getArgName(i)); 1222 } 1223 } 1224 } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { 1225 TreePatternNode *Node = new TreePatternNode(II); 1226 if (!Dag->getArgName(i).empty()) 1227 error("Constant int argument should not have a name!"); 1228 Children.push_back(Node); 1229 } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { 1230 // Turn this into an IntInit. 1231 Init *II = BI->convertInitializerTo(new IntRecTy()); 1232 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1233 error("Bits value must be constants!"); 1234 1235 TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); 1236 if (!Dag->getArgName(i).empty()) 1237 error("Constant int argument should not have a name!"); 1238 Children.push_back(Node); 1239 } else { 1240 errs() << '"'; 1241 Arg->dump(); 1242 errs() << "\": "; 1243 error("Unknown leaf value for tree pattern!"); 1244 } 1245 } 1246 1247 // If the operator is an intrinsic, then this is just syntactic sugar for for 1248 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1249 // convert the intrinsic name to a number. 1250 if (Operator->isSubClassOf("Intrinsic")) { 1251 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1252 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1253 1254 // If this intrinsic returns void, it must have side-effects and thus a 1255 // chain. 1256 if (Int.IS.RetVTs[0] == MVT::isVoid) { 1257 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1258 } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { 1259 // Has side-effects, requires chain. 1260 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1261 } else { 1262 // Otherwise, no chain. 1263 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1264 } 1265 1266 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); 1267 Children.insert(Children.begin(), IIDNode); 1268 } 1269 1270 TreePatternNode *Result = new TreePatternNode(Operator, Children); 1271 Result->setName(Dag->getName()); 1272 return Result; 1273 } 1274 1275 /// InferAllTypes - Infer/propagate as many types throughout the expression 1276 /// patterns as possible. Return true if all types are inferred, false 1277 /// otherwise. Throw an exception if a type contradiction is found. 1278 bool TreePattern::InferAllTypes() { 1279 bool MadeChange = true; 1280 while (MadeChange) { 1281 MadeChange = false; 1282 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1283 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1284 } 1285 1286 bool HasUnresolvedTypes = false; 1287 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1288 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1289 return !HasUnresolvedTypes; 1290 } 1291 1292 void TreePattern::print(raw_ostream &OS) const { 1293 OS << getRecord()->getName(); 1294 if (!Args.empty()) { 1295 OS << "(" << Args[0]; 1296 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1297 OS << ", " << Args[i]; 1298 OS << ")"; 1299 } 1300 OS << ": "; 1301 1302 if (Trees.size() > 1) 1303 OS << "[\n"; 1304 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1305 OS << "\t"; 1306 Trees[i]->print(OS); 1307 OS << "\n"; 1308 } 1309 1310 if (Trees.size() > 1) 1311 OS << "]\n"; 1312 } 1313 1314 void TreePattern::dump() const { print(errs()); } 1315 1316 //===----------------------------------------------------------------------===// 1317 // CodeGenDAGPatterns implementation 1318 // 1319 1320 // FIXME: REMOVE OSTREAM ARGUMENT 1321 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : Records(R) { 1322 Intrinsics = LoadIntrinsics(Records, false); 1323 TgtIntrinsics = LoadIntrinsics(Records, true); 1324 ParseNodeInfo(); 1325 ParseNodeTransforms(); 1326 ParseComplexPatterns(); 1327 ParsePatternFragments(); 1328 ParseDefaultOperands(); 1329 ParseInstructions(); 1330 ParsePatterns(); 1331 1332 // Generate variants. For example, commutative patterns can match 1333 // multiple ways. Add them to PatternsToMatch as well. 1334 GenerateVariants(); 1335 1336 // Infer instruction flags. For example, we can detect loads, 1337 // stores, and side effects in many cases by examining an 1338 // instruction's pattern. 1339 InferInstructionFlags(); 1340 } 1341 1342 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 1343 for (pf_iterator I = PatternFragments.begin(), 1344 E = PatternFragments.end(); I != E; ++I) 1345 delete I->second; 1346 } 1347 1348 1349 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 1350 Record *N = Records.getDef(Name); 1351 if (!N || !N->isSubClassOf("SDNode")) { 1352 errs() << "Error getting SDNode '" << Name << "'!\n"; 1353 exit(1); 1354 } 1355 return N; 1356 } 1357 1358 // Parse all of the SDNode definitions for the target, populating SDNodes. 1359 void CodeGenDAGPatterns::ParseNodeInfo() { 1360 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 1361 while (!Nodes.empty()) { 1362 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 1363 Nodes.pop_back(); 1364 } 1365 1366 // Get the builtin intrinsic nodes. 1367 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 1368 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 1369 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 1370 } 1371 1372 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 1373 /// map, and emit them to the file as functions. 1374 void CodeGenDAGPatterns::ParseNodeTransforms() { 1375 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 1376 while (!Xforms.empty()) { 1377 Record *XFormNode = Xforms.back(); 1378 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 1379 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 1380 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 1381 1382 Xforms.pop_back(); 1383 } 1384 } 1385 1386 void CodeGenDAGPatterns::ParseComplexPatterns() { 1387 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 1388 while (!AMs.empty()) { 1389 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 1390 AMs.pop_back(); 1391 } 1392 } 1393 1394 1395 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 1396 /// file, building up the PatternFragments map. After we've collected them all, 1397 /// inline fragments together as necessary, so that there are no references left 1398 /// inside a pattern fragment to a pattern fragment. 1399 /// 1400 void CodeGenDAGPatterns::ParsePatternFragments() { 1401 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 1402 1403 // First step, parse all of the fragments. 1404 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1405 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 1406 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 1407 PatternFragments[Fragments[i]] = P; 1408 1409 // Validate the argument list, converting it to set, to discard duplicates. 1410 std::vector<std::string> &Args = P->getArgList(); 1411 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 1412 1413 if (OperandsSet.count("")) 1414 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 1415 1416 // Parse the operands list. 1417 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 1418 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 1419 // Special cases: ops == outs == ins. Different names are used to 1420 // improve readability. 1421 if (!OpsOp || 1422 (OpsOp->getDef()->getName() != "ops" && 1423 OpsOp->getDef()->getName() != "outs" && 1424 OpsOp->getDef()->getName() != "ins")) 1425 P->error("Operands list should start with '(ops ... '!"); 1426 1427 // Copy over the arguments. 1428 Args.clear(); 1429 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 1430 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 1431 static_cast<DefInit*>(OpsList->getArg(j))-> 1432 getDef()->getName() != "node") 1433 P->error("Operands list should all be 'node' values."); 1434 if (OpsList->getArgName(j).empty()) 1435 P->error("Operands list should have names for each operand!"); 1436 if (!OperandsSet.count(OpsList->getArgName(j))) 1437 P->error("'" + OpsList->getArgName(j) + 1438 "' does not occur in pattern or was multiply specified!"); 1439 OperandsSet.erase(OpsList->getArgName(j)); 1440 Args.push_back(OpsList->getArgName(j)); 1441 } 1442 1443 if (!OperandsSet.empty()) 1444 P->error("Operands list does not contain an entry for operand '" + 1445 *OperandsSet.begin() + "'!"); 1446 1447 // If there is a code init for this fragment, keep track of the fact that 1448 // this fragment uses it. 1449 std::string Code = Fragments[i]->getValueAsCode("Predicate"); 1450 if (!Code.empty()) 1451 P->getOnlyTree()->addPredicateFn("Predicate_"+Fragments[i]->getName()); 1452 1453 // If there is a node transformation corresponding to this, keep track of 1454 // it. 1455 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 1456 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 1457 P->getOnlyTree()->setTransformFn(Transform); 1458 } 1459 1460 // Now that we've parsed all of the tree fragments, do a closure on them so 1461 // that there are not references to PatFrags left inside of them. 1462 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 1463 TreePattern *ThePat = PatternFragments[Fragments[i]]; 1464 ThePat->InlinePatternFragments(); 1465 1466 // Infer as many types as possible. Don't worry about it if we don't infer 1467 // all of them, some may depend on the inputs of the pattern. 1468 try { 1469 ThePat->InferAllTypes(); 1470 } catch (...) { 1471 // If this pattern fragment is not supported by this target (no types can 1472 // satisfy its constraints), just ignore it. If the bogus pattern is 1473 // actually used by instructions, the type consistency error will be 1474 // reported there. 1475 } 1476 1477 // If debugging, print out the pattern fragment result. 1478 DEBUG(ThePat->dump()); 1479 } 1480 } 1481 1482 void CodeGenDAGPatterns::ParseDefaultOperands() { 1483 std::vector<Record*> DefaultOps[2]; 1484 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 1485 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 1486 1487 // Find some SDNode. 1488 assert(!SDNodes.empty() && "No SDNodes parsed?"); 1489 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 1490 1491 for (unsigned iter = 0; iter != 2; ++iter) { 1492 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 1493 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 1494 1495 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 1496 // SomeSDnode so that we can parse this. 1497 std::vector<std::pair<Init*, std::string> > Ops; 1498 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 1499 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 1500 DefaultInfo->getArgName(op))); 1501 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 1502 1503 // Create a TreePattern to parse this. 1504 TreePattern P(DefaultOps[iter][i], DI, false, *this); 1505 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 1506 1507 // Copy the operands over into a DAGDefaultOperand. 1508 DAGDefaultOperand DefaultOpInfo; 1509 1510 TreePatternNode *T = P.getTree(0); 1511 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 1512 TreePatternNode *TPN = T->getChild(op); 1513 while (TPN->ApplyTypeConstraints(P, false)) 1514 /* Resolve all types */; 1515 1516 if (TPN->ContainsUnresolvedType()) { 1517 if (iter == 0) 1518 throw "Value #" + utostr(i) + " of PredicateOperand '" + 1519 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; 1520 else 1521 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 1522 DefaultOps[iter][i]->getName() + "' doesn't have a concrete type!"; 1523 } 1524 DefaultOpInfo.DefaultOps.push_back(TPN); 1525 } 1526 1527 // Insert it into the DefaultOperands map so we can find it later. 1528 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 1529 } 1530 } 1531 } 1532 1533 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 1534 /// instruction input. Return true if this is a real use. 1535 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 1536 std::map<std::string, TreePatternNode*> &InstInputs, 1537 std::vector<Record*> &InstImpInputs) { 1538 // No name -> not interesting. 1539 if (Pat->getName().empty()) { 1540 if (Pat->isLeaf()) { 1541 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 1542 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1543 I->error("Input " + DI->getDef()->getName() + " must be named!"); 1544 else if (DI && DI->getDef()->isSubClassOf("Register")) 1545 InstImpInputs.push_back(DI->getDef()); 1546 } 1547 return false; 1548 } 1549 1550 Record *Rec; 1551 if (Pat->isLeaf()) { 1552 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 1553 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 1554 Rec = DI->getDef(); 1555 } else { 1556 Rec = Pat->getOperator(); 1557 } 1558 1559 // SRCVALUE nodes are ignored. 1560 if (Rec->getName() == "srcvalue") 1561 return false; 1562 1563 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 1564 if (!Slot) { 1565 Slot = Pat; 1566 } else { 1567 Record *SlotRec; 1568 if (Slot->isLeaf()) { 1569 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 1570 } else { 1571 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 1572 SlotRec = Slot->getOperator(); 1573 } 1574 1575 // Ensure that the inputs agree if we've already seen this input. 1576 if (Rec != SlotRec) 1577 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 1578 if (Slot->getExtTypes() != Pat->getExtTypes()) 1579 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 1580 } 1581 return true; 1582 } 1583 1584 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 1585 /// part of "I", the instruction), computing the set of inputs and outputs of 1586 /// the pattern. Report errors if we see anything naughty. 1587 void CodeGenDAGPatterns:: 1588 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 1589 std::map<std::string, TreePatternNode*> &InstInputs, 1590 std::map<std::string, TreePatternNode*>&InstResults, 1591 std::vector<Record*> &InstImpInputs, 1592 std::vector<Record*> &InstImpResults) { 1593 if (Pat->isLeaf()) { 1594 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); 1595 if (!isUse && Pat->getTransformFn()) 1596 I->error("Cannot specify a transform function for a non-input value!"); 1597 return; 1598 } else if (Pat->getOperator()->getName() == "implicit") { 1599 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 1600 TreePatternNode *Dest = Pat->getChild(i); 1601 if (!Dest->isLeaf()) 1602 I->error("implicitly defined value should be a register!"); 1603 1604 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 1605 if (!Val || !Val->getDef()->isSubClassOf("Register")) 1606 I->error("implicitly defined value should be a register!"); 1607 InstImpResults.push_back(Val->getDef()); 1608 } 1609 return; 1610 } else if (Pat->getOperator()->getName() != "set") { 1611 // If this is not a set, verify that the children nodes are not void typed, 1612 // and recurse. 1613 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 1614 if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) 1615 I->error("Cannot have void nodes inside of patterns!"); 1616 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 1617 InstImpInputs, InstImpResults); 1618 } 1619 1620 // If this is a non-leaf node with no children, treat it basically as if 1621 // it were a leaf. This handles nodes like (imm). 1622 bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); 1623 1624 if (!isUse && Pat->getTransformFn()) 1625 I->error("Cannot specify a transform function for a non-input value!"); 1626 return; 1627 } 1628 1629 // Otherwise, this is a set, validate and collect instruction results. 1630 if (Pat->getNumChildren() == 0) 1631 I->error("set requires operands!"); 1632 1633 if (Pat->getTransformFn()) 1634 I->error("Cannot specify a transform function on a set node!"); 1635 1636 // Check the set destinations. 1637 unsigned NumDests = Pat->getNumChildren()-1; 1638 for (unsigned i = 0; i != NumDests; ++i) { 1639 TreePatternNode *Dest = Pat->getChild(i); 1640 if (!Dest->isLeaf()) 1641 I->error("set destination should be a register!"); 1642 1643 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 1644 if (!Val) 1645 I->error("set destination should be a register!"); 1646 1647 if (Val->getDef()->isSubClassOf("RegisterClass") || 1648 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 1649 if (Dest->getName().empty()) 1650 I->error("set destination must have a name!"); 1651 if (InstResults.count(Dest->getName())) 1652 I->error("cannot set '" + Dest->getName() +"' multiple times"); 1653 InstResults[Dest->getName()] = Dest; 1654 } else if (Val->getDef()->isSubClassOf("Register")) { 1655 InstImpResults.push_back(Val->getDef()); 1656 } else { 1657 I->error("set destination should be a register!"); 1658 } 1659 } 1660 1661 // Verify and collect info from the computation. 1662 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 1663 InstInputs, InstResults, 1664 InstImpInputs, InstImpResults); 1665 } 1666 1667 //===----------------------------------------------------------------------===// 1668 // Instruction Analysis 1669 //===----------------------------------------------------------------------===// 1670 1671 class InstAnalyzer { 1672 const CodeGenDAGPatterns &CDP; 1673 bool &mayStore; 1674 bool &mayLoad; 1675 bool &HasSideEffects; 1676 public: 1677 InstAnalyzer(const CodeGenDAGPatterns &cdp, 1678 bool &maystore, bool &mayload, bool &hse) 1679 : CDP(cdp), mayStore(maystore), mayLoad(mayload), HasSideEffects(hse){ 1680 } 1681 1682 /// Analyze - Analyze the specified instruction, returning true if the 1683 /// instruction had a pattern. 1684 bool Analyze(Record *InstRecord) { 1685 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 1686 if (Pattern == 0) { 1687 HasSideEffects = 1; 1688 return false; // No pattern. 1689 } 1690 1691 // FIXME: Assume only the first tree is the pattern. The others are clobber 1692 // nodes. 1693 AnalyzeNode(Pattern->getTree(0)); 1694 return true; 1695 } 1696 1697 private: 1698 void AnalyzeNode(const TreePatternNode *N) { 1699 if (N->isLeaf()) { 1700 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1701 Record *LeafRec = DI->getDef(); 1702 // Handle ComplexPattern leaves. 1703 if (LeafRec->isSubClassOf("ComplexPattern")) { 1704 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 1705 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 1706 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 1707 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 1708 } 1709 } 1710 return; 1711 } 1712 1713 // Analyze children. 1714 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1715 AnalyzeNode(N->getChild(i)); 1716 1717 // Ignore set nodes, which are not SDNodes. 1718 if (N->getOperator()->getName() == "set") 1719 return; 1720 1721 // Get information about the SDNode for the operator. 1722 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 1723 1724 // Notice properties of the node. 1725 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 1726 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 1727 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 1728 1729 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 1730 // If this is an intrinsic, analyze it. 1731 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 1732 mayLoad = true;// These may load memory. 1733 1734 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteArgMem) 1735 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 1736 1737 if (IntInfo->ModRef >= CodeGenIntrinsic::WriteMem) 1738 // WriteMem intrinsics can have other strange effects. 1739 HasSideEffects = true; 1740 } 1741 } 1742 1743 }; 1744 1745 static void InferFromPattern(const CodeGenInstruction &Inst, 1746 bool &MayStore, bool &MayLoad, 1747 bool &HasSideEffects, 1748 const CodeGenDAGPatterns &CDP) { 1749 MayStore = MayLoad = HasSideEffects = false; 1750 1751 bool HadPattern = 1752 InstAnalyzer(CDP, MayStore, MayLoad, HasSideEffects).Analyze(Inst.TheDef); 1753 1754 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 1755 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 1756 // If we decided that this is a store from the pattern, then the .td file 1757 // entry is redundant. 1758 if (MayStore) 1759 fprintf(stderr, 1760 "Warning: mayStore flag explicitly set on instruction '%s'" 1761 " but flag already inferred from pattern.\n", 1762 Inst.TheDef->getName().c_str()); 1763 MayStore = true; 1764 } 1765 1766 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 1767 // If we decided that this is a load from the pattern, then the .td file 1768 // entry is redundant. 1769 if (MayLoad) 1770 fprintf(stderr, 1771 "Warning: mayLoad flag explicitly set on instruction '%s'" 1772 " but flag already inferred from pattern.\n", 1773 Inst.TheDef->getName().c_str()); 1774 MayLoad = true; 1775 } 1776 1777 if (Inst.neverHasSideEffects) { 1778 if (HadPattern) 1779 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 1780 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 1781 HasSideEffects = false; 1782 } 1783 1784 if (Inst.hasSideEffects) { 1785 if (HasSideEffects) 1786 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 1787 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 1788 HasSideEffects = true; 1789 } 1790 } 1791 1792 /// ParseInstructions - Parse all of the instructions, inlining and resolving 1793 /// any fragments involved. This populates the Instructions list with fully 1794 /// resolved instructions. 1795 void CodeGenDAGPatterns::ParseInstructions() { 1796 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 1797 1798 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 1799 ListInit *LI = 0; 1800 1801 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 1802 LI = Instrs[i]->getValueAsListInit("Pattern"); 1803 1804 // If there is no pattern, only collect minimal information about the 1805 // instruction for its operand list. We have to assume that there is one 1806 // result, as we have no detailed info. 1807 if (!LI || LI->getSize() == 0) { 1808 std::vector<Record*> Results; 1809 std::vector<Record*> Operands; 1810 1811 CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); 1812 1813 if (InstInfo.OperandList.size() != 0) { 1814 if (InstInfo.NumDefs == 0) { 1815 // These produce no results 1816 for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) 1817 Operands.push_back(InstInfo.OperandList[j].Rec); 1818 } else { 1819 // Assume the first operand is the result. 1820 Results.push_back(InstInfo.OperandList[0].Rec); 1821 1822 // The rest are inputs. 1823 for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) 1824 Operands.push_back(InstInfo.OperandList[j].Rec); 1825 } 1826 } 1827 1828 // Create and insert the instruction. 1829 std::vector<Record*> ImpResults; 1830 std::vector<Record*> ImpOperands; 1831 Instructions.insert(std::make_pair(Instrs[i], 1832 DAGInstruction(0, Results, Operands, ImpResults, 1833 ImpOperands))); 1834 continue; // no pattern. 1835 } 1836 1837 // Parse the instruction. 1838 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 1839 // Inline pattern fragments into it. 1840 I->InlinePatternFragments(); 1841 1842 // Infer as many types as possible. If we cannot infer all of them, we can 1843 // never do anything with this instruction pattern: report it to the user. 1844 if (!I->InferAllTypes()) 1845 I->error("Could not infer all types in pattern!"); 1846 1847 // InstInputs - Keep track of all of the inputs of the instruction, along 1848 // with the record they are declared as. 1849 std::map<std::string, TreePatternNode*> InstInputs; 1850 1851 // InstResults - Keep track of all the virtual registers that are 'set' 1852 // in the instruction, including what reg class they are. 1853 std::map<std::string, TreePatternNode*> InstResults; 1854 1855 std::vector<Record*> InstImpInputs; 1856 std::vector<Record*> InstImpResults; 1857 1858 // Verify that the top-level forms in the instruction are of void type, and 1859 // fill in the InstResults map. 1860 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 1861 TreePatternNode *Pat = I->getTree(j); 1862 if (Pat->getExtTypeNum(0) != MVT::isVoid) 1863 I->error("Top-level forms in instruction pattern should have" 1864 " void types"); 1865 1866 // Find inputs and outputs, and verify the structure of the uses/defs. 1867 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 1868 InstImpInputs, InstImpResults); 1869 } 1870 1871 // Now that we have inputs and outputs of the pattern, inspect the operands 1872 // list for the instruction. This determines the order that operands are 1873 // added to the machine instruction the node corresponds to. 1874 unsigned NumResults = InstResults.size(); 1875 1876 // Parse the operands list from the (ops) list, validating it. 1877 assert(I->getArgList().empty() && "Args list should still be empty here!"); 1878 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); 1879 1880 // Check that all of the results occur first in the list. 1881 std::vector<Record*> Results; 1882 TreePatternNode *Res0Node = NULL; 1883 for (unsigned i = 0; i != NumResults; ++i) { 1884 if (i == CGI.OperandList.size()) 1885 I->error("'" + InstResults.begin()->first + 1886 "' set but does not appear in operand list!"); 1887 const std::string &OpName = CGI.OperandList[i].Name; 1888 1889 // Check that it exists in InstResults. 1890 TreePatternNode *RNode = InstResults[OpName]; 1891 if (RNode == 0) 1892 I->error("Operand $" + OpName + " does not exist in operand list!"); 1893 1894 if (i == 0) 1895 Res0Node = RNode; 1896 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 1897 if (R == 0) 1898 I->error("Operand $" + OpName + " should be a set destination: all " 1899 "outputs must occur before inputs in operand list!"); 1900 1901 if (CGI.OperandList[i].Rec != R) 1902 I->error("Operand $" + OpName + " class mismatch!"); 1903 1904 // Remember the return type. 1905 Results.push_back(CGI.OperandList[i].Rec); 1906 1907 // Okay, this one checks out. 1908 InstResults.erase(OpName); 1909 } 1910 1911 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 1912 // the copy while we're checking the inputs. 1913 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 1914 1915 std::vector<TreePatternNode*> ResultNodeOperands; 1916 std::vector<Record*> Operands; 1917 for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { 1918 CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i]; 1919 const std::string &OpName = Op.Name; 1920 if (OpName.empty()) 1921 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 1922 1923 if (!InstInputsCheck.count(OpName)) { 1924 // If this is an predicate operand or optional def operand with an 1925 // DefaultOps set filled in, we can ignore this. When we codegen it, 1926 // we will do so as always executed. 1927 if (Op.Rec->isSubClassOf("PredicateOperand") || 1928 Op.Rec->isSubClassOf("OptionalDefOperand")) { 1929 // Does it have a non-empty DefaultOps field? If so, ignore this 1930 // operand. 1931 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 1932 continue; 1933 } 1934 I->error("Operand $" + OpName + 1935 " does not appear in the instruction pattern"); 1936 } 1937 TreePatternNode *InVal = InstInputsCheck[OpName]; 1938 InstInputsCheck.erase(OpName); // It occurred, remove from map. 1939 1940 if (InVal->isLeaf() && 1941 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 1942 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 1943 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 1944 I->error("Operand $" + OpName + "'s register class disagrees" 1945 " between the operand and pattern"); 1946 } 1947 Operands.push_back(Op.Rec); 1948 1949 // Construct the result for the dest-pattern operand list. 1950 TreePatternNode *OpNode = InVal->clone(); 1951 1952 // No predicate is useful on the result. 1953 OpNode->clearPredicateFns(); 1954 1955 // Promote the xform function to be an explicit node if set. 1956 if (Record *Xform = OpNode->getTransformFn()) { 1957 OpNode->setTransformFn(0); 1958 std::vector<TreePatternNode*> Children; 1959 Children.push_back(OpNode); 1960 OpNode = new TreePatternNode(Xform, Children); 1961 } 1962 1963 ResultNodeOperands.push_back(OpNode); 1964 } 1965 1966 if (!InstInputsCheck.empty()) 1967 I->error("Input operand $" + InstInputsCheck.begin()->first + 1968 " occurs in pattern but not in operands list!"); 1969 1970 TreePatternNode *ResultPattern = 1971 new TreePatternNode(I->getRecord(), ResultNodeOperands); 1972 // Copy fully inferred output node type to instruction result pattern. 1973 if (NumResults > 0) 1974 ResultPattern->setTypes(Res0Node->getExtTypes()); 1975 1976 // Create and insert the instruction. 1977 // FIXME: InstImpResults and InstImpInputs should not be part of 1978 // DAGInstruction. 1979 DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); 1980 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 1981 1982 // Use a temporary tree pattern to infer all types and make sure that the 1983 // constructed result is correct. This depends on the instruction already 1984 // being inserted into the Instructions map. 1985 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 1986 Temp.InferAllTypes(); 1987 1988 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 1989 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 1990 1991 DEBUG(I->dump()); 1992 } 1993 1994 // If we can, convert the instructions to be patterns that are matched! 1995 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 1996 Instructions.begin(), 1997 E = Instructions.end(); II != E; ++II) { 1998 DAGInstruction &TheInst = II->second; 1999 const TreePattern *I = TheInst.getPattern(); 2000 if (I == 0) continue; // No pattern. 2001 2002 // FIXME: Assume only the first tree is the pattern. The others are clobber 2003 // nodes. 2004 TreePatternNode *Pattern = I->getTree(0); 2005 TreePatternNode *SrcPattern; 2006 if (Pattern->getOperator()->getName() == "set") { 2007 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2008 } else{ 2009 // Not a set (store or something?) 2010 SrcPattern = Pattern; 2011 } 2012 2013 std::string Reason; 2014 if (!SrcPattern->canPatternMatch(Reason, *this)) 2015 I->error("Instruction can never match: " + Reason); 2016 2017 Record *Instr = II->first; 2018 TreePatternNode *DstPattern = TheInst.getResultPattern(); 2019 PatternsToMatch. 2020 push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), 2021 SrcPattern, DstPattern, TheInst.getImpResults(), 2022 Instr->getValueAsInt("AddedComplexity"))); 2023 } 2024 } 2025 2026 2027 void CodeGenDAGPatterns::InferInstructionFlags() { 2028 std::map<std::string, CodeGenInstruction> &InstrDescs = 2029 Target.getInstructions(); 2030 for (std::map<std::string, CodeGenInstruction>::iterator 2031 II = InstrDescs.begin(), E = InstrDescs.end(); II != E; ++II) { 2032 CodeGenInstruction &InstInfo = II->second; 2033 // Determine properties of the instruction from its pattern. 2034 bool MayStore, MayLoad, HasSideEffects; 2035 InferFromPattern(InstInfo, MayStore, MayLoad, HasSideEffects, *this); 2036 InstInfo.mayStore = MayStore; 2037 InstInfo.mayLoad = MayLoad; 2038 InstInfo.hasSideEffects = HasSideEffects; 2039 } 2040 } 2041 2042 void CodeGenDAGPatterns::ParsePatterns() { 2043 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2044 2045 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2046 DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); 2047 DefInit *OpDef = dynamic_cast<DefInit*>(Tree->getOperator()); 2048 Record *Operator = OpDef->getDef(); 2049 TreePattern *Pattern; 2050 if (Operator->getName() != "parallel") 2051 Pattern = new TreePattern(Patterns[i], Tree, true, *this); 2052 else { 2053 std::vector<Init*> Values; 2054 RecTy *ListTy = 0; 2055 for (unsigned j = 0, ee = Tree->getNumArgs(); j != ee; ++j) { 2056 Values.push_back(Tree->getArg(j)); 2057 TypedInit *TArg = dynamic_cast<TypedInit*>(Tree->getArg(j)); 2058 if (TArg == 0) { 2059 errs() << "In dag: " << Tree->getAsString(); 2060 errs() << " -- Untyped argument in pattern\n"; 2061 assert(0 && "Untyped argument in pattern"); 2062 } 2063 if (ListTy != 0) { 2064 ListTy = resolveTypes(ListTy, TArg->getType()); 2065 if (ListTy == 0) { 2066 errs() << "In dag: " << Tree->getAsString(); 2067 errs() << " -- Incompatible types in pattern arguments\n"; 2068 assert(0 && "Incompatible types in pattern arguments"); 2069 } 2070 } 2071 else { 2072 ListTy = TArg->getType(); 2073 } 2074 } 2075 ListInit *LI = new ListInit(Values, new ListRecTy(ListTy)); 2076 Pattern = new TreePattern(Patterns[i], LI, true, *this); 2077 } 2078 2079 // Inline pattern fragments into it. 2080 Pattern->InlinePatternFragments(); 2081 2082 ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); 2083 if (LI->getSize() == 0) continue; // no pattern. 2084 2085 // Parse the instruction. 2086 TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); 2087 2088 // Inline pattern fragments into it. 2089 Result->InlinePatternFragments(); 2090 2091 if (Result->getNumTrees() != 1) 2092 Result->error("Cannot handle instructions producing instructions " 2093 "with temporaries yet!"); 2094 2095 bool IterateInference; 2096 bool InferredAllPatternTypes, InferredAllResultTypes; 2097 do { 2098 // Infer as many types as possible. If we cannot infer all of them, we 2099 // can never do anything with this pattern: report it to the user. 2100 InferredAllPatternTypes = Pattern->InferAllTypes(); 2101 2102 // Infer as many types as possible. If we cannot infer all of them, we 2103 // can never do anything with this pattern: report it to the user. 2104 InferredAllResultTypes = Result->InferAllTypes(); 2105 2106 // Apply the type of the result to the source pattern. This helps us 2107 // resolve cases where the input type is known to be a pointer type (which 2108 // is considered resolved), but the result knows it needs to be 32- or 2109 // 64-bits. Infer the other way for good measure. 2110 IterateInference = Pattern->getTree(0)-> 2111 UpdateNodeType(Result->getTree(0)->getExtTypes(), *Result); 2112 IterateInference |= Result->getTree(0)-> 2113 UpdateNodeType(Pattern->getTree(0)->getExtTypes(), *Result); 2114 } while (IterateInference); 2115 2116 // Verify that we inferred enough types that we can do something with the 2117 // pattern and result. If these fire the user has to add type casts. 2118 if (!InferredAllPatternTypes) 2119 Pattern->error("Could not infer all types in pattern!"); 2120 if (!InferredAllResultTypes) 2121 Result->error("Could not infer all types in pattern result!"); 2122 2123 // Validate that the input pattern is correct. 2124 std::map<std::string, TreePatternNode*> InstInputs; 2125 std::map<std::string, TreePatternNode*> InstResults; 2126 std::vector<Record*> InstImpInputs; 2127 std::vector<Record*> InstImpResults; 2128 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2129 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2130 InstInputs, InstResults, 2131 InstImpInputs, InstImpResults); 2132 2133 // Promote the xform function to be an explicit node if set. 2134 TreePatternNode *DstPattern = Result->getOnlyTree(); 2135 std::vector<TreePatternNode*> ResultNodeOperands; 2136 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2137 TreePatternNode *OpNode = DstPattern->getChild(ii); 2138 if (Record *Xform = OpNode->getTransformFn()) { 2139 OpNode->setTransformFn(0); 2140 std::vector<TreePatternNode*> Children; 2141 Children.push_back(OpNode); 2142 OpNode = new TreePatternNode(Xform, Children); 2143 } 2144 ResultNodeOperands.push_back(OpNode); 2145 } 2146 DstPattern = Result->getOnlyTree(); 2147 if (!DstPattern->isLeaf()) 2148 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2149 ResultNodeOperands); 2150 DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); 2151 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2152 Temp.InferAllTypes(); 2153 2154 std::string Reason; 2155 if (!Pattern->getTree(0)->canPatternMatch(Reason, *this)) 2156 Pattern->error("Pattern can never match: " + Reason); 2157 2158 PatternsToMatch. 2159 push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), 2160 Pattern->getTree(0), 2161 Temp.getOnlyTree(), InstImpResults, 2162 Patterns[i]->getValueAsInt("AddedComplexity"))); 2163 } 2164 } 2165 2166 /// CombineChildVariants - Given a bunch of permutations of each child of the 2167 /// 'operator' node, put them together in all possible ways. 2168 static void CombineChildVariants(TreePatternNode *Orig, 2169 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2170 std::vector<TreePatternNode*> &OutVariants, 2171 CodeGenDAGPatterns &CDP, 2172 const MultipleUseVarSet &DepVars) { 2173 // Make sure that each operand has at least one variant to choose from. 2174 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2175 if (ChildVariants[i].empty()) 2176 return; 2177 2178 // The end result is an all-pairs construction of the resultant pattern. 2179 std::vector<unsigned> Idxs; 2180 Idxs.resize(ChildVariants.size()); 2181 bool NotDone; 2182 do { 2183 #ifndef NDEBUG 2184 if (DebugFlag && !Idxs.empty()) { 2185 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2186 for (unsigned i = 0; i < Idxs.size(); ++i) { 2187 errs() << Idxs[i] << " "; 2188 } 2189 errs() << "]\n"; 2190 } 2191 #endif 2192 // Create the variant and add it to the output list. 2193 std::vector<TreePatternNode*> NewChildren; 2194 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2195 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2196 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); 2197 2198 // Copy over properties. 2199 R->setName(Orig->getName()); 2200 R->setPredicateFns(Orig->getPredicateFns()); 2201 R->setTransformFn(Orig->getTransformFn()); 2202 R->setTypes(Orig->getExtTypes()); 2203 2204 // If this pattern cannot match, do not include it as a variant. 2205 std::string ErrString; 2206 if (!R->canPatternMatch(ErrString, CDP)) { 2207 delete R; 2208 } else { 2209 bool AlreadyExists = false; 2210 2211 // Scan to see if this pattern has already been emitted. We can get 2212 // duplication due to things like commuting: 2213 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 2214 // which are the same pattern. Ignore the dups. 2215 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 2216 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 2217 AlreadyExists = true; 2218 break; 2219 } 2220 2221 if (AlreadyExists) 2222 delete R; 2223 else 2224 OutVariants.push_back(R); 2225 } 2226 2227 // Increment indices to the next permutation by incrementing the 2228 // indicies from last index backward, e.g., generate the sequence 2229 // [0, 0], [0, 1], [1, 0], [1, 1]. 2230 int IdxsIdx; 2231 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2232 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 2233 Idxs[IdxsIdx] = 0; 2234 else 2235 break; 2236 } 2237 NotDone = (IdxsIdx >= 0); 2238 } while (NotDone); 2239 } 2240 2241 /// CombineChildVariants - A helper function for binary operators. 2242 /// 2243 static void CombineChildVariants(TreePatternNode *Orig, 2244 const std::vector<TreePatternNode*> &LHS, 2245 const std::vector<TreePatternNode*> &RHS, 2246 std::vector<TreePatternNode*> &OutVariants, 2247 CodeGenDAGPatterns &CDP, 2248 const MultipleUseVarSet &DepVars) { 2249 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2250 ChildVariants.push_back(LHS); 2251 ChildVariants.push_back(RHS); 2252 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 2253 } 2254 2255 2256 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 2257 std::vector<TreePatternNode *> &Children) { 2258 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 2259 Record *Operator = N->getOperator(); 2260 2261 // Only permit raw nodes. 2262 if (!N->getName().empty() || !N->getPredicateFns().empty() || 2263 N->getTransformFn()) { 2264 Children.push_back(N); 2265 return; 2266 } 2267 2268 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 2269 Children.push_back(N->getChild(0)); 2270 else 2271 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 2272 2273 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 2274 Children.push_back(N->getChild(1)); 2275 else 2276 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 2277 } 2278 2279 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 2280 /// the (potentially recursive) pattern by using algebraic laws. 2281 /// 2282 static void GenerateVariantsOf(TreePatternNode *N, 2283 std::vector<TreePatternNode*> &OutVariants, 2284 CodeGenDAGPatterns &CDP, 2285 const MultipleUseVarSet &DepVars) { 2286 // We cannot permute leaves. 2287 if (N->isLeaf()) { 2288 OutVariants.push_back(N); 2289 return; 2290 } 2291 2292 // Look up interesting info about the node. 2293 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 2294 2295 // If this node is associative, re-associate. 2296 if (NodeInfo.hasProperty(SDNPAssociative)) { 2297 // Re-associate by pulling together all of the linked operators 2298 std::vector<TreePatternNode*> MaximalChildren; 2299 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 2300 2301 // Only handle child sizes of 3. Otherwise we'll end up trying too many 2302 // permutations. 2303 if (MaximalChildren.size() == 3) { 2304 // Find the variants of all of our maximal children. 2305 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 2306 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 2307 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 2308 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 2309 2310 // There are only two ways we can permute the tree: 2311 // (A op B) op C and A op (B op C) 2312 // Within these forms, we can also permute A/B/C. 2313 2314 // Generate legal pair permutations of A/B/C. 2315 std::vector<TreePatternNode*> ABVariants; 2316 std::vector<TreePatternNode*> BAVariants; 2317 std::vector<TreePatternNode*> ACVariants; 2318 std::vector<TreePatternNode*> CAVariants; 2319 std::vector<TreePatternNode*> BCVariants; 2320 std::vector<TreePatternNode*> CBVariants; 2321 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 2322 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 2323 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 2324 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 2325 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 2326 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 2327 2328 // Combine those into the result: (x op x) op x 2329 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 2330 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 2331 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 2332 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 2333 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 2334 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 2335 2336 // Combine those into the result: x op (x op x) 2337 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 2338 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 2339 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 2340 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 2341 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 2342 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 2343 return; 2344 } 2345 } 2346 2347 // Compute permutations of all children. 2348 std::vector<std::vector<TreePatternNode*> > ChildVariants; 2349 ChildVariants.resize(N->getNumChildren()); 2350 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2351 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 2352 2353 // Build all permutations based on how the children were formed. 2354 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 2355 2356 // If this node is commutative, consider the commuted order. 2357 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 2358 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2359 assert((N->getNumChildren()==2 || isCommIntrinsic) && 2360 "Commutative but doesn't have 2 children!"); 2361 // Don't count children which are actually register references. 2362 unsigned NC = 0; 2363 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2364 TreePatternNode *Child = N->getChild(i); 2365 if (Child->isLeaf()) 2366 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 2367 Record *RR = DI->getDef(); 2368 if (RR->isSubClassOf("Register")) 2369 continue; 2370 } 2371 NC++; 2372 } 2373 // Consider the commuted order. 2374 if (isCommIntrinsic) { 2375 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 2376 // operands are the commutative operands, and there might be more operands 2377 // after those. 2378 assert(NC >= 3 && 2379 "Commutative intrinsic should have at least 3 childrean!"); 2380 std::vector<std::vector<TreePatternNode*> > Variants; 2381 Variants.push_back(ChildVariants[0]); // Intrinsic id. 2382 Variants.push_back(ChildVariants[2]); 2383 Variants.push_back(ChildVariants[1]); 2384 for (unsigned i = 3; i != NC; ++i) 2385 Variants.push_back(ChildVariants[i]); 2386 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 2387 } else if (NC == 2) 2388 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 2389 OutVariants, CDP, DepVars); 2390 } 2391 } 2392 2393 2394 // GenerateVariants - Generate variants. For example, commutative patterns can 2395 // match multiple ways. Add them to PatternsToMatch as well. 2396 void CodeGenDAGPatterns::GenerateVariants() { 2397 DEBUG(errs() << "Generating instruction variants.\n"); 2398 2399 // Loop over all of the patterns we've collected, checking to see if we can 2400 // generate variants of the instruction, through the exploitation of 2401 // identities. This permits the target to provide aggressive matching without 2402 // the .td file having to contain tons of variants of instructions. 2403 // 2404 // Note that this loop adds new patterns to the PatternsToMatch list, but we 2405 // intentionally do not reconsider these. Any variants of added patterns have 2406 // already been added. 2407 // 2408 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 2409 MultipleUseVarSet DepVars; 2410 std::vector<TreePatternNode*> Variants; 2411 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 2412 DEBUG(errs() << "Dependent/multiply used variables: "); 2413 DEBUG(DumpDepVars(DepVars)); 2414 DEBUG(errs() << "\n"); 2415 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, DepVars); 2416 2417 assert(!Variants.empty() && "Must create at least original variant!"); 2418 Variants.erase(Variants.begin()); // Remove the original pattern. 2419 2420 if (Variants.empty()) // No variants for this pattern. 2421 continue; 2422 2423 DEBUG(errs() << "FOUND VARIANTS OF: "; 2424 PatternsToMatch[i].getSrcPattern()->dump(); 2425 errs() << "\n"); 2426 2427 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 2428 TreePatternNode *Variant = Variants[v]; 2429 2430 DEBUG(errs() << " VAR#" << v << ": "; 2431 Variant->dump(); 2432 errs() << "\n"); 2433 2434 // Scan to see if an instruction or explicit pattern already matches this. 2435 bool AlreadyExists = false; 2436 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 2437 // Skip if the top level predicates do not match. 2438 if (PatternsToMatch[i].getPredicates() != 2439 PatternsToMatch[p].getPredicates()) 2440 continue; 2441 // Check to see if this variant already exists. 2442 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), DepVars)) { 2443 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 2444 AlreadyExists = true; 2445 break; 2446 } 2447 } 2448 // If we already have it, ignore the variant. 2449 if (AlreadyExists) continue; 2450 2451 // Otherwise, add it to the list of patterns we have. 2452 PatternsToMatch. 2453 push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), 2454 Variant, PatternsToMatch[i].getDstPattern(), 2455 PatternsToMatch[i].getDstRegs(), 2456 PatternsToMatch[i].getAddedComplexity())); 2457 } 2458 2459 DEBUG(errs() << "\n"); 2460 } 2461 } 2462 2463