1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include <algorithm>
25 #include <cstdio>
26 #include <set>
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "dag-patterns"
30 
31 //===----------------------------------------------------------------------===//
32 //  EEVT::TypeSet Implementation
33 //===----------------------------------------------------------------------===//
34 
35 static inline bool isInteger(MVT::SimpleValueType VT) {
36   return MVT(VT).isInteger();
37 }
38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
39   return MVT(VT).isFloatingPoint();
40 }
41 static inline bool isVector(MVT::SimpleValueType VT) {
42   return MVT(VT).isVector();
43 }
44 static inline bool isScalar(MVT::SimpleValueType VT) {
45   return !MVT(VT).isVector();
46 }
47 
48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
49   if (VT == MVT::iAny)
50     EnforceInteger(TP);
51   else if (VT == MVT::fAny)
52     EnforceFloatingPoint(TP);
53   else if (VT == MVT::vAny)
54     EnforceVector(TP);
55   else {
56     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
57             VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!");
58     TypeVec.push_back(VT);
59   }
60 }
61 
62 
63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
64   assert(!VTList.empty() && "empty list?");
65   TypeVec.append(VTList.begin(), VTList.end());
66 
67   if (!VTList.empty())
68     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
69            VTList[0] != MVT::fAny);
70 
71   // Verify no duplicates.
72   array_pod_sort(TypeVec.begin(), TypeVec.end());
73   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
74 }
75 
76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
77 /// on completely unknown type sets.
78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
79                                           bool (*Pred)(MVT::SimpleValueType),
80                                           const char *PredicateName) {
81   assert(isCompletelyUnknown());
82   ArrayRef<MVT::SimpleValueType> LegalTypes =
83     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
84 
85   if (TP.hasError())
86     return false;
87 
88   for (MVT::SimpleValueType VT : LegalTypes)
89     if (!Pred || Pred(VT))
90       TypeVec.push_back(VT);
91 
92   // If we have nothing that matches the predicate, bail out.
93   if (TypeVec.empty()) {
94     TP.error("Type inference contradiction found, no " +
95              std::string(PredicateName) + " types found");
96     return false;
97   }
98   // No need to sort with one element.
99   if (TypeVec.size() == 1) return true;
100 
101   // Remove duplicates.
102   array_pod_sort(TypeVec.begin(), TypeVec.end());
103   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
104 
105   return true;
106 }
107 
108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
109 /// integer value type.
110 bool EEVT::TypeSet::hasIntegerTypes() const {
111   return any_of(TypeVec, isInteger);
112 }
113 
114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115 /// a floating point value type.
116 bool EEVT::TypeSet::hasFloatingPointTypes() const {
117   return any_of(TypeVec, isFloatingPoint);
118 }
119 
120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
121 bool EEVT::TypeSet::hasScalarTypes() const {
122   return any_of(TypeVec, isScalar);
123 }
124 
125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
126 /// value type.
127 bool EEVT::TypeSet::hasVectorTypes() const {
128   return any_of(TypeVec, isVector);
129 }
130 
131 
132 std::string EEVT::TypeSet::getName() const {
133   if (TypeVec.empty()) return "<empty>";
134 
135   std::string Result;
136 
137   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
138     std::string VTName = llvm::getEnumName(TypeVec[i]);
139     // Strip off MVT:: prefix if present.
140     if (VTName.substr(0,5) == "MVT::")
141       VTName = VTName.substr(5);
142     if (i) Result += ':';
143     Result += VTName;
144   }
145 
146   if (TypeVec.size() == 1)
147     return Result;
148   return "{" + Result + "}";
149 }
150 
151 /// MergeInTypeInfo - This merges in type information from the specified
152 /// argument.  If 'this' changes, it returns true.  If the two types are
153 /// contradictory (e.g. merge f32 into i32) then this flags an error.
154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
155   if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
156     return false;
157 
158   if (isCompletelyUnknown()) {
159     *this = InVT;
160     return true;
161   }
162 
163   assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns");
164 
165   // Handle the abstract cases, seeing if we can resolve them better.
166   switch (TypeVec[0]) {
167   default: break;
168   case MVT::iPTR:
169   case MVT::iPTRAny:
170     if (InVT.hasIntegerTypes()) {
171       EEVT::TypeSet InCopy(InVT);
172       InCopy.EnforceInteger(TP);
173       InCopy.EnforceScalar(TP);
174 
175       if (InCopy.isConcrete()) {
176         // If the RHS has one integer type, upgrade iPTR to i32.
177         TypeVec[0] = InVT.TypeVec[0];
178         return true;
179       }
180 
181       // If the input has multiple scalar integers, this doesn't add any info.
182       if (!InCopy.isCompletelyUnknown())
183         return false;
184     }
185     break;
186   }
187 
188   // If the input constraint is iAny/iPTR and this is an integer type list,
189   // remove non-integer types from the list.
190   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
191       hasIntegerTypes()) {
192     bool MadeChange = EnforceInteger(TP);
193 
194     // If we're merging in iPTR/iPTRAny and the node currently has a list of
195     // multiple different integer types, replace them with a single iPTR.
196     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
197         TypeVec.size() != 1) {
198       TypeVec.assign(1, InVT.TypeVec[0]);
199       MadeChange = true;
200     }
201 
202     return MadeChange;
203   }
204 
205   // If this is a type list and the RHS is a typelist as well, eliminate entries
206   // from this list that aren't in the other one.
207   TypeSet InputSet(*this);
208 
209   TypeVec.clear();
210   std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(),
211                         InVT.TypeVec.begin(), InVT.TypeVec.end(),
212                         std::back_inserter(TypeVec));
213 
214   // If the intersection is the same size as the original set then we're done.
215   if (TypeVec.size() == InputSet.TypeVec.size())
216     return false;
217 
218   // If we removed all of our types, we have a type contradiction.
219   if (!TypeVec.empty())
220     return true;
221 
222   // FIXME: Really want an SMLoc here!
223   TP.error("Type inference contradiction found, merging '" +
224            InVT.getName() + "' into '" + InputSet.getName() + "'");
225   return false;
226 }
227 
228 /// EnforceInteger - Remove all non-integer types from this set.
229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
230   if (TP.hasError())
231     return false;
232   // If we know nothing, then get the full set.
233   if (TypeVec.empty())
234     return FillWithPossibleTypes(TP, isInteger, "integer");
235 
236   if (!hasFloatingPointTypes())
237     return false;
238 
239   TypeSet InputSet(*this);
240 
241   // Filter out all the fp types.
242   TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isInteger))),
243                 TypeVec.end());
244 
245   if (TypeVec.empty()) {
246     TP.error("Type inference contradiction found, '" +
247              InputSet.getName() + "' needs to be integer");
248     return false;
249   }
250   return true;
251 }
252 
253 /// EnforceFloatingPoint - Remove all integer types from this set.
254 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
255   if (TP.hasError())
256     return false;
257   // If we know nothing, then get the full set.
258   if (TypeVec.empty())
259     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
260 
261   if (!hasIntegerTypes())
262     return false;
263 
264   TypeSet InputSet(*this);
265 
266   // Filter out all the integer types.
267   TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isFloatingPoint))),
268                 TypeVec.end());
269 
270   if (TypeVec.empty()) {
271     TP.error("Type inference contradiction found, '" +
272              InputSet.getName() + "' needs to be floating point");
273     return false;
274   }
275   return true;
276 }
277 
278 /// EnforceScalar - Remove all vector types from this.
279 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
280   if (TP.hasError())
281     return false;
282 
283   // If we know nothing, then get the full set.
284   if (TypeVec.empty())
285     return FillWithPossibleTypes(TP, isScalar, "scalar");
286 
287   if (!hasVectorTypes())
288     return false;
289 
290   TypeSet InputSet(*this);
291 
292   // Filter out all the vector types.
293   TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isScalar))),
294                 TypeVec.end());
295 
296   if (TypeVec.empty()) {
297     TP.error("Type inference contradiction found, '" +
298              InputSet.getName() + "' needs to be scalar");
299     return false;
300   }
301   return true;
302 }
303 
304 /// EnforceVector - Remove all vector types from this.
305 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
306   if (TP.hasError())
307     return false;
308 
309   // If we know nothing, then get the full set.
310   if (TypeVec.empty())
311     return FillWithPossibleTypes(TP, isVector, "vector");
312 
313   TypeSet InputSet(*this);
314   bool MadeChange = false;
315 
316   // Filter out all the scalar types.
317   TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isVector))),
318                 TypeVec.end());
319 
320   if (TypeVec.empty()) {
321     TP.error("Type inference contradiction found, '" +
322              InputSet.getName() + "' needs to be a vector");
323     return false;
324   }
325   return MadeChange;
326 }
327 
328 
329 
330 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
331 /// this should be based on the element type. Update this and other based on
332 /// this information.
333 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
334   if (TP.hasError())
335     return false;
336 
337   // Both operands must be integer or FP, but we don't care which.
338   bool MadeChange = false;
339 
340   if (isCompletelyUnknown())
341     MadeChange = FillWithPossibleTypes(TP);
342 
343   if (Other.isCompletelyUnknown())
344     MadeChange = Other.FillWithPossibleTypes(TP);
345 
346   // If one side is known to be integer or known to be FP but the other side has
347   // no information, get at least the type integrality info in there.
348   if (!hasFloatingPointTypes())
349     MadeChange |= Other.EnforceInteger(TP);
350   else if (!hasIntegerTypes())
351     MadeChange |= Other.EnforceFloatingPoint(TP);
352   if (!Other.hasFloatingPointTypes())
353     MadeChange |= EnforceInteger(TP);
354   else if (!Other.hasIntegerTypes())
355     MadeChange |= EnforceFloatingPoint(TP);
356 
357   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
358          "Should have a type list now");
359 
360   // If one contains vectors but the other doesn't pull vectors out.
361   if (!hasVectorTypes())
362     MadeChange |= Other.EnforceScalar(TP);
363   else if (!hasScalarTypes())
364     MadeChange |= Other.EnforceVector(TP);
365   if (!Other.hasVectorTypes())
366     MadeChange |= EnforceScalar(TP);
367   else if (!Other.hasScalarTypes())
368     MadeChange |= EnforceVector(TP);
369 
370   // This code does not currently handle nodes which have multiple types,
371   // where some types are integer, and some are fp.  Assert that this is not
372   // the case.
373   assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
374          !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
375          "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
376 
377   if (TP.hasError())
378     return false;
379 
380   // Okay, find the smallest type from current set and remove anything the
381   // same or smaller from the other set. We need to ensure that the scalar
382   // type size is smaller than the scalar size of the smallest type. For
383   // vectors, we also need to make sure that the total size is no larger than
384   // the size of the smallest type.
385   {
386     TypeSet InputSet(Other);
387     MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(),
388       [](MVT A, MVT B) {
389         return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
390                (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
391                 A.getSizeInBits() < B.getSizeInBits());
392       });
393 
394     auto I = remove_if(Other.TypeVec, [Smallest](MVT OtherVT) {
395       // Don't compare vector and non-vector types.
396       if (OtherVT.isVector() != Smallest.isVector())
397         return false;
398       // The getSizeInBits() check here is only needed for vectors, but is
399       // a subset of the scalar check for scalars so no need to qualify.
400       return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() ||
401              OtherVT.getSizeInBits() < Smallest.getSizeInBits();
402     });
403     MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types.
404     Other.TypeVec.erase(I, Other.TypeVec.end());
405 
406     if (Other.TypeVec.empty()) {
407       TP.error("Type inference contradiction found, '" + InputSet.getName() +
408                "' has nothing larger than '" + getName() +"'!");
409       return false;
410     }
411   }
412 
413   // Okay, find the largest type from the other set and remove anything the
414   // same or smaller from the current set. We need to ensure that the scalar
415   // type size is larger than the scalar size of the largest type. For
416   // vectors, we also need to make sure that the total size is no smaller than
417   // the size of the largest type.
418   {
419     TypeSet InputSet(*this);
420     MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(),
421       [](MVT A, MVT B) {
422         return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
423                (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
424                 A.getSizeInBits() < B.getSizeInBits());
425       });
426     auto I = remove_if(TypeVec, [Largest](MVT OtherVT) {
427       // Don't compare vector and non-vector types.
428       if (OtherVT.isVector() != Largest.isVector())
429         return false;
430       return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() ||
431              OtherVT.getSizeInBits() > Largest.getSizeInBits();
432     });
433     MadeChange |= I != TypeVec.end(); // If we're about to remove types.
434     TypeVec.erase(I, TypeVec.end());
435 
436     if (TypeVec.empty()) {
437       TP.error("Type inference contradiction found, '" + InputSet.getName() +
438                "' has nothing smaller than '" + Other.getName() +"'!");
439       return false;
440     }
441   }
442 
443   return MadeChange;
444 }
445 
446 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
447 /// whose element is specified by VTOperand.
448 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT,
449                                            TreePattern &TP) {
450   bool MadeChange = false;
451 
452   MadeChange |= EnforceVector(TP);
453 
454   TypeSet InputSet(*this);
455 
456   // Filter out all the types which don't have the right element type.
457   auto I = remove_if(TypeVec, [VT](MVT VVT) {
458     return VVT.getVectorElementType().SimpleTy != VT;
459   });
460   MadeChange |= I != TypeVec.end();
461   TypeVec.erase(I, TypeVec.end());
462 
463   if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
464     TP.error("Type inference contradiction found, forcing '" +
465              InputSet.getName() + "' to have a vector element of type " +
466              getEnumName(VT));
467     return false;
468   }
469 
470   return MadeChange;
471 }
472 
473 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
474 /// whose element is specified by VTOperand.
475 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
476                                            TreePattern &TP) {
477   if (TP.hasError())
478     return false;
479 
480   // "This" must be a vector and "VTOperand" must be a scalar.
481   bool MadeChange = false;
482   MadeChange |= EnforceVector(TP);
483   MadeChange |= VTOperand.EnforceScalar(TP);
484 
485   // If we know the vector type, it forces the scalar to agree.
486   if (isConcrete()) {
487     MVT IVT = getConcrete();
488     IVT = IVT.getVectorElementType();
489     return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
490   }
491 
492   // If the scalar type is known, filter out vector types whose element types
493   // disagree.
494   if (!VTOperand.isConcrete())
495     return MadeChange;
496 
497   MVT::SimpleValueType VT = VTOperand.getConcrete();
498 
499   MadeChange |= EnforceVectorEltTypeIs(VT, TP);
500 
501   return MadeChange;
502 }
503 
504 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a
505 /// vector type specified by VTOperand.
506 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
507                                                  TreePattern &TP) {
508   if (TP.hasError())
509     return false;
510 
511   // "This" must be a vector and "VTOperand" must be a vector.
512   bool MadeChange = false;
513   MadeChange |= EnforceVector(TP);
514   MadeChange |= VTOperand.EnforceVector(TP);
515 
516   // If one side is known to be integer or known to be FP but the other side has
517   // no information, get at least the type integrality info in there.
518   if (!hasFloatingPointTypes())
519     MadeChange |= VTOperand.EnforceInteger(TP);
520   else if (!hasIntegerTypes())
521     MadeChange |= VTOperand.EnforceFloatingPoint(TP);
522   if (!VTOperand.hasFloatingPointTypes())
523     MadeChange |= EnforceInteger(TP);
524   else if (!VTOperand.hasIntegerTypes())
525     MadeChange |= EnforceFloatingPoint(TP);
526 
527   assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
528          "Should have a type list now");
529 
530   // If we know the vector type, it forces the scalar types to agree.
531   // Also force one vector to have more elements than the other.
532   if (isConcrete()) {
533     MVT IVT = getConcrete();
534     unsigned NumElems = IVT.getVectorNumElements();
535     IVT = IVT.getVectorElementType();
536 
537     EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
538     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
539 
540     // Only keep types that have less elements than VTOperand.
541     TypeSet InputSet(VTOperand);
542 
543     auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) {
544       return VVT.getVectorNumElements() >= NumElems;
545     });
546     MadeChange |= I != VTOperand.TypeVec.end();
547     VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
548 
549     if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
550       TP.error("Type inference contradiction found, forcing '" +
551                InputSet.getName() + "' to have less vector elements than '" +
552                getName() + "'");
553       return false;
554     }
555   } else if (VTOperand.isConcrete()) {
556     MVT IVT = VTOperand.getConcrete();
557     unsigned NumElems = IVT.getVectorNumElements();
558     IVT = IVT.getVectorElementType();
559 
560     EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
561     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
562 
563     // Only keep types that have more elements than 'this'.
564     TypeSet InputSet(*this);
565 
566     auto I = remove_if(TypeVec, [NumElems](MVT VVT) {
567       return VVT.getVectorNumElements() <= NumElems;
568     });
569     MadeChange |= I != TypeVec.end();
570     TypeVec.erase(I, TypeVec.end());
571 
572     if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
573       TP.error("Type inference contradiction found, forcing '" +
574                InputSet.getName() + "' to have more vector elements than '" +
575                VTOperand.getName() + "'");
576       return false;
577     }
578   }
579 
580   return MadeChange;
581 }
582 
583 /// EnforceameNumElts - If VTOperand is a scalar, then 'this' is a scalar. If
584 /// VTOperand is a vector, then 'this' must have the same number of elements.
585 bool EEVT::TypeSet::EnforceSameNumElts(EEVT::TypeSet &VTOperand,
586                                        TreePattern &TP) {
587   if (TP.hasError())
588     return false;
589 
590   bool MadeChange = false;
591 
592   if (isCompletelyUnknown())
593     MadeChange = FillWithPossibleTypes(TP);
594 
595   if (VTOperand.isCompletelyUnknown())
596     MadeChange = VTOperand.FillWithPossibleTypes(TP);
597 
598   // If one contains vectors but the other doesn't pull vectors out.
599   if (!hasVectorTypes())
600     MadeChange |= VTOperand.EnforceScalar(TP);
601   else if (!hasScalarTypes())
602     MadeChange |= VTOperand.EnforceVector(TP);
603   if (!VTOperand.hasVectorTypes())
604     MadeChange |= EnforceScalar(TP);
605   else if (!VTOperand.hasScalarTypes())
606     MadeChange |= EnforceVector(TP);
607 
608   // If one type is a vector, make sure the other has the same element count.
609   // If this a scalar, then we are already done with the above.
610   if (isConcrete()) {
611     MVT IVT = getConcrete();
612     if (IVT.isVector()) {
613       unsigned NumElems = IVT.getVectorNumElements();
614 
615       // Only keep types that have same elements as 'this'.
616       TypeSet InputSet(VTOperand);
617 
618       auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) {
619         return VVT.getVectorNumElements() != NumElems;
620       });
621       MadeChange |= I != VTOperand.TypeVec.end();
622       VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
623 
624       if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
625         TP.error("Type inference contradiction found, forcing '" +
626                  InputSet.getName() + "' to have same number elements as '" +
627                  getName() + "'");
628         return false;
629       }
630     }
631   } else if (VTOperand.isConcrete()) {
632     MVT IVT = VTOperand.getConcrete();
633     if (IVT.isVector()) {
634       unsigned NumElems = IVT.getVectorNumElements();
635 
636       // Only keep types that have same elements as VTOperand.
637       TypeSet InputSet(*this);
638 
639       auto I = remove_if(TypeVec, [NumElems](MVT VVT) {
640         return VVT.getVectorNumElements() != NumElems;
641       });
642       MadeChange |= I != TypeVec.end();
643       TypeVec.erase(I, TypeVec.end());
644 
645       if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
646         TP.error("Type inference contradiction found, forcing '" +
647                  InputSet.getName() + "' to have same number elements than '" +
648                  VTOperand.getName() + "'");
649         return false;
650       }
651     }
652   }
653 
654   return MadeChange;
655 }
656 
657 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand.
658 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand,
659                                     TreePattern &TP) {
660   if (TP.hasError())
661     return false;
662 
663   bool MadeChange = false;
664 
665   if (isCompletelyUnknown())
666     MadeChange = FillWithPossibleTypes(TP);
667 
668   if (VTOperand.isCompletelyUnknown())
669     MadeChange = VTOperand.FillWithPossibleTypes(TP);
670 
671   // If we know one of the types, it forces the other type agree.
672   if (isConcrete()) {
673     MVT IVT = getConcrete();
674     unsigned Size = IVT.getSizeInBits();
675 
676     // Only keep types that have the same size as 'this'.
677     TypeSet InputSet(VTOperand);
678 
679     auto I = remove_if(VTOperand.TypeVec,
680                        [&](MVT VT) { return VT.getSizeInBits() != Size; });
681     MadeChange |= I != VTOperand.TypeVec.end();
682     VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
683 
684     if (VTOperand.TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
685       TP.error("Type inference contradiction found, forcing '" +
686                InputSet.getName() + "' to have same size as '" +
687                getName() + "'");
688       return false;
689     }
690   } else if (VTOperand.isConcrete()) {
691     MVT IVT = VTOperand.getConcrete();
692     unsigned Size = IVT.getSizeInBits();
693 
694     // Only keep types that have the same size as VTOperand.
695     TypeSet InputSet(*this);
696 
697     auto I =
698         remove_if(TypeVec, [&](MVT VT) { return VT.getSizeInBits() != Size; });
699     MadeChange |= I != TypeVec.end();
700     TypeVec.erase(I, TypeVec.end());
701 
702     if (TypeVec.empty()) {  // FIXME: Really want an SMLoc here!
703       TP.error("Type inference contradiction found, forcing '" +
704                InputSet.getName() + "' to have same size as '" +
705                VTOperand.getName() + "'");
706       return false;
707     }
708   }
709 
710   return MadeChange;
711 }
712 
713 //===----------------------------------------------------------------------===//
714 // Helpers for working with extended types.
715 
716 /// Dependent variable map for CodeGenDAGPattern variant generation
717 typedef std::map<std::string, int> DepVarMap;
718 
719 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
720   if (N->isLeaf()) {
721     if (isa<DefInit>(N->getLeafValue()))
722       DepMap[N->getName()]++;
723   } else {
724     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
725       FindDepVarsOf(N->getChild(i), DepMap);
726   }
727 }
728 
729 /// Find dependent variables within child patterns
730 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
731   DepVarMap depcounts;
732   FindDepVarsOf(N, depcounts);
733   for (const std::pair<std::string, int> &Pair : depcounts) {
734     if (Pair.second > 1)
735       DepVars.insert(Pair.first);
736   }
737 }
738 
739 #ifndef NDEBUG
740 /// Dump the dependent variable set:
741 static void DumpDepVars(MultipleUseVarSet &DepVars) {
742   if (DepVars.empty()) {
743     DEBUG(errs() << "<empty set>");
744   } else {
745     DEBUG(errs() << "[ ");
746     for (const std::string &DepVar : DepVars) {
747       DEBUG(errs() << DepVar << " ");
748     }
749     DEBUG(errs() << "]");
750   }
751 }
752 #endif
753 
754 
755 //===----------------------------------------------------------------------===//
756 // TreePredicateFn Implementation
757 //===----------------------------------------------------------------------===//
758 
759 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
760 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
761   assert((getPredCode().empty() || getImmCode().empty()) &&
762         ".td file corrupt: can't have a node predicate *and* an imm predicate");
763 }
764 
765 std::string TreePredicateFn::getPredCode() const {
766   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
767 }
768 
769 std::string TreePredicateFn::getImmCode() const {
770   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
771 }
772 
773 
774 /// isAlwaysTrue - Return true if this is a noop predicate.
775 bool TreePredicateFn::isAlwaysTrue() const {
776   return getPredCode().empty() && getImmCode().empty();
777 }
778 
779 /// Return the name to use in the generated code to reference this, this is
780 /// "Predicate_foo" if from a pattern fragment "foo".
781 std::string TreePredicateFn::getFnName() const {
782   return "Predicate_" + PatFragRec->getRecord()->getName().str();
783 }
784 
785 /// getCodeToRunOnSDNode - Return the code for the function body that
786 /// evaluates this predicate.  The argument is expected to be in "Node",
787 /// not N.  This handles casting and conversion to a concrete node type as
788 /// appropriate.
789 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
790   // Handle immediate predicates first.
791   std::string ImmCode = getImmCode();
792   if (!ImmCode.empty()) {
793     std::string Result =
794       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
795     return Result + ImmCode;
796   }
797 
798   // Handle arbitrary node predicates.
799   assert(!getPredCode().empty() && "Don't have any predicate code!");
800   std::string ClassName;
801   if (PatFragRec->getOnlyTree()->isLeaf())
802     ClassName = "SDNode";
803   else {
804     Record *Op = PatFragRec->getOnlyTree()->getOperator();
805     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
806   }
807   std::string Result;
808   if (ClassName == "SDNode")
809     Result = "    SDNode *N = Node;\n";
810   else
811     Result = "    auto *N = cast<" + ClassName + ">(Node);\n";
812 
813   return Result + getPredCode();
814 }
815 
816 //===----------------------------------------------------------------------===//
817 // PatternToMatch implementation
818 //
819 
820 
821 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
822 /// patterns before small ones.  This is used to determine the size of a
823 /// pattern.
824 static unsigned getPatternSize(const TreePatternNode *P,
825                                const CodeGenDAGPatterns &CGP) {
826   unsigned Size = 3;  // The node itself.
827   // If the root node is a ConstantSDNode, increases its size.
828   // e.g. (set R32:$dst, 0).
829   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
830     Size += 2;
831 
832   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
833   if (AM) {
834     Size += AM->getComplexity();
835 
836     // We don't want to count any children twice, so return early.
837     return Size;
838   }
839 
840   // If this node has some predicate function that must match, it adds to the
841   // complexity of this node.
842   if (!P->getPredicateFns().empty())
843     ++Size;
844 
845   // Count children in the count if they are also nodes.
846   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
847     TreePatternNode *Child = P->getChild(i);
848     if (!Child->isLeaf() && Child->getNumTypes() &&
849         Child->getType(0) != MVT::Other)
850       Size += getPatternSize(Child, CGP);
851     else if (Child->isLeaf()) {
852       if (isa<IntInit>(Child->getLeafValue()))
853         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
854       else if (Child->getComplexPatternInfo(CGP))
855         Size += getPatternSize(Child, CGP);
856       else if (!Child->getPredicateFns().empty())
857         ++Size;
858     }
859   }
860 
861   return Size;
862 }
863 
864 /// Compute the complexity metric for the input pattern.  This roughly
865 /// corresponds to the number of nodes that are covered.
866 int PatternToMatch::
867 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
868   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
869 }
870 
871 
872 /// getPredicateCheck - Return a single string containing all of this
873 /// pattern's predicates concatenated with "&&" operators.
874 ///
875 std::string PatternToMatch::getPredicateCheck() const {
876   SmallVector<Record *, 4> PredicateRecs;
877   for (Init *I : Predicates->getValues()) {
878     if (DefInit *Pred = dyn_cast<DefInit>(I)) {
879       Record *Def = Pred->getDef();
880       if (!Def->isSubClassOf("Predicate")) {
881 #ifndef NDEBUG
882         Def->dump();
883 #endif
884         llvm_unreachable("Unknown predicate type!");
885       }
886       PredicateRecs.push_back(Def);
887     }
888   }
889   // Sort so that different orders get canonicalized to the same string.
890   std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord());
891 
892   SmallString<128> PredicateCheck;
893   for (Record *Pred : PredicateRecs) {
894     if (!PredicateCheck.empty())
895       PredicateCheck += " && ";
896     PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")";
897   }
898 
899   return PredicateCheck.str();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 // SDTypeConstraint implementation
904 //
905 
906 SDTypeConstraint::SDTypeConstraint(Record *R) {
907   OperandNo = R->getValueAsInt("OperandNum");
908 
909   if (R->isSubClassOf("SDTCisVT")) {
910     ConstraintType = SDTCisVT;
911     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
912     if (x.SDTCisVT_Info.VT == MVT::isVoid)
913       PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
914 
915   } else if (R->isSubClassOf("SDTCisPtrTy")) {
916     ConstraintType = SDTCisPtrTy;
917   } else if (R->isSubClassOf("SDTCisInt")) {
918     ConstraintType = SDTCisInt;
919   } else if (R->isSubClassOf("SDTCisFP")) {
920     ConstraintType = SDTCisFP;
921   } else if (R->isSubClassOf("SDTCisVec")) {
922     ConstraintType = SDTCisVec;
923   } else if (R->isSubClassOf("SDTCisSameAs")) {
924     ConstraintType = SDTCisSameAs;
925     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
926   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
927     ConstraintType = SDTCisVTSmallerThanOp;
928     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
929       R->getValueAsInt("OtherOperandNum");
930   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
931     ConstraintType = SDTCisOpSmallerThanOp;
932     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
933       R->getValueAsInt("BigOperandNum");
934   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
935     ConstraintType = SDTCisEltOfVec;
936     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
937   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
938     ConstraintType = SDTCisSubVecOfVec;
939     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
940       R->getValueAsInt("OtherOpNum");
941   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
942     ConstraintType = SDTCVecEltisVT;
943     x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
944     if (MVT(x.SDTCVecEltisVT_Info.VT).isVector())
945       PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT");
946     if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() &&
947         !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint())
948       PrintFatalError(R->getLoc(), "Must use integer or floating point type "
949                                    "as SDTCVecEltisVT");
950   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
951     ConstraintType = SDTCisSameNumEltsAs;
952     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
953       R->getValueAsInt("OtherOperandNum");
954   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
955     ConstraintType = SDTCisSameSizeAs;
956     x.SDTCisSameSizeAs_Info.OtherOperandNum =
957       R->getValueAsInt("OtherOperandNum");
958   } else {
959     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
960   }
961 }
962 
963 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
964 /// N, and the result number in ResNo.
965 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
966                                       const SDNodeInfo &NodeInfo,
967                                       unsigned &ResNo) {
968   unsigned NumResults = NodeInfo.getNumResults();
969   if (OpNo < NumResults) {
970     ResNo = OpNo;
971     return N;
972   }
973 
974   OpNo -= NumResults;
975 
976   if (OpNo >= N->getNumChildren()) {
977     std::string S;
978     raw_string_ostream OS(S);
979     OS << "Invalid operand number in type constraint "
980            << (OpNo+NumResults) << " ";
981     N->print(OS);
982     PrintFatalError(OS.str());
983   }
984 
985   return N->getChild(OpNo);
986 }
987 
988 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
989 /// constraint to the nodes operands.  This returns true if it makes a
990 /// change, false otherwise.  If a type contradiction is found, flag an error.
991 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
992                                            const SDNodeInfo &NodeInfo,
993                                            TreePattern &TP) const {
994   if (TP.hasError())
995     return false;
996 
997   unsigned ResNo = 0; // The result number being referenced.
998   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
999 
1000   switch (ConstraintType) {
1001   case SDTCisVT:
1002     // Operand must be a particular type.
1003     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
1004   case SDTCisPtrTy:
1005     // Operand must be same as target pointer type.
1006     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1007   case SDTCisInt:
1008     // Require it to be one of the legal integer VTs.
1009     return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
1010   case SDTCisFP:
1011     // Require it to be one of the legal fp VTs.
1012     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
1013   case SDTCisVec:
1014     // Require it to be one of the legal vector VTs.
1015     return NodeToApply->getExtType(ResNo).EnforceVector(TP);
1016   case SDTCisSameAs: {
1017     unsigned OResNo = 0;
1018     TreePatternNode *OtherNode =
1019       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1020     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1021            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1022   }
1023   case SDTCisVTSmallerThanOp: {
1024     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1025     // have an integer type that is smaller than the VT.
1026     if (!NodeToApply->isLeaf() ||
1027         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1028         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1029                ->isSubClassOf("ValueType")) {
1030       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1031       return false;
1032     }
1033     MVT::SimpleValueType VT =
1034      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
1035 
1036     EEVT::TypeSet TypeListTmp(VT, TP);
1037 
1038     unsigned OResNo = 0;
1039     TreePatternNode *OtherNode =
1040       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1041                     OResNo);
1042 
1043     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
1044   }
1045   case SDTCisOpSmallerThanOp: {
1046     unsigned BResNo = 0;
1047     TreePatternNode *BigOperand =
1048       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1049                     BResNo);
1050     return NodeToApply->getExtType(ResNo).
1051                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
1052   }
1053   case SDTCisEltOfVec: {
1054     unsigned VResNo = 0;
1055     TreePatternNode *VecOperand =
1056       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1057                     VResNo);
1058 
1059     // Filter vector types out of VecOperand that don't have the right element
1060     // type.
1061     return VecOperand->getExtType(VResNo).
1062       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
1063   }
1064   case SDTCisSubVecOfVec: {
1065     unsigned VResNo = 0;
1066     TreePatternNode *BigVecOperand =
1067       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1068                     VResNo);
1069 
1070     // Filter vector types out of BigVecOperand that don't have the
1071     // right subvector type.
1072     return BigVecOperand->getExtType(VResNo).
1073       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
1074   }
1075   case SDTCVecEltisVT: {
1076     return NodeToApply->getExtType(ResNo).
1077       EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP);
1078   }
1079   case SDTCisSameNumEltsAs: {
1080     unsigned OResNo = 0;
1081     TreePatternNode *OtherNode =
1082       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1083                     N, NodeInfo, OResNo);
1084     return OtherNode->getExtType(OResNo).
1085       EnforceSameNumElts(NodeToApply->getExtType(ResNo), TP);
1086   }
1087   case SDTCisSameSizeAs: {
1088     unsigned OResNo = 0;
1089     TreePatternNode *OtherNode =
1090       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1091                     N, NodeInfo, OResNo);
1092     return OtherNode->getExtType(OResNo).
1093       EnforceSameSize(NodeToApply->getExtType(ResNo), TP);
1094   }
1095   }
1096   llvm_unreachable("Invalid ConstraintType!");
1097 }
1098 
1099 // Update the node type to match an instruction operand or result as specified
1100 // in the ins or outs lists on the instruction definition. Return true if the
1101 // type was actually changed.
1102 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1103                                              Record *Operand,
1104                                              TreePattern &TP) {
1105   // The 'unknown' operand indicates that types should be inferred from the
1106   // context.
1107   if (Operand->isSubClassOf("unknown_class"))
1108     return false;
1109 
1110   // The Operand class specifies a type directly.
1111   if (Operand->isSubClassOf("Operand"))
1112     return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
1113                           TP);
1114 
1115   // PointerLikeRegClass has a type that is determined at runtime.
1116   if (Operand->isSubClassOf("PointerLikeRegClass"))
1117     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1118 
1119   // Both RegisterClass and RegisterOperand operands derive their types from a
1120   // register class def.
1121   Record *RC = nullptr;
1122   if (Operand->isSubClassOf("RegisterClass"))
1123     RC = Operand;
1124   else if (Operand->isSubClassOf("RegisterOperand"))
1125     RC = Operand->getValueAsDef("RegClass");
1126 
1127   assert(RC && "Unknown operand type");
1128   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1129   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1130 }
1131 
1132 
1133 //===----------------------------------------------------------------------===//
1134 // SDNodeInfo implementation
1135 //
1136 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
1137   EnumName    = R->getValueAsString("Opcode");
1138   SDClassName = R->getValueAsString("SDClass");
1139   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1140   NumResults = TypeProfile->getValueAsInt("NumResults");
1141   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1142 
1143   // Parse the properties.
1144   Properties = 0;
1145   for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1146     if (Property->getName() == "SDNPCommutative") {
1147       Properties |= 1 << SDNPCommutative;
1148     } else if (Property->getName() == "SDNPAssociative") {
1149       Properties |= 1 << SDNPAssociative;
1150     } else if (Property->getName() == "SDNPHasChain") {
1151       Properties |= 1 << SDNPHasChain;
1152     } else if (Property->getName() == "SDNPOutGlue") {
1153       Properties |= 1 << SDNPOutGlue;
1154     } else if (Property->getName() == "SDNPInGlue") {
1155       Properties |= 1 << SDNPInGlue;
1156     } else if (Property->getName() == "SDNPOptInGlue") {
1157       Properties |= 1 << SDNPOptInGlue;
1158     } else if (Property->getName() == "SDNPMayStore") {
1159       Properties |= 1 << SDNPMayStore;
1160     } else if (Property->getName() == "SDNPMayLoad") {
1161       Properties |= 1 << SDNPMayLoad;
1162     } else if (Property->getName() == "SDNPSideEffect") {
1163       Properties |= 1 << SDNPSideEffect;
1164     } else if (Property->getName() == "SDNPMemOperand") {
1165       Properties |= 1 << SDNPMemOperand;
1166     } else if (Property->getName() == "SDNPVariadic") {
1167       Properties |= 1 << SDNPVariadic;
1168     } else {
1169       PrintFatalError("Unknown SD Node property '" +
1170                       Property->getName() + "' on node '" +
1171                       R->getName() + "'!");
1172     }
1173   }
1174 
1175 
1176   // Parse the type constraints.
1177   std::vector<Record*> ConstraintList =
1178     TypeProfile->getValueAsListOfDefs("Constraints");
1179   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1180 }
1181 
1182 /// getKnownType - If the type constraints on this node imply a fixed type
1183 /// (e.g. all stores return void, etc), then return it as an
1184 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1185 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1186   unsigned NumResults = getNumResults();
1187   assert(NumResults <= 1 &&
1188          "We only work with nodes with zero or one result so far!");
1189   assert(ResNo == 0 && "Only handles single result nodes so far");
1190 
1191   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1192     // Make sure that this applies to the correct node result.
1193     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1194       continue;
1195 
1196     switch (Constraint.ConstraintType) {
1197     default: break;
1198     case SDTypeConstraint::SDTCisVT:
1199       return Constraint.x.SDTCisVT_Info.VT;
1200     case SDTypeConstraint::SDTCisPtrTy:
1201       return MVT::iPTR;
1202     }
1203   }
1204   return MVT::Other;
1205 }
1206 
1207 //===----------------------------------------------------------------------===//
1208 // TreePatternNode implementation
1209 //
1210 
1211 TreePatternNode::~TreePatternNode() {
1212 #if 0 // FIXME: implement refcounted tree nodes!
1213   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1214     delete getChild(i);
1215 #endif
1216 }
1217 
1218 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1219   if (Operator->getName() == "set" ||
1220       Operator->getName() == "implicit")
1221     return 0;  // All return nothing.
1222 
1223   if (Operator->isSubClassOf("Intrinsic"))
1224     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1225 
1226   if (Operator->isSubClassOf("SDNode"))
1227     return CDP.getSDNodeInfo(Operator).getNumResults();
1228 
1229   if (Operator->isSubClassOf("PatFrag")) {
1230     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1231     // the forward reference case where one pattern fragment references another
1232     // before it is processed.
1233     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1234       return PFRec->getOnlyTree()->getNumTypes();
1235 
1236     // Get the result tree.
1237     DagInit *Tree = Operator->getValueAsDag("Fragment");
1238     Record *Op = nullptr;
1239     if (Tree)
1240       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1241         Op = DI->getDef();
1242     assert(Op && "Invalid Fragment");
1243     return GetNumNodeResults(Op, CDP);
1244   }
1245 
1246   if (Operator->isSubClassOf("Instruction")) {
1247     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1248 
1249     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1250 
1251     // Subtract any defaulted outputs.
1252     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1253       Record *OperandNode = InstInfo.Operands[i].Rec;
1254 
1255       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1256           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1257         --NumDefsToAdd;
1258     }
1259 
1260     // Add on one implicit def if it has a resolvable type.
1261     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1262       ++NumDefsToAdd;
1263     return NumDefsToAdd;
1264   }
1265 
1266   if (Operator->isSubClassOf("SDNodeXForm"))
1267     return 1;  // FIXME: Generalize SDNodeXForm
1268 
1269   if (Operator->isSubClassOf("ValueType"))
1270     return 1;  // A type-cast of one result.
1271 
1272   if (Operator->isSubClassOf("ComplexPattern"))
1273     return 1;
1274 
1275   errs() << *Operator;
1276   PrintFatalError("Unhandled node in GetNumNodeResults");
1277 }
1278 
1279 void TreePatternNode::print(raw_ostream &OS) const {
1280   if (isLeaf())
1281     OS << *getLeafValue();
1282   else
1283     OS << '(' << getOperator()->getName();
1284 
1285   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1286     OS << ':' << getExtType(i).getName();
1287 
1288   if (!isLeaf()) {
1289     if (getNumChildren() != 0) {
1290       OS << " ";
1291       getChild(0)->print(OS);
1292       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1293         OS << ", ";
1294         getChild(i)->print(OS);
1295       }
1296     }
1297     OS << ")";
1298   }
1299 
1300   for (const TreePredicateFn &Pred : PredicateFns)
1301     OS << "<<P:" << Pred.getFnName() << ">>";
1302   if (TransformFn)
1303     OS << "<<X:" << TransformFn->getName() << ">>";
1304   if (!getName().empty())
1305     OS << ":$" << getName();
1306 
1307 }
1308 void TreePatternNode::dump() const {
1309   print(errs());
1310 }
1311 
1312 /// isIsomorphicTo - Return true if this node is recursively
1313 /// isomorphic to the specified node.  For this comparison, the node's
1314 /// entire state is considered. The assigned name is ignored, since
1315 /// nodes with differing names are considered isomorphic. However, if
1316 /// the assigned name is present in the dependent variable set, then
1317 /// the assigned name is considered significant and the node is
1318 /// isomorphic if the names match.
1319 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1320                                      const MultipleUseVarSet &DepVars) const {
1321   if (N == this) return true;
1322   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1323       getPredicateFns() != N->getPredicateFns() ||
1324       getTransformFn() != N->getTransformFn())
1325     return false;
1326 
1327   if (isLeaf()) {
1328     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1329       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1330         return ((DI->getDef() == NDI->getDef())
1331                 && (DepVars.find(getName()) == DepVars.end()
1332                     || getName() == N->getName()));
1333       }
1334     }
1335     return getLeafValue() == N->getLeafValue();
1336   }
1337 
1338   if (N->getOperator() != getOperator() ||
1339       N->getNumChildren() != getNumChildren()) return false;
1340   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1341     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1342       return false;
1343   return true;
1344 }
1345 
1346 /// clone - Make a copy of this tree and all of its children.
1347 ///
1348 TreePatternNode *TreePatternNode::clone() const {
1349   TreePatternNode *New;
1350   if (isLeaf()) {
1351     New = new TreePatternNode(getLeafValue(), getNumTypes());
1352   } else {
1353     std::vector<TreePatternNode*> CChildren;
1354     CChildren.reserve(Children.size());
1355     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1356       CChildren.push_back(getChild(i)->clone());
1357     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1358   }
1359   New->setName(getName());
1360   New->Types = Types;
1361   New->setPredicateFns(getPredicateFns());
1362   New->setTransformFn(getTransformFn());
1363   return New;
1364 }
1365 
1366 /// RemoveAllTypes - Recursively strip all the types of this tree.
1367 void TreePatternNode::RemoveAllTypes() {
1368   // Reset to unknown type.
1369   std::fill(Types.begin(), Types.end(), EEVT::TypeSet());
1370   if (isLeaf()) return;
1371   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1372     getChild(i)->RemoveAllTypes();
1373 }
1374 
1375 
1376 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1377 /// with actual values specified by ArgMap.
1378 void TreePatternNode::
1379 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1380   if (isLeaf()) return;
1381 
1382   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1383     TreePatternNode *Child = getChild(i);
1384     if (Child->isLeaf()) {
1385       Init *Val = Child->getLeafValue();
1386       // Note that, when substituting into an output pattern, Val might be an
1387       // UnsetInit.
1388       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1389           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1390         // We found a use of a formal argument, replace it with its value.
1391         TreePatternNode *NewChild = ArgMap[Child->getName()];
1392         assert(NewChild && "Couldn't find formal argument!");
1393         assert((Child->getPredicateFns().empty() ||
1394                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1395                "Non-empty child predicate clobbered!");
1396         setChild(i, NewChild);
1397       }
1398     } else {
1399       getChild(i)->SubstituteFormalArguments(ArgMap);
1400     }
1401   }
1402 }
1403 
1404 
1405 /// InlinePatternFragments - If this pattern refers to any pattern
1406 /// fragments, inline them into place, giving us a pattern without any
1407 /// PatFrag references.
1408 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1409   if (TP.hasError())
1410     return nullptr;
1411 
1412   if (isLeaf())
1413      return this;  // nothing to do.
1414   Record *Op = getOperator();
1415 
1416   if (!Op->isSubClassOf("PatFrag")) {
1417     // Just recursively inline children nodes.
1418     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1419       TreePatternNode *Child = getChild(i);
1420       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1421 
1422       assert((Child->getPredicateFns().empty() ||
1423               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1424              "Non-empty child predicate clobbered!");
1425 
1426       setChild(i, NewChild);
1427     }
1428     return this;
1429   }
1430 
1431   // Otherwise, we found a reference to a fragment.  First, look up its
1432   // TreePattern record.
1433   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1434 
1435   // Verify that we are passing the right number of operands.
1436   if (Frag->getNumArgs() != Children.size()) {
1437     TP.error("'" + Op->getName() + "' fragment requires " +
1438              utostr(Frag->getNumArgs()) + " operands!");
1439     return nullptr;
1440   }
1441 
1442   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1443 
1444   TreePredicateFn PredFn(Frag);
1445   if (!PredFn.isAlwaysTrue())
1446     FragTree->addPredicateFn(PredFn);
1447 
1448   // Resolve formal arguments to their actual value.
1449   if (Frag->getNumArgs()) {
1450     // Compute the map of formal to actual arguments.
1451     std::map<std::string, TreePatternNode*> ArgMap;
1452     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1453       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1454 
1455     FragTree->SubstituteFormalArguments(ArgMap);
1456   }
1457 
1458   FragTree->setName(getName());
1459   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1460     FragTree->UpdateNodeType(i, getExtType(i), TP);
1461 
1462   // Transfer in the old predicates.
1463   for (const TreePredicateFn &Pred : getPredicateFns())
1464     FragTree->addPredicateFn(Pred);
1465 
1466   // Get a new copy of this fragment to stitch into here.
1467   //delete this;    // FIXME: implement refcounting!
1468 
1469   // The fragment we inlined could have recursive inlining that is needed.  See
1470   // if there are any pattern fragments in it and inline them as needed.
1471   return FragTree->InlinePatternFragments(TP);
1472 }
1473 
1474 /// getImplicitType - Check to see if the specified record has an implicit
1475 /// type which should be applied to it.  This will infer the type of register
1476 /// references from the register file information, for example.
1477 ///
1478 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1479 /// the F8RC register class argument in:
1480 ///
1481 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1482 ///
1483 /// When Unnamed is false, return the type of a named DAG operand such as the
1484 /// GPR:$src operand above.
1485 ///
1486 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1487                                      bool NotRegisters,
1488                                      bool Unnamed,
1489                                      TreePattern &TP) {
1490   // Check to see if this is a register operand.
1491   if (R->isSubClassOf("RegisterOperand")) {
1492     assert(ResNo == 0 && "Regoperand ref only has one result!");
1493     if (NotRegisters)
1494       return EEVT::TypeSet(); // Unknown.
1495     Record *RegClass = R->getValueAsDef("RegClass");
1496     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1497     return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1498   }
1499 
1500   // Check to see if this is a register or a register class.
1501   if (R->isSubClassOf("RegisterClass")) {
1502     assert(ResNo == 0 && "Regclass ref only has one result!");
1503     // An unnamed register class represents itself as an i32 immediate, for
1504     // example on a COPY_TO_REGCLASS instruction.
1505     if (Unnamed)
1506       return EEVT::TypeSet(MVT::i32, TP);
1507 
1508     // In a named operand, the register class provides the possible set of
1509     // types.
1510     if (NotRegisters)
1511       return EEVT::TypeSet(); // Unknown.
1512     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1513     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1514   }
1515 
1516   if (R->isSubClassOf("PatFrag")) {
1517     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1518     // Pattern fragment types will be resolved when they are inlined.
1519     return EEVT::TypeSet(); // Unknown.
1520   }
1521 
1522   if (R->isSubClassOf("Register")) {
1523     assert(ResNo == 0 && "Registers only produce one result!");
1524     if (NotRegisters)
1525       return EEVT::TypeSet(); // Unknown.
1526     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1527     return EEVT::TypeSet(T.getRegisterVTs(R));
1528   }
1529 
1530   if (R->isSubClassOf("SubRegIndex")) {
1531     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1532     return EEVT::TypeSet(MVT::i32, TP);
1533   }
1534 
1535   if (R->isSubClassOf("ValueType")) {
1536     assert(ResNo == 0 && "This node only has one result!");
1537     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1538     //
1539     //   (sext_inreg GPR:$src, i16)
1540     //                         ~~~
1541     if (Unnamed)
1542       return EEVT::TypeSet(MVT::Other, TP);
1543     // With a name, the ValueType simply provides the type of the named
1544     // variable.
1545     //
1546     //   (sext_inreg i32:$src, i16)
1547     //               ~~~~~~~~
1548     if (NotRegisters)
1549       return EEVT::TypeSet(); // Unknown.
1550     return EEVT::TypeSet(getValueType(R), TP);
1551   }
1552 
1553   if (R->isSubClassOf("CondCode")) {
1554     assert(ResNo == 0 && "This node only has one result!");
1555     // Using a CondCodeSDNode.
1556     return EEVT::TypeSet(MVT::Other, TP);
1557   }
1558 
1559   if (R->isSubClassOf("ComplexPattern")) {
1560     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1561     if (NotRegisters)
1562       return EEVT::TypeSet(); // Unknown.
1563    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1564                          TP);
1565   }
1566   if (R->isSubClassOf("PointerLikeRegClass")) {
1567     assert(ResNo == 0 && "Regclass can only have one result!");
1568     return EEVT::TypeSet(MVT::iPTR, TP);
1569   }
1570 
1571   if (R->getName() == "node" || R->getName() == "srcvalue" ||
1572       R->getName() == "zero_reg") {
1573     // Placeholder.
1574     return EEVT::TypeSet(); // Unknown.
1575   }
1576 
1577   if (R->isSubClassOf("Operand"))
1578     return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
1579 
1580   TP.error("Unknown node flavor used in pattern: " + R->getName());
1581   return EEVT::TypeSet(MVT::Other, TP);
1582 }
1583 
1584 
1585 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1586 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1587 const CodeGenIntrinsic *TreePatternNode::
1588 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1589   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1590       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1591       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1592     return nullptr;
1593 
1594   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1595   return &CDP.getIntrinsicInfo(IID);
1596 }
1597 
1598 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1599 /// return the ComplexPattern information, otherwise return null.
1600 const ComplexPattern *
1601 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1602   Record *Rec;
1603   if (isLeaf()) {
1604     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1605     if (!DI)
1606       return nullptr;
1607     Rec = DI->getDef();
1608   } else
1609     Rec = getOperator();
1610 
1611   if (!Rec->isSubClassOf("ComplexPattern"))
1612     return nullptr;
1613   return &CGP.getComplexPattern(Rec);
1614 }
1615 
1616 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1617   // A ComplexPattern specifically declares how many results it fills in.
1618   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1619     return CP->getNumOperands();
1620 
1621   // If MIOperandInfo is specified, that gives the count.
1622   if (isLeaf()) {
1623     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1624     if (DI && DI->getDef()->isSubClassOf("Operand")) {
1625       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1626       if (MIOps->getNumArgs())
1627         return MIOps->getNumArgs();
1628     }
1629   }
1630 
1631   // Otherwise there is just one result.
1632   return 1;
1633 }
1634 
1635 /// NodeHasProperty - Return true if this node has the specified property.
1636 bool TreePatternNode::NodeHasProperty(SDNP Property,
1637                                       const CodeGenDAGPatterns &CGP) const {
1638   if (isLeaf()) {
1639     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1640       return CP->hasProperty(Property);
1641     return false;
1642   }
1643 
1644   Record *Operator = getOperator();
1645   if (!Operator->isSubClassOf("SDNode")) return false;
1646 
1647   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1648 }
1649 
1650 
1651 
1652 
1653 /// TreeHasProperty - Return true if any node in this tree has the specified
1654 /// property.
1655 bool TreePatternNode::TreeHasProperty(SDNP Property,
1656                                       const CodeGenDAGPatterns &CGP) const {
1657   if (NodeHasProperty(Property, CGP))
1658     return true;
1659   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1660     if (getChild(i)->TreeHasProperty(Property, CGP))
1661       return true;
1662   return false;
1663 }
1664 
1665 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1666 /// commutative intrinsic.
1667 bool
1668 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1669   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1670     return Int->isCommutative;
1671   return false;
1672 }
1673 
1674 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1675   if (!N->isLeaf())
1676     return N->getOperator()->isSubClassOf(Class);
1677 
1678   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1679   if (DI && DI->getDef()->isSubClassOf(Class))
1680     return true;
1681 
1682   return false;
1683 }
1684 
1685 static void emitTooManyOperandsError(TreePattern &TP,
1686                                      StringRef InstName,
1687                                      unsigned Expected,
1688                                      unsigned Actual) {
1689   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1690            " operands but expected only " + Twine(Expected) + "!");
1691 }
1692 
1693 static void emitTooFewOperandsError(TreePattern &TP,
1694                                     StringRef InstName,
1695                                     unsigned Actual) {
1696   TP.error("Instruction '" + InstName +
1697            "' expects more than the provided " + Twine(Actual) + " operands!");
1698 }
1699 
1700 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1701 /// this node and its children in the tree.  This returns true if it makes a
1702 /// change, false otherwise.  If a type contradiction is found, flag an error.
1703 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1704   if (TP.hasError())
1705     return false;
1706 
1707   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1708   if (isLeaf()) {
1709     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1710       // If it's a regclass or something else known, include the type.
1711       bool MadeChange = false;
1712       for (unsigned i = 0, e = Types.size(); i != e; ++i)
1713         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1714                                                         NotRegisters,
1715                                                         !hasName(), TP), TP);
1716       return MadeChange;
1717     }
1718 
1719     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1720       assert(Types.size() == 1 && "Invalid IntInit");
1721 
1722       // Int inits are always integers. :)
1723       bool MadeChange = Types[0].EnforceInteger(TP);
1724 
1725       if (!Types[0].isConcrete())
1726         return MadeChange;
1727 
1728       MVT::SimpleValueType VT = getType(0);
1729       if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1730         return MadeChange;
1731 
1732       unsigned Size = MVT(VT).getSizeInBits();
1733       // Make sure that the value is representable for this type.
1734       if (Size >= 32) return MadeChange;
1735 
1736       // Check that the value doesn't use more bits than we have. It must either
1737       // be a sign- or zero-extended equivalent of the original.
1738       int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1739       if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1740         return MadeChange;
1741 
1742       TP.error("Integer value '" + itostr(II->getValue()) +
1743                "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1744       return false;
1745     }
1746     return false;
1747   }
1748 
1749   // special handling for set, which isn't really an SDNode.
1750   if (getOperator()->getName() == "set") {
1751     assert(getNumTypes() == 0 && "Set doesn't produce a value");
1752     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1753     unsigned NC = getNumChildren();
1754 
1755     TreePatternNode *SetVal = getChild(NC-1);
1756     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1757 
1758     for (unsigned i = 0; i < NC-1; ++i) {
1759       TreePatternNode *Child = getChild(i);
1760       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1761 
1762       // Types of operands must match.
1763       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1764       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1765     }
1766     return MadeChange;
1767   }
1768 
1769   if (getOperator()->getName() == "implicit") {
1770     assert(getNumTypes() == 0 && "Node doesn't produce a value");
1771 
1772     bool MadeChange = false;
1773     for (unsigned i = 0; i < getNumChildren(); ++i)
1774       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1775     return MadeChange;
1776   }
1777 
1778   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1779     bool MadeChange = false;
1780 
1781     // Apply the result type to the node.
1782     unsigned NumRetVTs = Int->IS.RetVTs.size();
1783     unsigned NumParamVTs = Int->IS.ParamVTs.size();
1784 
1785     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1786       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1787 
1788     if (getNumChildren() != NumParamVTs + 1) {
1789       TP.error("Intrinsic '" + Int->Name + "' expects " +
1790                utostr(NumParamVTs) + " operands, not " +
1791                utostr(getNumChildren() - 1) + " operands!");
1792       return false;
1793     }
1794 
1795     // Apply type info to the intrinsic ID.
1796     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1797 
1798     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1799       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1800 
1801       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1802       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1803       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1804     }
1805     return MadeChange;
1806   }
1807 
1808   if (getOperator()->isSubClassOf("SDNode")) {
1809     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1810 
1811     // Check that the number of operands is sane.  Negative operands -> varargs.
1812     if (NI.getNumOperands() >= 0 &&
1813         getNumChildren() != (unsigned)NI.getNumOperands()) {
1814       TP.error(getOperator()->getName() + " node requires exactly " +
1815                itostr(NI.getNumOperands()) + " operands!");
1816       return false;
1817     }
1818 
1819     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1820     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1821       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1822     return MadeChange;
1823   }
1824 
1825   if (getOperator()->isSubClassOf("Instruction")) {
1826     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1827     CodeGenInstruction &InstInfo =
1828       CDP.getTargetInfo().getInstruction(getOperator());
1829 
1830     bool MadeChange = false;
1831 
1832     // Apply the result types to the node, these come from the things in the
1833     // (outs) list of the instruction.
1834     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1835                                         Inst.getNumResults());
1836     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1837       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1838 
1839     // If the instruction has implicit defs, we apply the first one as a result.
1840     // FIXME: This sucks, it should apply all implicit defs.
1841     if (!InstInfo.ImplicitDefs.empty()) {
1842       unsigned ResNo = NumResultsToAdd;
1843 
1844       // FIXME: Generalize to multiple possible types and multiple possible
1845       // ImplicitDefs.
1846       MVT::SimpleValueType VT =
1847         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1848 
1849       if (VT != MVT::Other)
1850         MadeChange |= UpdateNodeType(ResNo, VT, TP);
1851     }
1852 
1853     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1854     // be the same.
1855     if (getOperator()->getName() == "INSERT_SUBREG") {
1856       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1857       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1858       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1859     } else if (getOperator()->getName() == "REG_SEQUENCE") {
1860       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
1861       // variadic.
1862 
1863       unsigned NChild = getNumChildren();
1864       if (NChild < 3) {
1865         TP.error("REG_SEQUENCE requires at least 3 operands!");
1866         return false;
1867       }
1868 
1869       if (NChild % 2 == 0) {
1870         TP.error("REG_SEQUENCE requires an odd number of operands!");
1871         return false;
1872       }
1873 
1874       if (!isOperandClass(getChild(0), "RegisterClass")) {
1875         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
1876         return false;
1877       }
1878 
1879       for (unsigned I = 1; I < NChild; I += 2) {
1880         TreePatternNode *SubIdxChild = getChild(I + 1);
1881         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
1882           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
1883                    itostr(I + 1) + "!");
1884           return false;
1885         }
1886       }
1887     }
1888 
1889     unsigned ChildNo = 0;
1890     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1891       Record *OperandNode = Inst.getOperand(i);
1892 
1893       // If the instruction expects a predicate or optional def operand, we
1894       // codegen this by setting the operand to it's default value if it has a
1895       // non-empty DefaultOps field.
1896       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1897           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1898         continue;
1899 
1900       // Verify that we didn't run out of provided operands.
1901       if (ChildNo >= getNumChildren()) {
1902         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
1903         return false;
1904       }
1905 
1906       TreePatternNode *Child = getChild(ChildNo++);
1907       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1908 
1909       // If the operand has sub-operands, they may be provided by distinct
1910       // child patterns, so attempt to match each sub-operand separately.
1911       if (OperandNode->isSubClassOf("Operand")) {
1912         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1913         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1914           // But don't do that if the whole operand is being provided by
1915           // a single ComplexPattern-related Operand.
1916 
1917           if (Child->getNumMIResults(CDP) < NumArgs) {
1918             // Match first sub-operand against the child we already have.
1919             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1920             MadeChange |=
1921               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1922 
1923             // And the remaining sub-operands against subsequent children.
1924             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1925               if (ChildNo >= getNumChildren()) {
1926                 emitTooFewOperandsError(TP, getOperator()->getName(),
1927                                         getNumChildren());
1928                 return false;
1929               }
1930               Child = getChild(ChildNo++);
1931 
1932               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1933               MadeChange |=
1934                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1935             }
1936             continue;
1937           }
1938         }
1939       }
1940 
1941       // If we didn't match by pieces above, attempt to match the whole
1942       // operand now.
1943       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1944     }
1945 
1946     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
1947       emitTooManyOperandsError(TP, getOperator()->getName(),
1948                                ChildNo, getNumChildren());
1949       return false;
1950     }
1951 
1952     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1953       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1954     return MadeChange;
1955   }
1956 
1957   if (getOperator()->isSubClassOf("ComplexPattern")) {
1958     bool MadeChange = false;
1959 
1960     for (unsigned i = 0; i < getNumChildren(); ++i)
1961       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1962 
1963     return MadeChange;
1964   }
1965 
1966   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1967 
1968   // Node transforms always take one operand.
1969   if (getNumChildren() != 1) {
1970     TP.error("Node transform '" + getOperator()->getName() +
1971              "' requires one operand!");
1972     return false;
1973   }
1974 
1975   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1976 
1977 
1978   // If either the output or input of the xform does not have exact
1979   // type info. We assume they must be the same. Otherwise, it is perfectly
1980   // legal to transform from one type to a completely different type.
1981 #if 0
1982   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1983     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1984     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1985     return MadeChange;
1986   }
1987 #endif
1988   return MadeChange;
1989 }
1990 
1991 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1992 /// RHS of a commutative operation, not the on LHS.
1993 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1994   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1995     return true;
1996   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1997     return true;
1998   return false;
1999 }
2000 
2001 
2002 /// canPatternMatch - If it is impossible for this pattern to match on this
2003 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2004 /// used as a sanity check for .td files (to prevent people from writing stuff
2005 /// that can never possibly work), and to prevent the pattern permuter from
2006 /// generating stuff that is useless.
2007 bool TreePatternNode::canPatternMatch(std::string &Reason,
2008                                       const CodeGenDAGPatterns &CDP) {
2009   if (isLeaf()) return true;
2010 
2011   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2012     if (!getChild(i)->canPatternMatch(Reason, CDP))
2013       return false;
2014 
2015   // If this is an intrinsic, handle cases that would make it not match.  For
2016   // example, if an operand is required to be an immediate.
2017   if (getOperator()->isSubClassOf("Intrinsic")) {
2018     // TODO:
2019     return true;
2020   }
2021 
2022   if (getOperator()->isSubClassOf("ComplexPattern"))
2023     return true;
2024 
2025   // If this node is a commutative operator, check that the LHS isn't an
2026   // immediate.
2027   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2028   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2029   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2030     // Scan all of the operands of the node and make sure that only the last one
2031     // is a constant node, unless the RHS also is.
2032     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2033       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2034       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2035         if (OnlyOnRHSOfCommutative(getChild(i))) {
2036           Reason="Immediate value must be on the RHS of commutative operators!";
2037           return false;
2038         }
2039     }
2040   }
2041 
2042   return true;
2043 }
2044 
2045 //===----------------------------------------------------------------------===//
2046 // TreePattern implementation
2047 //
2048 
2049 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2050                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2051                          isInputPattern(isInput), HasError(false) {
2052   for (Init *I : RawPat->getValues())
2053     Trees.push_back(ParseTreePattern(I, ""));
2054 }
2055 
2056 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2057                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2058                          isInputPattern(isInput), HasError(false) {
2059   Trees.push_back(ParseTreePattern(Pat, ""));
2060 }
2061 
2062 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2063                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2064                          isInputPattern(isInput), HasError(false) {
2065   Trees.push_back(Pat);
2066 }
2067 
2068 void TreePattern::error(const Twine &Msg) {
2069   if (HasError)
2070     return;
2071   dump();
2072   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2073   HasError = true;
2074 }
2075 
2076 void TreePattern::ComputeNamedNodes() {
2077   for (TreePatternNode *Tree : Trees)
2078     ComputeNamedNodes(Tree);
2079 }
2080 
2081 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2082   if (!N->getName().empty())
2083     NamedNodes[N->getName()].push_back(N);
2084 
2085   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2086     ComputeNamedNodes(N->getChild(i));
2087 }
2088 
2089 
2090 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2091   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2092     Record *R = DI->getDef();
2093 
2094     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2095     // TreePatternNode of its own.  For example:
2096     ///   (foo GPR, imm) -> (foo GPR, (imm))
2097     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2098       return ParseTreePattern(
2099         DagInit::get(DI, nullptr,
2100                      std::vector<std::pair<Init*, StringInit*> >()),
2101         OpName);
2102 
2103     // Input argument?
2104     TreePatternNode *Res = new TreePatternNode(DI, 1);
2105     if (R->getName() == "node" && !OpName.empty()) {
2106       if (OpName.empty())
2107         error("'node' argument requires a name to match with operand list");
2108       Args.push_back(OpName);
2109     }
2110 
2111     Res->setName(OpName);
2112     return Res;
2113   }
2114 
2115   // ?:$name or just $name.
2116   if (isa<UnsetInit>(TheInit)) {
2117     if (OpName.empty())
2118       error("'?' argument requires a name to match with operand list");
2119     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2120     Args.push_back(OpName);
2121     Res->setName(OpName);
2122     return Res;
2123   }
2124 
2125   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2126     if (!OpName.empty())
2127       error("Constant int argument should not have a name!");
2128     return new TreePatternNode(II, 1);
2129   }
2130 
2131   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2132     // Turn this into an IntInit.
2133     Init *II = BI->convertInitializerTo(IntRecTy::get());
2134     if (!II || !isa<IntInit>(II))
2135       error("Bits value must be constants!");
2136     return ParseTreePattern(II, OpName);
2137   }
2138 
2139   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2140   if (!Dag) {
2141     TheInit->print(errs());
2142     error("Pattern has unexpected init kind!");
2143   }
2144   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2145   if (!OpDef) error("Pattern has unexpected operator type!");
2146   Record *Operator = OpDef->getDef();
2147 
2148   if (Operator->isSubClassOf("ValueType")) {
2149     // If the operator is a ValueType, then this must be "type cast" of a leaf
2150     // node.
2151     if (Dag->getNumArgs() != 1)
2152       error("Type cast only takes one operand!");
2153 
2154     TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2155                                             Dag->getArgNameStr(0));
2156 
2157     // Apply the type cast.
2158     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2159     New->UpdateNodeType(0, getValueType(Operator), *this);
2160 
2161     if (!OpName.empty())
2162       error("ValueType cast should not have a name!");
2163     return New;
2164   }
2165 
2166   // Verify that this is something that makes sense for an operator.
2167   if (!Operator->isSubClassOf("PatFrag") &&
2168       !Operator->isSubClassOf("SDNode") &&
2169       !Operator->isSubClassOf("Instruction") &&
2170       !Operator->isSubClassOf("SDNodeXForm") &&
2171       !Operator->isSubClassOf("Intrinsic") &&
2172       !Operator->isSubClassOf("ComplexPattern") &&
2173       Operator->getName() != "set" &&
2174       Operator->getName() != "implicit")
2175     error("Unrecognized node '" + Operator->getName() + "'!");
2176 
2177   //  Check to see if this is something that is illegal in an input pattern.
2178   if (isInputPattern) {
2179     if (Operator->isSubClassOf("Instruction") ||
2180         Operator->isSubClassOf("SDNodeXForm"))
2181       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2182   } else {
2183     if (Operator->isSubClassOf("Intrinsic"))
2184       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2185 
2186     if (Operator->isSubClassOf("SDNode") &&
2187         Operator->getName() != "imm" &&
2188         Operator->getName() != "fpimm" &&
2189         Operator->getName() != "tglobaltlsaddr" &&
2190         Operator->getName() != "tconstpool" &&
2191         Operator->getName() != "tjumptable" &&
2192         Operator->getName() != "tframeindex" &&
2193         Operator->getName() != "texternalsym" &&
2194         Operator->getName() != "tblockaddress" &&
2195         Operator->getName() != "tglobaladdr" &&
2196         Operator->getName() != "bb" &&
2197         Operator->getName() != "vt" &&
2198         Operator->getName() != "mcsym")
2199       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2200   }
2201 
2202   std::vector<TreePatternNode*> Children;
2203 
2204   // Parse all the operands.
2205   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2206     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2207 
2208   // If the operator is an intrinsic, then this is just syntactic sugar for for
2209   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2210   // convert the intrinsic name to a number.
2211   if (Operator->isSubClassOf("Intrinsic")) {
2212     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2213     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2214 
2215     // If this intrinsic returns void, it must have side-effects and thus a
2216     // chain.
2217     if (Int.IS.RetVTs.empty())
2218       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2219     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2220       // Has side-effects, requires chain.
2221       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2222     else // Otherwise, no chain.
2223       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2224 
2225     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2226     Children.insert(Children.begin(), IIDNode);
2227   }
2228 
2229   if (Operator->isSubClassOf("ComplexPattern")) {
2230     for (unsigned i = 0; i < Children.size(); ++i) {
2231       TreePatternNode *Child = Children[i];
2232 
2233       if (Child->getName().empty())
2234         error("All arguments to a ComplexPattern must be named");
2235 
2236       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2237       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2238       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2239       auto OperandId = std::make_pair(Operator, i);
2240       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2241       if (PrevOp != ComplexPatternOperands.end()) {
2242         if (PrevOp->getValue() != OperandId)
2243           error("All ComplexPattern operands must appear consistently: "
2244                 "in the same order in just one ComplexPattern instance.");
2245       } else
2246         ComplexPatternOperands[Child->getName()] = OperandId;
2247     }
2248   }
2249 
2250   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2251   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2252   Result->setName(OpName);
2253 
2254   if (Dag->getName()) {
2255     assert(Result->getName().empty());
2256     Result->setName(Dag->getNameStr());
2257   }
2258   return Result;
2259 }
2260 
2261 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2262 /// will never match in favor of something obvious that will.  This is here
2263 /// strictly as a convenience to target authors because it allows them to write
2264 /// more type generic things and have useless type casts fold away.
2265 ///
2266 /// This returns true if any change is made.
2267 static bool SimplifyTree(TreePatternNode *&N) {
2268   if (N->isLeaf())
2269     return false;
2270 
2271   // If we have a bitconvert with a resolved type and if the source and
2272   // destination types are the same, then the bitconvert is useless, remove it.
2273   if (N->getOperator()->getName() == "bitconvert" &&
2274       N->getExtType(0).isConcrete() &&
2275       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2276       N->getName().empty()) {
2277     N = N->getChild(0);
2278     SimplifyTree(N);
2279     return true;
2280   }
2281 
2282   // Walk all children.
2283   bool MadeChange = false;
2284   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2285     TreePatternNode *Child = N->getChild(i);
2286     MadeChange |= SimplifyTree(Child);
2287     N->setChild(i, Child);
2288   }
2289   return MadeChange;
2290 }
2291 
2292 
2293 
2294 /// InferAllTypes - Infer/propagate as many types throughout the expression
2295 /// patterns as possible.  Return true if all types are inferred, false
2296 /// otherwise.  Flags an error if a type contradiction is found.
2297 bool TreePattern::
2298 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2299   if (NamedNodes.empty())
2300     ComputeNamedNodes();
2301 
2302   bool MadeChange = true;
2303   while (MadeChange) {
2304     MadeChange = false;
2305     for (TreePatternNode *Tree : Trees) {
2306       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2307       MadeChange |= SimplifyTree(Tree);
2308     }
2309 
2310     // If there are constraints on our named nodes, apply them.
2311     for (auto &Entry : NamedNodes) {
2312       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2313 
2314       // If we have input named node types, propagate their types to the named
2315       // values here.
2316       if (InNamedTypes) {
2317         if (!InNamedTypes->count(Entry.getKey())) {
2318           error("Node '" + std::string(Entry.getKey()) +
2319                 "' in output pattern but not input pattern");
2320           return true;
2321         }
2322 
2323         const SmallVectorImpl<TreePatternNode*> &InNodes =
2324           InNamedTypes->find(Entry.getKey())->second;
2325 
2326         // The input types should be fully resolved by now.
2327         for (TreePatternNode *Node : Nodes) {
2328           // If this node is a register class, and it is the root of the pattern
2329           // then we're mapping something onto an input register.  We allow
2330           // changing the type of the input register in this case.  This allows
2331           // us to match things like:
2332           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2333           if (Node == Trees[0] && Node->isLeaf()) {
2334             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2335             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2336                        DI->getDef()->isSubClassOf("RegisterOperand")))
2337               continue;
2338           }
2339 
2340           assert(Node->getNumTypes() == 1 &&
2341                  InNodes[0]->getNumTypes() == 1 &&
2342                  "FIXME: cannot name multiple result nodes yet");
2343           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2344                                              *this);
2345         }
2346       }
2347 
2348       // If there are multiple nodes with the same name, they must all have the
2349       // same type.
2350       if (Entry.second.size() > 1) {
2351         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2352           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2353           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2354                  "FIXME: cannot name multiple result nodes yet");
2355 
2356           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2357           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2358         }
2359       }
2360     }
2361   }
2362 
2363   bool HasUnresolvedTypes = false;
2364   for (const TreePatternNode *Tree : Trees)
2365     HasUnresolvedTypes |= Tree->ContainsUnresolvedType();
2366   return !HasUnresolvedTypes;
2367 }
2368 
2369 void TreePattern::print(raw_ostream &OS) const {
2370   OS << getRecord()->getName();
2371   if (!Args.empty()) {
2372     OS << "(" << Args[0];
2373     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2374       OS << ", " << Args[i];
2375     OS << ")";
2376   }
2377   OS << ": ";
2378 
2379   if (Trees.size() > 1)
2380     OS << "[\n";
2381   for (const TreePatternNode *Tree : Trees) {
2382     OS << "\t";
2383     Tree->print(OS);
2384     OS << "\n";
2385   }
2386 
2387   if (Trees.size() > 1)
2388     OS << "]\n";
2389 }
2390 
2391 void TreePattern::dump() const { print(errs()); }
2392 
2393 //===----------------------------------------------------------------------===//
2394 // CodeGenDAGPatterns implementation
2395 //
2396 
2397 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2398   Records(R), Target(R) {
2399 
2400   Intrinsics = CodeGenIntrinsicTable(Records, false);
2401   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2402   ParseNodeInfo();
2403   ParseNodeTransforms();
2404   ParseComplexPatterns();
2405   ParsePatternFragments();
2406   ParseDefaultOperands();
2407   ParseInstructions();
2408   ParsePatternFragments(/*OutFrags*/true);
2409   ParsePatterns();
2410 
2411   // Generate variants.  For example, commutative patterns can match
2412   // multiple ways.  Add them to PatternsToMatch as well.
2413   GenerateVariants();
2414 
2415   // Infer instruction flags.  For example, we can detect loads,
2416   // stores, and side effects in many cases by examining an
2417   // instruction's pattern.
2418   InferInstructionFlags();
2419 
2420   // Verify that instruction flags match the patterns.
2421   VerifyInstructionFlags();
2422 }
2423 
2424 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2425   Record *N = Records.getDef(Name);
2426   if (!N || !N->isSubClassOf("SDNode"))
2427     PrintFatalError("Error getting SDNode '" + Name + "'!");
2428 
2429   return N;
2430 }
2431 
2432 // Parse all of the SDNode definitions for the target, populating SDNodes.
2433 void CodeGenDAGPatterns::ParseNodeInfo() {
2434   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2435   while (!Nodes.empty()) {
2436     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2437     Nodes.pop_back();
2438   }
2439 
2440   // Get the builtin intrinsic nodes.
2441   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2442   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2443   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2444 }
2445 
2446 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2447 /// map, and emit them to the file as functions.
2448 void CodeGenDAGPatterns::ParseNodeTransforms() {
2449   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2450   while (!Xforms.empty()) {
2451     Record *XFormNode = Xforms.back();
2452     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2453     std::string Code = XFormNode->getValueAsString("XFormFunction");
2454     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2455 
2456     Xforms.pop_back();
2457   }
2458 }
2459 
2460 void CodeGenDAGPatterns::ParseComplexPatterns() {
2461   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2462   while (!AMs.empty()) {
2463     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2464     AMs.pop_back();
2465   }
2466 }
2467 
2468 
2469 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2470 /// file, building up the PatternFragments map.  After we've collected them all,
2471 /// inline fragments together as necessary, so that there are no references left
2472 /// inside a pattern fragment to a pattern fragment.
2473 ///
2474 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2475   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2476 
2477   // First step, parse all of the fragments.
2478   for (Record *Frag : Fragments) {
2479     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2480       continue;
2481 
2482     DagInit *Tree = Frag->getValueAsDag("Fragment");
2483     TreePattern *P =
2484         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2485              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2486              *this)).get();
2487 
2488     // Validate the argument list, converting it to set, to discard duplicates.
2489     std::vector<std::string> &Args = P->getArgList();
2490     std::set<std::string> OperandsSet(Args.begin(), Args.end());
2491 
2492     if (OperandsSet.count(""))
2493       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2494 
2495     // Parse the operands list.
2496     DagInit *OpsList = Frag->getValueAsDag("Operands");
2497     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2498     // Special cases: ops == outs == ins. Different names are used to
2499     // improve readability.
2500     if (!OpsOp ||
2501         (OpsOp->getDef()->getName() != "ops" &&
2502          OpsOp->getDef()->getName() != "outs" &&
2503          OpsOp->getDef()->getName() != "ins"))
2504       P->error("Operands list should start with '(ops ... '!");
2505 
2506     // Copy over the arguments.
2507     Args.clear();
2508     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2509       if (!isa<DefInit>(OpsList->getArg(j)) ||
2510           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2511         P->error("Operands list should all be 'node' values.");
2512       if (!OpsList->getArgName(j))
2513         P->error("Operands list should have names for each operand!");
2514       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2515       if (!OperandsSet.count(ArgNameStr))
2516         P->error("'" + ArgNameStr +
2517                  "' does not occur in pattern or was multiply specified!");
2518       OperandsSet.erase(ArgNameStr);
2519       Args.push_back(ArgNameStr);
2520     }
2521 
2522     if (!OperandsSet.empty())
2523       P->error("Operands list does not contain an entry for operand '" +
2524                *OperandsSet.begin() + "'!");
2525 
2526     // If there is a code init for this fragment, keep track of the fact that
2527     // this fragment uses it.
2528     TreePredicateFn PredFn(P);
2529     if (!PredFn.isAlwaysTrue())
2530       P->getOnlyTree()->addPredicateFn(PredFn);
2531 
2532     // If there is a node transformation corresponding to this, keep track of
2533     // it.
2534     Record *Transform = Frag->getValueAsDef("OperandTransform");
2535     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2536       P->getOnlyTree()->setTransformFn(Transform);
2537   }
2538 
2539   // Now that we've parsed all of the tree fragments, do a closure on them so
2540   // that there are not references to PatFrags left inside of them.
2541   for (Record *Frag : Fragments) {
2542     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2543       continue;
2544 
2545     TreePattern &ThePat = *PatternFragments[Frag];
2546     ThePat.InlinePatternFragments();
2547 
2548     // Infer as many types as possible.  Don't worry about it if we don't infer
2549     // all of them, some may depend on the inputs of the pattern.
2550     ThePat.InferAllTypes();
2551     ThePat.resetError();
2552 
2553     // If debugging, print out the pattern fragment result.
2554     DEBUG(ThePat.dump());
2555   }
2556 }
2557 
2558 void CodeGenDAGPatterns::ParseDefaultOperands() {
2559   std::vector<Record*> DefaultOps;
2560   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2561 
2562   // Find some SDNode.
2563   assert(!SDNodes.empty() && "No SDNodes parsed?");
2564   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2565 
2566   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2567     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2568 
2569     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2570     // SomeSDnode so that we can parse this.
2571     std::vector<std::pair<Init*, StringInit*> > Ops;
2572     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2573       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2574                                    DefaultInfo->getArgName(op)));
2575     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
2576 
2577     // Create a TreePattern to parse this.
2578     TreePattern P(DefaultOps[i], DI, false, *this);
2579     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2580 
2581     // Copy the operands over into a DAGDefaultOperand.
2582     DAGDefaultOperand DefaultOpInfo;
2583 
2584     TreePatternNode *T = P.getTree(0);
2585     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2586       TreePatternNode *TPN = T->getChild(op);
2587       while (TPN->ApplyTypeConstraints(P, false))
2588         /* Resolve all types */;
2589 
2590       if (TPN->ContainsUnresolvedType()) {
2591         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2592                         DefaultOps[i]->getName() +
2593                         "' doesn't have a concrete type!");
2594       }
2595       DefaultOpInfo.DefaultOps.push_back(TPN);
2596     }
2597 
2598     // Insert it into the DefaultOperands map so we can find it later.
2599     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2600   }
2601 }
2602 
2603 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2604 /// instruction input.  Return true if this is a real use.
2605 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2606                       std::map<std::string, TreePatternNode*> &InstInputs) {
2607   // No name -> not interesting.
2608   if (Pat->getName().empty()) {
2609     if (Pat->isLeaf()) {
2610       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2611       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2612                  DI->getDef()->isSubClassOf("RegisterOperand")))
2613         I->error("Input " + DI->getDef()->getName() + " must be named!");
2614     }
2615     return false;
2616   }
2617 
2618   Record *Rec;
2619   if (Pat->isLeaf()) {
2620     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2621     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2622     Rec = DI->getDef();
2623   } else {
2624     Rec = Pat->getOperator();
2625   }
2626 
2627   // SRCVALUE nodes are ignored.
2628   if (Rec->getName() == "srcvalue")
2629     return false;
2630 
2631   TreePatternNode *&Slot = InstInputs[Pat->getName()];
2632   if (!Slot) {
2633     Slot = Pat;
2634     return true;
2635   }
2636   Record *SlotRec;
2637   if (Slot->isLeaf()) {
2638     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2639   } else {
2640     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2641     SlotRec = Slot->getOperator();
2642   }
2643 
2644   // Ensure that the inputs agree if we've already seen this input.
2645   if (Rec != SlotRec)
2646     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2647   if (Slot->getExtTypes() != Pat->getExtTypes())
2648     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2649   return true;
2650 }
2651 
2652 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2653 /// part of "I", the instruction), computing the set of inputs and outputs of
2654 /// the pattern.  Report errors if we see anything naughty.
2655 void CodeGenDAGPatterns::
2656 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2657                             std::map<std::string, TreePatternNode*> &InstInputs,
2658                             std::map<std::string, TreePatternNode*>&InstResults,
2659                             std::vector<Record*> &InstImpResults) {
2660   if (Pat->isLeaf()) {
2661     bool isUse = HandleUse(I, Pat, InstInputs);
2662     if (!isUse && Pat->getTransformFn())
2663       I->error("Cannot specify a transform function for a non-input value!");
2664     return;
2665   }
2666 
2667   if (Pat->getOperator()->getName() == "implicit") {
2668     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2669       TreePatternNode *Dest = Pat->getChild(i);
2670       if (!Dest->isLeaf())
2671         I->error("implicitly defined value should be a register!");
2672 
2673       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2674       if (!Val || !Val->getDef()->isSubClassOf("Register"))
2675         I->error("implicitly defined value should be a register!");
2676       InstImpResults.push_back(Val->getDef());
2677     }
2678     return;
2679   }
2680 
2681   if (Pat->getOperator()->getName() != "set") {
2682     // If this is not a set, verify that the children nodes are not void typed,
2683     // and recurse.
2684     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2685       if (Pat->getChild(i)->getNumTypes() == 0)
2686         I->error("Cannot have void nodes inside of patterns!");
2687       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2688                                   InstImpResults);
2689     }
2690 
2691     // If this is a non-leaf node with no children, treat it basically as if
2692     // it were a leaf.  This handles nodes like (imm).
2693     bool isUse = HandleUse(I, Pat, InstInputs);
2694 
2695     if (!isUse && Pat->getTransformFn())
2696       I->error("Cannot specify a transform function for a non-input value!");
2697     return;
2698   }
2699 
2700   // Otherwise, this is a set, validate and collect instruction results.
2701   if (Pat->getNumChildren() == 0)
2702     I->error("set requires operands!");
2703 
2704   if (Pat->getTransformFn())
2705     I->error("Cannot specify a transform function on a set node!");
2706 
2707   // Check the set destinations.
2708   unsigned NumDests = Pat->getNumChildren()-1;
2709   for (unsigned i = 0; i != NumDests; ++i) {
2710     TreePatternNode *Dest = Pat->getChild(i);
2711     if (!Dest->isLeaf())
2712       I->error("set destination should be a register!");
2713 
2714     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2715     if (!Val) {
2716       I->error("set destination should be a register!");
2717       continue;
2718     }
2719 
2720     if (Val->getDef()->isSubClassOf("RegisterClass") ||
2721         Val->getDef()->isSubClassOf("ValueType") ||
2722         Val->getDef()->isSubClassOf("RegisterOperand") ||
2723         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2724       if (Dest->getName().empty())
2725         I->error("set destination must have a name!");
2726       if (InstResults.count(Dest->getName()))
2727         I->error("cannot set '" + Dest->getName() +"' multiple times");
2728       InstResults[Dest->getName()] = Dest;
2729     } else if (Val->getDef()->isSubClassOf("Register")) {
2730       InstImpResults.push_back(Val->getDef());
2731     } else {
2732       I->error("set destination should be a register!");
2733     }
2734   }
2735 
2736   // Verify and collect info from the computation.
2737   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2738                               InstInputs, InstResults, InstImpResults);
2739 }
2740 
2741 //===----------------------------------------------------------------------===//
2742 // Instruction Analysis
2743 //===----------------------------------------------------------------------===//
2744 
2745 class InstAnalyzer {
2746   const CodeGenDAGPatterns &CDP;
2747 public:
2748   bool hasSideEffects;
2749   bool mayStore;
2750   bool mayLoad;
2751   bool isBitcast;
2752   bool isVariadic;
2753 
2754   InstAnalyzer(const CodeGenDAGPatterns &cdp)
2755     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2756       isBitcast(false), isVariadic(false) {}
2757 
2758   void Analyze(const TreePattern *Pat) {
2759     // Assume only the first tree is the pattern. The others are clobber nodes.
2760     AnalyzeNode(Pat->getTree(0));
2761   }
2762 
2763   void Analyze(const PatternToMatch *Pat) {
2764     AnalyzeNode(Pat->getSrcPattern());
2765   }
2766 
2767 private:
2768   bool IsNodeBitcast(const TreePatternNode *N) const {
2769     if (hasSideEffects || mayLoad || mayStore || isVariadic)
2770       return false;
2771 
2772     if (N->getNumChildren() != 2)
2773       return false;
2774 
2775     const TreePatternNode *N0 = N->getChild(0);
2776     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2777       return false;
2778 
2779     const TreePatternNode *N1 = N->getChild(1);
2780     if (N1->isLeaf())
2781       return false;
2782     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2783       return false;
2784 
2785     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2786     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2787       return false;
2788     return OpInfo.getEnumName() == "ISD::BITCAST";
2789   }
2790 
2791 public:
2792   void AnalyzeNode(const TreePatternNode *N) {
2793     if (N->isLeaf()) {
2794       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2795         Record *LeafRec = DI->getDef();
2796         // Handle ComplexPattern leaves.
2797         if (LeafRec->isSubClassOf("ComplexPattern")) {
2798           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2799           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2800           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2801           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2802         }
2803       }
2804       return;
2805     }
2806 
2807     // Analyze children.
2808     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2809       AnalyzeNode(N->getChild(i));
2810 
2811     // Ignore set nodes, which are not SDNodes.
2812     if (N->getOperator()->getName() == "set") {
2813       isBitcast = IsNodeBitcast(N);
2814       return;
2815     }
2816 
2817     // Notice properties of the node.
2818     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2819     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2820     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2821     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2822 
2823     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2824       // If this is an intrinsic, analyze it.
2825       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
2826         mayLoad = true;// These may load memory.
2827 
2828       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
2829         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2830 
2831       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2832         // ReadWriteMem intrinsics can have other strange effects.
2833         hasSideEffects = true;
2834     }
2835   }
2836 
2837 };
2838 
2839 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2840                              const InstAnalyzer &PatInfo,
2841                              Record *PatDef) {
2842   bool Error = false;
2843 
2844   // Remember where InstInfo got its flags.
2845   if (InstInfo.hasUndefFlags())
2846       InstInfo.InferredFrom = PatDef;
2847 
2848   // Check explicitly set flags for consistency.
2849   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2850       !InstInfo.hasSideEffects_Unset) {
2851     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2852     // the pattern has no side effects. That could be useful for div/rem
2853     // instructions that may trap.
2854     if (!InstInfo.hasSideEffects) {
2855       Error = true;
2856       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2857                  Twine(InstInfo.hasSideEffects));
2858     }
2859   }
2860 
2861   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2862     Error = true;
2863     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2864                Twine(InstInfo.mayStore));
2865   }
2866 
2867   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2868     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2869     // Some targets translate immediates to loads.
2870     if (!InstInfo.mayLoad) {
2871       Error = true;
2872       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2873                  Twine(InstInfo.mayLoad));
2874     }
2875   }
2876 
2877   // Transfer inferred flags.
2878   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2879   InstInfo.mayStore |= PatInfo.mayStore;
2880   InstInfo.mayLoad |= PatInfo.mayLoad;
2881 
2882   // These flags are silently added without any verification.
2883   InstInfo.isBitcast |= PatInfo.isBitcast;
2884 
2885   // Don't infer isVariadic. This flag means something different on SDNodes and
2886   // instructions. For example, a CALL SDNode is variadic because it has the
2887   // call arguments as operands, but a CALL instruction is not variadic - it
2888   // has argument registers as implicit, not explicit uses.
2889 
2890   return Error;
2891 }
2892 
2893 /// hasNullFragReference - Return true if the DAG has any reference to the
2894 /// null_frag operator.
2895 static bool hasNullFragReference(DagInit *DI) {
2896   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2897   if (!OpDef) return false;
2898   Record *Operator = OpDef->getDef();
2899 
2900   // If this is the null fragment, return true.
2901   if (Operator->getName() == "null_frag") return true;
2902   // If any of the arguments reference the null fragment, return true.
2903   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2904     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2905     if (Arg && hasNullFragReference(Arg))
2906       return true;
2907   }
2908 
2909   return false;
2910 }
2911 
2912 /// hasNullFragReference - Return true if any DAG in the list references
2913 /// the null_frag operator.
2914 static bool hasNullFragReference(ListInit *LI) {
2915   for (Init *I : LI->getValues()) {
2916     DagInit *DI = dyn_cast<DagInit>(I);
2917     assert(DI && "non-dag in an instruction Pattern list?!");
2918     if (hasNullFragReference(DI))
2919       return true;
2920   }
2921   return false;
2922 }
2923 
2924 /// Get all the instructions in a tree.
2925 static void
2926 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2927   if (Tree->isLeaf())
2928     return;
2929   if (Tree->getOperator()->isSubClassOf("Instruction"))
2930     Instrs.push_back(Tree->getOperator());
2931   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2932     getInstructionsInTree(Tree->getChild(i), Instrs);
2933 }
2934 
2935 /// Check the class of a pattern leaf node against the instruction operand it
2936 /// represents.
2937 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2938                               Record *Leaf) {
2939   if (OI.Rec == Leaf)
2940     return true;
2941 
2942   // Allow direct value types to be used in instruction set patterns.
2943   // The type will be checked later.
2944   if (Leaf->isSubClassOf("ValueType"))
2945     return true;
2946 
2947   // Patterns can also be ComplexPattern instances.
2948   if (Leaf->isSubClassOf("ComplexPattern"))
2949     return true;
2950 
2951   return false;
2952 }
2953 
2954 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2955     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2956 
2957   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2958 
2959   // Parse the instruction.
2960   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2961   // Inline pattern fragments into it.
2962   I->InlinePatternFragments();
2963 
2964   // Infer as many types as possible.  If we cannot infer all of them, we can
2965   // never do anything with this instruction pattern: report it to the user.
2966   if (!I->InferAllTypes())
2967     I->error("Could not infer all types in pattern!");
2968 
2969   // InstInputs - Keep track of all of the inputs of the instruction, along
2970   // with the record they are declared as.
2971   std::map<std::string, TreePatternNode*> InstInputs;
2972 
2973   // InstResults - Keep track of all the virtual registers that are 'set'
2974   // in the instruction, including what reg class they are.
2975   std::map<std::string, TreePatternNode*> InstResults;
2976 
2977   std::vector<Record*> InstImpResults;
2978 
2979   // Verify that the top-level forms in the instruction are of void type, and
2980   // fill in the InstResults map.
2981   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2982     TreePatternNode *Pat = I->getTree(j);
2983     if (Pat->getNumTypes() != 0) {
2984       std::string Types;
2985       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
2986         if (k > 0)
2987           Types += ", ";
2988         Types += Pat->getExtType(k).getName();
2989       }
2990       I->error("Top-level forms in instruction pattern should have"
2991                " void types, has types " + Types);
2992     }
2993 
2994     // Find inputs and outputs, and verify the structure of the uses/defs.
2995     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2996                                 InstImpResults);
2997   }
2998 
2999   // Now that we have inputs and outputs of the pattern, inspect the operands
3000   // list for the instruction.  This determines the order that operands are
3001   // added to the machine instruction the node corresponds to.
3002   unsigned NumResults = InstResults.size();
3003 
3004   // Parse the operands list from the (ops) list, validating it.
3005   assert(I->getArgList().empty() && "Args list should still be empty here!");
3006 
3007   // Check that all of the results occur first in the list.
3008   std::vector<Record*> Results;
3009   SmallVector<TreePatternNode *, 2> ResNodes;
3010   for (unsigned i = 0; i != NumResults; ++i) {
3011     if (i == CGI.Operands.size())
3012       I->error("'" + InstResults.begin()->first +
3013                "' set but does not appear in operand list!");
3014     const std::string &OpName = CGI.Operands[i].Name;
3015 
3016     // Check that it exists in InstResults.
3017     TreePatternNode *RNode = InstResults[OpName];
3018     if (!RNode)
3019       I->error("Operand $" + OpName + " does not exist in operand list!");
3020 
3021     ResNodes.push_back(RNode);
3022 
3023     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3024     if (!R)
3025       I->error("Operand $" + OpName + " should be a set destination: all "
3026                "outputs must occur before inputs in operand list!");
3027 
3028     if (!checkOperandClass(CGI.Operands[i], R))
3029       I->error("Operand $" + OpName + " class mismatch!");
3030 
3031     // Remember the return type.
3032     Results.push_back(CGI.Operands[i].Rec);
3033 
3034     // Okay, this one checks out.
3035     InstResults.erase(OpName);
3036   }
3037 
3038   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3039   // the copy while we're checking the inputs.
3040   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3041 
3042   std::vector<TreePatternNode*> ResultNodeOperands;
3043   std::vector<Record*> Operands;
3044   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3045     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3046     const std::string &OpName = Op.Name;
3047     if (OpName.empty())
3048       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3049 
3050     if (!InstInputsCheck.count(OpName)) {
3051       // If this is an operand with a DefaultOps set filled in, we can ignore
3052       // this.  When we codegen it, we will do so as always executed.
3053       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3054         // Does it have a non-empty DefaultOps field?  If so, ignore this
3055         // operand.
3056         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3057           continue;
3058       }
3059       I->error("Operand $" + OpName +
3060                " does not appear in the instruction pattern");
3061     }
3062     TreePatternNode *InVal = InstInputsCheck[OpName];
3063     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3064 
3065     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3066       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3067       if (!checkOperandClass(Op, InRec))
3068         I->error("Operand $" + OpName + "'s register class disagrees"
3069                  " between the operand and pattern");
3070     }
3071     Operands.push_back(Op.Rec);
3072 
3073     // Construct the result for the dest-pattern operand list.
3074     TreePatternNode *OpNode = InVal->clone();
3075 
3076     // No predicate is useful on the result.
3077     OpNode->clearPredicateFns();
3078 
3079     // Promote the xform function to be an explicit node if set.
3080     if (Record *Xform = OpNode->getTransformFn()) {
3081       OpNode->setTransformFn(nullptr);
3082       std::vector<TreePatternNode*> Children;
3083       Children.push_back(OpNode);
3084       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3085     }
3086 
3087     ResultNodeOperands.push_back(OpNode);
3088   }
3089 
3090   if (!InstInputsCheck.empty())
3091     I->error("Input operand $" + InstInputsCheck.begin()->first +
3092              " occurs in pattern but not in operands list!");
3093 
3094   TreePatternNode *ResultPattern =
3095     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3096                         GetNumNodeResults(I->getRecord(), *this));
3097   // Copy fully inferred output node types to instruction result pattern.
3098   for (unsigned i = 0; i != NumResults; ++i) {
3099     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3100     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3101   }
3102 
3103   // Create and insert the instruction.
3104   // FIXME: InstImpResults should not be part of DAGInstruction.
3105   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3106   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3107 
3108   // Use a temporary tree pattern to infer all types and make sure that the
3109   // constructed result is correct.  This depends on the instruction already
3110   // being inserted into the DAGInsts map.
3111   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3112   Temp.InferAllTypes(&I->getNamedNodesMap());
3113 
3114   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3115   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3116 
3117   return TheInsertedInst;
3118 }
3119 
3120 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3121 /// any fragments involved.  This populates the Instructions list with fully
3122 /// resolved instructions.
3123 void CodeGenDAGPatterns::ParseInstructions() {
3124   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3125 
3126   for (Record *Instr : Instrs) {
3127     ListInit *LI = nullptr;
3128 
3129     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3130       LI = Instr->getValueAsListInit("Pattern");
3131 
3132     // If there is no pattern, only collect minimal information about the
3133     // instruction for its operand list.  We have to assume that there is one
3134     // result, as we have no detailed info. A pattern which references the
3135     // null_frag operator is as-if no pattern were specified. Normally this
3136     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3137     // null_frag.
3138     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3139       std::vector<Record*> Results;
3140       std::vector<Record*> Operands;
3141 
3142       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3143 
3144       if (InstInfo.Operands.size() != 0) {
3145         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3146           Results.push_back(InstInfo.Operands[j].Rec);
3147 
3148         // The rest are inputs.
3149         for (unsigned j = InstInfo.Operands.NumDefs,
3150                e = InstInfo.Operands.size(); j < e; ++j)
3151           Operands.push_back(InstInfo.Operands[j].Rec);
3152       }
3153 
3154       // Create and insert the instruction.
3155       std::vector<Record*> ImpResults;
3156       Instructions.insert(std::make_pair(Instr,
3157                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3158       continue;  // no pattern.
3159     }
3160 
3161     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3162     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3163 
3164     (void)DI;
3165     DEBUG(DI.getPattern()->dump());
3166   }
3167 
3168   // If we can, convert the instructions to be patterns that are matched!
3169   for (auto &Entry : Instructions) {
3170     DAGInstruction &TheInst = Entry.second;
3171     TreePattern *I = TheInst.getPattern();
3172     if (!I) continue;  // No pattern.
3173 
3174     // FIXME: Assume only the first tree is the pattern. The others are clobber
3175     // nodes.
3176     TreePatternNode *Pattern = I->getTree(0);
3177     TreePatternNode *SrcPattern;
3178     if (Pattern->getOperator()->getName() == "set") {
3179       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3180     } else{
3181       // Not a set (store or something?)
3182       SrcPattern = Pattern;
3183     }
3184 
3185     Record *Instr = Entry.first;
3186     AddPatternToMatch(I,
3187                       PatternToMatch(Instr,
3188                                      Instr->getValueAsListInit("Predicates"),
3189                                      SrcPattern,
3190                                      TheInst.getResultPattern(),
3191                                      TheInst.getImpResults(),
3192                                      Instr->getValueAsInt("AddedComplexity"),
3193                                      Instr->getID()));
3194   }
3195 }
3196 
3197 
3198 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3199 
3200 static void FindNames(const TreePatternNode *P,
3201                       std::map<std::string, NameRecord> &Names,
3202                       TreePattern *PatternTop) {
3203   if (!P->getName().empty()) {
3204     NameRecord &Rec = Names[P->getName()];
3205     // If this is the first instance of the name, remember the node.
3206     if (Rec.second++ == 0)
3207       Rec.first = P;
3208     else if (Rec.first->getExtTypes() != P->getExtTypes())
3209       PatternTop->error("repetition of value: $" + P->getName() +
3210                         " where different uses have different types!");
3211   }
3212 
3213   if (!P->isLeaf()) {
3214     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3215       FindNames(P->getChild(i), Names, PatternTop);
3216   }
3217 }
3218 
3219 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3220                                            const PatternToMatch &PTM) {
3221   // Do some sanity checking on the pattern we're about to match.
3222   std::string Reason;
3223   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3224     PrintWarning(Pattern->getRecord()->getLoc(),
3225       Twine("Pattern can never match: ") + Reason);
3226     return;
3227   }
3228 
3229   // If the source pattern's root is a complex pattern, that complex pattern
3230   // must specify the nodes it can potentially match.
3231   if (const ComplexPattern *CP =
3232         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3233     if (CP->getRootNodes().empty())
3234       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3235                      " could match");
3236 
3237 
3238   // Find all of the named values in the input and output, ensure they have the
3239   // same type.
3240   std::map<std::string, NameRecord> SrcNames, DstNames;
3241   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3242   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3243 
3244   // Scan all of the named values in the destination pattern, rejecting them if
3245   // they don't exist in the input pattern.
3246   for (const auto &Entry : DstNames) {
3247     if (SrcNames[Entry.first].first == nullptr)
3248       Pattern->error("Pattern has input without matching name in output: $" +
3249                      Entry.first);
3250   }
3251 
3252   // Scan all of the named values in the source pattern, rejecting them if the
3253   // name isn't used in the dest, and isn't used to tie two values together.
3254   for (const auto &Entry : SrcNames)
3255     if (DstNames[Entry.first].first == nullptr &&
3256         SrcNames[Entry.first].second == 1)
3257       Pattern->error("Pattern has dead named input: $" + Entry.first);
3258 
3259   PatternsToMatch.push_back(PTM);
3260 }
3261 
3262 
3263 
3264 void CodeGenDAGPatterns::InferInstructionFlags() {
3265   ArrayRef<const CodeGenInstruction*> Instructions =
3266     Target.getInstructionsByEnumValue();
3267 
3268   // First try to infer flags from the primary instruction pattern, if any.
3269   SmallVector<CodeGenInstruction*, 8> Revisit;
3270   unsigned Errors = 0;
3271   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3272     CodeGenInstruction &InstInfo =
3273       const_cast<CodeGenInstruction &>(*Instructions[i]);
3274 
3275     // Get the primary instruction pattern.
3276     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3277     if (!Pattern) {
3278       if (InstInfo.hasUndefFlags())
3279         Revisit.push_back(&InstInfo);
3280       continue;
3281     }
3282     InstAnalyzer PatInfo(*this);
3283     PatInfo.Analyze(Pattern);
3284     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3285   }
3286 
3287   // Second, look for single-instruction patterns defined outside the
3288   // instruction.
3289   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3290     const PatternToMatch &PTM = *I;
3291 
3292     // We can only infer from single-instruction patterns, otherwise we won't
3293     // know which instruction should get the flags.
3294     SmallVector<Record*, 8> PatInstrs;
3295     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3296     if (PatInstrs.size() != 1)
3297       continue;
3298 
3299     // Get the single instruction.
3300     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3301 
3302     // Only infer properties from the first pattern. We'll verify the others.
3303     if (InstInfo.InferredFrom)
3304       continue;
3305 
3306     InstAnalyzer PatInfo(*this);
3307     PatInfo.Analyze(&PTM);
3308     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3309   }
3310 
3311   if (Errors)
3312     PrintFatalError("pattern conflicts");
3313 
3314   // Revisit instructions with undefined flags and no pattern.
3315   if (Target.guessInstructionProperties()) {
3316     for (CodeGenInstruction *InstInfo : Revisit) {
3317       if (InstInfo->InferredFrom)
3318         continue;
3319       // The mayLoad and mayStore flags default to false.
3320       // Conservatively assume hasSideEffects if it wasn't explicit.
3321       if (InstInfo->hasSideEffects_Unset)
3322         InstInfo->hasSideEffects = true;
3323     }
3324     return;
3325   }
3326 
3327   // Complain about any flags that are still undefined.
3328   for (CodeGenInstruction *InstInfo : Revisit) {
3329     if (InstInfo->InferredFrom)
3330       continue;
3331     if (InstInfo->hasSideEffects_Unset)
3332       PrintError(InstInfo->TheDef->getLoc(),
3333                  "Can't infer hasSideEffects from patterns");
3334     if (InstInfo->mayStore_Unset)
3335       PrintError(InstInfo->TheDef->getLoc(),
3336                  "Can't infer mayStore from patterns");
3337     if (InstInfo->mayLoad_Unset)
3338       PrintError(InstInfo->TheDef->getLoc(),
3339                  "Can't infer mayLoad from patterns");
3340   }
3341 }
3342 
3343 
3344 /// Verify instruction flags against pattern node properties.
3345 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3346   unsigned Errors = 0;
3347   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3348     const PatternToMatch &PTM = *I;
3349     SmallVector<Record*, 8> Instrs;
3350     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3351     if (Instrs.empty())
3352       continue;
3353 
3354     // Count the number of instructions with each flag set.
3355     unsigned NumSideEffects = 0;
3356     unsigned NumStores = 0;
3357     unsigned NumLoads = 0;
3358     for (const Record *Instr : Instrs) {
3359       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3360       NumSideEffects += InstInfo.hasSideEffects;
3361       NumStores += InstInfo.mayStore;
3362       NumLoads += InstInfo.mayLoad;
3363     }
3364 
3365     // Analyze the source pattern.
3366     InstAnalyzer PatInfo(*this);
3367     PatInfo.Analyze(&PTM);
3368 
3369     // Collect error messages.
3370     SmallVector<std::string, 4> Msgs;
3371 
3372     // Check for missing flags in the output.
3373     // Permit extra flags for now at least.
3374     if (PatInfo.hasSideEffects && !NumSideEffects)
3375       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3376 
3377     // Don't verify store flags on instructions with side effects. At least for
3378     // intrinsics, side effects implies mayStore.
3379     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3380       Msgs.push_back("pattern may store, but mayStore isn't set");
3381 
3382     // Similarly, mayStore implies mayLoad on intrinsics.
3383     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3384       Msgs.push_back("pattern may load, but mayLoad isn't set");
3385 
3386     // Print error messages.
3387     if (Msgs.empty())
3388       continue;
3389     ++Errors;
3390 
3391     for (const std::string &Msg : Msgs)
3392       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3393                  (Instrs.size() == 1 ?
3394                   "instruction" : "output instructions"));
3395     // Provide the location of the relevant instruction definitions.
3396     for (const Record *Instr : Instrs) {
3397       if (Instr != PTM.getSrcRecord())
3398         PrintError(Instr->getLoc(), "defined here");
3399       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3400       if (InstInfo.InferredFrom &&
3401           InstInfo.InferredFrom != InstInfo.TheDef &&
3402           InstInfo.InferredFrom != PTM.getSrcRecord())
3403         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3404     }
3405   }
3406   if (Errors)
3407     PrintFatalError("Errors in DAG patterns");
3408 }
3409 
3410 /// Given a pattern result with an unresolved type, see if we can find one
3411 /// instruction with an unresolved result type.  Force this result type to an
3412 /// arbitrary element if it's possible types to converge results.
3413 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3414   if (N->isLeaf())
3415     return false;
3416 
3417   // Analyze children.
3418   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3419     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3420       return true;
3421 
3422   if (!N->getOperator()->isSubClassOf("Instruction"))
3423     return false;
3424 
3425   // If this type is already concrete or completely unknown we can't do
3426   // anything.
3427   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3428     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3429       continue;
3430 
3431     // Otherwise, force its type to the first possibility (an arbitrary choice).
3432     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3433       return true;
3434   }
3435 
3436   return false;
3437 }
3438 
3439 void CodeGenDAGPatterns::ParsePatterns() {
3440   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3441 
3442   for (Record *CurPattern : Patterns) {
3443     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3444 
3445     // If the pattern references the null_frag, there's nothing to do.
3446     if (hasNullFragReference(Tree))
3447       continue;
3448 
3449     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3450 
3451     // Inline pattern fragments into it.
3452     Pattern->InlinePatternFragments();
3453 
3454     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3455     if (LI->empty()) continue;  // no pattern.
3456 
3457     // Parse the instruction.
3458     TreePattern Result(CurPattern, LI, false, *this);
3459 
3460     // Inline pattern fragments into it.
3461     Result.InlinePatternFragments();
3462 
3463     if (Result.getNumTrees() != 1)
3464       Result.error("Cannot handle instructions producing instructions "
3465                    "with temporaries yet!");
3466 
3467     bool IterateInference;
3468     bool InferredAllPatternTypes, InferredAllResultTypes;
3469     do {
3470       // Infer as many types as possible.  If we cannot infer all of them, we
3471       // can never do anything with this pattern: report it to the user.
3472       InferredAllPatternTypes =
3473         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3474 
3475       // Infer as many types as possible.  If we cannot infer all of them, we
3476       // can never do anything with this pattern: report it to the user.
3477       InferredAllResultTypes =
3478           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3479 
3480       IterateInference = false;
3481 
3482       // Apply the type of the result to the source pattern.  This helps us
3483       // resolve cases where the input type is known to be a pointer type (which
3484       // is considered resolved), but the result knows it needs to be 32- or
3485       // 64-bits.  Infer the other way for good measure.
3486       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3487                                         Pattern->getTree(0)->getNumTypes());
3488            i != e; ++i) {
3489         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3490             i, Result.getTree(0)->getExtType(i), Result);
3491         IterateInference |= Result.getTree(0)->UpdateNodeType(
3492             i, Pattern->getTree(0)->getExtType(i), Result);
3493       }
3494 
3495       // If our iteration has converged and the input pattern's types are fully
3496       // resolved but the result pattern is not fully resolved, we may have a
3497       // situation where we have two instructions in the result pattern and
3498       // the instructions require a common register class, but don't care about
3499       // what actual MVT is used.  This is actually a bug in our modelling:
3500       // output patterns should have register classes, not MVTs.
3501       //
3502       // In any case, to handle this, we just go through and disambiguate some
3503       // arbitrary types to the result pattern's nodes.
3504       if (!IterateInference && InferredAllPatternTypes &&
3505           !InferredAllResultTypes)
3506         IterateInference =
3507             ForceArbitraryInstResultType(Result.getTree(0), Result);
3508     } while (IterateInference);
3509 
3510     // Verify that we inferred enough types that we can do something with the
3511     // pattern and result.  If these fire the user has to add type casts.
3512     if (!InferredAllPatternTypes)
3513       Pattern->error("Could not infer all types in pattern!");
3514     if (!InferredAllResultTypes) {
3515       Pattern->dump();
3516       Result.error("Could not infer all types in pattern result!");
3517     }
3518 
3519     // Validate that the input pattern is correct.
3520     std::map<std::string, TreePatternNode*> InstInputs;
3521     std::map<std::string, TreePatternNode*> InstResults;
3522     std::vector<Record*> InstImpResults;
3523     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3524       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3525                                   InstInputs, InstResults,
3526                                   InstImpResults);
3527 
3528     // Promote the xform function to be an explicit node if set.
3529     TreePatternNode *DstPattern = Result.getOnlyTree();
3530     std::vector<TreePatternNode*> ResultNodeOperands;
3531     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3532       TreePatternNode *OpNode = DstPattern->getChild(ii);
3533       if (Record *Xform = OpNode->getTransformFn()) {
3534         OpNode->setTransformFn(nullptr);
3535         std::vector<TreePatternNode*> Children;
3536         Children.push_back(OpNode);
3537         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3538       }
3539       ResultNodeOperands.push_back(OpNode);
3540     }
3541     DstPattern = Result.getOnlyTree();
3542     if (!DstPattern->isLeaf())
3543       DstPattern = new TreePatternNode(DstPattern->getOperator(),
3544                                        ResultNodeOperands,
3545                                        DstPattern->getNumTypes());
3546 
3547     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3548       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3549 
3550     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3551     Temp.InferAllTypes();
3552 
3553 
3554     AddPatternToMatch(Pattern,
3555                     PatternToMatch(CurPattern,
3556                                    CurPattern->getValueAsListInit("Predicates"),
3557                                    Pattern->getTree(0),
3558                                    Temp.getOnlyTree(), InstImpResults,
3559                                    CurPattern->getValueAsInt("AddedComplexity"),
3560                                    CurPattern->getID()));
3561   }
3562 }
3563 
3564 /// CombineChildVariants - Given a bunch of permutations of each child of the
3565 /// 'operator' node, put them together in all possible ways.
3566 static void CombineChildVariants(TreePatternNode *Orig,
3567                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3568                                  std::vector<TreePatternNode*> &OutVariants,
3569                                  CodeGenDAGPatterns &CDP,
3570                                  const MultipleUseVarSet &DepVars) {
3571   // Make sure that each operand has at least one variant to choose from.
3572   for (const auto &Variants : ChildVariants)
3573     if (Variants.empty())
3574       return;
3575 
3576   // The end result is an all-pairs construction of the resultant pattern.
3577   std::vector<unsigned> Idxs;
3578   Idxs.resize(ChildVariants.size());
3579   bool NotDone;
3580   do {
3581 #ifndef NDEBUG
3582     DEBUG(if (!Idxs.empty()) {
3583             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3584               for (unsigned Idx : Idxs) {
3585                 errs() << Idx << " ";
3586             }
3587             errs() << "]\n";
3588           });
3589 #endif
3590     // Create the variant and add it to the output list.
3591     std::vector<TreePatternNode*> NewChildren;
3592     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3593       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3594     auto R = llvm::make_unique<TreePatternNode>(
3595         Orig->getOperator(), NewChildren, Orig->getNumTypes());
3596 
3597     // Copy over properties.
3598     R->setName(Orig->getName());
3599     R->setPredicateFns(Orig->getPredicateFns());
3600     R->setTransformFn(Orig->getTransformFn());
3601     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3602       R->setType(i, Orig->getExtType(i));
3603 
3604     // If this pattern cannot match, do not include it as a variant.
3605     std::string ErrString;
3606     // Scan to see if this pattern has already been emitted.  We can get
3607     // duplication due to things like commuting:
3608     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3609     // which are the same pattern.  Ignore the dups.
3610     if (R->canPatternMatch(ErrString, CDP) &&
3611         none_of(OutVariants, [&](TreePatternNode *Variant) {
3612           return R->isIsomorphicTo(Variant, DepVars);
3613         }))
3614       OutVariants.push_back(R.release());
3615 
3616     // Increment indices to the next permutation by incrementing the
3617     // indices from last index backward, e.g., generate the sequence
3618     // [0, 0], [0, 1], [1, 0], [1, 1].
3619     int IdxsIdx;
3620     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3621       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3622         Idxs[IdxsIdx] = 0;
3623       else
3624         break;
3625     }
3626     NotDone = (IdxsIdx >= 0);
3627   } while (NotDone);
3628 }
3629 
3630 /// CombineChildVariants - A helper function for binary operators.
3631 ///
3632 static void CombineChildVariants(TreePatternNode *Orig,
3633                                  const std::vector<TreePatternNode*> &LHS,
3634                                  const std::vector<TreePatternNode*> &RHS,
3635                                  std::vector<TreePatternNode*> &OutVariants,
3636                                  CodeGenDAGPatterns &CDP,
3637                                  const MultipleUseVarSet &DepVars) {
3638   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3639   ChildVariants.push_back(LHS);
3640   ChildVariants.push_back(RHS);
3641   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3642 }
3643 
3644 
3645 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3646                                      std::vector<TreePatternNode *> &Children) {
3647   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3648   Record *Operator = N->getOperator();
3649 
3650   // Only permit raw nodes.
3651   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3652       N->getTransformFn()) {
3653     Children.push_back(N);
3654     return;
3655   }
3656 
3657   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3658     Children.push_back(N->getChild(0));
3659   else
3660     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3661 
3662   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3663     Children.push_back(N->getChild(1));
3664   else
3665     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3666 }
3667 
3668 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3669 /// the (potentially recursive) pattern by using algebraic laws.
3670 ///
3671 static void GenerateVariantsOf(TreePatternNode *N,
3672                                std::vector<TreePatternNode*> &OutVariants,
3673                                CodeGenDAGPatterns &CDP,
3674                                const MultipleUseVarSet &DepVars) {
3675   // We cannot permute leaves or ComplexPattern uses.
3676   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3677     OutVariants.push_back(N);
3678     return;
3679   }
3680 
3681   // Look up interesting info about the node.
3682   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3683 
3684   // If this node is associative, re-associate.
3685   if (NodeInfo.hasProperty(SDNPAssociative)) {
3686     // Re-associate by pulling together all of the linked operators
3687     std::vector<TreePatternNode*> MaximalChildren;
3688     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3689 
3690     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3691     // permutations.
3692     if (MaximalChildren.size() == 3) {
3693       // Find the variants of all of our maximal children.
3694       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3695       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3696       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3697       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3698 
3699       // There are only two ways we can permute the tree:
3700       //   (A op B) op C    and    A op (B op C)
3701       // Within these forms, we can also permute A/B/C.
3702 
3703       // Generate legal pair permutations of A/B/C.
3704       std::vector<TreePatternNode*> ABVariants;
3705       std::vector<TreePatternNode*> BAVariants;
3706       std::vector<TreePatternNode*> ACVariants;
3707       std::vector<TreePatternNode*> CAVariants;
3708       std::vector<TreePatternNode*> BCVariants;
3709       std::vector<TreePatternNode*> CBVariants;
3710       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3711       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3712       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3713       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3714       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3715       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3716 
3717       // Combine those into the result: (x op x) op x
3718       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3719       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3720       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3721       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3722       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3723       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3724 
3725       // Combine those into the result: x op (x op x)
3726       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3727       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3728       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3729       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3730       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3731       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3732       return;
3733     }
3734   }
3735 
3736   // Compute permutations of all children.
3737   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3738   ChildVariants.resize(N->getNumChildren());
3739   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3740     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3741 
3742   // Build all permutations based on how the children were formed.
3743   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3744 
3745   // If this node is commutative, consider the commuted order.
3746   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3747   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3748     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3749            "Commutative but doesn't have 2 children!");
3750     // Don't count children which are actually register references.
3751     unsigned NC = 0;
3752     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3753       TreePatternNode *Child = N->getChild(i);
3754       if (Child->isLeaf())
3755         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3756           Record *RR = DI->getDef();
3757           if (RR->isSubClassOf("Register"))
3758             continue;
3759         }
3760       NC++;
3761     }
3762     // Consider the commuted order.
3763     if (isCommIntrinsic) {
3764       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3765       // operands are the commutative operands, and there might be more operands
3766       // after those.
3767       assert(NC >= 3 &&
3768              "Commutative intrinsic should have at least 3 children!");
3769       std::vector<std::vector<TreePatternNode*> > Variants;
3770       Variants.push_back(ChildVariants[0]); // Intrinsic id.
3771       Variants.push_back(ChildVariants[2]);
3772       Variants.push_back(ChildVariants[1]);
3773       for (unsigned i = 3; i != NC; ++i)
3774         Variants.push_back(ChildVariants[i]);
3775       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3776     } else if (NC == 2)
3777       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3778                            OutVariants, CDP, DepVars);
3779   }
3780 }
3781 
3782 
3783 // GenerateVariants - Generate variants.  For example, commutative patterns can
3784 // match multiple ways.  Add them to PatternsToMatch as well.
3785 void CodeGenDAGPatterns::GenerateVariants() {
3786   DEBUG(errs() << "Generating instruction variants.\n");
3787 
3788   // Loop over all of the patterns we've collected, checking to see if we can
3789   // generate variants of the instruction, through the exploitation of
3790   // identities.  This permits the target to provide aggressive matching without
3791   // the .td file having to contain tons of variants of instructions.
3792   //
3793   // Note that this loop adds new patterns to the PatternsToMatch list, but we
3794   // intentionally do not reconsider these.  Any variants of added patterns have
3795   // already been added.
3796   //
3797   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3798     MultipleUseVarSet             DepVars;
3799     std::vector<TreePatternNode*> Variants;
3800     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3801     DEBUG(errs() << "Dependent/multiply used variables: ");
3802     DEBUG(DumpDepVars(DepVars));
3803     DEBUG(errs() << "\n");
3804     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3805                        DepVars);
3806 
3807     assert(!Variants.empty() && "Must create at least original variant!");
3808     Variants.erase(Variants.begin());  // Remove the original pattern.
3809 
3810     if (Variants.empty())  // No variants for this pattern.
3811       continue;
3812 
3813     DEBUG(errs() << "FOUND VARIANTS OF: ";
3814           PatternsToMatch[i].getSrcPattern()->dump();
3815           errs() << "\n");
3816 
3817     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3818       TreePatternNode *Variant = Variants[v];
3819 
3820       DEBUG(errs() << "  VAR#" << v <<  ": ";
3821             Variant->dump();
3822             errs() << "\n");
3823 
3824       // Scan to see if an instruction or explicit pattern already matches this.
3825       bool AlreadyExists = false;
3826       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3827         // Skip if the top level predicates do not match.
3828         if (PatternsToMatch[i].getPredicates() !=
3829             PatternsToMatch[p].getPredicates())
3830           continue;
3831         // Check to see if this variant already exists.
3832         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3833                                     DepVars)) {
3834           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3835           AlreadyExists = true;
3836           break;
3837         }
3838       }
3839       // If we already have it, ignore the variant.
3840       if (AlreadyExists) continue;
3841 
3842       // Otherwise, add it to the list of patterns we have.
3843       PatternsToMatch.emplace_back(
3844           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
3845           Variant, PatternsToMatch[i].getDstPattern(),
3846           PatternsToMatch[i].getDstRegs(),
3847           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
3848     }
3849 
3850     DEBUG(errs() << "\n");
3851   }
3852 }
3853