1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/TableGen/Error.h" 17 #include "llvm/TableGen/Record.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include <algorithm> 23 #include <cstdio> 24 #include <set> 25 using namespace llvm; 26 27 //===----------------------------------------------------------------------===// 28 // EEVT::TypeSet Implementation 29 //===----------------------------------------------------------------------===// 30 31 static inline bool isInteger(MVT::SimpleValueType VT) { 32 return EVT(VT).isInteger(); 33 } 34 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 35 return EVT(VT).isFloatingPoint(); 36 } 37 static inline bool isVector(MVT::SimpleValueType VT) { 38 return EVT(VT).isVector(); 39 } 40 static inline bool isScalar(MVT::SimpleValueType VT) { 41 return !EVT(VT).isVector(); 42 } 43 44 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 45 if (VT == MVT::iAny) 46 EnforceInteger(TP); 47 else if (VT == MVT::fAny) 48 EnforceFloatingPoint(TP); 49 else if (VT == MVT::vAny) 50 EnforceVector(TP); 51 else { 52 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 53 VT == MVT::iPTRAny) && "Not a concrete type!"); 54 TypeVec.push_back(VT); 55 } 56 } 57 58 59 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 60 assert(!VTList.empty() && "empty list?"); 61 TypeVec.append(VTList.begin(), VTList.end()); 62 63 if (!VTList.empty()) 64 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 65 VTList[0] != MVT::fAny); 66 67 // Verify no duplicates. 68 array_pod_sort(TypeVec.begin(), TypeVec.end()); 69 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 70 } 71 72 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 73 /// on completely unknown type sets. 74 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 75 bool (*Pred)(MVT::SimpleValueType), 76 const char *PredicateName) { 77 assert(isCompletelyUnknown()); 78 const std::vector<MVT::SimpleValueType> &LegalTypes = 79 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 80 81 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 82 if (Pred == 0 || Pred(LegalTypes[i])) 83 TypeVec.push_back(LegalTypes[i]); 84 85 // If we have nothing that matches the predicate, bail out. 86 if (TypeVec.empty()) 87 TP.error("Type inference contradiction found, no " + 88 std::string(PredicateName) + " types found"); 89 // No need to sort with one element. 90 if (TypeVec.size() == 1) return true; 91 92 // Remove duplicates. 93 array_pod_sort(TypeVec.begin(), TypeVec.end()); 94 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 95 96 return true; 97 } 98 99 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 100 /// integer value type. 101 bool EEVT::TypeSet::hasIntegerTypes() const { 102 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 103 if (isInteger(TypeVec[i])) 104 return true; 105 return false; 106 } 107 108 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 109 /// a floating point value type. 110 bool EEVT::TypeSet::hasFloatingPointTypes() const { 111 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 112 if (isFloatingPoint(TypeVec[i])) 113 return true; 114 return false; 115 } 116 117 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 118 /// value type. 119 bool EEVT::TypeSet::hasVectorTypes() const { 120 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 121 if (isVector(TypeVec[i])) 122 return true; 123 return false; 124 } 125 126 127 std::string EEVT::TypeSet::getName() const { 128 if (TypeVec.empty()) return "<empty>"; 129 130 std::string Result; 131 132 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 133 std::string VTName = llvm::getEnumName(TypeVec[i]); 134 // Strip off MVT:: prefix if present. 135 if (VTName.substr(0,5) == "MVT::") 136 VTName = VTName.substr(5); 137 if (i) Result += ':'; 138 Result += VTName; 139 } 140 141 if (TypeVec.size() == 1) 142 return Result; 143 return "{" + Result + "}"; 144 } 145 146 /// MergeInTypeInfo - This merges in type information from the specified 147 /// argument. If 'this' changes, it returns true. If the two types are 148 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 149 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 150 if (InVT.isCompletelyUnknown() || *this == InVT) 151 return false; 152 153 if (isCompletelyUnknown()) { 154 *this = InVT; 155 return true; 156 } 157 158 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 159 160 // Handle the abstract cases, seeing if we can resolve them better. 161 switch (TypeVec[0]) { 162 default: break; 163 case MVT::iPTR: 164 case MVT::iPTRAny: 165 if (InVT.hasIntegerTypes()) { 166 EEVT::TypeSet InCopy(InVT); 167 InCopy.EnforceInteger(TP); 168 InCopy.EnforceScalar(TP); 169 170 if (InCopy.isConcrete()) { 171 // If the RHS has one integer type, upgrade iPTR to i32. 172 TypeVec[0] = InVT.TypeVec[0]; 173 return true; 174 } 175 176 // If the input has multiple scalar integers, this doesn't add any info. 177 if (!InCopy.isCompletelyUnknown()) 178 return false; 179 } 180 break; 181 } 182 183 // If the input constraint is iAny/iPTR and this is an integer type list, 184 // remove non-integer types from the list. 185 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 186 hasIntegerTypes()) { 187 bool MadeChange = EnforceInteger(TP); 188 189 // If we're merging in iPTR/iPTRAny and the node currently has a list of 190 // multiple different integer types, replace them with a single iPTR. 191 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 192 TypeVec.size() != 1) { 193 TypeVec.resize(1); 194 TypeVec[0] = InVT.TypeVec[0]; 195 MadeChange = true; 196 } 197 198 return MadeChange; 199 } 200 201 // If this is a type list and the RHS is a typelist as well, eliminate entries 202 // from this list that aren't in the other one. 203 bool MadeChange = false; 204 TypeSet InputSet(*this); 205 206 for (unsigned i = 0; i != TypeVec.size(); ++i) { 207 bool InInVT = false; 208 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 209 if (TypeVec[i] == InVT.TypeVec[j]) { 210 InInVT = true; 211 break; 212 } 213 214 if (InInVT) continue; 215 TypeVec.erase(TypeVec.begin()+i--); 216 MadeChange = true; 217 } 218 219 // If we removed all of our types, we have a type contradiction. 220 if (!TypeVec.empty()) 221 return MadeChange; 222 223 // FIXME: Really want an SMLoc here! 224 TP.error("Type inference contradiction found, merging '" + 225 InVT.getName() + "' into '" + InputSet.getName() + "'"); 226 return true; // unreachable 227 } 228 229 /// EnforceInteger - Remove all non-integer types from this set. 230 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 231 // If we know nothing, then get the full set. 232 if (TypeVec.empty()) 233 return FillWithPossibleTypes(TP, isInteger, "integer"); 234 if (!hasFloatingPointTypes()) 235 return false; 236 237 TypeSet InputSet(*this); 238 239 // Filter out all the fp types. 240 for (unsigned i = 0; i != TypeVec.size(); ++i) 241 if (!isInteger(TypeVec[i])) 242 TypeVec.erase(TypeVec.begin()+i--); 243 244 if (TypeVec.empty()) 245 TP.error("Type inference contradiction found, '" + 246 InputSet.getName() + "' needs to be integer"); 247 return true; 248 } 249 250 /// EnforceFloatingPoint - Remove all integer types from this set. 251 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 252 // If we know nothing, then get the full set. 253 if (TypeVec.empty()) 254 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 255 256 if (!hasIntegerTypes()) 257 return false; 258 259 TypeSet InputSet(*this); 260 261 // Filter out all the fp types. 262 for (unsigned i = 0; i != TypeVec.size(); ++i) 263 if (!isFloatingPoint(TypeVec[i])) 264 TypeVec.erase(TypeVec.begin()+i--); 265 266 if (TypeVec.empty()) 267 TP.error("Type inference contradiction found, '" + 268 InputSet.getName() + "' needs to be floating point"); 269 return true; 270 } 271 272 /// EnforceScalar - Remove all vector types from this. 273 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 274 // If we know nothing, then get the full set. 275 if (TypeVec.empty()) 276 return FillWithPossibleTypes(TP, isScalar, "scalar"); 277 278 if (!hasVectorTypes()) 279 return false; 280 281 TypeSet InputSet(*this); 282 283 // Filter out all the vector types. 284 for (unsigned i = 0; i != TypeVec.size(); ++i) 285 if (!isScalar(TypeVec[i])) 286 TypeVec.erase(TypeVec.begin()+i--); 287 288 if (TypeVec.empty()) 289 TP.error("Type inference contradiction found, '" + 290 InputSet.getName() + "' needs to be scalar"); 291 return true; 292 } 293 294 /// EnforceVector - Remove all vector types from this. 295 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 296 // If we know nothing, then get the full set. 297 if (TypeVec.empty()) 298 return FillWithPossibleTypes(TP, isVector, "vector"); 299 300 TypeSet InputSet(*this); 301 bool MadeChange = false; 302 303 // Filter out all the scalar types. 304 for (unsigned i = 0; i != TypeVec.size(); ++i) 305 if (!isVector(TypeVec[i])) { 306 TypeVec.erase(TypeVec.begin()+i--); 307 MadeChange = true; 308 } 309 310 if (TypeVec.empty()) 311 TP.error("Type inference contradiction found, '" + 312 InputSet.getName() + "' needs to be a vector"); 313 return MadeChange; 314 } 315 316 317 318 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 319 /// this an other based on this information. 320 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 321 // Both operands must be integer or FP, but we don't care which. 322 bool MadeChange = false; 323 324 if (isCompletelyUnknown()) 325 MadeChange = FillWithPossibleTypes(TP); 326 327 if (Other.isCompletelyUnknown()) 328 MadeChange = Other.FillWithPossibleTypes(TP); 329 330 // If one side is known to be integer or known to be FP but the other side has 331 // no information, get at least the type integrality info in there. 332 if (!hasFloatingPointTypes()) 333 MadeChange |= Other.EnforceInteger(TP); 334 else if (!hasIntegerTypes()) 335 MadeChange |= Other.EnforceFloatingPoint(TP); 336 if (!Other.hasFloatingPointTypes()) 337 MadeChange |= EnforceInteger(TP); 338 else if (!Other.hasIntegerTypes()) 339 MadeChange |= EnforceFloatingPoint(TP); 340 341 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 342 "Should have a type list now"); 343 344 // If one contains vectors but the other doesn't pull vectors out. 345 if (!hasVectorTypes()) 346 MadeChange |= Other.EnforceScalar(TP); 347 if (!hasVectorTypes()) 348 MadeChange |= EnforceScalar(TP); 349 350 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 351 // If we are down to concrete types, this code does not currently 352 // handle nodes which have multiple types, where some types are 353 // integer, and some are fp. Assert that this is not the case. 354 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 355 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 356 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 357 358 // Otherwise, if these are both vector types, either this vector 359 // must have a larger bitsize than the other, or this element type 360 // must be larger than the other. 361 EVT Type(TypeVec[0]); 362 EVT OtherType(Other.TypeVec[0]); 363 364 if (hasVectorTypes() && Other.hasVectorTypes()) { 365 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 366 if (Type.getVectorElementType().getSizeInBits() 367 >= OtherType.getVectorElementType().getSizeInBits()) 368 TP.error("Type inference contradiction found, '" + 369 getName() + "' element type not smaller than '" + 370 Other.getName() +"'!"); 371 } 372 else 373 // For scalar types, the bitsize of this type must be larger 374 // than that of the other. 375 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 376 TP.error("Type inference contradiction found, '" + 377 getName() + "' is not smaller than '" + 378 Other.getName() +"'!"); 379 380 } 381 382 383 // Handle int and fp as disjoint sets. This won't work for patterns 384 // that have mixed fp/int types but those are likely rare and would 385 // not have been accepted by this code previously. 386 387 // Okay, find the smallest type from the current set and remove it from the 388 // largest set. 389 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 390 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 391 if (isInteger(TypeVec[i])) { 392 SmallestInt = TypeVec[i]; 393 break; 394 } 395 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 396 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 397 SmallestInt = TypeVec[i]; 398 399 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 400 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 401 if (isFloatingPoint(TypeVec[i])) { 402 SmallestFP = TypeVec[i]; 403 break; 404 } 405 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 406 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 407 SmallestFP = TypeVec[i]; 408 409 int OtherIntSize = 0; 410 int OtherFPSize = 0; 411 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 412 Other.TypeVec.begin(); 413 TVI != Other.TypeVec.end(); 414 /* NULL */) { 415 if (isInteger(*TVI)) { 416 ++OtherIntSize; 417 if (*TVI == SmallestInt) { 418 TVI = Other.TypeVec.erase(TVI); 419 --OtherIntSize; 420 MadeChange = true; 421 continue; 422 } 423 } 424 else if (isFloatingPoint(*TVI)) { 425 ++OtherFPSize; 426 if (*TVI == SmallestFP) { 427 TVI = Other.TypeVec.erase(TVI); 428 --OtherFPSize; 429 MadeChange = true; 430 continue; 431 } 432 } 433 ++TVI; 434 } 435 436 // If this is the only type in the large set, the constraint can never be 437 // satisfied. 438 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 439 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) 440 TP.error("Type inference contradiction found, '" + 441 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 442 443 // Okay, find the largest type in the Other set and remove it from the 444 // current set. 445 MVT::SimpleValueType LargestInt = MVT::Other; 446 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 447 if (isInteger(Other.TypeVec[i])) { 448 LargestInt = Other.TypeVec[i]; 449 break; 450 } 451 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 452 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 453 LargestInt = Other.TypeVec[i]; 454 455 MVT::SimpleValueType LargestFP = MVT::Other; 456 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 457 if (isFloatingPoint(Other.TypeVec[i])) { 458 LargestFP = Other.TypeVec[i]; 459 break; 460 } 461 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 462 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 463 LargestFP = Other.TypeVec[i]; 464 465 int IntSize = 0; 466 int FPSize = 0; 467 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 468 TypeVec.begin(); 469 TVI != TypeVec.end(); 470 /* NULL */) { 471 if (isInteger(*TVI)) { 472 ++IntSize; 473 if (*TVI == LargestInt) { 474 TVI = TypeVec.erase(TVI); 475 --IntSize; 476 MadeChange = true; 477 continue; 478 } 479 } 480 else if (isFloatingPoint(*TVI)) { 481 ++FPSize; 482 if (*TVI == LargestFP) { 483 TVI = TypeVec.erase(TVI); 484 --FPSize; 485 MadeChange = true; 486 continue; 487 } 488 } 489 ++TVI; 490 } 491 492 // If this is the only type in the small set, the constraint can never be 493 // satisfied. 494 if ((hasIntegerTypes() && IntSize == 0) 495 || (hasFloatingPointTypes() && FPSize == 0)) 496 TP.error("Type inference contradiction found, '" + 497 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 498 499 return MadeChange; 500 } 501 502 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 503 /// whose element is specified by VTOperand. 504 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 505 TreePattern &TP) { 506 // "This" must be a vector and "VTOperand" must be a scalar. 507 bool MadeChange = false; 508 MadeChange |= EnforceVector(TP); 509 MadeChange |= VTOperand.EnforceScalar(TP); 510 511 // If we know the vector type, it forces the scalar to agree. 512 if (isConcrete()) { 513 EVT IVT = getConcrete(); 514 IVT = IVT.getVectorElementType(); 515 return MadeChange | 516 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 517 } 518 519 // If the scalar type is known, filter out vector types whose element types 520 // disagree. 521 if (!VTOperand.isConcrete()) 522 return MadeChange; 523 524 MVT::SimpleValueType VT = VTOperand.getConcrete(); 525 526 TypeSet InputSet(*this); 527 528 // Filter out all the types which don't have the right element type. 529 for (unsigned i = 0; i != TypeVec.size(); ++i) { 530 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 531 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 532 TypeVec.erase(TypeVec.begin()+i--); 533 MadeChange = true; 534 } 535 } 536 537 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 538 TP.error("Type inference contradiction found, forcing '" + 539 InputSet.getName() + "' to have a vector element"); 540 return MadeChange; 541 } 542 543 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 544 /// vector type specified by VTOperand. 545 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 546 TreePattern &TP) { 547 // "This" must be a vector and "VTOperand" must be a vector. 548 bool MadeChange = false; 549 MadeChange |= EnforceVector(TP); 550 MadeChange |= VTOperand.EnforceVector(TP); 551 552 // "This" must be larger than "VTOperand." 553 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 554 555 // If we know the vector type, it forces the scalar types to agree. 556 if (isConcrete()) { 557 EVT IVT = getConcrete(); 558 IVT = IVT.getVectorElementType(); 559 560 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 561 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 562 } else if (VTOperand.isConcrete()) { 563 EVT IVT = VTOperand.getConcrete(); 564 IVT = IVT.getVectorElementType(); 565 566 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 567 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 568 } 569 570 return MadeChange; 571 } 572 573 //===----------------------------------------------------------------------===// 574 // Helpers for working with extended types. 575 576 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 577 return LHS->getID() < RHS->getID(); 578 } 579 580 /// Dependent variable map for CodeGenDAGPattern variant generation 581 typedef std::map<std::string, int> DepVarMap; 582 583 /// Const iterator shorthand for DepVarMap 584 typedef DepVarMap::const_iterator DepVarMap_citer; 585 586 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 587 if (N->isLeaf()) { 588 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) 589 DepMap[N->getName()]++; 590 } else { 591 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 592 FindDepVarsOf(N->getChild(i), DepMap); 593 } 594 } 595 596 /// Find dependent variables within child patterns 597 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 598 DepVarMap depcounts; 599 FindDepVarsOf(N, depcounts); 600 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 601 if (i->second > 1) // std::pair<std::string, int> 602 DepVars.insert(i->first); 603 } 604 } 605 606 #ifndef NDEBUG 607 /// Dump the dependent variable set: 608 static void DumpDepVars(MultipleUseVarSet &DepVars) { 609 if (DepVars.empty()) { 610 DEBUG(errs() << "<empty set>"); 611 } else { 612 DEBUG(errs() << "[ "); 613 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 614 e = DepVars.end(); i != e; ++i) { 615 DEBUG(errs() << (*i) << " "); 616 } 617 DEBUG(errs() << "]"); 618 } 619 } 620 #endif 621 622 623 //===----------------------------------------------------------------------===// 624 // TreePredicateFn Implementation 625 //===----------------------------------------------------------------------===// 626 627 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 628 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 629 assert((getPredCode().empty() || getImmCode().empty()) && 630 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 631 } 632 633 std::string TreePredicateFn::getPredCode() const { 634 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 635 } 636 637 std::string TreePredicateFn::getImmCode() const { 638 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 639 } 640 641 642 /// isAlwaysTrue - Return true if this is a noop predicate. 643 bool TreePredicateFn::isAlwaysTrue() const { 644 return getPredCode().empty() && getImmCode().empty(); 645 } 646 647 /// Return the name to use in the generated code to reference this, this is 648 /// "Predicate_foo" if from a pattern fragment "foo". 649 std::string TreePredicateFn::getFnName() const { 650 return "Predicate_" + PatFragRec->getRecord()->getName(); 651 } 652 653 /// getCodeToRunOnSDNode - Return the code for the function body that 654 /// evaluates this predicate. The argument is expected to be in "Node", 655 /// not N. This handles casting and conversion to a concrete node type as 656 /// appropriate. 657 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 658 // Handle immediate predicates first. 659 std::string ImmCode = getImmCode(); 660 if (!ImmCode.empty()) { 661 std::string Result = 662 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 663 return Result + ImmCode; 664 } 665 666 // Handle arbitrary node predicates. 667 assert(!getPredCode().empty() && "Don't have any predicate code!"); 668 std::string ClassName; 669 if (PatFragRec->getOnlyTree()->isLeaf()) 670 ClassName = "SDNode"; 671 else { 672 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 673 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 674 } 675 std::string Result; 676 if (ClassName == "SDNode") 677 Result = " SDNode *N = Node;\n"; 678 else 679 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 680 681 return Result + getPredCode(); 682 } 683 684 //===----------------------------------------------------------------------===// 685 // PatternToMatch implementation 686 // 687 688 689 /// getPatternSize - Return the 'size' of this pattern. We want to match large 690 /// patterns before small ones. This is used to determine the size of a 691 /// pattern. 692 static unsigned getPatternSize(const TreePatternNode *P, 693 const CodeGenDAGPatterns &CGP) { 694 unsigned Size = 3; // The node itself. 695 // If the root node is a ConstantSDNode, increases its size. 696 // e.g. (set R32:$dst, 0). 697 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 698 Size += 2; 699 700 // FIXME: This is a hack to statically increase the priority of patterns 701 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 702 // Later we can allow complexity / cost for each pattern to be (optionally) 703 // specified. To get best possible pattern match we'll need to dynamically 704 // calculate the complexity of all patterns a dag can potentially map to. 705 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 706 if (AM) 707 Size += AM->getNumOperands() * 3; 708 709 // If this node has some predicate function that must match, it adds to the 710 // complexity of this node. 711 if (!P->getPredicateFns().empty()) 712 ++Size; 713 714 // Count children in the count if they are also nodes. 715 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 716 TreePatternNode *Child = P->getChild(i); 717 if (!Child->isLeaf() && Child->getNumTypes() && 718 Child->getType(0) != MVT::Other) 719 Size += getPatternSize(Child, CGP); 720 else if (Child->isLeaf()) { 721 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 722 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 723 else if (Child->getComplexPatternInfo(CGP)) 724 Size += getPatternSize(Child, CGP); 725 else if (!Child->getPredicateFns().empty()) 726 ++Size; 727 } 728 } 729 730 return Size; 731 } 732 733 /// Compute the complexity metric for the input pattern. This roughly 734 /// corresponds to the number of nodes that are covered. 735 unsigned PatternToMatch:: 736 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 737 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 738 } 739 740 741 /// getPredicateCheck - Return a single string containing all of this 742 /// pattern's predicates concatenated with "&&" operators. 743 /// 744 std::string PatternToMatch::getPredicateCheck() const { 745 std::string PredicateCheck; 746 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 747 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 748 Record *Def = Pred->getDef(); 749 if (!Def->isSubClassOf("Predicate")) { 750 #ifndef NDEBUG 751 Def->dump(); 752 #endif 753 llvm_unreachable("Unknown predicate type!"); 754 } 755 if (!PredicateCheck.empty()) 756 PredicateCheck += " && "; 757 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 758 } 759 } 760 761 return PredicateCheck; 762 } 763 764 //===----------------------------------------------------------------------===// 765 // SDTypeConstraint implementation 766 // 767 768 SDTypeConstraint::SDTypeConstraint(Record *R) { 769 OperandNo = R->getValueAsInt("OperandNum"); 770 771 if (R->isSubClassOf("SDTCisVT")) { 772 ConstraintType = SDTCisVT; 773 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 774 if (x.SDTCisVT_Info.VT == MVT::isVoid) 775 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 776 777 } else if (R->isSubClassOf("SDTCisPtrTy")) { 778 ConstraintType = SDTCisPtrTy; 779 } else if (R->isSubClassOf("SDTCisInt")) { 780 ConstraintType = SDTCisInt; 781 } else if (R->isSubClassOf("SDTCisFP")) { 782 ConstraintType = SDTCisFP; 783 } else if (R->isSubClassOf("SDTCisVec")) { 784 ConstraintType = SDTCisVec; 785 } else if (R->isSubClassOf("SDTCisSameAs")) { 786 ConstraintType = SDTCisSameAs; 787 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 788 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 789 ConstraintType = SDTCisVTSmallerThanOp; 790 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 791 R->getValueAsInt("OtherOperandNum"); 792 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 793 ConstraintType = SDTCisOpSmallerThanOp; 794 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 795 R->getValueAsInt("BigOperandNum"); 796 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 797 ConstraintType = SDTCisEltOfVec; 798 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 799 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 800 ConstraintType = SDTCisSubVecOfVec; 801 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 802 R->getValueAsInt("OtherOpNum"); 803 } else { 804 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 805 exit(1); 806 } 807 } 808 809 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 810 /// N, and the result number in ResNo. 811 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 812 const SDNodeInfo &NodeInfo, 813 unsigned &ResNo) { 814 unsigned NumResults = NodeInfo.getNumResults(); 815 if (OpNo < NumResults) { 816 ResNo = OpNo; 817 return N; 818 } 819 820 OpNo -= NumResults; 821 822 if (OpNo >= N->getNumChildren()) { 823 errs() << "Invalid operand number in type constraint " 824 << (OpNo+NumResults) << " "; 825 N->dump(); 826 errs() << '\n'; 827 exit(1); 828 } 829 830 return N->getChild(OpNo); 831 } 832 833 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 834 /// constraint to the nodes operands. This returns true if it makes a 835 /// change, false otherwise. If a type contradiction is found, throw an 836 /// exception. 837 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 838 const SDNodeInfo &NodeInfo, 839 TreePattern &TP) const { 840 unsigned ResNo = 0; // The result number being referenced. 841 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 842 843 switch (ConstraintType) { 844 case SDTCisVT: 845 // Operand must be a particular type. 846 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 847 case SDTCisPtrTy: 848 // Operand must be same as target pointer type. 849 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 850 case SDTCisInt: 851 // Require it to be one of the legal integer VTs. 852 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 853 case SDTCisFP: 854 // Require it to be one of the legal fp VTs. 855 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 856 case SDTCisVec: 857 // Require it to be one of the legal vector VTs. 858 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 859 case SDTCisSameAs: { 860 unsigned OResNo = 0; 861 TreePatternNode *OtherNode = 862 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 863 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 864 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 865 } 866 case SDTCisVTSmallerThanOp: { 867 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 868 // have an integer type that is smaller than the VT. 869 if (!NodeToApply->isLeaf() || 870 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 871 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 872 ->isSubClassOf("ValueType")) 873 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 874 MVT::SimpleValueType VT = 875 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 876 877 EEVT::TypeSet TypeListTmp(VT, TP); 878 879 unsigned OResNo = 0; 880 TreePatternNode *OtherNode = 881 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 882 OResNo); 883 884 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 885 } 886 case SDTCisOpSmallerThanOp: { 887 unsigned BResNo = 0; 888 TreePatternNode *BigOperand = 889 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 890 BResNo); 891 return NodeToApply->getExtType(ResNo). 892 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 893 } 894 case SDTCisEltOfVec: { 895 unsigned VResNo = 0; 896 TreePatternNode *VecOperand = 897 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 898 VResNo); 899 900 // Filter vector types out of VecOperand that don't have the right element 901 // type. 902 return VecOperand->getExtType(VResNo). 903 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 904 } 905 case SDTCisSubVecOfVec: { 906 unsigned VResNo = 0; 907 TreePatternNode *BigVecOperand = 908 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 909 VResNo); 910 911 // Filter vector types out of BigVecOperand that don't have the 912 // right subvector type. 913 return BigVecOperand->getExtType(VResNo). 914 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 915 } 916 } 917 llvm_unreachable("Invalid ConstraintType!"); 918 } 919 920 //===----------------------------------------------------------------------===// 921 // SDNodeInfo implementation 922 // 923 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 924 EnumName = R->getValueAsString("Opcode"); 925 SDClassName = R->getValueAsString("SDClass"); 926 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 927 NumResults = TypeProfile->getValueAsInt("NumResults"); 928 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 929 930 // Parse the properties. 931 Properties = 0; 932 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 933 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 934 if (PropList[i]->getName() == "SDNPCommutative") { 935 Properties |= 1 << SDNPCommutative; 936 } else if (PropList[i]->getName() == "SDNPAssociative") { 937 Properties |= 1 << SDNPAssociative; 938 } else if (PropList[i]->getName() == "SDNPHasChain") { 939 Properties |= 1 << SDNPHasChain; 940 } else if (PropList[i]->getName() == "SDNPOutGlue") { 941 Properties |= 1 << SDNPOutGlue; 942 } else if (PropList[i]->getName() == "SDNPInGlue") { 943 Properties |= 1 << SDNPInGlue; 944 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 945 Properties |= 1 << SDNPOptInGlue; 946 } else if (PropList[i]->getName() == "SDNPMayStore") { 947 Properties |= 1 << SDNPMayStore; 948 } else if (PropList[i]->getName() == "SDNPMayLoad") { 949 Properties |= 1 << SDNPMayLoad; 950 } else if (PropList[i]->getName() == "SDNPSideEffect") { 951 Properties |= 1 << SDNPSideEffect; 952 } else if (PropList[i]->getName() == "SDNPMemOperand") { 953 Properties |= 1 << SDNPMemOperand; 954 } else if (PropList[i]->getName() == "SDNPVariadic") { 955 Properties |= 1 << SDNPVariadic; 956 } else { 957 errs() << "Unknown SD Node property '" << PropList[i]->getName() 958 << "' on node '" << R->getName() << "'!\n"; 959 exit(1); 960 } 961 } 962 963 964 // Parse the type constraints. 965 std::vector<Record*> ConstraintList = 966 TypeProfile->getValueAsListOfDefs("Constraints"); 967 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 968 } 969 970 /// getKnownType - If the type constraints on this node imply a fixed type 971 /// (e.g. all stores return void, etc), then return it as an 972 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 973 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 974 unsigned NumResults = getNumResults(); 975 assert(NumResults <= 1 && 976 "We only work with nodes with zero or one result so far!"); 977 assert(ResNo == 0 && "Only handles single result nodes so far"); 978 979 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 980 // Make sure that this applies to the correct node result. 981 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 982 continue; 983 984 switch (TypeConstraints[i].ConstraintType) { 985 default: break; 986 case SDTypeConstraint::SDTCisVT: 987 return TypeConstraints[i].x.SDTCisVT_Info.VT; 988 case SDTypeConstraint::SDTCisPtrTy: 989 return MVT::iPTR; 990 } 991 } 992 return MVT::Other; 993 } 994 995 //===----------------------------------------------------------------------===// 996 // TreePatternNode implementation 997 // 998 999 TreePatternNode::~TreePatternNode() { 1000 #if 0 // FIXME: implement refcounted tree nodes! 1001 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1002 delete getChild(i); 1003 #endif 1004 } 1005 1006 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1007 if (Operator->getName() == "set" || 1008 Operator->getName() == "implicit") 1009 return 0; // All return nothing. 1010 1011 if (Operator->isSubClassOf("Intrinsic")) 1012 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1013 1014 if (Operator->isSubClassOf("SDNode")) 1015 return CDP.getSDNodeInfo(Operator).getNumResults(); 1016 1017 if (Operator->isSubClassOf("PatFrag")) { 1018 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1019 // the forward reference case where one pattern fragment references another 1020 // before it is processed. 1021 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1022 return PFRec->getOnlyTree()->getNumTypes(); 1023 1024 // Get the result tree. 1025 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1026 Record *Op = 0; 1027 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 1028 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 1029 assert(Op && "Invalid Fragment"); 1030 return GetNumNodeResults(Op, CDP); 1031 } 1032 1033 if (Operator->isSubClassOf("Instruction")) { 1034 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1035 1036 // FIXME: Should allow access to all the results here. 1037 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1038 1039 // Add on one implicit def if it has a resolvable type. 1040 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1041 ++NumDefsToAdd; 1042 return NumDefsToAdd; 1043 } 1044 1045 if (Operator->isSubClassOf("SDNodeXForm")) 1046 return 1; // FIXME: Generalize SDNodeXForm 1047 1048 Operator->dump(); 1049 errs() << "Unhandled node in GetNumNodeResults\n"; 1050 exit(1); 1051 } 1052 1053 void TreePatternNode::print(raw_ostream &OS) const { 1054 if (isLeaf()) 1055 OS << *getLeafValue(); 1056 else 1057 OS << '(' << getOperator()->getName(); 1058 1059 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1060 OS << ':' << getExtType(i).getName(); 1061 1062 if (!isLeaf()) { 1063 if (getNumChildren() != 0) { 1064 OS << " "; 1065 getChild(0)->print(OS); 1066 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1067 OS << ", "; 1068 getChild(i)->print(OS); 1069 } 1070 } 1071 OS << ")"; 1072 } 1073 1074 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1075 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1076 if (TransformFn) 1077 OS << "<<X:" << TransformFn->getName() << ">>"; 1078 if (!getName().empty()) 1079 OS << ":$" << getName(); 1080 1081 } 1082 void TreePatternNode::dump() const { 1083 print(errs()); 1084 } 1085 1086 /// isIsomorphicTo - Return true if this node is recursively 1087 /// isomorphic to the specified node. For this comparison, the node's 1088 /// entire state is considered. The assigned name is ignored, since 1089 /// nodes with differing names are considered isomorphic. However, if 1090 /// the assigned name is present in the dependent variable set, then 1091 /// the assigned name is considered significant and the node is 1092 /// isomorphic if the names match. 1093 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1094 const MultipleUseVarSet &DepVars) const { 1095 if (N == this) return true; 1096 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1097 getPredicateFns() != N->getPredicateFns() || 1098 getTransformFn() != N->getTransformFn()) 1099 return false; 1100 1101 if (isLeaf()) { 1102 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1103 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1104 return ((DI->getDef() == NDI->getDef()) 1105 && (DepVars.find(getName()) == DepVars.end() 1106 || getName() == N->getName())); 1107 } 1108 } 1109 return getLeafValue() == N->getLeafValue(); 1110 } 1111 1112 if (N->getOperator() != getOperator() || 1113 N->getNumChildren() != getNumChildren()) return false; 1114 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1115 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1116 return false; 1117 return true; 1118 } 1119 1120 /// clone - Make a copy of this tree and all of its children. 1121 /// 1122 TreePatternNode *TreePatternNode::clone() const { 1123 TreePatternNode *New; 1124 if (isLeaf()) { 1125 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1126 } else { 1127 std::vector<TreePatternNode*> CChildren; 1128 CChildren.reserve(Children.size()); 1129 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1130 CChildren.push_back(getChild(i)->clone()); 1131 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1132 } 1133 New->setName(getName()); 1134 New->Types = Types; 1135 New->setPredicateFns(getPredicateFns()); 1136 New->setTransformFn(getTransformFn()); 1137 return New; 1138 } 1139 1140 /// RemoveAllTypes - Recursively strip all the types of this tree. 1141 void TreePatternNode::RemoveAllTypes() { 1142 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1143 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1144 if (isLeaf()) return; 1145 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1146 getChild(i)->RemoveAllTypes(); 1147 } 1148 1149 1150 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1151 /// with actual values specified by ArgMap. 1152 void TreePatternNode:: 1153 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1154 if (isLeaf()) return; 1155 1156 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1157 TreePatternNode *Child = getChild(i); 1158 if (Child->isLeaf()) { 1159 Init *Val = Child->getLeafValue(); 1160 if (dynamic_cast<DefInit*>(Val) && 1161 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 1162 // We found a use of a formal argument, replace it with its value. 1163 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1164 assert(NewChild && "Couldn't find formal argument!"); 1165 assert((Child->getPredicateFns().empty() || 1166 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1167 "Non-empty child predicate clobbered!"); 1168 setChild(i, NewChild); 1169 } 1170 } else { 1171 getChild(i)->SubstituteFormalArguments(ArgMap); 1172 } 1173 } 1174 } 1175 1176 1177 /// InlinePatternFragments - If this pattern refers to any pattern 1178 /// fragments, inline them into place, giving us a pattern without any 1179 /// PatFrag references. 1180 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1181 if (isLeaf()) return this; // nothing to do. 1182 Record *Op = getOperator(); 1183 1184 if (!Op->isSubClassOf("PatFrag")) { 1185 // Just recursively inline children nodes. 1186 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1187 TreePatternNode *Child = getChild(i); 1188 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1189 1190 assert((Child->getPredicateFns().empty() || 1191 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1192 "Non-empty child predicate clobbered!"); 1193 1194 setChild(i, NewChild); 1195 } 1196 return this; 1197 } 1198 1199 // Otherwise, we found a reference to a fragment. First, look up its 1200 // TreePattern record. 1201 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1202 1203 // Verify that we are passing the right number of operands. 1204 if (Frag->getNumArgs() != Children.size()) 1205 TP.error("'" + Op->getName() + "' fragment requires " + 1206 utostr(Frag->getNumArgs()) + " operands!"); 1207 1208 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1209 1210 TreePredicateFn PredFn(Frag); 1211 if (!PredFn.isAlwaysTrue()) 1212 FragTree->addPredicateFn(PredFn); 1213 1214 // Resolve formal arguments to their actual value. 1215 if (Frag->getNumArgs()) { 1216 // Compute the map of formal to actual arguments. 1217 std::map<std::string, TreePatternNode*> ArgMap; 1218 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1219 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1220 1221 FragTree->SubstituteFormalArguments(ArgMap); 1222 } 1223 1224 FragTree->setName(getName()); 1225 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1226 FragTree->UpdateNodeType(i, getExtType(i), TP); 1227 1228 // Transfer in the old predicates. 1229 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1230 FragTree->addPredicateFn(getPredicateFns()[i]); 1231 1232 // Get a new copy of this fragment to stitch into here. 1233 //delete this; // FIXME: implement refcounting! 1234 1235 // The fragment we inlined could have recursive inlining that is needed. See 1236 // if there are any pattern fragments in it and inline them as needed. 1237 return FragTree->InlinePatternFragments(TP); 1238 } 1239 1240 /// getImplicitType - Check to see if the specified record has an implicit 1241 /// type which should be applied to it. This will infer the type of register 1242 /// references from the register file information, for example. 1243 /// 1244 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1245 bool NotRegisters, TreePattern &TP) { 1246 // Check to see if this is a register operand. 1247 if (R->isSubClassOf("RegisterOperand")) { 1248 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1249 if (NotRegisters) 1250 return EEVT::TypeSet(); // Unknown. 1251 Record *RegClass = R->getValueAsDef("RegClass"); 1252 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1253 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1254 } 1255 1256 // Check to see if this is a register or a register class. 1257 if (R->isSubClassOf("RegisterClass")) { 1258 assert(ResNo == 0 && "Regclass ref only has one result!"); 1259 if (NotRegisters) 1260 return EEVT::TypeSet(); // Unknown. 1261 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1262 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1263 } 1264 1265 if (R->isSubClassOf("PatFrag")) { 1266 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1267 // Pattern fragment types will be resolved when they are inlined. 1268 return EEVT::TypeSet(); // Unknown. 1269 } 1270 1271 if (R->isSubClassOf("Register")) { 1272 assert(ResNo == 0 && "Registers only produce one result!"); 1273 if (NotRegisters) 1274 return EEVT::TypeSet(); // Unknown. 1275 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1276 return EEVT::TypeSet(T.getRegisterVTs(R)); 1277 } 1278 1279 if (R->isSubClassOf("SubRegIndex")) { 1280 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1281 return EEVT::TypeSet(); 1282 } 1283 1284 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1285 assert(ResNo == 0 && "This node only has one result!"); 1286 // Using a VTSDNode or CondCodeSDNode. 1287 return EEVT::TypeSet(MVT::Other, TP); 1288 } 1289 1290 if (R->isSubClassOf("ComplexPattern")) { 1291 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1292 if (NotRegisters) 1293 return EEVT::TypeSet(); // Unknown. 1294 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1295 TP); 1296 } 1297 if (R->isSubClassOf("PointerLikeRegClass")) { 1298 assert(ResNo == 0 && "Regclass can only have one result!"); 1299 return EEVT::TypeSet(MVT::iPTR, TP); 1300 } 1301 1302 if (R->getName() == "node" || R->getName() == "srcvalue" || 1303 R->getName() == "zero_reg") { 1304 // Placeholder. 1305 return EEVT::TypeSet(); // Unknown. 1306 } 1307 1308 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1309 return EEVT::TypeSet(MVT::Other, TP); 1310 } 1311 1312 1313 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1314 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1315 const CodeGenIntrinsic *TreePatternNode:: 1316 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1317 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1318 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1319 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1320 return 0; 1321 1322 unsigned IID = 1323 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1324 return &CDP.getIntrinsicInfo(IID); 1325 } 1326 1327 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1328 /// return the ComplexPattern information, otherwise return null. 1329 const ComplexPattern * 1330 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1331 if (!isLeaf()) return 0; 1332 1333 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1334 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1335 return &CGP.getComplexPattern(DI->getDef()); 1336 return 0; 1337 } 1338 1339 /// NodeHasProperty - Return true if this node has the specified property. 1340 bool TreePatternNode::NodeHasProperty(SDNP Property, 1341 const CodeGenDAGPatterns &CGP) const { 1342 if (isLeaf()) { 1343 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1344 return CP->hasProperty(Property); 1345 return false; 1346 } 1347 1348 Record *Operator = getOperator(); 1349 if (!Operator->isSubClassOf("SDNode")) return false; 1350 1351 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1352 } 1353 1354 1355 1356 1357 /// TreeHasProperty - Return true if any node in this tree has the specified 1358 /// property. 1359 bool TreePatternNode::TreeHasProperty(SDNP Property, 1360 const CodeGenDAGPatterns &CGP) const { 1361 if (NodeHasProperty(Property, CGP)) 1362 return true; 1363 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1364 if (getChild(i)->TreeHasProperty(Property, CGP)) 1365 return true; 1366 return false; 1367 } 1368 1369 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1370 /// commutative intrinsic. 1371 bool 1372 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1373 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1374 return Int->isCommutative; 1375 return false; 1376 } 1377 1378 1379 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1380 /// this node and its children in the tree. This returns true if it makes a 1381 /// change, false otherwise. If a type contradiction is found, throw an 1382 /// exception. 1383 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1384 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1385 if (isLeaf()) { 1386 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1387 // If it's a regclass or something else known, include the type. 1388 bool MadeChange = false; 1389 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1390 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1391 NotRegisters, TP), TP); 1392 return MadeChange; 1393 } 1394 1395 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1396 assert(Types.size() == 1 && "Invalid IntInit"); 1397 1398 // Int inits are always integers. :) 1399 bool MadeChange = Types[0].EnforceInteger(TP); 1400 1401 if (!Types[0].isConcrete()) 1402 return MadeChange; 1403 1404 MVT::SimpleValueType VT = getType(0); 1405 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1406 return MadeChange; 1407 1408 unsigned Size = EVT(VT).getSizeInBits(); 1409 // Make sure that the value is representable for this type. 1410 if (Size >= 32) return MadeChange; 1411 1412 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1413 if (Val == II->getValue()) return MadeChange; 1414 1415 // If sign-extended doesn't fit, does it fit as unsigned? 1416 unsigned ValueMask; 1417 unsigned UnsignedVal; 1418 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1419 UnsignedVal = unsigned(II->getValue()); 1420 1421 if ((ValueMask & UnsignedVal) == UnsignedVal) 1422 return MadeChange; 1423 1424 TP.error("Integer value '" + itostr(II->getValue())+ 1425 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1426 return MadeChange; 1427 } 1428 return false; 1429 } 1430 1431 // special handling for set, which isn't really an SDNode. 1432 if (getOperator()->getName() == "set") { 1433 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1434 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1435 unsigned NC = getNumChildren(); 1436 1437 TreePatternNode *SetVal = getChild(NC-1); 1438 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1439 1440 for (unsigned i = 0; i < NC-1; ++i) { 1441 TreePatternNode *Child = getChild(i); 1442 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1443 1444 // Types of operands must match. 1445 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1446 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1447 } 1448 return MadeChange; 1449 } 1450 1451 if (getOperator()->getName() == "implicit") { 1452 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1453 1454 bool MadeChange = false; 1455 for (unsigned i = 0; i < getNumChildren(); ++i) 1456 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1457 return MadeChange; 1458 } 1459 1460 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1461 bool MadeChange = false; 1462 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1463 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1464 1465 assert(getChild(0)->getNumTypes() == 1 && 1466 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1467 1468 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1469 // what type it gets, so if it didn't get a concrete type just give it the 1470 // first viable type from the reg class. 1471 if (!getChild(1)->hasTypeSet(0) && 1472 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1473 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1474 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1475 } 1476 return MadeChange; 1477 } 1478 1479 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1480 bool MadeChange = false; 1481 1482 // Apply the result type to the node. 1483 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1484 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1485 1486 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1487 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1488 1489 if (getNumChildren() != NumParamVTs + 1) 1490 TP.error("Intrinsic '" + Int->Name + "' expects " + 1491 utostr(NumParamVTs) + " operands, not " + 1492 utostr(getNumChildren() - 1) + " operands!"); 1493 1494 // Apply type info to the intrinsic ID. 1495 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1496 1497 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1498 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1499 1500 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1501 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1502 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1503 } 1504 return MadeChange; 1505 } 1506 1507 if (getOperator()->isSubClassOf("SDNode")) { 1508 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1509 1510 // Check that the number of operands is sane. Negative operands -> varargs. 1511 if (NI.getNumOperands() >= 0 && 1512 getNumChildren() != (unsigned)NI.getNumOperands()) 1513 TP.error(getOperator()->getName() + " node requires exactly " + 1514 itostr(NI.getNumOperands()) + " operands!"); 1515 1516 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1517 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1518 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1519 return MadeChange; 1520 } 1521 1522 if (getOperator()->isSubClassOf("Instruction")) { 1523 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1524 CodeGenInstruction &InstInfo = 1525 CDP.getTargetInfo().getInstruction(getOperator()); 1526 1527 bool MadeChange = false; 1528 1529 // Apply the result types to the node, these come from the things in the 1530 // (outs) list of the instruction. 1531 // FIXME: Cap at one result so far. 1532 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1533 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1534 Record *ResultNode = Inst.getResult(ResNo); 1535 1536 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1537 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1538 } else if (ResultNode->isSubClassOf("RegisterOperand")) { 1539 Record *RegClass = ResultNode->getValueAsDef("RegClass"); 1540 const CodeGenRegisterClass &RC = 1541 CDP.getTargetInfo().getRegisterClass(RegClass); 1542 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1543 } else if (ResultNode->getName() == "unknown") { 1544 // Nothing to do. 1545 } else { 1546 assert(ResultNode->isSubClassOf("RegisterClass") && 1547 "Operands should be register classes!"); 1548 const CodeGenRegisterClass &RC = 1549 CDP.getTargetInfo().getRegisterClass(ResultNode); 1550 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1551 } 1552 } 1553 1554 // If the instruction has implicit defs, we apply the first one as a result. 1555 // FIXME: This sucks, it should apply all implicit defs. 1556 if (!InstInfo.ImplicitDefs.empty()) { 1557 unsigned ResNo = NumResultsToAdd; 1558 1559 // FIXME: Generalize to multiple possible types and multiple possible 1560 // ImplicitDefs. 1561 MVT::SimpleValueType VT = 1562 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1563 1564 if (VT != MVT::Other) 1565 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1566 } 1567 1568 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1569 // be the same. 1570 if (getOperator()->getName() == "INSERT_SUBREG") { 1571 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1572 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1573 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1574 } 1575 1576 unsigned ChildNo = 0; 1577 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1578 Record *OperandNode = Inst.getOperand(i); 1579 1580 // If the instruction expects a predicate or optional def operand, we 1581 // codegen this by setting the operand to it's default value if it has a 1582 // non-empty DefaultOps field. 1583 if ((OperandNode->isSubClassOf("PredicateOperand") || 1584 OperandNode->isSubClassOf("OptionalDefOperand")) && 1585 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1586 continue; 1587 1588 // Verify that we didn't run out of provided operands. 1589 if (ChildNo >= getNumChildren()) 1590 TP.error("Instruction '" + getOperator()->getName() + 1591 "' expects more operands than were provided."); 1592 1593 MVT::SimpleValueType VT; 1594 TreePatternNode *Child = getChild(ChildNo++); 1595 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1596 1597 if (OperandNode->isSubClassOf("RegisterClass")) { 1598 const CodeGenRegisterClass &RC = 1599 CDP.getTargetInfo().getRegisterClass(OperandNode); 1600 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1601 } else if (OperandNode->isSubClassOf("RegisterOperand")) { 1602 Record *RegClass = OperandNode->getValueAsDef("RegClass"); 1603 const CodeGenRegisterClass &RC = 1604 CDP.getTargetInfo().getRegisterClass(RegClass); 1605 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1606 } else if (OperandNode->isSubClassOf("Operand")) { 1607 VT = getValueType(OperandNode->getValueAsDef("Type")); 1608 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1609 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1610 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1611 } else if (OperandNode->getName() == "unknown") { 1612 // Nothing to do. 1613 } else 1614 llvm_unreachable("Unknown operand type!"); 1615 1616 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1617 } 1618 1619 if (ChildNo != getNumChildren()) 1620 TP.error("Instruction '" + getOperator()->getName() + 1621 "' was provided too many operands!"); 1622 1623 return MadeChange; 1624 } 1625 1626 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1627 1628 // Node transforms always take one operand. 1629 if (getNumChildren() != 1) 1630 TP.error("Node transform '" + getOperator()->getName() + 1631 "' requires one operand!"); 1632 1633 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1634 1635 1636 // If either the output or input of the xform does not have exact 1637 // type info. We assume they must be the same. Otherwise, it is perfectly 1638 // legal to transform from one type to a completely different type. 1639 #if 0 1640 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1641 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1642 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1643 return MadeChange; 1644 } 1645 #endif 1646 return MadeChange; 1647 } 1648 1649 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1650 /// RHS of a commutative operation, not the on LHS. 1651 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1652 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1653 return true; 1654 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1655 return true; 1656 return false; 1657 } 1658 1659 1660 /// canPatternMatch - If it is impossible for this pattern to match on this 1661 /// target, fill in Reason and return false. Otherwise, return true. This is 1662 /// used as a sanity check for .td files (to prevent people from writing stuff 1663 /// that can never possibly work), and to prevent the pattern permuter from 1664 /// generating stuff that is useless. 1665 bool TreePatternNode::canPatternMatch(std::string &Reason, 1666 const CodeGenDAGPatterns &CDP) { 1667 if (isLeaf()) return true; 1668 1669 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1670 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1671 return false; 1672 1673 // If this is an intrinsic, handle cases that would make it not match. For 1674 // example, if an operand is required to be an immediate. 1675 if (getOperator()->isSubClassOf("Intrinsic")) { 1676 // TODO: 1677 return true; 1678 } 1679 1680 // If this node is a commutative operator, check that the LHS isn't an 1681 // immediate. 1682 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1683 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1684 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1685 // Scan all of the operands of the node and make sure that only the last one 1686 // is a constant node, unless the RHS also is. 1687 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1688 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1689 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1690 if (OnlyOnRHSOfCommutative(getChild(i))) { 1691 Reason="Immediate value must be on the RHS of commutative operators!"; 1692 return false; 1693 } 1694 } 1695 } 1696 1697 return true; 1698 } 1699 1700 //===----------------------------------------------------------------------===// 1701 // TreePattern implementation 1702 // 1703 1704 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1705 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1706 isInputPattern = isInput; 1707 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1708 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1709 } 1710 1711 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1712 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1713 isInputPattern = isInput; 1714 Trees.push_back(ParseTreePattern(Pat, "")); 1715 } 1716 1717 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1718 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1719 isInputPattern = isInput; 1720 Trees.push_back(Pat); 1721 } 1722 1723 void TreePattern::error(const std::string &Msg) const { 1724 dump(); 1725 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1726 } 1727 1728 void TreePattern::ComputeNamedNodes() { 1729 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1730 ComputeNamedNodes(Trees[i]); 1731 } 1732 1733 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1734 if (!N->getName().empty()) 1735 NamedNodes[N->getName()].push_back(N); 1736 1737 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1738 ComputeNamedNodes(N->getChild(i)); 1739 } 1740 1741 1742 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1743 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1744 Record *R = DI->getDef(); 1745 1746 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1747 // TreePatternNode of its own. For example: 1748 /// (foo GPR, imm) -> (foo GPR, (imm)) 1749 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1750 return ParseTreePattern( 1751 DagInit::get(DI, "", 1752 std::vector<std::pair<Init*, std::string> >()), 1753 OpName); 1754 1755 // Input argument? 1756 TreePatternNode *Res = new TreePatternNode(DI, 1); 1757 if (R->getName() == "node" && !OpName.empty()) { 1758 if (OpName.empty()) 1759 error("'node' argument requires a name to match with operand list"); 1760 Args.push_back(OpName); 1761 } 1762 1763 Res->setName(OpName); 1764 return Res; 1765 } 1766 1767 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1768 if (!OpName.empty()) 1769 error("Constant int argument should not have a name!"); 1770 return new TreePatternNode(II, 1); 1771 } 1772 1773 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1774 // Turn this into an IntInit. 1775 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1776 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1777 error("Bits value must be constants!"); 1778 return ParseTreePattern(II, OpName); 1779 } 1780 1781 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1782 if (!Dag) { 1783 TheInit->dump(); 1784 error("Pattern has unexpected init kind!"); 1785 } 1786 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1787 if (!OpDef) error("Pattern has unexpected operator type!"); 1788 Record *Operator = OpDef->getDef(); 1789 1790 if (Operator->isSubClassOf("ValueType")) { 1791 // If the operator is a ValueType, then this must be "type cast" of a leaf 1792 // node. 1793 if (Dag->getNumArgs() != 1) 1794 error("Type cast only takes one operand!"); 1795 1796 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1797 1798 // Apply the type cast. 1799 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1800 New->UpdateNodeType(0, getValueType(Operator), *this); 1801 1802 if (!OpName.empty()) 1803 error("ValueType cast should not have a name!"); 1804 return New; 1805 } 1806 1807 // Verify that this is something that makes sense for an operator. 1808 if (!Operator->isSubClassOf("PatFrag") && 1809 !Operator->isSubClassOf("SDNode") && 1810 !Operator->isSubClassOf("Instruction") && 1811 !Operator->isSubClassOf("SDNodeXForm") && 1812 !Operator->isSubClassOf("Intrinsic") && 1813 Operator->getName() != "set" && 1814 Operator->getName() != "implicit") 1815 error("Unrecognized node '" + Operator->getName() + "'!"); 1816 1817 // Check to see if this is something that is illegal in an input pattern. 1818 if (isInputPattern) { 1819 if (Operator->isSubClassOf("Instruction") || 1820 Operator->isSubClassOf("SDNodeXForm")) 1821 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1822 } else { 1823 if (Operator->isSubClassOf("Intrinsic")) 1824 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1825 1826 if (Operator->isSubClassOf("SDNode") && 1827 Operator->getName() != "imm" && 1828 Operator->getName() != "fpimm" && 1829 Operator->getName() != "tglobaltlsaddr" && 1830 Operator->getName() != "tconstpool" && 1831 Operator->getName() != "tjumptable" && 1832 Operator->getName() != "tframeindex" && 1833 Operator->getName() != "texternalsym" && 1834 Operator->getName() != "tblockaddress" && 1835 Operator->getName() != "tglobaladdr" && 1836 Operator->getName() != "bb" && 1837 Operator->getName() != "vt") 1838 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1839 } 1840 1841 std::vector<TreePatternNode*> Children; 1842 1843 // Parse all the operands. 1844 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1845 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1846 1847 // If the operator is an intrinsic, then this is just syntactic sugar for for 1848 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1849 // convert the intrinsic name to a number. 1850 if (Operator->isSubClassOf("Intrinsic")) { 1851 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1852 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1853 1854 // If this intrinsic returns void, it must have side-effects and thus a 1855 // chain. 1856 if (Int.IS.RetVTs.empty()) 1857 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1858 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1859 // Has side-effects, requires chain. 1860 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1861 else // Otherwise, no chain. 1862 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1863 1864 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 1865 Children.insert(Children.begin(), IIDNode); 1866 } 1867 1868 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1869 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1870 Result->setName(OpName); 1871 1872 if (!Dag->getName().empty()) { 1873 assert(Result->getName().empty()); 1874 Result->setName(Dag->getName()); 1875 } 1876 return Result; 1877 } 1878 1879 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1880 /// will never match in favor of something obvious that will. This is here 1881 /// strictly as a convenience to target authors because it allows them to write 1882 /// more type generic things and have useless type casts fold away. 1883 /// 1884 /// This returns true if any change is made. 1885 static bool SimplifyTree(TreePatternNode *&N) { 1886 if (N->isLeaf()) 1887 return false; 1888 1889 // If we have a bitconvert with a resolved type and if the source and 1890 // destination types are the same, then the bitconvert is useless, remove it. 1891 if (N->getOperator()->getName() == "bitconvert" && 1892 N->getExtType(0).isConcrete() && 1893 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1894 N->getName().empty()) { 1895 N = N->getChild(0); 1896 SimplifyTree(N); 1897 return true; 1898 } 1899 1900 // Walk all children. 1901 bool MadeChange = false; 1902 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1903 TreePatternNode *Child = N->getChild(i); 1904 MadeChange |= SimplifyTree(Child); 1905 N->setChild(i, Child); 1906 } 1907 return MadeChange; 1908 } 1909 1910 1911 1912 /// InferAllTypes - Infer/propagate as many types throughout the expression 1913 /// patterns as possible. Return true if all types are inferred, false 1914 /// otherwise. Throw an exception if a type contradiction is found. 1915 bool TreePattern:: 1916 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1917 if (NamedNodes.empty()) 1918 ComputeNamedNodes(); 1919 1920 bool MadeChange = true; 1921 while (MadeChange) { 1922 MadeChange = false; 1923 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1924 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1925 MadeChange |= SimplifyTree(Trees[i]); 1926 } 1927 1928 // If there are constraints on our named nodes, apply them. 1929 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1930 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1931 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1932 1933 // If we have input named node types, propagate their types to the named 1934 // values here. 1935 if (InNamedTypes) { 1936 // FIXME: Should be error? 1937 assert(InNamedTypes->count(I->getKey()) && 1938 "Named node in output pattern but not input pattern?"); 1939 1940 const SmallVectorImpl<TreePatternNode*> &InNodes = 1941 InNamedTypes->find(I->getKey())->second; 1942 1943 // The input types should be fully resolved by now. 1944 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1945 // If this node is a register class, and it is the root of the pattern 1946 // then we're mapping something onto an input register. We allow 1947 // changing the type of the input register in this case. This allows 1948 // us to match things like: 1949 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1950 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1951 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1952 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 1953 DI->getDef()->isSubClassOf("RegisterOperand"))) 1954 continue; 1955 } 1956 1957 assert(Nodes[i]->getNumTypes() == 1 && 1958 InNodes[0]->getNumTypes() == 1 && 1959 "FIXME: cannot name multiple result nodes yet"); 1960 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1961 *this); 1962 } 1963 } 1964 1965 // If there are multiple nodes with the same name, they must all have the 1966 // same type. 1967 if (I->second.size() > 1) { 1968 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1969 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1970 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1971 "FIXME: cannot name multiple result nodes yet"); 1972 1973 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1974 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1975 } 1976 } 1977 } 1978 } 1979 1980 bool HasUnresolvedTypes = false; 1981 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1982 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1983 return !HasUnresolvedTypes; 1984 } 1985 1986 void TreePattern::print(raw_ostream &OS) const { 1987 OS << getRecord()->getName(); 1988 if (!Args.empty()) { 1989 OS << "(" << Args[0]; 1990 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1991 OS << ", " << Args[i]; 1992 OS << ")"; 1993 } 1994 OS << ": "; 1995 1996 if (Trees.size() > 1) 1997 OS << "[\n"; 1998 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1999 OS << "\t"; 2000 Trees[i]->print(OS); 2001 OS << "\n"; 2002 } 2003 2004 if (Trees.size() > 1) 2005 OS << "]\n"; 2006 } 2007 2008 void TreePattern::dump() const { print(errs()); } 2009 2010 //===----------------------------------------------------------------------===// 2011 // CodeGenDAGPatterns implementation 2012 // 2013 2014 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2015 Records(R), Target(R) { 2016 2017 Intrinsics = LoadIntrinsics(Records, false); 2018 TgtIntrinsics = LoadIntrinsics(Records, true); 2019 ParseNodeInfo(); 2020 ParseNodeTransforms(); 2021 ParseComplexPatterns(); 2022 ParsePatternFragments(); 2023 ParseDefaultOperands(); 2024 ParseInstructions(); 2025 ParsePatterns(); 2026 2027 // Generate variants. For example, commutative patterns can match 2028 // multiple ways. Add them to PatternsToMatch as well. 2029 GenerateVariants(); 2030 2031 // Infer instruction flags. For example, we can detect loads, 2032 // stores, and side effects in many cases by examining an 2033 // instruction's pattern. 2034 InferInstructionFlags(); 2035 } 2036 2037 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2038 for (pf_iterator I = PatternFragments.begin(), 2039 E = PatternFragments.end(); I != E; ++I) 2040 delete I->second; 2041 } 2042 2043 2044 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2045 Record *N = Records.getDef(Name); 2046 if (!N || !N->isSubClassOf("SDNode")) { 2047 errs() << "Error getting SDNode '" << Name << "'!\n"; 2048 exit(1); 2049 } 2050 return N; 2051 } 2052 2053 // Parse all of the SDNode definitions for the target, populating SDNodes. 2054 void CodeGenDAGPatterns::ParseNodeInfo() { 2055 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2056 while (!Nodes.empty()) { 2057 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2058 Nodes.pop_back(); 2059 } 2060 2061 // Get the builtin intrinsic nodes. 2062 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2063 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2064 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2065 } 2066 2067 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2068 /// map, and emit them to the file as functions. 2069 void CodeGenDAGPatterns::ParseNodeTransforms() { 2070 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2071 while (!Xforms.empty()) { 2072 Record *XFormNode = Xforms.back(); 2073 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2074 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2075 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2076 2077 Xforms.pop_back(); 2078 } 2079 } 2080 2081 void CodeGenDAGPatterns::ParseComplexPatterns() { 2082 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2083 while (!AMs.empty()) { 2084 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2085 AMs.pop_back(); 2086 } 2087 } 2088 2089 2090 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2091 /// file, building up the PatternFragments map. After we've collected them all, 2092 /// inline fragments together as necessary, so that there are no references left 2093 /// inside a pattern fragment to a pattern fragment. 2094 /// 2095 void CodeGenDAGPatterns::ParsePatternFragments() { 2096 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2097 2098 // First step, parse all of the fragments. 2099 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2100 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2101 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2102 PatternFragments[Fragments[i]] = P; 2103 2104 // Validate the argument list, converting it to set, to discard duplicates. 2105 std::vector<std::string> &Args = P->getArgList(); 2106 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2107 2108 if (OperandsSet.count("")) 2109 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2110 2111 // Parse the operands list. 2112 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2113 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 2114 // Special cases: ops == outs == ins. Different names are used to 2115 // improve readability. 2116 if (!OpsOp || 2117 (OpsOp->getDef()->getName() != "ops" && 2118 OpsOp->getDef()->getName() != "outs" && 2119 OpsOp->getDef()->getName() != "ins")) 2120 P->error("Operands list should start with '(ops ... '!"); 2121 2122 // Copy over the arguments. 2123 Args.clear(); 2124 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2125 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 2126 static_cast<DefInit*>(OpsList->getArg(j))-> 2127 getDef()->getName() != "node") 2128 P->error("Operands list should all be 'node' values."); 2129 if (OpsList->getArgName(j).empty()) 2130 P->error("Operands list should have names for each operand!"); 2131 if (!OperandsSet.count(OpsList->getArgName(j))) 2132 P->error("'" + OpsList->getArgName(j) + 2133 "' does not occur in pattern or was multiply specified!"); 2134 OperandsSet.erase(OpsList->getArgName(j)); 2135 Args.push_back(OpsList->getArgName(j)); 2136 } 2137 2138 if (!OperandsSet.empty()) 2139 P->error("Operands list does not contain an entry for operand '" + 2140 *OperandsSet.begin() + "'!"); 2141 2142 // If there is a code init for this fragment, keep track of the fact that 2143 // this fragment uses it. 2144 TreePredicateFn PredFn(P); 2145 if (!PredFn.isAlwaysTrue()) 2146 P->getOnlyTree()->addPredicateFn(PredFn); 2147 2148 // If there is a node transformation corresponding to this, keep track of 2149 // it. 2150 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2151 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2152 P->getOnlyTree()->setTransformFn(Transform); 2153 } 2154 2155 // Now that we've parsed all of the tree fragments, do a closure on them so 2156 // that there are not references to PatFrags left inside of them. 2157 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2158 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2159 ThePat->InlinePatternFragments(); 2160 2161 // Infer as many types as possible. Don't worry about it if we don't infer 2162 // all of them, some may depend on the inputs of the pattern. 2163 try { 2164 ThePat->InferAllTypes(); 2165 } catch (...) { 2166 // If this pattern fragment is not supported by this target (no types can 2167 // satisfy its constraints), just ignore it. If the bogus pattern is 2168 // actually used by instructions, the type consistency error will be 2169 // reported there. 2170 } 2171 2172 // If debugging, print out the pattern fragment result. 2173 DEBUG(ThePat->dump()); 2174 } 2175 } 2176 2177 void CodeGenDAGPatterns::ParseDefaultOperands() { 2178 std::vector<Record*> DefaultOps[2]; 2179 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 2180 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 2181 2182 // Find some SDNode. 2183 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2184 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2185 2186 for (unsigned iter = 0; iter != 2; ++iter) { 2187 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 2188 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 2189 2190 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2191 // SomeSDnode so that we can parse this. 2192 std::vector<std::pair<Init*, std::string> > Ops; 2193 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2194 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2195 DefaultInfo->getArgName(op))); 2196 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2197 2198 // Create a TreePattern to parse this. 2199 TreePattern P(DefaultOps[iter][i], DI, false, *this); 2200 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2201 2202 // Copy the operands over into a DAGDefaultOperand. 2203 DAGDefaultOperand DefaultOpInfo; 2204 2205 TreePatternNode *T = P.getTree(0); 2206 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2207 TreePatternNode *TPN = T->getChild(op); 2208 while (TPN->ApplyTypeConstraints(P, false)) 2209 /* Resolve all types */; 2210 2211 if (TPN->ContainsUnresolvedType()) { 2212 if (iter == 0) 2213 throw "Value #" + utostr(i) + " of PredicateOperand '" + 2214 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2215 else 2216 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 2217 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2218 } 2219 DefaultOpInfo.DefaultOps.push_back(TPN); 2220 } 2221 2222 // Insert it into the DefaultOperands map so we can find it later. 2223 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 2224 } 2225 } 2226 } 2227 2228 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2229 /// instruction input. Return true if this is a real use. 2230 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2231 std::map<std::string, TreePatternNode*> &InstInputs) { 2232 // No name -> not interesting. 2233 if (Pat->getName().empty()) { 2234 if (Pat->isLeaf()) { 2235 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2236 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2237 DI->getDef()->isSubClassOf("RegisterOperand"))) 2238 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2239 } 2240 return false; 2241 } 2242 2243 Record *Rec; 2244 if (Pat->isLeaf()) { 2245 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2246 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2247 Rec = DI->getDef(); 2248 } else { 2249 Rec = Pat->getOperator(); 2250 } 2251 2252 // SRCVALUE nodes are ignored. 2253 if (Rec->getName() == "srcvalue") 2254 return false; 2255 2256 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2257 if (!Slot) { 2258 Slot = Pat; 2259 return true; 2260 } 2261 Record *SlotRec; 2262 if (Slot->isLeaf()) { 2263 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2264 } else { 2265 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2266 SlotRec = Slot->getOperator(); 2267 } 2268 2269 // Ensure that the inputs agree if we've already seen this input. 2270 if (Rec != SlotRec) 2271 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2272 if (Slot->getExtTypes() != Pat->getExtTypes()) 2273 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2274 return true; 2275 } 2276 2277 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2278 /// part of "I", the instruction), computing the set of inputs and outputs of 2279 /// the pattern. Report errors if we see anything naughty. 2280 void CodeGenDAGPatterns:: 2281 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2282 std::map<std::string, TreePatternNode*> &InstInputs, 2283 std::map<std::string, TreePatternNode*>&InstResults, 2284 std::vector<Record*> &InstImpResults) { 2285 if (Pat->isLeaf()) { 2286 bool isUse = HandleUse(I, Pat, InstInputs); 2287 if (!isUse && Pat->getTransformFn()) 2288 I->error("Cannot specify a transform function for a non-input value!"); 2289 return; 2290 } 2291 2292 if (Pat->getOperator()->getName() == "implicit") { 2293 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2294 TreePatternNode *Dest = Pat->getChild(i); 2295 if (!Dest->isLeaf()) 2296 I->error("implicitly defined value should be a register!"); 2297 2298 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2299 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2300 I->error("implicitly defined value should be a register!"); 2301 InstImpResults.push_back(Val->getDef()); 2302 } 2303 return; 2304 } 2305 2306 if (Pat->getOperator()->getName() != "set") { 2307 // If this is not a set, verify that the children nodes are not void typed, 2308 // and recurse. 2309 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2310 if (Pat->getChild(i)->getNumTypes() == 0) 2311 I->error("Cannot have void nodes inside of patterns!"); 2312 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2313 InstImpResults); 2314 } 2315 2316 // If this is a non-leaf node with no children, treat it basically as if 2317 // it were a leaf. This handles nodes like (imm). 2318 bool isUse = HandleUse(I, Pat, InstInputs); 2319 2320 if (!isUse && Pat->getTransformFn()) 2321 I->error("Cannot specify a transform function for a non-input value!"); 2322 return; 2323 } 2324 2325 // Otherwise, this is a set, validate and collect instruction results. 2326 if (Pat->getNumChildren() == 0) 2327 I->error("set requires operands!"); 2328 2329 if (Pat->getTransformFn()) 2330 I->error("Cannot specify a transform function on a set node!"); 2331 2332 // Check the set destinations. 2333 unsigned NumDests = Pat->getNumChildren()-1; 2334 for (unsigned i = 0; i != NumDests; ++i) { 2335 TreePatternNode *Dest = Pat->getChild(i); 2336 if (!Dest->isLeaf()) 2337 I->error("set destination should be a register!"); 2338 2339 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2340 if (!Val) 2341 I->error("set destination should be a register!"); 2342 2343 if (Val->getDef()->isSubClassOf("RegisterClass") || 2344 Val->getDef()->isSubClassOf("RegisterOperand") || 2345 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2346 if (Dest->getName().empty()) 2347 I->error("set destination must have a name!"); 2348 if (InstResults.count(Dest->getName())) 2349 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2350 InstResults[Dest->getName()] = Dest; 2351 } else if (Val->getDef()->isSubClassOf("Register")) { 2352 InstImpResults.push_back(Val->getDef()); 2353 } else { 2354 I->error("set destination should be a register!"); 2355 } 2356 } 2357 2358 // Verify and collect info from the computation. 2359 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2360 InstInputs, InstResults, InstImpResults); 2361 } 2362 2363 //===----------------------------------------------------------------------===// 2364 // Instruction Analysis 2365 //===----------------------------------------------------------------------===// 2366 2367 class InstAnalyzer { 2368 const CodeGenDAGPatterns &CDP; 2369 bool &mayStore; 2370 bool &mayLoad; 2371 bool &IsBitcast; 2372 bool &HasSideEffects; 2373 bool &IsVariadic; 2374 public: 2375 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2376 bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv) 2377 : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc), 2378 HasSideEffects(hse), IsVariadic(isv) { 2379 } 2380 2381 /// Analyze - Analyze the specified instruction, returning true if the 2382 /// instruction had a pattern. 2383 bool Analyze(Record *InstRecord) { 2384 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2385 if (Pattern == 0) { 2386 HasSideEffects = 1; 2387 return false; // No pattern. 2388 } 2389 2390 // FIXME: Assume only the first tree is the pattern. The others are clobber 2391 // nodes. 2392 AnalyzeNode(Pattern->getTree(0)); 2393 return true; 2394 } 2395 2396 private: 2397 bool IsNodeBitcast(const TreePatternNode *N) const { 2398 if (HasSideEffects || mayLoad || mayStore || IsVariadic) 2399 return false; 2400 2401 if (N->getNumChildren() != 2) 2402 return false; 2403 2404 const TreePatternNode *N0 = N->getChild(0); 2405 if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) 2406 return false; 2407 2408 const TreePatternNode *N1 = N->getChild(1); 2409 if (N1->isLeaf()) 2410 return false; 2411 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2412 return false; 2413 2414 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2415 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2416 return false; 2417 return OpInfo.getEnumName() == "ISD::BITCAST"; 2418 } 2419 2420 void AnalyzeNode(const TreePatternNode *N) { 2421 if (N->isLeaf()) { 2422 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2423 Record *LeafRec = DI->getDef(); 2424 // Handle ComplexPattern leaves. 2425 if (LeafRec->isSubClassOf("ComplexPattern")) { 2426 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2427 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2428 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2429 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2430 } 2431 } 2432 return; 2433 } 2434 2435 // Analyze children. 2436 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2437 AnalyzeNode(N->getChild(i)); 2438 2439 // Ignore set nodes, which are not SDNodes. 2440 if (N->getOperator()->getName() == "set") { 2441 IsBitcast = IsNodeBitcast(N); 2442 return; 2443 } 2444 2445 // Get information about the SDNode for the operator. 2446 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2447 2448 // Notice properties of the node. 2449 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2450 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2451 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2452 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2453 2454 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2455 // If this is an intrinsic, analyze it. 2456 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2457 mayLoad = true;// These may load memory. 2458 2459 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2460 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2461 2462 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2463 // WriteMem intrinsics can have other strange effects. 2464 HasSideEffects = true; 2465 } 2466 } 2467 2468 }; 2469 2470 static void InferFromPattern(const CodeGenInstruction &Inst, 2471 bool &MayStore, bool &MayLoad, 2472 bool &IsBitcast, 2473 bool &HasSideEffects, bool &IsVariadic, 2474 const CodeGenDAGPatterns &CDP) { 2475 MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false; 2476 2477 bool HadPattern = 2478 InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic) 2479 .Analyze(Inst.TheDef); 2480 2481 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2482 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2483 // If we decided that this is a store from the pattern, then the .td file 2484 // entry is redundant. 2485 if (MayStore) 2486 fprintf(stderr, 2487 "Warning: mayStore flag explicitly set on instruction '%s'" 2488 " but flag already inferred from pattern.\n", 2489 Inst.TheDef->getName().c_str()); 2490 MayStore = true; 2491 } 2492 2493 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2494 // If we decided that this is a load from the pattern, then the .td file 2495 // entry is redundant. 2496 if (MayLoad) 2497 fprintf(stderr, 2498 "Warning: mayLoad flag explicitly set on instruction '%s'" 2499 " but flag already inferred from pattern.\n", 2500 Inst.TheDef->getName().c_str()); 2501 MayLoad = true; 2502 } 2503 2504 if (Inst.neverHasSideEffects) { 2505 if (HadPattern) 2506 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2507 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2508 HasSideEffects = false; 2509 } 2510 2511 if (Inst.hasSideEffects) { 2512 if (HasSideEffects) 2513 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2514 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2515 HasSideEffects = true; 2516 } 2517 2518 if (Inst.Operands.isVariadic) 2519 IsVariadic = true; // Can warn if we want. 2520 } 2521 2522 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2523 /// any fragments involved. This populates the Instructions list with fully 2524 /// resolved instructions. 2525 void CodeGenDAGPatterns::ParseInstructions() { 2526 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2527 2528 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2529 ListInit *LI = 0; 2530 2531 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2532 LI = Instrs[i]->getValueAsListInit("Pattern"); 2533 2534 // If there is no pattern, only collect minimal information about the 2535 // instruction for its operand list. We have to assume that there is one 2536 // result, as we have no detailed info. 2537 if (!LI || LI->getSize() == 0) { 2538 std::vector<Record*> Results; 2539 std::vector<Record*> Operands; 2540 2541 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2542 2543 if (InstInfo.Operands.size() != 0) { 2544 if (InstInfo.Operands.NumDefs == 0) { 2545 // These produce no results 2546 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2547 Operands.push_back(InstInfo.Operands[j].Rec); 2548 } else { 2549 // Assume the first operand is the result. 2550 Results.push_back(InstInfo.Operands[0].Rec); 2551 2552 // The rest are inputs. 2553 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2554 Operands.push_back(InstInfo.Operands[j].Rec); 2555 } 2556 } 2557 2558 // Create and insert the instruction. 2559 std::vector<Record*> ImpResults; 2560 Instructions.insert(std::make_pair(Instrs[i], 2561 DAGInstruction(0, Results, Operands, ImpResults))); 2562 continue; // no pattern. 2563 } 2564 2565 // Parse the instruction. 2566 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2567 // Inline pattern fragments into it. 2568 I->InlinePatternFragments(); 2569 2570 // Infer as many types as possible. If we cannot infer all of them, we can 2571 // never do anything with this instruction pattern: report it to the user. 2572 if (!I->InferAllTypes()) 2573 I->error("Could not infer all types in pattern!"); 2574 2575 // InstInputs - Keep track of all of the inputs of the instruction, along 2576 // with the record they are declared as. 2577 std::map<std::string, TreePatternNode*> InstInputs; 2578 2579 // InstResults - Keep track of all the virtual registers that are 'set' 2580 // in the instruction, including what reg class they are. 2581 std::map<std::string, TreePatternNode*> InstResults; 2582 2583 std::vector<Record*> InstImpResults; 2584 2585 // Verify that the top-level forms in the instruction are of void type, and 2586 // fill in the InstResults map. 2587 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2588 TreePatternNode *Pat = I->getTree(j); 2589 if (Pat->getNumTypes() != 0) 2590 I->error("Top-level forms in instruction pattern should have" 2591 " void types"); 2592 2593 // Find inputs and outputs, and verify the structure of the uses/defs. 2594 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2595 InstImpResults); 2596 } 2597 2598 // Now that we have inputs and outputs of the pattern, inspect the operands 2599 // list for the instruction. This determines the order that operands are 2600 // added to the machine instruction the node corresponds to. 2601 unsigned NumResults = InstResults.size(); 2602 2603 // Parse the operands list from the (ops) list, validating it. 2604 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2605 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2606 2607 // Check that all of the results occur first in the list. 2608 std::vector<Record*> Results; 2609 TreePatternNode *Res0Node = 0; 2610 for (unsigned i = 0; i != NumResults; ++i) { 2611 if (i == CGI.Operands.size()) 2612 I->error("'" + InstResults.begin()->first + 2613 "' set but does not appear in operand list!"); 2614 const std::string &OpName = CGI.Operands[i].Name; 2615 2616 // Check that it exists in InstResults. 2617 TreePatternNode *RNode = InstResults[OpName]; 2618 if (RNode == 0) 2619 I->error("Operand $" + OpName + " does not exist in operand list!"); 2620 2621 if (i == 0) 2622 Res0Node = RNode; 2623 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2624 if (R == 0) 2625 I->error("Operand $" + OpName + " should be a set destination: all " 2626 "outputs must occur before inputs in operand list!"); 2627 2628 if (CGI.Operands[i].Rec != R) 2629 I->error("Operand $" + OpName + " class mismatch!"); 2630 2631 // Remember the return type. 2632 Results.push_back(CGI.Operands[i].Rec); 2633 2634 // Okay, this one checks out. 2635 InstResults.erase(OpName); 2636 } 2637 2638 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2639 // the copy while we're checking the inputs. 2640 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2641 2642 std::vector<TreePatternNode*> ResultNodeOperands; 2643 std::vector<Record*> Operands; 2644 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2645 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2646 const std::string &OpName = Op.Name; 2647 if (OpName.empty()) 2648 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2649 2650 if (!InstInputsCheck.count(OpName)) { 2651 // If this is an predicate operand or optional def operand with an 2652 // DefaultOps set filled in, we can ignore this. When we codegen it, 2653 // we will do so as always executed. 2654 if (Op.Rec->isSubClassOf("PredicateOperand") || 2655 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2656 // Does it have a non-empty DefaultOps field? If so, ignore this 2657 // operand. 2658 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2659 continue; 2660 } 2661 I->error("Operand $" + OpName + 2662 " does not appear in the instruction pattern"); 2663 } 2664 TreePatternNode *InVal = InstInputsCheck[OpName]; 2665 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2666 2667 if (InVal->isLeaf() && 2668 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2669 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2670 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2671 I->error("Operand $" + OpName + "'s register class disagrees" 2672 " between the operand and pattern"); 2673 } 2674 Operands.push_back(Op.Rec); 2675 2676 // Construct the result for the dest-pattern operand list. 2677 TreePatternNode *OpNode = InVal->clone(); 2678 2679 // No predicate is useful on the result. 2680 OpNode->clearPredicateFns(); 2681 2682 // Promote the xform function to be an explicit node if set. 2683 if (Record *Xform = OpNode->getTransformFn()) { 2684 OpNode->setTransformFn(0); 2685 std::vector<TreePatternNode*> Children; 2686 Children.push_back(OpNode); 2687 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2688 } 2689 2690 ResultNodeOperands.push_back(OpNode); 2691 } 2692 2693 if (!InstInputsCheck.empty()) 2694 I->error("Input operand $" + InstInputsCheck.begin()->first + 2695 " occurs in pattern but not in operands list!"); 2696 2697 TreePatternNode *ResultPattern = 2698 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2699 GetNumNodeResults(I->getRecord(), *this)); 2700 // Copy fully inferred output node type to instruction result pattern. 2701 for (unsigned i = 0; i != NumResults; ++i) 2702 ResultPattern->setType(i, Res0Node->getExtType(i)); 2703 2704 // Create and insert the instruction. 2705 // FIXME: InstImpResults should not be part of DAGInstruction. 2706 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2707 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2708 2709 // Use a temporary tree pattern to infer all types and make sure that the 2710 // constructed result is correct. This depends on the instruction already 2711 // being inserted into the Instructions map. 2712 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2713 Temp.InferAllTypes(&I->getNamedNodesMap()); 2714 2715 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2716 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2717 2718 DEBUG(I->dump()); 2719 } 2720 2721 // If we can, convert the instructions to be patterns that are matched! 2722 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2723 Instructions.begin(), 2724 E = Instructions.end(); II != E; ++II) { 2725 DAGInstruction &TheInst = II->second; 2726 const TreePattern *I = TheInst.getPattern(); 2727 if (I == 0) continue; // No pattern. 2728 2729 // FIXME: Assume only the first tree is the pattern. The others are clobber 2730 // nodes. 2731 TreePatternNode *Pattern = I->getTree(0); 2732 TreePatternNode *SrcPattern; 2733 if (Pattern->getOperator()->getName() == "set") { 2734 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2735 } else{ 2736 // Not a set (store or something?) 2737 SrcPattern = Pattern; 2738 } 2739 2740 Record *Instr = II->first; 2741 AddPatternToMatch(I, 2742 PatternToMatch(Instr, 2743 Instr->getValueAsListInit("Predicates"), 2744 SrcPattern, 2745 TheInst.getResultPattern(), 2746 TheInst.getImpResults(), 2747 Instr->getValueAsInt("AddedComplexity"), 2748 Instr->getID())); 2749 } 2750 } 2751 2752 2753 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2754 2755 static void FindNames(const TreePatternNode *P, 2756 std::map<std::string, NameRecord> &Names, 2757 const TreePattern *PatternTop) { 2758 if (!P->getName().empty()) { 2759 NameRecord &Rec = Names[P->getName()]; 2760 // If this is the first instance of the name, remember the node. 2761 if (Rec.second++ == 0) 2762 Rec.first = P; 2763 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2764 PatternTop->error("repetition of value: $" + P->getName() + 2765 " where different uses have different types!"); 2766 } 2767 2768 if (!P->isLeaf()) { 2769 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2770 FindNames(P->getChild(i), Names, PatternTop); 2771 } 2772 } 2773 2774 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2775 const PatternToMatch &PTM) { 2776 // Do some sanity checking on the pattern we're about to match. 2777 std::string Reason; 2778 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2779 Pattern->error("Pattern can never match: " + Reason); 2780 2781 // If the source pattern's root is a complex pattern, that complex pattern 2782 // must specify the nodes it can potentially match. 2783 if (const ComplexPattern *CP = 2784 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2785 if (CP->getRootNodes().empty()) 2786 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2787 " could match"); 2788 2789 2790 // Find all of the named values in the input and output, ensure they have the 2791 // same type. 2792 std::map<std::string, NameRecord> SrcNames, DstNames; 2793 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2794 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2795 2796 // Scan all of the named values in the destination pattern, rejecting them if 2797 // they don't exist in the input pattern. 2798 for (std::map<std::string, NameRecord>::iterator 2799 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2800 if (SrcNames[I->first].first == 0) 2801 Pattern->error("Pattern has input without matching name in output: $" + 2802 I->first); 2803 } 2804 2805 // Scan all of the named values in the source pattern, rejecting them if the 2806 // name isn't used in the dest, and isn't used to tie two values together. 2807 for (std::map<std::string, NameRecord>::iterator 2808 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2809 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2810 Pattern->error("Pattern has dead named input: $" + I->first); 2811 2812 PatternsToMatch.push_back(PTM); 2813 } 2814 2815 2816 2817 void CodeGenDAGPatterns::InferInstructionFlags() { 2818 const std::vector<const CodeGenInstruction*> &Instructions = 2819 Target.getInstructionsByEnumValue(); 2820 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2821 CodeGenInstruction &InstInfo = 2822 const_cast<CodeGenInstruction &>(*Instructions[i]); 2823 // Determine properties of the instruction from its pattern. 2824 bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic; 2825 InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast, 2826 HasSideEffects, IsVariadic, *this); 2827 InstInfo.mayStore = MayStore; 2828 InstInfo.mayLoad = MayLoad; 2829 InstInfo.isBitcast = IsBitcast; 2830 InstInfo.hasSideEffects = HasSideEffects; 2831 InstInfo.Operands.isVariadic = IsVariadic; 2832 2833 // Sanity checks. 2834 if (InstInfo.isReMaterializable && InstInfo.hasSideEffects) 2835 throw TGError(InstInfo.TheDef->getLoc(), "The instruction " + 2836 InstInfo.TheDef->getName() + 2837 " is rematerializable AND has unmodeled side effects?"); 2838 } 2839 } 2840 2841 /// Given a pattern result with an unresolved type, see if we can find one 2842 /// instruction with an unresolved result type. Force this result type to an 2843 /// arbitrary element if it's possible types to converge results. 2844 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2845 if (N->isLeaf()) 2846 return false; 2847 2848 // Analyze children. 2849 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2850 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2851 return true; 2852 2853 if (!N->getOperator()->isSubClassOf("Instruction")) 2854 return false; 2855 2856 // If this type is already concrete or completely unknown we can't do 2857 // anything. 2858 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2859 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2860 continue; 2861 2862 // Otherwise, force its type to the first possibility (an arbitrary choice). 2863 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2864 return true; 2865 } 2866 2867 return false; 2868 } 2869 2870 void CodeGenDAGPatterns::ParsePatterns() { 2871 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2872 2873 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2874 Record *CurPattern = Patterns[i]; 2875 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2876 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2877 2878 // Inline pattern fragments into it. 2879 Pattern->InlinePatternFragments(); 2880 2881 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2882 if (LI->getSize() == 0) continue; // no pattern. 2883 2884 // Parse the instruction. 2885 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2886 2887 // Inline pattern fragments into it. 2888 Result->InlinePatternFragments(); 2889 2890 if (Result->getNumTrees() != 1) 2891 Result->error("Cannot handle instructions producing instructions " 2892 "with temporaries yet!"); 2893 2894 bool IterateInference; 2895 bool InferredAllPatternTypes, InferredAllResultTypes; 2896 do { 2897 // Infer as many types as possible. If we cannot infer all of them, we 2898 // can never do anything with this pattern: report it to the user. 2899 InferredAllPatternTypes = 2900 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2901 2902 // Infer as many types as possible. If we cannot infer all of them, we 2903 // can never do anything with this pattern: report it to the user. 2904 InferredAllResultTypes = 2905 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2906 2907 IterateInference = false; 2908 2909 // Apply the type of the result to the source pattern. This helps us 2910 // resolve cases where the input type is known to be a pointer type (which 2911 // is considered resolved), but the result knows it needs to be 32- or 2912 // 64-bits. Infer the other way for good measure. 2913 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2914 Pattern->getTree(0)->getNumTypes()); 2915 i != e; ++i) { 2916 IterateInference = Pattern->getTree(0)-> 2917 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2918 IterateInference |= Result->getTree(0)-> 2919 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2920 } 2921 2922 // If our iteration has converged and the input pattern's types are fully 2923 // resolved but the result pattern is not fully resolved, we may have a 2924 // situation where we have two instructions in the result pattern and 2925 // the instructions require a common register class, but don't care about 2926 // what actual MVT is used. This is actually a bug in our modelling: 2927 // output patterns should have register classes, not MVTs. 2928 // 2929 // In any case, to handle this, we just go through and disambiguate some 2930 // arbitrary types to the result pattern's nodes. 2931 if (!IterateInference && InferredAllPatternTypes && 2932 !InferredAllResultTypes) 2933 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2934 *Result); 2935 } while (IterateInference); 2936 2937 // Verify that we inferred enough types that we can do something with the 2938 // pattern and result. If these fire the user has to add type casts. 2939 if (!InferredAllPatternTypes) 2940 Pattern->error("Could not infer all types in pattern!"); 2941 if (!InferredAllResultTypes) { 2942 Pattern->dump(); 2943 Result->error("Could not infer all types in pattern result!"); 2944 } 2945 2946 // Validate that the input pattern is correct. 2947 std::map<std::string, TreePatternNode*> InstInputs; 2948 std::map<std::string, TreePatternNode*> InstResults; 2949 std::vector<Record*> InstImpResults; 2950 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2951 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2952 InstInputs, InstResults, 2953 InstImpResults); 2954 2955 // Promote the xform function to be an explicit node if set. 2956 TreePatternNode *DstPattern = Result->getOnlyTree(); 2957 std::vector<TreePatternNode*> ResultNodeOperands; 2958 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2959 TreePatternNode *OpNode = DstPattern->getChild(ii); 2960 if (Record *Xform = OpNode->getTransformFn()) { 2961 OpNode->setTransformFn(0); 2962 std::vector<TreePatternNode*> Children; 2963 Children.push_back(OpNode); 2964 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2965 } 2966 ResultNodeOperands.push_back(OpNode); 2967 } 2968 DstPattern = Result->getOnlyTree(); 2969 if (!DstPattern->isLeaf()) 2970 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2971 ResultNodeOperands, 2972 DstPattern->getNumTypes()); 2973 2974 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2975 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2976 2977 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2978 Temp.InferAllTypes(); 2979 2980 2981 AddPatternToMatch(Pattern, 2982 PatternToMatch(CurPattern, 2983 CurPattern->getValueAsListInit("Predicates"), 2984 Pattern->getTree(0), 2985 Temp.getOnlyTree(), InstImpResults, 2986 CurPattern->getValueAsInt("AddedComplexity"), 2987 CurPattern->getID())); 2988 } 2989 } 2990 2991 /// CombineChildVariants - Given a bunch of permutations of each child of the 2992 /// 'operator' node, put them together in all possible ways. 2993 static void CombineChildVariants(TreePatternNode *Orig, 2994 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2995 std::vector<TreePatternNode*> &OutVariants, 2996 CodeGenDAGPatterns &CDP, 2997 const MultipleUseVarSet &DepVars) { 2998 // Make sure that each operand has at least one variant to choose from. 2999 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3000 if (ChildVariants[i].empty()) 3001 return; 3002 3003 // The end result is an all-pairs construction of the resultant pattern. 3004 std::vector<unsigned> Idxs; 3005 Idxs.resize(ChildVariants.size()); 3006 bool NotDone; 3007 do { 3008 #ifndef NDEBUG 3009 DEBUG(if (!Idxs.empty()) { 3010 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3011 for (unsigned i = 0; i < Idxs.size(); ++i) { 3012 errs() << Idxs[i] << " "; 3013 } 3014 errs() << "]\n"; 3015 }); 3016 #endif 3017 // Create the variant and add it to the output list. 3018 std::vector<TreePatternNode*> NewChildren; 3019 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3020 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3021 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3022 Orig->getNumTypes()); 3023 3024 // Copy over properties. 3025 R->setName(Orig->getName()); 3026 R->setPredicateFns(Orig->getPredicateFns()); 3027 R->setTransformFn(Orig->getTransformFn()); 3028 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3029 R->setType(i, Orig->getExtType(i)); 3030 3031 // If this pattern cannot match, do not include it as a variant. 3032 std::string ErrString; 3033 if (!R->canPatternMatch(ErrString, CDP)) { 3034 delete R; 3035 } else { 3036 bool AlreadyExists = false; 3037 3038 // Scan to see if this pattern has already been emitted. We can get 3039 // duplication due to things like commuting: 3040 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3041 // which are the same pattern. Ignore the dups. 3042 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3043 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3044 AlreadyExists = true; 3045 break; 3046 } 3047 3048 if (AlreadyExists) 3049 delete R; 3050 else 3051 OutVariants.push_back(R); 3052 } 3053 3054 // Increment indices to the next permutation by incrementing the 3055 // indicies from last index backward, e.g., generate the sequence 3056 // [0, 0], [0, 1], [1, 0], [1, 1]. 3057 int IdxsIdx; 3058 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3059 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3060 Idxs[IdxsIdx] = 0; 3061 else 3062 break; 3063 } 3064 NotDone = (IdxsIdx >= 0); 3065 } while (NotDone); 3066 } 3067 3068 /// CombineChildVariants - A helper function for binary operators. 3069 /// 3070 static void CombineChildVariants(TreePatternNode *Orig, 3071 const std::vector<TreePatternNode*> &LHS, 3072 const std::vector<TreePatternNode*> &RHS, 3073 std::vector<TreePatternNode*> &OutVariants, 3074 CodeGenDAGPatterns &CDP, 3075 const MultipleUseVarSet &DepVars) { 3076 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3077 ChildVariants.push_back(LHS); 3078 ChildVariants.push_back(RHS); 3079 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3080 } 3081 3082 3083 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3084 std::vector<TreePatternNode *> &Children) { 3085 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3086 Record *Operator = N->getOperator(); 3087 3088 // Only permit raw nodes. 3089 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3090 N->getTransformFn()) { 3091 Children.push_back(N); 3092 return; 3093 } 3094 3095 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3096 Children.push_back(N->getChild(0)); 3097 else 3098 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3099 3100 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3101 Children.push_back(N->getChild(1)); 3102 else 3103 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3104 } 3105 3106 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3107 /// the (potentially recursive) pattern by using algebraic laws. 3108 /// 3109 static void GenerateVariantsOf(TreePatternNode *N, 3110 std::vector<TreePatternNode*> &OutVariants, 3111 CodeGenDAGPatterns &CDP, 3112 const MultipleUseVarSet &DepVars) { 3113 // We cannot permute leaves. 3114 if (N->isLeaf()) { 3115 OutVariants.push_back(N); 3116 return; 3117 } 3118 3119 // Look up interesting info about the node. 3120 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3121 3122 // If this node is associative, re-associate. 3123 if (NodeInfo.hasProperty(SDNPAssociative)) { 3124 // Re-associate by pulling together all of the linked operators 3125 std::vector<TreePatternNode*> MaximalChildren; 3126 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3127 3128 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3129 // permutations. 3130 if (MaximalChildren.size() == 3) { 3131 // Find the variants of all of our maximal children. 3132 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3133 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3134 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3135 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3136 3137 // There are only two ways we can permute the tree: 3138 // (A op B) op C and A op (B op C) 3139 // Within these forms, we can also permute A/B/C. 3140 3141 // Generate legal pair permutations of A/B/C. 3142 std::vector<TreePatternNode*> ABVariants; 3143 std::vector<TreePatternNode*> BAVariants; 3144 std::vector<TreePatternNode*> ACVariants; 3145 std::vector<TreePatternNode*> CAVariants; 3146 std::vector<TreePatternNode*> BCVariants; 3147 std::vector<TreePatternNode*> CBVariants; 3148 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3149 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3150 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3151 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3152 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3153 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3154 3155 // Combine those into the result: (x op x) op x 3156 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3157 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3158 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3159 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3160 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3161 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3162 3163 // Combine those into the result: x op (x op x) 3164 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3165 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3166 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3167 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3168 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3169 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3170 return; 3171 } 3172 } 3173 3174 // Compute permutations of all children. 3175 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3176 ChildVariants.resize(N->getNumChildren()); 3177 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3178 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3179 3180 // Build all permutations based on how the children were formed. 3181 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3182 3183 // If this node is commutative, consider the commuted order. 3184 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3185 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3186 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3187 "Commutative but doesn't have 2 children!"); 3188 // Don't count children which are actually register references. 3189 unsigned NC = 0; 3190 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3191 TreePatternNode *Child = N->getChild(i); 3192 if (Child->isLeaf()) 3193 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 3194 Record *RR = DI->getDef(); 3195 if (RR->isSubClassOf("Register")) 3196 continue; 3197 } 3198 NC++; 3199 } 3200 // Consider the commuted order. 3201 if (isCommIntrinsic) { 3202 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3203 // operands are the commutative operands, and there might be more operands 3204 // after those. 3205 assert(NC >= 3 && 3206 "Commutative intrinsic should have at least 3 childrean!"); 3207 std::vector<std::vector<TreePatternNode*> > Variants; 3208 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3209 Variants.push_back(ChildVariants[2]); 3210 Variants.push_back(ChildVariants[1]); 3211 for (unsigned i = 3; i != NC; ++i) 3212 Variants.push_back(ChildVariants[i]); 3213 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3214 } else if (NC == 2) 3215 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3216 OutVariants, CDP, DepVars); 3217 } 3218 } 3219 3220 3221 // GenerateVariants - Generate variants. For example, commutative patterns can 3222 // match multiple ways. Add them to PatternsToMatch as well. 3223 void CodeGenDAGPatterns::GenerateVariants() { 3224 DEBUG(errs() << "Generating instruction variants.\n"); 3225 3226 // Loop over all of the patterns we've collected, checking to see if we can 3227 // generate variants of the instruction, through the exploitation of 3228 // identities. This permits the target to provide aggressive matching without 3229 // the .td file having to contain tons of variants of instructions. 3230 // 3231 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3232 // intentionally do not reconsider these. Any variants of added patterns have 3233 // already been added. 3234 // 3235 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3236 MultipleUseVarSet DepVars; 3237 std::vector<TreePatternNode*> Variants; 3238 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3239 DEBUG(errs() << "Dependent/multiply used variables: "); 3240 DEBUG(DumpDepVars(DepVars)); 3241 DEBUG(errs() << "\n"); 3242 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3243 DepVars); 3244 3245 assert(!Variants.empty() && "Must create at least original variant!"); 3246 Variants.erase(Variants.begin()); // Remove the original pattern. 3247 3248 if (Variants.empty()) // No variants for this pattern. 3249 continue; 3250 3251 DEBUG(errs() << "FOUND VARIANTS OF: "; 3252 PatternsToMatch[i].getSrcPattern()->dump(); 3253 errs() << "\n"); 3254 3255 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3256 TreePatternNode *Variant = Variants[v]; 3257 3258 DEBUG(errs() << " VAR#" << v << ": "; 3259 Variant->dump(); 3260 errs() << "\n"); 3261 3262 // Scan to see if an instruction or explicit pattern already matches this. 3263 bool AlreadyExists = false; 3264 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3265 // Skip if the top level predicates do not match. 3266 if (PatternsToMatch[i].getPredicates() != 3267 PatternsToMatch[p].getPredicates()) 3268 continue; 3269 // Check to see if this variant already exists. 3270 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3271 DepVars)) { 3272 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3273 AlreadyExists = true; 3274 break; 3275 } 3276 } 3277 // If we already have it, ignore the variant. 3278 if (AlreadyExists) continue; 3279 3280 // Otherwise, add it to the list of patterns we have. 3281 PatternsToMatch. 3282 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3283 PatternsToMatch[i].getPredicates(), 3284 Variant, PatternsToMatch[i].getDstPattern(), 3285 PatternsToMatch[i].getDstRegs(), 3286 PatternsToMatch[i].getAddedComplexity(), 3287 Record::getNewUID())); 3288 } 3289 3290 DEBUG(errs() << "\n"); 3291 } 3292 } 3293 3294