1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   bool ContainsDefault = false;
103   MVT DT = MVT::Other;
104 
105   SmallDenseSet<unsigned, 4> Modes;
106   for (const auto &P : VVT) {
107     unsigned M = P.first;
108     Modes.insert(M);
109     // Make sure there exists a set for each specific mode from VVT.
110     Changed |= getOrCreate(M).insert(P.second).second;
111     // Cache VVT's default mode.
112     if (DefaultMode == M) {
113       ContainsDefault = true;
114       DT = P.second;
115     }
116   }
117 
118   // If VVT has a default mode, add the corresponding type to all
119   // modes in "this" that do not exist in VVT.
120   if (ContainsDefault)
121     for (auto &I : *this)
122       if (!Modes.count(I.first))
123         Changed |= I.second.insert(DT).second;
124 
125   return Changed;
126 }
127 
128 // Constrain the type set to be the intersection with VTS.
129 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
130   bool Changed = false;
131   if (hasDefault()) {
132     for (const auto &I : VTS) {
133       unsigned M = I.first;
134       if (M == DefaultMode || hasMode(M))
135         continue;
136       Map.insert({M, Map.at(DefaultMode)});
137       Changed = true;
138     }
139   }
140 
141   for (auto &I : *this) {
142     unsigned M = I.first;
143     SetType &S = I.second;
144     if (VTS.hasMode(M) || VTS.hasDefault()) {
145       Changed |= intersect(I.second, VTS.get(M));
146     } else if (!S.empty()) {
147       S.clear();
148       Changed = true;
149     }
150   }
151   return Changed;
152 }
153 
154 template <typename Predicate>
155 bool TypeSetByHwMode::constrain(Predicate P) {
156   bool Changed = false;
157   for (auto &I : *this)
158     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
164   assert(empty());
165   for (const auto &I : VTS) {
166     SetType &S = getOrCreate(I.first);
167     for (auto J : I.second)
168       if (P(J))
169         S.insert(J);
170   }
171   return !empty();
172 }
173 
174 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
175   SmallVector<unsigned, 4> Modes;
176   Modes.reserve(Map.size());
177 
178   for (const auto &I : *this)
179     Modes.push_back(I.first);
180   if (Modes.empty()) {
181     OS << "{}";
182     return;
183   }
184   array_pod_sort(Modes.begin(), Modes.end());
185 
186   OS << '{';
187   for (unsigned M : Modes) {
188     OS << ' ' << getModeName(M) << ':';
189     writeToStream(get(M), OS);
190   }
191   OS << " }";
192 }
193 
194 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
195   SmallVector<MVT, 4> Types(S.begin(), S.end());
196   array_pod_sort(Types.begin(), Types.end());
197 
198   OS << '[';
199   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
200     OS << ValueTypeByHwMode::getMVTName(Types[i]);
201     if (i != e-1)
202       OS << ' ';
203   }
204   OS << ']';
205 }
206 
207 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
208   // The isSimple call is much quicker than hasDefault - check this first.
209   bool IsSimple = isSimple();
210   bool VTSIsSimple = VTS.isSimple();
211   if (IsSimple && VTSIsSimple)
212     return *begin() == *VTS.begin();
213 
214   // Speedup: We have a default if the set is simple.
215   bool HaveDefault = IsSimple || hasDefault();
216   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
217   if (HaveDefault != VTSHaveDefault)
218     return false;
219 
220   SmallDenseSet<unsigned, 4> Modes;
221   for (auto &I : *this)
222     Modes.insert(I.first);
223   for (const auto &I : VTS)
224     Modes.insert(I.first);
225 
226   if (HaveDefault) {
227     // Both sets have default mode.
228     for (unsigned M : Modes) {
229       if (get(M) != VTS.get(M))
230         return false;
231     }
232   } else {
233     // Neither set has default mode.
234     for (unsigned M : Modes) {
235       // If there is no default mode, an empty set is equivalent to not having
236       // the corresponding mode.
237       bool NoModeThis = !hasMode(M) || get(M).empty();
238       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
239       if (NoModeThis != NoModeVTS)
240         return false;
241       if (!NoModeThis)
242         if (get(M) != VTS.get(M))
243           return false;
244     }
245   }
246 
247   return true;
248 }
249 
250 namespace llvm {
251   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
252     T.writeToStream(OS);
253     return OS;
254   }
255 }
256 
257 LLVM_DUMP_METHOD
258 void TypeSetByHwMode::dump() const {
259   dbgs() << *this << '\n';
260 }
261 
262 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
263   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
264   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
265 
266   if (OutP == InP)
267     return berase_if(Out, Int);
268 
269   // Compute the intersection of scalars separately to account for only
270   // one set containing iPTR.
271   // The itersection of iPTR with a set of integer scalar types that does not
272   // include iPTR will result in the most specific scalar type:
273   // - iPTR is more specific than any set with two elements or more
274   // - iPTR is less specific than any single integer scalar type.
275   // For example
276   // { iPTR } * { i32 }     -> { i32 }
277   // { iPTR } * { i32 i64 } -> { iPTR }
278   // and
279   // { iPTR i32 } * { i32 }          -> { i32 }
280   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
281   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
282 
283   // Compute the difference between the two sets in such a way that the
284   // iPTR is in the set that is being subtracted. This is to see if there
285   // are any extra scalars in the set without iPTR that are not in the
286   // set containing iPTR. Then the iPTR could be considered a "wildcard"
287   // matching these scalars. If there is only one such scalar, it would
288   // replace the iPTR, if there are more, the iPTR would be retained.
289   SetType Diff;
290   if (InP) {
291     Diff = Out;
292     berase_if(Diff, [&In](MVT T) { return In.count(T); });
293     // Pre-remove these elements and rely only on InP/OutP to determine
294     // whether a change has been made.
295     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
296   } else {
297     Diff = In;
298     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
299     Out.erase(MVT::iPTR);
300   }
301 
302   // The actual intersection.
303   bool Changed = berase_if(Out, Int);
304   unsigned NumD = Diff.size();
305   if (NumD == 0)
306     return Changed;
307 
308   if (NumD == 1) {
309     Out.insert(*Diff.begin());
310     // This is a change only if Out was the one with iPTR (which is now
311     // being replaced).
312     Changed |= OutP;
313   } else {
314     // Multiple elements from Out are now replaced with iPTR.
315     Out.insert(MVT::iPTR);
316     Changed |= !OutP;
317   }
318   return Changed;
319 }
320 
321 bool TypeSetByHwMode::validate() const {
322 #ifndef NDEBUG
323   if (empty())
324     return true;
325   bool AllEmpty = true;
326   for (const auto &I : *this)
327     AllEmpty &= I.second.empty();
328   return !AllEmpty;
329 #endif
330   return true;
331 }
332 
333 // --- TypeInfer
334 
335 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
336                                 const TypeSetByHwMode &In) {
337   ValidateOnExit _1(Out, *this);
338   In.validate();
339   if (In.empty() || Out == In || TP.hasError())
340     return false;
341   if (Out.empty()) {
342     Out = In;
343     return true;
344   }
345 
346   bool Changed = Out.constrain(In);
347   if (Changed && Out.empty())
348     TP.error("Type contradiction");
349 
350   return Changed;
351 }
352 
353 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
354   ValidateOnExit _1(Out, *this);
355   if (TP.hasError())
356     return false;
357   assert(!Out.empty() && "cannot pick from an empty set");
358 
359   bool Changed = false;
360   for (auto &I : Out) {
361     TypeSetByHwMode::SetType &S = I.second;
362     if (S.size() <= 1)
363       continue;
364     MVT T = *S.begin(); // Pick the first element.
365     S.clear();
366     S.insert(T);
367     Changed = true;
368   }
369   return Changed;
370 }
371 
372 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
373   ValidateOnExit _1(Out, *this);
374   if (TP.hasError())
375     return false;
376   if (!Out.empty())
377     return Out.constrain(isIntegerOrPtr);
378 
379   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
380 }
381 
382 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
383   ValidateOnExit _1(Out, *this);
384   if (TP.hasError())
385     return false;
386   if (!Out.empty())
387     return Out.constrain(isFloatingPoint);
388 
389   return Out.assign_if(getLegalTypes(), isFloatingPoint);
390 }
391 
392 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
393   ValidateOnExit _1(Out, *this);
394   if (TP.hasError())
395     return false;
396   if (!Out.empty())
397     return Out.constrain(isScalar);
398 
399   return Out.assign_if(getLegalTypes(), isScalar);
400 }
401 
402 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
403   ValidateOnExit _1(Out, *this);
404   if (TP.hasError())
405     return false;
406   if (!Out.empty())
407     return Out.constrain(isVector);
408 
409   return Out.assign_if(getLegalTypes(), isVector);
410 }
411 
412 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
413   ValidateOnExit _1(Out, *this);
414   if (TP.hasError() || !Out.empty())
415     return false;
416 
417   Out = getLegalTypes();
418   return true;
419 }
420 
421 template <typename Iter, typename Pred, typename Less>
422 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
423   if (B == E)
424     return E;
425   Iter Min = E;
426   for (Iter I = B; I != E; ++I) {
427     if (!P(*I))
428       continue;
429     if (Min == E || L(*I, *Min))
430       Min = I;
431   }
432   return Min;
433 }
434 
435 template <typename Iter, typename Pred, typename Less>
436 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
437   if (B == E)
438     return E;
439   Iter Max = E;
440   for (Iter I = B; I != E; ++I) {
441     if (!P(*I))
442       continue;
443     if (Max == E || L(*Max, *I))
444       Max = I;
445   }
446   return Max;
447 }
448 
449 /// Make sure that for each type in Small, there exists a larger type in Big.
450 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
451                                    TypeSetByHwMode &Big) {
452   ValidateOnExit _1(Small, *this), _2(Big, *this);
453   if (TP.hasError())
454     return false;
455   bool Changed = false;
456 
457   if (Small.empty())
458     Changed |= EnforceAny(Small);
459   if (Big.empty())
460     Changed |= EnforceAny(Big);
461 
462   assert(Small.hasDefault() && Big.hasDefault());
463 
464   std::vector<unsigned> Modes = union_modes(Small, Big);
465 
466   // 1. Only allow integer or floating point types and make sure that
467   //    both sides are both integer or both floating point.
468   // 2. Make sure that either both sides have vector types, or neither
469   //    of them does.
470   for (unsigned M : Modes) {
471     TypeSetByHwMode::SetType &S = Small.get(M);
472     TypeSetByHwMode::SetType &B = Big.get(M);
473 
474     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
475       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
476       Changed |= berase_if(S, NotInt) |
477                  berase_if(B, NotInt);
478     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
479       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
480       Changed |= berase_if(S, NotFP) |
481                  berase_if(B, NotFP);
482     } else if (S.empty() || B.empty()) {
483       Changed = !S.empty() || !B.empty();
484       S.clear();
485       B.clear();
486     } else {
487       TP.error("Incompatible types");
488       return Changed;
489     }
490 
491     if (none_of(S, isVector) || none_of(B, isVector)) {
492       Changed |= berase_if(S, isVector) |
493                  berase_if(B, isVector);
494     }
495   }
496 
497   auto LT = [](MVT A, MVT B) -> bool {
498     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
499            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
500             A.getSizeInBits() < B.getSizeInBits());
501   };
502   auto LE = [](MVT A, MVT B) -> bool {
503     // This function is used when removing elements: when a vector is compared
504     // to a non-vector, it should return false (to avoid removal).
505     if (A.isVector() != B.isVector())
506       return false;
507 
508     // Note on the < comparison below:
509     // X86 has patterns like
510     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
511     // where the truncated vector is given a type v16i8, while the source
512     // vector has type v4i32. They both have the same size in bits.
513     // The minimal type in the result is obviously v16i8, and when we remove
514     // all types from the source that are smaller-or-equal than v8i16, the
515     // only source type would also be removed (since it's equal in size).
516     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
517            A.getSizeInBits() < B.getSizeInBits();
518   };
519 
520   for (unsigned M : Modes) {
521     TypeSetByHwMode::SetType &S = Small.get(M);
522     TypeSetByHwMode::SetType &B = Big.get(M);
523     // MinS = min scalar in Small, remove all scalars from Big that are
524     // smaller-or-equal than MinS.
525     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526     if (MinS != S.end())
527       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528 
529     // MaxS = max scalar in Big, remove all scalars from Small that are
530     // larger than MaxS.
531     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532     if (MaxS != B.end())
533       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534 
535     // MinV = min vector in Small, remove all vectors from Big that are
536     // smaller-or-equal than MinV.
537     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538     if (MinV != S.end())
539       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540 
541     // MaxV = max vector in Big, remove all vectors from Small that are
542     // larger than MaxV.
543     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544     if (MaxV != B.end())
545       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546   }
547 
548   return Changed;
549 }
550 
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 ///    for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 ///    type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556                                        TypeSetByHwMode &Elem) {
557   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558   if (TP.hasError())
559     return false;
560   bool Changed = false;
561 
562   if (Vec.empty())
563     Changed |= EnforceVector(Vec);
564   if (Elem.empty())
565     Changed |= EnforceScalar(Elem);
566 
567   for (unsigned M : union_modes(Vec, Elem)) {
568     TypeSetByHwMode::SetType &V = Vec.get(M);
569     TypeSetByHwMode::SetType &E = Elem.get(M);
570 
571     Changed |= berase_if(V, isScalar);  // Scalar = !vector
572     Changed |= berase_if(E, isVector);  // Vector = !scalar
573     assert(!V.empty() && !E.empty());
574 
575     SmallSet<MVT,4> VT, ST;
576     // Collect element types from the "vector" set.
577     for (MVT T : V)
578       VT.insert(T.getVectorElementType());
579     // Collect scalar types from the "element" set.
580     for (MVT T : E)
581       ST.insert(T);
582 
583     // Remove from V all (vector) types whose element type is not in S.
584     Changed |= berase_if(V, [&ST](MVT T) -> bool {
585                               return !ST.count(T.getVectorElementType());
586                             });
587     // Remove from E all (scalar) types, for which there is no corresponding
588     // type in V.
589     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590   }
591 
592   return Changed;
593 }
594 
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596                                        const ValueTypeByHwMode &VVT) {
597   TypeSetByHwMode Tmp(VVT);
598   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599   return EnforceVectorEltTypeIs(Vec, Tmp);
600 }
601 
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606                                              TypeSetByHwMode &Sub) {
607   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608   if (TP.hasError())
609     return false;
610 
611   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612   auto IsSubVec = [](MVT B, MVT P) -> bool {
613     if (!B.isVector() || !P.isVector())
614       return false;
615     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616     // but until there are obvious use-cases for this, keep the
617     // types separate.
618     if (B.isScalableVector() != P.isScalableVector())
619       return false;
620     if (B.getVectorElementType() != P.getVectorElementType())
621       return false;
622     return B.getVectorNumElements() < P.getVectorNumElements();
623   };
624 
625   /// Return true if S has no element (vector type) that T is a sub-vector of,
626   /// i.e. has the same element type as T and more elements.
627   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(T, I))
630         return false;
631     return true;
632   };
633 
634   /// Return true if S has no element (vector type) that T is a super-vector
635   /// of, i.e. has the same element type as T and fewer elements.
636   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637     for (const auto &I : S)
638       if (IsSubVec(I, T))
639         return false;
640     return true;
641   };
642 
643   bool Changed = false;
644 
645   if (Vec.empty())
646     Changed |= EnforceVector(Vec);
647   if (Sub.empty())
648     Changed |= EnforceVector(Sub);
649 
650   for (unsigned M : union_modes(Vec, Sub)) {
651     TypeSetByHwMode::SetType &S = Sub.get(M);
652     TypeSetByHwMode::SetType &V = Vec.get(M);
653 
654     Changed |= berase_if(S, isScalar);
655 
656     // Erase all types from S that are not sub-vectors of a type in V.
657     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658 
659     // Erase all types from V that are not super-vectors of a type in S.
660     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661   }
662 
663   return Changed;
664 }
665 
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 ///    type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 ///    type T in V, such that T and U have the same number of elements
671 ///    (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673   ValidateOnExit _1(V, *this), _2(W, *this);
674   if (TP.hasError())
675     return false;
676 
677   bool Changed = false;
678   if (V.empty())
679     Changed |= EnforceAny(V);
680   if (W.empty())
681     Changed |= EnforceAny(W);
682 
683   // An actual vector type cannot have 0 elements, so we can treat scalars
684   // as zero-length vectors. This way both vectors and scalars can be
685   // processed identically.
686   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688   };
689 
690   for (unsigned M : union_modes(V, W)) {
691     TypeSetByHwMode::SetType &VS = V.get(M);
692     TypeSetByHwMode::SetType &WS = W.get(M);
693 
694     SmallSet<unsigned,2> VN, WN;
695     for (MVT T : VS)
696       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697     for (MVT T : WS)
698       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699 
700     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702   }
703   return Changed;
704 }
705 
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 ///    such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 ///    such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711   ValidateOnExit _1(A, *this), _2(B, *this);
712   if (TP.hasError())
713     return false;
714   bool Changed = false;
715   if (A.empty())
716     Changed |= EnforceAny(A);
717   if (B.empty())
718     Changed |= EnforceAny(B);
719 
720   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721     return !Sizes.count(T.getSizeInBits());
722   };
723 
724   for (unsigned M : union_modes(A, B)) {
725     TypeSetByHwMode::SetType &AS = A.get(M);
726     TypeSetByHwMode::SetType &BS = B.get(M);
727     SmallSet<unsigned,2> AN, BN;
728 
729     for (MVT T : AS)
730       AN.insert(T.getSizeInBits());
731     for (MVT T : BS)
732       BN.insert(T.getSizeInBits());
733 
734     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736   }
737 
738   return Changed;
739 }
740 
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742   ValidateOnExit _1(VTS, *this);
743   const TypeSetByHwMode &Legal = getLegalTypes();
744   assert(Legal.isDefaultOnly() && "Default-mode only expected");
745   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746 
747   for (auto &I : VTS)
748     expandOverloads(I.second, LegalTypes);
749 }
750 
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752                                 const TypeSetByHwMode::SetType &Legal) {
753   std::set<MVT> Ovs;
754   for (MVT T : Out) {
755     if (!T.isOverloaded())
756       continue;
757 
758     Ovs.insert(T);
759     // MachineValueTypeSet allows iteration and erasing.
760     Out.erase(T);
761   }
762 
763   for (MVT Ov : Ovs) {
764     switch (Ov.SimpleTy) {
765       case MVT::iPTRAny:
766         Out.insert(MVT::iPTR);
767         return;
768       case MVT::iAny:
769         for (MVT T : MVT::integer_valuetypes())
770           if (Legal.count(T))
771             Out.insert(T);
772         for (MVT T : MVT::integer_vector_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         return;
776       case MVT::fAny:
777         for (MVT T : MVT::fp_valuetypes())
778           if (Legal.count(T))
779             Out.insert(T);
780         for (MVT T : MVT::fp_vector_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         return;
784       case MVT::vAny:
785         for (MVT T : MVT::vector_valuetypes())
786           if (Legal.count(T))
787             Out.insert(T);
788         return;
789       case MVT::Any:
790         for (MVT T : MVT::all_valuetypes())
791           if (Legal.count(T))
792             Out.insert(T);
793         return;
794       default:
795         break;
796     }
797   }
798 }
799 
800 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
801   if (!LegalTypesCached) {
802     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
803     // Stuff all types from all modes into the default mode.
804     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
805     for (const auto &I : LTS)
806       LegalTypes.insert(I.second);
807     LegalTypesCached = true;
808   }
809   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
810   return LegalCache;
811 }
812 
813 #ifndef NDEBUG
814 TypeInfer::ValidateOnExit::~ValidateOnExit() {
815   if (Infer.Validate && !VTS.validate()) {
816     dbgs() << "Type set is empty for each HW mode:\n"
817               "possible type contradiction in the pattern below "
818               "(use -print-records with llvm-tblgen to see all "
819               "expanded records).\n";
820     Infer.TP.dump();
821     llvm_unreachable(nullptr);
822   }
823 }
824 #endif
825 
826 //===----------------------------------------------------------------------===//
827 // TreePredicateFn Implementation
828 //===----------------------------------------------------------------------===//
829 
830 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
831 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
832   assert(
833       (!hasPredCode() || !hasImmCode()) &&
834       ".td file corrupt: can't have a node predicate *and* an imm predicate");
835 }
836 
837 bool TreePredicateFn::hasPredCode() const {
838   return isLoad() || isStore() || isAtomic() ||
839          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
840 }
841 
842 std::string TreePredicateFn::getPredCode() const {
843   std::string Code = "";
844 
845   if (!isLoad() && !isStore() && !isAtomic()) {
846     Record *MemoryVT = getMemoryVT();
847 
848     if (MemoryVT)
849       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
850                       "MemoryVT requires IsLoad or IsStore");
851   }
852 
853   if (!isLoad() && !isStore()) {
854     if (isUnindexed())
855       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
856                       "IsUnindexed requires IsLoad or IsStore");
857 
858     Record *ScalarMemoryVT = getScalarMemoryVT();
859 
860     if (ScalarMemoryVT)
861       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
862                       "ScalarMemoryVT requires IsLoad or IsStore");
863   }
864 
865   if (isLoad() + isStore() + isAtomic() > 1)
866     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
867                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
868 
869   if (isLoad()) {
870     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
871         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
872         getScalarMemoryVT() == nullptr)
873       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
874                       "IsLoad cannot be used by itself");
875   } else {
876     if (isNonExtLoad())
877       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
878                       "IsNonExtLoad requires IsLoad");
879     if (isAnyExtLoad())
880       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                       "IsAnyExtLoad requires IsLoad");
882     if (isSignExtLoad())
883       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
884                       "IsSignExtLoad requires IsLoad");
885     if (isZeroExtLoad())
886       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887                       "IsZeroExtLoad requires IsLoad");
888   }
889 
890   if (isStore()) {
891     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
892         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
893       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
894                       "IsStore cannot be used by itself");
895   } else {
896     if (isNonTruncStore())
897       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898                       "IsNonTruncStore requires IsStore");
899     if (isTruncStore())
900       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
901                       "IsTruncStore requires IsStore");
902   }
903 
904   if (isAtomic()) {
905     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
906         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
907         !isAtomicOrderingAcquireRelease() &&
908         !isAtomicOrderingSequentiallyConsistent() &&
909         !isAtomicOrderingAcquireOrStronger() &&
910         !isAtomicOrderingReleaseOrStronger() &&
911         !isAtomicOrderingWeakerThanAcquire() &&
912         !isAtomicOrderingWeakerThanRelease())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsAtomic cannot be used by itself");
915   } else {
916     if (isAtomicOrderingMonotonic())
917       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
918                       "IsAtomicOrderingMonotonic requires IsAtomic");
919     if (isAtomicOrderingAcquire())
920       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
921                       "IsAtomicOrderingAcquire requires IsAtomic");
922     if (isAtomicOrderingRelease())
923       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
924                       "IsAtomicOrderingRelease requires IsAtomic");
925     if (isAtomicOrderingAcquireRelease())
926       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
927                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
928     if (isAtomicOrderingSequentiallyConsistent())
929       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
930                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
931     if (isAtomicOrderingAcquireOrStronger())
932       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
933                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
934     if (isAtomicOrderingReleaseOrStronger())
935       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
936                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
937     if (isAtomicOrderingWeakerThanAcquire())
938       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
939                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
940   }
941 
942   if (isLoad() || isStore() || isAtomic()) {
943     StringRef SDNodeName =
944         isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
945 
946     Record *MemoryVT = getMemoryVT();
947 
948     if (MemoryVT)
949       Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
950                MemoryVT->getName() + ") return false;\n")
951                   .str();
952   }
953 
954   if (isAtomic() && isAtomicOrderingMonotonic())
955     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
956             "AtomicOrdering::Monotonic) return false;\n";
957   if (isAtomic() && isAtomicOrderingAcquire())
958     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
959             "AtomicOrdering::Acquire) return false;\n";
960   if (isAtomic() && isAtomicOrderingRelease())
961     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
962             "AtomicOrdering::Release) return false;\n";
963   if (isAtomic() && isAtomicOrderingAcquireRelease())
964     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
965             "AtomicOrdering::AcquireRelease) return false;\n";
966   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
967     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
968             "AtomicOrdering::SequentiallyConsistent) return false;\n";
969 
970   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
971     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
972             "return false;\n";
973   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
974     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
975             "return false;\n";
976 
977   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
978     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
979             "return false;\n";
980   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
981     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
982             "return false;\n";
983 
984   if (isLoad() || isStore()) {
985     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
986 
987     if (isUnindexed())
988       Code += ("if (cast<" + SDNodeName +
989                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
990                "return false;\n")
991                   .str();
992 
993     if (isLoad()) {
994       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
995            isZeroExtLoad()) > 1)
996         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
997                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
998                         "IsZeroExtLoad are mutually exclusive");
999       if (isNonExtLoad())
1000         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1001                 "ISD::NON_EXTLOAD) return false;\n";
1002       if (isAnyExtLoad())
1003         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1004                 "return false;\n";
1005       if (isSignExtLoad())
1006         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1007                 "return false;\n";
1008       if (isZeroExtLoad())
1009         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1010                 "return false;\n";
1011     } else {
1012       if ((isNonTruncStore() + isTruncStore()) > 1)
1013         PrintFatalError(
1014             getOrigPatFragRecord()->getRecord()->getLoc(),
1015             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1016       if (isNonTruncStore())
1017         Code +=
1018             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1019       if (isTruncStore())
1020         Code +=
1021             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1022     }
1023 
1024     Record *ScalarMemoryVT = getScalarMemoryVT();
1025 
1026     if (ScalarMemoryVT)
1027       Code += ("if (cast<" + SDNodeName +
1028                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1029                ScalarMemoryVT->getName() + ") return false;\n")
1030                   .str();
1031   }
1032 
1033   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1034 
1035   Code += PredicateCode;
1036 
1037   if (PredicateCode.empty() && !Code.empty())
1038     Code += "return true;\n";
1039 
1040   return Code;
1041 }
1042 
1043 bool TreePredicateFn::hasImmCode() const {
1044   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1045 }
1046 
1047 std::string TreePredicateFn::getImmCode() const {
1048   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1049 }
1050 
1051 bool TreePredicateFn::immCodeUsesAPInt() const {
1052   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1053 }
1054 
1055 bool TreePredicateFn::immCodeUsesAPFloat() const {
1056   bool Unset;
1057   // The return value will be false when IsAPFloat is unset.
1058   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1059                                                                    Unset);
1060 }
1061 
1062 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1063                                                    bool Value) const {
1064   bool Unset;
1065   bool Result =
1066       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1067   if (Unset)
1068     return false;
1069   return Result == Value;
1070 }
1071 bool TreePredicateFn::isLoad() const {
1072   return isPredefinedPredicateEqualTo("IsLoad", true);
1073 }
1074 bool TreePredicateFn::isStore() const {
1075   return isPredefinedPredicateEqualTo("IsStore", true);
1076 }
1077 bool TreePredicateFn::isAtomic() const {
1078   return isPredefinedPredicateEqualTo("IsAtomic", true);
1079 }
1080 bool TreePredicateFn::isUnindexed() const {
1081   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1082 }
1083 bool TreePredicateFn::isNonExtLoad() const {
1084   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1085 }
1086 bool TreePredicateFn::isAnyExtLoad() const {
1087   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1088 }
1089 bool TreePredicateFn::isSignExtLoad() const {
1090   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1091 }
1092 bool TreePredicateFn::isZeroExtLoad() const {
1093   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1094 }
1095 bool TreePredicateFn::isNonTruncStore() const {
1096   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1097 }
1098 bool TreePredicateFn::isTruncStore() const {
1099   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1100 }
1101 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1102   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1103 }
1104 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1105   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1106 }
1107 bool TreePredicateFn::isAtomicOrderingRelease() const {
1108   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1109 }
1110 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1111   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1112 }
1113 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1114   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1115                                       true);
1116 }
1117 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1118   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1119 }
1120 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1121   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1122 }
1123 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1124   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1125 }
1126 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1127   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1128 }
1129 Record *TreePredicateFn::getMemoryVT() const {
1130   Record *R = getOrigPatFragRecord()->getRecord();
1131   if (R->isValueUnset("MemoryVT"))
1132     return nullptr;
1133   return R->getValueAsDef("MemoryVT");
1134 }
1135 Record *TreePredicateFn::getScalarMemoryVT() const {
1136   Record *R = getOrigPatFragRecord()->getRecord();
1137   if (R->isValueUnset("ScalarMemoryVT"))
1138     return nullptr;
1139   return R->getValueAsDef("ScalarMemoryVT");
1140 }
1141 bool TreePredicateFn::hasGISelPredicateCode() const {
1142   return !PatFragRec->getRecord()
1143               ->getValueAsString("GISelPredicateCode")
1144               .empty();
1145 }
1146 std::string TreePredicateFn::getGISelPredicateCode() const {
1147   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1148 }
1149 
1150 StringRef TreePredicateFn::getImmType() const {
1151   if (immCodeUsesAPInt())
1152     return "const APInt &";
1153   if (immCodeUsesAPFloat())
1154     return "const APFloat &";
1155   return "int64_t";
1156 }
1157 
1158 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1159   if (immCodeUsesAPInt())
1160     return "APInt";
1161   else if (immCodeUsesAPFloat())
1162     return "APFloat";
1163   return "I64";
1164 }
1165 
1166 /// isAlwaysTrue - Return true if this is a noop predicate.
1167 bool TreePredicateFn::isAlwaysTrue() const {
1168   return !hasPredCode() && !hasImmCode();
1169 }
1170 
1171 /// Return the name to use in the generated code to reference this, this is
1172 /// "Predicate_foo" if from a pattern fragment "foo".
1173 std::string TreePredicateFn::getFnName() const {
1174   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1175 }
1176 
1177 /// getCodeToRunOnSDNode - Return the code for the function body that
1178 /// evaluates this predicate.  The argument is expected to be in "Node",
1179 /// not N.  This handles casting and conversion to a concrete node type as
1180 /// appropriate.
1181 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1182   // Handle immediate predicates first.
1183   std::string ImmCode = getImmCode();
1184   if (!ImmCode.empty()) {
1185     if (isLoad())
1186       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1187                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1188     if (isStore())
1189       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1190                       "IsStore cannot be used with ImmLeaf or its subclasses");
1191     if (isUnindexed())
1192       PrintFatalError(
1193           getOrigPatFragRecord()->getRecord()->getLoc(),
1194           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1195     if (isNonExtLoad())
1196       PrintFatalError(
1197           getOrigPatFragRecord()->getRecord()->getLoc(),
1198           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1199     if (isAnyExtLoad())
1200       PrintFatalError(
1201           getOrigPatFragRecord()->getRecord()->getLoc(),
1202           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1203     if (isSignExtLoad())
1204       PrintFatalError(
1205           getOrigPatFragRecord()->getRecord()->getLoc(),
1206           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1207     if (isZeroExtLoad())
1208       PrintFatalError(
1209           getOrigPatFragRecord()->getRecord()->getLoc(),
1210           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1211     if (isNonTruncStore())
1212       PrintFatalError(
1213           getOrigPatFragRecord()->getRecord()->getLoc(),
1214           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1215     if (isTruncStore())
1216       PrintFatalError(
1217           getOrigPatFragRecord()->getRecord()->getLoc(),
1218           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1219     if (getMemoryVT())
1220       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1221                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1222     if (getScalarMemoryVT())
1223       PrintFatalError(
1224           getOrigPatFragRecord()->getRecord()->getLoc(),
1225           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1226 
1227     std::string Result = ("    " + getImmType() + " Imm = ").str();
1228     if (immCodeUsesAPFloat())
1229       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1230     else if (immCodeUsesAPInt())
1231       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1232     else
1233       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1234     return Result + ImmCode;
1235   }
1236 
1237   // Handle arbitrary node predicates.
1238   assert(hasPredCode() && "Don't have any predicate code!");
1239   StringRef ClassName;
1240   if (PatFragRec->getOnlyTree()->isLeaf())
1241     ClassName = "SDNode";
1242   else {
1243     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1244     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1245   }
1246   std::string Result;
1247   if (ClassName == "SDNode")
1248     Result = "    SDNode *N = Node;\n";
1249   else
1250     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1251 
1252   return Result + getPredCode();
1253 }
1254 
1255 //===----------------------------------------------------------------------===//
1256 // PatternToMatch implementation
1257 //
1258 
1259 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1260 /// patterns before small ones.  This is used to determine the size of a
1261 /// pattern.
1262 static unsigned getPatternSize(const TreePatternNode *P,
1263                                const CodeGenDAGPatterns &CGP) {
1264   unsigned Size = 3;  // The node itself.
1265   // If the root node is a ConstantSDNode, increases its size.
1266   // e.g. (set R32:$dst, 0).
1267   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1268     Size += 2;
1269 
1270   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1271     Size += AM->getComplexity();
1272     // We don't want to count any children twice, so return early.
1273     return Size;
1274   }
1275 
1276   // If this node has some predicate function that must match, it adds to the
1277   // complexity of this node.
1278   if (!P->getPredicateFns().empty())
1279     ++Size;
1280 
1281   // Count children in the count if they are also nodes.
1282   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1283     const TreePatternNode *Child = P->getChild(i);
1284     if (!Child->isLeaf() && Child->getNumTypes()) {
1285       const TypeSetByHwMode &T0 = Child->getExtType(0);
1286       // At this point, all variable type sets should be simple, i.e. only
1287       // have a default mode.
1288       if (T0.getMachineValueType() != MVT::Other) {
1289         Size += getPatternSize(Child, CGP);
1290         continue;
1291       }
1292     }
1293     if (Child->isLeaf()) {
1294       if (isa<IntInit>(Child->getLeafValue()))
1295         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1296       else if (Child->getComplexPatternInfo(CGP))
1297         Size += getPatternSize(Child, CGP);
1298       else if (!Child->getPredicateFns().empty())
1299         ++Size;
1300     }
1301   }
1302 
1303   return Size;
1304 }
1305 
1306 /// Compute the complexity metric for the input pattern.  This roughly
1307 /// corresponds to the number of nodes that are covered.
1308 int PatternToMatch::
1309 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1310   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1311 }
1312 
1313 /// getPredicateCheck - Return a single string containing all of this
1314 /// pattern's predicates concatenated with "&&" operators.
1315 ///
1316 std::string PatternToMatch::getPredicateCheck() const {
1317   SmallVector<const Predicate*,4> PredList;
1318   for (const Predicate &P : Predicates)
1319     PredList.push_back(&P);
1320   llvm::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
1321 
1322   std::string Check;
1323   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1324     if (i != 0)
1325       Check += " && ";
1326     Check += '(' + PredList[i]->getCondString() + ')';
1327   }
1328   return Check;
1329 }
1330 
1331 //===----------------------------------------------------------------------===//
1332 // SDTypeConstraint implementation
1333 //
1334 
1335 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1336   OperandNo = R->getValueAsInt("OperandNum");
1337 
1338   if (R->isSubClassOf("SDTCisVT")) {
1339     ConstraintType = SDTCisVT;
1340     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1341     for (const auto &P : VVT)
1342       if (P.second == MVT::isVoid)
1343         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1344   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1345     ConstraintType = SDTCisPtrTy;
1346   } else if (R->isSubClassOf("SDTCisInt")) {
1347     ConstraintType = SDTCisInt;
1348   } else if (R->isSubClassOf("SDTCisFP")) {
1349     ConstraintType = SDTCisFP;
1350   } else if (R->isSubClassOf("SDTCisVec")) {
1351     ConstraintType = SDTCisVec;
1352   } else if (R->isSubClassOf("SDTCisSameAs")) {
1353     ConstraintType = SDTCisSameAs;
1354     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1355   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1356     ConstraintType = SDTCisVTSmallerThanOp;
1357     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1358       R->getValueAsInt("OtherOperandNum");
1359   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1360     ConstraintType = SDTCisOpSmallerThanOp;
1361     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1362       R->getValueAsInt("BigOperandNum");
1363   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1364     ConstraintType = SDTCisEltOfVec;
1365     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1366   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1367     ConstraintType = SDTCisSubVecOfVec;
1368     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1369       R->getValueAsInt("OtherOpNum");
1370   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1371     ConstraintType = SDTCVecEltisVT;
1372     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1373     for (const auto &P : VVT) {
1374       MVT T = P.second;
1375       if (T.isVector())
1376         PrintFatalError(R->getLoc(),
1377                         "Cannot use vector type as SDTCVecEltisVT");
1378       if (!T.isInteger() && !T.isFloatingPoint())
1379         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1380                                      "as SDTCVecEltisVT");
1381     }
1382   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1383     ConstraintType = SDTCisSameNumEltsAs;
1384     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1385       R->getValueAsInt("OtherOperandNum");
1386   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1387     ConstraintType = SDTCisSameSizeAs;
1388     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1389       R->getValueAsInt("OtherOperandNum");
1390   } else {
1391     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1392   }
1393 }
1394 
1395 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1396 /// N, and the result number in ResNo.
1397 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1398                                       const SDNodeInfo &NodeInfo,
1399                                       unsigned &ResNo) {
1400   unsigned NumResults = NodeInfo.getNumResults();
1401   if (OpNo < NumResults) {
1402     ResNo = OpNo;
1403     return N;
1404   }
1405 
1406   OpNo -= NumResults;
1407 
1408   if (OpNo >= N->getNumChildren()) {
1409     std::string S;
1410     raw_string_ostream OS(S);
1411     OS << "Invalid operand number in type constraint "
1412            << (OpNo+NumResults) << " ";
1413     N->print(OS);
1414     PrintFatalError(OS.str());
1415   }
1416 
1417   return N->getChild(OpNo);
1418 }
1419 
1420 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1421 /// constraint to the nodes operands.  This returns true if it makes a
1422 /// change, false otherwise.  If a type contradiction is found, flag an error.
1423 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1424                                            const SDNodeInfo &NodeInfo,
1425                                            TreePattern &TP) const {
1426   if (TP.hasError())
1427     return false;
1428 
1429   unsigned ResNo = 0; // The result number being referenced.
1430   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1431   TypeInfer &TI = TP.getInfer();
1432 
1433   switch (ConstraintType) {
1434   case SDTCisVT:
1435     // Operand must be a particular type.
1436     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1437   case SDTCisPtrTy:
1438     // Operand must be same as target pointer type.
1439     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1440   case SDTCisInt:
1441     // Require it to be one of the legal integer VTs.
1442      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1443   case SDTCisFP:
1444     // Require it to be one of the legal fp VTs.
1445     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1446   case SDTCisVec:
1447     // Require it to be one of the legal vector VTs.
1448     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1449   case SDTCisSameAs: {
1450     unsigned OResNo = 0;
1451     TreePatternNode *OtherNode =
1452       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1453     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1454            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1455   }
1456   case SDTCisVTSmallerThanOp: {
1457     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1458     // have an integer type that is smaller than the VT.
1459     if (!NodeToApply->isLeaf() ||
1460         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1461         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1462                ->isSubClassOf("ValueType")) {
1463       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1464       return false;
1465     }
1466     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1467     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1468     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1469     TypeSetByHwMode TypeListTmp(VVT);
1470 
1471     unsigned OResNo = 0;
1472     TreePatternNode *OtherNode =
1473       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1474                     OResNo);
1475 
1476     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1477   }
1478   case SDTCisOpSmallerThanOp: {
1479     unsigned BResNo = 0;
1480     TreePatternNode *BigOperand =
1481       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1482                     BResNo);
1483     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1484                                  BigOperand->getExtType(BResNo));
1485   }
1486   case SDTCisEltOfVec: {
1487     unsigned VResNo = 0;
1488     TreePatternNode *VecOperand =
1489       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1490                     VResNo);
1491     // Filter vector types out of VecOperand that don't have the right element
1492     // type.
1493     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1494                                      NodeToApply->getExtType(ResNo));
1495   }
1496   case SDTCisSubVecOfVec: {
1497     unsigned VResNo = 0;
1498     TreePatternNode *BigVecOperand =
1499       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1500                     VResNo);
1501 
1502     // Filter vector types out of BigVecOperand that don't have the
1503     // right subvector type.
1504     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1505                                            NodeToApply->getExtType(ResNo));
1506   }
1507   case SDTCVecEltisVT: {
1508     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1509   }
1510   case SDTCisSameNumEltsAs: {
1511     unsigned OResNo = 0;
1512     TreePatternNode *OtherNode =
1513       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1514                     N, NodeInfo, OResNo);
1515     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1516                                  NodeToApply->getExtType(ResNo));
1517   }
1518   case SDTCisSameSizeAs: {
1519     unsigned OResNo = 0;
1520     TreePatternNode *OtherNode =
1521       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1522                     N, NodeInfo, OResNo);
1523     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1524                               NodeToApply->getExtType(ResNo));
1525   }
1526   }
1527   llvm_unreachable("Invalid ConstraintType!");
1528 }
1529 
1530 // Update the node type to match an instruction operand or result as specified
1531 // in the ins or outs lists on the instruction definition. Return true if the
1532 // type was actually changed.
1533 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1534                                              Record *Operand,
1535                                              TreePattern &TP) {
1536   // The 'unknown' operand indicates that types should be inferred from the
1537   // context.
1538   if (Operand->isSubClassOf("unknown_class"))
1539     return false;
1540 
1541   // The Operand class specifies a type directly.
1542   if (Operand->isSubClassOf("Operand")) {
1543     Record *R = Operand->getValueAsDef("Type");
1544     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1545     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1546   }
1547 
1548   // PointerLikeRegClass has a type that is determined at runtime.
1549   if (Operand->isSubClassOf("PointerLikeRegClass"))
1550     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1551 
1552   // Both RegisterClass and RegisterOperand operands derive their types from a
1553   // register class def.
1554   Record *RC = nullptr;
1555   if (Operand->isSubClassOf("RegisterClass"))
1556     RC = Operand;
1557   else if (Operand->isSubClassOf("RegisterOperand"))
1558     RC = Operand->getValueAsDef("RegClass");
1559 
1560   assert(RC && "Unknown operand type");
1561   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1562   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1563 }
1564 
1565 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1566   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1567     if (!TP.getInfer().isConcrete(Types[i], true))
1568       return true;
1569   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1570     if (getChild(i)->ContainsUnresolvedType(TP))
1571       return true;
1572   return false;
1573 }
1574 
1575 bool TreePatternNode::hasProperTypeByHwMode() const {
1576   for (const TypeSetByHwMode &S : Types)
1577     if (!S.isDefaultOnly())
1578       return true;
1579   for (const TreePatternNodePtr &C : Children)
1580     if (C->hasProperTypeByHwMode())
1581       return true;
1582   return false;
1583 }
1584 
1585 bool TreePatternNode::hasPossibleType() const {
1586   for (const TypeSetByHwMode &S : Types)
1587     if (!S.isPossible())
1588       return false;
1589   for (const TreePatternNodePtr &C : Children)
1590     if (!C->hasPossibleType())
1591       return false;
1592   return true;
1593 }
1594 
1595 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1596   for (TypeSetByHwMode &S : Types) {
1597     S.makeSimple(Mode);
1598     // Check if the selected mode had a type conflict.
1599     if (S.get(DefaultMode).empty())
1600       return false;
1601   }
1602   for (const TreePatternNodePtr &C : Children)
1603     if (!C->setDefaultMode(Mode))
1604       return false;
1605   return true;
1606 }
1607 
1608 //===----------------------------------------------------------------------===//
1609 // SDNodeInfo implementation
1610 //
1611 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1612   EnumName    = R->getValueAsString("Opcode");
1613   SDClassName = R->getValueAsString("SDClass");
1614   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1615   NumResults = TypeProfile->getValueAsInt("NumResults");
1616   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1617 
1618   // Parse the properties.
1619   Properties = parseSDPatternOperatorProperties(R);
1620 
1621   // Parse the type constraints.
1622   std::vector<Record*> ConstraintList =
1623     TypeProfile->getValueAsListOfDefs("Constraints");
1624   for (Record *R : ConstraintList)
1625     TypeConstraints.emplace_back(R, CGH);
1626 }
1627 
1628 /// getKnownType - If the type constraints on this node imply a fixed type
1629 /// (e.g. all stores return void, etc), then return it as an
1630 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1631 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1632   unsigned NumResults = getNumResults();
1633   assert(NumResults <= 1 &&
1634          "We only work with nodes with zero or one result so far!");
1635   assert(ResNo == 0 && "Only handles single result nodes so far");
1636 
1637   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1638     // Make sure that this applies to the correct node result.
1639     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1640       continue;
1641 
1642     switch (Constraint.ConstraintType) {
1643     default: break;
1644     case SDTypeConstraint::SDTCisVT:
1645       if (Constraint.VVT.isSimple())
1646         return Constraint.VVT.getSimple().SimpleTy;
1647       break;
1648     case SDTypeConstraint::SDTCisPtrTy:
1649       return MVT::iPTR;
1650     }
1651   }
1652   return MVT::Other;
1653 }
1654 
1655 //===----------------------------------------------------------------------===//
1656 // TreePatternNode implementation
1657 //
1658 
1659 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1660   if (Operator->getName() == "set" ||
1661       Operator->getName() == "implicit")
1662     return 0;  // All return nothing.
1663 
1664   if (Operator->isSubClassOf("Intrinsic"))
1665     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1666 
1667   if (Operator->isSubClassOf("SDNode"))
1668     return CDP.getSDNodeInfo(Operator).getNumResults();
1669 
1670   if (Operator->isSubClassOf("PatFrags")) {
1671     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1672     // the forward reference case where one pattern fragment references another
1673     // before it is processed.
1674     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1675       // The number of results of a fragment with alternative records is the
1676       // maximum number of results across all alternatives.
1677       unsigned NumResults = 0;
1678       for (auto T : PFRec->getTrees())
1679         NumResults = std::max(NumResults, T->getNumTypes());
1680       return NumResults;
1681     }
1682 
1683     ListInit *LI = Operator->getValueAsListInit("Fragments");
1684     assert(LI && "Invalid Fragment");
1685     unsigned NumResults = 0;
1686     for (Init *I : LI->getValues()) {
1687       Record *Op = nullptr;
1688       if (DagInit *Dag = dyn_cast<DagInit>(I))
1689         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1690           Op = DI->getDef();
1691       assert(Op && "Invalid Fragment");
1692       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1693     }
1694     return NumResults;
1695   }
1696 
1697   if (Operator->isSubClassOf("Instruction")) {
1698     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1699 
1700     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1701 
1702     // Subtract any defaulted outputs.
1703     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1704       Record *OperandNode = InstInfo.Operands[i].Rec;
1705 
1706       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1707           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1708         --NumDefsToAdd;
1709     }
1710 
1711     // Add on one implicit def if it has a resolvable type.
1712     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1713       ++NumDefsToAdd;
1714     return NumDefsToAdd;
1715   }
1716 
1717   if (Operator->isSubClassOf("SDNodeXForm"))
1718     return 1;  // FIXME: Generalize SDNodeXForm
1719 
1720   if (Operator->isSubClassOf("ValueType"))
1721     return 1;  // A type-cast of one result.
1722 
1723   if (Operator->isSubClassOf("ComplexPattern"))
1724     return 1;
1725 
1726   errs() << *Operator;
1727   PrintFatalError("Unhandled node in GetNumNodeResults");
1728 }
1729 
1730 void TreePatternNode::print(raw_ostream &OS) const {
1731   if (isLeaf())
1732     OS << *getLeafValue();
1733   else
1734     OS << '(' << getOperator()->getName();
1735 
1736   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1737     OS << ':';
1738     getExtType(i).writeToStream(OS);
1739   }
1740 
1741   if (!isLeaf()) {
1742     if (getNumChildren() != 0) {
1743       OS << " ";
1744       getChild(0)->print(OS);
1745       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1746         OS << ", ";
1747         getChild(i)->print(OS);
1748       }
1749     }
1750     OS << ")";
1751   }
1752 
1753   for (const TreePredicateFn &Pred : PredicateFns)
1754     OS << "<<P:" << Pred.getFnName() << ">>";
1755   if (TransformFn)
1756     OS << "<<X:" << TransformFn->getName() << ">>";
1757   if (!getName().empty())
1758     OS << ":$" << getName();
1759 
1760 }
1761 void TreePatternNode::dump() const {
1762   print(errs());
1763 }
1764 
1765 /// isIsomorphicTo - Return true if this node is recursively
1766 /// isomorphic to the specified node.  For this comparison, the node's
1767 /// entire state is considered. The assigned name is ignored, since
1768 /// nodes with differing names are considered isomorphic. However, if
1769 /// the assigned name is present in the dependent variable set, then
1770 /// the assigned name is considered significant and the node is
1771 /// isomorphic if the names match.
1772 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1773                                      const MultipleUseVarSet &DepVars) const {
1774   if (N == this) return true;
1775   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1776       getPredicateFns() != N->getPredicateFns() ||
1777       getTransformFn() != N->getTransformFn())
1778     return false;
1779 
1780   if (isLeaf()) {
1781     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1782       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1783         return ((DI->getDef() == NDI->getDef())
1784                 && (DepVars.find(getName()) == DepVars.end()
1785                     || getName() == N->getName()));
1786       }
1787     }
1788     return getLeafValue() == N->getLeafValue();
1789   }
1790 
1791   if (N->getOperator() != getOperator() ||
1792       N->getNumChildren() != getNumChildren()) return false;
1793   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1794     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1795       return false;
1796   return true;
1797 }
1798 
1799 /// clone - Make a copy of this tree and all of its children.
1800 ///
1801 TreePatternNodePtr TreePatternNode::clone() const {
1802   TreePatternNodePtr New;
1803   if (isLeaf()) {
1804     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1805   } else {
1806     std::vector<TreePatternNodePtr> CChildren;
1807     CChildren.reserve(Children.size());
1808     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1809       CChildren.push_back(getChild(i)->clone());
1810     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1811                                             getNumTypes());
1812   }
1813   New->setName(getName());
1814   New->Types = Types;
1815   New->setPredicateFns(getPredicateFns());
1816   New->setTransformFn(getTransformFn());
1817   return New;
1818 }
1819 
1820 /// RemoveAllTypes - Recursively strip all the types of this tree.
1821 void TreePatternNode::RemoveAllTypes() {
1822   // Reset to unknown type.
1823   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1824   if (isLeaf()) return;
1825   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1826     getChild(i)->RemoveAllTypes();
1827 }
1828 
1829 
1830 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1831 /// with actual values specified by ArgMap.
1832 void TreePatternNode::SubstituteFormalArguments(
1833     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1834   if (isLeaf()) return;
1835 
1836   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1837     TreePatternNode *Child = getChild(i);
1838     if (Child->isLeaf()) {
1839       Init *Val = Child->getLeafValue();
1840       // Note that, when substituting into an output pattern, Val might be an
1841       // UnsetInit.
1842       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1843           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1844         // We found a use of a formal argument, replace it with its value.
1845         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1846         assert(NewChild && "Couldn't find formal argument!");
1847         assert((Child->getPredicateFns().empty() ||
1848                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1849                "Non-empty child predicate clobbered!");
1850         setChild(i, std::move(NewChild));
1851       }
1852     } else {
1853       getChild(i)->SubstituteFormalArguments(ArgMap);
1854     }
1855   }
1856 }
1857 
1858 
1859 /// InlinePatternFragments - If this pattern refers to any pattern
1860 /// fragments, return the set of inlined versions (this can be more than
1861 /// one if a PatFrags record has multiple alternatives).
1862 void TreePatternNode::InlinePatternFragments(
1863   TreePatternNodePtr T, TreePattern &TP,
1864   std::vector<TreePatternNodePtr> &OutAlternatives) {
1865 
1866   if (TP.hasError())
1867     return;
1868 
1869   if (isLeaf()) {
1870     OutAlternatives.push_back(T);  // nothing to do.
1871     return;
1872   }
1873 
1874   Record *Op = getOperator();
1875 
1876   if (!Op->isSubClassOf("PatFrags")) {
1877     if (getNumChildren() == 0) {
1878       OutAlternatives.push_back(T);
1879       return;
1880     }
1881 
1882     // Recursively inline children nodes.
1883     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1884     ChildAlternatives.resize(getNumChildren());
1885     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1886       TreePatternNodePtr Child = getChildShared(i);
1887       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1888       // If there are no alternatives for any child, there are no
1889       // alternatives for this expression as whole.
1890       if (ChildAlternatives[i].empty())
1891         return;
1892 
1893       for (auto NewChild : ChildAlternatives[i])
1894         assert((Child->getPredicateFns().empty() ||
1895                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1896                "Non-empty child predicate clobbered!");
1897     }
1898 
1899     // The end result is an all-pairs construction of the resultant pattern.
1900     std::vector<unsigned> Idxs;
1901     Idxs.resize(ChildAlternatives.size());
1902     bool NotDone;
1903     do {
1904       // Create the variant and add it to the output list.
1905       std::vector<TreePatternNodePtr> NewChildren;
1906       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1907         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1908       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1909           getOperator(), std::move(NewChildren), getNumTypes());
1910 
1911       // Copy over properties.
1912       R->setName(getName());
1913       R->setPredicateFns(getPredicateFns());
1914       R->setTransformFn(getTransformFn());
1915       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1916         R->setType(i, getExtType(i));
1917 
1918       // Register alternative.
1919       OutAlternatives.push_back(R);
1920 
1921       // Increment indices to the next permutation by incrementing the
1922       // indices from last index backward, e.g., generate the sequence
1923       // [0, 0], [0, 1], [1, 0], [1, 1].
1924       int IdxsIdx;
1925       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1926         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1927           Idxs[IdxsIdx] = 0;
1928         else
1929           break;
1930       }
1931       NotDone = (IdxsIdx >= 0);
1932     } while (NotDone);
1933 
1934     return;
1935   }
1936 
1937   // Otherwise, we found a reference to a fragment.  First, look up its
1938   // TreePattern record.
1939   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1940 
1941   // Verify that we are passing the right number of operands.
1942   if (Frag->getNumArgs() != Children.size()) {
1943     TP.error("'" + Op->getName() + "' fragment requires " +
1944              Twine(Frag->getNumArgs()) + " operands!");
1945     return;
1946   }
1947 
1948   // Compute the map of formal to actual arguments.
1949   std::map<std::string, TreePatternNodePtr> ArgMap;
1950   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
1951     const TreePatternNodePtr &Child = getChildShared(i);
1952     ArgMap[Frag->getArgName(i)] = Child;
1953   }
1954 
1955   // Loop over all fragment alternatives.
1956   for (auto Alternative : Frag->getTrees()) {
1957     TreePatternNodePtr FragTree = Alternative->clone();
1958 
1959     TreePredicateFn PredFn(Frag);
1960     if (!PredFn.isAlwaysTrue())
1961       FragTree->addPredicateFn(PredFn);
1962 
1963     // Resolve formal arguments to their actual value.
1964     if (Frag->getNumArgs())
1965       FragTree->SubstituteFormalArguments(ArgMap);
1966 
1967     // Transfer types.  Note that the resolved alternative may have fewer
1968     // (but not more) results than the PatFrags node.
1969     FragTree->setName(getName());
1970     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
1971       FragTree->UpdateNodeType(i, getExtType(i), TP);
1972 
1973     // Transfer in the old predicates.
1974     for (const TreePredicateFn &Pred : getPredicateFns())
1975       FragTree->addPredicateFn(Pred);
1976 
1977     // The fragment we inlined could have recursive inlining that is needed.  See
1978     // if there are any pattern fragments in it and inline them as needed.
1979     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
1980   }
1981 }
1982 
1983 /// getImplicitType - Check to see if the specified record has an implicit
1984 /// type which should be applied to it.  This will infer the type of register
1985 /// references from the register file information, for example.
1986 ///
1987 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1988 /// the F8RC register class argument in:
1989 ///
1990 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1991 ///
1992 /// When Unnamed is false, return the type of a named DAG operand such as the
1993 /// GPR:$src operand above.
1994 ///
1995 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1996                                        bool NotRegisters,
1997                                        bool Unnamed,
1998                                        TreePattern &TP) {
1999   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2000 
2001   // Check to see if this is a register operand.
2002   if (R->isSubClassOf("RegisterOperand")) {
2003     assert(ResNo == 0 && "Regoperand ref only has one result!");
2004     if (NotRegisters)
2005       return TypeSetByHwMode(); // Unknown.
2006     Record *RegClass = R->getValueAsDef("RegClass");
2007     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2008     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2009   }
2010 
2011   // Check to see if this is a register or a register class.
2012   if (R->isSubClassOf("RegisterClass")) {
2013     assert(ResNo == 0 && "Regclass ref only has one result!");
2014     // An unnamed register class represents itself as an i32 immediate, for
2015     // example on a COPY_TO_REGCLASS instruction.
2016     if (Unnamed)
2017       return TypeSetByHwMode(MVT::i32);
2018 
2019     // In a named operand, the register class provides the possible set of
2020     // types.
2021     if (NotRegisters)
2022       return TypeSetByHwMode(); // Unknown.
2023     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2024     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2025   }
2026 
2027   if (R->isSubClassOf("PatFrags")) {
2028     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2029     // Pattern fragment types will be resolved when they are inlined.
2030     return TypeSetByHwMode(); // Unknown.
2031   }
2032 
2033   if (R->isSubClassOf("Register")) {
2034     assert(ResNo == 0 && "Registers only produce one result!");
2035     if (NotRegisters)
2036       return TypeSetByHwMode(); // Unknown.
2037     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2038     return TypeSetByHwMode(T.getRegisterVTs(R));
2039   }
2040 
2041   if (R->isSubClassOf("SubRegIndex")) {
2042     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2043     return TypeSetByHwMode(MVT::i32);
2044   }
2045 
2046   if (R->isSubClassOf("ValueType")) {
2047     assert(ResNo == 0 && "This node only has one result!");
2048     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2049     //
2050     //   (sext_inreg GPR:$src, i16)
2051     //                         ~~~
2052     if (Unnamed)
2053       return TypeSetByHwMode(MVT::Other);
2054     // With a name, the ValueType simply provides the type of the named
2055     // variable.
2056     //
2057     //   (sext_inreg i32:$src, i16)
2058     //               ~~~~~~~~
2059     if (NotRegisters)
2060       return TypeSetByHwMode(); // Unknown.
2061     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2062     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2063   }
2064 
2065   if (R->isSubClassOf("CondCode")) {
2066     assert(ResNo == 0 && "This node only has one result!");
2067     // Using a CondCodeSDNode.
2068     return TypeSetByHwMode(MVT::Other);
2069   }
2070 
2071   if (R->isSubClassOf("ComplexPattern")) {
2072     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2073     if (NotRegisters)
2074       return TypeSetByHwMode(); // Unknown.
2075     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2076   }
2077   if (R->isSubClassOf("PointerLikeRegClass")) {
2078     assert(ResNo == 0 && "Regclass can only have one result!");
2079     TypeSetByHwMode VTS(MVT::iPTR);
2080     TP.getInfer().expandOverloads(VTS);
2081     return VTS;
2082   }
2083 
2084   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2085       R->getName() == "zero_reg") {
2086     // Placeholder.
2087     return TypeSetByHwMode(); // Unknown.
2088   }
2089 
2090   if (R->isSubClassOf("Operand")) {
2091     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2092     Record *T = R->getValueAsDef("Type");
2093     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2094   }
2095 
2096   TP.error("Unknown node flavor used in pattern: " + R->getName());
2097   return TypeSetByHwMode(MVT::Other);
2098 }
2099 
2100 
2101 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2102 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2103 const CodeGenIntrinsic *TreePatternNode::
2104 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2105   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2106       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2107       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2108     return nullptr;
2109 
2110   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2111   return &CDP.getIntrinsicInfo(IID);
2112 }
2113 
2114 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2115 /// return the ComplexPattern information, otherwise return null.
2116 const ComplexPattern *
2117 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2118   Record *Rec;
2119   if (isLeaf()) {
2120     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2121     if (!DI)
2122       return nullptr;
2123     Rec = DI->getDef();
2124   } else
2125     Rec = getOperator();
2126 
2127   if (!Rec->isSubClassOf("ComplexPattern"))
2128     return nullptr;
2129   return &CGP.getComplexPattern(Rec);
2130 }
2131 
2132 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2133   // A ComplexPattern specifically declares how many results it fills in.
2134   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2135     return CP->getNumOperands();
2136 
2137   // If MIOperandInfo is specified, that gives the count.
2138   if (isLeaf()) {
2139     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2140     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2141       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2142       if (MIOps->getNumArgs())
2143         return MIOps->getNumArgs();
2144     }
2145   }
2146 
2147   // Otherwise there is just one result.
2148   return 1;
2149 }
2150 
2151 /// NodeHasProperty - Return true if this node has the specified property.
2152 bool TreePatternNode::NodeHasProperty(SDNP Property,
2153                                       const CodeGenDAGPatterns &CGP) const {
2154   if (isLeaf()) {
2155     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2156       return CP->hasProperty(Property);
2157 
2158     return false;
2159   }
2160 
2161   if (Property != SDNPHasChain) {
2162     // The chain proprety is already present on the different intrinsic node
2163     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2164     // on the intrinsic. Anything else is specific to the individual intrinsic.
2165     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2166       return Int->hasProperty(Property);
2167   }
2168 
2169   if (!Operator->isSubClassOf("SDPatternOperator"))
2170     return false;
2171 
2172   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2173 }
2174 
2175 
2176 
2177 
2178 /// TreeHasProperty - Return true if any node in this tree has the specified
2179 /// property.
2180 bool TreePatternNode::TreeHasProperty(SDNP Property,
2181                                       const CodeGenDAGPatterns &CGP) const {
2182   if (NodeHasProperty(Property, CGP))
2183     return true;
2184   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2185     if (getChild(i)->TreeHasProperty(Property, CGP))
2186       return true;
2187   return false;
2188 }
2189 
2190 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2191 /// commutative intrinsic.
2192 bool
2193 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2194   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2195     return Int->isCommutative;
2196   return false;
2197 }
2198 
2199 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2200   if (!N->isLeaf())
2201     return N->getOperator()->isSubClassOf(Class);
2202 
2203   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2204   if (DI && DI->getDef()->isSubClassOf(Class))
2205     return true;
2206 
2207   return false;
2208 }
2209 
2210 static void emitTooManyOperandsError(TreePattern &TP,
2211                                      StringRef InstName,
2212                                      unsigned Expected,
2213                                      unsigned Actual) {
2214   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2215            " operands but expected only " + Twine(Expected) + "!");
2216 }
2217 
2218 static void emitTooFewOperandsError(TreePattern &TP,
2219                                     StringRef InstName,
2220                                     unsigned Actual) {
2221   TP.error("Instruction '" + InstName +
2222            "' expects more than the provided " + Twine(Actual) + " operands!");
2223 }
2224 
2225 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2226 /// this node and its children in the tree.  This returns true if it makes a
2227 /// change, false otherwise.  If a type contradiction is found, flag an error.
2228 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2229   if (TP.hasError())
2230     return false;
2231 
2232   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2233   if (isLeaf()) {
2234     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2235       // If it's a regclass or something else known, include the type.
2236       bool MadeChange = false;
2237       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2238         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2239                                                         NotRegisters,
2240                                                         !hasName(), TP), TP);
2241       return MadeChange;
2242     }
2243 
2244     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2245       assert(Types.size() == 1 && "Invalid IntInit");
2246 
2247       // Int inits are always integers. :)
2248       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2249 
2250       if (!TP.getInfer().isConcrete(Types[0], false))
2251         return MadeChange;
2252 
2253       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2254       for (auto &P : VVT) {
2255         MVT::SimpleValueType VT = P.second.SimpleTy;
2256         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2257           continue;
2258         unsigned Size = MVT(VT).getSizeInBits();
2259         // Make sure that the value is representable for this type.
2260         if (Size >= 32)
2261           continue;
2262         // Check that the value doesn't use more bits than we have. It must
2263         // either be a sign- or zero-extended equivalent of the original.
2264         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2265         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2266             SignBitAndAbove == 1)
2267           continue;
2268 
2269         TP.error("Integer value '" + Twine(II->getValue()) +
2270                  "' is out of range for type '" + getEnumName(VT) + "'!");
2271         break;
2272       }
2273       return MadeChange;
2274     }
2275 
2276     return false;
2277   }
2278 
2279   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2280     bool MadeChange = false;
2281 
2282     // Apply the result type to the node.
2283     unsigned NumRetVTs = Int->IS.RetVTs.size();
2284     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2285 
2286     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2287       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2288 
2289     if (getNumChildren() != NumParamVTs + 1) {
2290       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2291                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2292       return false;
2293     }
2294 
2295     // Apply type info to the intrinsic ID.
2296     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2297 
2298     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2299       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2300 
2301       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2302       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2303       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2304     }
2305     return MadeChange;
2306   }
2307 
2308   if (getOperator()->isSubClassOf("SDNode")) {
2309     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2310 
2311     // Check that the number of operands is sane.  Negative operands -> varargs.
2312     if (NI.getNumOperands() >= 0 &&
2313         getNumChildren() != (unsigned)NI.getNumOperands()) {
2314       TP.error(getOperator()->getName() + " node requires exactly " +
2315                Twine(NI.getNumOperands()) + " operands!");
2316       return false;
2317     }
2318 
2319     bool MadeChange = false;
2320     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2321       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2322     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2323     return MadeChange;
2324   }
2325 
2326   if (getOperator()->isSubClassOf("Instruction")) {
2327     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2328     CodeGenInstruction &InstInfo =
2329       CDP.getTargetInfo().getInstruction(getOperator());
2330 
2331     bool MadeChange = false;
2332 
2333     // Apply the result types to the node, these come from the things in the
2334     // (outs) list of the instruction.
2335     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2336                                         Inst.getNumResults());
2337     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2338       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2339 
2340     // If the instruction has implicit defs, we apply the first one as a result.
2341     // FIXME: This sucks, it should apply all implicit defs.
2342     if (!InstInfo.ImplicitDefs.empty()) {
2343       unsigned ResNo = NumResultsToAdd;
2344 
2345       // FIXME: Generalize to multiple possible types and multiple possible
2346       // ImplicitDefs.
2347       MVT::SimpleValueType VT =
2348         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2349 
2350       if (VT != MVT::Other)
2351         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2352     }
2353 
2354     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2355     // be the same.
2356     if (getOperator()->getName() == "INSERT_SUBREG") {
2357       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2358       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2359       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2360     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2361       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2362       // variadic.
2363 
2364       unsigned NChild = getNumChildren();
2365       if (NChild < 3) {
2366         TP.error("REG_SEQUENCE requires at least 3 operands!");
2367         return false;
2368       }
2369 
2370       if (NChild % 2 == 0) {
2371         TP.error("REG_SEQUENCE requires an odd number of operands!");
2372         return false;
2373       }
2374 
2375       if (!isOperandClass(getChild(0), "RegisterClass")) {
2376         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2377         return false;
2378       }
2379 
2380       for (unsigned I = 1; I < NChild; I += 2) {
2381         TreePatternNode *SubIdxChild = getChild(I + 1);
2382         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2383           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2384                    Twine(I + 1) + "!");
2385           return false;
2386         }
2387       }
2388     }
2389 
2390     unsigned ChildNo = 0;
2391     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2392       Record *OperandNode = Inst.getOperand(i);
2393 
2394       // If the instruction expects a predicate or optional def operand, we
2395       // codegen this by setting the operand to it's default value if it has a
2396       // non-empty DefaultOps field.
2397       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2398           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2399         continue;
2400 
2401       // Verify that we didn't run out of provided operands.
2402       if (ChildNo >= getNumChildren()) {
2403         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2404         return false;
2405       }
2406 
2407       TreePatternNode *Child = getChild(ChildNo++);
2408       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2409 
2410       // If the operand has sub-operands, they may be provided by distinct
2411       // child patterns, so attempt to match each sub-operand separately.
2412       if (OperandNode->isSubClassOf("Operand")) {
2413         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2414         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2415           // But don't do that if the whole operand is being provided by
2416           // a single ComplexPattern-related Operand.
2417 
2418           if (Child->getNumMIResults(CDP) < NumArgs) {
2419             // Match first sub-operand against the child we already have.
2420             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2421             MadeChange |=
2422               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2423 
2424             // And the remaining sub-operands against subsequent children.
2425             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2426               if (ChildNo >= getNumChildren()) {
2427                 emitTooFewOperandsError(TP, getOperator()->getName(),
2428                                         getNumChildren());
2429                 return false;
2430               }
2431               Child = getChild(ChildNo++);
2432 
2433               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2434               MadeChange |=
2435                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2436             }
2437             continue;
2438           }
2439         }
2440       }
2441 
2442       // If we didn't match by pieces above, attempt to match the whole
2443       // operand now.
2444       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2445     }
2446 
2447     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2448       emitTooManyOperandsError(TP, getOperator()->getName(),
2449                                ChildNo, getNumChildren());
2450       return false;
2451     }
2452 
2453     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2454       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2455     return MadeChange;
2456   }
2457 
2458   if (getOperator()->isSubClassOf("ComplexPattern")) {
2459     bool MadeChange = false;
2460 
2461     for (unsigned i = 0; i < getNumChildren(); ++i)
2462       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2463 
2464     return MadeChange;
2465   }
2466 
2467   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2468 
2469   // Node transforms always take one operand.
2470   if (getNumChildren() != 1) {
2471     TP.error("Node transform '" + getOperator()->getName() +
2472              "' requires one operand!");
2473     return false;
2474   }
2475 
2476   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2477   return MadeChange;
2478 }
2479 
2480 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2481 /// RHS of a commutative operation, not the on LHS.
2482 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2483   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2484     return true;
2485   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2486     return true;
2487   return false;
2488 }
2489 
2490 
2491 /// canPatternMatch - If it is impossible for this pattern to match on this
2492 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2493 /// used as a sanity check for .td files (to prevent people from writing stuff
2494 /// that can never possibly work), and to prevent the pattern permuter from
2495 /// generating stuff that is useless.
2496 bool TreePatternNode::canPatternMatch(std::string &Reason,
2497                                       const CodeGenDAGPatterns &CDP) {
2498   if (isLeaf()) return true;
2499 
2500   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2501     if (!getChild(i)->canPatternMatch(Reason, CDP))
2502       return false;
2503 
2504   // If this is an intrinsic, handle cases that would make it not match.  For
2505   // example, if an operand is required to be an immediate.
2506   if (getOperator()->isSubClassOf("Intrinsic")) {
2507     // TODO:
2508     return true;
2509   }
2510 
2511   if (getOperator()->isSubClassOf("ComplexPattern"))
2512     return true;
2513 
2514   // If this node is a commutative operator, check that the LHS isn't an
2515   // immediate.
2516   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2517   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2518   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2519     // Scan all of the operands of the node and make sure that only the last one
2520     // is a constant node, unless the RHS also is.
2521     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2522       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2523       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2524         if (OnlyOnRHSOfCommutative(getChild(i))) {
2525           Reason="Immediate value must be on the RHS of commutative operators!";
2526           return false;
2527         }
2528     }
2529   }
2530 
2531   return true;
2532 }
2533 
2534 //===----------------------------------------------------------------------===//
2535 // TreePattern implementation
2536 //
2537 
2538 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2539                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2540                          isInputPattern(isInput), HasError(false),
2541                          Infer(*this) {
2542   for (Init *I : RawPat->getValues())
2543     Trees.push_back(ParseTreePattern(I, ""));
2544 }
2545 
2546 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2547                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2548                          isInputPattern(isInput), HasError(false),
2549                          Infer(*this) {
2550   Trees.push_back(ParseTreePattern(Pat, ""));
2551 }
2552 
2553 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2554                          CodeGenDAGPatterns &cdp)
2555     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2556       Infer(*this) {
2557   Trees.push_back(Pat);
2558 }
2559 
2560 void TreePattern::error(const Twine &Msg) {
2561   if (HasError)
2562     return;
2563   dump();
2564   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2565   HasError = true;
2566 }
2567 
2568 void TreePattern::ComputeNamedNodes() {
2569   for (TreePatternNodePtr &Tree : Trees)
2570     ComputeNamedNodes(Tree.get());
2571 }
2572 
2573 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2574   if (!N->getName().empty())
2575     NamedNodes[N->getName()].push_back(N);
2576 
2577   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2578     ComputeNamedNodes(N->getChild(i));
2579 }
2580 
2581 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2582                                                  StringRef OpName) {
2583   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2584     Record *R = DI->getDef();
2585 
2586     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2587     // TreePatternNode of its own.  For example:
2588     ///   (foo GPR, imm) -> (foo GPR, (imm))
2589     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2590       return ParseTreePattern(
2591         DagInit::get(DI, nullptr,
2592                      std::vector<std::pair<Init*, StringInit*> >()),
2593         OpName);
2594 
2595     // Input argument?
2596     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2597     if (R->getName() == "node" && !OpName.empty()) {
2598       if (OpName.empty())
2599         error("'node' argument requires a name to match with operand list");
2600       Args.push_back(OpName);
2601     }
2602 
2603     Res->setName(OpName);
2604     return Res;
2605   }
2606 
2607   // ?:$name or just $name.
2608   if (isa<UnsetInit>(TheInit)) {
2609     if (OpName.empty())
2610       error("'?' argument requires a name to match with operand list");
2611     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2612     Args.push_back(OpName);
2613     Res->setName(OpName);
2614     return Res;
2615   }
2616 
2617   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2618     if (!OpName.empty())
2619       error("Constant int or bit argument should not have a name!");
2620     if (isa<BitInit>(TheInit))
2621       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2622     return std::make_shared<TreePatternNode>(TheInit, 1);
2623   }
2624 
2625   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2626     // Turn this into an IntInit.
2627     Init *II = BI->convertInitializerTo(IntRecTy::get());
2628     if (!II || !isa<IntInit>(II))
2629       error("Bits value must be constants!");
2630     return ParseTreePattern(II, OpName);
2631   }
2632 
2633   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2634   if (!Dag) {
2635     TheInit->print(errs());
2636     error("Pattern has unexpected init kind!");
2637   }
2638   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2639   if (!OpDef) error("Pattern has unexpected operator type!");
2640   Record *Operator = OpDef->getDef();
2641 
2642   if (Operator->isSubClassOf("ValueType")) {
2643     // If the operator is a ValueType, then this must be "type cast" of a leaf
2644     // node.
2645     if (Dag->getNumArgs() != 1)
2646       error("Type cast only takes one operand!");
2647 
2648     TreePatternNodePtr New =
2649         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2650 
2651     // Apply the type cast.
2652     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2653     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2654     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2655 
2656     if (!OpName.empty())
2657       error("ValueType cast should not have a name!");
2658     return New;
2659   }
2660 
2661   // Verify that this is something that makes sense for an operator.
2662   if (!Operator->isSubClassOf("PatFrags") &&
2663       !Operator->isSubClassOf("SDNode") &&
2664       !Operator->isSubClassOf("Instruction") &&
2665       !Operator->isSubClassOf("SDNodeXForm") &&
2666       !Operator->isSubClassOf("Intrinsic") &&
2667       !Operator->isSubClassOf("ComplexPattern") &&
2668       Operator->getName() != "set" &&
2669       Operator->getName() != "implicit")
2670     error("Unrecognized node '" + Operator->getName() + "'!");
2671 
2672   //  Check to see if this is something that is illegal in an input pattern.
2673   if (isInputPattern) {
2674     if (Operator->isSubClassOf("Instruction") ||
2675         Operator->isSubClassOf("SDNodeXForm"))
2676       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2677   } else {
2678     if (Operator->isSubClassOf("Intrinsic"))
2679       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2680 
2681     if (Operator->isSubClassOf("SDNode") &&
2682         Operator->getName() != "imm" &&
2683         Operator->getName() != "fpimm" &&
2684         Operator->getName() != "tglobaltlsaddr" &&
2685         Operator->getName() != "tconstpool" &&
2686         Operator->getName() != "tjumptable" &&
2687         Operator->getName() != "tframeindex" &&
2688         Operator->getName() != "texternalsym" &&
2689         Operator->getName() != "tblockaddress" &&
2690         Operator->getName() != "tglobaladdr" &&
2691         Operator->getName() != "bb" &&
2692         Operator->getName() != "vt" &&
2693         Operator->getName() != "mcsym")
2694       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2695   }
2696 
2697   std::vector<TreePatternNodePtr> Children;
2698 
2699   // Parse all the operands.
2700   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2701     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2702 
2703   // Get the actual number of results before Operator is converted to an intrinsic
2704   // node (which is hard-coded to have either zero or one result).
2705   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2706 
2707   // If the operator is an intrinsic, then this is just syntactic sugar for
2708   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2709   // convert the intrinsic name to a number.
2710   if (Operator->isSubClassOf("Intrinsic")) {
2711     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2712     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2713 
2714     // If this intrinsic returns void, it must have side-effects and thus a
2715     // chain.
2716     if (Int.IS.RetVTs.empty())
2717       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2718     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2719       // Has side-effects, requires chain.
2720       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2721     else // Otherwise, no chain.
2722       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2723 
2724     Children.insert(Children.begin(),
2725                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2726   }
2727 
2728   if (Operator->isSubClassOf("ComplexPattern")) {
2729     for (unsigned i = 0; i < Children.size(); ++i) {
2730       TreePatternNodePtr Child = Children[i];
2731 
2732       if (Child->getName().empty())
2733         error("All arguments to a ComplexPattern must be named");
2734 
2735       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2736       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2737       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2738       auto OperandId = std::make_pair(Operator, i);
2739       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2740       if (PrevOp != ComplexPatternOperands.end()) {
2741         if (PrevOp->getValue() != OperandId)
2742           error("All ComplexPattern operands must appear consistently: "
2743                 "in the same order in just one ComplexPattern instance.");
2744       } else
2745         ComplexPatternOperands[Child->getName()] = OperandId;
2746     }
2747   }
2748 
2749   TreePatternNodePtr Result =
2750       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2751                                         NumResults);
2752   Result->setName(OpName);
2753 
2754   if (Dag->getName()) {
2755     assert(Result->getName().empty());
2756     Result->setName(Dag->getNameStr());
2757   }
2758   return Result;
2759 }
2760 
2761 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2762 /// will never match in favor of something obvious that will.  This is here
2763 /// strictly as a convenience to target authors because it allows them to write
2764 /// more type generic things and have useless type casts fold away.
2765 ///
2766 /// This returns true if any change is made.
2767 static bool SimplifyTree(TreePatternNodePtr &N) {
2768   if (N->isLeaf())
2769     return false;
2770 
2771   // If we have a bitconvert with a resolved type and if the source and
2772   // destination types are the same, then the bitconvert is useless, remove it.
2773   if (N->getOperator()->getName() == "bitconvert" &&
2774       N->getExtType(0).isValueTypeByHwMode(false) &&
2775       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2776       N->getName().empty()) {
2777     N = N->getChildShared(0);
2778     SimplifyTree(N);
2779     return true;
2780   }
2781 
2782   // Walk all children.
2783   bool MadeChange = false;
2784   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2785     TreePatternNodePtr Child = N->getChildShared(i);
2786     MadeChange |= SimplifyTree(Child);
2787     N->setChild(i, std::move(Child));
2788   }
2789   return MadeChange;
2790 }
2791 
2792 
2793 
2794 /// InferAllTypes - Infer/propagate as many types throughout the expression
2795 /// patterns as possible.  Return true if all types are inferred, false
2796 /// otherwise.  Flags an error if a type contradiction is found.
2797 bool TreePattern::
2798 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2799   if (NamedNodes.empty())
2800     ComputeNamedNodes();
2801 
2802   bool MadeChange = true;
2803   while (MadeChange) {
2804     MadeChange = false;
2805     for (TreePatternNodePtr &Tree : Trees) {
2806       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2807       MadeChange |= SimplifyTree(Tree);
2808     }
2809 
2810     // If there are constraints on our named nodes, apply them.
2811     for (auto &Entry : NamedNodes) {
2812       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2813 
2814       // If we have input named node types, propagate their types to the named
2815       // values here.
2816       if (InNamedTypes) {
2817         if (!InNamedTypes->count(Entry.getKey())) {
2818           error("Node '" + std::string(Entry.getKey()) +
2819                 "' in output pattern but not input pattern");
2820           return true;
2821         }
2822 
2823         const SmallVectorImpl<TreePatternNode*> &InNodes =
2824           InNamedTypes->find(Entry.getKey())->second;
2825 
2826         // The input types should be fully resolved by now.
2827         for (TreePatternNode *Node : Nodes) {
2828           // If this node is a register class, and it is the root of the pattern
2829           // then we're mapping something onto an input register.  We allow
2830           // changing the type of the input register in this case.  This allows
2831           // us to match things like:
2832           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2833           if (Node == Trees[0].get() && Node->isLeaf()) {
2834             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2835             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2836                        DI->getDef()->isSubClassOf("RegisterOperand")))
2837               continue;
2838           }
2839 
2840           assert(Node->getNumTypes() == 1 &&
2841                  InNodes[0]->getNumTypes() == 1 &&
2842                  "FIXME: cannot name multiple result nodes yet");
2843           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2844                                              *this);
2845         }
2846       }
2847 
2848       // If there are multiple nodes with the same name, they must all have the
2849       // same type.
2850       if (Entry.second.size() > 1) {
2851         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2852           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2853           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2854                  "FIXME: cannot name multiple result nodes yet");
2855 
2856           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2857           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2858         }
2859       }
2860     }
2861   }
2862 
2863   bool HasUnresolvedTypes = false;
2864   for (const TreePatternNodePtr &Tree : Trees)
2865     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2866   return !HasUnresolvedTypes;
2867 }
2868 
2869 void TreePattern::print(raw_ostream &OS) const {
2870   OS << getRecord()->getName();
2871   if (!Args.empty()) {
2872     OS << "(" << Args[0];
2873     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2874       OS << ", " << Args[i];
2875     OS << ")";
2876   }
2877   OS << ": ";
2878 
2879   if (Trees.size() > 1)
2880     OS << "[\n";
2881   for (const TreePatternNodePtr &Tree : Trees) {
2882     OS << "\t";
2883     Tree->print(OS);
2884     OS << "\n";
2885   }
2886 
2887   if (Trees.size() > 1)
2888     OS << "]\n";
2889 }
2890 
2891 void TreePattern::dump() const { print(errs()); }
2892 
2893 //===----------------------------------------------------------------------===//
2894 // CodeGenDAGPatterns implementation
2895 //
2896 
2897 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2898                                        PatternRewriterFn PatternRewriter)
2899     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2900       PatternRewriter(PatternRewriter) {
2901 
2902   Intrinsics = CodeGenIntrinsicTable(Records, false);
2903   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2904   ParseNodeInfo();
2905   ParseNodeTransforms();
2906   ParseComplexPatterns();
2907   ParsePatternFragments();
2908   ParseDefaultOperands();
2909   ParseInstructions();
2910   ParsePatternFragments(/*OutFrags*/true);
2911   ParsePatterns();
2912 
2913   // Break patterns with parameterized types into a series of patterns,
2914   // where each one has a fixed type and is predicated on the conditions
2915   // of the associated HW mode.
2916   ExpandHwModeBasedTypes();
2917 
2918   // Generate variants.  For example, commutative patterns can match
2919   // multiple ways.  Add them to PatternsToMatch as well.
2920   GenerateVariants();
2921 
2922   // Infer instruction flags.  For example, we can detect loads,
2923   // stores, and side effects in many cases by examining an
2924   // instruction's pattern.
2925   InferInstructionFlags();
2926 
2927   // Verify that instruction flags match the patterns.
2928   VerifyInstructionFlags();
2929 }
2930 
2931 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2932   Record *N = Records.getDef(Name);
2933   if (!N || !N->isSubClassOf("SDNode"))
2934     PrintFatalError("Error getting SDNode '" + Name + "'!");
2935 
2936   return N;
2937 }
2938 
2939 // Parse all of the SDNode definitions for the target, populating SDNodes.
2940 void CodeGenDAGPatterns::ParseNodeInfo() {
2941   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2942   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2943 
2944   while (!Nodes.empty()) {
2945     Record *R = Nodes.back();
2946     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2947     Nodes.pop_back();
2948   }
2949 
2950   // Get the builtin intrinsic nodes.
2951   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2952   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2953   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2954 }
2955 
2956 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2957 /// map, and emit them to the file as functions.
2958 void CodeGenDAGPatterns::ParseNodeTransforms() {
2959   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2960   while (!Xforms.empty()) {
2961     Record *XFormNode = Xforms.back();
2962     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2963     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2964     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2965 
2966     Xforms.pop_back();
2967   }
2968 }
2969 
2970 void CodeGenDAGPatterns::ParseComplexPatterns() {
2971   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2972   while (!AMs.empty()) {
2973     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2974     AMs.pop_back();
2975   }
2976 }
2977 
2978 
2979 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2980 /// file, building up the PatternFragments map.  After we've collected them all,
2981 /// inline fragments together as necessary, so that there are no references left
2982 /// inside a pattern fragment to a pattern fragment.
2983 ///
2984 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2985   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
2986 
2987   // First step, parse all of the fragments.
2988   for (Record *Frag : Fragments) {
2989     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2990       continue;
2991 
2992     ListInit *LI = Frag->getValueAsListInit("Fragments");
2993     TreePattern *P =
2994         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2995              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
2996              *this)).get();
2997 
2998     // Validate the argument list, converting it to set, to discard duplicates.
2999     std::vector<std::string> &Args = P->getArgList();
3000     // Copy the args so we can take StringRefs to them.
3001     auto ArgsCopy = Args;
3002     SmallDenseSet<StringRef, 4> OperandsSet;
3003     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3004 
3005     if (OperandsSet.count(""))
3006       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3007 
3008     // Parse the operands list.
3009     DagInit *OpsList = Frag->getValueAsDag("Operands");
3010     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3011     // Special cases: ops == outs == ins. Different names are used to
3012     // improve readability.
3013     if (!OpsOp ||
3014         (OpsOp->getDef()->getName() != "ops" &&
3015          OpsOp->getDef()->getName() != "outs" &&
3016          OpsOp->getDef()->getName() != "ins"))
3017       P->error("Operands list should start with '(ops ... '!");
3018 
3019     // Copy over the arguments.
3020     Args.clear();
3021     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3022       if (!isa<DefInit>(OpsList->getArg(j)) ||
3023           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3024         P->error("Operands list should all be 'node' values.");
3025       if (!OpsList->getArgName(j))
3026         P->error("Operands list should have names for each operand!");
3027       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3028       if (!OperandsSet.count(ArgNameStr))
3029         P->error("'" + ArgNameStr +
3030                  "' does not occur in pattern or was multiply specified!");
3031       OperandsSet.erase(ArgNameStr);
3032       Args.push_back(ArgNameStr);
3033     }
3034 
3035     if (!OperandsSet.empty())
3036       P->error("Operands list does not contain an entry for operand '" +
3037                *OperandsSet.begin() + "'!");
3038 
3039     // If there is a code init for this fragment, keep track of the fact that
3040     // this fragment uses it.
3041     TreePredicateFn PredFn(P);
3042     if (!PredFn.isAlwaysTrue())
3043       for (auto T : P->getTrees())
3044         T->addPredicateFn(PredFn);
3045 
3046     // If there is a node transformation corresponding to this, keep track of
3047     // it.
3048     Record *Transform = Frag->getValueAsDef("OperandTransform");
3049     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3050       for (auto T : P->getTrees())
3051         T->setTransformFn(Transform);
3052   }
3053 
3054   // Now that we've parsed all of the tree fragments, do a closure on them so
3055   // that there are not references to PatFrags left inside of them.
3056   for (Record *Frag : Fragments) {
3057     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3058       continue;
3059 
3060     TreePattern &ThePat = *PatternFragments[Frag];
3061     ThePat.InlinePatternFragments();
3062 
3063     // Infer as many types as possible.  Don't worry about it if we don't infer
3064     // all of them, some may depend on the inputs of the pattern.  Also, don't
3065     // validate type sets; validation may cause spurious failures e.g. if a
3066     // fragment needs floating-point types but the current target does not have
3067     // any (this is only an error if that fragment is ever used!).
3068     {
3069       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3070       ThePat.InferAllTypes();
3071       ThePat.resetError();
3072     }
3073 
3074     // If debugging, print out the pattern fragment result.
3075     LLVM_DEBUG(ThePat.dump());
3076   }
3077 }
3078 
3079 void CodeGenDAGPatterns::ParseDefaultOperands() {
3080   std::vector<Record*> DefaultOps;
3081   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3082 
3083   // Find some SDNode.
3084   assert(!SDNodes.empty() && "No SDNodes parsed?");
3085   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3086 
3087   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3088     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3089 
3090     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3091     // SomeSDnode so that we can parse this.
3092     std::vector<std::pair<Init*, StringInit*> > Ops;
3093     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3094       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3095                                    DefaultInfo->getArgName(op)));
3096     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3097 
3098     // Create a TreePattern to parse this.
3099     TreePattern P(DefaultOps[i], DI, false, *this);
3100     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3101 
3102     // Copy the operands over into a DAGDefaultOperand.
3103     DAGDefaultOperand DefaultOpInfo;
3104 
3105     const TreePatternNodePtr &T = P.getTree(0);
3106     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3107       TreePatternNodePtr TPN = T->getChildShared(op);
3108       while (TPN->ApplyTypeConstraints(P, false))
3109         /* Resolve all types */;
3110 
3111       if (TPN->ContainsUnresolvedType(P)) {
3112         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3113                         DefaultOps[i]->getName() +
3114                         "' doesn't have a concrete type!");
3115       }
3116       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3117     }
3118 
3119     // Insert it into the DefaultOperands map so we can find it later.
3120     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3121   }
3122 }
3123 
3124 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3125 /// instruction input.  Return true if this is a real use.
3126 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3127                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3128   // No name -> not interesting.
3129   if (Pat->getName().empty()) {
3130     if (Pat->isLeaf()) {
3131       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3132       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3133                  DI->getDef()->isSubClassOf("RegisterOperand")))
3134         I.error("Input " + DI->getDef()->getName() + " must be named!");
3135     }
3136     return false;
3137   }
3138 
3139   Record *Rec;
3140   if (Pat->isLeaf()) {
3141     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3142     if (!DI)
3143       I.error("Input $" + Pat->getName() + " must be an identifier!");
3144     Rec = DI->getDef();
3145   } else {
3146     Rec = Pat->getOperator();
3147   }
3148 
3149   // SRCVALUE nodes are ignored.
3150   if (Rec->getName() == "srcvalue")
3151     return false;
3152 
3153   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3154   if (!Slot) {
3155     Slot = Pat;
3156     return true;
3157   }
3158   Record *SlotRec;
3159   if (Slot->isLeaf()) {
3160     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3161   } else {
3162     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3163     SlotRec = Slot->getOperator();
3164   }
3165 
3166   // Ensure that the inputs agree if we've already seen this input.
3167   if (Rec != SlotRec)
3168     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3169   // Ensure that the types can agree as well.
3170   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3171   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3172   if (Slot->getExtTypes() != Pat->getExtTypes())
3173     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3174   return true;
3175 }
3176 
3177 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3178 /// part of "I", the instruction), computing the set of inputs and outputs of
3179 /// the pattern.  Report errors if we see anything naughty.
3180 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3181     TreePattern &I, TreePatternNodePtr Pat,
3182     std::map<std::string, TreePatternNodePtr> &InstInputs,
3183     std::map<std::string, TreePatternNodePtr> &InstResults,
3184     std::vector<Record *> &InstImpResults) {
3185 
3186   // The instruction pattern still has unresolved fragments.  For *named*
3187   // nodes we must resolve those here.  This may not result in multiple
3188   // alternatives.
3189   if (!Pat->getName().empty()) {
3190     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3191     SrcPattern.InlinePatternFragments();
3192     SrcPattern.InferAllTypes();
3193     Pat = SrcPattern.getOnlyTree();
3194   }
3195 
3196   if (Pat->isLeaf()) {
3197     bool isUse = HandleUse(I, Pat, InstInputs);
3198     if (!isUse && Pat->getTransformFn())
3199       I.error("Cannot specify a transform function for a non-input value!");
3200     return;
3201   }
3202 
3203   if (Pat->getOperator()->getName() == "implicit") {
3204     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3205       TreePatternNode *Dest = Pat->getChild(i);
3206       if (!Dest->isLeaf())
3207         I.error("implicitly defined value should be a register!");
3208 
3209       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3210       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3211         I.error("implicitly defined value should be a register!");
3212       InstImpResults.push_back(Val->getDef());
3213     }
3214     return;
3215   }
3216 
3217   if (Pat->getOperator()->getName() != "set") {
3218     // If this is not a set, verify that the children nodes are not void typed,
3219     // and recurse.
3220     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3221       if (Pat->getChild(i)->getNumTypes() == 0)
3222         I.error("Cannot have void nodes inside of patterns!");
3223       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3224                                   InstResults, InstImpResults);
3225     }
3226 
3227     // If this is a non-leaf node with no children, treat it basically as if
3228     // it were a leaf.  This handles nodes like (imm).
3229     bool isUse = HandleUse(I, Pat, InstInputs);
3230 
3231     if (!isUse && Pat->getTransformFn())
3232       I.error("Cannot specify a transform function for a non-input value!");
3233     return;
3234   }
3235 
3236   // Otherwise, this is a set, validate and collect instruction results.
3237   if (Pat->getNumChildren() == 0)
3238     I.error("set requires operands!");
3239 
3240   if (Pat->getTransformFn())
3241     I.error("Cannot specify a transform function on a set node!");
3242 
3243   // Check the set destinations.
3244   unsigned NumDests = Pat->getNumChildren()-1;
3245   for (unsigned i = 0; i != NumDests; ++i) {
3246     TreePatternNodePtr Dest = Pat->getChildShared(i);
3247     // For set destinations we also must resolve fragments here.
3248     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3249     DestPattern.InlinePatternFragments();
3250     DestPattern.InferAllTypes();
3251     Dest = DestPattern.getOnlyTree();
3252 
3253     if (!Dest->isLeaf())
3254       I.error("set destination should be a register!");
3255 
3256     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3257     if (!Val) {
3258       I.error("set destination should be a register!");
3259       continue;
3260     }
3261 
3262     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3263         Val->getDef()->isSubClassOf("ValueType") ||
3264         Val->getDef()->isSubClassOf("RegisterOperand") ||
3265         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3266       if (Dest->getName().empty())
3267         I.error("set destination must have a name!");
3268       if (InstResults.count(Dest->getName()))
3269         I.error("cannot set '" + Dest->getName() + "' multiple times");
3270       InstResults[Dest->getName()] = Dest;
3271     } else if (Val->getDef()->isSubClassOf("Register")) {
3272       InstImpResults.push_back(Val->getDef());
3273     } else {
3274       I.error("set destination should be a register!");
3275     }
3276   }
3277 
3278   // Verify and collect info from the computation.
3279   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3280                               InstResults, InstImpResults);
3281 }
3282 
3283 //===----------------------------------------------------------------------===//
3284 // Instruction Analysis
3285 //===----------------------------------------------------------------------===//
3286 
3287 class InstAnalyzer {
3288   const CodeGenDAGPatterns &CDP;
3289 public:
3290   bool hasSideEffects;
3291   bool mayStore;
3292   bool mayLoad;
3293   bool isBitcast;
3294   bool isVariadic;
3295   bool hasChain;
3296 
3297   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3298     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3299       isBitcast(false), isVariadic(false), hasChain(false) {}
3300 
3301   void Analyze(const PatternToMatch &Pat) {
3302     const TreePatternNode *N = Pat.getSrcPattern();
3303     AnalyzeNode(N);
3304     // These properties are detected only on the root node.
3305     isBitcast = IsNodeBitcast(N);
3306   }
3307 
3308 private:
3309   bool IsNodeBitcast(const TreePatternNode *N) const {
3310     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3311       return false;
3312 
3313     if (N->isLeaf())
3314       return false;
3315     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3316       return false;
3317 
3318     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3319     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3320       return false;
3321     return OpInfo.getEnumName() == "ISD::BITCAST";
3322   }
3323 
3324 public:
3325   void AnalyzeNode(const TreePatternNode *N) {
3326     if (N->isLeaf()) {
3327       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3328         Record *LeafRec = DI->getDef();
3329         // Handle ComplexPattern leaves.
3330         if (LeafRec->isSubClassOf("ComplexPattern")) {
3331           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3332           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3333           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3334           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3335         }
3336       }
3337       return;
3338     }
3339 
3340     // Analyze children.
3341     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3342       AnalyzeNode(N->getChild(i));
3343 
3344     // Notice properties of the node.
3345     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3346     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3347     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3348     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3349     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3350 
3351     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3352       // If this is an intrinsic, analyze it.
3353       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3354         mayLoad = true;// These may load memory.
3355 
3356       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3357         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3358 
3359       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3360           IntInfo->hasSideEffects)
3361         // ReadWriteMem intrinsics can have other strange effects.
3362         hasSideEffects = true;
3363     }
3364   }
3365 
3366 };
3367 
3368 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3369                              const InstAnalyzer &PatInfo,
3370                              Record *PatDef) {
3371   bool Error = false;
3372 
3373   // Remember where InstInfo got its flags.
3374   if (InstInfo.hasUndefFlags())
3375       InstInfo.InferredFrom = PatDef;
3376 
3377   // Check explicitly set flags for consistency.
3378   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3379       !InstInfo.hasSideEffects_Unset) {
3380     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3381     // the pattern has no side effects. That could be useful for div/rem
3382     // instructions that may trap.
3383     if (!InstInfo.hasSideEffects) {
3384       Error = true;
3385       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3386                  Twine(InstInfo.hasSideEffects));
3387     }
3388   }
3389 
3390   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3391     Error = true;
3392     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3393                Twine(InstInfo.mayStore));
3394   }
3395 
3396   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3397     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3398     // Some targets translate immediates to loads.
3399     if (!InstInfo.mayLoad) {
3400       Error = true;
3401       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3402                  Twine(InstInfo.mayLoad));
3403     }
3404   }
3405 
3406   // Transfer inferred flags.
3407   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3408   InstInfo.mayStore |= PatInfo.mayStore;
3409   InstInfo.mayLoad |= PatInfo.mayLoad;
3410 
3411   // These flags are silently added without any verification.
3412   // FIXME: To match historical behavior of TableGen, for now add those flags
3413   // only when we're inferring from the primary instruction pattern.
3414   if (PatDef->isSubClassOf("Instruction")) {
3415     InstInfo.isBitcast |= PatInfo.isBitcast;
3416     InstInfo.hasChain |= PatInfo.hasChain;
3417     InstInfo.hasChain_Inferred = true;
3418   }
3419 
3420   // Don't infer isVariadic. This flag means something different on SDNodes and
3421   // instructions. For example, a CALL SDNode is variadic because it has the
3422   // call arguments as operands, but a CALL instruction is not variadic - it
3423   // has argument registers as implicit, not explicit uses.
3424 
3425   return Error;
3426 }
3427 
3428 /// hasNullFragReference - Return true if the DAG has any reference to the
3429 /// null_frag operator.
3430 static bool hasNullFragReference(DagInit *DI) {
3431   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3432   if (!OpDef) return false;
3433   Record *Operator = OpDef->getDef();
3434 
3435   // If this is the null fragment, return true.
3436   if (Operator->getName() == "null_frag") return true;
3437   // If any of the arguments reference the null fragment, return true.
3438   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3439     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3440     if (Arg && hasNullFragReference(Arg))
3441       return true;
3442   }
3443 
3444   return false;
3445 }
3446 
3447 /// hasNullFragReference - Return true if any DAG in the list references
3448 /// the null_frag operator.
3449 static bool hasNullFragReference(ListInit *LI) {
3450   for (Init *I : LI->getValues()) {
3451     DagInit *DI = dyn_cast<DagInit>(I);
3452     assert(DI && "non-dag in an instruction Pattern list?!");
3453     if (hasNullFragReference(DI))
3454       return true;
3455   }
3456   return false;
3457 }
3458 
3459 /// Get all the instructions in a tree.
3460 static void
3461 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3462   if (Tree->isLeaf())
3463     return;
3464   if (Tree->getOperator()->isSubClassOf("Instruction"))
3465     Instrs.push_back(Tree->getOperator());
3466   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3467     getInstructionsInTree(Tree->getChild(i), Instrs);
3468 }
3469 
3470 /// Check the class of a pattern leaf node against the instruction operand it
3471 /// represents.
3472 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3473                               Record *Leaf) {
3474   if (OI.Rec == Leaf)
3475     return true;
3476 
3477   // Allow direct value types to be used in instruction set patterns.
3478   // The type will be checked later.
3479   if (Leaf->isSubClassOf("ValueType"))
3480     return true;
3481 
3482   // Patterns can also be ComplexPattern instances.
3483   if (Leaf->isSubClassOf("ComplexPattern"))
3484     return true;
3485 
3486   return false;
3487 }
3488 
3489 void CodeGenDAGPatterns::parseInstructionPattern(
3490     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3491 
3492   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3493 
3494   // Parse the instruction.
3495   TreePattern I(CGI.TheDef, Pat, true, *this);
3496 
3497   // InstInputs - Keep track of all of the inputs of the instruction, along
3498   // with the record they are declared as.
3499   std::map<std::string, TreePatternNodePtr> InstInputs;
3500 
3501   // InstResults - Keep track of all the virtual registers that are 'set'
3502   // in the instruction, including what reg class they are.
3503   std::map<std::string, TreePatternNodePtr> InstResults;
3504 
3505   std::vector<Record*> InstImpResults;
3506 
3507   // Verify that the top-level forms in the instruction are of void type, and
3508   // fill in the InstResults map.
3509   SmallString<32> TypesString;
3510   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3511     TypesString.clear();
3512     TreePatternNodePtr Pat = I.getTree(j);
3513     if (Pat->getNumTypes() != 0) {
3514       raw_svector_ostream OS(TypesString);
3515       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3516         if (k > 0)
3517           OS << ", ";
3518         Pat->getExtType(k).writeToStream(OS);
3519       }
3520       I.error("Top-level forms in instruction pattern should have"
3521                " void types, has types " +
3522                OS.str());
3523     }
3524 
3525     // Find inputs and outputs, and verify the structure of the uses/defs.
3526     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3527                                 InstImpResults);
3528   }
3529 
3530   // Now that we have inputs and outputs of the pattern, inspect the operands
3531   // list for the instruction.  This determines the order that operands are
3532   // added to the machine instruction the node corresponds to.
3533   unsigned NumResults = InstResults.size();
3534 
3535   // Parse the operands list from the (ops) list, validating it.
3536   assert(I.getArgList().empty() && "Args list should still be empty here!");
3537 
3538   // Check that all of the results occur first in the list.
3539   std::vector<Record*> Results;
3540   SmallVector<TreePatternNodePtr, 2> ResNodes;
3541   for (unsigned i = 0; i != NumResults; ++i) {
3542     if (i == CGI.Operands.size())
3543       I.error("'" + InstResults.begin()->first +
3544                "' set but does not appear in operand list!");
3545     const std::string &OpName = CGI.Operands[i].Name;
3546 
3547     // Check that it exists in InstResults.
3548     TreePatternNodePtr RNode = InstResults[OpName];
3549     if (!RNode)
3550       I.error("Operand $" + OpName + " does not exist in operand list!");
3551 
3552 
3553     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3554     ResNodes.push_back(std::move(RNode));
3555     if (!R)
3556       I.error("Operand $" + OpName + " should be a set destination: all "
3557                "outputs must occur before inputs in operand list!");
3558 
3559     if (!checkOperandClass(CGI.Operands[i], R))
3560       I.error("Operand $" + OpName + " class mismatch!");
3561 
3562     // Remember the return type.
3563     Results.push_back(CGI.Operands[i].Rec);
3564 
3565     // Okay, this one checks out.
3566     InstResults.erase(OpName);
3567   }
3568 
3569   // Loop over the inputs next.
3570   std::vector<TreePatternNodePtr> ResultNodeOperands;
3571   std::vector<Record*> Operands;
3572   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3573     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3574     const std::string &OpName = Op.Name;
3575     if (OpName.empty())
3576       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3577 
3578     if (!InstInputs.count(OpName)) {
3579       // If this is an operand with a DefaultOps set filled in, we can ignore
3580       // this.  When we codegen it, we will do so as always executed.
3581       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3582         // Does it have a non-empty DefaultOps field?  If so, ignore this
3583         // operand.
3584         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3585           continue;
3586       }
3587       I.error("Operand $" + OpName +
3588                " does not appear in the instruction pattern");
3589     }
3590     TreePatternNodePtr InVal = InstInputs[OpName];
3591     InstInputs.erase(OpName);   // It occurred, remove from map.
3592 
3593     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3594       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3595       if (!checkOperandClass(Op, InRec))
3596         I.error("Operand $" + OpName + "'s register class disagrees"
3597                  " between the operand and pattern");
3598     }
3599     Operands.push_back(Op.Rec);
3600 
3601     // Construct the result for the dest-pattern operand list.
3602     TreePatternNodePtr OpNode = InVal->clone();
3603 
3604     // No predicate is useful on the result.
3605     OpNode->clearPredicateFns();
3606 
3607     // Promote the xform function to be an explicit node if set.
3608     if (Record *Xform = OpNode->getTransformFn()) {
3609       OpNode->setTransformFn(nullptr);
3610       std::vector<TreePatternNodePtr> Children;
3611       Children.push_back(OpNode);
3612       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3613                                                  OpNode->getNumTypes());
3614     }
3615 
3616     ResultNodeOperands.push_back(std::move(OpNode));
3617   }
3618 
3619   if (!InstInputs.empty())
3620     I.error("Input operand $" + InstInputs.begin()->first +
3621             " occurs in pattern but not in operands list!");
3622 
3623   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3624       I.getRecord(), std::move(ResultNodeOperands),
3625       GetNumNodeResults(I.getRecord(), *this));
3626   // Copy fully inferred output node types to instruction result pattern.
3627   for (unsigned i = 0; i != NumResults; ++i) {
3628     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3629     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3630   }
3631 
3632   // FIXME: Assume only the first tree is the pattern. The others are clobber
3633   // nodes.
3634   TreePatternNodePtr Pattern = I.getTree(0);
3635   TreePatternNodePtr SrcPattern;
3636   if (Pattern->getOperator()->getName() == "set") {
3637     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3638   } else{
3639     // Not a set (store or something?)
3640     SrcPattern = Pattern;
3641   }
3642 
3643   // Create and insert the instruction.
3644   // FIXME: InstImpResults should not be part of DAGInstruction.
3645   Record *R = I.getRecord();
3646   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3647                    std::forward_as_tuple(Results, Operands, InstImpResults,
3648                                          SrcPattern, ResultPattern));
3649 
3650   LLVM_DEBUG(I.dump());
3651 }
3652 
3653 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3654 /// any fragments involved.  This populates the Instructions list with fully
3655 /// resolved instructions.
3656 void CodeGenDAGPatterns::ParseInstructions() {
3657   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3658 
3659   for (Record *Instr : Instrs) {
3660     ListInit *LI = nullptr;
3661 
3662     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3663       LI = Instr->getValueAsListInit("Pattern");
3664 
3665     // If there is no pattern, only collect minimal information about the
3666     // instruction for its operand list.  We have to assume that there is one
3667     // result, as we have no detailed info. A pattern which references the
3668     // null_frag operator is as-if no pattern were specified. Normally this
3669     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3670     // null_frag.
3671     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3672       std::vector<Record*> Results;
3673       std::vector<Record*> Operands;
3674 
3675       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3676 
3677       if (InstInfo.Operands.size() != 0) {
3678         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3679           Results.push_back(InstInfo.Operands[j].Rec);
3680 
3681         // The rest are inputs.
3682         for (unsigned j = InstInfo.Operands.NumDefs,
3683                e = InstInfo.Operands.size(); j < e; ++j)
3684           Operands.push_back(InstInfo.Operands[j].Rec);
3685       }
3686 
3687       // Create and insert the instruction.
3688       std::vector<Record*> ImpResults;
3689       Instructions.insert(std::make_pair(Instr,
3690                             DAGInstruction(Results, Operands, ImpResults)));
3691       continue;  // no pattern.
3692     }
3693 
3694     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3695     parseInstructionPattern(CGI, LI, Instructions);
3696   }
3697 
3698   // If we can, convert the instructions to be patterns that are matched!
3699   for (auto &Entry : Instructions) {
3700     Record *Instr = Entry.first;
3701     DAGInstruction &TheInst = Entry.second;
3702     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3703     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3704 
3705     if (SrcPattern && ResultPattern) {
3706       TreePattern Pattern(Instr, SrcPattern, true, *this);
3707       TreePattern Result(Instr, ResultPattern, false, *this);
3708       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3709     }
3710   }
3711 }
3712 
3713 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3714 
3715 static void FindNames(TreePatternNode *P,
3716                       std::map<std::string, NameRecord> &Names,
3717                       TreePattern *PatternTop) {
3718   if (!P->getName().empty()) {
3719     NameRecord &Rec = Names[P->getName()];
3720     // If this is the first instance of the name, remember the node.
3721     if (Rec.second++ == 0)
3722       Rec.first = P;
3723     else if (Rec.first->getExtTypes() != P->getExtTypes())
3724       PatternTop->error("repetition of value: $" + P->getName() +
3725                         " where different uses have different types!");
3726   }
3727 
3728   if (!P->isLeaf()) {
3729     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3730       FindNames(P->getChild(i), Names, PatternTop);
3731   }
3732 }
3733 
3734 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3735   std::vector<Predicate> Preds;
3736   for (Init *I : L->getValues()) {
3737     if (DefInit *Pred = dyn_cast<DefInit>(I))
3738       Preds.push_back(Pred->getDef());
3739     else
3740       llvm_unreachable("Non-def on the list");
3741   }
3742 
3743   // Sort so that different orders get canonicalized to the same string.
3744   llvm::sort(Preds.begin(), Preds.end());
3745   return Preds;
3746 }
3747 
3748 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3749                                            PatternToMatch &&PTM) {
3750   // Do some sanity checking on the pattern we're about to match.
3751   std::string Reason;
3752   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3753     PrintWarning(Pattern->getRecord()->getLoc(),
3754       Twine("Pattern can never match: ") + Reason);
3755     return;
3756   }
3757 
3758   // If the source pattern's root is a complex pattern, that complex pattern
3759   // must specify the nodes it can potentially match.
3760   if (const ComplexPattern *CP =
3761         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3762     if (CP->getRootNodes().empty())
3763       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3764                      " could match");
3765 
3766 
3767   // Find all of the named values in the input and output, ensure they have the
3768   // same type.
3769   std::map<std::string, NameRecord> SrcNames, DstNames;
3770   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3771   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3772 
3773   // Scan all of the named values in the destination pattern, rejecting them if
3774   // they don't exist in the input pattern.
3775   for (const auto &Entry : DstNames) {
3776     if (SrcNames[Entry.first].first == nullptr)
3777       Pattern->error("Pattern has input without matching name in output: $" +
3778                      Entry.first);
3779   }
3780 
3781   // Scan all of the named values in the source pattern, rejecting them if the
3782   // name isn't used in the dest, and isn't used to tie two values together.
3783   for (const auto &Entry : SrcNames)
3784     if (DstNames[Entry.first].first == nullptr &&
3785         SrcNames[Entry.first].second == 1)
3786       Pattern->error("Pattern has dead named input: $" + Entry.first);
3787 
3788   PatternsToMatch.push_back(PTM);
3789 }
3790 
3791 void CodeGenDAGPatterns::InferInstructionFlags() {
3792   ArrayRef<const CodeGenInstruction*> Instructions =
3793     Target.getInstructionsByEnumValue();
3794 
3795   unsigned Errors = 0;
3796 
3797   // Try to infer flags from all patterns in PatternToMatch.  These include
3798   // both the primary instruction patterns (which always come first) and
3799   // patterns defined outside the instruction.
3800   for (const PatternToMatch &PTM : ptms()) {
3801     // We can only infer from single-instruction patterns, otherwise we won't
3802     // know which instruction should get the flags.
3803     SmallVector<Record*, 8> PatInstrs;
3804     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3805     if (PatInstrs.size() != 1)
3806       continue;
3807 
3808     // Get the single instruction.
3809     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3810 
3811     // Only infer properties from the first pattern. We'll verify the others.
3812     if (InstInfo.InferredFrom)
3813       continue;
3814 
3815     InstAnalyzer PatInfo(*this);
3816     PatInfo.Analyze(PTM);
3817     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3818   }
3819 
3820   if (Errors)
3821     PrintFatalError("pattern conflicts");
3822 
3823   // If requested by the target, guess any undefined properties.
3824   if (Target.guessInstructionProperties()) {
3825     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3826       CodeGenInstruction *InstInfo =
3827         const_cast<CodeGenInstruction *>(Instructions[i]);
3828       if (InstInfo->InferredFrom)
3829         continue;
3830       // The mayLoad and mayStore flags default to false.
3831       // Conservatively assume hasSideEffects if it wasn't explicit.
3832       if (InstInfo->hasSideEffects_Unset)
3833         InstInfo->hasSideEffects = true;
3834     }
3835     return;
3836   }
3837 
3838   // Complain about any flags that are still undefined.
3839   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3840     CodeGenInstruction *InstInfo =
3841       const_cast<CodeGenInstruction *>(Instructions[i]);
3842     if (InstInfo->InferredFrom)
3843       continue;
3844     if (InstInfo->hasSideEffects_Unset)
3845       PrintError(InstInfo->TheDef->getLoc(),
3846                  "Can't infer hasSideEffects from patterns");
3847     if (InstInfo->mayStore_Unset)
3848       PrintError(InstInfo->TheDef->getLoc(),
3849                  "Can't infer mayStore from patterns");
3850     if (InstInfo->mayLoad_Unset)
3851       PrintError(InstInfo->TheDef->getLoc(),
3852                  "Can't infer mayLoad from patterns");
3853   }
3854 }
3855 
3856 
3857 /// Verify instruction flags against pattern node properties.
3858 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3859   unsigned Errors = 0;
3860   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3861     const PatternToMatch &PTM = *I;
3862     SmallVector<Record*, 8> Instrs;
3863     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3864     if (Instrs.empty())
3865       continue;
3866 
3867     // Count the number of instructions with each flag set.
3868     unsigned NumSideEffects = 0;
3869     unsigned NumStores = 0;
3870     unsigned NumLoads = 0;
3871     for (const Record *Instr : Instrs) {
3872       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3873       NumSideEffects += InstInfo.hasSideEffects;
3874       NumStores += InstInfo.mayStore;
3875       NumLoads += InstInfo.mayLoad;
3876     }
3877 
3878     // Analyze the source pattern.
3879     InstAnalyzer PatInfo(*this);
3880     PatInfo.Analyze(PTM);
3881 
3882     // Collect error messages.
3883     SmallVector<std::string, 4> Msgs;
3884 
3885     // Check for missing flags in the output.
3886     // Permit extra flags for now at least.
3887     if (PatInfo.hasSideEffects && !NumSideEffects)
3888       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3889 
3890     // Don't verify store flags on instructions with side effects. At least for
3891     // intrinsics, side effects implies mayStore.
3892     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3893       Msgs.push_back("pattern may store, but mayStore isn't set");
3894 
3895     // Similarly, mayStore implies mayLoad on intrinsics.
3896     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3897       Msgs.push_back("pattern may load, but mayLoad isn't set");
3898 
3899     // Print error messages.
3900     if (Msgs.empty())
3901       continue;
3902     ++Errors;
3903 
3904     for (const std::string &Msg : Msgs)
3905       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3906                  (Instrs.size() == 1 ?
3907                   "instruction" : "output instructions"));
3908     // Provide the location of the relevant instruction definitions.
3909     for (const Record *Instr : Instrs) {
3910       if (Instr != PTM.getSrcRecord())
3911         PrintError(Instr->getLoc(), "defined here");
3912       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3913       if (InstInfo.InferredFrom &&
3914           InstInfo.InferredFrom != InstInfo.TheDef &&
3915           InstInfo.InferredFrom != PTM.getSrcRecord())
3916         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3917     }
3918   }
3919   if (Errors)
3920     PrintFatalError("Errors in DAG patterns");
3921 }
3922 
3923 /// Given a pattern result with an unresolved type, see if we can find one
3924 /// instruction with an unresolved result type.  Force this result type to an
3925 /// arbitrary element if it's possible types to converge results.
3926 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3927   if (N->isLeaf())
3928     return false;
3929 
3930   // Analyze children.
3931   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3932     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3933       return true;
3934 
3935   if (!N->getOperator()->isSubClassOf("Instruction"))
3936     return false;
3937 
3938   // If this type is already concrete or completely unknown we can't do
3939   // anything.
3940   TypeInfer &TI = TP.getInfer();
3941   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3942     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3943       continue;
3944 
3945     // Otherwise, force its type to an arbitrary choice.
3946     if (TI.forceArbitrary(N->getExtType(i)))
3947       return true;
3948   }
3949 
3950   return false;
3951 }
3952 
3953 // Promote xform function to be an explicit node wherever set.
3954 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
3955   if (Record *Xform = N->getTransformFn()) {
3956       N->setTransformFn(nullptr);
3957       std::vector<TreePatternNodePtr> Children;
3958       Children.push_back(PromoteXForms(N));
3959       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
3960                                                N->getNumTypes());
3961   }
3962 
3963   if (!N->isLeaf())
3964     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3965       TreePatternNodePtr Child = N->getChildShared(i);
3966       N->setChild(i, PromoteXForms(Child));
3967     }
3968   return N;
3969 }
3970 
3971 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
3972        TreePattern &Pattern, TreePattern &Result,
3973        const std::vector<Record *> &InstImpResults) {
3974 
3975   // Inline pattern fragments and expand multiple alternatives.
3976   Pattern.InlinePatternFragments();
3977   Result.InlinePatternFragments();
3978 
3979   if (Result.getNumTrees() != 1)
3980     Result.error("Cannot use multi-alternative fragments in result pattern!");
3981 
3982   // Infer types.
3983   bool IterateInference;
3984   bool InferredAllPatternTypes, InferredAllResultTypes;
3985   do {
3986     // Infer as many types as possible.  If we cannot infer all of them, we
3987     // can never do anything with this pattern: report it to the user.
3988     InferredAllPatternTypes =
3989         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
3990 
3991     // Infer as many types as possible.  If we cannot infer all of them, we
3992     // can never do anything with this pattern: report it to the user.
3993     InferredAllResultTypes =
3994         Result.InferAllTypes(&Pattern.getNamedNodesMap());
3995 
3996     IterateInference = false;
3997 
3998     // Apply the type of the result to the source pattern.  This helps us
3999     // resolve cases where the input type is known to be a pointer type (which
4000     // is considered resolved), but the result knows it needs to be 32- or
4001     // 64-bits.  Infer the other way for good measure.
4002     for (auto T : Pattern.getTrees())
4003       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4004                                         T->getNumTypes());
4005          i != e; ++i) {
4006         IterateInference |= T->UpdateNodeType(
4007             i, Result.getOnlyTree()->getExtType(i), Result);
4008         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4009             i, T->getExtType(i), Result);
4010       }
4011 
4012     // If our iteration has converged and the input pattern's types are fully
4013     // resolved but the result pattern is not fully resolved, we may have a
4014     // situation where we have two instructions in the result pattern and
4015     // the instructions require a common register class, but don't care about
4016     // what actual MVT is used.  This is actually a bug in our modelling:
4017     // output patterns should have register classes, not MVTs.
4018     //
4019     // In any case, to handle this, we just go through and disambiguate some
4020     // arbitrary types to the result pattern's nodes.
4021     if (!IterateInference && InferredAllPatternTypes &&
4022         !InferredAllResultTypes)
4023       IterateInference =
4024           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4025   } while (IterateInference);
4026 
4027   // Verify that we inferred enough types that we can do something with the
4028   // pattern and result.  If these fire the user has to add type casts.
4029   if (!InferredAllPatternTypes)
4030     Pattern.error("Could not infer all types in pattern!");
4031   if (!InferredAllResultTypes) {
4032     Pattern.dump();
4033     Result.error("Could not infer all types in pattern result!");
4034   }
4035 
4036   // Promote xform function to be an explicit node wherever set.
4037   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4038 
4039   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4040   Temp.InferAllTypes();
4041 
4042   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4043   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4044 
4045   if (PatternRewriter)
4046     PatternRewriter(&Pattern);
4047 
4048   // A pattern may end up with an "impossible" type, i.e. a situation
4049   // where all types have been eliminated for some node in this pattern.
4050   // This could occur for intrinsics that only make sense for a specific
4051   // value type, and use a specific register class. If, for some mode,
4052   // that register class does not accept that type, the type inference
4053   // will lead to a contradiction, which is not an error however, but
4054   // a sign that this pattern will simply never match.
4055   if (Temp.getOnlyTree()->hasPossibleType())
4056     for (auto T : Pattern.getTrees())
4057       if (T->hasPossibleType())
4058         AddPatternToMatch(&Pattern,
4059                           PatternToMatch(TheDef, makePredList(Preds),
4060                                          T, Temp.getOnlyTree(),
4061                                          InstImpResults, Complexity,
4062                                          TheDef->getID()));
4063 }
4064 
4065 void CodeGenDAGPatterns::ParsePatterns() {
4066   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4067 
4068   for (Record *CurPattern : Patterns) {
4069     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4070 
4071     // If the pattern references the null_frag, there's nothing to do.
4072     if (hasNullFragReference(Tree))
4073       continue;
4074 
4075     TreePattern Pattern(CurPattern, Tree, true, *this);
4076 
4077     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4078     if (LI->empty()) continue;  // no pattern.
4079 
4080     // Parse the instruction.
4081     TreePattern Result(CurPattern, LI, false, *this);
4082 
4083     if (Result.getNumTrees() != 1)
4084       Result.error("Cannot handle instructions producing instructions "
4085                    "with temporaries yet!");
4086 
4087     // Validate that the input pattern is correct.
4088     std::map<std::string, TreePatternNodePtr> InstInputs;
4089     std::map<std::string, TreePatternNodePtr> InstResults;
4090     std::vector<Record*> InstImpResults;
4091     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4092       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4093                                   InstResults, InstImpResults);
4094 
4095     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4096   }
4097 }
4098 
4099 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4100   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4101     for (const auto &I : VTS)
4102       Modes.insert(I.first);
4103 
4104   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4105     collectModes(Modes, N->getChild(i));
4106 }
4107 
4108 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4109   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4110   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4111   std::vector<PatternToMatch> Copy = PatternsToMatch;
4112   PatternsToMatch.clear();
4113 
4114   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4115     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4116     TreePatternNodePtr NewDst = P.DstPattern->clone();
4117     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4118       return;
4119     }
4120 
4121     std::vector<Predicate> Preds = P.Predicates;
4122     const std::vector<Predicate> &MC = ModeChecks[Mode];
4123     Preds.insert(Preds.end(), MC.begin(), MC.end());
4124     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4125                                  std::move(NewDst), P.getDstRegs(),
4126                                  P.getAddedComplexity(), Record::getNewUID(),
4127                                  Mode);
4128   };
4129 
4130   for (PatternToMatch &P : Copy) {
4131     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4132     if (P.SrcPattern->hasProperTypeByHwMode())
4133       SrcP = P.SrcPattern;
4134     if (P.DstPattern->hasProperTypeByHwMode())
4135       DstP = P.DstPattern;
4136     if (!SrcP && !DstP) {
4137       PatternsToMatch.push_back(P);
4138       continue;
4139     }
4140 
4141     std::set<unsigned> Modes;
4142     if (SrcP)
4143       collectModes(Modes, SrcP.get());
4144     if (DstP)
4145       collectModes(Modes, DstP.get());
4146 
4147     // The predicate for the default mode needs to be constructed for each
4148     // pattern separately.
4149     // Since not all modes must be present in each pattern, if a mode m is
4150     // absent, then there is no point in constructing a check for m. If such
4151     // a check was created, it would be equivalent to checking the default
4152     // mode, except not all modes' predicates would be a part of the checking
4153     // code. The subsequently generated check for the default mode would then
4154     // have the exact same patterns, but a different predicate code. To avoid
4155     // duplicated patterns with different predicate checks, construct the
4156     // default check as a negation of all predicates that are actually present
4157     // in the source/destination patterns.
4158     std::vector<Predicate> DefaultPred;
4159 
4160     for (unsigned M : Modes) {
4161       if (M == DefaultMode)
4162         continue;
4163       if (ModeChecks.find(M) != ModeChecks.end())
4164         continue;
4165 
4166       // Fill the map entry for this mode.
4167       const HwMode &HM = CGH.getMode(M);
4168       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4169 
4170       // Add negations of the HM's predicates to the default predicate.
4171       DefaultPred.emplace_back(Predicate(HM.Features, false));
4172     }
4173 
4174     for (unsigned M : Modes) {
4175       if (M == DefaultMode)
4176         continue;
4177       AppendPattern(P, M);
4178     }
4179 
4180     bool HasDefault = Modes.count(DefaultMode);
4181     if (HasDefault)
4182       AppendPattern(P, DefaultMode);
4183   }
4184 }
4185 
4186 /// Dependent variable map for CodeGenDAGPattern variant generation
4187 typedef StringMap<int> DepVarMap;
4188 
4189 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4190   if (N->isLeaf()) {
4191     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4192       DepMap[N->getName()]++;
4193   } else {
4194     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4195       FindDepVarsOf(N->getChild(i), DepMap);
4196   }
4197 }
4198 
4199 /// Find dependent variables within child patterns
4200 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4201   DepVarMap depcounts;
4202   FindDepVarsOf(N, depcounts);
4203   for (const auto &Pair : depcounts) {
4204     if (Pair.getValue() > 1)
4205       DepVars.insert(Pair.getKey());
4206   }
4207 }
4208 
4209 #ifndef NDEBUG
4210 /// Dump the dependent variable set:
4211 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4212   if (DepVars.empty()) {
4213     LLVM_DEBUG(errs() << "<empty set>");
4214   } else {
4215     LLVM_DEBUG(errs() << "[ ");
4216     for (const auto &DepVar : DepVars) {
4217       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4218     }
4219     LLVM_DEBUG(errs() << "]");
4220   }
4221 }
4222 #endif
4223 
4224 
4225 /// CombineChildVariants - Given a bunch of permutations of each child of the
4226 /// 'operator' node, put them together in all possible ways.
4227 static void CombineChildVariants(
4228     TreePatternNodePtr Orig,
4229     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4230     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4231     const MultipleUseVarSet &DepVars) {
4232   // Make sure that each operand has at least one variant to choose from.
4233   for (const auto &Variants : ChildVariants)
4234     if (Variants.empty())
4235       return;
4236 
4237   // The end result is an all-pairs construction of the resultant pattern.
4238   std::vector<unsigned> Idxs;
4239   Idxs.resize(ChildVariants.size());
4240   bool NotDone;
4241   do {
4242 #ifndef NDEBUG
4243     LLVM_DEBUG(if (!Idxs.empty()) {
4244       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4245       for (unsigned Idx : Idxs) {
4246         errs() << Idx << " ";
4247       }
4248       errs() << "]\n";
4249     });
4250 #endif
4251     // Create the variant and add it to the output list.
4252     std::vector<TreePatternNodePtr> NewChildren;
4253     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4254       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4255     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4256         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4257 
4258     // Copy over properties.
4259     R->setName(Orig->getName());
4260     R->setPredicateFns(Orig->getPredicateFns());
4261     R->setTransformFn(Orig->getTransformFn());
4262     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4263       R->setType(i, Orig->getExtType(i));
4264 
4265     // If this pattern cannot match, do not include it as a variant.
4266     std::string ErrString;
4267     // Scan to see if this pattern has already been emitted.  We can get
4268     // duplication due to things like commuting:
4269     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4270     // which are the same pattern.  Ignore the dups.
4271     if (R->canPatternMatch(ErrString, CDP) &&
4272         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4273           return R->isIsomorphicTo(Variant.get(), DepVars);
4274         }))
4275       OutVariants.push_back(R);
4276 
4277     // Increment indices to the next permutation by incrementing the
4278     // indices from last index backward, e.g., generate the sequence
4279     // [0, 0], [0, 1], [1, 0], [1, 1].
4280     int IdxsIdx;
4281     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4282       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4283         Idxs[IdxsIdx] = 0;
4284       else
4285         break;
4286     }
4287     NotDone = (IdxsIdx >= 0);
4288   } while (NotDone);
4289 }
4290 
4291 /// CombineChildVariants - A helper function for binary operators.
4292 ///
4293 static void CombineChildVariants(TreePatternNodePtr Orig,
4294                                  const std::vector<TreePatternNodePtr> &LHS,
4295                                  const std::vector<TreePatternNodePtr> &RHS,
4296                                  std::vector<TreePatternNodePtr> &OutVariants,
4297                                  CodeGenDAGPatterns &CDP,
4298                                  const MultipleUseVarSet &DepVars) {
4299   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4300   ChildVariants.push_back(LHS);
4301   ChildVariants.push_back(RHS);
4302   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4303 }
4304 
4305 static void
4306 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4307                                   std::vector<TreePatternNodePtr> &Children) {
4308   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4309   Record *Operator = N->getOperator();
4310 
4311   // Only permit raw nodes.
4312   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
4313       N->getTransformFn()) {
4314     Children.push_back(N);
4315     return;
4316   }
4317 
4318   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4319     Children.push_back(N->getChildShared(0));
4320   else
4321     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4322 
4323   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4324     Children.push_back(N->getChildShared(1));
4325   else
4326     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4327 }
4328 
4329 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4330 /// the (potentially recursive) pattern by using algebraic laws.
4331 ///
4332 static void GenerateVariantsOf(TreePatternNodePtr N,
4333                                std::vector<TreePatternNodePtr> &OutVariants,
4334                                CodeGenDAGPatterns &CDP,
4335                                const MultipleUseVarSet &DepVars) {
4336   // We cannot permute leaves or ComplexPattern uses.
4337   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4338     OutVariants.push_back(N);
4339     return;
4340   }
4341 
4342   // Look up interesting info about the node.
4343   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4344 
4345   // If this node is associative, re-associate.
4346   if (NodeInfo.hasProperty(SDNPAssociative)) {
4347     // Re-associate by pulling together all of the linked operators
4348     std::vector<TreePatternNodePtr> MaximalChildren;
4349     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4350 
4351     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4352     // permutations.
4353     if (MaximalChildren.size() == 3) {
4354       // Find the variants of all of our maximal children.
4355       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4356       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4357       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4358       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4359 
4360       // There are only two ways we can permute the tree:
4361       //   (A op B) op C    and    A op (B op C)
4362       // Within these forms, we can also permute A/B/C.
4363 
4364       // Generate legal pair permutations of A/B/C.
4365       std::vector<TreePatternNodePtr> ABVariants;
4366       std::vector<TreePatternNodePtr> BAVariants;
4367       std::vector<TreePatternNodePtr> ACVariants;
4368       std::vector<TreePatternNodePtr> CAVariants;
4369       std::vector<TreePatternNodePtr> BCVariants;
4370       std::vector<TreePatternNodePtr> CBVariants;
4371       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4372       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4373       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4374       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4375       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4376       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4377 
4378       // Combine those into the result: (x op x) op x
4379       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4380       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4381       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4382       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4383       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4384       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4385 
4386       // Combine those into the result: x op (x op x)
4387       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4388       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4389       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4390       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4391       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4392       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4393       return;
4394     }
4395   }
4396 
4397   // Compute permutations of all children.
4398   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4399   ChildVariants.resize(N->getNumChildren());
4400   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4401     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4402 
4403   // Build all permutations based on how the children were formed.
4404   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4405 
4406   // If this node is commutative, consider the commuted order.
4407   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4408   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4409     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4410            "Commutative but doesn't have 2 children!");
4411     // Don't count children which are actually register references.
4412     unsigned NC = 0;
4413     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4414       TreePatternNode *Child = N->getChild(i);
4415       if (Child->isLeaf())
4416         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4417           Record *RR = DI->getDef();
4418           if (RR->isSubClassOf("Register"))
4419             continue;
4420         }
4421       NC++;
4422     }
4423     // Consider the commuted order.
4424     if (isCommIntrinsic) {
4425       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4426       // operands are the commutative operands, and there might be more operands
4427       // after those.
4428       assert(NC >= 3 &&
4429              "Commutative intrinsic should have at least 3 children!");
4430       std::vector<std::vector<TreePatternNodePtr>> Variants;
4431       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4432       Variants.push_back(std::move(ChildVariants[2]));
4433       Variants.push_back(std::move(ChildVariants[1]));
4434       for (unsigned i = 3; i != NC; ++i)
4435         Variants.push_back(std::move(ChildVariants[i]));
4436       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4437     } else if (NC == N->getNumChildren()) {
4438       std::vector<std::vector<TreePatternNodePtr>> Variants;
4439       Variants.push_back(std::move(ChildVariants[1]));
4440       Variants.push_back(std::move(ChildVariants[0]));
4441       for (unsigned i = 2; i != NC; ++i)
4442         Variants.push_back(std::move(ChildVariants[i]));
4443       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4444     }
4445   }
4446 }
4447 
4448 
4449 // GenerateVariants - Generate variants.  For example, commutative patterns can
4450 // match multiple ways.  Add them to PatternsToMatch as well.
4451 void CodeGenDAGPatterns::GenerateVariants() {
4452   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4453 
4454   // Loop over all of the patterns we've collected, checking to see if we can
4455   // generate variants of the instruction, through the exploitation of
4456   // identities.  This permits the target to provide aggressive matching without
4457   // the .td file having to contain tons of variants of instructions.
4458   //
4459   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4460   // intentionally do not reconsider these.  Any variants of added patterns have
4461   // already been added.
4462   //
4463   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4464     MultipleUseVarSet             DepVars;
4465     std::vector<TreePatternNodePtr> Variants;
4466     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4467     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4468     LLVM_DEBUG(DumpDepVars(DepVars));
4469     LLVM_DEBUG(errs() << "\n");
4470     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4471                        *this, DepVars);
4472 
4473     assert(!Variants.empty() && "Must create at least original variant!");
4474     if (Variants.size() == 1)  // No additional variants for this pattern.
4475       continue;
4476 
4477     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4478                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4479 
4480     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4481       TreePatternNodePtr Variant = Variants[v];
4482 
4483       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4484                  errs() << "\n");
4485 
4486       // Scan to see if an instruction or explicit pattern already matches this.
4487       bool AlreadyExists = false;
4488       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4489         // Skip if the top level predicates do not match.
4490         if ((i != p) && (PatternsToMatch[i].getPredicates() !=
4491                          PatternsToMatch[p].getPredicates()))
4492           continue;
4493         // Check to see if this variant already exists.
4494         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4495                                     DepVars)) {
4496           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4497           AlreadyExists = true;
4498           break;
4499         }
4500       }
4501       // If we already have it, ignore the variant.
4502       if (AlreadyExists) continue;
4503 
4504       // Otherwise, add it to the list of patterns we have.
4505       PatternsToMatch.push_back(PatternToMatch(
4506           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4507           Variant, PatternsToMatch[i].getDstPatternShared(),
4508           PatternsToMatch[i].getDstRegs(),
4509           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4510     }
4511 
4512     LLVM_DEBUG(errs() << "\n");
4513   }
4514 }
4515