1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/TypeSize.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include <algorithm>
30 #include <cstdio>
31 #include <iterator>
32 #include <set>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "dag-patterns"
36 
37 static inline bool isIntegerOrPtr(MVT VT) {
38   return VT.isInteger() || VT == MVT::iPTR;
39 }
40 static inline bool isFloatingPoint(MVT VT) {
41   return VT.isFloatingPoint();
42 }
43 static inline bool isVector(MVT VT) {
44   return VT.isVector();
45 }
46 static inline bool isScalar(MVT VT) {
47   return !VT.isVector();
48 }
49 
50 template <typename Predicate>
51 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
52   bool Erased = false;
53   // It is ok to iterate over MachineValueTypeSet and remove elements from it
54   // at the same time.
55   for (MVT T : S) {
56     if (!P(T))
57       continue;
58     Erased = true;
59     S.erase(T);
60   }
61   return Erased;
62 }
63 
64 // --- TypeSetByHwMode
65 
66 // This is a parameterized type-set class. For each mode there is a list
67 // of types that are currently possible for a given tree node. Type
68 // inference will apply to each mode separately.
69 
70 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
71   for (const ValueTypeByHwMode &VVT : VTList) {
72     insert(VVT);
73     AddrSpaces.push_back(VVT.PtrAddrSpace);
74   }
75 }
76 
77 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
78   for (const auto &I : *this) {
79     if (I.second.size() > 1)
80       return false;
81     if (!AllowEmpty && I.second.empty())
82       return false;
83   }
84   return true;
85 }
86 
87 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
88   assert(isValueTypeByHwMode(true) &&
89          "The type set has multiple types for at least one HW mode");
90   ValueTypeByHwMode VVT;
91   auto ASI = AddrSpaces.begin();
92 
93   for (const auto &I : *this) {
94     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
95     VVT.getOrCreateTypeForMode(I.first, T);
96     if (ASI != AddrSpaces.end())
97       VVT.PtrAddrSpace = *ASI++;
98   }
99   return VVT;
100 }
101 
102 bool TypeSetByHwMode::isPossible() const {
103   for (const auto &I : *this)
104     if (!I.second.empty())
105       return true;
106   return false;
107 }
108 
109 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
110   bool Changed = false;
111   bool ContainsDefault = false;
112   MVT DT = MVT::Other;
113 
114   SmallDenseSet<unsigned, 4> Modes;
115   for (const auto &P : VVT) {
116     unsigned M = P.first;
117     Modes.insert(M);
118     // Make sure there exists a set for each specific mode from VVT.
119     Changed |= getOrCreate(M).insert(P.second).second;
120     // Cache VVT's default mode.
121     if (DefaultMode == M) {
122       ContainsDefault = true;
123       DT = P.second;
124     }
125   }
126 
127   // If VVT has a default mode, add the corresponding type to all
128   // modes in "this" that do not exist in VVT.
129   if (ContainsDefault)
130     for (auto &I : *this)
131       if (!Modes.count(I.first))
132         Changed |= I.second.insert(DT).second;
133 
134   return Changed;
135 }
136 
137 // Constrain the type set to be the intersection with VTS.
138 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
139   bool Changed = false;
140   if (hasDefault()) {
141     for (const auto &I : VTS) {
142       unsigned M = I.first;
143       if (M == DefaultMode || hasMode(M))
144         continue;
145       Map.insert({M, Map.at(DefaultMode)});
146       Changed = true;
147     }
148   }
149 
150   for (auto &I : *this) {
151     unsigned M = I.first;
152     SetType &S = I.second;
153     if (VTS.hasMode(M) || VTS.hasDefault()) {
154       Changed |= intersect(I.second, VTS.get(M));
155     } else if (!S.empty()) {
156       S.clear();
157       Changed = true;
158     }
159   }
160   return Changed;
161 }
162 
163 template <typename Predicate>
164 bool TypeSetByHwMode::constrain(Predicate P) {
165   bool Changed = false;
166   for (auto &I : *this)
167     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
168   return Changed;
169 }
170 
171 template <typename Predicate>
172 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
173   assert(empty());
174   for (const auto &I : VTS) {
175     SetType &S = getOrCreate(I.first);
176     for (auto J : I.second)
177       if (P(J))
178         S.insert(J);
179   }
180   return !empty();
181 }
182 
183 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
184   SmallVector<unsigned, 4> Modes;
185   Modes.reserve(Map.size());
186 
187   for (const auto &I : *this)
188     Modes.push_back(I.first);
189   if (Modes.empty()) {
190     OS << "{}";
191     return;
192   }
193   array_pod_sort(Modes.begin(), Modes.end());
194 
195   OS << '{';
196   for (unsigned M : Modes) {
197     OS << ' ' << getModeName(M) << ':';
198     writeToStream(get(M), OS);
199   }
200   OS << " }";
201 }
202 
203 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
204   SmallVector<MVT, 4> Types(S.begin(), S.end());
205   array_pod_sort(Types.begin(), Types.end());
206 
207   OS << '[';
208   ListSeparator LS(" ");
209   for (const MVT &T : Types)
210     OS << LS << ValueTypeByHwMode::getMVTName(T);
211   OS << ']';
212 }
213 
214 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
215   // The isSimple call is much quicker than hasDefault - check this first.
216   bool IsSimple = isSimple();
217   bool VTSIsSimple = VTS.isSimple();
218   if (IsSimple && VTSIsSimple)
219     return *begin() == *VTS.begin();
220 
221   // Speedup: We have a default if the set is simple.
222   bool HaveDefault = IsSimple || hasDefault();
223   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
224   if (HaveDefault != VTSHaveDefault)
225     return false;
226 
227   SmallDenseSet<unsigned, 4> Modes;
228   for (auto &I : *this)
229     Modes.insert(I.first);
230   for (const auto &I : VTS)
231     Modes.insert(I.first);
232 
233   if (HaveDefault) {
234     // Both sets have default mode.
235     for (unsigned M : Modes) {
236       if (get(M) != VTS.get(M))
237         return false;
238     }
239   } else {
240     // Neither set has default mode.
241     for (unsigned M : Modes) {
242       // If there is no default mode, an empty set is equivalent to not having
243       // the corresponding mode.
244       bool NoModeThis = !hasMode(M) || get(M).empty();
245       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
246       if (NoModeThis != NoModeVTS)
247         return false;
248       if (!NoModeThis)
249         if (get(M) != VTS.get(M))
250           return false;
251     }
252   }
253 
254   return true;
255 }
256 
257 namespace llvm {
258   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
259     T.writeToStream(OS);
260     return OS;
261   }
262 }
263 
264 LLVM_DUMP_METHOD
265 void TypeSetByHwMode::dump() const {
266   dbgs() << *this << '\n';
267 }
268 
269 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
270   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
271   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
272 
273   if (OutP == InP)
274     return berase_if(Out, Int);
275 
276   // Compute the intersection of scalars separately to account for only
277   // one set containing iPTR.
278   // The intersection of iPTR with a set of integer scalar types that does not
279   // include iPTR will result in the most specific scalar type:
280   // - iPTR is more specific than any set with two elements or more
281   // - iPTR is less specific than any single integer scalar type.
282   // For example
283   // { iPTR } * { i32 }     -> { i32 }
284   // { iPTR } * { i32 i64 } -> { iPTR }
285   // and
286   // { iPTR i32 } * { i32 }          -> { i32 }
287   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
288   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
289 
290   // Compute the difference between the two sets in such a way that the
291   // iPTR is in the set that is being subtracted. This is to see if there
292   // are any extra scalars in the set without iPTR that are not in the
293   // set containing iPTR. Then the iPTR could be considered a "wildcard"
294   // matching these scalars. If there is only one such scalar, it would
295   // replace the iPTR, if there are more, the iPTR would be retained.
296   SetType Diff;
297   if (InP) {
298     Diff = Out;
299     berase_if(Diff, [&In](MVT T) { return In.count(T); });
300     // Pre-remove these elements and rely only on InP/OutP to determine
301     // whether a change has been made.
302     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
303   } else {
304     Diff = In;
305     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
306     Out.erase(MVT::iPTR);
307   }
308 
309   // The actual intersection.
310   bool Changed = berase_if(Out, Int);
311   unsigned NumD = Diff.size();
312   if (NumD == 0)
313     return Changed;
314 
315   if (NumD == 1) {
316     Out.insert(*Diff.begin());
317     // This is a change only if Out was the one with iPTR (which is now
318     // being replaced).
319     Changed |= OutP;
320   } else {
321     // Multiple elements from Out are now replaced with iPTR.
322     Out.insert(MVT::iPTR);
323     Changed |= !OutP;
324   }
325   return Changed;
326 }
327 
328 bool TypeSetByHwMode::validate() const {
329 #ifndef NDEBUG
330   if (empty())
331     return true;
332   bool AllEmpty = true;
333   for (const auto &I : *this)
334     AllEmpty &= I.second.empty();
335   return !AllEmpty;
336 #endif
337   return true;
338 }
339 
340 // --- TypeInfer
341 
342 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
343                                 const TypeSetByHwMode &In) {
344   ValidateOnExit _1(Out, *this);
345   In.validate();
346   if (In.empty() || Out == In || TP.hasError())
347     return false;
348   if (Out.empty()) {
349     Out = In;
350     return true;
351   }
352 
353   bool Changed = Out.constrain(In);
354   if (Changed && Out.empty())
355     TP.error("Type contradiction");
356 
357   return Changed;
358 }
359 
360 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
361   ValidateOnExit _1(Out, *this);
362   if (TP.hasError())
363     return false;
364   assert(!Out.empty() && "cannot pick from an empty set");
365 
366   bool Changed = false;
367   for (auto &I : Out) {
368     TypeSetByHwMode::SetType &S = I.second;
369     if (S.size() <= 1)
370       continue;
371     MVT T = *S.begin(); // Pick the first element.
372     S.clear();
373     S.insert(T);
374     Changed = true;
375   }
376   return Changed;
377 }
378 
379 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
380   ValidateOnExit _1(Out, *this);
381   if (TP.hasError())
382     return false;
383   if (!Out.empty())
384     return Out.constrain(isIntegerOrPtr);
385 
386   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
387 }
388 
389 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
390   ValidateOnExit _1(Out, *this);
391   if (TP.hasError())
392     return false;
393   if (!Out.empty())
394     return Out.constrain(isFloatingPoint);
395 
396   return Out.assign_if(getLegalTypes(), isFloatingPoint);
397 }
398 
399 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
400   ValidateOnExit _1(Out, *this);
401   if (TP.hasError())
402     return false;
403   if (!Out.empty())
404     return Out.constrain(isScalar);
405 
406   return Out.assign_if(getLegalTypes(), isScalar);
407 }
408 
409 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
410   ValidateOnExit _1(Out, *this);
411   if (TP.hasError())
412     return false;
413   if (!Out.empty())
414     return Out.constrain(isVector);
415 
416   return Out.assign_if(getLegalTypes(), isVector);
417 }
418 
419 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
420   ValidateOnExit _1(Out, *this);
421   if (TP.hasError() || !Out.empty())
422     return false;
423 
424   Out = getLegalTypes();
425   return true;
426 }
427 
428 template <typename Iter, typename Pred, typename Less>
429 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
430   if (B == E)
431     return E;
432   Iter Min = E;
433   for (Iter I = B; I != E; ++I) {
434     if (!P(*I))
435       continue;
436     if (Min == E || L(*I, *Min))
437       Min = I;
438   }
439   return Min;
440 }
441 
442 template <typename Iter, typename Pred, typename Less>
443 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
444   if (B == E)
445     return E;
446   Iter Max = E;
447   for (Iter I = B; I != E; ++I) {
448     if (!P(*I))
449       continue;
450     if (Max == E || L(*Max, *I))
451       Max = I;
452   }
453   return Max;
454 }
455 
456 /// Make sure that for each type in Small, there exists a larger type in Big.
457 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
458                                    TypeSetByHwMode &Big) {
459   ValidateOnExit _1(Small, *this), _2(Big, *this);
460   if (TP.hasError())
461     return false;
462   bool Changed = false;
463 
464   if (Small.empty())
465     Changed |= EnforceAny(Small);
466   if (Big.empty())
467     Changed |= EnforceAny(Big);
468 
469   assert(Small.hasDefault() && Big.hasDefault());
470 
471   std::vector<unsigned> Modes = union_modes(Small, Big);
472 
473   // 1. Only allow integer or floating point types and make sure that
474   //    both sides are both integer or both floating point.
475   // 2. Make sure that either both sides have vector types, or neither
476   //    of them does.
477   for (unsigned M : Modes) {
478     TypeSetByHwMode::SetType &S = Small.get(M);
479     TypeSetByHwMode::SetType &B = Big.get(M);
480 
481     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
482       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
483       Changed |= berase_if(S, NotInt);
484       Changed |= berase_if(B, NotInt);
485     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
486       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
487       Changed |= berase_if(S, NotFP);
488       Changed |= berase_if(B, NotFP);
489     } else if (S.empty() || B.empty()) {
490       Changed = !S.empty() || !B.empty();
491       S.clear();
492       B.clear();
493     } else {
494       TP.error("Incompatible types");
495       return Changed;
496     }
497 
498     if (none_of(S, isVector) || none_of(B, isVector)) {
499       Changed |= berase_if(S, isVector);
500       Changed |= berase_if(B, isVector);
501     }
502   }
503 
504   auto LT = [](MVT A, MVT B) -> bool {
505     // Always treat non-scalable MVTs as smaller than scalable MVTs for the
506     // purposes of ordering.
507     auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
508                                  A.getSizeInBits().getKnownMinSize());
509     auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
510                                  B.getSizeInBits().getKnownMinSize());
511     return ASize < BSize;
512   };
513   auto SameKindLE = [](MVT A, MVT B) -> bool {
514     // This function is used when removing elements: when a vector is compared
515     // to a non-vector or a scalable vector to any non-scalable MVT, it should
516     // return false (to avoid removal).
517     if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
518         std::make_tuple(B.isVector(), B.isScalableVector()))
519       return false;
520 
521     return std::make_tuple(A.getScalarSizeInBits(),
522                            A.getSizeInBits().getKnownMinSize()) <=
523            std::make_tuple(B.getScalarSizeInBits(),
524                            B.getSizeInBits().getKnownMinSize());
525   };
526 
527   for (unsigned M : Modes) {
528     TypeSetByHwMode::SetType &S = Small.get(M);
529     TypeSetByHwMode::SetType &B = Big.get(M);
530     // MinS = min scalar in Small, remove all scalars from Big that are
531     // smaller-or-equal than MinS.
532     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
533     if (MinS != S.end())
534       Changed |= berase_if(B, std::bind(SameKindLE,
535                                         std::placeholders::_1, *MinS));
536 
537     // MaxS = max scalar in Big, remove all scalars from Small that are
538     // larger than MaxS.
539     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
540     if (MaxS != B.end())
541       Changed |= berase_if(S, std::bind(SameKindLE,
542                                         *MaxS, std::placeholders::_1));
543 
544     // MinV = min vector in Small, remove all vectors from Big that are
545     // smaller-or-equal than MinV.
546     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
547     if (MinV != S.end())
548       Changed |= berase_if(B, std::bind(SameKindLE,
549                                         std::placeholders::_1, *MinV));
550 
551     // MaxV = max vector in Big, remove all vectors from Small that are
552     // larger than MaxV.
553     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
554     if (MaxV != B.end())
555       Changed |= berase_if(S, std::bind(SameKindLE,
556                                         *MaxV, std::placeholders::_1));
557   }
558 
559   return Changed;
560 }
561 
562 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
563 ///    for each type U in Elem, U is a scalar type.
564 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
565 ///    type T in Vec, such that U is the element type of T.
566 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
567                                        TypeSetByHwMode &Elem) {
568   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
569   if (TP.hasError())
570     return false;
571   bool Changed = false;
572 
573   if (Vec.empty())
574     Changed |= EnforceVector(Vec);
575   if (Elem.empty())
576     Changed |= EnforceScalar(Elem);
577 
578   for (unsigned M : union_modes(Vec, Elem)) {
579     TypeSetByHwMode::SetType &V = Vec.get(M);
580     TypeSetByHwMode::SetType &E = Elem.get(M);
581 
582     Changed |= berase_if(V, isScalar);  // Scalar = !vector
583     Changed |= berase_if(E, isVector);  // Vector = !scalar
584     assert(!V.empty() && !E.empty());
585 
586     SmallSet<MVT,4> VT, ST;
587     // Collect element types from the "vector" set.
588     for (MVT T : V)
589       VT.insert(T.getVectorElementType());
590     // Collect scalar types from the "element" set.
591     for (MVT T : E)
592       ST.insert(T);
593 
594     // Remove from V all (vector) types whose element type is not in S.
595     Changed |= berase_if(V, [&ST](MVT T) -> bool {
596                               return !ST.count(T.getVectorElementType());
597                             });
598     // Remove from E all (scalar) types, for which there is no corresponding
599     // type in V.
600     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
601   }
602 
603   return Changed;
604 }
605 
606 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
607                                        const ValueTypeByHwMode &VVT) {
608   TypeSetByHwMode Tmp(VVT);
609   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
610   return EnforceVectorEltTypeIs(Vec, Tmp);
611 }
612 
613 /// Ensure that for each type T in Sub, T is a vector type, and there
614 /// exists a type U in Vec such that U is a vector type with the same
615 /// element type as T and at least as many elements as T.
616 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
617                                              TypeSetByHwMode &Sub) {
618   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
619   if (TP.hasError())
620     return false;
621 
622   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
623   auto IsSubVec = [](MVT B, MVT P) -> bool {
624     if (!B.isVector() || !P.isVector())
625       return false;
626     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
627     // but until there are obvious use-cases for this, keep the
628     // types separate.
629     if (B.isScalableVector() != P.isScalableVector())
630       return false;
631     if (B.getVectorElementType() != P.getVectorElementType())
632       return false;
633     return B.getVectorNumElements() < P.getVectorNumElements();
634   };
635 
636   /// Return true if S has no element (vector type) that T is a sub-vector of,
637   /// i.e. has the same element type as T and more elements.
638   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
639     for (auto I : S)
640       if (IsSubVec(T, I))
641         return false;
642     return true;
643   };
644 
645   /// Return true if S has no element (vector type) that T is a super-vector
646   /// of, i.e. has the same element type as T and fewer elements.
647   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
648     for (auto I : S)
649       if (IsSubVec(I, T))
650         return false;
651     return true;
652   };
653 
654   bool Changed = false;
655 
656   if (Vec.empty())
657     Changed |= EnforceVector(Vec);
658   if (Sub.empty())
659     Changed |= EnforceVector(Sub);
660 
661   for (unsigned M : union_modes(Vec, Sub)) {
662     TypeSetByHwMode::SetType &S = Sub.get(M);
663     TypeSetByHwMode::SetType &V = Vec.get(M);
664 
665     Changed |= berase_if(S, isScalar);
666 
667     // Erase all types from S that are not sub-vectors of a type in V.
668     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
669 
670     // Erase all types from V that are not super-vectors of a type in S.
671     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
672   }
673 
674   return Changed;
675 }
676 
677 /// 1. Ensure that V has a scalar type iff W has a scalar type.
678 /// 2. Ensure that for each vector type T in V, there exists a vector
679 ///    type U in W, such that T and U have the same number of elements.
680 /// 3. Ensure that for each vector type U in W, there exists a vector
681 ///    type T in V, such that T and U have the same number of elements
682 ///    (reverse of 2).
683 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
684   ValidateOnExit _1(V, *this), _2(W, *this);
685   if (TP.hasError())
686     return false;
687 
688   bool Changed = false;
689   if (V.empty())
690     Changed |= EnforceAny(V);
691   if (W.empty())
692     Changed |= EnforceAny(W);
693 
694   // An actual vector type cannot have 0 elements, so we can treat scalars
695   // as zero-length vectors. This way both vectors and scalars can be
696   // processed identically.
697   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
698     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
699   };
700 
701   for (unsigned M : union_modes(V, W)) {
702     TypeSetByHwMode::SetType &VS = V.get(M);
703     TypeSetByHwMode::SetType &WS = W.get(M);
704 
705     SmallSet<unsigned,2> VN, WN;
706     for (MVT T : VS)
707       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
708     for (MVT T : WS)
709       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
710 
711     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
712     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
713   }
714   return Changed;
715 }
716 
717 namespace {
718 struct TypeSizeComparator {
719   bool operator()(const TypeSize &LHS, const TypeSize &RHS) const {
720     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
721            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
722   }
723 };
724 } // end anonymous namespace
725 
726 /// 1. Ensure that for each type T in A, there exists a type U in B,
727 ///    such that T and U have equal size in bits.
728 /// 2. Ensure that for each type U in B, there exists a type T in A
729 ///    such that T and U have equal size in bits (reverse of 1).
730 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
731   ValidateOnExit _1(A, *this), _2(B, *this);
732   if (TP.hasError())
733     return false;
734   bool Changed = false;
735   if (A.empty())
736     Changed |= EnforceAny(A);
737   if (B.empty())
738     Changed |= EnforceAny(B);
739 
740   typedef SmallSet<TypeSize, 2, TypeSizeComparator> TypeSizeSet;
741 
742   auto NoSize = [](const TypeSizeSet &Sizes, MVT T) -> bool {
743     return !Sizes.count(T.getSizeInBits());
744   };
745 
746   for (unsigned M : union_modes(A, B)) {
747     TypeSetByHwMode::SetType &AS = A.get(M);
748     TypeSetByHwMode::SetType &BS = B.get(M);
749     TypeSizeSet AN, BN;
750 
751     for (MVT T : AS)
752       AN.insert(T.getSizeInBits());
753     for (MVT T : BS)
754       BN.insert(T.getSizeInBits());
755 
756     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
757     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
758   }
759 
760   return Changed;
761 }
762 
763 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
764   ValidateOnExit _1(VTS, *this);
765   const TypeSetByHwMode &Legal = getLegalTypes();
766   assert(Legal.isDefaultOnly() && "Default-mode only expected");
767   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
768 
769   for (auto &I : VTS)
770     expandOverloads(I.second, LegalTypes);
771 }
772 
773 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
774                                 const TypeSetByHwMode::SetType &Legal) {
775   std::set<MVT> Ovs;
776   for (MVT T : Out) {
777     if (!T.isOverloaded())
778       continue;
779 
780     Ovs.insert(T);
781     // MachineValueTypeSet allows iteration and erasing.
782     Out.erase(T);
783   }
784 
785   for (MVT Ov : Ovs) {
786     switch (Ov.SimpleTy) {
787       case MVT::iPTRAny:
788         Out.insert(MVT::iPTR);
789         return;
790       case MVT::iAny:
791         for (MVT T : MVT::integer_valuetypes())
792           if (Legal.count(T))
793             Out.insert(T);
794         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
795           if (Legal.count(T))
796             Out.insert(T);
797         for (MVT T : MVT::integer_scalable_vector_valuetypes())
798           if (Legal.count(T))
799             Out.insert(T);
800         return;
801       case MVT::fAny:
802         for (MVT T : MVT::fp_valuetypes())
803           if (Legal.count(T))
804             Out.insert(T);
805         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
806           if (Legal.count(T))
807             Out.insert(T);
808         for (MVT T : MVT::fp_scalable_vector_valuetypes())
809           if (Legal.count(T))
810             Out.insert(T);
811         return;
812       case MVT::vAny:
813         for (MVT T : MVT::vector_valuetypes())
814           if (Legal.count(T))
815             Out.insert(T);
816         return;
817       case MVT::Any:
818         for (MVT T : MVT::all_valuetypes())
819           if (Legal.count(T))
820             Out.insert(T);
821         return;
822       default:
823         break;
824     }
825   }
826 }
827 
828 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
829   if (!LegalTypesCached) {
830     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
831     // Stuff all types from all modes into the default mode.
832     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
833     for (const auto &I : LTS)
834       LegalTypes.insert(I.second);
835     LegalTypesCached = true;
836   }
837   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
838   return LegalCache;
839 }
840 
841 #ifndef NDEBUG
842 TypeInfer::ValidateOnExit::~ValidateOnExit() {
843   if (Infer.Validate && !VTS.validate()) {
844     dbgs() << "Type set is empty for each HW mode:\n"
845               "possible type contradiction in the pattern below "
846               "(use -print-records with llvm-tblgen to see all "
847               "expanded records).\n";
848     Infer.TP.dump();
849     dbgs() << "Generated from record:\n";
850     Infer.TP.getRecord()->dump();
851     PrintFatalError(Infer.TP.getRecord()->getLoc(),
852                     "Type set is empty for each HW mode in '" +
853                         Infer.TP.getRecord()->getName() + "'");
854   }
855 }
856 #endif
857 
858 
859 //===----------------------------------------------------------------------===//
860 // ScopedName Implementation
861 //===----------------------------------------------------------------------===//
862 
863 bool ScopedName::operator==(const ScopedName &o) const {
864   return Scope == o.Scope && Identifier == o.Identifier;
865 }
866 
867 bool ScopedName::operator!=(const ScopedName &o) const {
868   return !(*this == o);
869 }
870 
871 
872 //===----------------------------------------------------------------------===//
873 // TreePredicateFn Implementation
874 //===----------------------------------------------------------------------===//
875 
876 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
877 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
878   assert(
879       (!hasPredCode() || !hasImmCode()) &&
880       ".td file corrupt: can't have a node predicate *and* an imm predicate");
881 }
882 
883 bool TreePredicateFn::hasPredCode() const {
884   return isLoad() || isStore() || isAtomic() ||
885          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
886 }
887 
888 std::string TreePredicateFn::getPredCode() const {
889   std::string Code;
890 
891   if (!isLoad() && !isStore() && !isAtomic()) {
892     Record *MemoryVT = getMemoryVT();
893 
894     if (MemoryVT)
895       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
896                       "MemoryVT requires IsLoad or IsStore");
897   }
898 
899   if (!isLoad() && !isStore()) {
900     if (isUnindexed())
901       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
902                       "IsUnindexed requires IsLoad or IsStore");
903 
904     Record *ScalarMemoryVT = getScalarMemoryVT();
905 
906     if (ScalarMemoryVT)
907       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908                       "ScalarMemoryVT requires IsLoad or IsStore");
909   }
910 
911   if (isLoad() + isStore() + isAtomic() > 1)
912     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
913                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
914 
915   if (isLoad()) {
916     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
917         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
918         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
919         getMinAlignment() < 1)
920       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
921                       "IsLoad cannot be used by itself");
922   } else {
923     if (isNonExtLoad())
924       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
925                       "IsNonExtLoad requires IsLoad");
926     if (isAnyExtLoad())
927       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928                       "IsAnyExtLoad requires IsLoad");
929     if (isSignExtLoad())
930       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931                       "IsSignExtLoad requires IsLoad");
932     if (isZeroExtLoad())
933       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
934                       "IsZeroExtLoad requires IsLoad");
935   }
936 
937   if (isStore()) {
938     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
939         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
940         getAddressSpaces() == nullptr && getMinAlignment() < 1)
941       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
942                       "IsStore cannot be used by itself");
943   } else {
944     if (isNonTruncStore())
945       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
946                       "IsNonTruncStore requires IsStore");
947     if (isTruncStore())
948       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
949                       "IsTruncStore requires IsStore");
950   }
951 
952   if (isAtomic()) {
953     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
954         getAddressSpaces() == nullptr &&
955         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
956         !isAtomicOrderingAcquireRelease() &&
957         !isAtomicOrderingSequentiallyConsistent() &&
958         !isAtomicOrderingAcquireOrStronger() &&
959         !isAtomicOrderingReleaseOrStronger() &&
960         !isAtomicOrderingWeakerThanAcquire() &&
961         !isAtomicOrderingWeakerThanRelease())
962       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
963                       "IsAtomic cannot be used by itself");
964   } else {
965     if (isAtomicOrderingMonotonic())
966       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
967                       "IsAtomicOrderingMonotonic requires IsAtomic");
968     if (isAtomicOrderingAcquire())
969       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
970                       "IsAtomicOrderingAcquire requires IsAtomic");
971     if (isAtomicOrderingRelease())
972       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
973                       "IsAtomicOrderingRelease requires IsAtomic");
974     if (isAtomicOrderingAcquireRelease())
975       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
976                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
977     if (isAtomicOrderingSequentiallyConsistent())
978       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
979                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
980     if (isAtomicOrderingAcquireOrStronger())
981       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
982                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
983     if (isAtomicOrderingReleaseOrStronger())
984       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
985                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
986     if (isAtomicOrderingWeakerThanAcquire())
987       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
988                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
989   }
990 
991   if (isLoad() || isStore() || isAtomic()) {
992     if (ListInit *AddressSpaces = getAddressSpaces()) {
993       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
994         " if (";
995 
996       ListSeparator LS(" && ");
997       for (Init *Val : AddressSpaces->getValues()) {
998         Code += LS;
999 
1000         IntInit *IntVal = dyn_cast<IntInit>(Val);
1001         if (!IntVal) {
1002           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1003                           "AddressSpaces element must be integer");
1004         }
1005 
1006         Code += "AddrSpace != " + utostr(IntVal->getValue());
1007       }
1008 
1009       Code += ")\nreturn false;\n";
1010     }
1011 
1012     int64_t MinAlign = getMinAlignment();
1013     if (MinAlign > 0) {
1014       Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
1015       Code += utostr(MinAlign);
1016       Code += "))\nreturn false;\n";
1017     }
1018 
1019     Record *MemoryVT = getMemoryVT();
1020 
1021     if (MemoryVT)
1022       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1023                MemoryVT->getName() + ") return false;\n")
1024                   .str();
1025   }
1026 
1027   if (isAtomic() && isAtomicOrderingMonotonic())
1028     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1029             "AtomicOrdering::Monotonic) return false;\n";
1030   if (isAtomic() && isAtomicOrderingAcquire())
1031     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1032             "AtomicOrdering::Acquire) return false;\n";
1033   if (isAtomic() && isAtomicOrderingRelease())
1034     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1035             "AtomicOrdering::Release) return false;\n";
1036   if (isAtomic() && isAtomicOrderingAcquireRelease())
1037     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1038             "AtomicOrdering::AcquireRelease) return false;\n";
1039   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1040     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1041             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1042 
1043   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1044     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1045             "return false;\n";
1046   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1047     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1048             "return false;\n";
1049 
1050   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1051     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1052             "return false;\n";
1053   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1054     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1055             "return false;\n";
1056 
1057   if (isLoad() || isStore()) {
1058     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1059 
1060     if (isUnindexed())
1061       Code += ("if (cast<" + SDNodeName +
1062                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1063                "return false;\n")
1064                   .str();
1065 
1066     if (isLoad()) {
1067       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1068            isZeroExtLoad()) > 1)
1069         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1070                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1071                         "IsZeroExtLoad are mutually exclusive");
1072       if (isNonExtLoad())
1073         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1074                 "ISD::NON_EXTLOAD) return false;\n";
1075       if (isAnyExtLoad())
1076         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1077                 "return false;\n";
1078       if (isSignExtLoad())
1079         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1080                 "return false;\n";
1081       if (isZeroExtLoad())
1082         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1083                 "return false;\n";
1084     } else {
1085       if ((isNonTruncStore() + isTruncStore()) > 1)
1086         PrintFatalError(
1087             getOrigPatFragRecord()->getRecord()->getLoc(),
1088             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1089       if (isNonTruncStore())
1090         Code +=
1091             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1092       if (isTruncStore())
1093         Code +=
1094             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1095     }
1096 
1097     Record *ScalarMemoryVT = getScalarMemoryVT();
1098 
1099     if (ScalarMemoryVT)
1100       Code += ("if (cast<" + SDNodeName +
1101                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1102                ScalarMemoryVT->getName() + ") return false;\n")
1103                   .str();
1104   }
1105 
1106   std::string PredicateCode =
1107       std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
1108 
1109   Code += PredicateCode;
1110 
1111   if (PredicateCode.empty() && !Code.empty())
1112     Code += "return true;\n";
1113 
1114   return Code;
1115 }
1116 
1117 bool TreePredicateFn::hasImmCode() const {
1118   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1119 }
1120 
1121 std::string TreePredicateFn::getImmCode() const {
1122   return std::string(
1123       PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
1124 }
1125 
1126 bool TreePredicateFn::immCodeUsesAPInt() const {
1127   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1128 }
1129 
1130 bool TreePredicateFn::immCodeUsesAPFloat() const {
1131   bool Unset;
1132   // The return value will be false when IsAPFloat is unset.
1133   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1134                                                                    Unset);
1135 }
1136 
1137 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1138                                                    bool Value) const {
1139   bool Unset;
1140   bool Result =
1141       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1142   if (Unset)
1143     return false;
1144   return Result == Value;
1145 }
1146 bool TreePredicateFn::usesOperands() const {
1147   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1148 }
1149 bool TreePredicateFn::isLoad() const {
1150   return isPredefinedPredicateEqualTo("IsLoad", true);
1151 }
1152 bool TreePredicateFn::isStore() const {
1153   return isPredefinedPredicateEqualTo("IsStore", true);
1154 }
1155 bool TreePredicateFn::isAtomic() const {
1156   return isPredefinedPredicateEqualTo("IsAtomic", true);
1157 }
1158 bool TreePredicateFn::isUnindexed() const {
1159   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1160 }
1161 bool TreePredicateFn::isNonExtLoad() const {
1162   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1163 }
1164 bool TreePredicateFn::isAnyExtLoad() const {
1165   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1166 }
1167 bool TreePredicateFn::isSignExtLoad() const {
1168   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1169 }
1170 bool TreePredicateFn::isZeroExtLoad() const {
1171   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1172 }
1173 bool TreePredicateFn::isNonTruncStore() const {
1174   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1175 }
1176 bool TreePredicateFn::isTruncStore() const {
1177   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1178 }
1179 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1180   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1181 }
1182 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1183   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1184 }
1185 bool TreePredicateFn::isAtomicOrderingRelease() const {
1186   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1187 }
1188 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1189   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1190 }
1191 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1192   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1193                                       true);
1194 }
1195 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1196   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1197 }
1198 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1199   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1200 }
1201 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1202   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1203 }
1204 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1205   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1206 }
1207 Record *TreePredicateFn::getMemoryVT() const {
1208   Record *R = getOrigPatFragRecord()->getRecord();
1209   if (R->isValueUnset("MemoryVT"))
1210     return nullptr;
1211   return R->getValueAsDef("MemoryVT");
1212 }
1213 
1214 ListInit *TreePredicateFn::getAddressSpaces() const {
1215   Record *R = getOrigPatFragRecord()->getRecord();
1216   if (R->isValueUnset("AddressSpaces"))
1217     return nullptr;
1218   return R->getValueAsListInit("AddressSpaces");
1219 }
1220 
1221 int64_t TreePredicateFn::getMinAlignment() const {
1222   Record *R = getOrigPatFragRecord()->getRecord();
1223   if (R->isValueUnset("MinAlignment"))
1224     return 0;
1225   return R->getValueAsInt("MinAlignment");
1226 }
1227 
1228 Record *TreePredicateFn::getScalarMemoryVT() const {
1229   Record *R = getOrigPatFragRecord()->getRecord();
1230   if (R->isValueUnset("ScalarMemoryVT"))
1231     return nullptr;
1232   return R->getValueAsDef("ScalarMemoryVT");
1233 }
1234 bool TreePredicateFn::hasGISelPredicateCode() const {
1235   return !PatFragRec->getRecord()
1236               ->getValueAsString("GISelPredicateCode")
1237               .empty();
1238 }
1239 std::string TreePredicateFn::getGISelPredicateCode() const {
1240   return std::string(
1241       PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
1242 }
1243 
1244 StringRef TreePredicateFn::getImmType() const {
1245   if (immCodeUsesAPInt())
1246     return "const APInt &";
1247   if (immCodeUsesAPFloat())
1248     return "const APFloat &";
1249   return "int64_t";
1250 }
1251 
1252 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1253   if (immCodeUsesAPInt())
1254     return "APInt";
1255   else if (immCodeUsesAPFloat())
1256     return "APFloat";
1257   return "I64";
1258 }
1259 
1260 /// isAlwaysTrue - Return true if this is a noop predicate.
1261 bool TreePredicateFn::isAlwaysTrue() const {
1262   return !hasPredCode() && !hasImmCode();
1263 }
1264 
1265 /// Return the name to use in the generated code to reference this, this is
1266 /// "Predicate_foo" if from a pattern fragment "foo".
1267 std::string TreePredicateFn::getFnName() const {
1268   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1269 }
1270 
1271 /// getCodeToRunOnSDNode - Return the code for the function body that
1272 /// evaluates this predicate.  The argument is expected to be in "Node",
1273 /// not N.  This handles casting and conversion to a concrete node type as
1274 /// appropriate.
1275 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1276   // Handle immediate predicates first.
1277   std::string ImmCode = getImmCode();
1278   if (!ImmCode.empty()) {
1279     if (isLoad())
1280       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1281                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1282     if (isStore())
1283       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1284                       "IsStore cannot be used with ImmLeaf or its subclasses");
1285     if (isUnindexed())
1286       PrintFatalError(
1287           getOrigPatFragRecord()->getRecord()->getLoc(),
1288           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1289     if (isNonExtLoad())
1290       PrintFatalError(
1291           getOrigPatFragRecord()->getRecord()->getLoc(),
1292           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1293     if (isAnyExtLoad())
1294       PrintFatalError(
1295           getOrigPatFragRecord()->getRecord()->getLoc(),
1296           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1297     if (isSignExtLoad())
1298       PrintFatalError(
1299           getOrigPatFragRecord()->getRecord()->getLoc(),
1300           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1301     if (isZeroExtLoad())
1302       PrintFatalError(
1303           getOrigPatFragRecord()->getRecord()->getLoc(),
1304           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1305     if (isNonTruncStore())
1306       PrintFatalError(
1307           getOrigPatFragRecord()->getRecord()->getLoc(),
1308           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1309     if (isTruncStore())
1310       PrintFatalError(
1311           getOrigPatFragRecord()->getRecord()->getLoc(),
1312           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1313     if (getMemoryVT())
1314       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1315                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1316     if (getScalarMemoryVT())
1317       PrintFatalError(
1318           getOrigPatFragRecord()->getRecord()->getLoc(),
1319           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1320 
1321     std::string Result = ("    " + getImmType() + " Imm = ").str();
1322     if (immCodeUsesAPFloat())
1323       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1324     else if (immCodeUsesAPInt())
1325       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1326     else
1327       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1328     return Result + ImmCode;
1329   }
1330 
1331   // Handle arbitrary node predicates.
1332   assert(hasPredCode() && "Don't have any predicate code!");
1333 
1334   // If this is using PatFrags, there are multiple trees to search. They should
1335   // all have the same class.  FIXME: Is there a way to find a common
1336   // superclass?
1337   StringRef ClassName;
1338   for (const auto &Tree : PatFragRec->getTrees()) {
1339     StringRef TreeClassName;
1340     if (Tree->isLeaf())
1341       TreeClassName = "SDNode";
1342     else {
1343       Record *Op = Tree->getOperator();
1344       const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
1345       TreeClassName = Info.getSDClassName();
1346     }
1347 
1348     if (ClassName.empty())
1349       ClassName = TreeClassName;
1350     else if (ClassName != TreeClassName) {
1351       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1352                       "PatFrags trees do not have consistent class");
1353     }
1354   }
1355 
1356   std::string Result;
1357   if (ClassName == "SDNode")
1358     Result = "    SDNode *N = Node;\n";
1359   else
1360     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1361 
1362   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1363 }
1364 
1365 //===----------------------------------------------------------------------===//
1366 // PatternToMatch implementation
1367 //
1368 
1369 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1370   if (!P->isLeaf())
1371     return false;
1372   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1373   if (!DI)
1374     return false;
1375 
1376   Record *R = DI->getDef();
1377   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1378 }
1379 
1380 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1381 /// patterns before small ones.  This is used to determine the size of a
1382 /// pattern.
1383 static unsigned getPatternSize(const TreePatternNode *P,
1384                                const CodeGenDAGPatterns &CGP) {
1385   unsigned Size = 3;  // The node itself.
1386   // If the root node is a ConstantSDNode, increases its size.
1387   // e.g. (set R32:$dst, 0).
1388   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1389     Size += 2;
1390 
1391   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1392     Size += AM->getComplexity();
1393     // We don't want to count any children twice, so return early.
1394     return Size;
1395   }
1396 
1397   // If this node has some predicate function that must match, it adds to the
1398   // complexity of this node.
1399   if (!P->getPredicateCalls().empty())
1400     ++Size;
1401 
1402   // Count children in the count if they are also nodes.
1403   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1404     const TreePatternNode *Child = P->getChild(i);
1405     if (!Child->isLeaf() && Child->getNumTypes()) {
1406       const TypeSetByHwMode &T0 = Child->getExtType(0);
1407       // At this point, all variable type sets should be simple, i.e. only
1408       // have a default mode.
1409       if (T0.getMachineValueType() != MVT::Other) {
1410         Size += getPatternSize(Child, CGP);
1411         continue;
1412       }
1413     }
1414     if (Child->isLeaf()) {
1415       if (isa<IntInit>(Child->getLeafValue()))
1416         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1417       else if (Child->getComplexPatternInfo(CGP))
1418         Size += getPatternSize(Child, CGP);
1419       else if (isImmAllOnesAllZerosMatch(Child))
1420         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1421       else if (!Child->getPredicateCalls().empty())
1422         ++Size;
1423     }
1424   }
1425 
1426   return Size;
1427 }
1428 
1429 /// Compute the complexity metric for the input pattern.  This roughly
1430 /// corresponds to the number of nodes that are covered.
1431 int PatternToMatch::
1432 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1433   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1434 }
1435 
1436 /// getPredicateCheck - Return a single string containing all of this
1437 /// pattern's predicates concatenated with "&&" operators.
1438 ///
1439 std::string PatternToMatch::getPredicateCheck() const {
1440   SmallVector<const Predicate*,4> PredList;
1441   for (const Predicate &P : Predicates) {
1442     if (!P.getCondString().empty())
1443       PredList.push_back(&P);
1444   }
1445   llvm::sort(PredList, deref<std::less<>>());
1446 
1447   std::string Check;
1448   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1449     if (i != 0)
1450       Check += " && ";
1451     Check += '(' + PredList[i]->getCondString() + ')';
1452   }
1453   return Check;
1454 }
1455 
1456 //===----------------------------------------------------------------------===//
1457 // SDTypeConstraint implementation
1458 //
1459 
1460 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1461   OperandNo = R->getValueAsInt("OperandNum");
1462 
1463   if (R->isSubClassOf("SDTCisVT")) {
1464     ConstraintType = SDTCisVT;
1465     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1466     for (const auto &P : VVT)
1467       if (P.second == MVT::isVoid)
1468         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1469   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1470     ConstraintType = SDTCisPtrTy;
1471   } else if (R->isSubClassOf("SDTCisInt")) {
1472     ConstraintType = SDTCisInt;
1473   } else if (R->isSubClassOf("SDTCisFP")) {
1474     ConstraintType = SDTCisFP;
1475   } else if (R->isSubClassOf("SDTCisVec")) {
1476     ConstraintType = SDTCisVec;
1477   } else if (R->isSubClassOf("SDTCisSameAs")) {
1478     ConstraintType = SDTCisSameAs;
1479     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1480   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1481     ConstraintType = SDTCisVTSmallerThanOp;
1482     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1483       R->getValueAsInt("OtherOperandNum");
1484   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1485     ConstraintType = SDTCisOpSmallerThanOp;
1486     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1487       R->getValueAsInt("BigOperandNum");
1488   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1489     ConstraintType = SDTCisEltOfVec;
1490     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1491   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1492     ConstraintType = SDTCisSubVecOfVec;
1493     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1494       R->getValueAsInt("OtherOpNum");
1495   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1496     ConstraintType = SDTCVecEltisVT;
1497     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1498     for (const auto &P : VVT) {
1499       MVT T = P.second;
1500       if (T.isVector())
1501         PrintFatalError(R->getLoc(),
1502                         "Cannot use vector type as SDTCVecEltisVT");
1503       if (!T.isInteger() && !T.isFloatingPoint())
1504         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1505                                      "as SDTCVecEltisVT");
1506     }
1507   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1508     ConstraintType = SDTCisSameNumEltsAs;
1509     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1510       R->getValueAsInt("OtherOperandNum");
1511   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1512     ConstraintType = SDTCisSameSizeAs;
1513     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1514       R->getValueAsInt("OtherOperandNum");
1515   } else {
1516     PrintFatalError(R->getLoc(),
1517                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1518   }
1519 }
1520 
1521 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1522 /// N, and the result number in ResNo.
1523 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1524                                       const SDNodeInfo &NodeInfo,
1525                                       unsigned &ResNo) {
1526   unsigned NumResults = NodeInfo.getNumResults();
1527   if (OpNo < NumResults) {
1528     ResNo = OpNo;
1529     return N;
1530   }
1531 
1532   OpNo -= NumResults;
1533 
1534   if (OpNo >= N->getNumChildren()) {
1535     std::string S;
1536     raw_string_ostream OS(S);
1537     OS << "Invalid operand number in type constraint "
1538            << (OpNo+NumResults) << " ";
1539     N->print(OS);
1540     PrintFatalError(OS.str());
1541   }
1542 
1543   return N->getChild(OpNo);
1544 }
1545 
1546 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1547 /// constraint to the nodes operands.  This returns true if it makes a
1548 /// change, false otherwise.  If a type contradiction is found, flag an error.
1549 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1550                                            const SDNodeInfo &NodeInfo,
1551                                            TreePattern &TP) const {
1552   if (TP.hasError())
1553     return false;
1554 
1555   unsigned ResNo = 0; // The result number being referenced.
1556   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1557   TypeInfer &TI = TP.getInfer();
1558 
1559   switch (ConstraintType) {
1560   case SDTCisVT:
1561     // Operand must be a particular type.
1562     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1563   case SDTCisPtrTy:
1564     // Operand must be same as target pointer type.
1565     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1566   case SDTCisInt:
1567     // Require it to be one of the legal integer VTs.
1568      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1569   case SDTCisFP:
1570     // Require it to be one of the legal fp VTs.
1571     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1572   case SDTCisVec:
1573     // Require it to be one of the legal vector VTs.
1574     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1575   case SDTCisSameAs: {
1576     unsigned OResNo = 0;
1577     TreePatternNode *OtherNode =
1578       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1579     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1580            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1581   }
1582   case SDTCisVTSmallerThanOp: {
1583     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1584     // have an integer type that is smaller than the VT.
1585     if (!NodeToApply->isLeaf() ||
1586         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1587         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1588                ->isSubClassOf("ValueType")) {
1589       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1590       return false;
1591     }
1592     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1593     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1594     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1595     TypeSetByHwMode TypeListTmp(VVT);
1596 
1597     unsigned OResNo = 0;
1598     TreePatternNode *OtherNode =
1599       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1600                     OResNo);
1601 
1602     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1603   }
1604   case SDTCisOpSmallerThanOp: {
1605     unsigned BResNo = 0;
1606     TreePatternNode *BigOperand =
1607       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1608                     BResNo);
1609     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1610                                  BigOperand->getExtType(BResNo));
1611   }
1612   case SDTCisEltOfVec: {
1613     unsigned VResNo = 0;
1614     TreePatternNode *VecOperand =
1615       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1616                     VResNo);
1617     // Filter vector types out of VecOperand that don't have the right element
1618     // type.
1619     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1620                                      NodeToApply->getExtType(ResNo));
1621   }
1622   case SDTCisSubVecOfVec: {
1623     unsigned VResNo = 0;
1624     TreePatternNode *BigVecOperand =
1625       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1626                     VResNo);
1627 
1628     // Filter vector types out of BigVecOperand that don't have the
1629     // right subvector type.
1630     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1631                                            NodeToApply->getExtType(ResNo));
1632   }
1633   case SDTCVecEltisVT: {
1634     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1635   }
1636   case SDTCisSameNumEltsAs: {
1637     unsigned OResNo = 0;
1638     TreePatternNode *OtherNode =
1639       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1640                     N, NodeInfo, OResNo);
1641     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1642                                  NodeToApply->getExtType(ResNo));
1643   }
1644   case SDTCisSameSizeAs: {
1645     unsigned OResNo = 0;
1646     TreePatternNode *OtherNode =
1647       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1648                     N, NodeInfo, OResNo);
1649     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1650                               NodeToApply->getExtType(ResNo));
1651   }
1652   }
1653   llvm_unreachable("Invalid ConstraintType!");
1654 }
1655 
1656 // Update the node type to match an instruction operand or result as specified
1657 // in the ins or outs lists on the instruction definition. Return true if the
1658 // type was actually changed.
1659 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1660                                              Record *Operand,
1661                                              TreePattern &TP) {
1662   // The 'unknown' operand indicates that types should be inferred from the
1663   // context.
1664   if (Operand->isSubClassOf("unknown_class"))
1665     return false;
1666 
1667   // The Operand class specifies a type directly.
1668   if (Operand->isSubClassOf("Operand")) {
1669     Record *R = Operand->getValueAsDef("Type");
1670     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1671     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1672   }
1673 
1674   // PointerLikeRegClass has a type that is determined at runtime.
1675   if (Operand->isSubClassOf("PointerLikeRegClass"))
1676     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1677 
1678   // Both RegisterClass and RegisterOperand operands derive their types from a
1679   // register class def.
1680   Record *RC = nullptr;
1681   if (Operand->isSubClassOf("RegisterClass"))
1682     RC = Operand;
1683   else if (Operand->isSubClassOf("RegisterOperand"))
1684     RC = Operand->getValueAsDef("RegClass");
1685 
1686   assert(RC && "Unknown operand type");
1687   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1688   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1689 }
1690 
1691 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1692   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1693     if (!TP.getInfer().isConcrete(Types[i], true))
1694       return true;
1695   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1696     if (getChild(i)->ContainsUnresolvedType(TP))
1697       return true;
1698   return false;
1699 }
1700 
1701 bool TreePatternNode::hasProperTypeByHwMode() const {
1702   for (const TypeSetByHwMode &S : Types)
1703     if (!S.isDefaultOnly())
1704       return true;
1705   for (const TreePatternNodePtr &C : Children)
1706     if (C->hasProperTypeByHwMode())
1707       return true;
1708   return false;
1709 }
1710 
1711 bool TreePatternNode::hasPossibleType() const {
1712   for (const TypeSetByHwMode &S : Types)
1713     if (!S.isPossible())
1714       return false;
1715   for (const TreePatternNodePtr &C : Children)
1716     if (!C->hasPossibleType())
1717       return false;
1718   return true;
1719 }
1720 
1721 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1722   for (TypeSetByHwMode &S : Types) {
1723     S.makeSimple(Mode);
1724     // Check if the selected mode had a type conflict.
1725     if (S.get(DefaultMode).empty())
1726       return false;
1727   }
1728   for (const TreePatternNodePtr &C : Children)
1729     if (!C->setDefaultMode(Mode))
1730       return false;
1731   return true;
1732 }
1733 
1734 //===----------------------------------------------------------------------===//
1735 // SDNodeInfo implementation
1736 //
1737 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1738   EnumName    = R->getValueAsString("Opcode");
1739   SDClassName = R->getValueAsString("SDClass");
1740   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1741   NumResults = TypeProfile->getValueAsInt("NumResults");
1742   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1743 
1744   // Parse the properties.
1745   Properties = parseSDPatternOperatorProperties(R);
1746 
1747   // Parse the type constraints.
1748   std::vector<Record*> ConstraintList =
1749     TypeProfile->getValueAsListOfDefs("Constraints");
1750   for (Record *R : ConstraintList)
1751     TypeConstraints.emplace_back(R, CGH);
1752 }
1753 
1754 /// getKnownType - If the type constraints on this node imply a fixed type
1755 /// (e.g. all stores return void, etc), then return it as an
1756 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1757 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1758   unsigned NumResults = getNumResults();
1759   assert(NumResults <= 1 &&
1760          "We only work with nodes with zero or one result so far!");
1761   assert(ResNo == 0 && "Only handles single result nodes so far");
1762 
1763   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1764     // Make sure that this applies to the correct node result.
1765     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1766       continue;
1767 
1768     switch (Constraint.ConstraintType) {
1769     default: break;
1770     case SDTypeConstraint::SDTCisVT:
1771       if (Constraint.VVT.isSimple())
1772         return Constraint.VVT.getSimple().SimpleTy;
1773       break;
1774     case SDTypeConstraint::SDTCisPtrTy:
1775       return MVT::iPTR;
1776     }
1777   }
1778   return MVT::Other;
1779 }
1780 
1781 //===----------------------------------------------------------------------===//
1782 // TreePatternNode implementation
1783 //
1784 
1785 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1786   if (Operator->getName() == "set" ||
1787       Operator->getName() == "implicit")
1788     return 0;  // All return nothing.
1789 
1790   if (Operator->isSubClassOf("Intrinsic"))
1791     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1792 
1793   if (Operator->isSubClassOf("SDNode"))
1794     return CDP.getSDNodeInfo(Operator).getNumResults();
1795 
1796   if (Operator->isSubClassOf("PatFrags")) {
1797     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1798     // the forward reference case where one pattern fragment references another
1799     // before it is processed.
1800     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1801       // The number of results of a fragment with alternative records is the
1802       // maximum number of results across all alternatives.
1803       unsigned NumResults = 0;
1804       for (auto T : PFRec->getTrees())
1805         NumResults = std::max(NumResults, T->getNumTypes());
1806       return NumResults;
1807     }
1808 
1809     ListInit *LI = Operator->getValueAsListInit("Fragments");
1810     assert(LI && "Invalid Fragment");
1811     unsigned NumResults = 0;
1812     for (Init *I : LI->getValues()) {
1813       Record *Op = nullptr;
1814       if (DagInit *Dag = dyn_cast<DagInit>(I))
1815         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1816           Op = DI->getDef();
1817       assert(Op && "Invalid Fragment");
1818       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1819     }
1820     return NumResults;
1821   }
1822 
1823   if (Operator->isSubClassOf("Instruction")) {
1824     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1825 
1826     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1827 
1828     // Subtract any defaulted outputs.
1829     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1830       Record *OperandNode = InstInfo.Operands[i].Rec;
1831 
1832       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1833           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1834         --NumDefsToAdd;
1835     }
1836 
1837     // Add on one implicit def if it has a resolvable type.
1838     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1839       ++NumDefsToAdd;
1840     return NumDefsToAdd;
1841   }
1842 
1843   if (Operator->isSubClassOf("SDNodeXForm"))
1844     return 1;  // FIXME: Generalize SDNodeXForm
1845 
1846   if (Operator->isSubClassOf("ValueType"))
1847     return 1;  // A type-cast of one result.
1848 
1849   if (Operator->isSubClassOf("ComplexPattern"))
1850     return 1;
1851 
1852   errs() << *Operator;
1853   PrintFatalError("Unhandled node in GetNumNodeResults");
1854 }
1855 
1856 void TreePatternNode::print(raw_ostream &OS) const {
1857   if (isLeaf())
1858     OS << *getLeafValue();
1859   else
1860     OS << '(' << getOperator()->getName();
1861 
1862   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1863     OS << ':';
1864     getExtType(i).writeToStream(OS);
1865   }
1866 
1867   if (!isLeaf()) {
1868     if (getNumChildren() != 0) {
1869       OS << " ";
1870       ListSeparator LS;
1871       for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1872         OS << LS;
1873         getChild(i)->print(OS);
1874       }
1875     }
1876     OS << ")";
1877   }
1878 
1879   for (const TreePredicateCall &Pred : PredicateCalls) {
1880     OS << "<<P:";
1881     if (Pred.Scope)
1882       OS << Pred.Scope << ":";
1883     OS << Pred.Fn.getFnName() << ">>";
1884   }
1885   if (TransformFn)
1886     OS << "<<X:" << TransformFn->getName() << ">>";
1887   if (!getName().empty())
1888     OS << ":$" << getName();
1889 
1890   for (const ScopedName &Name : NamesAsPredicateArg)
1891     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1892 }
1893 void TreePatternNode::dump() const {
1894   print(errs());
1895 }
1896 
1897 /// isIsomorphicTo - Return true if this node is recursively
1898 /// isomorphic to the specified node.  For this comparison, the node's
1899 /// entire state is considered. The assigned name is ignored, since
1900 /// nodes with differing names are considered isomorphic. However, if
1901 /// the assigned name is present in the dependent variable set, then
1902 /// the assigned name is considered significant and the node is
1903 /// isomorphic if the names match.
1904 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1905                                      const MultipleUseVarSet &DepVars) const {
1906   if (N == this) return true;
1907   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1908       getPredicateCalls() != N->getPredicateCalls() ||
1909       getTransformFn() != N->getTransformFn())
1910     return false;
1911 
1912   if (isLeaf()) {
1913     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1914       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1915         return ((DI->getDef() == NDI->getDef())
1916                 && (DepVars.find(getName()) == DepVars.end()
1917                     || getName() == N->getName()));
1918       }
1919     }
1920     return getLeafValue() == N->getLeafValue();
1921   }
1922 
1923   if (N->getOperator() != getOperator() ||
1924       N->getNumChildren() != getNumChildren()) return false;
1925   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1926     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1927       return false;
1928   return true;
1929 }
1930 
1931 /// clone - Make a copy of this tree and all of its children.
1932 ///
1933 TreePatternNodePtr TreePatternNode::clone() const {
1934   TreePatternNodePtr New;
1935   if (isLeaf()) {
1936     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1937   } else {
1938     std::vector<TreePatternNodePtr> CChildren;
1939     CChildren.reserve(Children.size());
1940     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1941       CChildren.push_back(getChild(i)->clone());
1942     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1943                                             getNumTypes());
1944   }
1945   New->setName(getName());
1946   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1947   New->Types = Types;
1948   New->setPredicateCalls(getPredicateCalls());
1949   New->setTransformFn(getTransformFn());
1950   return New;
1951 }
1952 
1953 /// RemoveAllTypes - Recursively strip all the types of this tree.
1954 void TreePatternNode::RemoveAllTypes() {
1955   // Reset to unknown type.
1956   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1957   if (isLeaf()) return;
1958   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1959     getChild(i)->RemoveAllTypes();
1960 }
1961 
1962 
1963 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1964 /// with actual values specified by ArgMap.
1965 void TreePatternNode::SubstituteFormalArguments(
1966     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1967   if (isLeaf()) return;
1968 
1969   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1970     TreePatternNode *Child = getChild(i);
1971     if (Child->isLeaf()) {
1972       Init *Val = Child->getLeafValue();
1973       // Note that, when substituting into an output pattern, Val might be an
1974       // UnsetInit.
1975       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1976           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1977         // We found a use of a formal argument, replace it with its value.
1978         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1979         assert(NewChild && "Couldn't find formal argument!");
1980         assert((Child->getPredicateCalls().empty() ||
1981                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1982                "Non-empty child predicate clobbered!");
1983         setChild(i, std::move(NewChild));
1984       }
1985     } else {
1986       getChild(i)->SubstituteFormalArguments(ArgMap);
1987     }
1988   }
1989 }
1990 
1991 
1992 /// InlinePatternFragments - If this pattern refers to any pattern
1993 /// fragments, return the set of inlined versions (this can be more than
1994 /// one if a PatFrags record has multiple alternatives).
1995 void TreePatternNode::InlinePatternFragments(
1996   TreePatternNodePtr T, TreePattern &TP,
1997   std::vector<TreePatternNodePtr> &OutAlternatives) {
1998 
1999   if (TP.hasError())
2000     return;
2001 
2002   if (isLeaf()) {
2003     OutAlternatives.push_back(T);  // nothing to do.
2004     return;
2005   }
2006 
2007   Record *Op = getOperator();
2008 
2009   if (!Op->isSubClassOf("PatFrags")) {
2010     if (getNumChildren() == 0) {
2011       OutAlternatives.push_back(T);
2012       return;
2013     }
2014 
2015     // Recursively inline children nodes.
2016     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
2017     ChildAlternatives.resize(getNumChildren());
2018     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
2019       TreePatternNodePtr Child = getChildShared(i);
2020       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
2021       // If there are no alternatives for any child, there are no
2022       // alternatives for this expression as whole.
2023       if (ChildAlternatives[i].empty())
2024         return;
2025 
2026       for (auto NewChild : ChildAlternatives[i])
2027         assert((Child->getPredicateCalls().empty() ||
2028                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
2029                "Non-empty child predicate clobbered!");
2030     }
2031 
2032     // The end result is an all-pairs construction of the resultant pattern.
2033     std::vector<unsigned> Idxs;
2034     Idxs.resize(ChildAlternatives.size());
2035     bool NotDone;
2036     do {
2037       // Create the variant and add it to the output list.
2038       std::vector<TreePatternNodePtr> NewChildren;
2039       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
2040         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
2041       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2042           getOperator(), std::move(NewChildren), getNumTypes());
2043 
2044       // Copy over properties.
2045       R->setName(getName());
2046       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2047       R->setPredicateCalls(getPredicateCalls());
2048       R->setTransformFn(getTransformFn());
2049       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2050         R->setType(i, getExtType(i));
2051       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2052         R->setResultIndex(i, getResultIndex(i));
2053 
2054       // Register alternative.
2055       OutAlternatives.push_back(R);
2056 
2057       // Increment indices to the next permutation by incrementing the
2058       // indices from last index backward, e.g., generate the sequence
2059       // [0, 0], [0, 1], [1, 0], [1, 1].
2060       int IdxsIdx;
2061       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2062         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2063           Idxs[IdxsIdx] = 0;
2064         else
2065           break;
2066       }
2067       NotDone = (IdxsIdx >= 0);
2068     } while (NotDone);
2069 
2070     return;
2071   }
2072 
2073   // Otherwise, we found a reference to a fragment.  First, look up its
2074   // TreePattern record.
2075   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2076 
2077   // Verify that we are passing the right number of operands.
2078   if (Frag->getNumArgs() != Children.size()) {
2079     TP.error("'" + Op->getName() + "' fragment requires " +
2080              Twine(Frag->getNumArgs()) + " operands!");
2081     return;
2082   }
2083 
2084   TreePredicateFn PredFn(Frag);
2085   unsigned Scope = 0;
2086   if (TreePredicateFn(Frag).usesOperands())
2087     Scope = TP.getDAGPatterns().allocateScope();
2088 
2089   // Compute the map of formal to actual arguments.
2090   std::map<std::string, TreePatternNodePtr> ArgMap;
2091   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2092     TreePatternNodePtr Child = getChildShared(i);
2093     if (Scope != 0) {
2094       Child = Child->clone();
2095       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2096     }
2097     ArgMap[Frag->getArgName(i)] = Child;
2098   }
2099 
2100   // Loop over all fragment alternatives.
2101   for (auto Alternative : Frag->getTrees()) {
2102     TreePatternNodePtr FragTree = Alternative->clone();
2103 
2104     if (!PredFn.isAlwaysTrue())
2105       FragTree->addPredicateCall(PredFn, Scope);
2106 
2107     // Resolve formal arguments to their actual value.
2108     if (Frag->getNumArgs())
2109       FragTree->SubstituteFormalArguments(ArgMap);
2110 
2111     // Transfer types.  Note that the resolved alternative may have fewer
2112     // (but not more) results than the PatFrags node.
2113     FragTree->setName(getName());
2114     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2115       FragTree->UpdateNodeType(i, getExtType(i), TP);
2116 
2117     // Transfer in the old predicates.
2118     for (const TreePredicateCall &Pred : getPredicateCalls())
2119       FragTree->addPredicateCall(Pred);
2120 
2121     // The fragment we inlined could have recursive inlining that is needed.  See
2122     // if there are any pattern fragments in it and inline them as needed.
2123     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2124   }
2125 }
2126 
2127 /// getImplicitType - Check to see if the specified record has an implicit
2128 /// type which should be applied to it.  This will infer the type of register
2129 /// references from the register file information, for example.
2130 ///
2131 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2132 /// the F8RC register class argument in:
2133 ///
2134 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2135 ///
2136 /// When Unnamed is false, return the type of a named DAG operand such as the
2137 /// GPR:$src operand above.
2138 ///
2139 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2140                                        bool NotRegisters,
2141                                        bool Unnamed,
2142                                        TreePattern &TP) {
2143   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2144 
2145   // Check to see if this is a register operand.
2146   if (R->isSubClassOf("RegisterOperand")) {
2147     assert(ResNo == 0 && "Regoperand ref only has one result!");
2148     if (NotRegisters)
2149       return TypeSetByHwMode(); // Unknown.
2150     Record *RegClass = R->getValueAsDef("RegClass");
2151     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2152     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2153   }
2154 
2155   // Check to see if this is a register or a register class.
2156   if (R->isSubClassOf("RegisterClass")) {
2157     assert(ResNo == 0 && "Regclass ref only has one result!");
2158     // An unnamed register class represents itself as an i32 immediate, for
2159     // example on a COPY_TO_REGCLASS instruction.
2160     if (Unnamed)
2161       return TypeSetByHwMode(MVT::i32);
2162 
2163     // In a named operand, the register class provides the possible set of
2164     // types.
2165     if (NotRegisters)
2166       return TypeSetByHwMode(); // Unknown.
2167     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2168     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2169   }
2170 
2171   if (R->isSubClassOf("PatFrags")) {
2172     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2173     // Pattern fragment types will be resolved when they are inlined.
2174     return TypeSetByHwMode(); // Unknown.
2175   }
2176 
2177   if (R->isSubClassOf("Register")) {
2178     assert(ResNo == 0 && "Registers only produce one result!");
2179     if (NotRegisters)
2180       return TypeSetByHwMode(); // Unknown.
2181     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2182     return TypeSetByHwMode(T.getRegisterVTs(R));
2183   }
2184 
2185   if (R->isSubClassOf("SubRegIndex")) {
2186     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2187     return TypeSetByHwMode(MVT::i32);
2188   }
2189 
2190   if (R->isSubClassOf("ValueType")) {
2191     assert(ResNo == 0 && "This node only has one result!");
2192     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2193     //
2194     //   (sext_inreg GPR:$src, i16)
2195     //                         ~~~
2196     if (Unnamed)
2197       return TypeSetByHwMode(MVT::Other);
2198     // With a name, the ValueType simply provides the type of the named
2199     // variable.
2200     //
2201     //   (sext_inreg i32:$src, i16)
2202     //               ~~~~~~~~
2203     if (NotRegisters)
2204       return TypeSetByHwMode(); // Unknown.
2205     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2206     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2207   }
2208 
2209   if (R->isSubClassOf("CondCode")) {
2210     assert(ResNo == 0 && "This node only has one result!");
2211     // Using a CondCodeSDNode.
2212     return TypeSetByHwMode(MVT::Other);
2213   }
2214 
2215   if (R->isSubClassOf("ComplexPattern")) {
2216     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2217     if (NotRegisters)
2218       return TypeSetByHwMode(); // Unknown.
2219     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2220   }
2221   if (R->isSubClassOf("PointerLikeRegClass")) {
2222     assert(ResNo == 0 && "Regclass can only have one result!");
2223     TypeSetByHwMode VTS(MVT::iPTR);
2224     TP.getInfer().expandOverloads(VTS);
2225     return VTS;
2226   }
2227 
2228   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2229       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2230       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2231     // Placeholder.
2232     return TypeSetByHwMode(); // Unknown.
2233   }
2234 
2235   if (R->isSubClassOf("Operand")) {
2236     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2237     Record *T = R->getValueAsDef("Type");
2238     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2239   }
2240 
2241   TP.error("Unknown node flavor used in pattern: " + R->getName());
2242   return TypeSetByHwMode(MVT::Other);
2243 }
2244 
2245 
2246 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2247 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2248 const CodeGenIntrinsic *TreePatternNode::
2249 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2250   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2251       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2252       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2253     return nullptr;
2254 
2255   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2256   return &CDP.getIntrinsicInfo(IID);
2257 }
2258 
2259 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2260 /// return the ComplexPattern information, otherwise return null.
2261 const ComplexPattern *
2262 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2263   Record *Rec;
2264   if (isLeaf()) {
2265     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2266     if (!DI)
2267       return nullptr;
2268     Rec = DI->getDef();
2269   } else
2270     Rec = getOperator();
2271 
2272   if (!Rec->isSubClassOf("ComplexPattern"))
2273     return nullptr;
2274   return &CGP.getComplexPattern(Rec);
2275 }
2276 
2277 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2278   // A ComplexPattern specifically declares how many results it fills in.
2279   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2280     return CP->getNumOperands();
2281 
2282   // If MIOperandInfo is specified, that gives the count.
2283   if (isLeaf()) {
2284     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2285     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2286       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2287       if (MIOps->getNumArgs())
2288         return MIOps->getNumArgs();
2289     }
2290   }
2291 
2292   // Otherwise there is just one result.
2293   return 1;
2294 }
2295 
2296 /// NodeHasProperty - Return true if this node has the specified property.
2297 bool TreePatternNode::NodeHasProperty(SDNP Property,
2298                                       const CodeGenDAGPatterns &CGP) const {
2299   if (isLeaf()) {
2300     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2301       return CP->hasProperty(Property);
2302 
2303     return false;
2304   }
2305 
2306   if (Property != SDNPHasChain) {
2307     // The chain proprety is already present on the different intrinsic node
2308     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2309     // on the intrinsic. Anything else is specific to the individual intrinsic.
2310     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2311       return Int->hasProperty(Property);
2312   }
2313 
2314   if (!Operator->isSubClassOf("SDPatternOperator"))
2315     return false;
2316 
2317   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2318 }
2319 
2320 
2321 
2322 
2323 /// TreeHasProperty - Return true if any node in this tree has the specified
2324 /// property.
2325 bool TreePatternNode::TreeHasProperty(SDNP Property,
2326                                       const CodeGenDAGPatterns &CGP) const {
2327   if (NodeHasProperty(Property, CGP))
2328     return true;
2329   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2330     if (getChild(i)->TreeHasProperty(Property, CGP))
2331       return true;
2332   return false;
2333 }
2334 
2335 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2336 /// commutative intrinsic.
2337 bool
2338 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2339   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2340     return Int->isCommutative;
2341   return false;
2342 }
2343 
2344 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2345   if (!N->isLeaf())
2346     return N->getOperator()->isSubClassOf(Class);
2347 
2348   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2349   if (DI && DI->getDef()->isSubClassOf(Class))
2350     return true;
2351 
2352   return false;
2353 }
2354 
2355 static void emitTooManyOperandsError(TreePattern &TP,
2356                                      StringRef InstName,
2357                                      unsigned Expected,
2358                                      unsigned Actual) {
2359   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2360            " operands but expected only " + Twine(Expected) + "!");
2361 }
2362 
2363 static void emitTooFewOperandsError(TreePattern &TP,
2364                                     StringRef InstName,
2365                                     unsigned Actual) {
2366   TP.error("Instruction '" + InstName +
2367            "' expects more than the provided " + Twine(Actual) + " operands!");
2368 }
2369 
2370 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2371 /// this node and its children in the tree.  This returns true if it makes a
2372 /// change, false otherwise.  If a type contradiction is found, flag an error.
2373 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2374   if (TP.hasError())
2375     return false;
2376 
2377   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2378   if (isLeaf()) {
2379     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2380       // If it's a regclass or something else known, include the type.
2381       bool MadeChange = false;
2382       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2383         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2384                                                         NotRegisters,
2385                                                         !hasName(), TP), TP);
2386       return MadeChange;
2387     }
2388 
2389     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2390       assert(Types.size() == 1 && "Invalid IntInit");
2391 
2392       // Int inits are always integers. :)
2393       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2394 
2395       if (!TP.getInfer().isConcrete(Types[0], false))
2396         return MadeChange;
2397 
2398       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2399       for (auto &P : VVT) {
2400         MVT::SimpleValueType VT = P.second.SimpleTy;
2401         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2402           continue;
2403         unsigned Size = MVT(VT).getFixedSizeInBits();
2404         // Make sure that the value is representable for this type.
2405         if (Size >= 32)
2406           continue;
2407         // Check that the value doesn't use more bits than we have. It must
2408         // either be a sign- or zero-extended equivalent of the original.
2409         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2410         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2411             SignBitAndAbove == 1)
2412           continue;
2413 
2414         TP.error("Integer value '" + Twine(II->getValue()) +
2415                  "' is out of range for type '" + getEnumName(VT) + "'!");
2416         break;
2417       }
2418       return MadeChange;
2419     }
2420 
2421     return false;
2422   }
2423 
2424   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2425     bool MadeChange = false;
2426 
2427     // Apply the result type to the node.
2428     unsigned NumRetVTs = Int->IS.RetVTs.size();
2429     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2430 
2431     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2432       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2433 
2434     if (getNumChildren() != NumParamVTs + 1) {
2435       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2436                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2437       return false;
2438     }
2439 
2440     // Apply type info to the intrinsic ID.
2441     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2442 
2443     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2444       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2445 
2446       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2447       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2448       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2449     }
2450     return MadeChange;
2451   }
2452 
2453   if (getOperator()->isSubClassOf("SDNode")) {
2454     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2455 
2456     // Check that the number of operands is sane.  Negative operands -> varargs.
2457     if (NI.getNumOperands() >= 0 &&
2458         getNumChildren() != (unsigned)NI.getNumOperands()) {
2459       TP.error(getOperator()->getName() + " node requires exactly " +
2460                Twine(NI.getNumOperands()) + " operands!");
2461       return false;
2462     }
2463 
2464     bool MadeChange = false;
2465     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2466       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2467     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2468     return MadeChange;
2469   }
2470 
2471   if (getOperator()->isSubClassOf("Instruction")) {
2472     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2473     CodeGenInstruction &InstInfo =
2474       CDP.getTargetInfo().getInstruction(getOperator());
2475 
2476     bool MadeChange = false;
2477 
2478     // Apply the result types to the node, these come from the things in the
2479     // (outs) list of the instruction.
2480     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2481                                         Inst.getNumResults());
2482     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2483       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2484 
2485     // If the instruction has implicit defs, we apply the first one as a result.
2486     // FIXME: This sucks, it should apply all implicit defs.
2487     if (!InstInfo.ImplicitDefs.empty()) {
2488       unsigned ResNo = NumResultsToAdd;
2489 
2490       // FIXME: Generalize to multiple possible types and multiple possible
2491       // ImplicitDefs.
2492       MVT::SimpleValueType VT =
2493         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2494 
2495       if (VT != MVT::Other)
2496         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2497     }
2498 
2499     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2500     // be the same.
2501     if (getOperator()->getName() == "INSERT_SUBREG") {
2502       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2503       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2504       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2505     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2506       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2507       // variadic.
2508 
2509       unsigned NChild = getNumChildren();
2510       if (NChild < 3) {
2511         TP.error("REG_SEQUENCE requires at least 3 operands!");
2512         return false;
2513       }
2514 
2515       if (NChild % 2 == 0) {
2516         TP.error("REG_SEQUENCE requires an odd number of operands!");
2517         return false;
2518       }
2519 
2520       if (!isOperandClass(getChild(0), "RegisterClass")) {
2521         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2522         return false;
2523       }
2524 
2525       for (unsigned I = 1; I < NChild; I += 2) {
2526         TreePatternNode *SubIdxChild = getChild(I + 1);
2527         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2528           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2529                    Twine(I + 1) + "!");
2530           return false;
2531         }
2532       }
2533     }
2534 
2535     unsigned NumResults = Inst.getNumResults();
2536     unsigned NumFixedOperands = InstInfo.Operands.size();
2537 
2538     // If one or more operands with a default value appear at the end of the
2539     // formal operand list for an instruction, we allow them to be overridden
2540     // by optional operands provided in the pattern.
2541     //
2542     // But if an operand B without a default appears at any point after an
2543     // operand A with a default, then we don't allow A to be overridden,
2544     // because there would be no way to specify whether the next operand in
2545     // the pattern was intended to override A or skip it.
2546     unsigned NonOverridableOperands = NumFixedOperands;
2547     while (NonOverridableOperands > NumResults &&
2548            CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
2549       --NonOverridableOperands;
2550 
2551     unsigned ChildNo = 0;
2552     assert(NumResults <= NumFixedOperands);
2553     for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
2554       Record *OperandNode = InstInfo.Operands[i].Rec;
2555 
2556       // If the operand has a default value, do we use it? We must use the
2557       // default if we've run out of children of the pattern DAG to consume,
2558       // or if the operand is followed by a non-defaulted one.
2559       if (CDP.operandHasDefault(OperandNode) &&
2560           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2561         continue;
2562 
2563       // If we have run out of child nodes and there _isn't_ a default
2564       // value we can use for the next operand, give an error.
2565       if (ChildNo >= getNumChildren()) {
2566         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2567         return false;
2568       }
2569 
2570       TreePatternNode *Child = getChild(ChildNo++);
2571       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2572 
2573       // If the operand has sub-operands, they may be provided by distinct
2574       // child patterns, so attempt to match each sub-operand separately.
2575       if (OperandNode->isSubClassOf("Operand")) {
2576         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2577         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2578           // But don't do that if the whole operand is being provided by
2579           // a single ComplexPattern-related Operand.
2580 
2581           if (Child->getNumMIResults(CDP) < NumArgs) {
2582             // Match first sub-operand against the child we already have.
2583             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2584             MadeChange |=
2585               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2586 
2587             // And the remaining sub-operands against subsequent children.
2588             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2589               if (ChildNo >= getNumChildren()) {
2590                 emitTooFewOperandsError(TP, getOperator()->getName(),
2591                                         getNumChildren());
2592                 return false;
2593               }
2594               Child = getChild(ChildNo++);
2595 
2596               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2597               MadeChange |=
2598                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2599             }
2600             continue;
2601           }
2602         }
2603       }
2604 
2605       // If we didn't match by pieces above, attempt to match the whole
2606       // operand now.
2607       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2608     }
2609 
2610     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2611       emitTooManyOperandsError(TP, getOperator()->getName(),
2612                                ChildNo, getNumChildren());
2613       return false;
2614     }
2615 
2616     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2617       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2618     return MadeChange;
2619   }
2620 
2621   if (getOperator()->isSubClassOf("ComplexPattern")) {
2622     bool MadeChange = false;
2623 
2624     for (unsigned i = 0; i < getNumChildren(); ++i)
2625       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2626 
2627     return MadeChange;
2628   }
2629 
2630   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2631 
2632   // Node transforms always take one operand.
2633   if (getNumChildren() != 1) {
2634     TP.error("Node transform '" + getOperator()->getName() +
2635              "' requires one operand!");
2636     return false;
2637   }
2638 
2639   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2640   return MadeChange;
2641 }
2642 
2643 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2644 /// RHS of a commutative operation, not the on LHS.
2645 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2646   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2647     return true;
2648   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2649     return true;
2650   if (isImmAllOnesAllZerosMatch(N))
2651     return true;
2652   return false;
2653 }
2654 
2655 
2656 /// canPatternMatch - If it is impossible for this pattern to match on this
2657 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2658 /// used as a sanity check for .td files (to prevent people from writing stuff
2659 /// that can never possibly work), and to prevent the pattern permuter from
2660 /// generating stuff that is useless.
2661 bool TreePatternNode::canPatternMatch(std::string &Reason,
2662                                       const CodeGenDAGPatterns &CDP) {
2663   if (isLeaf()) return true;
2664 
2665   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2666     if (!getChild(i)->canPatternMatch(Reason, CDP))
2667       return false;
2668 
2669   // If this is an intrinsic, handle cases that would make it not match.  For
2670   // example, if an operand is required to be an immediate.
2671   if (getOperator()->isSubClassOf("Intrinsic")) {
2672     // TODO:
2673     return true;
2674   }
2675 
2676   if (getOperator()->isSubClassOf("ComplexPattern"))
2677     return true;
2678 
2679   // If this node is a commutative operator, check that the LHS isn't an
2680   // immediate.
2681   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2682   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2683   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2684     // Scan all of the operands of the node and make sure that only the last one
2685     // is a constant node, unless the RHS also is.
2686     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2687       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2688       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2689         if (OnlyOnRHSOfCommutative(getChild(i))) {
2690           Reason="Immediate value must be on the RHS of commutative operators!";
2691           return false;
2692         }
2693     }
2694   }
2695 
2696   return true;
2697 }
2698 
2699 //===----------------------------------------------------------------------===//
2700 // TreePattern implementation
2701 //
2702 
2703 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2704                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2705                          isInputPattern(isInput), HasError(false),
2706                          Infer(*this) {
2707   for (Init *I : RawPat->getValues())
2708     Trees.push_back(ParseTreePattern(I, ""));
2709 }
2710 
2711 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2712                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2713                          isInputPattern(isInput), HasError(false),
2714                          Infer(*this) {
2715   Trees.push_back(ParseTreePattern(Pat, ""));
2716 }
2717 
2718 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2719                          CodeGenDAGPatterns &cdp)
2720     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2721       Infer(*this) {
2722   Trees.push_back(Pat);
2723 }
2724 
2725 void TreePattern::error(const Twine &Msg) {
2726   if (HasError)
2727     return;
2728   dump();
2729   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2730   HasError = true;
2731 }
2732 
2733 void TreePattern::ComputeNamedNodes() {
2734   for (TreePatternNodePtr &Tree : Trees)
2735     ComputeNamedNodes(Tree.get());
2736 }
2737 
2738 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2739   if (!N->getName().empty())
2740     NamedNodes[N->getName()].push_back(N);
2741 
2742   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2743     ComputeNamedNodes(N->getChild(i));
2744 }
2745 
2746 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2747                                                  StringRef OpName) {
2748   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2749     Record *R = DI->getDef();
2750 
2751     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2752     // TreePatternNode of its own.  For example:
2753     ///   (foo GPR, imm) -> (foo GPR, (imm))
2754     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2755       return ParseTreePattern(
2756         DagInit::get(DI, nullptr,
2757                      std::vector<std::pair<Init*, StringInit*> >()),
2758         OpName);
2759 
2760     // Input argument?
2761     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2762     if (R->getName() == "node" && !OpName.empty()) {
2763       if (OpName.empty())
2764         error("'node' argument requires a name to match with operand list");
2765       Args.push_back(std::string(OpName));
2766     }
2767 
2768     Res->setName(OpName);
2769     return Res;
2770   }
2771 
2772   // ?:$name or just $name.
2773   if (isa<UnsetInit>(TheInit)) {
2774     if (OpName.empty())
2775       error("'?' argument requires a name to match with operand list");
2776     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2777     Args.push_back(std::string(OpName));
2778     Res->setName(OpName);
2779     return Res;
2780   }
2781 
2782   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2783     if (!OpName.empty())
2784       error("Constant int or bit argument should not have a name!");
2785     if (isa<BitInit>(TheInit))
2786       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2787     return std::make_shared<TreePatternNode>(TheInit, 1);
2788   }
2789 
2790   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2791     // Turn this into an IntInit.
2792     Init *II = BI->convertInitializerTo(IntRecTy::get());
2793     if (!II || !isa<IntInit>(II))
2794       error("Bits value must be constants!");
2795     return ParseTreePattern(II, OpName);
2796   }
2797 
2798   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2799   if (!Dag) {
2800     TheInit->print(errs());
2801     error("Pattern has unexpected init kind!");
2802   }
2803   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2804   if (!OpDef) error("Pattern has unexpected operator type!");
2805   Record *Operator = OpDef->getDef();
2806 
2807   if (Operator->isSubClassOf("ValueType")) {
2808     // If the operator is a ValueType, then this must be "type cast" of a leaf
2809     // node.
2810     if (Dag->getNumArgs() != 1)
2811       error("Type cast only takes one operand!");
2812 
2813     TreePatternNodePtr New =
2814         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2815 
2816     // Apply the type cast.
2817     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2818     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2819     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2820 
2821     if (!OpName.empty())
2822       error("ValueType cast should not have a name!");
2823     return New;
2824   }
2825 
2826   // Verify that this is something that makes sense for an operator.
2827   if (!Operator->isSubClassOf("PatFrags") &&
2828       !Operator->isSubClassOf("SDNode") &&
2829       !Operator->isSubClassOf("Instruction") &&
2830       !Operator->isSubClassOf("SDNodeXForm") &&
2831       !Operator->isSubClassOf("Intrinsic") &&
2832       !Operator->isSubClassOf("ComplexPattern") &&
2833       Operator->getName() != "set" &&
2834       Operator->getName() != "implicit")
2835     error("Unrecognized node '" + Operator->getName() + "'!");
2836 
2837   //  Check to see if this is something that is illegal in an input pattern.
2838   if (isInputPattern) {
2839     if (Operator->isSubClassOf("Instruction") ||
2840         Operator->isSubClassOf("SDNodeXForm"))
2841       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2842   } else {
2843     if (Operator->isSubClassOf("Intrinsic"))
2844       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2845 
2846     if (Operator->isSubClassOf("SDNode") &&
2847         Operator->getName() != "imm" &&
2848         Operator->getName() != "timm" &&
2849         Operator->getName() != "fpimm" &&
2850         Operator->getName() != "tglobaltlsaddr" &&
2851         Operator->getName() != "tconstpool" &&
2852         Operator->getName() != "tjumptable" &&
2853         Operator->getName() != "tframeindex" &&
2854         Operator->getName() != "texternalsym" &&
2855         Operator->getName() != "tblockaddress" &&
2856         Operator->getName() != "tglobaladdr" &&
2857         Operator->getName() != "bb" &&
2858         Operator->getName() != "vt" &&
2859         Operator->getName() != "mcsym")
2860       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2861   }
2862 
2863   std::vector<TreePatternNodePtr> Children;
2864 
2865   // Parse all the operands.
2866   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2867     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2868 
2869   // Get the actual number of results before Operator is converted to an intrinsic
2870   // node (which is hard-coded to have either zero or one result).
2871   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2872 
2873   // If the operator is an intrinsic, then this is just syntactic sugar for
2874   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2875   // convert the intrinsic name to a number.
2876   if (Operator->isSubClassOf("Intrinsic")) {
2877     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2878     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2879 
2880     // If this intrinsic returns void, it must have side-effects and thus a
2881     // chain.
2882     if (Int.IS.RetVTs.empty())
2883       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2884     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2885       // Has side-effects, requires chain.
2886       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2887     else // Otherwise, no chain.
2888       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2889 
2890     Children.insert(Children.begin(),
2891                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2892   }
2893 
2894   if (Operator->isSubClassOf("ComplexPattern")) {
2895     for (unsigned i = 0; i < Children.size(); ++i) {
2896       TreePatternNodePtr Child = Children[i];
2897 
2898       if (Child->getName().empty())
2899         error("All arguments to a ComplexPattern must be named");
2900 
2901       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2902       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2903       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2904       auto OperandId = std::make_pair(Operator, i);
2905       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2906       if (PrevOp != ComplexPatternOperands.end()) {
2907         if (PrevOp->getValue() != OperandId)
2908           error("All ComplexPattern operands must appear consistently: "
2909                 "in the same order in just one ComplexPattern instance.");
2910       } else
2911         ComplexPatternOperands[Child->getName()] = OperandId;
2912     }
2913   }
2914 
2915   TreePatternNodePtr Result =
2916       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2917                                         NumResults);
2918   Result->setName(OpName);
2919 
2920   if (Dag->getName()) {
2921     assert(Result->getName().empty());
2922     Result->setName(Dag->getNameStr());
2923   }
2924   return Result;
2925 }
2926 
2927 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2928 /// will never match in favor of something obvious that will.  This is here
2929 /// strictly as a convenience to target authors because it allows them to write
2930 /// more type generic things and have useless type casts fold away.
2931 ///
2932 /// This returns true if any change is made.
2933 static bool SimplifyTree(TreePatternNodePtr &N) {
2934   if (N->isLeaf())
2935     return false;
2936 
2937   // If we have a bitconvert with a resolved type and if the source and
2938   // destination types are the same, then the bitconvert is useless, remove it.
2939   //
2940   // We make an exception if the types are completely empty. This can come up
2941   // when the pattern being simplified is in the Fragments list of a PatFrags,
2942   // so that the operand is just an untyped "node". In that situation we leave
2943   // bitconverts unsimplified, and simplify them later once the fragment is
2944   // expanded into its true context.
2945   if (N->getOperator()->getName() == "bitconvert" &&
2946       N->getExtType(0).isValueTypeByHwMode(false) &&
2947       !N->getExtType(0).empty() &&
2948       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2949       N->getName().empty()) {
2950     N = N->getChildShared(0);
2951     SimplifyTree(N);
2952     return true;
2953   }
2954 
2955   // Walk all children.
2956   bool MadeChange = false;
2957   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2958     TreePatternNodePtr Child = N->getChildShared(i);
2959     MadeChange |= SimplifyTree(Child);
2960     N->setChild(i, std::move(Child));
2961   }
2962   return MadeChange;
2963 }
2964 
2965 
2966 
2967 /// InferAllTypes - Infer/propagate as many types throughout the expression
2968 /// patterns as possible.  Return true if all types are inferred, false
2969 /// otherwise.  Flags an error if a type contradiction is found.
2970 bool TreePattern::
2971 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2972   if (NamedNodes.empty())
2973     ComputeNamedNodes();
2974 
2975   bool MadeChange = true;
2976   while (MadeChange) {
2977     MadeChange = false;
2978     for (TreePatternNodePtr &Tree : Trees) {
2979       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2980       MadeChange |= SimplifyTree(Tree);
2981     }
2982 
2983     // If there are constraints on our named nodes, apply them.
2984     for (auto &Entry : NamedNodes) {
2985       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2986 
2987       // If we have input named node types, propagate their types to the named
2988       // values here.
2989       if (InNamedTypes) {
2990         if (!InNamedTypes->count(Entry.getKey())) {
2991           error("Node '" + std::string(Entry.getKey()) +
2992                 "' in output pattern but not input pattern");
2993           return true;
2994         }
2995 
2996         const SmallVectorImpl<TreePatternNode*> &InNodes =
2997           InNamedTypes->find(Entry.getKey())->second;
2998 
2999         // The input types should be fully resolved by now.
3000         for (TreePatternNode *Node : Nodes) {
3001           // If this node is a register class, and it is the root of the pattern
3002           // then we're mapping something onto an input register.  We allow
3003           // changing the type of the input register in this case.  This allows
3004           // us to match things like:
3005           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
3006           if (Node == Trees[0].get() && Node->isLeaf()) {
3007             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
3008             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3009                        DI->getDef()->isSubClassOf("RegisterOperand")))
3010               continue;
3011           }
3012 
3013           assert(Node->getNumTypes() == 1 &&
3014                  InNodes[0]->getNumTypes() == 1 &&
3015                  "FIXME: cannot name multiple result nodes yet");
3016           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
3017                                              *this);
3018         }
3019       }
3020 
3021       // If there are multiple nodes with the same name, they must all have the
3022       // same type.
3023       if (Entry.second.size() > 1) {
3024         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
3025           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
3026           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
3027                  "FIXME: cannot name multiple result nodes yet");
3028 
3029           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
3030           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
3031         }
3032       }
3033     }
3034   }
3035 
3036   bool HasUnresolvedTypes = false;
3037   for (const TreePatternNodePtr &Tree : Trees)
3038     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
3039   return !HasUnresolvedTypes;
3040 }
3041 
3042 void TreePattern::print(raw_ostream &OS) const {
3043   OS << getRecord()->getName();
3044   if (!Args.empty()) {
3045     OS << "(";
3046     ListSeparator LS;
3047     for (const std::string &Arg : Args)
3048       OS << LS << Arg;
3049     OS << ")";
3050   }
3051   OS << ": ";
3052 
3053   if (Trees.size() > 1)
3054     OS << "[\n";
3055   for (const TreePatternNodePtr &Tree : Trees) {
3056     OS << "\t";
3057     Tree->print(OS);
3058     OS << "\n";
3059   }
3060 
3061   if (Trees.size() > 1)
3062     OS << "]\n";
3063 }
3064 
3065 void TreePattern::dump() const { print(errs()); }
3066 
3067 //===----------------------------------------------------------------------===//
3068 // CodeGenDAGPatterns implementation
3069 //
3070 
3071 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3072                                        PatternRewriterFn PatternRewriter)
3073     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3074       PatternRewriter(PatternRewriter) {
3075 
3076   Intrinsics = CodeGenIntrinsicTable(Records);
3077   ParseNodeInfo();
3078   ParseNodeTransforms();
3079   ParseComplexPatterns();
3080   ParsePatternFragments();
3081   ParseDefaultOperands();
3082   ParseInstructions();
3083   ParsePatternFragments(/*OutFrags*/true);
3084   ParsePatterns();
3085 
3086   // Break patterns with parameterized types into a series of patterns,
3087   // where each one has a fixed type and is predicated on the conditions
3088   // of the associated HW mode.
3089   ExpandHwModeBasedTypes();
3090 
3091   // Generate variants.  For example, commutative patterns can match
3092   // multiple ways.  Add them to PatternsToMatch as well.
3093   GenerateVariants();
3094 
3095   // Infer instruction flags.  For example, we can detect loads,
3096   // stores, and side effects in many cases by examining an
3097   // instruction's pattern.
3098   InferInstructionFlags();
3099 
3100   // Verify that instruction flags match the patterns.
3101   VerifyInstructionFlags();
3102 }
3103 
3104 Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
3105   Record *N = Records.getDef(Name);
3106   if (!N || !N->isSubClassOf("SDNode"))
3107     PrintFatalError("Error getting SDNode '" + Name + "'!");
3108 
3109   return N;
3110 }
3111 
3112 // Parse all of the SDNode definitions for the target, populating SDNodes.
3113 void CodeGenDAGPatterns::ParseNodeInfo() {
3114   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3115   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3116 
3117   while (!Nodes.empty()) {
3118     Record *R = Nodes.back();
3119     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3120     Nodes.pop_back();
3121   }
3122 
3123   // Get the builtin intrinsic nodes.
3124   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3125   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3126   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3127 }
3128 
3129 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3130 /// map, and emit them to the file as functions.
3131 void CodeGenDAGPatterns::ParseNodeTransforms() {
3132   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3133   while (!Xforms.empty()) {
3134     Record *XFormNode = Xforms.back();
3135     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3136     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3137     SDNodeXForms.insert(
3138         std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
3139 
3140     Xforms.pop_back();
3141   }
3142 }
3143 
3144 void CodeGenDAGPatterns::ParseComplexPatterns() {
3145   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3146   while (!AMs.empty()) {
3147     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3148     AMs.pop_back();
3149   }
3150 }
3151 
3152 
3153 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3154 /// file, building up the PatternFragments map.  After we've collected them all,
3155 /// inline fragments together as necessary, so that there are no references left
3156 /// inside a pattern fragment to a pattern fragment.
3157 ///
3158 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3159   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3160 
3161   // First step, parse all of the fragments.
3162   for (Record *Frag : Fragments) {
3163     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3164       continue;
3165 
3166     ListInit *LI = Frag->getValueAsListInit("Fragments");
3167     TreePattern *P =
3168         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3169              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3170              *this)).get();
3171 
3172     // Validate the argument list, converting it to set, to discard duplicates.
3173     std::vector<std::string> &Args = P->getArgList();
3174     // Copy the args so we can take StringRefs to them.
3175     auto ArgsCopy = Args;
3176     SmallDenseSet<StringRef, 4> OperandsSet;
3177     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3178 
3179     if (OperandsSet.count(""))
3180       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3181 
3182     // Parse the operands list.
3183     DagInit *OpsList = Frag->getValueAsDag("Operands");
3184     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3185     // Special cases: ops == outs == ins. Different names are used to
3186     // improve readability.
3187     if (!OpsOp ||
3188         (OpsOp->getDef()->getName() != "ops" &&
3189          OpsOp->getDef()->getName() != "outs" &&
3190          OpsOp->getDef()->getName() != "ins"))
3191       P->error("Operands list should start with '(ops ... '!");
3192 
3193     // Copy over the arguments.
3194     Args.clear();
3195     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3196       if (!isa<DefInit>(OpsList->getArg(j)) ||
3197           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3198         P->error("Operands list should all be 'node' values.");
3199       if (!OpsList->getArgName(j))
3200         P->error("Operands list should have names for each operand!");
3201       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3202       if (!OperandsSet.count(ArgNameStr))
3203         P->error("'" + ArgNameStr +
3204                  "' does not occur in pattern or was multiply specified!");
3205       OperandsSet.erase(ArgNameStr);
3206       Args.push_back(std::string(ArgNameStr));
3207     }
3208 
3209     if (!OperandsSet.empty())
3210       P->error("Operands list does not contain an entry for operand '" +
3211                *OperandsSet.begin() + "'!");
3212 
3213     // If there is a node transformation corresponding to this, keep track of
3214     // it.
3215     Record *Transform = Frag->getValueAsDef("OperandTransform");
3216     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3217       for (auto T : P->getTrees())
3218         T->setTransformFn(Transform);
3219   }
3220 
3221   // Now that we've parsed all of the tree fragments, do a closure on them so
3222   // that there are not references to PatFrags left inside of them.
3223   for (Record *Frag : Fragments) {
3224     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3225       continue;
3226 
3227     TreePattern &ThePat = *PatternFragments[Frag];
3228     ThePat.InlinePatternFragments();
3229 
3230     // Infer as many types as possible.  Don't worry about it if we don't infer
3231     // all of them, some may depend on the inputs of the pattern.  Also, don't
3232     // validate type sets; validation may cause spurious failures e.g. if a
3233     // fragment needs floating-point types but the current target does not have
3234     // any (this is only an error if that fragment is ever used!).
3235     {
3236       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3237       ThePat.InferAllTypes();
3238       ThePat.resetError();
3239     }
3240 
3241     // If debugging, print out the pattern fragment result.
3242     LLVM_DEBUG(ThePat.dump());
3243   }
3244 }
3245 
3246 void CodeGenDAGPatterns::ParseDefaultOperands() {
3247   std::vector<Record*> DefaultOps;
3248   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3249 
3250   // Find some SDNode.
3251   assert(!SDNodes.empty() && "No SDNodes parsed?");
3252   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3253 
3254   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3255     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3256 
3257     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3258     // SomeSDnode so that we can parse this.
3259     std::vector<std::pair<Init*, StringInit*> > Ops;
3260     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3261       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3262                                    DefaultInfo->getArgName(op)));
3263     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3264 
3265     // Create a TreePattern to parse this.
3266     TreePattern P(DefaultOps[i], DI, false, *this);
3267     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3268 
3269     // Copy the operands over into a DAGDefaultOperand.
3270     DAGDefaultOperand DefaultOpInfo;
3271 
3272     const TreePatternNodePtr &T = P.getTree(0);
3273     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3274       TreePatternNodePtr TPN = T->getChildShared(op);
3275       while (TPN->ApplyTypeConstraints(P, false))
3276         /* Resolve all types */;
3277 
3278       if (TPN->ContainsUnresolvedType(P)) {
3279         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3280                         DefaultOps[i]->getName() +
3281                         "' doesn't have a concrete type!");
3282       }
3283       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3284     }
3285 
3286     // Insert it into the DefaultOperands map so we can find it later.
3287     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3288   }
3289 }
3290 
3291 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3292 /// instruction input.  Return true if this is a real use.
3293 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3294                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3295   // No name -> not interesting.
3296   if (Pat->getName().empty()) {
3297     if (Pat->isLeaf()) {
3298       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3299       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3300                  DI->getDef()->isSubClassOf("RegisterOperand")))
3301         I.error("Input " + DI->getDef()->getName() + " must be named!");
3302     }
3303     return false;
3304   }
3305 
3306   Record *Rec;
3307   if (Pat->isLeaf()) {
3308     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3309     if (!DI)
3310       I.error("Input $" + Pat->getName() + " must be an identifier!");
3311     Rec = DI->getDef();
3312   } else {
3313     Rec = Pat->getOperator();
3314   }
3315 
3316   // SRCVALUE nodes are ignored.
3317   if (Rec->getName() == "srcvalue")
3318     return false;
3319 
3320   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3321   if (!Slot) {
3322     Slot = Pat;
3323     return true;
3324   }
3325   Record *SlotRec;
3326   if (Slot->isLeaf()) {
3327     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3328   } else {
3329     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3330     SlotRec = Slot->getOperator();
3331   }
3332 
3333   // Ensure that the inputs agree if we've already seen this input.
3334   if (Rec != SlotRec)
3335     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3336   // Ensure that the types can agree as well.
3337   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3338   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3339   if (Slot->getExtTypes() != Pat->getExtTypes())
3340     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3341   return true;
3342 }
3343 
3344 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3345 /// part of "I", the instruction), computing the set of inputs and outputs of
3346 /// the pattern.  Report errors if we see anything naughty.
3347 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3348     TreePattern &I, TreePatternNodePtr Pat,
3349     std::map<std::string, TreePatternNodePtr> &InstInputs,
3350     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3351         &InstResults,
3352     std::vector<Record *> &InstImpResults) {
3353 
3354   // The instruction pattern still has unresolved fragments.  For *named*
3355   // nodes we must resolve those here.  This may not result in multiple
3356   // alternatives.
3357   if (!Pat->getName().empty()) {
3358     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3359     SrcPattern.InlinePatternFragments();
3360     SrcPattern.InferAllTypes();
3361     Pat = SrcPattern.getOnlyTree();
3362   }
3363 
3364   if (Pat->isLeaf()) {
3365     bool isUse = HandleUse(I, Pat, InstInputs);
3366     if (!isUse && Pat->getTransformFn())
3367       I.error("Cannot specify a transform function for a non-input value!");
3368     return;
3369   }
3370 
3371   if (Pat->getOperator()->getName() == "implicit") {
3372     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3373       TreePatternNode *Dest = Pat->getChild(i);
3374       if (!Dest->isLeaf())
3375         I.error("implicitly defined value should be a register!");
3376 
3377       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3378       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3379         I.error("implicitly defined value should be a register!");
3380       InstImpResults.push_back(Val->getDef());
3381     }
3382     return;
3383   }
3384 
3385   if (Pat->getOperator()->getName() != "set") {
3386     // If this is not a set, verify that the children nodes are not void typed,
3387     // and recurse.
3388     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3389       if (Pat->getChild(i)->getNumTypes() == 0)
3390         I.error("Cannot have void nodes inside of patterns!");
3391       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3392                                   InstResults, InstImpResults);
3393     }
3394 
3395     // If this is a non-leaf node with no children, treat it basically as if
3396     // it were a leaf.  This handles nodes like (imm).
3397     bool isUse = HandleUse(I, Pat, InstInputs);
3398 
3399     if (!isUse && Pat->getTransformFn())
3400       I.error("Cannot specify a transform function for a non-input value!");
3401     return;
3402   }
3403 
3404   // Otherwise, this is a set, validate and collect instruction results.
3405   if (Pat->getNumChildren() == 0)
3406     I.error("set requires operands!");
3407 
3408   if (Pat->getTransformFn())
3409     I.error("Cannot specify a transform function on a set node!");
3410 
3411   // Check the set destinations.
3412   unsigned NumDests = Pat->getNumChildren()-1;
3413   for (unsigned i = 0; i != NumDests; ++i) {
3414     TreePatternNodePtr Dest = Pat->getChildShared(i);
3415     // For set destinations we also must resolve fragments here.
3416     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3417     DestPattern.InlinePatternFragments();
3418     DestPattern.InferAllTypes();
3419     Dest = DestPattern.getOnlyTree();
3420 
3421     if (!Dest->isLeaf())
3422       I.error("set destination should be a register!");
3423 
3424     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3425     if (!Val) {
3426       I.error("set destination should be a register!");
3427       continue;
3428     }
3429 
3430     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3431         Val->getDef()->isSubClassOf("ValueType") ||
3432         Val->getDef()->isSubClassOf("RegisterOperand") ||
3433         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3434       if (Dest->getName().empty())
3435         I.error("set destination must have a name!");
3436       if (InstResults.count(Dest->getName()))
3437         I.error("cannot set '" + Dest->getName() + "' multiple times");
3438       InstResults[Dest->getName()] = Dest;
3439     } else if (Val->getDef()->isSubClassOf("Register")) {
3440       InstImpResults.push_back(Val->getDef());
3441     } else {
3442       I.error("set destination should be a register!");
3443     }
3444   }
3445 
3446   // Verify and collect info from the computation.
3447   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3448                               InstResults, InstImpResults);
3449 }
3450 
3451 //===----------------------------------------------------------------------===//
3452 // Instruction Analysis
3453 //===----------------------------------------------------------------------===//
3454 
3455 class InstAnalyzer {
3456   const CodeGenDAGPatterns &CDP;
3457 public:
3458   bool hasSideEffects;
3459   bool mayStore;
3460   bool mayLoad;
3461   bool isBitcast;
3462   bool isVariadic;
3463   bool hasChain;
3464 
3465   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3466     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3467       isBitcast(false), isVariadic(false), hasChain(false) {}
3468 
3469   void Analyze(const PatternToMatch &Pat) {
3470     const TreePatternNode *N = Pat.getSrcPattern();
3471     AnalyzeNode(N);
3472     // These properties are detected only on the root node.
3473     isBitcast = IsNodeBitcast(N);
3474   }
3475 
3476 private:
3477   bool IsNodeBitcast(const TreePatternNode *N) const {
3478     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3479       return false;
3480 
3481     if (N->isLeaf())
3482       return false;
3483     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3484       return false;
3485 
3486     if (N->getOperator()->isSubClassOf("ComplexPattern"))
3487       return false;
3488 
3489     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3490     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3491       return false;
3492     return OpInfo.getEnumName() == "ISD::BITCAST";
3493   }
3494 
3495 public:
3496   void AnalyzeNode(const TreePatternNode *N) {
3497     if (N->isLeaf()) {
3498       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3499         Record *LeafRec = DI->getDef();
3500         // Handle ComplexPattern leaves.
3501         if (LeafRec->isSubClassOf("ComplexPattern")) {
3502           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3503           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3504           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3505           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3506         }
3507       }
3508       return;
3509     }
3510 
3511     // Analyze children.
3512     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3513       AnalyzeNode(N->getChild(i));
3514 
3515     // Notice properties of the node.
3516     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3517     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3518     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3519     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3520     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3521 
3522     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3523       // If this is an intrinsic, analyze it.
3524       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3525         mayLoad = true;// These may load memory.
3526 
3527       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3528         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3529 
3530       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3531           IntInfo->hasSideEffects)
3532         // ReadWriteMem intrinsics can have other strange effects.
3533         hasSideEffects = true;
3534     }
3535   }
3536 
3537 };
3538 
3539 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3540                              const InstAnalyzer &PatInfo,
3541                              Record *PatDef) {
3542   bool Error = false;
3543 
3544   // Remember where InstInfo got its flags.
3545   if (InstInfo.hasUndefFlags())
3546       InstInfo.InferredFrom = PatDef;
3547 
3548   // Check explicitly set flags for consistency.
3549   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3550       !InstInfo.hasSideEffects_Unset) {
3551     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3552     // the pattern has no side effects. That could be useful for div/rem
3553     // instructions that may trap.
3554     if (!InstInfo.hasSideEffects) {
3555       Error = true;
3556       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3557                  Twine(InstInfo.hasSideEffects));
3558     }
3559   }
3560 
3561   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3562     Error = true;
3563     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3564                Twine(InstInfo.mayStore));
3565   }
3566 
3567   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3568     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3569     // Some targets translate immediates to loads.
3570     if (!InstInfo.mayLoad) {
3571       Error = true;
3572       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3573                  Twine(InstInfo.mayLoad));
3574     }
3575   }
3576 
3577   // Transfer inferred flags.
3578   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3579   InstInfo.mayStore |= PatInfo.mayStore;
3580   InstInfo.mayLoad |= PatInfo.mayLoad;
3581 
3582   // These flags are silently added without any verification.
3583   // FIXME: To match historical behavior of TableGen, for now add those flags
3584   // only when we're inferring from the primary instruction pattern.
3585   if (PatDef->isSubClassOf("Instruction")) {
3586     InstInfo.isBitcast |= PatInfo.isBitcast;
3587     InstInfo.hasChain |= PatInfo.hasChain;
3588     InstInfo.hasChain_Inferred = true;
3589   }
3590 
3591   // Don't infer isVariadic. This flag means something different on SDNodes and
3592   // instructions. For example, a CALL SDNode is variadic because it has the
3593   // call arguments as operands, but a CALL instruction is not variadic - it
3594   // has argument registers as implicit, not explicit uses.
3595 
3596   return Error;
3597 }
3598 
3599 /// hasNullFragReference - Return true if the DAG has any reference to the
3600 /// null_frag operator.
3601 static bool hasNullFragReference(DagInit *DI) {
3602   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3603   if (!OpDef) return false;
3604   Record *Operator = OpDef->getDef();
3605 
3606   // If this is the null fragment, return true.
3607   if (Operator->getName() == "null_frag") return true;
3608   // If any of the arguments reference the null fragment, return true.
3609   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3610     if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
3611       if (Arg->getDef()->getName() == "null_frag")
3612         return true;
3613     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3614     if (Arg && hasNullFragReference(Arg))
3615       return true;
3616   }
3617 
3618   return false;
3619 }
3620 
3621 /// hasNullFragReference - Return true if any DAG in the list references
3622 /// the null_frag operator.
3623 static bool hasNullFragReference(ListInit *LI) {
3624   for (Init *I : LI->getValues()) {
3625     DagInit *DI = dyn_cast<DagInit>(I);
3626     assert(DI && "non-dag in an instruction Pattern list?!");
3627     if (hasNullFragReference(DI))
3628       return true;
3629   }
3630   return false;
3631 }
3632 
3633 /// Get all the instructions in a tree.
3634 static void
3635 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3636   if (Tree->isLeaf())
3637     return;
3638   if (Tree->getOperator()->isSubClassOf("Instruction"))
3639     Instrs.push_back(Tree->getOperator());
3640   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3641     getInstructionsInTree(Tree->getChild(i), Instrs);
3642 }
3643 
3644 /// Check the class of a pattern leaf node against the instruction operand it
3645 /// represents.
3646 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3647                               Record *Leaf) {
3648   if (OI.Rec == Leaf)
3649     return true;
3650 
3651   // Allow direct value types to be used in instruction set patterns.
3652   // The type will be checked later.
3653   if (Leaf->isSubClassOf("ValueType"))
3654     return true;
3655 
3656   // Patterns can also be ComplexPattern instances.
3657   if (Leaf->isSubClassOf("ComplexPattern"))
3658     return true;
3659 
3660   return false;
3661 }
3662 
3663 void CodeGenDAGPatterns::parseInstructionPattern(
3664     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3665 
3666   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3667 
3668   // Parse the instruction.
3669   TreePattern I(CGI.TheDef, Pat, true, *this);
3670 
3671   // InstInputs - Keep track of all of the inputs of the instruction, along
3672   // with the record they are declared as.
3673   std::map<std::string, TreePatternNodePtr> InstInputs;
3674 
3675   // InstResults - Keep track of all the virtual registers that are 'set'
3676   // in the instruction, including what reg class they are.
3677   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3678       InstResults;
3679 
3680   std::vector<Record*> InstImpResults;
3681 
3682   // Verify that the top-level forms in the instruction are of void type, and
3683   // fill in the InstResults map.
3684   SmallString<32> TypesString;
3685   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3686     TypesString.clear();
3687     TreePatternNodePtr Pat = I.getTree(j);
3688     if (Pat->getNumTypes() != 0) {
3689       raw_svector_ostream OS(TypesString);
3690       ListSeparator LS;
3691       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3692         OS << LS;
3693         Pat->getExtType(k).writeToStream(OS);
3694       }
3695       I.error("Top-level forms in instruction pattern should have"
3696                " void types, has types " +
3697                OS.str());
3698     }
3699 
3700     // Find inputs and outputs, and verify the structure of the uses/defs.
3701     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3702                                 InstImpResults);
3703   }
3704 
3705   // Now that we have inputs and outputs of the pattern, inspect the operands
3706   // list for the instruction.  This determines the order that operands are
3707   // added to the machine instruction the node corresponds to.
3708   unsigned NumResults = InstResults.size();
3709 
3710   // Parse the operands list from the (ops) list, validating it.
3711   assert(I.getArgList().empty() && "Args list should still be empty here!");
3712 
3713   // Check that all of the results occur first in the list.
3714   std::vector<Record*> Results;
3715   std::vector<unsigned> ResultIndices;
3716   SmallVector<TreePatternNodePtr, 2> ResNodes;
3717   for (unsigned i = 0; i != NumResults; ++i) {
3718     if (i == CGI.Operands.size()) {
3719       const std::string &OpName =
3720           llvm::find_if(
3721               InstResults,
3722               [](const std::pair<std::string, TreePatternNodePtr> &P) {
3723                 return P.second;
3724               })
3725               ->first;
3726 
3727       I.error("'" + OpName + "' set but does not appear in operand list!");
3728     }
3729 
3730     const std::string &OpName = CGI.Operands[i].Name;
3731 
3732     // Check that it exists in InstResults.
3733     auto InstResultIter = InstResults.find(OpName);
3734     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3735       I.error("Operand $" + OpName + " does not exist in operand list!");
3736 
3737     TreePatternNodePtr RNode = InstResultIter->second;
3738     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3739     ResNodes.push_back(std::move(RNode));
3740     if (!R)
3741       I.error("Operand $" + OpName + " should be a set destination: all "
3742                "outputs must occur before inputs in operand list!");
3743 
3744     if (!checkOperandClass(CGI.Operands[i], R))
3745       I.error("Operand $" + OpName + " class mismatch!");
3746 
3747     // Remember the return type.
3748     Results.push_back(CGI.Operands[i].Rec);
3749 
3750     // Remember the result index.
3751     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3752 
3753     // Okay, this one checks out.
3754     InstResultIter->second = nullptr;
3755   }
3756 
3757   // Loop over the inputs next.
3758   std::vector<TreePatternNodePtr> ResultNodeOperands;
3759   std::vector<Record*> Operands;
3760   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3761     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3762     const std::string &OpName = Op.Name;
3763     if (OpName.empty())
3764       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3765 
3766     if (!InstInputs.count(OpName)) {
3767       // If this is an operand with a DefaultOps set filled in, we can ignore
3768       // this.  When we codegen it, we will do so as always executed.
3769       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3770         // Does it have a non-empty DefaultOps field?  If so, ignore this
3771         // operand.
3772         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3773           continue;
3774       }
3775       I.error("Operand $" + OpName +
3776                " does not appear in the instruction pattern");
3777     }
3778     TreePatternNodePtr InVal = InstInputs[OpName];
3779     InstInputs.erase(OpName);   // It occurred, remove from map.
3780 
3781     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3782       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3783       if (!checkOperandClass(Op, InRec))
3784         I.error("Operand $" + OpName + "'s register class disagrees"
3785                  " between the operand and pattern");
3786     }
3787     Operands.push_back(Op.Rec);
3788 
3789     // Construct the result for the dest-pattern operand list.
3790     TreePatternNodePtr OpNode = InVal->clone();
3791 
3792     // No predicate is useful on the result.
3793     OpNode->clearPredicateCalls();
3794 
3795     // Promote the xform function to be an explicit node if set.
3796     if (Record *Xform = OpNode->getTransformFn()) {
3797       OpNode->setTransformFn(nullptr);
3798       std::vector<TreePatternNodePtr> Children;
3799       Children.push_back(OpNode);
3800       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3801                                                  OpNode->getNumTypes());
3802     }
3803 
3804     ResultNodeOperands.push_back(std::move(OpNode));
3805   }
3806 
3807   if (!InstInputs.empty())
3808     I.error("Input operand $" + InstInputs.begin()->first +
3809             " occurs in pattern but not in operands list!");
3810 
3811   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3812       I.getRecord(), std::move(ResultNodeOperands),
3813       GetNumNodeResults(I.getRecord(), *this));
3814   // Copy fully inferred output node types to instruction result pattern.
3815   for (unsigned i = 0; i != NumResults; ++i) {
3816     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3817     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3818     ResultPattern->setResultIndex(i, ResultIndices[i]);
3819   }
3820 
3821   // FIXME: Assume only the first tree is the pattern. The others are clobber
3822   // nodes.
3823   TreePatternNodePtr Pattern = I.getTree(0);
3824   TreePatternNodePtr SrcPattern;
3825   if (Pattern->getOperator()->getName() == "set") {
3826     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3827   } else{
3828     // Not a set (store or something?)
3829     SrcPattern = Pattern;
3830   }
3831 
3832   // Create and insert the instruction.
3833   // FIXME: InstImpResults should not be part of DAGInstruction.
3834   Record *R = I.getRecord();
3835   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3836                    std::forward_as_tuple(Results, Operands, InstImpResults,
3837                                          SrcPattern, ResultPattern));
3838 
3839   LLVM_DEBUG(I.dump());
3840 }
3841 
3842 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3843 /// any fragments involved.  This populates the Instructions list with fully
3844 /// resolved instructions.
3845 void CodeGenDAGPatterns::ParseInstructions() {
3846   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3847 
3848   for (Record *Instr : Instrs) {
3849     ListInit *LI = nullptr;
3850 
3851     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3852       LI = Instr->getValueAsListInit("Pattern");
3853 
3854     // If there is no pattern, only collect minimal information about the
3855     // instruction for its operand list.  We have to assume that there is one
3856     // result, as we have no detailed info. A pattern which references the
3857     // null_frag operator is as-if no pattern were specified. Normally this
3858     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3859     // null_frag.
3860     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3861       std::vector<Record*> Results;
3862       std::vector<Record*> Operands;
3863 
3864       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3865 
3866       if (InstInfo.Operands.size() != 0) {
3867         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3868           Results.push_back(InstInfo.Operands[j].Rec);
3869 
3870         // The rest are inputs.
3871         for (unsigned j = InstInfo.Operands.NumDefs,
3872                e = InstInfo.Operands.size(); j < e; ++j)
3873           Operands.push_back(InstInfo.Operands[j].Rec);
3874       }
3875 
3876       // Create and insert the instruction.
3877       std::vector<Record*> ImpResults;
3878       Instructions.insert(std::make_pair(Instr,
3879                             DAGInstruction(Results, Operands, ImpResults)));
3880       continue;  // no pattern.
3881     }
3882 
3883     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3884     parseInstructionPattern(CGI, LI, Instructions);
3885   }
3886 
3887   // If we can, convert the instructions to be patterns that are matched!
3888   for (auto &Entry : Instructions) {
3889     Record *Instr = Entry.first;
3890     DAGInstruction &TheInst = Entry.second;
3891     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3892     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3893 
3894     if (SrcPattern && ResultPattern) {
3895       TreePattern Pattern(Instr, SrcPattern, true, *this);
3896       TreePattern Result(Instr, ResultPattern, false, *this);
3897       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3898     }
3899   }
3900 }
3901 
3902 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3903 
3904 static void FindNames(TreePatternNode *P,
3905                       std::map<std::string, NameRecord> &Names,
3906                       TreePattern *PatternTop) {
3907   if (!P->getName().empty()) {
3908     NameRecord &Rec = Names[P->getName()];
3909     // If this is the first instance of the name, remember the node.
3910     if (Rec.second++ == 0)
3911       Rec.first = P;
3912     else if (Rec.first->getExtTypes() != P->getExtTypes())
3913       PatternTop->error("repetition of value: $" + P->getName() +
3914                         " where different uses have different types!");
3915   }
3916 
3917   if (!P->isLeaf()) {
3918     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3919       FindNames(P->getChild(i), Names, PatternTop);
3920   }
3921 }
3922 
3923 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3924   std::vector<Predicate> Preds;
3925   for (Init *I : L->getValues()) {
3926     if (DefInit *Pred = dyn_cast<DefInit>(I))
3927       Preds.push_back(Pred->getDef());
3928     else
3929       llvm_unreachable("Non-def on the list");
3930   }
3931 
3932   // Sort so that different orders get canonicalized to the same string.
3933   llvm::sort(Preds);
3934   return Preds;
3935 }
3936 
3937 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3938                                            PatternToMatch &&PTM) {
3939   // Do some sanity checking on the pattern we're about to match.
3940   std::string Reason;
3941   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3942     PrintWarning(Pattern->getRecord()->getLoc(),
3943       Twine("Pattern can never match: ") + Reason);
3944     return;
3945   }
3946 
3947   // If the source pattern's root is a complex pattern, that complex pattern
3948   // must specify the nodes it can potentially match.
3949   if (const ComplexPattern *CP =
3950         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3951     if (CP->getRootNodes().empty())
3952       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3953                      " could match");
3954 
3955 
3956   // Find all of the named values in the input and output, ensure they have the
3957   // same type.
3958   std::map<std::string, NameRecord> SrcNames, DstNames;
3959   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3960   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3961 
3962   // Scan all of the named values in the destination pattern, rejecting them if
3963   // they don't exist in the input pattern.
3964   for (const auto &Entry : DstNames) {
3965     if (SrcNames[Entry.first].first == nullptr)
3966       Pattern->error("Pattern has input without matching name in output: $" +
3967                      Entry.first);
3968   }
3969 
3970   // Scan all of the named values in the source pattern, rejecting them if the
3971   // name isn't used in the dest, and isn't used to tie two values together.
3972   for (const auto &Entry : SrcNames)
3973     if (DstNames[Entry.first].first == nullptr &&
3974         SrcNames[Entry.first].second == 1)
3975       Pattern->error("Pattern has dead named input: $" + Entry.first);
3976 
3977   PatternsToMatch.push_back(std::move(PTM));
3978 }
3979 
3980 void CodeGenDAGPatterns::InferInstructionFlags() {
3981   ArrayRef<const CodeGenInstruction*> Instructions =
3982     Target.getInstructionsByEnumValue();
3983 
3984   unsigned Errors = 0;
3985 
3986   // Try to infer flags from all patterns in PatternToMatch.  These include
3987   // both the primary instruction patterns (which always come first) and
3988   // patterns defined outside the instruction.
3989   for (const PatternToMatch &PTM : ptms()) {
3990     // We can only infer from single-instruction patterns, otherwise we won't
3991     // know which instruction should get the flags.
3992     SmallVector<Record*, 8> PatInstrs;
3993     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3994     if (PatInstrs.size() != 1)
3995       continue;
3996 
3997     // Get the single instruction.
3998     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3999 
4000     // Only infer properties from the first pattern. We'll verify the others.
4001     if (InstInfo.InferredFrom)
4002       continue;
4003 
4004     InstAnalyzer PatInfo(*this);
4005     PatInfo.Analyze(PTM);
4006     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
4007   }
4008 
4009   if (Errors)
4010     PrintFatalError("pattern conflicts");
4011 
4012   // If requested by the target, guess any undefined properties.
4013   if (Target.guessInstructionProperties()) {
4014     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4015       CodeGenInstruction *InstInfo =
4016         const_cast<CodeGenInstruction *>(Instructions[i]);
4017       if (InstInfo->InferredFrom)
4018         continue;
4019       // The mayLoad and mayStore flags default to false.
4020       // Conservatively assume hasSideEffects if it wasn't explicit.
4021       if (InstInfo->hasSideEffects_Unset)
4022         InstInfo->hasSideEffects = true;
4023     }
4024     return;
4025   }
4026 
4027   // Complain about any flags that are still undefined.
4028   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
4029     CodeGenInstruction *InstInfo =
4030       const_cast<CodeGenInstruction *>(Instructions[i]);
4031     if (InstInfo->InferredFrom)
4032       continue;
4033     if (InstInfo->hasSideEffects_Unset)
4034       PrintError(InstInfo->TheDef->getLoc(),
4035                  "Can't infer hasSideEffects from patterns");
4036     if (InstInfo->mayStore_Unset)
4037       PrintError(InstInfo->TheDef->getLoc(),
4038                  "Can't infer mayStore from patterns");
4039     if (InstInfo->mayLoad_Unset)
4040       PrintError(InstInfo->TheDef->getLoc(),
4041                  "Can't infer mayLoad from patterns");
4042   }
4043 }
4044 
4045 
4046 /// Verify instruction flags against pattern node properties.
4047 void CodeGenDAGPatterns::VerifyInstructionFlags() {
4048   unsigned Errors = 0;
4049   for (const PatternToMatch &PTM : ptms()) {
4050     SmallVector<Record*, 8> Instrs;
4051     getInstructionsInTree(PTM.getDstPattern(), Instrs);
4052     if (Instrs.empty())
4053       continue;
4054 
4055     // Count the number of instructions with each flag set.
4056     unsigned NumSideEffects = 0;
4057     unsigned NumStores = 0;
4058     unsigned NumLoads = 0;
4059     for (const Record *Instr : Instrs) {
4060       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4061       NumSideEffects += InstInfo.hasSideEffects;
4062       NumStores += InstInfo.mayStore;
4063       NumLoads += InstInfo.mayLoad;
4064     }
4065 
4066     // Analyze the source pattern.
4067     InstAnalyzer PatInfo(*this);
4068     PatInfo.Analyze(PTM);
4069 
4070     // Collect error messages.
4071     SmallVector<std::string, 4> Msgs;
4072 
4073     // Check for missing flags in the output.
4074     // Permit extra flags for now at least.
4075     if (PatInfo.hasSideEffects && !NumSideEffects)
4076       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4077 
4078     // Don't verify store flags on instructions with side effects. At least for
4079     // intrinsics, side effects implies mayStore.
4080     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4081       Msgs.push_back("pattern may store, but mayStore isn't set");
4082 
4083     // Similarly, mayStore implies mayLoad on intrinsics.
4084     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4085       Msgs.push_back("pattern may load, but mayLoad isn't set");
4086 
4087     // Print error messages.
4088     if (Msgs.empty())
4089       continue;
4090     ++Errors;
4091 
4092     for (const std::string &Msg : Msgs)
4093       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4094                  (Instrs.size() == 1 ?
4095                   "instruction" : "output instructions"));
4096     // Provide the location of the relevant instruction definitions.
4097     for (const Record *Instr : Instrs) {
4098       if (Instr != PTM.getSrcRecord())
4099         PrintError(Instr->getLoc(), "defined here");
4100       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4101       if (InstInfo.InferredFrom &&
4102           InstInfo.InferredFrom != InstInfo.TheDef &&
4103           InstInfo.InferredFrom != PTM.getSrcRecord())
4104         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4105     }
4106   }
4107   if (Errors)
4108     PrintFatalError("Errors in DAG patterns");
4109 }
4110 
4111 /// Given a pattern result with an unresolved type, see if we can find one
4112 /// instruction with an unresolved result type.  Force this result type to an
4113 /// arbitrary element if it's possible types to converge results.
4114 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4115   if (N->isLeaf())
4116     return false;
4117 
4118   // Analyze children.
4119   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4120     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4121       return true;
4122 
4123   if (!N->getOperator()->isSubClassOf("Instruction"))
4124     return false;
4125 
4126   // If this type is already concrete or completely unknown we can't do
4127   // anything.
4128   TypeInfer &TI = TP.getInfer();
4129   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4130     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4131       continue;
4132 
4133     // Otherwise, force its type to an arbitrary choice.
4134     if (TI.forceArbitrary(N->getExtType(i)))
4135       return true;
4136   }
4137 
4138   return false;
4139 }
4140 
4141 // Promote xform function to be an explicit node wherever set.
4142 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4143   if (Record *Xform = N->getTransformFn()) {
4144       N->setTransformFn(nullptr);
4145       std::vector<TreePatternNodePtr> Children;
4146       Children.push_back(PromoteXForms(N));
4147       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4148                                                N->getNumTypes());
4149   }
4150 
4151   if (!N->isLeaf())
4152     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4153       TreePatternNodePtr Child = N->getChildShared(i);
4154       N->setChild(i, PromoteXForms(Child));
4155     }
4156   return N;
4157 }
4158 
4159 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4160        TreePattern &Pattern, TreePattern &Result,
4161        const std::vector<Record *> &InstImpResults) {
4162 
4163   // Inline pattern fragments and expand multiple alternatives.
4164   Pattern.InlinePatternFragments();
4165   Result.InlinePatternFragments();
4166 
4167   if (Result.getNumTrees() != 1)
4168     Result.error("Cannot use multi-alternative fragments in result pattern!");
4169 
4170   // Infer types.
4171   bool IterateInference;
4172   bool InferredAllPatternTypes, InferredAllResultTypes;
4173   do {
4174     // Infer as many types as possible.  If we cannot infer all of them, we
4175     // can never do anything with this pattern: report it to the user.
4176     InferredAllPatternTypes =
4177         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4178 
4179     // Infer as many types as possible.  If we cannot infer all of them, we
4180     // can never do anything with this pattern: report it to the user.
4181     InferredAllResultTypes =
4182         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4183 
4184     IterateInference = false;
4185 
4186     // Apply the type of the result to the source pattern.  This helps us
4187     // resolve cases where the input type is known to be a pointer type (which
4188     // is considered resolved), but the result knows it needs to be 32- or
4189     // 64-bits.  Infer the other way for good measure.
4190     for (auto T : Pattern.getTrees())
4191       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4192                                         T->getNumTypes());
4193          i != e; ++i) {
4194         IterateInference |= T->UpdateNodeType(
4195             i, Result.getOnlyTree()->getExtType(i), Result);
4196         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4197             i, T->getExtType(i), Result);
4198       }
4199 
4200     // If our iteration has converged and the input pattern's types are fully
4201     // resolved but the result pattern is not fully resolved, we may have a
4202     // situation where we have two instructions in the result pattern and
4203     // the instructions require a common register class, but don't care about
4204     // what actual MVT is used.  This is actually a bug in our modelling:
4205     // output patterns should have register classes, not MVTs.
4206     //
4207     // In any case, to handle this, we just go through and disambiguate some
4208     // arbitrary types to the result pattern's nodes.
4209     if (!IterateInference && InferredAllPatternTypes &&
4210         !InferredAllResultTypes)
4211       IterateInference =
4212           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4213   } while (IterateInference);
4214 
4215   // Verify that we inferred enough types that we can do something with the
4216   // pattern and result.  If these fire the user has to add type casts.
4217   if (!InferredAllPatternTypes)
4218     Pattern.error("Could not infer all types in pattern!");
4219   if (!InferredAllResultTypes) {
4220     Pattern.dump();
4221     Result.error("Could not infer all types in pattern result!");
4222   }
4223 
4224   // Promote xform function to be an explicit node wherever set.
4225   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4226 
4227   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4228   Temp.InferAllTypes();
4229 
4230   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4231   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4232 
4233   if (PatternRewriter)
4234     PatternRewriter(&Pattern);
4235 
4236   // A pattern may end up with an "impossible" type, i.e. a situation
4237   // where all types have been eliminated for some node in this pattern.
4238   // This could occur for intrinsics that only make sense for a specific
4239   // value type, and use a specific register class. If, for some mode,
4240   // that register class does not accept that type, the type inference
4241   // will lead to a contradiction, which is not an error however, but
4242   // a sign that this pattern will simply never match.
4243   if (Temp.getOnlyTree()->hasPossibleType())
4244     for (auto T : Pattern.getTrees())
4245       if (T->hasPossibleType())
4246         AddPatternToMatch(&Pattern,
4247                           PatternToMatch(TheDef, makePredList(Preds),
4248                                          T, Temp.getOnlyTree(),
4249                                          InstImpResults, Complexity,
4250                                          TheDef->getID()));
4251 }
4252 
4253 void CodeGenDAGPatterns::ParsePatterns() {
4254   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4255 
4256   for (Record *CurPattern : Patterns) {
4257     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4258 
4259     // If the pattern references the null_frag, there's nothing to do.
4260     if (hasNullFragReference(Tree))
4261       continue;
4262 
4263     TreePattern Pattern(CurPattern, Tree, true, *this);
4264 
4265     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4266     if (LI->empty()) continue;  // no pattern.
4267 
4268     // Parse the instruction.
4269     TreePattern Result(CurPattern, LI, false, *this);
4270 
4271     if (Result.getNumTrees() != 1)
4272       Result.error("Cannot handle instructions producing instructions "
4273                    "with temporaries yet!");
4274 
4275     // Validate that the input pattern is correct.
4276     std::map<std::string, TreePatternNodePtr> InstInputs;
4277     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4278         InstResults;
4279     std::vector<Record*> InstImpResults;
4280     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4281       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4282                                   InstResults, InstImpResults);
4283 
4284     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4285   }
4286 }
4287 
4288 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4289   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4290     for (const auto &I : VTS)
4291       Modes.insert(I.first);
4292 
4293   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4294     collectModes(Modes, N->getChild(i));
4295 }
4296 
4297 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4298   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4299   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4300   std::vector<PatternToMatch> Copy;
4301   PatternsToMatch.swap(Copy);
4302 
4303   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4304     TreePatternNodePtr NewSrc = P.getSrcPattern()->clone();
4305     TreePatternNodePtr NewDst = P.getDstPattern()->clone();
4306     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4307       return;
4308     }
4309 
4310     std::vector<Predicate> Preds = P.getPredicates();
4311     const std::vector<Predicate> &MC = ModeChecks[Mode];
4312     llvm::append_range(Preds, MC);
4313     PatternsToMatch.emplace_back(P.getSrcRecord(), std::move(Preds),
4314                                  std::move(NewSrc), std::move(NewDst),
4315                                  P.getDstRegs(),
4316                                  P.getAddedComplexity(), Record::getNewUID(),
4317                                  Mode);
4318   };
4319 
4320   for (PatternToMatch &P : Copy) {
4321     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4322     if (P.getSrcPattern()->hasProperTypeByHwMode())
4323       SrcP = P.getSrcPatternShared();
4324     if (P.getDstPattern()->hasProperTypeByHwMode())
4325       DstP = P.getDstPatternShared();
4326     if (!SrcP && !DstP) {
4327       PatternsToMatch.push_back(P);
4328       continue;
4329     }
4330 
4331     std::set<unsigned> Modes;
4332     if (SrcP)
4333       collectModes(Modes, SrcP.get());
4334     if (DstP)
4335       collectModes(Modes, DstP.get());
4336 
4337     // The predicate for the default mode needs to be constructed for each
4338     // pattern separately.
4339     // Since not all modes must be present in each pattern, if a mode m is
4340     // absent, then there is no point in constructing a check for m. If such
4341     // a check was created, it would be equivalent to checking the default
4342     // mode, except not all modes' predicates would be a part of the checking
4343     // code. The subsequently generated check for the default mode would then
4344     // have the exact same patterns, but a different predicate code. To avoid
4345     // duplicated patterns with different predicate checks, construct the
4346     // default check as a negation of all predicates that are actually present
4347     // in the source/destination patterns.
4348     std::vector<Predicate> DefaultPred;
4349 
4350     for (unsigned M : Modes) {
4351       if (M == DefaultMode)
4352         continue;
4353       if (ModeChecks.find(M) != ModeChecks.end())
4354         continue;
4355 
4356       // Fill the map entry for this mode.
4357       const HwMode &HM = CGH.getMode(M);
4358       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4359 
4360       // Add negations of the HM's predicates to the default predicate.
4361       DefaultPred.emplace_back(Predicate(HM.Features, false));
4362     }
4363 
4364     for (unsigned M : Modes) {
4365       if (M == DefaultMode)
4366         continue;
4367       AppendPattern(P, M);
4368     }
4369 
4370     bool HasDefault = Modes.count(DefaultMode);
4371     if (HasDefault)
4372       AppendPattern(P, DefaultMode);
4373   }
4374 }
4375 
4376 /// Dependent variable map for CodeGenDAGPattern variant generation
4377 typedef StringMap<int> DepVarMap;
4378 
4379 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4380   if (N->isLeaf()) {
4381     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4382       DepMap[N->getName()]++;
4383   } else {
4384     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4385       FindDepVarsOf(N->getChild(i), DepMap);
4386   }
4387 }
4388 
4389 /// Find dependent variables within child patterns
4390 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4391   DepVarMap depcounts;
4392   FindDepVarsOf(N, depcounts);
4393   for (const auto &Pair : depcounts) {
4394     if (Pair.getValue() > 1)
4395       DepVars.insert(Pair.getKey());
4396   }
4397 }
4398 
4399 #ifndef NDEBUG
4400 /// Dump the dependent variable set:
4401 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4402   if (DepVars.empty()) {
4403     LLVM_DEBUG(errs() << "<empty set>");
4404   } else {
4405     LLVM_DEBUG(errs() << "[ ");
4406     for (const auto &DepVar : DepVars) {
4407       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4408     }
4409     LLVM_DEBUG(errs() << "]");
4410   }
4411 }
4412 #endif
4413 
4414 
4415 /// CombineChildVariants - Given a bunch of permutations of each child of the
4416 /// 'operator' node, put them together in all possible ways.
4417 static void CombineChildVariants(
4418     TreePatternNodePtr Orig,
4419     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4420     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4421     const MultipleUseVarSet &DepVars) {
4422   // Make sure that each operand has at least one variant to choose from.
4423   for (const auto &Variants : ChildVariants)
4424     if (Variants.empty())
4425       return;
4426 
4427   // The end result is an all-pairs construction of the resultant pattern.
4428   std::vector<unsigned> Idxs;
4429   Idxs.resize(ChildVariants.size());
4430   bool NotDone;
4431   do {
4432 #ifndef NDEBUG
4433     LLVM_DEBUG(if (!Idxs.empty()) {
4434       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4435       for (unsigned Idx : Idxs) {
4436         errs() << Idx << " ";
4437       }
4438       errs() << "]\n";
4439     });
4440 #endif
4441     // Create the variant and add it to the output list.
4442     std::vector<TreePatternNodePtr> NewChildren;
4443     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4444       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4445     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4446         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4447 
4448     // Copy over properties.
4449     R->setName(Orig->getName());
4450     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4451     R->setPredicateCalls(Orig->getPredicateCalls());
4452     R->setTransformFn(Orig->getTransformFn());
4453     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4454       R->setType(i, Orig->getExtType(i));
4455 
4456     // If this pattern cannot match, do not include it as a variant.
4457     std::string ErrString;
4458     // Scan to see if this pattern has already been emitted.  We can get
4459     // duplication due to things like commuting:
4460     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4461     // which are the same pattern.  Ignore the dups.
4462     if (R->canPatternMatch(ErrString, CDP) &&
4463         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4464           return R->isIsomorphicTo(Variant.get(), DepVars);
4465         }))
4466       OutVariants.push_back(R);
4467 
4468     // Increment indices to the next permutation by incrementing the
4469     // indices from last index backward, e.g., generate the sequence
4470     // [0, 0], [0, 1], [1, 0], [1, 1].
4471     int IdxsIdx;
4472     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4473       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4474         Idxs[IdxsIdx] = 0;
4475       else
4476         break;
4477     }
4478     NotDone = (IdxsIdx >= 0);
4479   } while (NotDone);
4480 }
4481 
4482 /// CombineChildVariants - A helper function for binary operators.
4483 ///
4484 static void CombineChildVariants(TreePatternNodePtr Orig,
4485                                  const std::vector<TreePatternNodePtr> &LHS,
4486                                  const std::vector<TreePatternNodePtr> &RHS,
4487                                  std::vector<TreePatternNodePtr> &OutVariants,
4488                                  CodeGenDAGPatterns &CDP,
4489                                  const MultipleUseVarSet &DepVars) {
4490   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4491   ChildVariants.push_back(LHS);
4492   ChildVariants.push_back(RHS);
4493   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4494 }
4495 
4496 static void
4497 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4498                                   std::vector<TreePatternNodePtr> &Children) {
4499   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4500   Record *Operator = N->getOperator();
4501 
4502   // Only permit raw nodes.
4503   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4504       N->getTransformFn()) {
4505     Children.push_back(N);
4506     return;
4507   }
4508 
4509   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4510     Children.push_back(N->getChildShared(0));
4511   else
4512     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4513 
4514   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4515     Children.push_back(N->getChildShared(1));
4516   else
4517     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4518 }
4519 
4520 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4521 /// the (potentially recursive) pattern by using algebraic laws.
4522 ///
4523 static void GenerateVariantsOf(TreePatternNodePtr N,
4524                                std::vector<TreePatternNodePtr> &OutVariants,
4525                                CodeGenDAGPatterns &CDP,
4526                                const MultipleUseVarSet &DepVars) {
4527   // We cannot permute leaves or ComplexPattern uses.
4528   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4529     OutVariants.push_back(N);
4530     return;
4531   }
4532 
4533   // Look up interesting info about the node.
4534   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4535 
4536   // If this node is associative, re-associate.
4537   if (NodeInfo.hasProperty(SDNPAssociative)) {
4538     // Re-associate by pulling together all of the linked operators
4539     std::vector<TreePatternNodePtr> MaximalChildren;
4540     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4541 
4542     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4543     // permutations.
4544     if (MaximalChildren.size() == 3) {
4545       // Find the variants of all of our maximal children.
4546       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4547       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4548       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4549       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4550 
4551       // There are only two ways we can permute the tree:
4552       //   (A op B) op C    and    A op (B op C)
4553       // Within these forms, we can also permute A/B/C.
4554 
4555       // Generate legal pair permutations of A/B/C.
4556       std::vector<TreePatternNodePtr> ABVariants;
4557       std::vector<TreePatternNodePtr> BAVariants;
4558       std::vector<TreePatternNodePtr> ACVariants;
4559       std::vector<TreePatternNodePtr> CAVariants;
4560       std::vector<TreePatternNodePtr> BCVariants;
4561       std::vector<TreePatternNodePtr> CBVariants;
4562       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4563       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4564       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4565       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4566       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4567       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4568 
4569       // Combine those into the result: (x op x) op x
4570       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4571       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4572       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4573       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4574       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4575       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4576 
4577       // Combine those into the result: x op (x op x)
4578       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4579       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4580       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4581       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4582       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4583       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4584       return;
4585     }
4586   }
4587 
4588   // Compute permutations of all children.
4589   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4590   ChildVariants.resize(N->getNumChildren());
4591   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4592     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4593 
4594   // Build all permutations based on how the children were formed.
4595   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4596 
4597   // If this node is commutative, consider the commuted order.
4598   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4599   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4600     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4601            "Commutative but doesn't have 2 children!");
4602     // Don't count children which are actually register references.
4603     unsigned NC = 0;
4604     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4605       TreePatternNode *Child = N->getChild(i);
4606       if (Child->isLeaf())
4607         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4608           Record *RR = DI->getDef();
4609           if (RR->isSubClassOf("Register"))
4610             continue;
4611         }
4612       NC++;
4613     }
4614     // Consider the commuted order.
4615     if (isCommIntrinsic) {
4616       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4617       // operands are the commutative operands, and there might be more operands
4618       // after those.
4619       assert(NC >= 3 &&
4620              "Commutative intrinsic should have at least 3 children!");
4621       std::vector<std::vector<TreePatternNodePtr>> Variants;
4622       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4623       Variants.push_back(std::move(ChildVariants[2]));
4624       Variants.push_back(std::move(ChildVariants[1]));
4625       for (unsigned i = 3; i != NC; ++i)
4626         Variants.push_back(std::move(ChildVariants[i]));
4627       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4628     } else if (NC == N->getNumChildren()) {
4629       std::vector<std::vector<TreePatternNodePtr>> Variants;
4630       Variants.push_back(std::move(ChildVariants[1]));
4631       Variants.push_back(std::move(ChildVariants[0]));
4632       for (unsigned i = 2; i != NC; ++i)
4633         Variants.push_back(std::move(ChildVariants[i]));
4634       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4635     }
4636   }
4637 }
4638 
4639 
4640 // GenerateVariants - Generate variants.  For example, commutative patterns can
4641 // match multiple ways.  Add them to PatternsToMatch as well.
4642 void CodeGenDAGPatterns::GenerateVariants() {
4643   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4644 
4645   // Loop over all of the patterns we've collected, checking to see if we can
4646   // generate variants of the instruction, through the exploitation of
4647   // identities.  This permits the target to provide aggressive matching without
4648   // the .td file having to contain tons of variants of instructions.
4649   //
4650   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4651   // intentionally do not reconsider these.  Any variants of added patterns have
4652   // already been added.
4653   //
4654   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4655   BitVector MatchedPatterns(NumOriginalPatterns);
4656   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4657                                            BitVector(NumOriginalPatterns));
4658 
4659   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4660       DepsAndVariants;
4661   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4662 
4663   // Collect patterns with more than one variant.
4664   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4665     MultipleUseVarSet DepVars;
4666     std::vector<TreePatternNodePtr> Variants;
4667     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4668     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4669     LLVM_DEBUG(DumpDepVars(DepVars));
4670     LLVM_DEBUG(errs() << "\n");
4671     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4672                        *this, DepVars);
4673 
4674     assert(!Variants.empty() && "Must create at least original variant!");
4675     if (Variants.size() == 1) // No additional variants for this pattern.
4676       continue;
4677 
4678     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4679                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4680 
4681     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4682 
4683     // Cache matching predicates.
4684     if (MatchedPatterns[i])
4685       continue;
4686 
4687     const std::vector<Predicate> &Predicates =
4688         PatternsToMatch[i].getPredicates();
4689 
4690     BitVector &Matches = MatchedPredicates[i];
4691     MatchedPatterns.set(i);
4692     Matches.set(i);
4693 
4694     // Don't test patterns that have already been cached - it won't match.
4695     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4696       if (!MatchedPatterns[p])
4697         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4698 
4699     // Copy this to all the matching patterns.
4700     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4701       if (p != (int)i) {
4702         MatchedPatterns.set(p);
4703         MatchedPredicates[p] = Matches;
4704       }
4705   }
4706 
4707   for (auto it : PatternsWithVariants) {
4708     unsigned i = it.first;
4709     const MultipleUseVarSet &DepVars = it.second.first;
4710     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4711 
4712     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4713       TreePatternNodePtr Variant = Variants[v];
4714       BitVector &Matches = MatchedPredicates[i];
4715 
4716       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4717                  errs() << "\n");
4718 
4719       // Scan to see if an instruction or explicit pattern already matches this.
4720       bool AlreadyExists = false;
4721       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4722         // Skip if the top level predicates do not match.
4723         if (!Matches[p])
4724           continue;
4725         // Check to see if this variant already exists.
4726         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4727                                     DepVars)) {
4728           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4729           AlreadyExists = true;
4730           break;
4731         }
4732       }
4733       // If we already have it, ignore the variant.
4734       if (AlreadyExists) continue;
4735 
4736       // Otherwise, add it to the list of patterns we have.
4737       PatternsToMatch.emplace_back(
4738           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4739           Variant, PatternsToMatch[i].getDstPatternShared(),
4740           PatternsToMatch[i].getDstRegs(),
4741           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
4742       MatchedPredicates.push_back(Matches);
4743 
4744       // Add a new match the same as this pattern.
4745       for (auto &P : MatchedPredicates)
4746         P.push_back(P[i]);
4747     }
4748 
4749     LLVM_DEBUG(errs() << "\n");
4750   }
4751 }
4752