1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109 
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120 
121 // Constrain the type set to be the intersection with VTS.
122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133 
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146 
147 template <typename Predicate>
148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154 
155 template <typename Predicate>
156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166 
167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170 
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178 
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186 
187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190 
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199 
200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204 
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210 
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216 
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237 
238   return true;
239 }
240 
241 namespace llvm {
242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247 
248 LLVM_DUMP_METHOD
249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252 
253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256 
257   if (OutP == InP)
258     return berase_if(Out, Int);
259 
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273 
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292 
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298 
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311 
312 void TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   assert(!AllEmpty &&
320           "type set is empty for each HW mode: type contradiction?");
321 #endif
322 }
323 
324 // --- TypeInfer
325 
326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336 
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340 
341   return Changed;
342 }
343 
344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349 
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362 
363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369 
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372 
373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379 
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382 
383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389 
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392 
393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399 
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402 
403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out);
405   if (TP.hasError() || !Out.empty())
406     return false;
407 
408   Out = getLegalTypes();
409   return true;
410 }
411 
412 template <typename Iter, typename Pred, typename Less>
413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439 
440 /// Make sure that for each type in Small, there exists a larger type in Big.
441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small), _2(Big);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447 
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452 
453   assert(Small.hasDefault() && Big.hasDefault());
454 
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456 
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464 
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481 
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487 
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498 
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510 
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end())
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519 
520     // MaxS = max scalar in Big, remove all scalars from Small that are
521     // larger than MaxS.
522     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
523     if (MaxS != B.end())
524       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
525 
526     // MinV = min vector in Small, remove all vectors from Big that are
527     // smaller-or-equal than MinV.
528     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
529     if (MinV != S.end())
530       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
531 
532     // MaxV = max vector in Big, remove all vectors from Small that are
533     // larger than MaxV.
534     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
535     if (MaxV != B.end())
536       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
537   }
538 
539   return Changed;
540 }
541 
542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
543 ///    for each type U in Elem, U is a scalar type.
544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
545 ///    type T in Vec, such that U is the element type of T.
546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
547                                        TypeSetByHwMode &Elem) {
548   ValidateOnExit _1(Vec), _2(Elem);
549   if (TP.hasError())
550     return false;
551   bool Changed = false;
552 
553   if (Vec.empty())
554     Changed |= EnforceVector(Vec);
555   if (Elem.empty())
556     Changed |= EnforceScalar(Elem);
557 
558   for (unsigned M : union_modes(Vec, Elem)) {
559     TypeSetByHwMode::SetType &V = Vec.get(M);
560     TypeSetByHwMode::SetType &E = Elem.get(M);
561 
562     Changed |= berase_if(V, isScalar);  // Scalar = !vector
563     Changed |= berase_if(E, isVector);  // Vector = !scalar
564     assert(!V.empty() && !E.empty());
565 
566     SmallSet<MVT,4> VT, ST;
567     // Collect element types from the "vector" set.
568     for (MVT T : V)
569       VT.insert(T.getVectorElementType());
570     // Collect scalar types from the "element" set.
571     for (MVT T : E)
572       ST.insert(T);
573 
574     // Remove from V all (vector) types whose element type is not in S.
575     Changed |= berase_if(V, [&ST](MVT T) -> bool {
576                               return !ST.count(T.getVectorElementType());
577                             });
578     // Remove from E all (scalar) types, for which there is no corresponding
579     // type in V.
580     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
581   }
582 
583   return Changed;
584 }
585 
586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
587                                        const ValueTypeByHwMode &VVT) {
588   TypeSetByHwMode Tmp(VVT);
589   ValidateOnExit _1(Vec), _2(Tmp);
590   return EnforceVectorEltTypeIs(Vec, Tmp);
591 }
592 
593 /// Ensure that for each type T in Sub, T is a vector type, and there
594 /// exists a type U in Vec such that U is a vector type with the same
595 /// element type as T and at least as many elements as T.
596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
597                                              TypeSetByHwMode &Sub) {
598   ValidateOnExit _1(Vec), _2(Sub);
599   if (TP.hasError())
600     return false;
601 
602   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
603   auto IsSubVec = [](MVT B, MVT P) -> bool {
604     if (!B.isVector() || !P.isVector())
605       return false;
606     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
607     // but until there are obvious use-cases for this, keep the
608     // types separate.
609     if (B.isScalableVector() != P.isScalableVector())
610       return false;
611     if (B.getVectorElementType() != P.getVectorElementType())
612       return false;
613     return B.getVectorNumElements() < P.getVectorNumElements();
614   };
615 
616   /// Return true if S has no element (vector type) that T is a sub-vector of,
617   /// i.e. has the same element type as T and more elements.
618   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
619     for (const auto &I : S)
620       if (IsSubVec(T, I))
621         return false;
622     return true;
623   };
624 
625   /// Return true if S has no element (vector type) that T is a super-vector
626   /// of, i.e. has the same element type as T and fewer elements.
627   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(I, T))
630         return false;
631     return true;
632   };
633 
634   bool Changed = false;
635 
636   if (Vec.empty())
637     Changed |= EnforceVector(Vec);
638   if (Sub.empty())
639     Changed |= EnforceVector(Sub);
640 
641   for (unsigned M : union_modes(Vec, Sub)) {
642     TypeSetByHwMode::SetType &S = Sub.get(M);
643     TypeSetByHwMode::SetType &V = Vec.get(M);
644 
645     Changed |= berase_if(S, isScalar);
646 
647     // Erase all types from S that are not sub-vectors of a type in V.
648     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
649 
650     // Erase all types from V that are not super-vectors of a type in S.
651     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
652   }
653 
654   return Changed;
655 }
656 
657 /// 1. Ensure that V has a scalar type iff W has a scalar type.
658 /// 2. Ensure that for each vector type T in V, there exists a vector
659 ///    type U in W, such that T and U have the same number of elements.
660 /// 3. Ensure that for each vector type U in W, there exists a vector
661 ///    type T in V, such that T and U have the same number of elements
662 ///    (reverse of 2).
663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
664   ValidateOnExit _1(V), _2(W);
665   if (TP.hasError())
666     return false;
667 
668   bool Changed = false;
669   if (V.empty())
670     Changed |= EnforceAny(V);
671   if (W.empty())
672     Changed |= EnforceAny(W);
673 
674   // An actual vector type cannot have 0 elements, so we can treat scalars
675   // as zero-length vectors. This way both vectors and scalars can be
676   // processed identically.
677   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
678     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
679   };
680 
681   for (unsigned M : union_modes(V, W)) {
682     TypeSetByHwMode::SetType &VS = V.get(M);
683     TypeSetByHwMode::SetType &WS = W.get(M);
684 
685     SmallSet<unsigned,2> VN, WN;
686     for (MVT T : VS)
687       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
688     for (MVT T : WS)
689       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
690 
691     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
692     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
693   }
694   return Changed;
695 }
696 
697 /// 1. Ensure that for each type T in A, there exists a type U in B,
698 ///    such that T and U have equal size in bits.
699 /// 2. Ensure that for each type U in B, there exists a type T in A
700 ///    such that T and U have equal size in bits (reverse of 1).
701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
702   ValidateOnExit _1(A), _2(B);
703   if (TP.hasError())
704     return false;
705   bool Changed = false;
706   if (A.empty())
707     Changed |= EnforceAny(A);
708   if (B.empty())
709     Changed |= EnforceAny(B);
710 
711   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
712     return !Sizes.count(T.getSizeInBits());
713   };
714 
715   for (unsigned M : union_modes(A, B)) {
716     TypeSetByHwMode::SetType &AS = A.get(M);
717     TypeSetByHwMode::SetType &BS = B.get(M);
718     SmallSet<unsigned,2> AN, BN;
719 
720     for (MVT T : AS)
721       AN.insert(T.getSizeInBits());
722     for (MVT T : BS)
723       BN.insert(T.getSizeInBits());
724 
725     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
726     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
727   }
728 
729   return Changed;
730 }
731 
732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
733   ValidateOnExit _1(VTS);
734   TypeSetByHwMode Legal = getLegalTypes();
735   bool HaveLegalDef = Legal.hasDefault();
736 
737   for (auto &I : VTS) {
738     unsigned M = I.first;
739     if (!Legal.hasMode(M) && !HaveLegalDef) {
740       TP.error("Invalid mode " + Twine(M));
741       return;
742     }
743     expandOverloads(I.second, Legal.get(M));
744   }
745 }
746 
747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
748                                 const TypeSetByHwMode::SetType &Legal) {
749   std::set<MVT> Ovs;
750   for (MVT T : Out) {
751     if (!T.isOverloaded())
752       continue;
753 
754     Ovs.insert(T);
755     // MachineValueTypeSet allows iteration and erasing.
756     Out.erase(T);
757   }
758 
759   for (MVT Ov : Ovs) {
760     switch (Ov.SimpleTy) {
761       case MVT::iPTRAny:
762         Out.insert(MVT::iPTR);
763         return;
764       case MVT::iAny:
765         for (MVT T : MVT::integer_valuetypes())
766           if (Legal.count(T))
767             Out.insert(T);
768         for (MVT T : MVT::integer_vector_valuetypes())
769           if (Legal.count(T))
770             Out.insert(T);
771         return;
772       case MVT::fAny:
773         for (MVT T : MVT::fp_valuetypes())
774           if (Legal.count(T))
775             Out.insert(T);
776         for (MVT T : MVT::fp_vector_valuetypes())
777           if (Legal.count(T))
778             Out.insert(T);
779         return;
780       case MVT::vAny:
781         for (MVT T : MVT::vector_valuetypes())
782           if (Legal.count(T))
783             Out.insert(T);
784         return;
785       case MVT::Any:
786         for (MVT T : MVT::all_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       default:
791         break;
792     }
793   }
794 }
795 
796 TypeSetByHwMode TypeInfer::getLegalTypes() {
797   if (!LegalTypesCached) {
798     // Stuff all types from all modes into the default mode.
799     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
800     for (const auto &I : LTS)
801       LegalCache.insert(I.second);
802     LegalTypesCached = true;
803   }
804   TypeSetByHwMode VTS;
805   VTS.getOrCreate(DefaultMode) = LegalCache;
806   return VTS;
807 }
808 
809 //===----------------------------------------------------------------------===//
810 // TreePredicateFn Implementation
811 //===----------------------------------------------------------------------===//
812 
813 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
814 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
815   assert(
816       (!hasPredCode() || !hasImmCode()) &&
817       ".td file corrupt: can't have a node predicate *and* an imm predicate");
818 }
819 
820 bool TreePredicateFn::hasPredCode() const {
821   return isLoad() || isStore() || isAtomic() ||
822          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
823 }
824 
825 std::string TreePredicateFn::getPredCode() const {
826   std::string Code = "";
827 
828   if (!isLoad() && !isStore() && !isAtomic()) {
829     Record *MemoryVT = getMemoryVT();
830 
831     if (MemoryVT)
832       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
833                       "MemoryVT requires IsLoad or IsStore");
834   }
835 
836   if (!isLoad() && !isStore()) {
837     if (isUnindexed())
838       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
839                       "IsUnindexed requires IsLoad or IsStore");
840 
841     Record *ScalarMemoryVT = getScalarMemoryVT();
842 
843     if (ScalarMemoryVT)
844       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
845                       "ScalarMemoryVT requires IsLoad or IsStore");
846   }
847 
848   if (isLoad() + isStore() + isAtomic() > 1)
849     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
850                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
851 
852   if (isLoad()) {
853     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
854         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
855         getScalarMemoryVT() == nullptr)
856       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
857                       "IsLoad cannot be used by itself");
858   } else {
859     if (isNonExtLoad())
860       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
861                       "IsNonExtLoad requires IsLoad");
862     if (isAnyExtLoad())
863       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864                       "IsAnyExtLoad requires IsLoad");
865     if (isSignExtLoad())
866       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
867                       "IsSignExtLoad requires IsLoad");
868     if (isZeroExtLoad())
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsZeroExtLoad requires IsLoad");
871   }
872 
873   if (isStore()) {
874     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
875         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
876       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
877                       "IsStore cannot be used by itself");
878   } else {
879     if (isNonTruncStore())
880       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                       "IsNonTruncStore requires IsStore");
882     if (isTruncStore())
883       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
884                       "IsTruncStore requires IsStore");
885   }
886 
887   if (isAtomic()) {
888     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
889         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
890         !isAtomicOrderingAcquireRelease() &&
891         !isAtomicOrderingSequentiallyConsistent() &&
892         !isAtomicOrderingAcquireOrStronger() &&
893         !isAtomicOrderingReleaseOrStronger() &&
894         !isAtomicOrderingWeakerThanAcquire() &&
895         !isAtomicOrderingWeakerThanRelease())
896       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
897                       "IsAtomic cannot be used by itself");
898   } else {
899     if (isAtomicOrderingMonotonic())
900       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
901                       "IsAtomicOrderingMonotonic requires IsAtomic");
902     if (isAtomicOrderingAcquire())
903       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
904                       "IsAtomicOrderingAcquire requires IsAtomic");
905     if (isAtomicOrderingRelease())
906       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
907                       "IsAtomicOrderingRelease requires IsAtomic");
908     if (isAtomicOrderingAcquireRelease())
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
911     if (isAtomicOrderingSequentiallyConsistent())
912       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
913                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
914     if (isAtomicOrderingAcquireOrStronger())
915       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
917     if (isAtomicOrderingReleaseOrStronger())
918       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
919                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
920     if (isAtomicOrderingWeakerThanAcquire())
921       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
922                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
923   }
924 
925   if (isLoad() || isStore() || isAtomic()) {
926     StringRef SDNodeName =
927         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
928 
929     Record *MemoryVT = getMemoryVT();
930 
931     if (MemoryVT)
932       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
933                MemoryVT->getName() + ") return false;\n")
934                   .str();
935   }
936 
937   if (isAtomic() && isAtomicOrderingMonotonic())
938     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
939             "AtomicOrdering::Monotonic) return false;\n";
940   if (isAtomic() && isAtomicOrderingAcquire())
941     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
942             "AtomicOrdering::Acquire) return false;\n";
943   if (isAtomic() && isAtomicOrderingRelease())
944     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
945             "AtomicOrdering::Release) return false;\n";
946   if (isAtomic() && isAtomicOrderingAcquireRelease())
947     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
948             "AtomicOrdering::AcquireRelease) return false;\n";
949   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
950     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
951             "AtomicOrdering::SequentiallyConsistent) return false;\n";
952 
953   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
954     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
955             "return false;\n";
956   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
957     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
958             "return false;\n";
959 
960   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
961     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
962             "return false;\n";
963   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
964     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
965             "return false;\n";
966 
967   if (isLoad() || isStore()) {
968     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
969 
970     if (isUnindexed())
971       Code += ("if (cast<" + SDNodeName +
972                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
973                "return false;\n")
974                   .str();
975 
976     if (isLoad()) {
977       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
978            isZeroExtLoad()) > 1)
979         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
981                         "IsZeroExtLoad are mutually exclusive");
982       if (isNonExtLoad())
983         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
984                 "ISD::NON_EXTLOAD) return false;\n";
985       if (isAnyExtLoad())
986         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
987                 "return false;\n";
988       if (isSignExtLoad())
989         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
990                 "return false;\n";
991       if (isZeroExtLoad())
992         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
993                 "return false;\n";
994     } else {
995       if ((isNonTruncStore() + isTruncStore()) > 1)
996         PrintFatalError(
997             getOrigPatFragRecord()->getRecord()->getLoc(),
998             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
999       if (isNonTruncStore())
1000         Code +=
1001             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1002       if (isTruncStore())
1003         Code +=
1004             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1005     }
1006 
1007     Record *ScalarMemoryVT = getScalarMemoryVT();
1008 
1009     if (ScalarMemoryVT)
1010       Code += ("if (cast<" + SDNodeName +
1011                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1012                ScalarMemoryVT->getName() + ") return false;\n")
1013                   .str();
1014   }
1015 
1016   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1017 
1018   Code += PredicateCode;
1019 
1020   if (PredicateCode.empty() && !Code.empty())
1021     Code += "return true;\n";
1022 
1023   return Code;
1024 }
1025 
1026 bool TreePredicateFn::hasImmCode() const {
1027   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1028 }
1029 
1030 std::string TreePredicateFn::getImmCode() const {
1031   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1032 }
1033 
1034 bool TreePredicateFn::immCodeUsesAPInt() const {
1035   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1036 }
1037 
1038 bool TreePredicateFn::immCodeUsesAPFloat() const {
1039   bool Unset;
1040   // The return value will be false when IsAPFloat is unset.
1041   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1042                                                                    Unset);
1043 }
1044 
1045 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1046                                                    bool Value) const {
1047   bool Unset;
1048   bool Result =
1049       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1050   if (Unset)
1051     return false;
1052   return Result == Value;
1053 }
1054 bool TreePredicateFn::isLoad() const {
1055   return isPredefinedPredicateEqualTo("IsLoad", true);
1056 }
1057 bool TreePredicateFn::isStore() const {
1058   return isPredefinedPredicateEqualTo("IsStore", true);
1059 }
1060 bool TreePredicateFn::isAtomic() const {
1061   return isPredefinedPredicateEqualTo("IsAtomic", true);
1062 }
1063 bool TreePredicateFn::isUnindexed() const {
1064   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1065 }
1066 bool TreePredicateFn::isNonExtLoad() const {
1067   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1068 }
1069 bool TreePredicateFn::isAnyExtLoad() const {
1070   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1071 }
1072 bool TreePredicateFn::isSignExtLoad() const {
1073   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1074 }
1075 bool TreePredicateFn::isZeroExtLoad() const {
1076   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1077 }
1078 bool TreePredicateFn::isNonTruncStore() const {
1079   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1080 }
1081 bool TreePredicateFn::isTruncStore() const {
1082   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1083 }
1084 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1085   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1086 }
1087 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1088   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1089 }
1090 bool TreePredicateFn::isAtomicOrderingRelease() const {
1091   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1092 }
1093 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1094   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1095 }
1096 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1097   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1098                                       true);
1099 }
1100 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1101   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1102 }
1103 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1104   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1105 }
1106 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1107   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1108 }
1109 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1110   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1111 }
1112 Record *TreePredicateFn::getMemoryVT() const {
1113   Record *R = getOrigPatFragRecord()->getRecord();
1114   if (R->isValueUnset("MemoryVT"))
1115     return nullptr;
1116   return R->getValueAsDef("MemoryVT");
1117 }
1118 Record *TreePredicateFn::getScalarMemoryVT() const {
1119   Record *R = getOrigPatFragRecord()->getRecord();
1120   if (R->isValueUnset("ScalarMemoryVT"))
1121     return nullptr;
1122   return R->getValueAsDef("ScalarMemoryVT");
1123 }
1124 
1125 StringRef TreePredicateFn::getImmType() const {
1126   if (immCodeUsesAPInt())
1127     return "const APInt &";
1128   if (immCodeUsesAPFloat())
1129     return "const APFloat &";
1130   return "int64_t";
1131 }
1132 
1133 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1134   if (immCodeUsesAPInt())
1135     return "APInt";
1136   else if (immCodeUsesAPFloat())
1137     return "APFloat";
1138   return "I64";
1139 }
1140 
1141 /// isAlwaysTrue - Return true if this is a noop predicate.
1142 bool TreePredicateFn::isAlwaysTrue() const {
1143   return !hasPredCode() && !hasImmCode();
1144 }
1145 
1146 /// Return the name to use in the generated code to reference this, this is
1147 /// "Predicate_foo" if from a pattern fragment "foo".
1148 std::string TreePredicateFn::getFnName() const {
1149   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1150 }
1151 
1152 /// getCodeToRunOnSDNode - Return the code for the function body that
1153 /// evaluates this predicate.  The argument is expected to be in "Node",
1154 /// not N.  This handles casting and conversion to a concrete node type as
1155 /// appropriate.
1156 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1157   // Handle immediate predicates first.
1158   std::string ImmCode = getImmCode();
1159   if (!ImmCode.empty()) {
1160     if (isLoad())
1161       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1162                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1163     if (isStore())
1164       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1165                       "IsStore cannot be used with ImmLeaf or its subclasses");
1166     if (isUnindexed())
1167       PrintFatalError(
1168           getOrigPatFragRecord()->getRecord()->getLoc(),
1169           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1170     if (isNonExtLoad())
1171       PrintFatalError(
1172           getOrigPatFragRecord()->getRecord()->getLoc(),
1173           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1174     if (isAnyExtLoad())
1175       PrintFatalError(
1176           getOrigPatFragRecord()->getRecord()->getLoc(),
1177           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1178     if (isSignExtLoad())
1179       PrintFatalError(
1180           getOrigPatFragRecord()->getRecord()->getLoc(),
1181           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1182     if (isZeroExtLoad())
1183       PrintFatalError(
1184           getOrigPatFragRecord()->getRecord()->getLoc(),
1185           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1186     if (isNonTruncStore())
1187       PrintFatalError(
1188           getOrigPatFragRecord()->getRecord()->getLoc(),
1189           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1190     if (isTruncStore())
1191       PrintFatalError(
1192           getOrigPatFragRecord()->getRecord()->getLoc(),
1193           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1194     if (getMemoryVT())
1195       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1196                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1197     if (getScalarMemoryVT())
1198       PrintFatalError(
1199           getOrigPatFragRecord()->getRecord()->getLoc(),
1200           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1201 
1202     std::string Result = ("    " + getImmType() + " Imm = ").str();
1203     if (immCodeUsesAPFloat())
1204       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1205     else if (immCodeUsesAPInt())
1206       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1207     else
1208       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1209     return Result + ImmCode;
1210   }
1211 
1212   // Handle arbitrary node predicates.
1213   assert(hasPredCode() && "Don't have any predicate code!");
1214   StringRef ClassName;
1215   if (PatFragRec->getOnlyTree()->isLeaf())
1216     ClassName = "SDNode";
1217   else {
1218     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1219     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1220   }
1221   std::string Result;
1222   if (ClassName == "SDNode")
1223     Result = "    SDNode *N = Node;\n";
1224   else
1225     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1226 
1227   return Result + getPredCode();
1228 }
1229 
1230 //===----------------------------------------------------------------------===//
1231 // PatternToMatch implementation
1232 //
1233 
1234 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1235 /// patterns before small ones.  This is used to determine the size of a
1236 /// pattern.
1237 static unsigned getPatternSize(const TreePatternNode *P,
1238                                const CodeGenDAGPatterns &CGP) {
1239   unsigned Size = 3;  // The node itself.
1240   // If the root node is a ConstantSDNode, increases its size.
1241   // e.g. (set R32:$dst, 0).
1242   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1243     Size += 2;
1244 
1245   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1246     Size += AM->getComplexity();
1247     // We don't want to count any children twice, so return early.
1248     return Size;
1249   }
1250 
1251   // If this node has some predicate function that must match, it adds to the
1252   // complexity of this node.
1253   if (!P->getPredicateFns().empty())
1254     ++Size;
1255 
1256   // Count children in the count if they are also nodes.
1257   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1258     const TreePatternNode *Child = P->getChild(i);
1259     if (!Child->isLeaf() && Child->getNumTypes()) {
1260       const TypeSetByHwMode &T0 = Child->getType(0);
1261       // At this point, all variable type sets should be simple, i.e. only
1262       // have a default mode.
1263       if (T0.getMachineValueType() != MVT::Other) {
1264         Size += getPatternSize(Child, CGP);
1265         continue;
1266       }
1267     }
1268     if (Child->isLeaf()) {
1269       if (isa<IntInit>(Child->getLeafValue()))
1270         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1271       else if (Child->getComplexPatternInfo(CGP))
1272         Size += getPatternSize(Child, CGP);
1273       else if (!Child->getPredicateFns().empty())
1274         ++Size;
1275     }
1276   }
1277 
1278   return Size;
1279 }
1280 
1281 /// Compute the complexity metric for the input pattern.  This roughly
1282 /// corresponds to the number of nodes that are covered.
1283 int PatternToMatch::
1284 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1285   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1286 }
1287 
1288 /// getPredicateCheck - Return a single string containing all of this
1289 /// pattern's predicates concatenated with "&&" operators.
1290 ///
1291 std::string PatternToMatch::getPredicateCheck() const {
1292   SmallVector<const Predicate*,4> PredList;
1293   for (const Predicate &P : Predicates)
1294     PredList.push_back(&P);
1295   std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1296 
1297   std::string Check;
1298   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1299     if (i != 0)
1300       Check += " && ";
1301     Check += '(' + PredList[i]->getCondString() + ')';
1302   }
1303   return Check;
1304 }
1305 
1306 //===----------------------------------------------------------------------===//
1307 // SDTypeConstraint implementation
1308 //
1309 
1310 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1311   OperandNo = R->getValueAsInt("OperandNum");
1312 
1313   if (R->isSubClassOf("SDTCisVT")) {
1314     ConstraintType = SDTCisVT;
1315     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1316     for (const auto &P : VVT)
1317       if (P.second == MVT::isVoid)
1318         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1319   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1320     ConstraintType = SDTCisPtrTy;
1321   } else if (R->isSubClassOf("SDTCisInt")) {
1322     ConstraintType = SDTCisInt;
1323   } else if (R->isSubClassOf("SDTCisFP")) {
1324     ConstraintType = SDTCisFP;
1325   } else if (R->isSubClassOf("SDTCisVec")) {
1326     ConstraintType = SDTCisVec;
1327   } else if (R->isSubClassOf("SDTCisSameAs")) {
1328     ConstraintType = SDTCisSameAs;
1329     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1330   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1331     ConstraintType = SDTCisVTSmallerThanOp;
1332     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1333       R->getValueAsInt("OtherOperandNum");
1334   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1335     ConstraintType = SDTCisOpSmallerThanOp;
1336     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1337       R->getValueAsInt("BigOperandNum");
1338   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1339     ConstraintType = SDTCisEltOfVec;
1340     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1341   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1342     ConstraintType = SDTCisSubVecOfVec;
1343     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1344       R->getValueAsInt("OtherOpNum");
1345   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1346     ConstraintType = SDTCVecEltisVT;
1347     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1348     for (const auto &P : VVT) {
1349       MVT T = P.second;
1350       if (T.isVector())
1351         PrintFatalError(R->getLoc(),
1352                         "Cannot use vector type as SDTCVecEltisVT");
1353       if (!T.isInteger() && !T.isFloatingPoint())
1354         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1355                                      "as SDTCVecEltisVT");
1356     }
1357   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1358     ConstraintType = SDTCisSameNumEltsAs;
1359     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1360       R->getValueAsInt("OtherOperandNum");
1361   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1362     ConstraintType = SDTCisSameSizeAs;
1363     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1364       R->getValueAsInt("OtherOperandNum");
1365   } else {
1366     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1367   }
1368 }
1369 
1370 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1371 /// N, and the result number in ResNo.
1372 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1373                                       const SDNodeInfo &NodeInfo,
1374                                       unsigned &ResNo) {
1375   unsigned NumResults = NodeInfo.getNumResults();
1376   if (OpNo < NumResults) {
1377     ResNo = OpNo;
1378     return N;
1379   }
1380 
1381   OpNo -= NumResults;
1382 
1383   if (OpNo >= N->getNumChildren()) {
1384     std::string S;
1385     raw_string_ostream OS(S);
1386     OS << "Invalid operand number in type constraint "
1387            << (OpNo+NumResults) << " ";
1388     N->print(OS);
1389     PrintFatalError(OS.str());
1390   }
1391 
1392   return N->getChild(OpNo);
1393 }
1394 
1395 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1396 /// constraint to the nodes operands.  This returns true if it makes a
1397 /// change, false otherwise.  If a type contradiction is found, flag an error.
1398 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1399                                            const SDNodeInfo &NodeInfo,
1400                                            TreePattern &TP) const {
1401   if (TP.hasError())
1402     return false;
1403 
1404   unsigned ResNo = 0; // The result number being referenced.
1405   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1406   TypeInfer &TI = TP.getInfer();
1407 
1408   switch (ConstraintType) {
1409   case SDTCisVT:
1410     // Operand must be a particular type.
1411     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1412   case SDTCisPtrTy:
1413     // Operand must be same as target pointer type.
1414     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1415   case SDTCisInt:
1416     // Require it to be one of the legal integer VTs.
1417      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1418   case SDTCisFP:
1419     // Require it to be one of the legal fp VTs.
1420     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1421   case SDTCisVec:
1422     // Require it to be one of the legal vector VTs.
1423     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1424   case SDTCisSameAs: {
1425     unsigned OResNo = 0;
1426     TreePatternNode *OtherNode =
1427       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1428     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1429            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1430   }
1431   case SDTCisVTSmallerThanOp: {
1432     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1433     // have an integer type that is smaller than the VT.
1434     if (!NodeToApply->isLeaf() ||
1435         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1436         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1437                ->isSubClassOf("ValueType")) {
1438       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1439       return false;
1440     }
1441     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1442     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1443     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1444     TypeSetByHwMode TypeListTmp(VVT);
1445 
1446     unsigned OResNo = 0;
1447     TreePatternNode *OtherNode =
1448       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1449                     OResNo);
1450 
1451     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1452   }
1453   case SDTCisOpSmallerThanOp: {
1454     unsigned BResNo = 0;
1455     TreePatternNode *BigOperand =
1456       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1457                     BResNo);
1458     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1459                                  BigOperand->getExtType(BResNo));
1460   }
1461   case SDTCisEltOfVec: {
1462     unsigned VResNo = 0;
1463     TreePatternNode *VecOperand =
1464       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1465                     VResNo);
1466     // Filter vector types out of VecOperand that don't have the right element
1467     // type.
1468     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1469                                      NodeToApply->getExtType(ResNo));
1470   }
1471   case SDTCisSubVecOfVec: {
1472     unsigned VResNo = 0;
1473     TreePatternNode *BigVecOperand =
1474       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1475                     VResNo);
1476 
1477     // Filter vector types out of BigVecOperand that don't have the
1478     // right subvector type.
1479     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1480                                            NodeToApply->getExtType(ResNo));
1481   }
1482   case SDTCVecEltisVT: {
1483     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1484   }
1485   case SDTCisSameNumEltsAs: {
1486     unsigned OResNo = 0;
1487     TreePatternNode *OtherNode =
1488       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1489                     N, NodeInfo, OResNo);
1490     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1491                                  NodeToApply->getExtType(ResNo));
1492   }
1493   case SDTCisSameSizeAs: {
1494     unsigned OResNo = 0;
1495     TreePatternNode *OtherNode =
1496       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1497                     N, NodeInfo, OResNo);
1498     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1499                               NodeToApply->getExtType(ResNo));
1500   }
1501   }
1502   llvm_unreachable("Invalid ConstraintType!");
1503 }
1504 
1505 // Update the node type to match an instruction operand or result as specified
1506 // in the ins or outs lists on the instruction definition. Return true if the
1507 // type was actually changed.
1508 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1509                                              Record *Operand,
1510                                              TreePattern &TP) {
1511   // The 'unknown' operand indicates that types should be inferred from the
1512   // context.
1513   if (Operand->isSubClassOf("unknown_class"))
1514     return false;
1515 
1516   // The Operand class specifies a type directly.
1517   if (Operand->isSubClassOf("Operand")) {
1518     Record *R = Operand->getValueAsDef("Type");
1519     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1520     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1521   }
1522 
1523   // PointerLikeRegClass has a type that is determined at runtime.
1524   if (Operand->isSubClassOf("PointerLikeRegClass"))
1525     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1526 
1527   // Both RegisterClass and RegisterOperand operands derive their types from a
1528   // register class def.
1529   Record *RC = nullptr;
1530   if (Operand->isSubClassOf("RegisterClass"))
1531     RC = Operand;
1532   else if (Operand->isSubClassOf("RegisterOperand"))
1533     RC = Operand->getValueAsDef("RegClass");
1534 
1535   assert(RC && "Unknown operand type");
1536   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1537   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1538 }
1539 
1540 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1541   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1542     if (!TP.getInfer().isConcrete(Types[i], true))
1543       return true;
1544   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1545     if (getChild(i)->ContainsUnresolvedType(TP))
1546       return true;
1547   return false;
1548 }
1549 
1550 bool TreePatternNode::hasProperTypeByHwMode() const {
1551   for (const TypeSetByHwMode &S : Types)
1552     if (!S.isDefaultOnly())
1553       return true;
1554   for (TreePatternNode *C : Children)
1555     if (C->hasProperTypeByHwMode())
1556       return true;
1557   return false;
1558 }
1559 
1560 bool TreePatternNode::hasPossibleType() const {
1561   for (const TypeSetByHwMode &S : Types)
1562     if (!S.isPossible())
1563       return false;
1564   for (TreePatternNode *C : Children)
1565     if (!C->hasPossibleType())
1566       return false;
1567   return true;
1568 }
1569 
1570 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1571   for (TypeSetByHwMode &S : Types) {
1572     S.makeSimple(Mode);
1573     // Check if the selected mode had a type conflict.
1574     if (S.get(DefaultMode).empty())
1575       return false;
1576   }
1577   for (TreePatternNode *C : Children)
1578     if (!C->setDefaultMode(Mode))
1579       return false;
1580   return true;
1581 }
1582 
1583 //===----------------------------------------------------------------------===//
1584 // SDNodeInfo implementation
1585 //
1586 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1587   EnumName    = R->getValueAsString("Opcode");
1588   SDClassName = R->getValueAsString("SDClass");
1589   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1590   NumResults = TypeProfile->getValueAsInt("NumResults");
1591   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1592 
1593   // Parse the properties.
1594   Properties = 0;
1595   for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1596     if (Property->getName() == "SDNPCommutative") {
1597       Properties |= 1 << SDNPCommutative;
1598     } else if (Property->getName() == "SDNPAssociative") {
1599       Properties |= 1 << SDNPAssociative;
1600     } else if (Property->getName() == "SDNPHasChain") {
1601       Properties |= 1 << SDNPHasChain;
1602     } else if (Property->getName() == "SDNPOutGlue") {
1603       Properties |= 1 << SDNPOutGlue;
1604     } else if (Property->getName() == "SDNPInGlue") {
1605       Properties |= 1 << SDNPInGlue;
1606     } else if (Property->getName() == "SDNPOptInGlue") {
1607       Properties |= 1 << SDNPOptInGlue;
1608     } else if (Property->getName() == "SDNPMayStore") {
1609       Properties |= 1 << SDNPMayStore;
1610     } else if (Property->getName() == "SDNPMayLoad") {
1611       Properties |= 1 << SDNPMayLoad;
1612     } else if (Property->getName() == "SDNPSideEffect") {
1613       Properties |= 1 << SDNPSideEffect;
1614     } else if (Property->getName() == "SDNPMemOperand") {
1615       Properties |= 1 << SDNPMemOperand;
1616     } else if (Property->getName() == "SDNPVariadic") {
1617       Properties |= 1 << SDNPVariadic;
1618     } else {
1619       PrintFatalError("Unknown SD Node property '" +
1620                       Property->getName() + "' on node '" +
1621                       R->getName() + "'!");
1622     }
1623   }
1624 
1625 
1626   // Parse the type constraints.
1627   std::vector<Record*> ConstraintList =
1628     TypeProfile->getValueAsListOfDefs("Constraints");
1629   for (Record *R : ConstraintList)
1630     TypeConstraints.emplace_back(R, CGH);
1631 }
1632 
1633 /// getKnownType - If the type constraints on this node imply a fixed type
1634 /// (e.g. all stores return void, etc), then return it as an
1635 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1636 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1637   unsigned NumResults = getNumResults();
1638   assert(NumResults <= 1 &&
1639          "We only work with nodes with zero or one result so far!");
1640   assert(ResNo == 0 && "Only handles single result nodes so far");
1641 
1642   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1643     // Make sure that this applies to the correct node result.
1644     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1645       continue;
1646 
1647     switch (Constraint.ConstraintType) {
1648     default: break;
1649     case SDTypeConstraint::SDTCisVT:
1650       if (Constraint.VVT.isSimple())
1651         return Constraint.VVT.getSimple().SimpleTy;
1652       break;
1653     case SDTypeConstraint::SDTCisPtrTy:
1654       return MVT::iPTR;
1655     }
1656   }
1657   return MVT::Other;
1658 }
1659 
1660 //===----------------------------------------------------------------------===//
1661 // TreePatternNode implementation
1662 //
1663 
1664 TreePatternNode::~TreePatternNode() {
1665 #if 0 // FIXME: implement refcounted tree nodes!
1666   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1667     delete getChild(i);
1668 #endif
1669 }
1670 
1671 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1672   if (Operator->getName() == "set" ||
1673       Operator->getName() == "implicit")
1674     return 0;  // All return nothing.
1675 
1676   if (Operator->isSubClassOf("Intrinsic"))
1677     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1678 
1679   if (Operator->isSubClassOf("SDNode"))
1680     return CDP.getSDNodeInfo(Operator).getNumResults();
1681 
1682   if (Operator->isSubClassOf("PatFrag")) {
1683     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1684     // the forward reference case where one pattern fragment references another
1685     // before it is processed.
1686     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1687       return PFRec->getOnlyTree()->getNumTypes();
1688 
1689     // Get the result tree.
1690     DagInit *Tree = Operator->getValueAsDag("Fragment");
1691     Record *Op = nullptr;
1692     if (Tree)
1693       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1694         Op = DI->getDef();
1695     assert(Op && "Invalid Fragment");
1696     return GetNumNodeResults(Op, CDP);
1697   }
1698 
1699   if (Operator->isSubClassOf("Instruction")) {
1700     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1701 
1702     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1703 
1704     // Subtract any defaulted outputs.
1705     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1706       Record *OperandNode = InstInfo.Operands[i].Rec;
1707 
1708       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1709           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1710         --NumDefsToAdd;
1711     }
1712 
1713     // Add on one implicit def if it has a resolvable type.
1714     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1715       ++NumDefsToAdd;
1716     return NumDefsToAdd;
1717   }
1718 
1719   if (Operator->isSubClassOf("SDNodeXForm"))
1720     return 1;  // FIXME: Generalize SDNodeXForm
1721 
1722   if (Operator->isSubClassOf("ValueType"))
1723     return 1;  // A type-cast of one result.
1724 
1725   if (Operator->isSubClassOf("ComplexPattern"))
1726     return 1;
1727 
1728   errs() << *Operator;
1729   PrintFatalError("Unhandled node in GetNumNodeResults");
1730 }
1731 
1732 void TreePatternNode::print(raw_ostream &OS) const {
1733   if (isLeaf())
1734     OS << *getLeafValue();
1735   else
1736     OS << '(' << getOperator()->getName();
1737 
1738   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1739     OS << ':';
1740     getExtType(i).writeToStream(OS);
1741   }
1742 
1743   if (!isLeaf()) {
1744     if (getNumChildren() != 0) {
1745       OS << " ";
1746       getChild(0)->print(OS);
1747       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1748         OS << ", ";
1749         getChild(i)->print(OS);
1750       }
1751     }
1752     OS << ")";
1753   }
1754 
1755   for (const TreePredicateFn &Pred : PredicateFns)
1756     OS << "<<P:" << Pred.getFnName() << ">>";
1757   if (TransformFn)
1758     OS << "<<X:" << TransformFn->getName() << ">>";
1759   if (!getName().empty())
1760     OS << ":$" << getName();
1761 
1762 }
1763 void TreePatternNode::dump() const {
1764   print(errs());
1765 }
1766 
1767 /// isIsomorphicTo - Return true if this node is recursively
1768 /// isomorphic to the specified node.  For this comparison, the node's
1769 /// entire state is considered. The assigned name is ignored, since
1770 /// nodes with differing names are considered isomorphic. However, if
1771 /// the assigned name is present in the dependent variable set, then
1772 /// the assigned name is considered significant and the node is
1773 /// isomorphic if the names match.
1774 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1775                                      const MultipleUseVarSet &DepVars) const {
1776   if (N == this) return true;
1777   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1778       getPredicateFns() != N->getPredicateFns() ||
1779       getTransformFn() != N->getTransformFn())
1780     return false;
1781 
1782   if (isLeaf()) {
1783     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1784       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1785         return ((DI->getDef() == NDI->getDef())
1786                 && (DepVars.find(getName()) == DepVars.end()
1787                     || getName() == N->getName()));
1788       }
1789     }
1790     return getLeafValue() == N->getLeafValue();
1791   }
1792 
1793   if (N->getOperator() != getOperator() ||
1794       N->getNumChildren() != getNumChildren()) return false;
1795   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1796     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1797       return false;
1798   return true;
1799 }
1800 
1801 /// clone - Make a copy of this tree and all of its children.
1802 ///
1803 TreePatternNode *TreePatternNode::clone() const {
1804   TreePatternNode *New;
1805   if (isLeaf()) {
1806     New = new TreePatternNode(getLeafValue(), getNumTypes());
1807   } else {
1808     std::vector<TreePatternNode*> CChildren;
1809     CChildren.reserve(Children.size());
1810     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1811       CChildren.push_back(getChild(i)->clone());
1812     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1813   }
1814   New->setName(getName());
1815   New->Types = Types;
1816   New->setPredicateFns(getPredicateFns());
1817   New->setTransformFn(getTransformFn());
1818   return New;
1819 }
1820 
1821 /// RemoveAllTypes - Recursively strip all the types of this tree.
1822 void TreePatternNode::RemoveAllTypes() {
1823   // Reset to unknown type.
1824   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1825   if (isLeaf()) return;
1826   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1827     getChild(i)->RemoveAllTypes();
1828 }
1829 
1830 
1831 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1832 /// with actual values specified by ArgMap.
1833 void TreePatternNode::
1834 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1835   if (isLeaf()) return;
1836 
1837   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1838     TreePatternNode *Child = getChild(i);
1839     if (Child->isLeaf()) {
1840       Init *Val = Child->getLeafValue();
1841       // Note that, when substituting into an output pattern, Val might be an
1842       // UnsetInit.
1843       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1844           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1845         // We found a use of a formal argument, replace it with its value.
1846         TreePatternNode *NewChild = ArgMap[Child->getName()];
1847         assert(NewChild && "Couldn't find formal argument!");
1848         assert((Child->getPredicateFns().empty() ||
1849                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1850                "Non-empty child predicate clobbered!");
1851         setChild(i, NewChild);
1852       }
1853     } else {
1854       getChild(i)->SubstituteFormalArguments(ArgMap);
1855     }
1856   }
1857 }
1858 
1859 
1860 /// InlinePatternFragments - If this pattern refers to any pattern
1861 /// fragments, inline them into place, giving us a pattern without any
1862 /// PatFrag references.
1863 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1864   if (TP.hasError())
1865     return nullptr;
1866 
1867   if (isLeaf())
1868      return this;  // nothing to do.
1869   Record *Op = getOperator();
1870 
1871   if (!Op->isSubClassOf("PatFrag")) {
1872     // Just recursively inline children nodes.
1873     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1874       TreePatternNode *Child = getChild(i);
1875       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1876 
1877       assert((Child->getPredicateFns().empty() ||
1878               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1879              "Non-empty child predicate clobbered!");
1880 
1881       setChild(i, NewChild);
1882     }
1883     return this;
1884   }
1885 
1886   // Otherwise, we found a reference to a fragment.  First, look up its
1887   // TreePattern record.
1888   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1889 
1890   // Verify that we are passing the right number of operands.
1891   if (Frag->getNumArgs() != Children.size()) {
1892     TP.error("'" + Op->getName() + "' fragment requires " +
1893              utostr(Frag->getNumArgs()) + " operands!");
1894     return nullptr;
1895   }
1896 
1897   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1898 
1899   TreePredicateFn PredFn(Frag);
1900   if (!PredFn.isAlwaysTrue())
1901     FragTree->addPredicateFn(PredFn);
1902 
1903   // Resolve formal arguments to their actual value.
1904   if (Frag->getNumArgs()) {
1905     // Compute the map of formal to actual arguments.
1906     std::map<std::string, TreePatternNode*> ArgMap;
1907     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1908       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1909 
1910     FragTree->SubstituteFormalArguments(ArgMap);
1911   }
1912 
1913   FragTree->setName(getName());
1914   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1915     FragTree->UpdateNodeType(i, getExtType(i), TP);
1916 
1917   // Transfer in the old predicates.
1918   for (const TreePredicateFn &Pred : getPredicateFns())
1919     FragTree->addPredicateFn(Pred);
1920 
1921   // Get a new copy of this fragment to stitch into here.
1922   //delete this;    // FIXME: implement refcounting!
1923 
1924   // The fragment we inlined could have recursive inlining that is needed.  See
1925   // if there are any pattern fragments in it and inline them as needed.
1926   return FragTree->InlinePatternFragments(TP);
1927 }
1928 
1929 /// getImplicitType - Check to see if the specified record has an implicit
1930 /// type which should be applied to it.  This will infer the type of register
1931 /// references from the register file information, for example.
1932 ///
1933 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1934 /// the F8RC register class argument in:
1935 ///
1936 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1937 ///
1938 /// When Unnamed is false, return the type of a named DAG operand such as the
1939 /// GPR:$src operand above.
1940 ///
1941 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1942                                        bool NotRegisters,
1943                                        bool Unnamed,
1944                                        TreePattern &TP) {
1945   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1946 
1947   // Check to see if this is a register operand.
1948   if (R->isSubClassOf("RegisterOperand")) {
1949     assert(ResNo == 0 && "Regoperand ref only has one result!");
1950     if (NotRegisters)
1951       return TypeSetByHwMode(); // Unknown.
1952     Record *RegClass = R->getValueAsDef("RegClass");
1953     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1954     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1955   }
1956 
1957   // Check to see if this is a register or a register class.
1958   if (R->isSubClassOf("RegisterClass")) {
1959     assert(ResNo == 0 && "Regclass ref only has one result!");
1960     // An unnamed register class represents itself as an i32 immediate, for
1961     // example on a COPY_TO_REGCLASS instruction.
1962     if (Unnamed)
1963       return TypeSetByHwMode(MVT::i32);
1964 
1965     // In a named operand, the register class provides the possible set of
1966     // types.
1967     if (NotRegisters)
1968       return TypeSetByHwMode(); // Unknown.
1969     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1970     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1971   }
1972 
1973   if (R->isSubClassOf("PatFrag")) {
1974     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1975     // Pattern fragment types will be resolved when they are inlined.
1976     return TypeSetByHwMode(); // Unknown.
1977   }
1978 
1979   if (R->isSubClassOf("Register")) {
1980     assert(ResNo == 0 && "Registers only produce one result!");
1981     if (NotRegisters)
1982       return TypeSetByHwMode(); // Unknown.
1983     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1984     return TypeSetByHwMode(T.getRegisterVTs(R));
1985   }
1986 
1987   if (R->isSubClassOf("SubRegIndex")) {
1988     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1989     return TypeSetByHwMode(MVT::i32);
1990   }
1991 
1992   if (R->isSubClassOf("ValueType")) {
1993     assert(ResNo == 0 && "This node only has one result!");
1994     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1995     //
1996     //   (sext_inreg GPR:$src, i16)
1997     //                         ~~~
1998     if (Unnamed)
1999       return TypeSetByHwMode(MVT::Other);
2000     // With a name, the ValueType simply provides the type of the named
2001     // variable.
2002     //
2003     //   (sext_inreg i32:$src, i16)
2004     //               ~~~~~~~~
2005     if (NotRegisters)
2006       return TypeSetByHwMode(); // Unknown.
2007     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2008     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2009   }
2010 
2011   if (R->isSubClassOf("CondCode")) {
2012     assert(ResNo == 0 && "This node only has one result!");
2013     // Using a CondCodeSDNode.
2014     return TypeSetByHwMode(MVT::Other);
2015   }
2016 
2017   if (R->isSubClassOf("ComplexPattern")) {
2018     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2019     if (NotRegisters)
2020       return TypeSetByHwMode(); // Unknown.
2021     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2022   }
2023   if (R->isSubClassOf("PointerLikeRegClass")) {
2024     assert(ResNo == 0 && "Regclass can only have one result!");
2025     TypeSetByHwMode VTS(MVT::iPTR);
2026     TP.getInfer().expandOverloads(VTS);
2027     return VTS;
2028   }
2029 
2030   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2031       R->getName() == "zero_reg") {
2032     // Placeholder.
2033     return TypeSetByHwMode(); // Unknown.
2034   }
2035 
2036   if (R->isSubClassOf("Operand")) {
2037     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2038     Record *T = R->getValueAsDef("Type");
2039     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2040   }
2041 
2042   TP.error("Unknown node flavor used in pattern: " + R->getName());
2043   return TypeSetByHwMode(MVT::Other);
2044 }
2045 
2046 
2047 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2048 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2049 const CodeGenIntrinsic *TreePatternNode::
2050 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2051   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2052       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2053       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2054     return nullptr;
2055 
2056   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2057   return &CDP.getIntrinsicInfo(IID);
2058 }
2059 
2060 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2061 /// return the ComplexPattern information, otherwise return null.
2062 const ComplexPattern *
2063 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2064   Record *Rec;
2065   if (isLeaf()) {
2066     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2067     if (!DI)
2068       return nullptr;
2069     Rec = DI->getDef();
2070   } else
2071     Rec = getOperator();
2072 
2073   if (!Rec->isSubClassOf("ComplexPattern"))
2074     return nullptr;
2075   return &CGP.getComplexPattern(Rec);
2076 }
2077 
2078 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2079   // A ComplexPattern specifically declares how many results it fills in.
2080   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2081     return CP->getNumOperands();
2082 
2083   // If MIOperandInfo is specified, that gives the count.
2084   if (isLeaf()) {
2085     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2086     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2087       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2088       if (MIOps->getNumArgs())
2089         return MIOps->getNumArgs();
2090     }
2091   }
2092 
2093   // Otherwise there is just one result.
2094   return 1;
2095 }
2096 
2097 /// NodeHasProperty - Return true if this node has the specified property.
2098 bool TreePatternNode::NodeHasProperty(SDNP Property,
2099                                       const CodeGenDAGPatterns &CGP) const {
2100   if (isLeaf()) {
2101     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2102       return CP->hasProperty(Property);
2103     return false;
2104   }
2105 
2106   Record *Operator = getOperator();
2107   if (!Operator->isSubClassOf("SDNode")) return false;
2108 
2109   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2110 }
2111 
2112 
2113 
2114 
2115 /// TreeHasProperty - Return true if any node in this tree has the specified
2116 /// property.
2117 bool TreePatternNode::TreeHasProperty(SDNP Property,
2118                                       const CodeGenDAGPatterns &CGP) const {
2119   if (NodeHasProperty(Property, CGP))
2120     return true;
2121   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2122     if (getChild(i)->TreeHasProperty(Property, CGP))
2123       return true;
2124   return false;
2125 }
2126 
2127 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2128 /// commutative intrinsic.
2129 bool
2130 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2131   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2132     return Int->isCommutative;
2133   return false;
2134 }
2135 
2136 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2137   if (!N->isLeaf())
2138     return N->getOperator()->isSubClassOf(Class);
2139 
2140   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2141   if (DI && DI->getDef()->isSubClassOf(Class))
2142     return true;
2143 
2144   return false;
2145 }
2146 
2147 static void emitTooManyOperandsError(TreePattern &TP,
2148                                      StringRef InstName,
2149                                      unsigned Expected,
2150                                      unsigned Actual) {
2151   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2152            " operands but expected only " + Twine(Expected) + "!");
2153 }
2154 
2155 static void emitTooFewOperandsError(TreePattern &TP,
2156                                     StringRef InstName,
2157                                     unsigned Actual) {
2158   TP.error("Instruction '" + InstName +
2159            "' expects more than the provided " + Twine(Actual) + " operands!");
2160 }
2161 
2162 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2163 /// this node and its children in the tree.  This returns true if it makes a
2164 /// change, false otherwise.  If a type contradiction is found, flag an error.
2165 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2166   if (TP.hasError())
2167     return false;
2168 
2169   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2170   if (isLeaf()) {
2171     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2172       // If it's a regclass or something else known, include the type.
2173       bool MadeChange = false;
2174       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2175         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2176                                                         NotRegisters,
2177                                                         !hasName(), TP), TP);
2178       return MadeChange;
2179     }
2180 
2181     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2182       assert(Types.size() == 1 && "Invalid IntInit");
2183 
2184       // Int inits are always integers. :)
2185       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2186 
2187       if (!TP.getInfer().isConcrete(Types[0], false))
2188         return MadeChange;
2189 
2190       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2191       for (auto &P : VVT) {
2192         MVT::SimpleValueType VT = P.second.SimpleTy;
2193         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2194           continue;
2195         unsigned Size = MVT(VT).getSizeInBits();
2196         // Make sure that the value is representable for this type.
2197         if (Size >= 32)
2198           continue;
2199         // Check that the value doesn't use more bits than we have. It must
2200         // either be a sign- or zero-extended equivalent of the original.
2201         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2202         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2203             SignBitAndAbove == 1)
2204           continue;
2205 
2206         TP.error("Integer value '" + itostr(II->getValue()) +
2207                  "' is out of range for type '" + getEnumName(VT) + "'!");
2208         break;
2209       }
2210       return MadeChange;
2211     }
2212 
2213     return false;
2214   }
2215 
2216   // special handling for set, which isn't really an SDNode.
2217   if (getOperator()->getName() == "set") {
2218     assert(getNumTypes() == 0 && "Set doesn't produce a value");
2219     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
2220     unsigned NC = getNumChildren();
2221 
2222     TreePatternNode *SetVal = getChild(NC-1);
2223     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
2224 
2225     for (unsigned i = 0; i < NC-1; ++i) {
2226       TreePatternNode *Child = getChild(i);
2227       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
2228 
2229       // Types of operands must match.
2230       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
2231       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
2232     }
2233     return MadeChange;
2234   }
2235 
2236   if (getOperator()->getName() == "implicit") {
2237     assert(getNumTypes() == 0 && "Node doesn't produce a value");
2238 
2239     bool MadeChange = false;
2240     for (unsigned i = 0; i < getNumChildren(); ++i)
2241       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2242     return MadeChange;
2243   }
2244 
2245   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2246     bool MadeChange = false;
2247 
2248     // Apply the result type to the node.
2249     unsigned NumRetVTs = Int->IS.RetVTs.size();
2250     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2251 
2252     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2253       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2254 
2255     if (getNumChildren() != NumParamVTs + 1) {
2256       TP.error("Intrinsic '" + Int->Name + "' expects " +
2257                utostr(NumParamVTs) + " operands, not " +
2258                utostr(getNumChildren() - 1) + " operands!");
2259       return false;
2260     }
2261 
2262     // Apply type info to the intrinsic ID.
2263     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2264 
2265     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2266       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2267 
2268       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2269       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2270       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2271     }
2272     return MadeChange;
2273   }
2274 
2275   if (getOperator()->isSubClassOf("SDNode")) {
2276     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2277 
2278     // Check that the number of operands is sane.  Negative operands -> varargs.
2279     if (NI.getNumOperands() >= 0 &&
2280         getNumChildren() != (unsigned)NI.getNumOperands()) {
2281       TP.error(getOperator()->getName() + " node requires exactly " +
2282                itostr(NI.getNumOperands()) + " operands!");
2283       return false;
2284     }
2285 
2286     bool MadeChange = false;
2287     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2288       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2289     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2290     return MadeChange;
2291   }
2292 
2293   if (getOperator()->isSubClassOf("Instruction")) {
2294     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2295     CodeGenInstruction &InstInfo =
2296       CDP.getTargetInfo().getInstruction(getOperator());
2297 
2298     bool MadeChange = false;
2299 
2300     // Apply the result types to the node, these come from the things in the
2301     // (outs) list of the instruction.
2302     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2303                                         Inst.getNumResults());
2304     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2305       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2306 
2307     // If the instruction has implicit defs, we apply the first one as a result.
2308     // FIXME: This sucks, it should apply all implicit defs.
2309     if (!InstInfo.ImplicitDefs.empty()) {
2310       unsigned ResNo = NumResultsToAdd;
2311 
2312       // FIXME: Generalize to multiple possible types and multiple possible
2313       // ImplicitDefs.
2314       MVT::SimpleValueType VT =
2315         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2316 
2317       if (VT != MVT::Other)
2318         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2319     }
2320 
2321     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2322     // be the same.
2323     if (getOperator()->getName() == "INSERT_SUBREG") {
2324       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2325       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2326       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2327     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2328       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2329       // variadic.
2330 
2331       unsigned NChild = getNumChildren();
2332       if (NChild < 3) {
2333         TP.error("REG_SEQUENCE requires at least 3 operands!");
2334         return false;
2335       }
2336 
2337       if (NChild % 2 == 0) {
2338         TP.error("REG_SEQUENCE requires an odd number of operands!");
2339         return false;
2340       }
2341 
2342       if (!isOperandClass(getChild(0), "RegisterClass")) {
2343         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2344         return false;
2345       }
2346 
2347       for (unsigned I = 1; I < NChild; I += 2) {
2348         TreePatternNode *SubIdxChild = getChild(I + 1);
2349         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2350           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2351                    itostr(I + 1) + "!");
2352           return false;
2353         }
2354       }
2355     }
2356 
2357     unsigned ChildNo = 0;
2358     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2359       Record *OperandNode = Inst.getOperand(i);
2360 
2361       // If the instruction expects a predicate or optional def operand, we
2362       // codegen this by setting the operand to it's default value if it has a
2363       // non-empty DefaultOps field.
2364       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2365           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2366         continue;
2367 
2368       // Verify that we didn't run out of provided operands.
2369       if (ChildNo >= getNumChildren()) {
2370         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2371         return false;
2372       }
2373 
2374       TreePatternNode *Child = getChild(ChildNo++);
2375       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2376 
2377       // If the operand has sub-operands, they may be provided by distinct
2378       // child patterns, so attempt to match each sub-operand separately.
2379       if (OperandNode->isSubClassOf("Operand")) {
2380         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2381         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2382           // But don't do that if the whole operand is being provided by
2383           // a single ComplexPattern-related Operand.
2384 
2385           if (Child->getNumMIResults(CDP) < NumArgs) {
2386             // Match first sub-operand against the child we already have.
2387             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2388             MadeChange |=
2389               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2390 
2391             // And the remaining sub-operands against subsequent children.
2392             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2393               if (ChildNo >= getNumChildren()) {
2394                 emitTooFewOperandsError(TP, getOperator()->getName(),
2395                                         getNumChildren());
2396                 return false;
2397               }
2398               Child = getChild(ChildNo++);
2399 
2400               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2401               MadeChange |=
2402                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2403             }
2404             continue;
2405           }
2406         }
2407       }
2408 
2409       // If we didn't match by pieces above, attempt to match the whole
2410       // operand now.
2411       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2412     }
2413 
2414     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2415       emitTooManyOperandsError(TP, getOperator()->getName(),
2416                                ChildNo, getNumChildren());
2417       return false;
2418     }
2419 
2420     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2421       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2422     return MadeChange;
2423   }
2424 
2425   if (getOperator()->isSubClassOf("ComplexPattern")) {
2426     bool MadeChange = false;
2427 
2428     for (unsigned i = 0; i < getNumChildren(); ++i)
2429       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2430 
2431     return MadeChange;
2432   }
2433 
2434   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2435 
2436   // Node transforms always take one operand.
2437   if (getNumChildren() != 1) {
2438     TP.error("Node transform '" + getOperator()->getName() +
2439              "' requires one operand!");
2440     return false;
2441   }
2442 
2443   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2444   return MadeChange;
2445 }
2446 
2447 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2448 /// RHS of a commutative operation, not the on LHS.
2449 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2450   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2451     return true;
2452   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2453     return true;
2454   return false;
2455 }
2456 
2457 
2458 /// canPatternMatch - If it is impossible for this pattern to match on this
2459 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2460 /// used as a sanity check for .td files (to prevent people from writing stuff
2461 /// that can never possibly work), and to prevent the pattern permuter from
2462 /// generating stuff that is useless.
2463 bool TreePatternNode::canPatternMatch(std::string &Reason,
2464                                       const CodeGenDAGPatterns &CDP) {
2465   if (isLeaf()) return true;
2466 
2467   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2468     if (!getChild(i)->canPatternMatch(Reason, CDP))
2469       return false;
2470 
2471   // If this is an intrinsic, handle cases that would make it not match.  For
2472   // example, if an operand is required to be an immediate.
2473   if (getOperator()->isSubClassOf("Intrinsic")) {
2474     // TODO:
2475     return true;
2476   }
2477 
2478   if (getOperator()->isSubClassOf("ComplexPattern"))
2479     return true;
2480 
2481   // If this node is a commutative operator, check that the LHS isn't an
2482   // immediate.
2483   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2484   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2485   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2486     // Scan all of the operands of the node and make sure that only the last one
2487     // is a constant node, unless the RHS also is.
2488     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2489       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2490       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2491         if (OnlyOnRHSOfCommutative(getChild(i))) {
2492           Reason="Immediate value must be on the RHS of commutative operators!";
2493           return false;
2494         }
2495     }
2496   }
2497 
2498   return true;
2499 }
2500 
2501 //===----------------------------------------------------------------------===//
2502 // TreePattern implementation
2503 //
2504 
2505 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2506                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2507                          isInputPattern(isInput), HasError(false),
2508                          Infer(*this) {
2509   for (Init *I : RawPat->getValues())
2510     Trees.push_back(ParseTreePattern(I, ""));
2511 }
2512 
2513 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2514                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2515                          isInputPattern(isInput), HasError(false),
2516                          Infer(*this) {
2517   Trees.push_back(ParseTreePattern(Pat, ""));
2518 }
2519 
2520 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2521                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2522                          isInputPattern(isInput), HasError(false),
2523                          Infer(*this) {
2524   Trees.push_back(Pat);
2525 }
2526 
2527 void TreePattern::error(const Twine &Msg) {
2528   if (HasError)
2529     return;
2530   dump();
2531   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2532   HasError = true;
2533 }
2534 
2535 void TreePattern::ComputeNamedNodes() {
2536   for (TreePatternNode *Tree : Trees)
2537     ComputeNamedNodes(Tree);
2538 }
2539 
2540 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2541   if (!N->getName().empty())
2542     NamedNodes[N->getName()].push_back(N);
2543 
2544   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2545     ComputeNamedNodes(N->getChild(i));
2546 }
2547 
2548 
2549 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2550   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2551     Record *R = DI->getDef();
2552 
2553     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2554     // TreePatternNode of its own.  For example:
2555     ///   (foo GPR, imm) -> (foo GPR, (imm))
2556     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2557       return ParseTreePattern(
2558         DagInit::get(DI, nullptr,
2559                      std::vector<std::pair<Init*, StringInit*> >()),
2560         OpName);
2561 
2562     // Input argument?
2563     TreePatternNode *Res = new TreePatternNode(DI, 1);
2564     if (R->getName() == "node" && !OpName.empty()) {
2565       if (OpName.empty())
2566         error("'node' argument requires a name to match with operand list");
2567       Args.push_back(OpName);
2568     }
2569 
2570     Res->setName(OpName);
2571     return Res;
2572   }
2573 
2574   // ?:$name or just $name.
2575   if (isa<UnsetInit>(TheInit)) {
2576     if (OpName.empty())
2577       error("'?' argument requires a name to match with operand list");
2578     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2579     Args.push_back(OpName);
2580     Res->setName(OpName);
2581     return Res;
2582   }
2583 
2584   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2585     if (!OpName.empty())
2586       error("Constant int argument should not have a name!");
2587     return new TreePatternNode(II, 1);
2588   }
2589 
2590   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2591     // Turn this into an IntInit.
2592     Init *II = BI->convertInitializerTo(IntRecTy::get());
2593     if (!II || !isa<IntInit>(II))
2594       error("Bits value must be constants!");
2595     return ParseTreePattern(II, OpName);
2596   }
2597 
2598   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2599   if (!Dag) {
2600     TheInit->print(errs());
2601     error("Pattern has unexpected init kind!");
2602   }
2603   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2604   if (!OpDef) error("Pattern has unexpected operator type!");
2605   Record *Operator = OpDef->getDef();
2606 
2607   if (Operator->isSubClassOf("ValueType")) {
2608     // If the operator is a ValueType, then this must be "type cast" of a leaf
2609     // node.
2610     if (Dag->getNumArgs() != 1)
2611       error("Type cast only takes one operand!");
2612 
2613     TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2614                                             Dag->getArgNameStr(0));
2615 
2616     // Apply the type cast.
2617     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2618     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2619     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2620 
2621     if (!OpName.empty())
2622       error("ValueType cast should not have a name!");
2623     return New;
2624   }
2625 
2626   // Verify that this is something that makes sense for an operator.
2627   if (!Operator->isSubClassOf("PatFrag") &&
2628       !Operator->isSubClassOf("SDNode") &&
2629       !Operator->isSubClassOf("Instruction") &&
2630       !Operator->isSubClassOf("SDNodeXForm") &&
2631       !Operator->isSubClassOf("Intrinsic") &&
2632       !Operator->isSubClassOf("ComplexPattern") &&
2633       Operator->getName() != "set" &&
2634       Operator->getName() != "implicit")
2635     error("Unrecognized node '" + Operator->getName() + "'!");
2636 
2637   //  Check to see if this is something that is illegal in an input pattern.
2638   if (isInputPattern) {
2639     if (Operator->isSubClassOf("Instruction") ||
2640         Operator->isSubClassOf("SDNodeXForm"))
2641       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2642   } else {
2643     if (Operator->isSubClassOf("Intrinsic"))
2644       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2645 
2646     if (Operator->isSubClassOf("SDNode") &&
2647         Operator->getName() != "imm" &&
2648         Operator->getName() != "fpimm" &&
2649         Operator->getName() != "tglobaltlsaddr" &&
2650         Operator->getName() != "tconstpool" &&
2651         Operator->getName() != "tjumptable" &&
2652         Operator->getName() != "tframeindex" &&
2653         Operator->getName() != "texternalsym" &&
2654         Operator->getName() != "tblockaddress" &&
2655         Operator->getName() != "tglobaladdr" &&
2656         Operator->getName() != "bb" &&
2657         Operator->getName() != "vt" &&
2658         Operator->getName() != "mcsym")
2659       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2660   }
2661 
2662   std::vector<TreePatternNode*> Children;
2663 
2664   // Parse all the operands.
2665   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2666     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2667 
2668   // If the operator is an intrinsic, then this is just syntactic sugar for for
2669   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2670   // convert the intrinsic name to a number.
2671   if (Operator->isSubClassOf("Intrinsic")) {
2672     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2673     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2674 
2675     // If this intrinsic returns void, it must have side-effects and thus a
2676     // chain.
2677     if (Int.IS.RetVTs.empty())
2678       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2679     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2680       // Has side-effects, requires chain.
2681       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2682     else // Otherwise, no chain.
2683       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2684 
2685     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2686     Children.insert(Children.begin(), IIDNode);
2687   }
2688 
2689   if (Operator->isSubClassOf("ComplexPattern")) {
2690     for (unsigned i = 0; i < Children.size(); ++i) {
2691       TreePatternNode *Child = Children[i];
2692 
2693       if (Child->getName().empty())
2694         error("All arguments to a ComplexPattern must be named");
2695 
2696       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2697       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2698       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2699       auto OperandId = std::make_pair(Operator, i);
2700       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2701       if (PrevOp != ComplexPatternOperands.end()) {
2702         if (PrevOp->getValue() != OperandId)
2703           error("All ComplexPattern operands must appear consistently: "
2704                 "in the same order in just one ComplexPattern instance.");
2705       } else
2706         ComplexPatternOperands[Child->getName()] = OperandId;
2707     }
2708   }
2709 
2710   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2711   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2712   Result->setName(OpName);
2713 
2714   if (Dag->getName()) {
2715     assert(Result->getName().empty());
2716     Result->setName(Dag->getNameStr());
2717   }
2718   return Result;
2719 }
2720 
2721 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2722 /// will never match in favor of something obvious that will.  This is here
2723 /// strictly as a convenience to target authors because it allows them to write
2724 /// more type generic things and have useless type casts fold away.
2725 ///
2726 /// This returns true if any change is made.
2727 static bool SimplifyTree(TreePatternNode *&N) {
2728   if (N->isLeaf())
2729     return false;
2730 
2731   // If we have a bitconvert with a resolved type and if the source and
2732   // destination types are the same, then the bitconvert is useless, remove it.
2733   if (N->getOperator()->getName() == "bitconvert" &&
2734       N->getExtType(0).isValueTypeByHwMode(false) &&
2735       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2736       N->getName().empty()) {
2737     N = N->getChild(0);
2738     SimplifyTree(N);
2739     return true;
2740   }
2741 
2742   // Walk all children.
2743   bool MadeChange = false;
2744   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2745     TreePatternNode *Child = N->getChild(i);
2746     MadeChange |= SimplifyTree(Child);
2747     N->setChild(i, Child);
2748   }
2749   return MadeChange;
2750 }
2751 
2752 
2753 
2754 /// InferAllTypes - Infer/propagate as many types throughout the expression
2755 /// patterns as possible.  Return true if all types are inferred, false
2756 /// otherwise.  Flags an error if a type contradiction is found.
2757 bool TreePattern::
2758 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2759   if (NamedNodes.empty())
2760     ComputeNamedNodes();
2761 
2762   bool MadeChange = true;
2763   while (MadeChange) {
2764     MadeChange = false;
2765     for (TreePatternNode *&Tree : Trees) {
2766       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2767       MadeChange |= SimplifyTree(Tree);
2768     }
2769 
2770     // If there are constraints on our named nodes, apply them.
2771     for (auto &Entry : NamedNodes) {
2772       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2773 
2774       // If we have input named node types, propagate their types to the named
2775       // values here.
2776       if (InNamedTypes) {
2777         if (!InNamedTypes->count(Entry.getKey())) {
2778           error("Node '" + std::string(Entry.getKey()) +
2779                 "' in output pattern but not input pattern");
2780           return true;
2781         }
2782 
2783         const SmallVectorImpl<TreePatternNode*> &InNodes =
2784           InNamedTypes->find(Entry.getKey())->second;
2785 
2786         // The input types should be fully resolved by now.
2787         for (TreePatternNode *Node : Nodes) {
2788           // If this node is a register class, and it is the root of the pattern
2789           // then we're mapping something onto an input register.  We allow
2790           // changing the type of the input register in this case.  This allows
2791           // us to match things like:
2792           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2793           if (Node == Trees[0] && Node->isLeaf()) {
2794             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2795             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2796                        DI->getDef()->isSubClassOf("RegisterOperand")))
2797               continue;
2798           }
2799 
2800           assert(Node->getNumTypes() == 1 &&
2801                  InNodes[0]->getNumTypes() == 1 &&
2802                  "FIXME: cannot name multiple result nodes yet");
2803           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2804                                              *this);
2805         }
2806       }
2807 
2808       // If there are multiple nodes with the same name, they must all have the
2809       // same type.
2810       if (Entry.second.size() > 1) {
2811         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2812           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2813           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2814                  "FIXME: cannot name multiple result nodes yet");
2815 
2816           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2817           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2818         }
2819       }
2820     }
2821   }
2822 
2823   bool HasUnresolvedTypes = false;
2824   for (const TreePatternNode *Tree : Trees)
2825     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2826   return !HasUnresolvedTypes;
2827 }
2828 
2829 void TreePattern::print(raw_ostream &OS) const {
2830   OS << getRecord()->getName();
2831   if (!Args.empty()) {
2832     OS << "(" << Args[0];
2833     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2834       OS << ", " << Args[i];
2835     OS << ")";
2836   }
2837   OS << ": ";
2838 
2839   if (Trees.size() > 1)
2840     OS << "[\n";
2841   for (const TreePatternNode *Tree : Trees) {
2842     OS << "\t";
2843     Tree->print(OS);
2844     OS << "\n";
2845   }
2846 
2847   if (Trees.size() > 1)
2848     OS << "]\n";
2849 }
2850 
2851 void TreePattern::dump() const { print(errs()); }
2852 
2853 //===----------------------------------------------------------------------===//
2854 // CodeGenDAGPatterns implementation
2855 //
2856 
2857 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2858                                        PatternRewriterFn PatternRewriter)
2859     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2860       PatternRewriter(PatternRewriter) {
2861 
2862   Intrinsics = CodeGenIntrinsicTable(Records, false);
2863   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2864   ParseNodeInfo();
2865   ParseNodeTransforms();
2866   ParseComplexPatterns();
2867   ParsePatternFragments();
2868   ParseDefaultOperands();
2869   ParseInstructions();
2870   ParsePatternFragments(/*OutFrags*/true);
2871   ParsePatterns();
2872 
2873   // Break patterns with parameterized types into a series of patterns,
2874   // where each one has a fixed type and is predicated on the conditions
2875   // of the associated HW mode.
2876   ExpandHwModeBasedTypes();
2877 
2878   // Generate variants.  For example, commutative patterns can match
2879   // multiple ways.  Add them to PatternsToMatch as well.
2880   GenerateVariants();
2881 
2882   // Infer instruction flags.  For example, we can detect loads,
2883   // stores, and side effects in many cases by examining an
2884   // instruction's pattern.
2885   InferInstructionFlags();
2886 
2887   // Verify that instruction flags match the patterns.
2888   VerifyInstructionFlags();
2889 }
2890 
2891 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2892   Record *N = Records.getDef(Name);
2893   if (!N || !N->isSubClassOf("SDNode"))
2894     PrintFatalError("Error getting SDNode '" + Name + "'!");
2895 
2896   return N;
2897 }
2898 
2899 // Parse all of the SDNode definitions for the target, populating SDNodes.
2900 void CodeGenDAGPatterns::ParseNodeInfo() {
2901   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2902   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2903 
2904   while (!Nodes.empty()) {
2905     Record *R = Nodes.back();
2906     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2907     Nodes.pop_back();
2908   }
2909 
2910   // Get the builtin intrinsic nodes.
2911   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2912   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2913   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2914 }
2915 
2916 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2917 /// map, and emit them to the file as functions.
2918 void CodeGenDAGPatterns::ParseNodeTransforms() {
2919   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2920   while (!Xforms.empty()) {
2921     Record *XFormNode = Xforms.back();
2922     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2923     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2924     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2925 
2926     Xforms.pop_back();
2927   }
2928 }
2929 
2930 void CodeGenDAGPatterns::ParseComplexPatterns() {
2931   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2932   while (!AMs.empty()) {
2933     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2934     AMs.pop_back();
2935   }
2936 }
2937 
2938 
2939 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2940 /// file, building up the PatternFragments map.  After we've collected them all,
2941 /// inline fragments together as necessary, so that there are no references left
2942 /// inside a pattern fragment to a pattern fragment.
2943 ///
2944 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2945   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2946 
2947   // First step, parse all of the fragments.
2948   for (Record *Frag : Fragments) {
2949     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2950       continue;
2951 
2952     DagInit *Tree = Frag->getValueAsDag("Fragment");
2953     TreePattern *P =
2954         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2955              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2956              *this)).get();
2957 
2958     // Validate the argument list, converting it to set, to discard duplicates.
2959     std::vector<std::string> &Args = P->getArgList();
2960     // Copy the args so we can take StringRefs to them.
2961     auto ArgsCopy = Args;
2962     SmallDenseSet<StringRef, 4> OperandsSet;
2963     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2964 
2965     if (OperandsSet.count(""))
2966       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2967 
2968     // Parse the operands list.
2969     DagInit *OpsList = Frag->getValueAsDag("Operands");
2970     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2971     // Special cases: ops == outs == ins. Different names are used to
2972     // improve readability.
2973     if (!OpsOp ||
2974         (OpsOp->getDef()->getName() != "ops" &&
2975          OpsOp->getDef()->getName() != "outs" &&
2976          OpsOp->getDef()->getName() != "ins"))
2977       P->error("Operands list should start with '(ops ... '!");
2978 
2979     // Copy over the arguments.
2980     Args.clear();
2981     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2982       if (!isa<DefInit>(OpsList->getArg(j)) ||
2983           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2984         P->error("Operands list should all be 'node' values.");
2985       if (!OpsList->getArgName(j))
2986         P->error("Operands list should have names for each operand!");
2987       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2988       if (!OperandsSet.count(ArgNameStr))
2989         P->error("'" + ArgNameStr +
2990                  "' does not occur in pattern or was multiply specified!");
2991       OperandsSet.erase(ArgNameStr);
2992       Args.push_back(ArgNameStr);
2993     }
2994 
2995     if (!OperandsSet.empty())
2996       P->error("Operands list does not contain an entry for operand '" +
2997                *OperandsSet.begin() + "'!");
2998 
2999     // If there is a code init for this fragment, keep track of the fact that
3000     // this fragment uses it.
3001     TreePredicateFn PredFn(P);
3002     if (!PredFn.isAlwaysTrue())
3003       P->getOnlyTree()->addPredicateFn(PredFn);
3004 
3005     // If there is a node transformation corresponding to this, keep track of
3006     // it.
3007     Record *Transform = Frag->getValueAsDef("OperandTransform");
3008     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3009       P->getOnlyTree()->setTransformFn(Transform);
3010   }
3011 
3012   // Now that we've parsed all of the tree fragments, do a closure on them so
3013   // that there are not references to PatFrags left inside of them.
3014   for (Record *Frag : Fragments) {
3015     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3016       continue;
3017 
3018     TreePattern &ThePat = *PatternFragments[Frag];
3019     ThePat.InlinePatternFragments();
3020 
3021     // Infer as many types as possible.  Don't worry about it if we don't infer
3022     // all of them, some may depend on the inputs of the pattern.
3023     ThePat.InferAllTypes();
3024     ThePat.resetError();
3025 
3026     // If debugging, print out the pattern fragment result.
3027     DEBUG(ThePat.dump());
3028   }
3029 }
3030 
3031 void CodeGenDAGPatterns::ParseDefaultOperands() {
3032   std::vector<Record*> DefaultOps;
3033   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3034 
3035   // Find some SDNode.
3036   assert(!SDNodes.empty() && "No SDNodes parsed?");
3037   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3038 
3039   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3040     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3041 
3042     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3043     // SomeSDnode so that we can parse this.
3044     std::vector<std::pair<Init*, StringInit*> > Ops;
3045     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3046       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3047                                    DefaultInfo->getArgName(op)));
3048     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3049 
3050     // Create a TreePattern to parse this.
3051     TreePattern P(DefaultOps[i], DI, false, *this);
3052     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3053 
3054     // Copy the operands over into a DAGDefaultOperand.
3055     DAGDefaultOperand DefaultOpInfo;
3056 
3057     TreePatternNode *T = P.getTree(0);
3058     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3059       TreePatternNode *TPN = T->getChild(op);
3060       while (TPN->ApplyTypeConstraints(P, false))
3061         /* Resolve all types */;
3062 
3063       if (TPN->ContainsUnresolvedType(P)) {
3064         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3065                         DefaultOps[i]->getName() +
3066                         "' doesn't have a concrete type!");
3067       }
3068       DefaultOpInfo.DefaultOps.push_back(TPN);
3069     }
3070 
3071     // Insert it into the DefaultOperands map so we can find it later.
3072     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3073   }
3074 }
3075 
3076 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3077 /// instruction input.  Return true if this is a real use.
3078 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
3079                       std::map<std::string, TreePatternNode*> &InstInputs) {
3080   // No name -> not interesting.
3081   if (Pat->getName().empty()) {
3082     if (Pat->isLeaf()) {
3083       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3084       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3085                  DI->getDef()->isSubClassOf("RegisterOperand")))
3086         I->error("Input " + DI->getDef()->getName() + " must be named!");
3087     }
3088     return false;
3089   }
3090 
3091   Record *Rec;
3092   if (Pat->isLeaf()) {
3093     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3094     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
3095     Rec = DI->getDef();
3096   } else {
3097     Rec = Pat->getOperator();
3098   }
3099 
3100   // SRCVALUE nodes are ignored.
3101   if (Rec->getName() == "srcvalue")
3102     return false;
3103 
3104   TreePatternNode *&Slot = InstInputs[Pat->getName()];
3105   if (!Slot) {
3106     Slot = Pat;
3107     return true;
3108   }
3109   Record *SlotRec;
3110   if (Slot->isLeaf()) {
3111     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3112   } else {
3113     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3114     SlotRec = Slot->getOperator();
3115   }
3116 
3117   // Ensure that the inputs agree if we've already seen this input.
3118   if (Rec != SlotRec)
3119     I->error("All $" + Pat->getName() + " inputs must agree with each other");
3120   if (Slot->getExtTypes() != Pat->getExtTypes())
3121     I->error("All $" + Pat->getName() + " inputs must agree with each other");
3122   return true;
3123 }
3124 
3125 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3126 /// part of "I", the instruction), computing the set of inputs and outputs of
3127 /// the pattern.  Report errors if we see anything naughty.
3128 void CodeGenDAGPatterns::
3129 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
3130                             std::map<std::string, TreePatternNode*> &InstInputs,
3131                             std::map<std::string, TreePatternNode*>&InstResults,
3132                             std::vector<Record*> &InstImpResults) {
3133   if (Pat->isLeaf()) {
3134     bool isUse = HandleUse(I, Pat, InstInputs);
3135     if (!isUse && Pat->getTransformFn())
3136       I->error("Cannot specify a transform function for a non-input value!");
3137     return;
3138   }
3139 
3140   if (Pat->getOperator()->getName() == "implicit") {
3141     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3142       TreePatternNode *Dest = Pat->getChild(i);
3143       if (!Dest->isLeaf())
3144         I->error("implicitly defined value should be a register!");
3145 
3146       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3147       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3148         I->error("implicitly defined value should be a register!");
3149       InstImpResults.push_back(Val->getDef());
3150     }
3151     return;
3152   }
3153 
3154   if (Pat->getOperator()->getName() != "set") {
3155     // If this is not a set, verify that the children nodes are not void typed,
3156     // and recurse.
3157     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3158       if (Pat->getChild(i)->getNumTypes() == 0)
3159         I->error("Cannot have void nodes inside of patterns!");
3160       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
3161                                   InstImpResults);
3162     }
3163 
3164     // If this is a non-leaf node with no children, treat it basically as if
3165     // it were a leaf.  This handles nodes like (imm).
3166     bool isUse = HandleUse(I, Pat, InstInputs);
3167 
3168     if (!isUse && Pat->getTransformFn())
3169       I->error("Cannot specify a transform function for a non-input value!");
3170     return;
3171   }
3172 
3173   // Otherwise, this is a set, validate and collect instruction results.
3174   if (Pat->getNumChildren() == 0)
3175     I->error("set requires operands!");
3176 
3177   if (Pat->getTransformFn())
3178     I->error("Cannot specify a transform function on a set node!");
3179 
3180   // Check the set destinations.
3181   unsigned NumDests = Pat->getNumChildren()-1;
3182   for (unsigned i = 0; i != NumDests; ++i) {
3183     TreePatternNode *Dest = Pat->getChild(i);
3184     if (!Dest->isLeaf())
3185       I->error("set destination should be a register!");
3186 
3187     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3188     if (!Val) {
3189       I->error("set destination should be a register!");
3190       continue;
3191     }
3192 
3193     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3194         Val->getDef()->isSubClassOf("ValueType") ||
3195         Val->getDef()->isSubClassOf("RegisterOperand") ||
3196         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3197       if (Dest->getName().empty())
3198         I->error("set destination must have a name!");
3199       if (InstResults.count(Dest->getName()))
3200         I->error("cannot set '" + Dest->getName() +"' multiple times");
3201       InstResults[Dest->getName()] = Dest;
3202     } else if (Val->getDef()->isSubClassOf("Register")) {
3203       InstImpResults.push_back(Val->getDef());
3204     } else {
3205       I->error("set destination should be a register!");
3206     }
3207   }
3208 
3209   // Verify and collect info from the computation.
3210   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
3211                               InstInputs, InstResults, InstImpResults);
3212 }
3213 
3214 //===----------------------------------------------------------------------===//
3215 // Instruction Analysis
3216 //===----------------------------------------------------------------------===//
3217 
3218 class InstAnalyzer {
3219   const CodeGenDAGPatterns &CDP;
3220 public:
3221   bool hasSideEffects;
3222   bool mayStore;
3223   bool mayLoad;
3224   bool isBitcast;
3225   bool isVariadic;
3226 
3227   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3228     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3229       isBitcast(false), isVariadic(false) {}
3230 
3231   void Analyze(const TreePattern *Pat) {
3232     // Assume only the first tree is the pattern. The others are clobber nodes.
3233     AnalyzeNode(Pat->getTree(0));
3234   }
3235 
3236   void Analyze(const PatternToMatch &Pat) {
3237     AnalyzeNode(Pat.getSrcPattern());
3238   }
3239 
3240 private:
3241   bool IsNodeBitcast(const TreePatternNode *N) const {
3242     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3243       return false;
3244 
3245     if (N->getNumChildren() != 2)
3246       return false;
3247 
3248     const TreePatternNode *N0 = N->getChild(0);
3249     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
3250       return false;
3251 
3252     const TreePatternNode *N1 = N->getChild(1);
3253     if (N1->isLeaf())
3254       return false;
3255     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
3256       return false;
3257 
3258     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
3259     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3260       return false;
3261     return OpInfo.getEnumName() == "ISD::BITCAST";
3262   }
3263 
3264 public:
3265   void AnalyzeNode(const TreePatternNode *N) {
3266     if (N->isLeaf()) {
3267       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3268         Record *LeafRec = DI->getDef();
3269         // Handle ComplexPattern leaves.
3270         if (LeafRec->isSubClassOf("ComplexPattern")) {
3271           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3272           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3273           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3274           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3275         }
3276       }
3277       return;
3278     }
3279 
3280     // Analyze children.
3281     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3282       AnalyzeNode(N->getChild(i));
3283 
3284     // Ignore set nodes, which are not SDNodes.
3285     if (N->getOperator()->getName() == "set") {
3286       isBitcast = IsNodeBitcast(N);
3287       return;
3288     }
3289 
3290     // Notice properties of the node.
3291     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3292     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3293     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3294     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3295 
3296     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3297       // If this is an intrinsic, analyze it.
3298       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3299         mayLoad = true;// These may load memory.
3300 
3301       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3302         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3303 
3304       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3305           IntInfo->hasSideEffects)
3306         // ReadWriteMem intrinsics can have other strange effects.
3307         hasSideEffects = true;
3308     }
3309   }
3310 
3311 };
3312 
3313 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3314                              const InstAnalyzer &PatInfo,
3315                              Record *PatDef) {
3316   bool Error = false;
3317 
3318   // Remember where InstInfo got its flags.
3319   if (InstInfo.hasUndefFlags())
3320       InstInfo.InferredFrom = PatDef;
3321 
3322   // Check explicitly set flags for consistency.
3323   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3324       !InstInfo.hasSideEffects_Unset) {
3325     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3326     // the pattern has no side effects. That could be useful for div/rem
3327     // instructions that may trap.
3328     if (!InstInfo.hasSideEffects) {
3329       Error = true;
3330       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3331                  Twine(InstInfo.hasSideEffects));
3332     }
3333   }
3334 
3335   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3336     Error = true;
3337     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3338                Twine(InstInfo.mayStore));
3339   }
3340 
3341   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3342     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3343     // Some targets translate immediates to loads.
3344     if (!InstInfo.mayLoad) {
3345       Error = true;
3346       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3347                  Twine(InstInfo.mayLoad));
3348     }
3349   }
3350 
3351   // Transfer inferred flags.
3352   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3353   InstInfo.mayStore |= PatInfo.mayStore;
3354   InstInfo.mayLoad |= PatInfo.mayLoad;
3355 
3356   // These flags are silently added without any verification.
3357   InstInfo.isBitcast |= PatInfo.isBitcast;
3358 
3359   // Don't infer isVariadic. This flag means something different on SDNodes and
3360   // instructions. For example, a CALL SDNode is variadic because it has the
3361   // call arguments as operands, but a CALL instruction is not variadic - it
3362   // has argument registers as implicit, not explicit uses.
3363 
3364   return Error;
3365 }
3366 
3367 /// hasNullFragReference - Return true if the DAG has any reference to the
3368 /// null_frag operator.
3369 static bool hasNullFragReference(DagInit *DI) {
3370   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3371   if (!OpDef) return false;
3372   Record *Operator = OpDef->getDef();
3373 
3374   // If this is the null fragment, return true.
3375   if (Operator->getName() == "null_frag") return true;
3376   // If any of the arguments reference the null fragment, return true.
3377   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3378     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3379     if (Arg && hasNullFragReference(Arg))
3380       return true;
3381   }
3382 
3383   return false;
3384 }
3385 
3386 /// hasNullFragReference - Return true if any DAG in the list references
3387 /// the null_frag operator.
3388 static bool hasNullFragReference(ListInit *LI) {
3389   for (Init *I : LI->getValues()) {
3390     DagInit *DI = dyn_cast<DagInit>(I);
3391     assert(DI && "non-dag in an instruction Pattern list?!");
3392     if (hasNullFragReference(DI))
3393       return true;
3394   }
3395   return false;
3396 }
3397 
3398 /// Get all the instructions in a tree.
3399 static void
3400 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3401   if (Tree->isLeaf())
3402     return;
3403   if (Tree->getOperator()->isSubClassOf("Instruction"))
3404     Instrs.push_back(Tree->getOperator());
3405   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3406     getInstructionsInTree(Tree->getChild(i), Instrs);
3407 }
3408 
3409 /// Check the class of a pattern leaf node against the instruction operand it
3410 /// represents.
3411 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3412                               Record *Leaf) {
3413   if (OI.Rec == Leaf)
3414     return true;
3415 
3416   // Allow direct value types to be used in instruction set patterns.
3417   // The type will be checked later.
3418   if (Leaf->isSubClassOf("ValueType"))
3419     return true;
3420 
3421   // Patterns can also be ComplexPattern instances.
3422   if (Leaf->isSubClassOf("ComplexPattern"))
3423     return true;
3424 
3425   return false;
3426 }
3427 
3428 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3429     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3430 
3431   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3432 
3433   // Parse the instruction.
3434   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
3435   // Inline pattern fragments into it.
3436   I->InlinePatternFragments();
3437 
3438   // Infer as many types as possible.  If we cannot infer all of them, we can
3439   // never do anything with this instruction pattern: report it to the user.
3440   if (!I->InferAllTypes())
3441     I->error("Could not infer all types in pattern!");
3442 
3443   // InstInputs - Keep track of all of the inputs of the instruction, along
3444   // with the record they are declared as.
3445   std::map<std::string, TreePatternNode*> InstInputs;
3446 
3447   // InstResults - Keep track of all the virtual registers that are 'set'
3448   // in the instruction, including what reg class they are.
3449   std::map<std::string, TreePatternNode*> InstResults;
3450 
3451   std::vector<Record*> InstImpResults;
3452 
3453   // Verify that the top-level forms in the instruction are of void type, and
3454   // fill in the InstResults map.
3455   SmallString<32> TypesString;
3456   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3457     TypesString.clear();
3458     TreePatternNode *Pat = I->getTree(j);
3459     if (Pat->getNumTypes() != 0) {
3460       raw_svector_ostream OS(TypesString);
3461       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3462         if (k > 0)
3463           OS << ", ";
3464         Pat->getExtType(k).writeToStream(OS);
3465       }
3466       I->error("Top-level forms in instruction pattern should have"
3467                " void types, has types " +
3468                OS.str());
3469     }
3470 
3471     // Find inputs and outputs, and verify the structure of the uses/defs.
3472     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3473                                 InstImpResults);
3474   }
3475 
3476   // Now that we have inputs and outputs of the pattern, inspect the operands
3477   // list for the instruction.  This determines the order that operands are
3478   // added to the machine instruction the node corresponds to.
3479   unsigned NumResults = InstResults.size();
3480 
3481   // Parse the operands list from the (ops) list, validating it.
3482   assert(I->getArgList().empty() && "Args list should still be empty here!");
3483 
3484   // Check that all of the results occur first in the list.
3485   std::vector<Record*> Results;
3486   SmallVector<TreePatternNode *, 2> ResNodes;
3487   for (unsigned i = 0; i != NumResults; ++i) {
3488     if (i == CGI.Operands.size())
3489       I->error("'" + InstResults.begin()->first +
3490                "' set but does not appear in operand list!");
3491     const std::string &OpName = CGI.Operands[i].Name;
3492 
3493     // Check that it exists in InstResults.
3494     TreePatternNode *RNode = InstResults[OpName];
3495     if (!RNode)
3496       I->error("Operand $" + OpName + " does not exist in operand list!");
3497 
3498     ResNodes.push_back(RNode);
3499 
3500     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3501     if (!R)
3502       I->error("Operand $" + OpName + " should be a set destination: all "
3503                "outputs must occur before inputs in operand list!");
3504 
3505     if (!checkOperandClass(CGI.Operands[i], R))
3506       I->error("Operand $" + OpName + " class mismatch!");
3507 
3508     // Remember the return type.
3509     Results.push_back(CGI.Operands[i].Rec);
3510 
3511     // Okay, this one checks out.
3512     InstResults.erase(OpName);
3513   }
3514 
3515   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3516   // the copy while we're checking the inputs.
3517   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3518 
3519   std::vector<TreePatternNode*> ResultNodeOperands;
3520   std::vector<Record*> Operands;
3521   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3522     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3523     const std::string &OpName = Op.Name;
3524     if (OpName.empty())
3525       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3526 
3527     if (!InstInputsCheck.count(OpName)) {
3528       // If this is an operand with a DefaultOps set filled in, we can ignore
3529       // this.  When we codegen it, we will do so as always executed.
3530       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3531         // Does it have a non-empty DefaultOps field?  If so, ignore this
3532         // operand.
3533         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3534           continue;
3535       }
3536       I->error("Operand $" + OpName +
3537                " does not appear in the instruction pattern");
3538     }
3539     TreePatternNode *InVal = InstInputsCheck[OpName];
3540     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3541 
3542     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3543       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3544       if (!checkOperandClass(Op, InRec))
3545         I->error("Operand $" + OpName + "'s register class disagrees"
3546                  " between the operand and pattern");
3547     }
3548     Operands.push_back(Op.Rec);
3549 
3550     // Construct the result for the dest-pattern operand list.
3551     TreePatternNode *OpNode = InVal->clone();
3552 
3553     // No predicate is useful on the result.
3554     OpNode->clearPredicateFns();
3555 
3556     // Promote the xform function to be an explicit node if set.
3557     if (Record *Xform = OpNode->getTransformFn()) {
3558       OpNode->setTransformFn(nullptr);
3559       std::vector<TreePatternNode*> Children;
3560       Children.push_back(OpNode);
3561       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3562     }
3563 
3564     ResultNodeOperands.push_back(OpNode);
3565   }
3566 
3567   if (!InstInputsCheck.empty())
3568     I->error("Input operand $" + InstInputsCheck.begin()->first +
3569              " occurs in pattern but not in operands list!");
3570 
3571   TreePatternNode *ResultPattern =
3572     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3573                         GetNumNodeResults(I->getRecord(), *this));
3574   // Copy fully inferred output node types to instruction result pattern.
3575   for (unsigned i = 0; i != NumResults; ++i) {
3576     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3577     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3578   }
3579 
3580   // Create and insert the instruction.
3581   // FIXME: InstImpResults should not be part of DAGInstruction.
3582   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3583   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3584 
3585   // Use a temporary tree pattern to infer all types and make sure that the
3586   // constructed result is correct.  This depends on the instruction already
3587   // being inserted into the DAGInsts map.
3588   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3589   Temp.InferAllTypes(&I->getNamedNodesMap());
3590 
3591   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3592   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3593 
3594   return TheInsertedInst;
3595 }
3596 
3597 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3598 /// any fragments involved.  This populates the Instructions list with fully
3599 /// resolved instructions.
3600 void CodeGenDAGPatterns::ParseInstructions() {
3601   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3602 
3603   for (Record *Instr : Instrs) {
3604     ListInit *LI = nullptr;
3605 
3606     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3607       LI = Instr->getValueAsListInit("Pattern");
3608 
3609     // If there is no pattern, only collect minimal information about the
3610     // instruction for its operand list.  We have to assume that there is one
3611     // result, as we have no detailed info. A pattern which references the
3612     // null_frag operator is as-if no pattern were specified. Normally this
3613     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3614     // null_frag.
3615     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3616       std::vector<Record*> Results;
3617       std::vector<Record*> Operands;
3618 
3619       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3620 
3621       if (InstInfo.Operands.size() != 0) {
3622         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3623           Results.push_back(InstInfo.Operands[j].Rec);
3624 
3625         // The rest are inputs.
3626         for (unsigned j = InstInfo.Operands.NumDefs,
3627                e = InstInfo.Operands.size(); j < e; ++j)
3628           Operands.push_back(InstInfo.Operands[j].Rec);
3629       }
3630 
3631       // Create and insert the instruction.
3632       std::vector<Record*> ImpResults;
3633       Instructions.insert(std::make_pair(Instr,
3634                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3635       continue;  // no pattern.
3636     }
3637 
3638     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3639     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3640 
3641     (void)DI;
3642     DEBUG(DI.getPattern()->dump());
3643   }
3644 
3645   // If we can, convert the instructions to be patterns that are matched!
3646   for (auto &Entry : Instructions) {
3647     DAGInstruction &TheInst = Entry.second;
3648     TreePattern *I = TheInst.getPattern();
3649     if (!I) continue;  // No pattern.
3650 
3651     if (PatternRewriter)
3652       PatternRewriter(I);
3653     // FIXME: Assume only the first tree is the pattern. The others are clobber
3654     // nodes.
3655     TreePatternNode *Pattern = I->getTree(0);
3656     TreePatternNode *SrcPattern;
3657     if (Pattern->getOperator()->getName() == "set") {
3658       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3659     } else{
3660       // Not a set (store or something?)
3661       SrcPattern = Pattern;
3662     }
3663 
3664     Record *Instr = Entry.first;
3665     ListInit *Preds = Instr->getValueAsListInit("Predicates");
3666     int Complexity = Instr->getValueAsInt("AddedComplexity");
3667     AddPatternToMatch(
3668         I,
3669         PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3670                        TheInst.getResultPattern(), TheInst.getImpResults(),
3671                        Complexity, Instr->getID()));
3672   }
3673 }
3674 
3675 
3676 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3677 
3678 static void FindNames(const TreePatternNode *P,
3679                       std::map<std::string, NameRecord> &Names,
3680                       TreePattern *PatternTop) {
3681   if (!P->getName().empty()) {
3682     NameRecord &Rec = Names[P->getName()];
3683     // If this is the first instance of the name, remember the node.
3684     if (Rec.second++ == 0)
3685       Rec.first = P;
3686     else if (Rec.first->getExtTypes() != P->getExtTypes())
3687       PatternTop->error("repetition of value: $" + P->getName() +
3688                         " where different uses have different types!");
3689   }
3690 
3691   if (!P->isLeaf()) {
3692     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3693       FindNames(P->getChild(i), Names, PatternTop);
3694   }
3695 }
3696 
3697 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3698   std::vector<Predicate> Preds;
3699   for (Init *I : L->getValues()) {
3700     if (DefInit *Pred = dyn_cast<DefInit>(I))
3701       Preds.push_back(Pred->getDef());
3702     else
3703       llvm_unreachable("Non-def on the list");
3704   }
3705 
3706   // Sort so that different orders get canonicalized to the same string.
3707   std::sort(Preds.begin(), Preds.end());
3708   return Preds;
3709 }
3710 
3711 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3712                                            PatternToMatch &&PTM) {
3713   // Do some sanity checking on the pattern we're about to match.
3714   std::string Reason;
3715   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3716     PrintWarning(Pattern->getRecord()->getLoc(),
3717       Twine("Pattern can never match: ") + Reason);
3718     return;
3719   }
3720 
3721   // If the source pattern's root is a complex pattern, that complex pattern
3722   // must specify the nodes it can potentially match.
3723   if (const ComplexPattern *CP =
3724         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3725     if (CP->getRootNodes().empty())
3726       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3727                      " could match");
3728 
3729 
3730   // Find all of the named values in the input and output, ensure they have the
3731   // same type.
3732   std::map<std::string, NameRecord> SrcNames, DstNames;
3733   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3734   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3735 
3736   // Scan all of the named values in the destination pattern, rejecting them if
3737   // they don't exist in the input pattern.
3738   for (const auto &Entry : DstNames) {
3739     if (SrcNames[Entry.first].first == nullptr)
3740       Pattern->error("Pattern has input without matching name in output: $" +
3741                      Entry.first);
3742   }
3743 
3744   // Scan all of the named values in the source pattern, rejecting them if the
3745   // name isn't used in the dest, and isn't used to tie two values together.
3746   for (const auto &Entry : SrcNames)
3747     if (DstNames[Entry.first].first == nullptr &&
3748         SrcNames[Entry.first].second == 1)
3749       Pattern->error("Pattern has dead named input: $" + Entry.first);
3750 
3751   PatternsToMatch.push_back(std::move(PTM));
3752 }
3753 
3754 void CodeGenDAGPatterns::InferInstructionFlags() {
3755   ArrayRef<const CodeGenInstruction*> Instructions =
3756     Target.getInstructionsByEnumValue();
3757 
3758   // First try to infer flags from the primary instruction pattern, if any.
3759   SmallVector<CodeGenInstruction*, 8> Revisit;
3760   unsigned Errors = 0;
3761   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3762     CodeGenInstruction &InstInfo =
3763       const_cast<CodeGenInstruction &>(*Instructions[i]);
3764 
3765     // Get the primary instruction pattern.
3766     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3767     if (!Pattern) {
3768       if (InstInfo.hasUndefFlags())
3769         Revisit.push_back(&InstInfo);
3770       continue;
3771     }
3772     InstAnalyzer PatInfo(*this);
3773     PatInfo.Analyze(Pattern);
3774     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3775   }
3776 
3777   // Second, look for single-instruction patterns defined outside the
3778   // instruction.
3779   for (const PatternToMatch &PTM : ptms()) {
3780     // We can only infer from single-instruction patterns, otherwise we won't
3781     // know which instruction should get the flags.
3782     SmallVector<Record*, 8> PatInstrs;
3783     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3784     if (PatInstrs.size() != 1)
3785       continue;
3786 
3787     // Get the single instruction.
3788     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3789 
3790     // Only infer properties from the first pattern. We'll verify the others.
3791     if (InstInfo.InferredFrom)
3792       continue;
3793 
3794     InstAnalyzer PatInfo(*this);
3795     PatInfo.Analyze(PTM);
3796     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3797   }
3798 
3799   if (Errors)
3800     PrintFatalError("pattern conflicts");
3801 
3802   // Revisit instructions with undefined flags and no pattern.
3803   if (Target.guessInstructionProperties()) {
3804     for (CodeGenInstruction *InstInfo : Revisit) {
3805       if (InstInfo->InferredFrom)
3806         continue;
3807       // The mayLoad and mayStore flags default to false.
3808       // Conservatively assume hasSideEffects if it wasn't explicit.
3809       if (InstInfo->hasSideEffects_Unset)
3810         InstInfo->hasSideEffects = true;
3811     }
3812     return;
3813   }
3814 
3815   // Complain about any flags that are still undefined.
3816   for (CodeGenInstruction *InstInfo : Revisit) {
3817     if (InstInfo->InferredFrom)
3818       continue;
3819     if (InstInfo->hasSideEffects_Unset)
3820       PrintError(InstInfo->TheDef->getLoc(),
3821                  "Can't infer hasSideEffects from patterns");
3822     if (InstInfo->mayStore_Unset)
3823       PrintError(InstInfo->TheDef->getLoc(),
3824                  "Can't infer mayStore from patterns");
3825     if (InstInfo->mayLoad_Unset)
3826       PrintError(InstInfo->TheDef->getLoc(),
3827                  "Can't infer mayLoad from patterns");
3828   }
3829 }
3830 
3831 
3832 /// Verify instruction flags against pattern node properties.
3833 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3834   unsigned Errors = 0;
3835   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3836     const PatternToMatch &PTM = *I;
3837     SmallVector<Record*, 8> Instrs;
3838     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3839     if (Instrs.empty())
3840       continue;
3841 
3842     // Count the number of instructions with each flag set.
3843     unsigned NumSideEffects = 0;
3844     unsigned NumStores = 0;
3845     unsigned NumLoads = 0;
3846     for (const Record *Instr : Instrs) {
3847       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3848       NumSideEffects += InstInfo.hasSideEffects;
3849       NumStores += InstInfo.mayStore;
3850       NumLoads += InstInfo.mayLoad;
3851     }
3852 
3853     // Analyze the source pattern.
3854     InstAnalyzer PatInfo(*this);
3855     PatInfo.Analyze(PTM);
3856 
3857     // Collect error messages.
3858     SmallVector<std::string, 4> Msgs;
3859 
3860     // Check for missing flags in the output.
3861     // Permit extra flags for now at least.
3862     if (PatInfo.hasSideEffects && !NumSideEffects)
3863       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3864 
3865     // Don't verify store flags on instructions with side effects. At least for
3866     // intrinsics, side effects implies mayStore.
3867     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3868       Msgs.push_back("pattern may store, but mayStore isn't set");
3869 
3870     // Similarly, mayStore implies mayLoad on intrinsics.
3871     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3872       Msgs.push_back("pattern may load, but mayLoad isn't set");
3873 
3874     // Print error messages.
3875     if (Msgs.empty())
3876       continue;
3877     ++Errors;
3878 
3879     for (const std::string &Msg : Msgs)
3880       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3881                  (Instrs.size() == 1 ?
3882                   "instruction" : "output instructions"));
3883     // Provide the location of the relevant instruction definitions.
3884     for (const Record *Instr : Instrs) {
3885       if (Instr != PTM.getSrcRecord())
3886         PrintError(Instr->getLoc(), "defined here");
3887       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3888       if (InstInfo.InferredFrom &&
3889           InstInfo.InferredFrom != InstInfo.TheDef &&
3890           InstInfo.InferredFrom != PTM.getSrcRecord())
3891         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3892     }
3893   }
3894   if (Errors)
3895     PrintFatalError("Errors in DAG patterns");
3896 }
3897 
3898 /// Given a pattern result with an unresolved type, see if we can find one
3899 /// instruction with an unresolved result type.  Force this result type to an
3900 /// arbitrary element if it's possible types to converge results.
3901 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3902   if (N->isLeaf())
3903     return false;
3904 
3905   // Analyze children.
3906   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3907     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3908       return true;
3909 
3910   if (!N->getOperator()->isSubClassOf("Instruction"))
3911     return false;
3912 
3913   // If this type is already concrete or completely unknown we can't do
3914   // anything.
3915   TypeInfer &TI = TP.getInfer();
3916   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3917     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3918       continue;
3919 
3920     // Otherwise, force its type to an arbitrary choice.
3921     if (TI.forceArbitrary(N->getExtType(i)))
3922       return true;
3923   }
3924 
3925   return false;
3926 }
3927 
3928 void CodeGenDAGPatterns::ParsePatterns() {
3929   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3930 
3931   for (Record *CurPattern : Patterns) {
3932     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3933 
3934     // If the pattern references the null_frag, there's nothing to do.
3935     if (hasNullFragReference(Tree))
3936       continue;
3937 
3938     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3939 
3940     // Inline pattern fragments into it.
3941     Pattern->InlinePatternFragments();
3942 
3943     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3944     if (LI->empty()) continue;  // no pattern.
3945 
3946     // Parse the instruction.
3947     TreePattern Result(CurPattern, LI, false, *this);
3948 
3949     // Inline pattern fragments into it.
3950     Result.InlinePatternFragments();
3951 
3952     if (Result.getNumTrees() != 1)
3953       Result.error("Cannot handle instructions producing instructions "
3954                    "with temporaries yet!");
3955 
3956     bool IterateInference;
3957     bool InferredAllPatternTypes, InferredAllResultTypes;
3958     do {
3959       // Infer as many types as possible.  If we cannot infer all of them, we
3960       // can never do anything with this pattern: report it to the user.
3961       InferredAllPatternTypes =
3962         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3963 
3964       // Infer as many types as possible.  If we cannot infer all of them, we
3965       // can never do anything with this pattern: report it to the user.
3966       InferredAllResultTypes =
3967           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3968 
3969       IterateInference = false;
3970 
3971       // Apply the type of the result to the source pattern.  This helps us
3972       // resolve cases where the input type is known to be a pointer type (which
3973       // is considered resolved), but the result knows it needs to be 32- or
3974       // 64-bits.  Infer the other way for good measure.
3975       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3976                                         Pattern->getTree(0)->getNumTypes());
3977            i != e; ++i) {
3978         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3979             i, Result.getTree(0)->getExtType(i), Result);
3980         IterateInference |= Result.getTree(0)->UpdateNodeType(
3981             i, Pattern->getTree(0)->getExtType(i), Result);
3982       }
3983 
3984       // If our iteration has converged and the input pattern's types are fully
3985       // resolved but the result pattern is not fully resolved, we may have a
3986       // situation where we have two instructions in the result pattern and
3987       // the instructions require a common register class, but don't care about
3988       // what actual MVT is used.  This is actually a bug in our modelling:
3989       // output patterns should have register classes, not MVTs.
3990       //
3991       // In any case, to handle this, we just go through and disambiguate some
3992       // arbitrary types to the result pattern's nodes.
3993       if (!IterateInference && InferredAllPatternTypes &&
3994           !InferredAllResultTypes)
3995         IterateInference =
3996             ForceArbitraryInstResultType(Result.getTree(0), Result);
3997     } while (IterateInference);
3998 
3999     // Verify that we inferred enough types that we can do something with the
4000     // pattern and result.  If these fire the user has to add type casts.
4001     if (!InferredAllPatternTypes)
4002       Pattern->error("Could not infer all types in pattern!");
4003     if (!InferredAllResultTypes) {
4004       Pattern->dump();
4005       Result.error("Could not infer all types in pattern result!");
4006     }
4007 
4008     // Validate that the input pattern is correct.
4009     std::map<std::string, TreePatternNode*> InstInputs;
4010     std::map<std::string, TreePatternNode*> InstResults;
4011     std::vector<Record*> InstImpResults;
4012     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
4013       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
4014                                   InstInputs, InstResults,
4015                                   InstImpResults);
4016 
4017     // Promote the xform function to be an explicit node if set.
4018     TreePatternNode *DstPattern = Result.getOnlyTree();
4019     std::vector<TreePatternNode*> ResultNodeOperands;
4020     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
4021       TreePatternNode *OpNode = DstPattern->getChild(ii);
4022       if (Record *Xform = OpNode->getTransformFn()) {
4023         OpNode->setTransformFn(nullptr);
4024         std::vector<TreePatternNode*> Children;
4025         Children.push_back(OpNode);
4026         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
4027       }
4028       ResultNodeOperands.push_back(OpNode);
4029     }
4030     DstPattern = Result.getOnlyTree();
4031     if (!DstPattern->isLeaf())
4032       DstPattern = new TreePatternNode(DstPattern->getOperator(),
4033                                        ResultNodeOperands,
4034                                        DstPattern->getNumTypes());
4035 
4036     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
4037       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
4038 
4039     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
4040     Temp.InferAllTypes();
4041 
4042     // A pattern may end up with an "impossible" type, i.e. a situation
4043     // where all types have been eliminated for some node in this pattern.
4044     // This could occur for intrinsics that only make sense for a specific
4045     // value type, and use a specific register class. If, for some mode,
4046     // that register class does not accept that type, the type inference
4047     // will lead to a contradiction, which is not an error however, but
4048     // a sign that this pattern will simply never match.
4049     if (Pattern->getTree(0)->hasPossibleType() &&
4050         Temp.getOnlyTree()->hasPossibleType()) {
4051       ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
4052       int Complexity = CurPattern->getValueAsInt("AddedComplexity");
4053       if (PatternRewriter)
4054         PatternRewriter(Pattern);
4055       AddPatternToMatch(
4056           Pattern,
4057           PatternToMatch(
4058               CurPattern, makePredList(Preds), Pattern->getTree(0),
4059               Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
4060               CurPattern->getID()));
4061     }
4062   }
4063 }
4064 
4065 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4066   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4067     for (const auto &I : VTS)
4068       Modes.insert(I.first);
4069 
4070   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4071     collectModes(Modes, N->getChild(i));
4072 }
4073 
4074 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4075   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4076   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4077   std::vector<PatternToMatch> Copy = PatternsToMatch;
4078   PatternsToMatch.clear();
4079 
4080   auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
4081     TreePatternNode *NewSrc = P.SrcPattern->clone();
4082     TreePatternNode *NewDst = P.DstPattern->clone();
4083     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4084       delete NewSrc;
4085       delete NewDst;
4086       return;
4087     }
4088 
4089     std::vector<Predicate> Preds = P.Predicates;
4090     const std::vector<Predicate> &MC = ModeChecks[Mode];
4091     Preds.insert(Preds.end(), MC.begin(), MC.end());
4092     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
4093                                  P.getDstRegs(), P.getAddedComplexity(),
4094                                  Record::getNewUID(), Mode);
4095   };
4096 
4097   for (PatternToMatch &P : Copy) {
4098     TreePatternNode *SrcP = nullptr, *DstP = nullptr;
4099     if (P.SrcPattern->hasProperTypeByHwMode())
4100       SrcP = P.SrcPattern;
4101     if (P.DstPattern->hasProperTypeByHwMode())
4102       DstP = P.DstPattern;
4103     if (!SrcP && !DstP) {
4104       PatternsToMatch.push_back(P);
4105       continue;
4106     }
4107 
4108     std::set<unsigned> Modes;
4109     if (SrcP)
4110       collectModes(Modes, SrcP);
4111     if (DstP)
4112       collectModes(Modes, DstP);
4113 
4114     // The predicate for the default mode needs to be constructed for each
4115     // pattern separately.
4116     // Since not all modes must be present in each pattern, if a mode m is
4117     // absent, then there is no point in constructing a check for m. If such
4118     // a check was created, it would be equivalent to checking the default
4119     // mode, except not all modes' predicates would be a part of the checking
4120     // code. The subsequently generated check for the default mode would then
4121     // have the exact same patterns, but a different predicate code. To avoid
4122     // duplicated patterns with different predicate checks, construct the
4123     // default check as a negation of all predicates that are actually present
4124     // in the source/destination patterns.
4125     std::vector<Predicate> DefaultPred;
4126 
4127     for (unsigned M : Modes) {
4128       if (M == DefaultMode)
4129         continue;
4130       if (ModeChecks.find(M) != ModeChecks.end())
4131         continue;
4132 
4133       // Fill the map entry for this mode.
4134       const HwMode &HM = CGH.getMode(M);
4135       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4136 
4137       // Add negations of the HM's predicates to the default predicate.
4138       DefaultPred.emplace_back(Predicate(HM.Features, false));
4139     }
4140 
4141     for (unsigned M : Modes) {
4142       if (M == DefaultMode)
4143         continue;
4144       AppendPattern(P, M);
4145     }
4146 
4147     bool HasDefault = Modes.count(DefaultMode);
4148     if (HasDefault)
4149       AppendPattern(P, DefaultMode);
4150   }
4151 }
4152 
4153 /// Dependent variable map for CodeGenDAGPattern variant generation
4154 typedef StringMap<int> DepVarMap;
4155 
4156 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4157   if (N->isLeaf()) {
4158     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4159       DepMap[N->getName()]++;
4160   } else {
4161     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4162       FindDepVarsOf(N->getChild(i), DepMap);
4163   }
4164 }
4165 
4166 /// Find dependent variables within child patterns
4167 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4168   DepVarMap depcounts;
4169   FindDepVarsOf(N, depcounts);
4170   for (const auto &Pair : depcounts) {
4171     if (Pair.getValue() > 1)
4172       DepVars.insert(Pair.getKey());
4173   }
4174 }
4175 
4176 #ifndef NDEBUG
4177 /// Dump the dependent variable set:
4178 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4179   if (DepVars.empty()) {
4180     DEBUG(errs() << "<empty set>");
4181   } else {
4182     DEBUG(errs() << "[ ");
4183     for (const auto &DepVar : DepVars) {
4184       DEBUG(errs() << DepVar.getKey() << " ");
4185     }
4186     DEBUG(errs() << "]");
4187   }
4188 }
4189 #endif
4190 
4191 
4192 /// CombineChildVariants - Given a bunch of permutations of each child of the
4193 /// 'operator' node, put them together in all possible ways.
4194 static void CombineChildVariants(TreePatternNode *Orig,
4195                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
4196                                  std::vector<TreePatternNode*> &OutVariants,
4197                                  CodeGenDAGPatterns &CDP,
4198                                  const MultipleUseVarSet &DepVars) {
4199   // Make sure that each operand has at least one variant to choose from.
4200   for (const auto &Variants : ChildVariants)
4201     if (Variants.empty())
4202       return;
4203 
4204   // The end result is an all-pairs construction of the resultant pattern.
4205   std::vector<unsigned> Idxs;
4206   Idxs.resize(ChildVariants.size());
4207   bool NotDone;
4208   do {
4209 #ifndef NDEBUG
4210     DEBUG(if (!Idxs.empty()) {
4211             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4212               for (unsigned Idx : Idxs) {
4213                 errs() << Idx << " ";
4214             }
4215             errs() << "]\n";
4216           });
4217 #endif
4218     // Create the variant and add it to the output list.
4219     std::vector<TreePatternNode*> NewChildren;
4220     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4221       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4222     auto R = llvm::make_unique<TreePatternNode>(
4223         Orig->getOperator(), NewChildren, Orig->getNumTypes());
4224 
4225     // Copy over properties.
4226     R->setName(Orig->getName());
4227     R->setPredicateFns(Orig->getPredicateFns());
4228     R->setTransformFn(Orig->getTransformFn());
4229     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4230       R->setType(i, Orig->getExtType(i));
4231 
4232     // If this pattern cannot match, do not include it as a variant.
4233     std::string ErrString;
4234     // Scan to see if this pattern has already been emitted.  We can get
4235     // duplication due to things like commuting:
4236     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4237     // which are the same pattern.  Ignore the dups.
4238     if (R->canPatternMatch(ErrString, CDP) &&
4239         none_of(OutVariants, [&](TreePatternNode *Variant) {
4240           return R->isIsomorphicTo(Variant, DepVars);
4241         }))
4242       OutVariants.push_back(R.release());
4243 
4244     // Increment indices to the next permutation by incrementing the
4245     // indices from last index backward, e.g., generate the sequence
4246     // [0, 0], [0, 1], [1, 0], [1, 1].
4247     int IdxsIdx;
4248     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4249       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4250         Idxs[IdxsIdx] = 0;
4251       else
4252         break;
4253     }
4254     NotDone = (IdxsIdx >= 0);
4255   } while (NotDone);
4256 }
4257 
4258 /// CombineChildVariants - A helper function for binary operators.
4259 ///
4260 static void CombineChildVariants(TreePatternNode *Orig,
4261                                  const std::vector<TreePatternNode*> &LHS,
4262                                  const std::vector<TreePatternNode*> &RHS,
4263                                  std::vector<TreePatternNode*> &OutVariants,
4264                                  CodeGenDAGPatterns &CDP,
4265                                  const MultipleUseVarSet &DepVars) {
4266   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4267   ChildVariants.push_back(LHS);
4268   ChildVariants.push_back(RHS);
4269   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4270 }
4271 
4272 
4273 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
4274                                      std::vector<TreePatternNode *> &Children) {
4275   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4276   Record *Operator = N->getOperator();
4277 
4278   // Only permit raw nodes.
4279   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4280       N->getTransformFn()) {
4281     Children.push_back(N);
4282     return;
4283   }
4284 
4285   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4286     Children.push_back(N->getChild(0));
4287   else
4288     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
4289 
4290   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4291     Children.push_back(N->getChild(1));
4292   else
4293     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
4294 }
4295 
4296 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4297 /// the (potentially recursive) pattern by using algebraic laws.
4298 ///
4299 static void GenerateVariantsOf(TreePatternNode *N,
4300                                std::vector<TreePatternNode*> &OutVariants,
4301                                CodeGenDAGPatterns &CDP,
4302                                const MultipleUseVarSet &DepVars) {
4303   // We cannot permute leaves or ComplexPattern uses.
4304   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4305     OutVariants.push_back(N);
4306     return;
4307   }
4308 
4309   // Look up interesting info about the node.
4310   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4311 
4312   // If this node is associative, re-associate.
4313   if (NodeInfo.hasProperty(SDNPAssociative)) {
4314     // Re-associate by pulling together all of the linked operators
4315     std::vector<TreePatternNode*> MaximalChildren;
4316     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4317 
4318     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4319     // permutations.
4320     if (MaximalChildren.size() == 3) {
4321       // Find the variants of all of our maximal children.
4322       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
4323       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4324       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4325       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4326 
4327       // There are only two ways we can permute the tree:
4328       //   (A op B) op C    and    A op (B op C)
4329       // Within these forms, we can also permute A/B/C.
4330 
4331       // Generate legal pair permutations of A/B/C.
4332       std::vector<TreePatternNode*> ABVariants;
4333       std::vector<TreePatternNode*> BAVariants;
4334       std::vector<TreePatternNode*> ACVariants;
4335       std::vector<TreePatternNode*> CAVariants;
4336       std::vector<TreePatternNode*> BCVariants;
4337       std::vector<TreePatternNode*> CBVariants;
4338       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4339       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4340       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4341       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4342       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4343       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4344 
4345       // Combine those into the result: (x op x) op x
4346       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4347       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4348       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4349       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4350       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4351       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4352 
4353       // Combine those into the result: x op (x op x)
4354       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4355       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4356       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4357       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4358       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4359       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4360       return;
4361     }
4362   }
4363 
4364   // Compute permutations of all children.
4365   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4366   ChildVariants.resize(N->getNumChildren());
4367   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4368     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
4369 
4370   // Build all permutations based on how the children were formed.
4371   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4372 
4373   // If this node is commutative, consider the commuted order.
4374   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4375   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4376     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4377            "Commutative but doesn't have 2 children!");
4378     // Don't count children which are actually register references.
4379     unsigned NC = 0;
4380     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4381       TreePatternNode *Child = N->getChild(i);
4382       if (Child->isLeaf())
4383         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4384           Record *RR = DI->getDef();
4385           if (RR->isSubClassOf("Register"))
4386             continue;
4387         }
4388       NC++;
4389     }
4390     // Consider the commuted order.
4391     if (isCommIntrinsic) {
4392       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4393       // operands are the commutative operands, and there might be more operands
4394       // after those.
4395       assert(NC >= 3 &&
4396              "Commutative intrinsic should have at least 3 children!");
4397       std::vector<std::vector<TreePatternNode*> > Variants;
4398       Variants.push_back(ChildVariants[0]); // Intrinsic id.
4399       Variants.push_back(ChildVariants[2]);
4400       Variants.push_back(ChildVariants[1]);
4401       for (unsigned i = 3; i != NC; ++i)
4402         Variants.push_back(ChildVariants[i]);
4403       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4404     } else if (NC == N->getNumChildren()) {
4405       std::vector<std::vector<TreePatternNode*> > Variants;
4406       Variants.push_back(ChildVariants[1]);
4407       Variants.push_back(ChildVariants[0]);
4408       for (unsigned i = 2; i != NC; ++i)
4409         Variants.push_back(ChildVariants[i]);
4410       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4411     }
4412   }
4413 }
4414 
4415 
4416 // GenerateVariants - Generate variants.  For example, commutative patterns can
4417 // match multiple ways.  Add them to PatternsToMatch as well.
4418 void CodeGenDAGPatterns::GenerateVariants() {
4419   DEBUG(errs() << "Generating instruction variants.\n");
4420 
4421   // Loop over all of the patterns we've collected, checking to see if we can
4422   // generate variants of the instruction, through the exploitation of
4423   // identities.  This permits the target to provide aggressive matching without
4424   // the .td file having to contain tons of variants of instructions.
4425   //
4426   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4427   // intentionally do not reconsider these.  Any variants of added patterns have
4428   // already been added.
4429   //
4430   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4431     MultipleUseVarSet             DepVars;
4432     std::vector<TreePatternNode*> Variants;
4433     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4434     DEBUG(errs() << "Dependent/multiply used variables: ");
4435     DEBUG(DumpDepVars(DepVars));
4436     DEBUG(errs() << "\n");
4437     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
4438                        DepVars);
4439 
4440     assert(!Variants.empty() && "Must create at least original variant!");
4441     if (Variants.size() == 1)  // No additional variants for this pattern.
4442       continue;
4443 
4444     DEBUG(errs() << "FOUND VARIANTS OF: ";
4445           PatternsToMatch[i].getSrcPattern()->dump();
4446           errs() << "\n");
4447 
4448     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4449       TreePatternNode *Variant = Variants[v];
4450 
4451       DEBUG(errs() << "  VAR#" << v <<  ": ";
4452             Variant->dump();
4453             errs() << "\n");
4454 
4455       // Scan to see if an instruction or explicit pattern already matches this.
4456       bool AlreadyExists = false;
4457       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4458         // Skip if the top level predicates do not match.
4459         if (PatternsToMatch[i].getPredicates() !=
4460             PatternsToMatch[p].getPredicates())
4461           continue;
4462         // Check to see if this variant already exists.
4463         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4464                                     DepVars)) {
4465           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4466           AlreadyExists = true;
4467           break;
4468         }
4469       }
4470       // If we already have it, ignore the variant.
4471       if (AlreadyExists) continue;
4472 
4473       // Otherwise, add it to the list of patterns we have.
4474       PatternsToMatch.push_back(PatternToMatch(
4475           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4476           Variant, PatternsToMatch[i].getDstPattern(),
4477           PatternsToMatch[i].getDstRegs(),
4478           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4479     }
4480 
4481     DEBUG(errs() << "\n");
4482   }
4483 }
4484