1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <iterator> 31 #include <set> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "dag-patterns" 35 36 static inline bool isIntegerOrPtr(MVT VT) { 37 return VT.isInteger() || VT == MVT::iPTR; 38 } 39 static inline bool isFloatingPoint(MVT VT) { 40 return VT.isFloatingPoint(); 41 } 42 static inline bool isVector(MVT VT) { 43 return VT.isVector(); 44 } 45 static inline bool isScalar(MVT VT) { 46 return !VT.isVector(); 47 } 48 49 template <typename Predicate> 50 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 51 bool Erased = false; 52 // It is ok to iterate over MachineValueTypeSet and remove elements from it 53 // at the same time. 54 for (MVT T : S) { 55 if (!P(T)) 56 continue; 57 Erased = true; 58 S.erase(T); 59 } 60 return Erased; 61 } 62 63 // --- TypeSetByHwMode 64 65 // This is a parameterized type-set class. For each mode there is a list 66 // of types that are currently possible for a given tree node. Type 67 // inference will apply to each mode separately. 68 69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 70 for (const ValueTypeByHwMode &VVT : VTList) { 71 insert(VVT); 72 AddrSpaces.push_back(VVT.PtrAddrSpace); 73 } 74 } 75 76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 77 for (const auto &I : *this) { 78 if (I.second.size() > 1) 79 return false; 80 if (!AllowEmpty && I.second.empty()) 81 return false; 82 } 83 return true; 84 } 85 86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 87 assert(isValueTypeByHwMode(true) && 88 "The type set has multiple types for at least one HW mode"); 89 ValueTypeByHwMode VVT; 90 auto ASI = AddrSpaces.begin(); 91 92 for (const auto &I : *this) { 93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 94 VVT.getOrCreateTypeForMode(I.first, T); 95 if (ASI != AddrSpaces.end()) 96 VVT.PtrAddrSpace = *ASI++; 97 } 98 return VVT; 99 } 100 101 bool TypeSetByHwMode::isPossible() const { 102 for (const auto &I : *this) 103 if (!I.second.empty()) 104 return true; 105 return false; 106 } 107 108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 109 bool Changed = false; 110 bool ContainsDefault = false; 111 MVT DT = MVT::Other; 112 113 SmallDenseSet<unsigned, 4> Modes; 114 for (const auto &P : VVT) { 115 unsigned M = P.first; 116 Modes.insert(M); 117 // Make sure there exists a set for each specific mode from VVT. 118 Changed |= getOrCreate(M).insert(P.second).second; 119 // Cache VVT's default mode. 120 if (DefaultMode == M) { 121 ContainsDefault = true; 122 DT = P.second; 123 } 124 } 125 126 // If VVT has a default mode, add the corresponding type to all 127 // modes in "this" that do not exist in VVT. 128 if (ContainsDefault) 129 for (auto &I : *this) 130 if (!Modes.count(I.first)) 131 Changed |= I.second.insert(DT).second; 132 133 return Changed; 134 } 135 136 // Constrain the type set to be the intersection with VTS. 137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 138 bool Changed = false; 139 if (hasDefault()) { 140 for (const auto &I : VTS) { 141 unsigned M = I.first; 142 if (M == DefaultMode || hasMode(M)) 143 continue; 144 Map.insert({M, Map.at(DefaultMode)}); 145 Changed = true; 146 } 147 } 148 149 for (auto &I : *this) { 150 unsigned M = I.first; 151 SetType &S = I.second; 152 if (VTS.hasMode(M) || VTS.hasDefault()) { 153 Changed |= intersect(I.second, VTS.get(M)); 154 } else if (!S.empty()) { 155 S.clear(); 156 Changed = true; 157 } 158 } 159 return Changed; 160 } 161 162 template <typename Predicate> 163 bool TypeSetByHwMode::constrain(Predicate P) { 164 bool Changed = false; 165 for (auto &I : *this) 166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 167 return Changed; 168 } 169 170 template <typename Predicate> 171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 172 assert(empty()); 173 for (const auto &I : VTS) { 174 SetType &S = getOrCreate(I.first); 175 for (auto J : I.second) 176 if (P(J)) 177 S.insert(J); 178 } 179 return !empty(); 180 } 181 182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 183 SmallVector<unsigned, 4> Modes; 184 Modes.reserve(Map.size()); 185 186 for (const auto &I : *this) 187 Modes.push_back(I.first); 188 if (Modes.empty()) { 189 OS << "{}"; 190 return; 191 } 192 array_pod_sort(Modes.begin(), Modes.end()); 193 194 OS << '{'; 195 for (unsigned M : Modes) { 196 OS << ' ' << getModeName(M) << ':'; 197 writeToStream(get(M), OS); 198 } 199 OS << " }"; 200 } 201 202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 203 SmallVector<MVT, 4> Types(S.begin(), S.end()); 204 array_pod_sort(Types.begin(), Types.end()); 205 206 OS << '['; 207 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 208 OS << ValueTypeByHwMode::getMVTName(Types[i]); 209 if (i != e-1) 210 OS << ' '; 211 } 212 OS << ']'; 213 } 214 215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 216 // The isSimple call is much quicker than hasDefault - check this first. 217 bool IsSimple = isSimple(); 218 bool VTSIsSimple = VTS.isSimple(); 219 if (IsSimple && VTSIsSimple) 220 return *begin() == *VTS.begin(); 221 222 // Speedup: We have a default if the set is simple. 223 bool HaveDefault = IsSimple || hasDefault(); 224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 225 if (HaveDefault != VTSHaveDefault) 226 return false; 227 228 SmallDenseSet<unsigned, 4> Modes; 229 for (auto &I : *this) 230 Modes.insert(I.first); 231 for (const auto &I : VTS) 232 Modes.insert(I.first); 233 234 if (HaveDefault) { 235 // Both sets have default mode. 236 for (unsigned M : Modes) { 237 if (get(M) != VTS.get(M)) 238 return false; 239 } 240 } else { 241 // Neither set has default mode. 242 for (unsigned M : Modes) { 243 // If there is no default mode, an empty set is equivalent to not having 244 // the corresponding mode. 245 bool NoModeThis = !hasMode(M) || get(M).empty(); 246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 247 if (NoModeThis != NoModeVTS) 248 return false; 249 if (!NoModeThis) 250 if (get(M) != VTS.get(M)) 251 return false; 252 } 253 } 254 255 return true; 256 } 257 258 namespace llvm { 259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 260 T.writeToStream(OS); 261 return OS; 262 } 263 } 264 265 LLVM_DUMP_METHOD 266 void TypeSetByHwMode::dump() const { 267 dbgs() << *this << '\n'; 268 } 269 270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 272 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 273 274 if (OutP == InP) 275 return berase_if(Out, Int); 276 277 // Compute the intersection of scalars separately to account for only 278 // one set containing iPTR. 279 // The itersection of iPTR with a set of integer scalar types that does not 280 // include iPTR will result in the most specific scalar type: 281 // - iPTR is more specific than any set with two elements or more 282 // - iPTR is less specific than any single integer scalar type. 283 // For example 284 // { iPTR } * { i32 } -> { i32 } 285 // { iPTR } * { i32 i64 } -> { iPTR } 286 // and 287 // { iPTR i32 } * { i32 } -> { i32 } 288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 290 291 // Compute the difference between the two sets in such a way that the 292 // iPTR is in the set that is being subtracted. This is to see if there 293 // are any extra scalars in the set without iPTR that are not in the 294 // set containing iPTR. Then the iPTR could be considered a "wildcard" 295 // matching these scalars. If there is only one such scalar, it would 296 // replace the iPTR, if there are more, the iPTR would be retained. 297 SetType Diff; 298 if (InP) { 299 Diff = Out; 300 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 301 // Pre-remove these elements and rely only on InP/OutP to determine 302 // whether a change has been made. 303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 304 } else { 305 Diff = In; 306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 307 Out.erase(MVT::iPTR); 308 } 309 310 // The actual intersection. 311 bool Changed = berase_if(Out, Int); 312 unsigned NumD = Diff.size(); 313 if (NumD == 0) 314 return Changed; 315 316 if (NumD == 1) { 317 Out.insert(*Diff.begin()); 318 // This is a change only if Out was the one with iPTR (which is now 319 // being replaced). 320 Changed |= OutP; 321 } else { 322 // Multiple elements from Out are now replaced with iPTR. 323 Out.insert(MVT::iPTR); 324 Changed |= !OutP; 325 } 326 return Changed; 327 } 328 329 bool TypeSetByHwMode::validate() const { 330 #ifndef NDEBUG 331 if (empty()) 332 return true; 333 bool AllEmpty = true; 334 for (const auto &I : *this) 335 AllEmpty &= I.second.empty(); 336 return !AllEmpty; 337 #endif 338 return true; 339 } 340 341 // --- TypeInfer 342 343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 344 const TypeSetByHwMode &In) { 345 ValidateOnExit _1(Out, *this); 346 In.validate(); 347 if (In.empty() || Out == In || TP.hasError()) 348 return false; 349 if (Out.empty()) { 350 Out = In; 351 return true; 352 } 353 354 bool Changed = Out.constrain(In); 355 if (Changed && Out.empty()) 356 TP.error("Type contradiction"); 357 358 return Changed; 359 } 360 361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 362 ValidateOnExit _1(Out, *this); 363 if (TP.hasError()) 364 return false; 365 assert(!Out.empty() && "cannot pick from an empty set"); 366 367 bool Changed = false; 368 for (auto &I : Out) { 369 TypeSetByHwMode::SetType &S = I.second; 370 if (S.size() <= 1) 371 continue; 372 MVT T = *S.begin(); // Pick the first element. 373 S.clear(); 374 S.insert(T); 375 Changed = true; 376 } 377 return Changed; 378 } 379 380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 if (!Out.empty()) 385 return Out.constrain(isIntegerOrPtr); 386 387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 388 } 389 390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 391 ValidateOnExit _1(Out, *this); 392 if (TP.hasError()) 393 return false; 394 if (!Out.empty()) 395 return Out.constrain(isFloatingPoint); 396 397 return Out.assign_if(getLegalTypes(), isFloatingPoint); 398 } 399 400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 401 ValidateOnExit _1(Out, *this); 402 if (TP.hasError()) 403 return false; 404 if (!Out.empty()) 405 return Out.constrain(isScalar); 406 407 return Out.assign_if(getLegalTypes(), isScalar); 408 } 409 410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 411 ValidateOnExit _1(Out, *this); 412 if (TP.hasError()) 413 return false; 414 if (!Out.empty()) 415 return Out.constrain(isVector); 416 417 return Out.assign_if(getLegalTypes(), isVector); 418 } 419 420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 421 ValidateOnExit _1(Out, *this); 422 if (TP.hasError() || !Out.empty()) 423 return false; 424 425 Out = getLegalTypes(); 426 return true; 427 } 428 429 template <typename Iter, typename Pred, typename Less> 430 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 431 if (B == E) 432 return E; 433 Iter Min = E; 434 for (Iter I = B; I != E; ++I) { 435 if (!P(*I)) 436 continue; 437 if (Min == E || L(*I, *Min)) 438 Min = I; 439 } 440 return Min; 441 } 442 443 template <typename Iter, typename Pred, typename Less> 444 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 445 if (B == E) 446 return E; 447 Iter Max = E; 448 for (Iter I = B; I != E; ++I) { 449 if (!P(*I)) 450 continue; 451 if (Max == E || L(*Max, *I)) 452 Max = I; 453 } 454 return Max; 455 } 456 457 /// Make sure that for each type in Small, there exists a larger type in Big. 458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 459 TypeSetByHwMode &Big) { 460 ValidateOnExit _1(Small, *this), _2(Big, *this); 461 if (TP.hasError()) 462 return false; 463 bool Changed = false; 464 465 if (Small.empty()) 466 Changed |= EnforceAny(Small); 467 if (Big.empty()) 468 Changed |= EnforceAny(Big); 469 470 assert(Small.hasDefault() && Big.hasDefault()); 471 472 std::vector<unsigned> Modes = union_modes(Small, Big); 473 474 // 1. Only allow integer or floating point types and make sure that 475 // both sides are both integer or both floating point. 476 // 2. Make sure that either both sides have vector types, or neither 477 // of them does. 478 for (unsigned M : Modes) { 479 TypeSetByHwMode::SetType &S = Small.get(M); 480 TypeSetByHwMode::SetType &B = Big.get(M); 481 482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 484 Changed |= berase_if(S, NotInt) | 485 berase_if(B, NotInt); 486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 488 Changed |= berase_if(S, NotFP) | 489 berase_if(B, NotFP); 490 } else if (S.empty() || B.empty()) { 491 Changed = !S.empty() || !B.empty(); 492 S.clear(); 493 B.clear(); 494 } else { 495 TP.error("Incompatible types"); 496 return Changed; 497 } 498 499 if (none_of(S, isVector) || none_of(B, isVector)) { 500 Changed |= berase_if(S, isVector) | 501 berase_if(B, isVector); 502 } 503 } 504 505 auto LT = [](MVT A, MVT B) -> bool { 506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 508 A.getSizeInBits() < B.getSizeInBits()); 509 }; 510 auto LE = [<](MVT A, MVT B) -> bool { 511 // This function is used when removing elements: when a vector is compared 512 // to a non-vector, it should return false (to avoid removal). 513 if (A.isVector() != B.isVector()) 514 return false; 515 516 return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 517 A.getSizeInBits() == B.getSizeInBits()); 518 }; 519 520 for (unsigned M : Modes) { 521 TypeSetByHwMode::SetType &S = Small.get(M); 522 TypeSetByHwMode::SetType &B = Big.get(M); 523 // MinS = min scalar in Small, remove all scalars from Big that are 524 // smaller-or-equal than MinS. 525 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 526 if (MinS != S.end()) 527 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 528 529 // MaxS = max scalar in Big, remove all scalars from Small that are 530 // larger than MaxS. 531 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 532 if (MaxS != B.end()) 533 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 534 535 // MinV = min vector in Small, remove all vectors from Big that are 536 // smaller-or-equal than MinV. 537 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 538 if (MinV != S.end()) 539 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 540 541 // MaxV = max vector in Big, remove all vectors from Small that are 542 // larger than MaxV. 543 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 544 if (MaxV != B.end()) 545 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 546 } 547 548 return Changed; 549 } 550 551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 552 /// for each type U in Elem, U is a scalar type. 553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 554 /// type T in Vec, such that U is the element type of T. 555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 556 TypeSetByHwMode &Elem) { 557 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 558 if (TP.hasError()) 559 return false; 560 bool Changed = false; 561 562 if (Vec.empty()) 563 Changed |= EnforceVector(Vec); 564 if (Elem.empty()) 565 Changed |= EnforceScalar(Elem); 566 567 for (unsigned M : union_modes(Vec, Elem)) { 568 TypeSetByHwMode::SetType &V = Vec.get(M); 569 TypeSetByHwMode::SetType &E = Elem.get(M); 570 571 Changed |= berase_if(V, isScalar); // Scalar = !vector 572 Changed |= berase_if(E, isVector); // Vector = !scalar 573 assert(!V.empty() && !E.empty()); 574 575 SmallSet<MVT,4> VT, ST; 576 // Collect element types from the "vector" set. 577 for (MVT T : V) 578 VT.insert(T.getVectorElementType()); 579 // Collect scalar types from the "element" set. 580 for (MVT T : E) 581 ST.insert(T); 582 583 // Remove from V all (vector) types whose element type is not in S. 584 Changed |= berase_if(V, [&ST](MVT T) -> bool { 585 return !ST.count(T.getVectorElementType()); 586 }); 587 // Remove from E all (scalar) types, for which there is no corresponding 588 // type in V. 589 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 590 } 591 592 return Changed; 593 } 594 595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 596 const ValueTypeByHwMode &VVT) { 597 TypeSetByHwMode Tmp(VVT); 598 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 599 return EnforceVectorEltTypeIs(Vec, Tmp); 600 } 601 602 /// Ensure that for each type T in Sub, T is a vector type, and there 603 /// exists a type U in Vec such that U is a vector type with the same 604 /// element type as T and at least as many elements as T. 605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 606 TypeSetByHwMode &Sub) { 607 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 608 if (TP.hasError()) 609 return false; 610 611 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 612 auto IsSubVec = [](MVT B, MVT P) -> bool { 613 if (!B.isVector() || !P.isVector()) 614 return false; 615 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 616 // but until there are obvious use-cases for this, keep the 617 // types separate. 618 if (B.isScalableVector() != P.isScalableVector()) 619 return false; 620 if (B.getVectorElementType() != P.getVectorElementType()) 621 return false; 622 return B.getVectorNumElements() < P.getVectorNumElements(); 623 }; 624 625 /// Return true if S has no element (vector type) that T is a sub-vector of, 626 /// i.e. has the same element type as T and more elements. 627 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 628 for (const auto &I : S) 629 if (IsSubVec(T, I)) 630 return false; 631 return true; 632 }; 633 634 /// Return true if S has no element (vector type) that T is a super-vector 635 /// of, i.e. has the same element type as T and fewer elements. 636 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 637 for (const auto &I : S) 638 if (IsSubVec(I, T)) 639 return false; 640 return true; 641 }; 642 643 bool Changed = false; 644 645 if (Vec.empty()) 646 Changed |= EnforceVector(Vec); 647 if (Sub.empty()) 648 Changed |= EnforceVector(Sub); 649 650 for (unsigned M : union_modes(Vec, Sub)) { 651 TypeSetByHwMode::SetType &S = Sub.get(M); 652 TypeSetByHwMode::SetType &V = Vec.get(M); 653 654 Changed |= berase_if(S, isScalar); 655 656 // Erase all types from S that are not sub-vectors of a type in V. 657 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 658 659 // Erase all types from V that are not super-vectors of a type in S. 660 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 661 } 662 663 return Changed; 664 } 665 666 /// 1. Ensure that V has a scalar type iff W has a scalar type. 667 /// 2. Ensure that for each vector type T in V, there exists a vector 668 /// type U in W, such that T and U have the same number of elements. 669 /// 3. Ensure that for each vector type U in W, there exists a vector 670 /// type T in V, such that T and U have the same number of elements 671 /// (reverse of 2). 672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 673 ValidateOnExit _1(V, *this), _2(W, *this); 674 if (TP.hasError()) 675 return false; 676 677 bool Changed = false; 678 if (V.empty()) 679 Changed |= EnforceAny(V); 680 if (W.empty()) 681 Changed |= EnforceAny(W); 682 683 // An actual vector type cannot have 0 elements, so we can treat scalars 684 // as zero-length vectors. This way both vectors and scalars can be 685 // processed identically. 686 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 687 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 688 }; 689 690 for (unsigned M : union_modes(V, W)) { 691 TypeSetByHwMode::SetType &VS = V.get(M); 692 TypeSetByHwMode::SetType &WS = W.get(M); 693 694 SmallSet<unsigned,2> VN, WN; 695 for (MVT T : VS) 696 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 697 for (MVT T : WS) 698 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 699 700 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 701 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 702 } 703 return Changed; 704 } 705 706 /// 1. Ensure that for each type T in A, there exists a type U in B, 707 /// such that T and U have equal size in bits. 708 /// 2. Ensure that for each type U in B, there exists a type T in A 709 /// such that T and U have equal size in bits (reverse of 1). 710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 711 ValidateOnExit _1(A, *this), _2(B, *this); 712 if (TP.hasError()) 713 return false; 714 bool Changed = false; 715 if (A.empty()) 716 Changed |= EnforceAny(A); 717 if (B.empty()) 718 Changed |= EnforceAny(B); 719 720 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 721 return !Sizes.count(T.getSizeInBits()); 722 }; 723 724 for (unsigned M : union_modes(A, B)) { 725 TypeSetByHwMode::SetType &AS = A.get(M); 726 TypeSetByHwMode::SetType &BS = B.get(M); 727 SmallSet<unsigned,2> AN, BN; 728 729 for (MVT T : AS) 730 AN.insert(T.getSizeInBits()); 731 for (MVT T : BS) 732 BN.insert(T.getSizeInBits()); 733 734 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 735 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 736 } 737 738 return Changed; 739 } 740 741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 742 ValidateOnExit _1(VTS, *this); 743 const TypeSetByHwMode &Legal = getLegalTypes(); 744 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 745 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 746 747 for (auto &I : VTS) 748 expandOverloads(I.second, LegalTypes); 749 } 750 751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 752 const TypeSetByHwMode::SetType &Legal) { 753 std::set<MVT> Ovs; 754 for (MVT T : Out) { 755 if (!T.isOverloaded()) 756 continue; 757 758 Ovs.insert(T); 759 // MachineValueTypeSet allows iteration and erasing. 760 Out.erase(T); 761 } 762 763 for (MVT Ov : Ovs) { 764 switch (Ov.SimpleTy) { 765 case MVT::iPTRAny: 766 Out.insert(MVT::iPTR); 767 return; 768 case MVT::iAny: 769 for (MVT T : MVT::integer_valuetypes()) 770 if (Legal.count(T)) 771 Out.insert(T); 772 for (MVT T : MVT::integer_vector_valuetypes()) 773 if (Legal.count(T)) 774 Out.insert(T); 775 return; 776 case MVT::fAny: 777 for (MVT T : MVT::fp_valuetypes()) 778 if (Legal.count(T)) 779 Out.insert(T); 780 for (MVT T : MVT::fp_vector_valuetypes()) 781 if (Legal.count(T)) 782 Out.insert(T); 783 return; 784 case MVT::vAny: 785 for (MVT T : MVT::vector_valuetypes()) 786 if (Legal.count(T)) 787 Out.insert(T); 788 return; 789 case MVT::Any: 790 for (MVT T : MVT::all_valuetypes()) 791 if (Legal.count(T)) 792 Out.insert(T); 793 return; 794 default: 795 break; 796 } 797 } 798 } 799 800 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 801 if (!LegalTypesCached) { 802 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 803 // Stuff all types from all modes into the default mode. 804 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 805 for (const auto &I : LTS) 806 LegalTypes.insert(I.second); 807 LegalTypesCached = true; 808 } 809 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 810 return LegalCache; 811 } 812 813 #ifndef NDEBUG 814 TypeInfer::ValidateOnExit::~ValidateOnExit() { 815 if (Infer.Validate && !VTS.validate()) { 816 dbgs() << "Type set is empty for each HW mode:\n" 817 "possible type contradiction in the pattern below " 818 "(use -print-records with llvm-tblgen to see all " 819 "expanded records).\n"; 820 Infer.TP.dump(); 821 llvm_unreachable(nullptr); 822 } 823 } 824 #endif 825 826 827 //===----------------------------------------------------------------------===// 828 // ScopedName Implementation 829 //===----------------------------------------------------------------------===// 830 831 bool ScopedName::operator==(const ScopedName &o) const { 832 return Scope == o.Scope && Identifier == o.Identifier; 833 } 834 835 bool ScopedName::operator!=(const ScopedName &o) const { 836 return !(*this == o); 837 } 838 839 840 //===----------------------------------------------------------------------===// 841 // TreePredicateFn Implementation 842 //===----------------------------------------------------------------------===// 843 844 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 845 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 846 assert( 847 (!hasPredCode() || !hasImmCode()) && 848 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 849 } 850 851 bool TreePredicateFn::hasPredCode() const { 852 return isLoad() || isStore() || isAtomic() || 853 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 854 } 855 856 std::string TreePredicateFn::getPredCode() const { 857 std::string Code = ""; 858 859 if (!isLoad() && !isStore() && !isAtomic()) { 860 Record *MemoryVT = getMemoryVT(); 861 862 if (MemoryVT) 863 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 864 "MemoryVT requires IsLoad or IsStore"); 865 } 866 867 if (!isLoad() && !isStore()) { 868 if (isUnindexed()) 869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 870 "IsUnindexed requires IsLoad or IsStore"); 871 872 Record *ScalarMemoryVT = getScalarMemoryVT(); 873 874 if (ScalarMemoryVT) 875 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 876 "ScalarMemoryVT requires IsLoad or IsStore"); 877 } 878 879 if (isLoad() + isStore() + isAtomic() > 1) 880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 881 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 882 883 if (isLoad()) { 884 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 885 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 886 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 887 getMinAlignment() < 1) 888 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 889 "IsLoad cannot be used by itself"); 890 } else { 891 if (isNonExtLoad()) 892 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 893 "IsNonExtLoad requires IsLoad"); 894 if (isAnyExtLoad()) 895 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 896 "IsAnyExtLoad requires IsLoad"); 897 if (isSignExtLoad()) 898 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 899 "IsSignExtLoad requires IsLoad"); 900 if (isZeroExtLoad()) 901 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 902 "IsZeroExtLoad requires IsLoad"); 903 } 904 905 if (isStore()) { 906 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 907 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 908 getAddressSpaces() == nullptr && getMinAlignment() < 1) 909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 910 "IsStore cannot be used by itself"); 911 } else { 912 if (isNonTruncStore()) 913 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 914 "IsNonTruncStore requires IsStore"); 915 if (isTruncStore()) 916 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 917 "IsTruncStore requires IsStore"); 918 } 919 920 if (isAtomic()) { 921 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 922 getAddressSpaces() == nullptr && 923 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 924 !isAtomicOrderingAcquireRelease() && 925 !isAtomicOrderingSequentiallyConsistent() && 926 !isAtomicOrderingAcquireOrStronger() && 927 !isAtomicOrderingReleaseOrStronger() && 928 !isAtomicOrderingWeakerThanAcquire() && 929 !isAtomicOrderingWeakerThanRelease()) 930 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 931 "IsAtomic cannot be used by itself"); 932 } else { 933 if (isAtomicOrderingMonotonic()) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsAtomicOrderingMonotonic requires IsAtomic"); 936 if (isAtomicOrderingAcquire()) 937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 938 "IsAtomicOrderingAcquire requires IsAtomic"); 939 if (isAtomicOrderingRelease()) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsAtomicOrderingRelease requires IsAtomic"); 942 if (isAtomicOrderingAcquireRelease()) 943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 944 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 945 if (isAtomicOrderingSequentiallyConsistent()) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 948 if (isAtomicOrderingAcquireOrStronger()) 949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 950 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 951 if (isAtomicOrderingReleaseOrStronger()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 954 if (isAtomicOrderingWeakerThanAcquire()) 955 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 956 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 957 } 958 959 if (isLoad() || isStore() || isAtomic()) { 960 if (ListInit *AddressSpaces = getAddressSpaces()) { 961 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 962 " if ("; 963 964 bool First = true; 965 for (Init *Val : AddressSpaces->getValues()) { 966 if (First) 967 First = false; 968 else 969 Code += " && "; 970 971 IntInit *IntVal = dyn_cast<IntInit>(Val); 972 if (!IntVal) { 973 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 974 "AddressSpaces element must be integer"); 975 } 976 977 Code += "AddrSpace != " + utostr(IntVal->getValue()); 978 } 979 980 Code += ")\nreturn false;\n"; 981 } 982 983 int64_t MinAlign = getMinAlignment(); 984 if (MinAlign > 0) { 985 Code += "if (cast<MemSDNode>(N)->getAlignment() < "; 986 Code += utostr(MinAlign); 987 Code += ")\nreturn false;\n"; 988 } 989 990 Record *MemoryVT = getMemoryVT(); 991 992 if (MemoryVT) 993 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 994 MemoryVT->getName() + ") return false;\n") 995 .str(); 996 } 997 998 if (isAtomic() && isAtomicOrderingMonotonic()) 999 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1000 "AtomicOrdering::Monotonic) return false;\n"; 1001 if (isAtomic() && isAtomicOrderingAcquire()) 1002 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1003 "AtomicOrdering::Acquire) return false;\n"; 1004 if (isAtomic() && isAtomicOrderingRelease()) 1005 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1006 "AtomicOrdering::Release) return false;\n"; 1007 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1008 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1009 "AtomicOrdering::AcquireRelease) return false;\n"; 1010 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1011 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1012 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1013 1014 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1015 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1016 "return false;\n"; 1017 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1018 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1019 "return false;\n"; 1020 1021 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1022 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1023 "return false;\n"; 1024 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1025 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1026 "return false;\n"; 1027 1028 if (isLoad() || isStore()) { 1029 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1030 1031 if (isUnindexed()) 1032 Code += ("if (cast<" + SDNodeName + 1033 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1034 "return false;\n") 1035 .str(); 1036 1037 if (isLoad()) { 1038 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1039 isZeroExtLoad()) > 1) 1040 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1041 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1042 "IsZeroExtLoad are mutually exclusive"); 1043 if (isNonExtLoad()) 1044 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1045 "ISD::NON_EXTLOAD) return false;\n"; 1046 if (isAnyExtLoad()) 1047 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1048 "return false;\n"; 1049 if (isSignExtLoad()) 1050 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1051 "return false;\n"; 1052 if (isZeroExtLoad()) 1053 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1054 "return false;\n"; 1055 } else { 1056 if ((isNonTruncStore() + isTruncStore()) > 1) 1057 PrintFatalError( 1058 getOrigPatFragRecord()->getRecord()->getLoc(), 1059 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1060 if (isNonTruncStore()) 1061 Code += 1062 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1063 if (isTruncStore()) 1064 Code += 1065 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1066 } 1067 1068 Record *ScalarMemoryVT = getScalarMemoryVT(); 1069 1070 if (ScalarMemoryVT) 1071 Code += ("if (cast<" + SDNodeName + 1072 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1073 ScalarMemoryVT->getName() + ") return false;\n") 1074 .str(); 1075 } 1076 1077 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1078 1079 Code += PredicateCode; 1080 1081 if (PredicateCode.empty() && !Code.empty()) 1082 Code += "return true;\n"; 1083 1084 return Code; 1085 } 1086 1087 bool TreePredicateFn::hasImmCode() const { 1088 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1089 } 1090 1091 std::string TreePredicateFn::getImmCode() const { 1092 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1093 } 1094 1095 bool TreePredicateFn::immCodeUsesAPInt() const { 1096 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1097 } 1098 1099 bool TreePredicateFn::immCodeUsesAPFloat() const { 1100 bool Unset; 1101 // The return value will be false when IsAPFloat is unset. 1102 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1103 Unset); 1104 } 1105 1106 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1107 bool Value) const { 1108 bool Unset; 1109 bool Result = 1110 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1111 if (Unset) 1112 return false; 1113 return Result == Value; 1114 } 1115 bool TreePredicateFn::usesOperands() const { 1116 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1117 } 1118 bool TreePredicateFn::isLoad() const { 1119 return isPredefinedPredicateEqualTo("IsLoad", true); 1120 } 1121 bool TreePredicateFn::isStore() const { 1122 return isPredefinedPredicateEqualTo("IsStore", true); 1123 } 1124 bool TreePredicateFn::isAtomic() const { 1125 return isPredefinedPredicateEqualTo("IsAtomic", true); 1126 } 1127 bool TreePredicateFn::isUnindexed() const { 1128 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1129 } 1130 bool TreePredicateFn::isNonExtLoad() const { 1131 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1132 } 1133 bool TreePredicateFn::isAnyExtLoad() const { 1134 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1135 } 1136 bool TreePredicateFn::isSignExtLoad() const { 1137 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1138 } 1139 bool TreePredicateFn::isZeroExtLoad() const { 1140 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1141 } 1142 bool TreePredicateFn::isNonTruncStore() const { 1143 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1144 } 1145 bool TreePredicateFn::isTruncStore() const { 1146 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1147 } 1148 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1149 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1150 } 1151 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1152 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1153 } 1154 bool TreePredicateFn::isAtomicOrderingRelease() const { 1155 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1156 } 1157 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1158 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1159 } 1160 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1161 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1162 true); 1163 } 1164 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1165 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1166 } 1167 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1168 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1169 } 1170 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1171 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1172 } 1173 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1174 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1175 } 1176 Record *TreePredicateFn::getMemoryVT() const { 1177 Record *R = getOrigPatFragRecord()->getRecord(); 1178 if (R->isValueUnset("MemoryVT")) 1179 return nullptr; 1180 return R->getValueAsDef("MemoryVT"); 1181 } 1182 1183 ListInit *TreePredicateFn::getAddressSpaces() const { 1184 Record *R = getOrigPatFragRecord()->getRecord(); 1185 if (R->isValueUnset("AddressSpaces")) 1186 return nullptr; 1187 return R->getValueAsListInit("AddressSpaces"); 1188 } 1189 1190 int64_t TreePredicateFn::getMinAlignment() const { 1191 Record *R = getOrigPatFragRecord()->getRecord(); 1192 if (R->isValueUnset("MinAlignment")) 1193 return 0; 1194 return R->getValueAsInt("MinAlignment"); 1195 } 1196 1197 Record *TreePredicateFn::getScalarMemoryVT() const { 1198 Record *R = getOrigPatFragRecord()->getRecord(); 1199 if (R->isValueUnset("ScalarMemoryVT")) 1200 return nullptr; 1201 return R->getValueAsDef("ScalarMemoryVT"); 1202 } 1203 bool TreePredicateFn::hasGISelPredicateCode() const { 1204 return !PatFragRec->getRecord() 1205 ->getValueAsString("GISelPredicateCode") 1206 .empty(); 1207 } 1208 std::string TreePredicateFn::getGISelPredicateCode() const { 1209 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1210 } 1211 1212 StringRef TreePredicateFn::getImmType() const { 1213 if (immCodeUsesAPInt()) 1214 return "const APInt &"; 1215 if (immCodeUsesAPFloat()) 1216 return "const APFloat &"; 1217 return "int64_t"; 1218 } 1219 1220 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1221 if (immCodeUsesAPInt()) 1222 return "APInt"; 1223 else if (immCodeUsesAPFloat()) 1224 return "APFloat"; 1225 return "I64"; 1226 } 1227 1228 /// isAlwaysTrue - Return true if this is a noop predicate. 1229 bool TreePredicateFn::isAlwaysTrue() const { 1230 return !hasPredCode() && !hasImmCode(); 1231 } 1232 1233 /// Return the name to use in the generated code to reference this, this is 1234 /// "Predicate_foo" if from a pattern fragment "foo". 1235 std::string TreePredicateFn::getFnName() const { 1236 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1237 } 1238 1239 /// getCodeToRunOnSDNode - Return the code for the function body that 1240 /// evaluates this predicate. The argument is expected to be in "Node", 1241 /// not N. This handles casting and conversion to a concrete node type as 1242 /// appropriate. 1243 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1244 // Handle immediate predicates first. 1245 std::string ImmCode = getImmCode(); 1246 if (!ImmCode.empty()) { 1247 if (isLoad()) 1248 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1249 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1250 if (isStore()) 1251 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1252 "IsStore cannot be used with ImmLeaf or its subclasses"); 1253 if (isUnindexed()) 1254 PrintFatalError( 1255 getOrigPatFragRecord()->getRecord()->getLoc(), 1256 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1257 if (isNonExtLoad()) 1258 PrintFatalError( 1259 getOrigPatFragRecord()->getRecord()->getLoc(), 1260 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1261 if (isAnyExtLoad()) 1262 PrintFatalError( 1263 getOrigPatFragRecord()->getRecord()->getLoc(), 1264 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1265 if (isSignExtLoad()) 1266 PrintFatalError( 1267 getOrigPatFragRecord()->getRecord()->getLoc(), 1268 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1269 if (isZeroExtLoad()) 1270 PrintFatalError( 1271 getOrigPatFragRecord()->getRecord()->getLoc(), 1272 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1273 if (isNonTruncStore()) 1274 PrintFatalError( 1275 getOrigPatFragRecord()->getRecord()->getLoc(), 1276 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1277 if (isTruncStore()) 1278 PrintFatalError( 1279 getOrigPatFragRecord()->getRecord()->getLoc(), 1280 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1281 if (getMemoryVT()) 1282 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1283 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1284 if (getScalarMemoryVT()) 1285 PrintFatalError( 1286 getOrigPatFragRecord()->getRecord()->getLoc(), 1287 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1288 1289 std::string Result = (" " + getImmType() + " Imm = ").str(); 1290 if (immCodeUsesAPFloat()) 1291 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1292 else if (immCodeUsesAPInt()) 1293 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1294 else 1295 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1296 return Result + ImmCode; 1297 } 1298 1299 // Handle arbitrary node predicates. 1300 assert(hasPredCode() && "Don't have any predicate code!"); 1301 StringRef ClassName; 1302 if (PatFragRec->getOnlyTree()->isLeaf()) 1303 ClassName = "SDNode"; 1304 else { 1305 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1306 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1307 } 1308 std::string Result; 1309 if (ClassName == "SDNode") 1310 Result = " SDNode *N = Node;\n"; 1311 else 1312 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1313 1314 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1315 } 1316 1317 //===----------------------------------------------------------------------===// 1318 // PatternToMatch implementation 1319 // 1320 1321 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1322 if (!P->isLeaf()) 1323 return false; 1324 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1325 if (!DI) 1326 return false; 1327 1328 Record *R = DI->getDef(); 1329 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1330 } 1331 1332 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1333 /// patterns before small ones. This is used to determine the size of a 1334 /// pattern. 1335 static unsigned getPatternSize(const TreePatternNode *P, 1336 const CodeGenDAGPatterns &CGP) { 1337 unsigned Size = 3; // The node itself. 1338 // If the root node is a ConstantSDNode, increases its size. 1339 // e.g. (set R32:$dst, 0). 1340 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1341 Size += 2; 1342 1343 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1344 Size += AM->getComplexity(); 1345 // We don't want to count any children twice, so return early. 1346 return Size; 1347 } 1348 1349 // If this node has some predicate function that must match, it adds to the 1350 // complexity of this node. 1351 if (!P->getPredicateCalls().empty()) 1352 ++Size; 1353 1354 // Count children in the count if they are also nodes. 1355 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1356 const TreePatternNode *Child = P->getChild(i); 1357 if (!Child->isLeaf() && Child->getNumTypes()) { 1358 const TypeSetByHwMode &T0 = Child->getExtType(0); 1359 // At this point, all variable type sets should be simple, i.e. only 1360 // have a default mode. 1361 if (T0.getMachineValueType() != MVT::Other) { 1362 Size += getPatternSize(Child, CGP); 1363 continue; 1364 } 1365 } 1366 if (Child->isLeaf()) { 1367 if (isa<IntInit>(Child->getLeafValue())) 1368 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1369 else if (Child->getComplexPatternInfo(CGP)) 1370 Size += getPatternSize(Child, CGP); 1371 else if (isImmAllOnesAllZerosMatch(Child)) 1372 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1373 else if (!Child->getPredicateCalls().empty()) 1374 ++Size; 1375 } 1376 } 1377 1378 return Size; 1379 } 1380 1381 /// Compute the complexity metric for the input pattern. This roughly 1382 /// corresponds to the number of nodes that are covered. 1383 int PatternToMatch:: 1384 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1385 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1386 } 1387 1388 /// getPredicateCheck - Return a single string containing all of this 1389 /// pattern's predicates concatenated with "&&" operators. 1390 /// 1391 std::string PatternToMatch::getPredicateCheck() const { 1392 SmallVector<const Predicate*,4> PredList; 1393 for (const Predicate &P : Predicates) { 1394 if (!P.getCondString().empty()) 1395 PredList.push_back(&P); 1396 } 1397 llvm::sort(PredList, deref<std::less<>>()); 1398 1399 std::string Check; 1400 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1401 if (i != 0) 1402 Check += " && "; 1403 Check += '(' + PredList[i]->getCondString() + ')'; 1404 } 1405 return Check; 1406 } 1407 1408 //===----------------------------------------------------------------------===// 1409 // SDTypeConstraint implementation 1410 // 1411 1412 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1413 OperandNo = R->getValueAsInt("OperandNum"); 1414 1415 if (R->isSubClassOf("SDTCisVT")) { 1416 ConstraintType = SDTCisVT; 1417 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1418 for (const auto &P : VVT) 1419 if (P.second == MVT::isVoid) 1420 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1421 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1422 ConstraintType = SDTCisPtrTy; 1423 } else if (R->isSubClassOf("SDTCisInt")) { 1424 ConstraintType = SDTCisInt; 1425 } else if (R->isSubClassOf("SDTCisFP")) { 1426 ConstraintType = SDTCisFP; 1427 } else if (R->isSubClassOf("SDTCisVec")) { 1428 ConstraintType = SDTCisVec; 1429 } else if (R->isSubClassOf("SDTCisSameAs")) { 1430 ConstraintType = SDTCisSameAs; 1431 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1432 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1433 ConstraintType = SDTCisVTSmallerThanOp; 1434 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1435 R->getValueAsInt("OtherOperandNum"); 1436 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1437 ConstraintType = SDTCisOpSmallerThanOp; 1438 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1439 R->getValueAsInt("BigOperandNum"); 1440 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1441 ConstraintType = SDTCisEltOfVec; 1442 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1443 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1444 ConstraintType = SDTCisSubVecOfVec; 1445 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1446 R->getValueAsInt("OtherOpNum"); 1447 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1448 ConstraintType = SDTCVecEltisVT; 1449 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1450 for (const auto &P : VVT) { 1451 MVT T = P.second; 1452 if (T.isVector()) 1453 PrintFatalError(R->getLoc(), 1454 "Cannot use vector type as SDTCVecEltisVT"); 1455 if (!T.isInteger() && !T.isFloatingPoint()) 1456 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1457 "as SDTCVecEltisVT"); 1458 } 1459 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1460 ConstraintType = SDTCisSameNumEltsAs; 1461 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1462 R->getValueAsInt("OtherOperandNum"); 1463 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1464 ConstraintType = SDTCisSameSizeAs; 1465 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1466 R->getValueAsInt("OtherOperandNum"); 1467 } else { 1468 PrintFatalError(R->getLoc(), 1469 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1470 } 1471 } 1472 1473 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1474 /// N, and the result number in ResNo. 1475 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1476 const SDNodeInfo &NodeInfo, 1477 unsigned &ResNo) { 1478 unsigned NumResults = NodeInfo.getNumResults(); 1479 if (OpNo < NumResults) { 1480 ResNo = OpNo; 1481 return N; 1482 } 1483 1484 OpNo -= NumResults; 1485 1486 if (OpNo >= N->getNumChildren()) { 1487 std::string S; 1488 raw_string_ostream OS(S); 1489 OS << "Invalid operand number in type constraint " 1490 << (OpNo+NumResults) << " "; 1491 N->print(OS); 1492 PrintFatalError(OS.str()); 1493 } 1494 1495 return N->getChild(OpNo); 1496 } 1497 1498 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1499 /// constraint to the nodes operands. This returns true if it makes a 1500 /// change, false otherwise. If a type contradiction is found, flag an error. 1501 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1502 const SDNodeInfo &NodeInfo, 1503 TreePattern &TP) const { 1504 if (TP.hasError()) 1505 return false; 1506 1507 unsigned ResNo = 0; // The result number being referenced. 1508 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1509 TypeInfer &TI = TP.getInfer(); 1510 1511 switch (ConstraintType) { 1512 case SDTCisVT: 1513 // Operand must be a particular type. 1514 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1515 case SDTCisPtrTy: 1516 // Operand must be same as target pointer type. 1517 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1518 case SDTCisInt: 1519 // Require it to be one of the legal integer VTs. 1520 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1521 case SDTCisFP: 1522 // Require it to be one of the legal fp VTs. 1523 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1524 case SDTCisVec: 1525 // Require it to be one of the legal vector VTs. 1526 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1527 case SDTCisSameAs: { 1528 unsigned OResNo = 0; 1529 TreePatternNode *OtherNode = 1530 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1531 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1532 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1533 } 1534 case SDTCisVTSmallerThanOp: { 1535 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1536 // have an integer type that is smaller than the VT. 1537 if (!NodeToApply->isLeaf() || 1538 !isa<DefInit>(NodeToApply->getLeafValue()) || 1539 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1540 ->isSubClassOf("ValueType")) { 1541 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1542 return false; 1543 } 1544 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1545 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1546 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1547 TypeSetByHwMode TypeListTmp(VVT); 1548 1549 unsigned OResNo = 0; 1550 TreePatternNode *OtherNode = 1551 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1552 OResNo); 1553 1554 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1555 } 1556 case SDTCisOpSmallerThanOp: { 1557 unsigned BResNo = 0; 1558 TreePatternNode *BigOperand = 1559 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1560 BResNo); 1561 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1562 BigOperand->getExtType(BResNo)); 1563 } 1564 case SDTCisEltOfVec: { 1565 unsigned VResNo = 0; 1566 TreePatternNode *VecOperand = 1567 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1568 VResNo); 1569 // Filter vector types out of VecOperand that don't have the right element 1570 // type. 1571 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1572 NodeToApply->getExtType(ResNo)); 1573 } 1574 case SDTCisSubVecOfVec: { 1575 unsigned VResNo = 0; 1576 TreePatternNode *BigVecOperand = 1577 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1578 VResNo); 1579 1580 // Filter vector types out of BigVecOperand that don't have the 1581 // right subvector type. 1582 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1583 NodeToApply->getExtType(ResNo)); 1584 } 1585 case SDTCVecEltisVT: { 1586 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1587 } 1588 case SDTCisSameNumEltsAs: { 1589 unsigned OResNo = 0; 1590 TreePatternNode *OtherNode = 1591 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1592 N, NodeInfo, OResNo); 1593 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1594 NodeToApply->getExtType(ResNo)); 1595 } 1596 case SDTCisSameSizeAs: { 1597 unsigned OResNo = 0; 1598 TreePatternNode *OtherNode = 1599 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1600 N, NodeInfo, OResNo); 1601 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1602 NodeToApply->getExtType(ResNo)); 1603 } 1604 } 1605 llvm_unreachable("Invalid ConstraintType!"); 1606 } 1607 1608 // Update the node type to match an instruction operand or result as specified 1609 // in the ins or outs lists on the instruction definition. Return true if the 1610 // type was actually changed. 1611 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1612 Record *Operand, 1613 TreePattern &TP) { 1614 // The 'unknown' operand indicates that types should be inferred from the 1615 // context. 1616 if (Operand->isSubClassOf("unknown_class")) 1617 return false; 1618 1619 // The Operand class specifies a type directly. 1620 if (Operand->isSubClassOf("Operand")) { 1621 Record *R = Operand->getValueAsDef("Type"); 1622 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1623 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1624 } 1625 1626 // PointerLikeRegClass has a type that is determined at runtime. 1627 if (Operand->isSubClassOf("PointerLikeRegClass")) 1628 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1629 1630 // Both RegisterClass and RegisterOperand operands derive their types from a 1631 // register class def. 1632 Record *RC = nullptr; 1633 if (Operand->isSubClassOf("RegisterClass")) 1634 RC = Operand; 1635 else if (Operand->isSubClassOf("RegisterOperand")) 1636 RC = Operand->getValueAsDef("RegClass"); 1637 1638 assert(RC && "Unknown operand type"); 1639 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1640 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1641 } 1642 1643 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1644 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1645 if (!TP.getInfer().isConcrete(Types[i], true)) 1646 return true; 1647 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1648 if (getChild(i)->ContainsUnresolvedType(TP)) 1649 return true; 1650 return false; 1651 } 1652 1653 bool TreePatternNode::hasProperTypeByHwMode() const { 1654 for (const TypeSetByHwMode &S : Types) 1655 if (!S.isDefaultOnly()) 1656 return true; 1657 for (const TreePatternNodePtr &C : Children) 1658 if (C->hasProperTypeByHwMode()) 1659 return true; 1660 return false; 1661 } 1662 1663 bool TreePatternNode::hasPossibleType() const { 1664 for (const TypeSetByHwMode &S : Types) 1665 if (!S.isPossible()) 1666 return false; 1667 for (const TreePatternNodePtr &C : Children) 1668 if (!C->hasPossibleType()) 1669 return false; 1670 return true; 1671 } 1672 1673 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1674 for (TypeSetByHwMode &S : Types) { 1675 S.makeSimple(Mode); 1676 // Check if the selected mode had a type conflict. 1677 if (S.get(DefaultMode).empty()) 1678 return false; 1679 } 1680 for (const TreePatternNodePtr &C : Children) 1681 if (!C->setDefaultMode(Mode)) 1682 return false; 1683 return true; 1684 } 1685 1686 //===----------------------------------------------------------------------===// 1687 // SDNodeInfo implementation 1688 // 1689 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1690 EnumName = R->getValueAsString("Opcode"); 1691 SDClassName = R->getValueAsString("SDClass"); 1692 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1693 NumResults = TypeProfile->getValueAsInt("NumResults"); 1694 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1695 1696 // Parse the properties. 1697 Properties = parseSDPatternOperatorProperties(R); 1698 1699 // Parse the type constraints. 1700 std::vector<Record*> ConstraintList = 1701 TypeProfile->getValueAsListOfDefs("Constraints"); 1702 for (Record *R : ConstraintList) 1703 TypeConstraints.emplace_back(R, CGH); 1704 } 1705 1706 /// getKnownType - If the type constraints on this node imply a fixed type 1707 /// (e.g. all stores return void, etc), then return it as an 1708 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1709 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1710 unsigned NumResults = getNumResults(); 1711 assert(NumResults <= 1 && 1712 "We only work with nodes with zero or one result so far!"); 1713 assert(ResNo == 0 && "Only handles single result nodes so far"); 1714 1715 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1716 // Make sure that this applies to the correct node result. 1717 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1718 continue; 1719 1720 switch (Constraint.ConstraintType) { 1721 default: break; 1722 case SDTypeConstraint::SDTCisVT: 1723 if (Constraint.VVT.isSimple()) 1724 return Constraint.VVT.getSimple().SimpleTy; 1725 break; 1726 case SDTypeConstraint::SDTCisPtrTy: 1727 return MVT::iPTR; 1728 } 1729 } 1730 return MVT::Other; 1731 } 1732 1733 //===----------------------------------------------------------------------===// 1734 // TreePatternNode implementation 1735 // 1736 1737 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1738 if (Operator->getName() == "set" || 1739 Operator->getName() == "implicit") 1740 return 0; // All return nothing. 1741 1742 if (Operator->isSubClassOf("Intrinsic")) 1743 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1744 1745 if (Operator->isSubClassOf("SDNode")) 1746 return CDP.getSDNodeInfo(Operator).getNumResults(); 1747 1748 if (Operator->isSubClassOf("PatFrags")) { 1749 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1750 // the forward reference case where one pattern fragment references another 1751 // before it is processed. 1752 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1753 // The number of results of a fragment with alternative records is the 1754 // maximum number of results across all alternatives. 1755 unsigned NumResults = 0; 1756 for (auto T : PFRec->getTrees()) 1757 NumResults = std::max(NumResults, T->getNumTypes()); 1758 return NumResults; 1759 } 1760 1761 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1762 assert(LI && "Invalid Fragment"); 1763 unsigned NumResults = 0; 1764 for (Init *I : LI->getValues()) { 1765 Record *Op = nullptr; 1766 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1767 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1768 Op = DI->getDef(); 1769 assert(Op && "Invalid Fragment"); 1770 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1771 } 1772 return NumResults; 1773 } 1774 1775 if (Operator->isSubClassOf("Instruction")) { 1776 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1777 1778 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1779 1780 // Subtract any defaulted outputs. 1781 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1782 Record *OperandNode = InstInfo.Operands[i].Rec; 1783 1784 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1785 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1786 --NumDefsToAdd; 1787 } 1788 1789 // Add on one implicit def if it has a resolvable type. 1790 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1791 ++NumDefsToAdd; 1792 return NumDefsToAdd; 1793 } 1794 1795 if (Operator->isSubClassOf("SDNodeXForm")) 1796 return 1; // FIXME: Generalize SDNodeXForm 1797 1798 if (Operator->isSubClassOf("ValueType")) 1799 return 1; // A type-cast of one result. 1800 1801 if (Operator->isSubClassOf("ComplexPattern")) 1802 return 1; 1803 1804 errs() << *Operator; 1805 PrintFatalError("Unhandled node in GetNumNodeResults"); 1806 } 1807 1808 void TreePatternNode::print(raw_ostream &OS) const { 1809 if (isLeaf()) 1810 OS << *getLeafValue(); 1811 else 1812 OS << '(' << getOperator()->getName(); 1813 1814 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1815 OS << ':'; 1816 getExtType(i).writeToStream(OS); 1817 } 1818 1819 if (!isLeaf()) { 1820 if (getNumChildren() != 0) { 1821 OS << " "; 1822 getChild(0)->print(OS); 1823 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1824 OS << ", "; 1825 getChild(i)->print(OS); 1826 } 1827 } 1828 OS << ")"; 1829 } 1830 1831 for (const TreePredicateCall &Pred : PredicateCalls) { 1832 OS << "<<P:"; 1833 if (Pred.Scope) 1834 OS << Pred.Scope << ":"; 1835 OS << Pred.Fn.getFnName() << ">>"; 1836 } 1837 if (TransformFn) 1838 OS << "<<X:" << TransformFn->getName() << ">>"; 1839 if (!getName().empty()) 1840 OS << ":$" << getName(); 1841 1842 for (const ScopedName &Name : NamesAsPredicateArg) 1843 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1844 } 1845 void TreePatternNode::dump() const { 1846 print(errs()); 1847 } 1848 1849 /// isIsomorphicTo - Return true if this node is recursively 1850 /// isomorphic to the specified node. For this comparison, the node's 1851 /// entire state is considered. The assigned name is ignored, since 1852 /// nodes with differing names are considered isomorphic. However, if 1853 /// the assigned name is present in the dependent variable set, then 1854 /// the assigned name is considered significant and the node is 1855 /// isomorphic if the names match. 1856 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1857 const MultipleUseVarSet &DepVars) const { 1858 if (N == this) return true; 1859 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1860 getPredicateCalls() != N->getPredicateCalls() || 1861 getTransformFn() != N->getTransformFn()) 1862 return false; 1863 1864 if (isLeaf()) { 1865 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1866 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1867 return ((DI->getDef() == NDI->getDef()) 1868 && (DepVars.find(getName()) == DepVars.end() 1869 || getName() == N->getName())); 1870 } 1871 } 1872 return getLeafValue() == N->getLeafValue(); 1873 } 1874 1875 if (N->getOperator() != getOperator() || 1876 N->getNumChildren() != getNumChildren()) return false; 1877 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1878 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1879 return false; 1880 return true; 1881 } 1882 1883 /// clone - Make a copy of this tree and all of its children. 1884 /// 1885 TreePatternNodePtr TreePatternNode::clone() const { 1886 TreePatternNodePtr New; 1887 if (isLeaf()) { 1888 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1889 } else { 1890 std::vector<TreePatternNodePtr> CChildren; 1891 CChildren.reserve(Children.size()); 1892 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1893 CChildren.push_back(getChild(i)->clone()); 1894 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1895 getNumTypes()); 1896 } 1897 New->setName(getName()); 1898 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1899 New->Types = Types; 1900 New->setPredicateCalls(getPredicateCalls()); 1901 New->setTransformFn(getTransformFn()); 1902 return New; 1903 } 1904 1905 /// RemoveAllTypes - Recursively strip all the types of this tree. 1906 void TreePatternNode::RemoveAllTypes() { 1907 // Reset to unknown type. 1908 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1909 if (isLeaf()) return; 1910 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1911 getChild(i)->RemoveAllTypes(); 1912 } 1913 1914 1915 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1916 /// with actual values specified by ArgMap. 1917 void TreePatternNode::SubstituteFormalArguments( 1918 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1919 if (isLeaf()) return; 1920 1921 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1922 TreePatternNode *Child = getChild(i); 1923 if (Child->isLeaf()) { 1924 Init *Val = Child->getLeafValue(); 1925 // Note that, when substituting into an output pattern, Val might be an 1926 // UnsetInit. 1927 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1928 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1929 // We found a use of a formal argument, replace it with its value. 1930 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1931 assert(NewChild && "Couldn't find formal argument!"); 1932 assert((Child->getPredicateCalls().empty() || 1933 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1934 "Non-empty child predicate clobbered!"); 1935 setChild(i, std::move(NewChild)); 1936 } 1937 } else { 1938 getChild(i)->SubstituteFormalArguments(ArgMap); 1939 } 1940 } 1941 } 1942 1943 1944 /// InlinePatternFragments - If this pattern refers to any pattern 1945 /// fragments, return the set of inlined versions (this can be more than 1946 /// one if a PatFrags record has multiple alternatives). 1947 void TreePatternNode::InlinePatternFragments( 1948 TreePatternNodePtr T, TreePattern &TP, 1949 std::vector<TreePatternNodePtr> &OutAlternatives) { 1950 1951 if (TP.hasError()) 1952 return; 1953 1954 if (isLeaf()) { 1955 OutAlternatives.push_back(T); // nothing to do. 1956 return; 1957 } 1958 1959 Record *Op = getOperator(); 1960 1961 if (!Op->isSubClassOf("PatFrags")) { 1962 if (getNumChildren() == 0) { 1963 OutAlternatives.push_back(T); 1964 return; 1965 } 1966 1967 // Recursively inline children nodes. 1968 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 1969 ChildAlternatives.resize(getNumChildren()); 1970 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1971 TreePatternNodePtr Child = getChildShared(i); 1972 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 1973 // If there are no alternatives for any child, there are no 1974 // alternatives for this expression as whole. 1975 if (ChildAlternatives[i].empty()) 1976 return; 1977 1978 for (auto NewChild : ChildAlternatives[i]) 1979 assert((Child->getPredicateCalls().empty() || 1980 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1981 "Non-empty child predicate clobbered!"); 1982 } 1983 1984 // The end result is an all-pairs construction of the resultant pattern. 1985 std::vector<unsigned> Idxs; 1986 Idxs.resize(ChildAlternatives.size()); 1987 bool NotDone; 1988 do { 1989 // Create the variant and add it to the output list. 1990 std::vector<TreePatternNodePtr> NewChildren; 1991 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 1992 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 1993 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 1994 getOperator(), std::move(NewChildren), getNumTypes()); 1995 1996 // Copy over properties. 1997 R->setName(getName()); 1998 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1999 R->setPredicateCalls(getPredicateCalls()); 2000 R->setTransformFn(getTransformFn()); 2001 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2002 R->setType(i, getExtType(i)); 2003 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2004 R->setResultIndex(i, getResultIndex(i)); 2005 2006 // Register alternative. 2007 OutAlternatives.push_back(R); 2008 2009 // Increment indices to the next permutation by incrementing the 2010 // indices from last index backward, e.g., generate the sequence 2011 // [0, 0], [0, 1], [1, 0], [1, 1]. 2012 int IdxsIdx; 2013 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2014 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2015 Idxs[IdxsIdx] = 0; 2016 else 2017 break; 2018 } 2019 NotDone = (IdxsIdx >= 0); 2020 } while (NotDone); 2021 2022 return; 2023 } 2024 2025 // Otherwise, we found a reference to a fragment. First, look up its 2026 // TreePattern record. 2027 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2028 2029 // Verify that we are passing the right number of operands. 2030 if (Frag->getNumArgs() != Children.size()) { 2031 TP.error("'" + Op->getName() + "' fragment requires " + 2032 Twine(Frag->getNumArgs()) + " operands!"); 2033 return; 2034 } 2035 2036 TreePredicateFn PredFn(Frag); 2037 unsigned Scope = 0; 2038 if (TreePredicateFn(Frag).usesOperands()) 2039 Scope = TP.getDAGPatterns().allocateScope(); 2040 2041 // Compute the map of formal to actual arguments. 2042 std::map<std::string, TreePatternNodePtr> ArgMap; 2043 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2044 TreePatternNodePtr Child = getChildShared(i); 2045 if (Scope != 0) { 2046 Child = Child->clone(); 2047 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2048 } 2049 ArgMap[Frag->getArgName(i)] = Child; 2050 } 2051 2052 // Loop over all fragment alternatives. 2053 for (auto Alternative : Frag->getTrees()) { 2054 TreePatternNodePtr FragTree = Alternative->clone(); 2055 2056 if (!PredFn.isAlwaysTrue()) 2057 FragTree->addPredicateCall(PredFn, Scope); 2058 2059 // Resolve formal arguments to their actual value. 2060 if (Frag->getNumArgs()) 2061 FragTree->SubstituteFormalArguments(ArgMap); 2062 2063 // Transfer types. Note that the resolved alternative may have fewer 2064 // (but not more) results than the PatFrags node. 2065 FragTree->setName(getName()); 2066 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2067 FragTree->UpdateNodeType(i, getExtType(i), TP); 2068 2069 // Transfer in the old predicates. 2070 for (const TreePredicateCall &Pred : getPredicateCalls()) 2071 FragTree->addPredicateCall(Pred); 2072 2073 // The fragment we inlined could have recursive inlining that is needed. See 2074 // if there are any pattern fragments in it and inline them as needed. 2075 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2076 } 2077 } 2078 2079 /// getImplicitType - Check to see if the specified record has an implicit 2080 /// type which should be applied to it. This will infer the type of register 2081 /// references from the register file information, for example. 2082 /// 2083 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2084 /// the F8RC register class argument in: 2085 /// 2086 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2087 /// 2088 /// When Unnamed is false, return the type of a named DAG operand such as the 2089 /// GPR:$src operand above. 2090 /// 2091 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2092 bool NotRegisters, 2093 bool Unnamed, 2094 TreePattern &TP) { 2095 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2096 2097 // Check to see if this is a register operand. 2098 if (R->isSubClassOf("RegisterOperand")) { 2099 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2100 if (NotRegisters) 2101 return TypeSetByHwMode(); // Unknown. 2102 Record *RegClass = R->getValueAsDef("RegClass"); 2103 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2104 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2105 } 2106 2107 // Check to see if this is a register or a register class. 2108 if (R->isSubClassOf("RegisterClass")) { 2109 assert(ResNo == 0 && "Regclass ref only has one result!"); 2110 // An unnamed register class represents itself as an i32 immediate, for 2111 // example on a COPY_TO_REGCLASS instruction. 2112 if (Unnamed) 2113 return TypeSetByHwMode(MVT::i32); 2114 2115 // In a named operand, the register class provides the possible set of 2116 // types. 2117 if (NotRegisters) 2118 return TypeSetByHwMode(); // Unknown. 2119 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2120 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2121 } 2122 2123 if (R->isSubClassOf("PatFrags")) { 2124 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2125 // Pattern fragment types will be resolved when they are inlined. 2126 return TypeSetByHwMode(); // Unknown. 2127 } 2128 2129 if (R->isSubClassOf("Register")) { 2130 assert(ResNo == 0 && "Registers only produce one result!"); 2131 if (NotRegisters) 2132 return TypeSetByHwMode(); // Unknown. 2133 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2134 return TypeSetByHwMode(T.getRegisterVTs(R)); 2135 } 2136 2137 if (R->isSubClassOf("SubRegIndex")) { 2138 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2139 return TypeSetByHwMode(MVT::i32); 2140 } 2141 2142 if (R->isSubClassOf("ValueType")) { 2143 assert(ResNo == 0 && "This node only has one result!"); 2144 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2145 // 2146 // (sext_inreg GPR:$src, i16) 2147 // ~~~ 2148 if (Unnamed) 2149 return TypeSetByHwMode(MVT::Other); 2150 // With a name, the ValueType simply provides the type of the named 2151 // variable. 2152 // 2153 // (sext_inreg i32:$src, i16) 2154 // ~~~~~~~~ 2155 if (NotRegisters) 2156 return TypeSetByHwMode(); // Unknown. 2157 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2158 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2159 } 2160 2161 if (R->isSubClassOf("CondCode")) { 2162 assert(ResNo == 0 && "This node only has one result!"); 2163 // Using a CondCodeSDNode. 2164 return TypeSetByHwMode(MVT::Other); 2165 } 2166 2167 if (R->isSubClassOf("ComplexPattern")) { 2168 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2169 if (NotRegisters) 2170 return TypeSetByHwMode(); // Unknown. 2171 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2172 } 2173 if (R->isSubClassOf("PointerLikeRegClass")) { 2174 assert(ResNo == 0 && "Regclass can only have one result!"); 2175 TypeSetByHwMode VTS(MVT::iPTR); 2176 TP.getInfer().expandOverloads(VTS); 2177 return VTS; 2178 } 2179 2180 if (R->getName() == "node" || R->getName() == "srcvalue" || 2181 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2182 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2183 // Placeholder. 2184 return TypeSetByHwMode(); // Unknown. 2185 } 2186 2187 if (R->isSubClassOf("Operand")) { 2188 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2189 Record *T = R->getValueAsDef("Type"); 2190 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2191 } 2192 2193 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2194 return TypeSetByHwMode(MVT::Other); 2195 } 2196 2197 2198 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2199 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2200 const CodeGenIntrinsic *TreePatternNode:: 2201 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2202 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2203 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2204 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2205 return nullptr; 2206 2207 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2208 return &CDP.getIntrinsicInfo(IID); 2209 } 2210 2211 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2212 /// return the ComplexPattern information, otherwise return null. 2213 const ComplexPattern * 2214 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2215 Record *Rec; 2216 if (isLeaf()) { 2217 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2218 if (!DI) 2219 return nullptr; 2220 Rec = DI->getDef(); 2221 } else 2222 Rec = getOperator(); 2223 2224 if (!Rec->isSubClassOf("ComplexPattern")) 2225 return nullptr; 2226 return &CGP.getComplexPattern(Rec); 2227 } 2228 2229 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2230 // A ComplexPattern specifically declares how many results it fills in. 2231 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2232 return CP->getNumOperands(); 2233 2234 // If MIOperandInfo is specified, that gives the count. 2235 if (isLeaf()) { 2236 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2237 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2238 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2239 if (MIOps->getNumArgs()) 2240 return MIOps->getNumArgs(); 2241 } 2242 } 2243 2244 // Otherwise there is just one result. 2245 return 1; 2246 } 2247 2248 /// NodeHasProperty - Return true if this node has the specified property. 2249 bool TreePatternNode::NodeHasProperty(SDNP Property, 2250 const CodeGenDAGPatterns &CGP) const { 2251 if (isLeaf()) { 2252 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2253 return CP->hasProperty(Property); 2254 2255 return false; 2256 } 2257 2258 if (Property != SDNPHasChain) { 2259 // The chain proprety is already present on the different intrinsic node 2260 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2261 // on the intrinsic. Anything else is specific to the individual intrinsic. 2262 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2263 return Int->hasProperty(Property); 2264 } 2265 2266 if (!Operator->isSubClassOf("SDPatternOperator")) 2267 return false; 2268 2269 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2270 } 2271 2272 2273 2274 2275 /// TreeHasProperty - Return true if any node in this tree has the specified 2276 /// property. 2277 bool TreePatternNode::TreeHasProperty(SDNP Property, 2278 const CodeGenDAGPatterns &CGP) const { 2279 if (NodeHasProperty(Property, CGP)) 2280 return true; 2281 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2282 if (getChild(i)->TreeHasProperty(Property, CGP)) 2283 return true; 2284 return false; 2285 } 2286 2287 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2288 /// commutative intrinsic. 2289 bool 2290 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2291 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2292 return Int->isCommutative; 2293 return false; 2294 } 2295 2296 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2297 if (!N->isLeaf()) 2298 return N->getOperator()->isSubClassOf(Class); 2299 2300 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2301 if (DI && DI->getDef()->isSubClassOf(Class)) 2302 return true; 2303 2304 return false; 2305 } 2306 2307 static void emitTooManyOperandsError(TreePattern &TP, 2308 StringRef InstName, 2309 unsigned Expected, 2310 unsigned Actual) { 2311 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2312 " operands but expected only " + Twine(Expected) + "!"); 2313 } 2314 2315 static void emitTooFewOperandsError(TreePattern &TP, 2316 StringRef InstName, 2317 unsigned Actual) { 2318 TP.error("Instruction '" + InstName + 2319 "' expects more than the provided " + Twine(Actual) + " operands!"); 2320 } 2321 2322 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2323 /// this node and its children in the tree. This returns true if it makes a 2324 /// change, false otherwise. If a type contradiction is found, flag an error. 2325 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2326 if (TP.hasError()) 2327 return false; 2328 2329 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2330 if (isLeaf()) { 2331 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2332 // If it's a regclass or something else known, include the type. 2333 bool MadeChange = false; 2334 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2335 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2336 NotRegisters, 2337 !hasName(), TP), TP); 2338 return MadeChange; 2339 } 2340 2341 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2342 assert(Types.size() == 1 && "Invalid IntInit"); 2343 2344 // Int inits are always integers. :) 2345 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2346 2347 if (!TP.getInfer().isConcrete(Types[0], false)) 2348 return MadeChange; 2349 2350 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2351 for (auto &P : VVT) { 2352 MVT::SimpleValueType VT = P.second.SimpleTy; 2353 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2354 continue; 2355 unsigned Size = MVT(VT).getSizeInBits(); 2356 // Make sure that the value is representable for this type. 2357 if (Size >= 32) 2358 continue; 2359 // Check that the value doesn't use more bits than we have. It must 2360 // either be a sign- or zero-extended equivalent of the original. 2361 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2362 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2363 SignBitAndAbove == 1) 2364 continue; 2365 2366 TP.error("Integer value '" + Twine(II->getValue()) + 2367 "' is out of range for type '" + getEnumName(VT) + "'!"); 2368 break; 2369 } 2370 return MadeChange; 2371 } 2372 2373 return false; 2374 } 2375 2376 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2377 bool MadeChange = false; 2378 2379 // Apply the result type to the node. 2380 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2381 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2382 2383 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2384 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2385 2386 if (getNumChildren() != NumParamVTs + 1) { 2387 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2388 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2389 return false; 2390 } 2391 2392 // Apply type info to the intrinsic ID. 2393 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2394 2395 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2396 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2397 2398 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2399 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2400 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2401 } 2402 return MadeChange; 2403 } 2404 2405 if (getOperator()->isSubClassOf("SDNode")) { 2406 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2407 2408 // Check that the number of operands is sane. Negative operands -> varargs. 2409 if (NI.getNumOperands() >= 0 && 2410 getNumChildren() != (unsigned)NI.getNumOperands()) { 2411 TP.error(getOperator()->getName() + " node requires exactly " + 2412 Twine(NI.getNumOperands()) + " operands!"); 2413 return false; 2414 } 2415 2416 bool MadeChange = false; 2417 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2418 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2419 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2420 return MadeChange; 2421 } 2422 2423 if (getOperator()->isSubClassOf("Instruction")) { 2424 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2425 CodeGenInstruction &InstInfo = 2426 CDP.getTargetInfo().getInstruction(getOperator()); 2427 2428 bool MadeChange = false; 2429 2430 // Apply the result types to the node, these come from the things in the 2431 // (outs) list of the instruction. 2432 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2433 Inst.getNumResults()); 2434 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2435 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2436 2437 // If the instruction has implicit defs, we apply the first one as a result. 2438 // FIXME: This sucks, it should apply all implicit defs. 2439 if (!InstInfo.ImplicitDefs.empty()) { 2440 unsigned ResNo = NumResultsToAdd; 2441 2442 // FIXME: Generalize to multiple possible types and multiple possible 2443 // ImplicitDefs. 2444 MVT::SimpleValueType VT = 2445 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2446 2447 if (VT != MVT::Other) 2448 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2449 } 2450 2451 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2452 // be the same. 2453 if (getOperator()->getName() == "INSERT_SUBREG") { 2454 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2455 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2456 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2457 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2458 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2459 // variadic. 2460 2461 unsigned NChild = getNumChildren(); 2462 if (NChild < 3) { 2463 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2464 return false; 2465 } 2466 2467 if (NChild % 2 == 0) { 2468 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2469 return false; 2470 } 2471 2472 if (!isOperandClass(getChild(0), "RegisterClass")) { 2473 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2474 return false; 2475 } 2476 2477 for (unsigned I = 1; I < NChild; I += 2) { 2478 TreePatternNode *SubIdxChild = getChild(I + 1); 2479 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2480 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2481 Twine(I + 1) + "!"); 2482 return false; 2483 } 2484 } 2485 } 2486 2487 // If one or more operands with a default value appear at the end of the 2488 // formal operand list for an instruction, we allow them to be overridden 2489 // by optional operands provided in the pattern. 2490 // 2491 // But if an operand B without a default appears at any point after an 2492 // operand A with a default, then we don't allow A to be overridden, 2493 // because there would be no way to specify whether the next operand in 2494 // the pattern was intended to override A or skip it. 2495 unsigned NonOverridableOperands = Inst.getNumOperands(); 2496 while (NonOverridableOperands > 0 && 2497 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1))) 2498 --NonOverridableOperands; 2499 2500 unsigned ChildNo = 0; 2501 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2502 Record *OperandNode = Inst.getOperand(i); 2503 2504 // If the operand has a default value, do we use it? We must use the 2505 // default if we've run out of children of the pattern DAG to consume, 2506 // or if the operand is followed by a non-defaulted one. 2507 if (CDP.operandHasDefault(OperandNode) && 2508 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2509 continue; 2510 2511 // If we have run out of child nodes and there _isn't_ a default 2512 // value we can use for the next operand, give an error. 2513 if (ChildNo >= getNumChildren()) { 2514 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2515 return false; 2516 } 2517 2518 TreePatternNode *Child = getChild(ChildNo++); 2519 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2520 2521 // If the operand has sub-operands, they may be provided by distinct 2522 // child patterns, so attempt to match each sub-operand separately. 2523 if (OperandNode->isSubClassOf("Operand")) { 2524 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2525 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2526 // But don't do that if the whole operand is being provided by 2527 // a single ComplexPattern-related Operand. 2528 2529 if (Child->getNumMIResults(CDP) < NumArgs) { 2530 // Match first sub-operand against the child we already have. 2531 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2532 MadeChange |= 2533 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2534 2535 // And the remaining sub-operands against subsequent children. 2536 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2537 if (ChildNo >= getNumChildren()) { 2538 emitTooFewOperandsError(TP, getOperator()->getName(), 2539 getNumChildren()); 2540 return false; 2541 } 2542 Child = getChild(ChildNo++); 2543 2544 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2545 MadeChange |= 2546 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2547 } 2548 continue; 2549 } 2550 } 2551 } 2552 2553 // If we didn't match by pieces above, attempt to match the whole 2554 // operand now. 2555 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2556 } 2557 2558 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2559 emitTooManyOperandsError(TP, getOperator()->getName(), 2560 ChildNo, getNumChildren()); 2561 return false; 2562 } 2563 2564 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2565 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2566 return MadeChange; 2567 } 2568 2569 if (getOperator()->isSubClassOf("ComplexPattern")) { 2570 bool MadeChange = false; 2571 2572 for (unsigned i = 0; i < getNumChildren(); ++i) 2573 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2574 2575 return MadeChange; 2576 } 2577 2578 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2579 2580 // Node transforms always take one operand. 2581 if (getNumChildren() != 1) { 2582 TP.error("Node transform '" + getOperator()->getName() + 2583 "' requires one operand!"); 2584 return false; 2585 } 2586 2587 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2588 return MadeChange; 2589 } 2590 2591 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2592 /// RHS of a commutative operation, not the on LHS. 2593 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2594 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2595 return true; 2596 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2597 return true; 2598 return false; 2599 } 2600 2601 2602 /// canPatternMatch - If it is impossible for this pattern to match on this 2603 /// target, fill in Reason and return false. Otherwise, return true. This is 2604 /// used as a sanity check for .td files (to prevent people from writing stuff 2605 /// that can never possibly work), and to prevent the pattern permuter from 2606 /// generating stuff that is useless. 2607 bool TreePatternNode::canPatternMatch(std::string &Reason, 2608 const CodeGenDAGPatterns &CDP) { 2609 if (isLeaf()) return true; 2610 2611 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2612 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2613 return false; 2614 2615 // If this is an intrinsic, handle cases that would make it not match. For 2616 // example, if an operand is required to be an immediate. 2617 if (getOperator()->isSubClassOf("Intrinsic")) { 2618 // TODO: 2619 return true; 2620 } 2621 2622 if (getOperator()->isSubClassOf("ComplexPattern")) 2623 return true; 2624 2625 // If this node is a commutative operator, check that the LHS isn't an 2626 // immediate. 2627 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2628 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2629 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2630 // Scan all of the operands of the node and make sure that only the last one 2631 // is a constant node, unless the RHS also is. 2632 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2633 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2634 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2635 if (OnlyOnRHSOfCommutative(getChild(i))) { 2636 Reason="Immediate value must be on the RHS of commutative operators!"; 2637 return false; 2638 } 2639 } 2640 } 2641 2642 return true; 2643 } 2644 2645 //===----------------------------------------------------------------------===// 2646 // TreePattern implementation 2647 // 2648 2649 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2650 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2651 isInputPattern(isInput), HasError(false), 2652 Infer(*this) { 2653 for (Init *I : RawPat->getValues()) 2654 Trees.push_back(ParseTreePattern(I, "")); 2655 } 2656 2657 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2658 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2659 isInputPattern(isInput), HasError(false), 2660 Infer(*this) { 2661 Trees.push_back(ParseTreePattern(Pat, "")); 2662 } 2663 2664 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2665 CodeGenDAGPatterns &cdp) 2666 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2667 Infer(*this) { 2668 Trees.push_back(Pat); 2669 } 2670 2671 void TreePattern::error(const Twine &Msg) { 2672 if (HasError) 2673 return; 2674 dump(); 2675 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2676 HasError = true; 2677 } 2678 2679 void TreePattern::ComputeNamedNodes() { 2680 for (TreePatternNodePtr &Tree : Trees) 2681 ComputeNamedNodes(Tree.get()); 2682 } 2683 2684 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2685 if (!N->getName().empty()) 2686 NamedNodes[N->getName()].push_back(N); 2687 2688 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2689 ComputeNamedNodes(N->getChild(i)); 2690 } 2691 2692 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2693 StringRef OpName) { 2694 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2695 Record *R = DI->getDef(); 2696 2697 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2698 // TreePatternNode of its own. For example: 2699 /// (foo GPR, imm) -> (foo GPR, (imm)) 2700 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2701 return ParseTreePattern( 2702 DagInit::get(DI, nullptr, 2703 std::vector<std::pair<Init*, StringInit*> >()), 2704 OpName); 2705 2706 // Input argument? 2707 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2708 if (R->getName() == "node" && !OpName.empty()) { 2709 if (OpName.empty()) 2710 error("'node' argument requires a name to match with operand list"); 2711 Args.push_back(OpName); 2712 } 2713 2714 Res->setName(OpName); 2715 return Res; 2716 } 2717 2718 // ?:$name or just $name. 2719 if (isa<UnsetInit>(TheInit)) { 2720 if (OpName.empty()) 2721 error("'?' argument requires a name to match with operand list"); 2722 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2723 Args.push_back(OpName); 2724 Res->setName(OpName); 2725 return Res; 2726 } 2727 2728 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2729 if (!OpName.empty()) 2730 error("Constant int or bit argument should not have a name!"); 2731 if (isa<BitInit>(TheInit)) 2732 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2733 return std::make_shared<TreePatternNode>(TheInit, 1); 2734 } 2735 2736 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2737 // Turn this into an IntInit. 2738 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2739 if (!II || !isa<IntInit>(II)) 2740 error("Bits value must be constants!"); 2741 return ParseTreePattern(II, OpName); 2742 } 2743 2744 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2745 if (!Dag) { 2746 TheInit->print(errs()); 2747 error("Pattern has unexpected init kind!"); 2748 } 2749 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2750 if (!OpDef) error("Pattern has unexpected operator type!"); 2751 Record *Operator = OpDef->getDef(); 2752 2753 if (Operator->isSubClassOf("ValueType")) { 2754 // If the operator is a ValueType, then this must be "type cast" of a leaf 2755 // node. 2756 if (Dag->getNumArgs() != 1) 2757 error("Type cast only takes one operand!"); 2758 2759 TreePatternNodePtr New = 2760 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2761 2762 // Apply the type cast. 2763 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2764 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2765 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2766 2767 if (!OpName.empty()) 2768 error("ValueType cast should not have a name!"); 2769 return New; 2770 } 2771 2772 // Verify that this is something that makes sense for an operator. 2773 if (!Operator->isSubClassOf("PatFrags") && 2774 !Operator->isSubClassOf("SDNode") && 2775 !Operator->isSubClassOf("Instruction") && 2776 !Operator->isSubClassOf("SDNodeXForm") && 2777 !Operator->isSubClassOf("Intrinsic") && 2778 !Operator->isSubClassOf("ComplexPattern") && 2779 Operator->getName() != "set" && 2780 Operator->getName() != "implicit") 2781 error("Unrecognized node '" + Operator->getName() + "'!"); 2782 2783 // Check to see if this is something that is illegal in an input pattern. 2784 if (isInputPattern) { 2785 if (Operator->isSubClassOf("Instruction") || 2786 Operator->isSubClassOf("SDNodeXForm")) 2787 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2788 } else { 2789 if (Operator->isSubClassOf("Intrinsic")) 2790 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2791 2792 if (Operator->isSubClassOf("SDNode") && 2793 Operator->getName() != "imm" && 2794 Operator->getName() != "fpimm" && 2795 Operator->getName() != "tglobaltlsaddr" && 2796 Operator->getName() != "tconstpool" && 2797 Operator->getName() != "tjumptable" && 2798 Operator->getName() != "tframeindex" && 2799 Operator->getName() != "texternalsym" && 2800 Operator->getName() != "tblockaddress" && 2801 Operator->getName() != "tglobaladdr" && 2802 Operator->getName() != "bb" && 2803 Operator->getName() != "vt" && 2804 Operator->getName() != "mcsym") 2805 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2806 } 2807 2808 std::vector<TreePatternNodePtr> Children; 2809 2810 // Parse all the operands. 2811 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2812 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2813 2814 // Get the actual number of results before Operator is converted to an intrinsic 2815 // node (which is hard-coded to have either zero or one result). 2816 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2817 2818 // If the operator is an intrinsic, then this is just syntactic sugar for 2819 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2820 // convert the intrinsic name to a number. 2821 if (Operator->isSubClassOf("Intrinsic")) { 2822 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2823 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2824 2825 // If this intrinsic returns void, it must have side-effects and thus a 2826 // chain. 2827 if (Int.IS.RetVTs.empty()) 2828 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2829 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2830 // Has side-effects, requires chain. 2831 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2832 else // Otherwise, no chain. 2833 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2834 2835 Children.insert(Children.begin(), 2836 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2837 } 2838 2839 if (Operator->isSubClassOf("ComplexPattern")) { 2840 for (unsigned i = 0; i < Children.size(); ++i) { 2841 TreePatternNodePtr Child = Children[i]; 2842 2843 if (Child->getName().empty()) 2844 error("All arguments to a ComplexPattern must be named"); 2845 2846 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2847 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2848 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2849 auto OperandId = std::make_pair(Operator, i); 2850 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2851 if (PrevOp != ComplexPatternOperands.end()) { 2852 if (PrevOp->getValue() != OperandId) 2853 error("All ComplexPattern operands must appear consistently: " 2854 "in the same order in just one ComplexPattern instance."); 2855 } else 2856 ComplexPatternOperands[Child->getName()] = OperandId; 2857 } 2858 } 2859 2860 TreePatternNodePtr Result = 2861 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2862 NumResults); 2863 Result->setName(OpName); 2864 2865 if (Dag->getName()) { 2866 assert(Result->getName().empty()); 2867 Result->setName(Dag->getNameStr()); 2868 } 2869 return Result; 2870 } 2871 2872 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2873 /// will never match in favor of something obvious that will. This is here 2874 /// strictly as a convenience to target authors because it allows them to write 2875 /// more type generic things and have useless type casts fold away. 2876 /// 2877 /// This returns true if any change is made. 2878 static bool SimplifyTree(TreePatternNodePtr &N) { 2879 if (N->isLeaf()) 2880 return false; 2881 2882 // If we have a bitconvert with a resolved type and if the source and 2883 // destination types are the same, then the bitconvert is useless, remove it. 2884 if (N->getOperator()->getName() == "bitconvert" && 2885 N->getExtType(0).isValueTypeByHwMode(false) && 2886 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2887 N->getName().empty()) { 2888 N = N->getChildShared(0); 2889 SimplifyTree(N); 2890 return true; 2891 } 2892 2893 // Walk all children. 2894 bool MadeChange = false; 2895 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2896 TreePatternNodePtr Child = N->getChildShared(i); 2897 MadeChange |= SimplifyTree(Child); 2898 N->setChild(i, std::move(Child)); 2899 } 2900 return MadeChange; 2901 } 2902 2903 2904 2905 /// InferAllTypes - Infer/propagate as many types throughout the expression 2906 /// patterns as possible. Return true if all types are inferred, false 2907 /// otherwise. Flags an error if a type contradiction is found. 2908 bool TreePattern:: 2909 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2910 if (NamedNodes.empty()) 2911 ComputeNamedNodes(); 2912 2913 bool MadeChange = true; 2914 while (MadeChange) { 2915 MadeChange = false; 2916 for (TreePatternNodePtr &Tree : Trees) { 2917 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2918 MadeChange |= SimplifyTree(Tree); 2919 } 2920 2921 // If there are constraints on our named nodes, apply them. 2922 for (auto &Entry : NamedNodes) { 2923 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2924 2925 // If we have input named node types, propagate their types to the named 2926 // values here. 2927 if (InNamedTypes) { 2928 if (!InNamedTypes->count(Entry.getKey())) { 2929 error("Node '" + std::string(Entry.getKey()) + 2930 "' in output pattern but not input pattern"); 2931 return true; 2932 } 2933 2934 const SmallVectorImpl<TreePatternNode*> &InNodes = 2935 InNamedTypes->find(Entry.getKey())->second; 2936 2937 // The input types should be fully resolved by now. 2938 for (TreePatternNode *Node : Nodes) { 2939 // If this node is a register class, and it is the root of the pattern 2940 // then we're mapping something onto an input register. We allow 2941 // changing the type of the input register in this case. This allows 2942 // us to match things like: 2943 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2944 if (Node == Trees[0].get() && Node->isLeaf()) { 2945 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2946 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2947 DI->getDef()->isSubClassOf("RegisterOperand"))) 2948 continue; 2949 } 2950 2951 assert(Node->getNumTypes() == 1 && 2952 InNodes[0]->getNumTypes() == 1 && 2953 "FIXME: cannot name multiple result nodes yet"); 2954 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2955 *this); 2956 } 2957 } 2958 2959 // If there are multiple nodes with the same name, they must all have the 2960 // same type. 2961 if (Entry.second.size() > 1) { 2962 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2963 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2964 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2965 "FIXME: cannot name multiple result nodes yet"); 2966 2967 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2968 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2969 } 2970 } 2971 } 2972 } 2973 2974 bool HasUnresolvedTypes = false; 2975 for (const TreePatternNodePtr &Tree : Trees) 2976 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2977 return !HasUnresolvedTypes; 2978 } 2979 2980 void TreePattern::print(raw_ostream &OS) const { 2981 OS << getRecord()->getName(); 2982 if (!Args.empty()) { 2983 OS << "(" << Args[0]; 2984 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2985 OS << ", " << Args[i]; 2986 OS << ")"; 2987 } 2988 OS << ": "; 2989 2990 if (Trees.size() > 1) 2991 OS << "[\n"; 2992 for (const TreePatternNodePtr &Tree : Trees) { 2993 OS << "\t"; 2994 Tree->print(OS); 2995 OS << "\n"; 2996 } 2997 2998 if (Trees.size() > 1) 2999 OS << "]\n"; 3000 } 3001 3002 void TreePattern::dump() const { print(errs()); } 3003 3004 //===----------------------------------------------------------------------===// 3005 // CodeGenDAGPatterns implementation 3006 // 3007 3008 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3009 PatternRewriterFn PatternRewriter) 3010 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3011 PatternRewriter(PatternRewriter) { 3012 3013 Intrinsics = CodeGenIntrinsicTable(Records, false); 3014 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 3015 ParseNodeInfo(); 3016 ParseNodeTransforms(); 3017 ParseComplexPatterns(); 3018 ParsePatternFragments(); 3019 ParseDefaultOperands(); 3020 ParseInstructions(); 3021 ParsePatternFragments(/*OutFrags*/true); 3022 ParsePatterns(); 3023 3024 // Break patterns with parameterized types into a series of patterns, 3025 // where each one has a fixed type and is predicated on the conditions 3026 // of the associated HW mode. 3027 ExpandHwModeBasedTypes(); 3028 3029 // Generate variants. For example, commutative patterns can match 3030 // multiple ways. Add them to PatternsToMatch as well. 3031 GenerateVariants(); 3032 3033 // Infer instruction flags. For example, we can detect loads, 3034 // stores, and side effects in many cases by examining an 3035 // instruction's pattern. 3036 InferInstructionFlags(); 3037 3038 // Verify that instruction flags match the patterns. 3039 VerifyInstructionFlags(); 3040 } 3041 3042 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 3043 Record *N = Records.getDef(Name); 3044 if (!N || !N->isSubClassOf("SDNode")) 3045 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3046 3047 return N; 3048 } 3049 3050 // Parse all of the SDNode definitions for the target, populating SDNodes. 3051 void CodeGenDAGPatterns::ParseNodeInfo() { 3052 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3053 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3054 3055 while (!Nodes.empty()) { 3056 Record *R = Nodes.back(); 3057 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3058 Nodes.pop_back(); 3059 } 3060 3061 // Get the builtin intrinsic nodes. 3062 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3063 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3064 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3065 } 3066 3067 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3068 /// map, and emit them to the file as functions. 3069 void CodeGenDAGPatterns::ParseNodeTransforms() { 3070 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3071 while (!Xforms.empty()) { 3072 Record *XFormNode = Xforms.back(); 3073 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3074 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3075 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 3076 3077 Xforms.pop_back(); 3078 } 3079 } 3080 3081 void CodeGenDAGPatterns::ParseComplexPatterns() { 3082 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3083 while (!AMs.empty()) { 3084 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3085 AMs.pop_back(); 3086 } 3087 } 3088 3089 3090 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3091 /// file, building up the PatternFragments map. After we've collected them all, 3092 /// inline fragments together as necessary, so that there are no references left 3093 /// inside a pattern fragment to a pattern fragment. 3094 /// 3095 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3096 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3097 3098 // First step, parse all of the fragments. 3099 for (Record *Frag : Fragments) { 3100 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3101 continue; 3102 3103 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3104 TreePattern *P = 3105 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3106 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3107 *this)).get(); 3108 3109 // Validate the argument list, converting it to set, to discard duplicates. 3110 std::vector<std::string> &Args = P->getArgList(); 3111 // Copy the args so we can take StringRefs to them. 3112 auto ArgsCopy = Args; 3113 SmallDenseSet<StringRef, 4> OperandsSet; 3114 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3115 3116 if (OperandsSet.count("")) 3117 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3118 3119 // Parse the operands list. 3120 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3121 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3122 // Special cases: ops == outs == ins. Different names are used to 3123 // improve readability. 3124 if (!OpsOp || 3125 (OpsOp->getDef()->getName() != "ops" && 3126 OpsOp->getDef()->getName() != "outs" && 3127 OpsOp->getDef()->getName() != "ins")) 3128 P->error("Operands list should start with '(ops ... '!"); 3129 3130 // Copy over the arguments. 3131 Args.clear(); 3132 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3133 if (!isa<DefInit>(OpsList->getArg(j)) || 3134 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3135 P->error("Operands list should all be 'node' values."); 3136 if (!OpsList->getArgName(j)) 3137 P->error("Operands list should have names for each operand!"); 3138 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3139 if (!OperandsSet.count(ArgNameStr)) 3140 P->error("'" + ArgNameStr + 3141 "' does not occur in pattern or was multiply specified!"); 3142 OperandsSet.erase(ArgNameStr); 3143 Args.push_back(ArgNameStr); 3144 } 3145 3146 if (!OperandsSet.empty()) 3147 P->error("Operands list does not contain an entry for operand '" + 3148 *OperandsSet.begin() + "'!"); 3149 3150 // If there is a node transformation corresponding to this, keep track of 3151 // it. 3152 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3153 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3154 for (auto T : P->getTrees()) 3155 T->setTransformFn(Transform); 3156 } 3157 3158 // Now that we've parsed all of the tree fragments, do a closure on them so 3159 // that there are not references to PatFrags left inside of them. 3160 for (Record *Frag : Fragments) { 3161 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3162 continue; 3163 3164 TreePattern &ThePat = *PatternFragments[Frag]; 3165 ThePat.InlinePatternFragments(); 3166 3167 // Infer as many types as possible. Don't worry about it if we don't infer 3168 // all of them, some may depend on the inputs of the pattern. Also, don't 3169 // validate type sets; validation may cause spurious failures e.g. if a 3170 // fragment needs floating-point types but the current target does not have 3171 // any (this is only an error if that fragment is ever used!). 3172 { 3173 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3174 ThePat.InferAllTypes(); 3175 ThePat.resetError(); 3176 } 3177 3178 // If debugging, print out the pattern fragment result. 3179 LLVM_DEBUG(ThePat.dump()); 3180 } 3181 } 3182 3183 void CodeGenDAGPatterns::ParseDefaultOperands() { 3184 std::vector<Record*> DefaultOps; 3185 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3186 3187 // Find some SDNode. 3188 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3189 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3190 3191 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3192 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3193 3194 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3195 // SomeSDnode so that we can parse this. 3196 std::vector<std::pair<Init*, StringInit*> > Ops; 3197 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3198 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3199 DefaultInfo->getArgName(op))); 3200 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3201 3202 // Create a TreePattern to parse this. 3203 TreePattern P(DefaultOps[i], DI, false, *this); 3204 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3205 3206 // Copy the operands over into a DAGDefaultOperand. 3207 DAGDefaultOperand DefaultOpInfo; 3208 3209 const TreePatternNodePtr &T = P.getTree(0); 3210 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3211 TreePatternNodePtr TPN = T->getChildShared(op); 3212 while (TPN->ApplyTypeConstraints(P, false)) 3213 /* Resolve all types */; 3214 3215 if (TPN->ContainsUnresolvedType(P)) { 3216 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3217 DefaultOps[i]->getName() + 3218 "' doesn't have a concrete type!"); 3219 } 3220 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3221 } 3222 3223 // Insert it into the DefaultOperands map so we can find it later. 3224 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3225 } 3226 } 3227 3228 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3229 /// instruction input. Return true if this is a real use. 3230 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3231 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3232 // No name -> not interesting. 3233 if (Pat->getName().empty()) { 3234 if (Pat->isLeaf()) { 3235 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3236 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3237 DI->getDef()->isSubClassOf("RegisterOperand"))) 3238 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3239 } 3240 return false; 3241 } 3242 3243 Record *Rec; 3244 if (Pat->isLeaf()) { 3245 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3246 if (!DI) 3247 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3248 Rec = DI->getDef(); 3249 } else { 3250 Rec = Pat->getOperator(); 3251 } 3252 3253 // SRCVALUE nodes are ignored. 3254 if (Rec->getName() == "srcvalue") 3255 return false; 3256 3257 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3258 if (!Slot) { 3259 Slot = Pat; 3260 return true; 3261 } 3262 Record *SlotRec; 3263 if (Slot->isLeaf()) { 3264 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3265 } else { 3266 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3267 SlotRec = Slot->getOperator(); 3268 } 3269 3270 // Ensure that the inputs agree if we've already seen this input. 3271 if (Rec != SlotRec) 3272 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3273 // Ensure that the types can agree as well. 3274 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3275 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3276 if (Slot->getExtTypes() != Pat->getExtTypes()) 3277 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3278 return true; 3279 } 3280 3281 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3282 /// part of "I", the instruction), computing the set of inputs and outputs of 3283 /// the pattern. Report errors if we see anything naughty. 3284 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3285 TreePattern &I, TreePatternNodePtr Pat, 3286 std::map<std::string, TreePatternNodePtr> &InstInputs, 3287 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3288 &InstResults, 3289 std::vector<Record *> &InstImpResults) { 3290 3291 // The instruction pattern still has unresolved fragments. For *named* 3292 // nodes we must resolve those here. This may not result in multiple 3293 // alternatives. 3294 if (!Pat->getName().empty()) { 3295 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3296 SrcPattern.InlinePatternFragments(); 3297 SrcPattern.InferAllTypes(); 3298 Pat = SrcPattern.getOnlyTree(); 3299 } 3300 3301 if (Pat->isLeaf()) { 3302 bool isUse = HandleUse(I, Pat, InstInputs); 3303 if (!isUse && Pat->getTransformFn()) 3304 I.error("Cannot specify a transform function for a non-input value!"); 3305 return; 3306 } 3307 3308 if (Pat->getOperator()->getName() == "implicit") { 3309 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3310 TreePatternNode *Dest = Pat->getChild(i); 3311 if (!Dest->isLeaf()) 3312 I.error("implicitly defined value should be a register!"); 3313 3314 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3315 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3316 I.error("implicitly defined value should be a register!"); 3317 InstImpResults.push_back(Val->getDef()); 3318 } 3319 return; 3320 } 3321 3322 if (Pat->getOperator()->getName() != "set") { 3323 // If this is not a set, verify that the children nodes are not void typed, 3324 // and recurse. 3325 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3326 if (Pat->getChild(i)->getNumTypes() == 0) 3327 I.error("Cannot have void nodes inside of patterns!"); 3328 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3329 InstResults, InstImpResults); 3330 } 3331 3332 // If this is a non-leaf node with no children, treat it basically as if 3333 // it were a leaf. This handles nodes like (imm). 3334 bool isUse = HandleUse(I, Pat, InstInputs); 3335 3336 if (!isUse && Pat->getTransformFn()) 3337 I.error("Cannot specify a transform function for a non-input value!"); 3338 return; 3339 } 3340 3341 // Otherwise, this is a set, validate and collect instruction results. 3342 if (Pat->getNumChildren() == 0) 3343 I.error("set requires operands!"); 3344 3345 if (Pat->getTransformFn()) 3346 I.error("Cannot specify a transform function on a set node!"); 3347 3348 // Check the set destinations. 3349 unsigned NumDests = Pat->getNumChildren()-1; 3350 for (unsigned i = 0; i != NumDests; ++i) { 3351 TreePatternNodePtr Dest = Pat->getChildShared(i); 3352 // For set destinations we also must resolve fragments here. 3353 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3354 DestPattern.InlinePatternFragments(); 3355 DestPattern.InferAllTypes(); 3356 Dest = DestPattern.getOnlyTree(); 3357 3358 if (!Dest->isLeaf()) 3359 I.error("set destination should be a register!"); 3360 3361 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3362 if (!Val) { 3363 I.error("set destination should be a register!"); 3364 continue; 3365 } 3366 3367 if (Val->getDef()->isSubClassOf("RegisterClass") || 3368 Val->getDef()->isSubClassOf("ValueType") || 3369 Val->getDef()->isSubClassOf("RegisterOperand") || 3370 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3371 if (Dest->getName().empty()) 3372 I.error("set destination must have a name!"); 3373 if (InstResults.count(Dest->getName())) 3374 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3375 InstResults[Dest->getName()] = Dest; 3376 } else if (Val->getDef()->isSubClassOf("Register")) { 3377 InstImpResults.push_back(Val->getDef()); 3378 } else { 3379 I.error("set destination should be a register!"); 3380 } 3381 } 3382 3383 // Verify and collect info from the computation. 3384 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3385 InstResults, InstImpResults); 3386 } 3387 3388 //===----------------------------------------------------------------------===// 3389 // Instruction Analysis 3390 //===----------------------------------------------------------------------===// 3391 3392 class InstAnalyzer { 3393 const CodeGenDAGPatterns &CDP; 3394 public: 3395 bool hasSideEffects; 3396 bool mayStore; 3397 bool mayLoad; 3398 bool isBitcast; 3399 bool isVariadic; 3400 bool hasChain; 3401 3402 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3403 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3404 isBitcast(false), isVariadic(false), hasChain(false) {} 3405 3406 void Analyze(const PatternToMatch &Pat) { 3407 const TreePatternNode *N = Pat.getSrcPattern(); 3408 AnalyzeNode(N); 3409 // These properties are detected only on the root node. 3410 isBitcast = IsNodeBitcast(N); 3411 } 3412 3413 private: 3414 bool IsNodeBitcast(const TreePatternNode *N) const { 3415 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3416 return false; 3417 3418 if (N->isLeaf()) 3419 return false; 3420 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3421 return false; 3422 3423 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3424 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3425 return false; 3426 return OpInfo.getEnumName() == "ISD::BITCAST"; 3427 } 3428 3429 public: 3430 void AnalyzeNode(const TreePatternNode *N) { 3431 if (N->isLeaf()) { 3432 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3433 Record *LeafRec = DI->getDef(); 3434 // Handle ComplexPattern leaves. 3435 if (LeafRec->isSubClassOf("ComplexPattern")) { 3436 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3437 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3438 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3439 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3440 } 3441 } 3442 return; 3443 } 3444 3445 // Analyze children. 3446 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3447 AnalyzeNode(N->getChild(i)); 3448 3449 // Notice properties of the node. 3450 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3451 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3452 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3453 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3454 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3455 3456 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3457 // If this is an intrinsic, analyze it. 3458 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3459 mayLoad = true;// These may load memory. 3460 3461 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3462 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3463 3464 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3465 IntInfo->hasSideEffects) 3466 // ReadWriteMem intrinsics can have other strange effects. 3467 hasSideEffects = true; 3468 } 3469 } 3470 3471 }; 3472 3473 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3474 const InstAnalyzer &PatInfo, 3475 Record *PatDef) { 3476 bool Error = false; 3477 3478 // Remember where InstInfo got its flags. 3479 if (InstInfo.hasUndefFlags()) 3480 InstInfo.InferredFrom = PatDef; 3481 3482 // Check explicitly set flags for consistency. 3483 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3484 !InstInfo.hasSideEffects_Unset) { 3485 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3486 // the pattern has no side effects. That could be useful for div/rem 3487 // instructions that may trap. 3488 if (!InstInfo.hasSideEffects) { 3489 Error = true; 3490 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3491 Twine(InstInfo.hasSideEffects)); 3492 } 3493 } 3494 3495 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3496 Error = true; 3497 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3498 Twine(InstInfo.mayStore)); 3499 } 3500 3501 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3502 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3503 // Some targets translate immediates to loads. 3504 if (!InstInfo.mayLoad) { 3505 Error = true; 3506 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3507 Twine(InstInfo.mayLoad)); 3508 } 3509 } 3510 3511 // Transfer inferred flags. 3512 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3513 InstInfo.mayStore |= PatInfo.mayStore; 3514 InstInfo.mayLoad |= PatInfo.mayLoad; 3515 3516 // These flags are silently added without any verification. 3517 // FIXME: To match historical behavior of TableGen, for now add those flags 3518 // only when we're inferring from the primary instruction pattern. 3519 if (PatDef->isSubClassOf("Instruction")) { 3520 InstInfo.isBitcast |= PatInfo.isBitcast; 3521 InstInfo.hasChain |= PatInfo.hasChain; 3522 InstInfo.hasChain_Inferred = true; 3523 } 3524 3525 // Don't infer isVariadic. This flag means something different on SDNodes and 3526 // instructions. For example, a CALL SDNode is variadic because it has the 3527 // call arguments as operands, but a CALL instruction is not variadic - it 3528 // has argument registers as implicit, not explicit uses. 3529 3530 return Error; 3531 } 3532 3533 /// hasNullFragReference - Return true if the DAG has any reference to the 3534 /// null_frag operator. 3535 static bool hasNullFragReference(DagInit *DI) { 3536 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3537 if (!OpDef) return false; 3538 Record *Operator = OpDef->getDef(); 3539 3540 // If this is the null fragment, return true. 3541 if (Operator->getName() == "null_frag") return true; 3542 // If any of the arguments reference the null fragment, return true. 3543 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3544 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3545 if (Arg && hasNullFragReference(Arg)) 3546 return true; 3547 } 3548 3549 return false; 3550 } 3551 3552 /// hasNullFragReference - Return true if any DAG in the list references 3553 /// the null_frag operator. 3554 static bool hasNullFragReference(ListInit *LI) { 3555 for (Init *I : LI->getValues()) { 3556 DagInit *DI = dyn_cast<DagInit>(I); 3557 assert(DI && "non-dag in an instruction Pattern list?!"); 3558 if (hasNullFragReference(DI)) 3559 return true; 3560 } 3561 return false; 3562 } 3563 3564 /// Get all the instructions in a tree. 3565 static void 3566 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3567 if (Tree->isLeaf()) 3568 return; 3569 if (Tree->getOperator()->isSubClassOf("Instruction")) 3570 Instrs.push_back(Tree->getOperator()); 3571 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3572 getInstructionsInTree(Tree->getChild(i), Instrs); 3573 } 3574 3575 /// Check the class of a pattern leaf node against the instruction operand it 3576 /// represents. 3577 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3578 Record *Leaf) { 3579 if (OI.Rec == Leaf) 3580 return true; 3581 3582 // Allow direct value types to be used in instruction set patterns. 3583 // The type will be checked later. 3584 if (Leaf->isSubClassOf("ValueType")) 3585 return true; 3586 3587 // Patterns can also be ComplexPattern instances. 3588 if (Leaf->isSubClassOf("ComplexPattern")) 3589 return true; 3590 3591 return false; 3592 } 3593 3594 void CodeGenDAGPatterns::parseInstructionPattern( 3595 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3596 3597 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3598 3599 // Parse the instruction. 3600 TreePattern I(CGI.TheDef, Pat, true, *this); 3601 3602 // InstInputs - Keep track of all of the inputs of the instruction, along 3603 // with the record they are declared as. 3604 std::map<std::string, TreePatternNodePtr> InstInputs; 3605 3606 // InstResults - Keep track of all the virtual registers that are 'set' 3607 // in the instruction, including what reg class they are. 3608 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3609 InstResults; 3610 3611 std::vector<Record*> InstImpResults; 3612 3613 // Verify that the top-level forms in the instruction are of void type, and 3614 // fill in the InstResults map. 3615 SmallString<32> TypesString; 3616 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3617 TypesString.clear(); 3618 TreePatternNodePtr Pat = I.getTree(j); 3619 if (Pat->getNumTypes() != 0) { 3620 raw_svector_ostream OS(TypesString); 3621 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3622 if (k > 0) 3623 OS << ", "; 3624 Pat->getExtType(k).writeToStream(OS); 3625 } 3626 I.error("Top-level forms in instruction pattern should have" 3627 " void types, has types " + 3628 OS.str()); 3629 } 3630 3631 // Find inputs and outputs, and verify the structure of the uses/defs. 3632 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3633 InstImpResults); 3634 } 3635 3636 // Now that we have inputs and outputs of the pattern, inspect the operands 3637 // list for the instruction. This determines the order that operands are 3638 // added to the machine instruction the node corresponds to. 3639 unsigned NumResults = InstResults.size(); 3640 3641 // Parse the operands list from the (ops) list, validating it. 3642 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3643 3644 // Check that all of the results occur first in the list. 3645 std::vector<Record*> Results; 3646 std::vector<unsigned> ResultIndices; 3647 SmallVector<TreePatternNodePtr, 2> ResNodes; 3648 for (unsigned i = 0; i != NumResults; ++i) { 3649 if (i == CGI.Operands.size()) { 3650 const std::string &OpName = 3651 std::find_if(InstResults.begin(), InstResults.end(), 3652 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3653 return P.second; 3654 }) 3655 ->first; 3656 3657 I.error("'" + OpName + "' set but does not appear in operand list!"); 3658 } 3659 3660 const std::string &OpName = CGI.Operands[i].Name; 3661 3662 // Check that it exists in InstResults. 3663 auto InstResultIter = InstResults.find(OpName); 3664 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3665 I.error("Operand $" + OpName + " does not exist in operand list!"); 3666 3667 TreePatternNodePtr RNode = InstResultIter->second; 3668 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3669 ResNodes.push_back(std::move(RNode)); 3670 if (!R) 3671 I.error("Operand $" + OpName + " should be a set destination: all " 3672 "outputs must occur before inputs in operand list!"); 3673 3674 if (!checkOperandClass(CGI.Operands[i], R)) 3675 I.error("Operand $" + OpName + " class mismatch!"); 3676 3677 // Remember the return type. 3678 Results.push_back(CGI.Operands[i].Rec); 3679 3680 // Remember the result index. 3681 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3682 3683 // Okay, this one checks out. 3684 InstResultIter->second = nullptr; 3685 } 3686 3687 // Loop over the inputs next. 3688 std::vector<TreePatternNodePtr> ResultNodeOperands; 3689 std::vector<Record*> Operands; 3690 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3691 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3692 const std::string &OpName = Op.Name; 3693 if (OpName.empty()) 3694 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3695 3696 if (!InstInputs.count(OpName)) { 3697 // If this is an operand with a DefaultOps set filled in, we can ignore 3698 // this. When we codegen it, we will do so as always executed. 3699 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3700 // Does it have a non-empty DefaultOps field? If so, ignore this 3701 // operand. 3702 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3703 continue; 3704 } 3705 I.error("Operand $" + OpName + 3706 " does not appear in the instruction pattern"); 3707 } 3708 TreePatternNodePtr InVal = InstInputs[OpName]; 3709 InstInputs.erase(OpName); // It occurred, remove from map. 3710 3711 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3712 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3713 if (!checkOperandClass(Op, InRec)) 3714 I.error("Operand $" + OpName + "'s register class disagrees" 3715 " between the operand and pattern"); 3716 } 3717 Operands.push_back(Op.Rec); 3718 3719 // Construct the result for the dest-pattern operand list. 3720 TreePatternNodePtr OpNode = InVal->clone(); 3721 3722 // No predicate is useful on the result. 3723 OpNode->clearPredicateCalls(); 3724 3725 // Promote the xform function to be an explicit node if set. 3726 if (Record *Xform = OpNode->getTransformFn()) { 3727 OpNode->setTransformFn(nullptr); 3728 std::vector<TreePatternNodePtr> Children; 3729 Children.push_back(OpNode); 3730 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3731 OpNode->getNumTypes()); 3732 } 3733 3734 ResultNodeOperands.push_back(std::move(OpNode)); 3735 } 3736 3737 if (!InstInputs.empty()) 3738 I.error("Input operand $" + InstInputs.begin()->first + 3739 " occurs in pattern but not in operands list!"); 3740 3741 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3742 I.getRecord(), std::move(ResultNodeOperands), 3743 GetNumNodeResults(I.getRecord(), *this)); 3744 // Copy fully inferred output node types to instruction result pattern. 3745 for (unsigned i = 0; i != NumResults; ++i) { 3746 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3747 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3748 ResultPattern->setResultIndex(i, ResultIndices[i]); 3749 } 3750 3751 // FIXME: Assume only the first tree is the pattern. The others are clobber 3752 // nodes. 3753 TreePatternNodePtr Pattern = I.getTree(0); 3754 TreePatternNodePtr SrcPattern; 3755 if (Pattern->getOperator()->getName() == "set") { 3756 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3757 } else{ 3758 // Not a set (store or something?) 3759 SrcPattern = Pattern; 3760 } 3761 3762 // Create and insert the instruction. 3763 // FIXME: InstImpResults should not be part of DAGInstruction. 3764 Record *R = I.getRecord(); 3765 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3766 std::forward_as_tuple(Results, Operands, InstImpResults, 3767 SrcPattern, ResultPattern)); 3768 3769 LLVM_DEBUG(I.dump()); 3770 } 3771 3772 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3773 /// any fragments involved. This populates the Instructions list with fully 3774 /// resolved instructions. 3775 void CodeGenDAGPatterns::ParseInstructions() { 3776 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3777 3778 for (Record *Instr : Instrs) { 3779 ListInit *LI = nullptr; 3780 3781 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3782 LI = Instr->getValueAsListInit("Pattern"); 3783 3784 // If there is no pattern, only collect minimal information about the 3785 // instruction for its operand list. We have to assume that there is one 3786 // result, as we have no detailed info. A pattern which references the 3787 // null_frag operator is as-if no pattern were specified. Normally this 3788 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3789 // null_frag. 3790 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3791 std::vector<Record*> Results; 3792 std::vector<Record*> Operands; 3793 3794 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3795 3796 if (InstInfo.Operands.size() != 0) { 3797 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3798 Results.push_back(InstInfo.Operands[j].Rec); 3799 3800 // The rest are inputs. 3801 for (unsigned j = InstInfo.Operands.NumDefs, 3802 e = InstInfo.Operands.size(); j < e; ++j) 3803 Operands.push_back(InstInfo.Operands[j].Rec); 3804 } 3805 3806 // Create and insert the instruction. 3807 std::vector<Record*> ImpResults; 3808 Instructions.insert(std::make_pair(Instr, 3809 DAGInstruction(Results, Operands, ImpResults))); 3810 continue; // no pattern. 3811 } 3812 3813 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3814 parseInstructionPattern(CGI, LI, Instructions); 3815 } 3816 3817 // If we can, convert the instructions to be patterns that are matched! 3818 for (auto &Entry : Instructions) { 3819 Record *Instr = Entry.first; 3820 DAGInstruction &TheInst = Entry.second; 3821 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3822 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3823 3824 if (SrcPattern && ResultPattern) { 3825 TreePattern Pattern(Instr, SrcPattern, true, *this); 3826 TreePattern Result(Instr, ResultPattern, false, *this); 3827 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3828 } 3829 } 3830 } 3831 3832 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3833 3834 static void FindNames(TreePatternNode *P, 3835 std::map<std::string, NameRecord> &Names, 3836 TreePattern *PatternTop) { 3837 if (!P->getName().empty()) { 3838 NameRecord &Rec = Names[P->getName()]; 3839 // If this is the first instance of the name, remember the node. 3840 if (Rec.second++ == 0) 3841 Rec.first = P; 3842 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3843 PatternTop->error("repetition of value: $" + P->getName() + 3844 " where different uses have different types!"); 3845 } 3846 3847 if (!P->isLeaf()) { 3848 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3849 FindNames(P->getChild(i), Names, PatternTop); 3850 } 3851 } 3852 3853 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3854 std::vector<Predicate> Preds; 3855 for (Init *I : L->getValues()) { 3856 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3857 Preds.push_back(Pred->getDef()); 3858 else 3859 llvm_unreachable("Non-def on the list"); 3860 } 3861 3862 // Sort so that different orders get canonicalized to the same string. 3863 llvm::sort(Preds); 3864 return Preds; 3865 } 3866 3867 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3868 PatternToMatch &&PTM) { 3869 // Do some sanity checking on the pattern we're about to match. 3870 std::string Reason; 3871 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3872 PrintWarning(Pattern->getRecord()->getLoc(), 3873 Twine("Pattern can never match: ") + Reason); 3874 return; 3875 } 3876 3877 // If the source pattern's root is a complex pattern, that complex pattern 3878 // must specify the nodes it can potentially match. 3879 if (const ComplexPattern *CP = 3880 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3881 if (CP->getRootNodes().empty()) 3882 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3883 " could match"); 3884 3885 3886 // Find all of the named values in the input and output, ensure they have the 3887 // same type. 3888 std::map<std::string, NameRecord> SrcNames, DstNames; 3889 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3890 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3891 3892 // Scan all of the named values in the destination pattern, rejecting them if 3893 // they don't exist in the input pattern. 3894 for (const auto &Entry : DstNames) { 3895 if (SrcNames[Entry.first].first == nullptr) 3896 Pattern->error("Pattern has input without matching name in output: $" + 3897 Entry.first); 3898 } 3899 3900 // Scan all of the named values in the source pattern, rejecting them if the 3901 // name isn't used in the dest, and isn't used to tie two values together. 3902 for (const auto &Entry : SrcNames) 3903 if (DstNames[Entry.first].first == nullptr && 3904 SrcNames[Entry.first].second == 1) 3905 Pattern->error("Pattern has dead named input: $" + Entry.first); 3906 3907 PatternsToMatch.push_back(PTM); 3908 } 3909 3910 void CodeGenDAGPatterns::InferInstructionFlags() { 3911 ArrayRef<const CodeGenInstruction*> Instructions = 3912 Target.getInstructionsByEnumValue(); 3913 3914 unsigned Errors = 0; 3915 3916 // Try to infer flags from all patterns in PatternToMatch. These include 3917 // both the primary instruction patterns (which always come first) and 3918 // patterns defined outside the instruction. 3919 for (const PatternToMatch &PTM : ptms()) { 3920 // We can only infer from single-instruction patterns, otherwise we won't 3921 // know which instruction should get the flags. 3922 SmallVector<Record*, 8> PatInstrs; 3923 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3924 if (PatInstrs.size() != 1) 3925 continue; 3926 3927 // Get the single instruction. 3928 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3929 3930 // Only infer properties from the first pattern. We'll verify the others. 3931 if (InstInfo.InferredFrom) 3932 continue; 3933 3934 InstAnalyzer PatInfo(*this); 3935 PatInfo.Analyze(PTM); 3936 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3937 } 3938 3939 if (Errors) 3940 PrintFatalError("pattern conflicts"); 3941 3942 // If requested by the target, guess any undefined properties. 3943 if (Target.guessInstructionProperties()) { 3944 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3945 CodeGenInstruction *InstInfo = 3946 const_cast<CodeGenInstruction *>(Instructions[i]); 3947 if (InstInfo->InferredFrom) 3948 continue; 3949 // The mayLoad and mayStore flags default to false. 3950 // Conservatively assume hasSideEffects if it wasn't explicit. 3951 if (InstInfo->hasSideEffects_Unset) 3952 InstInfo->hasSideEffects = true; 3953 } 3954 return; 3955 } 3956 3957 // Complain about any flags that are still undefined. 3958 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3959 CodeGenInstruction *InstInfo = 3960 const_cast<CodeGenInstruction *>(Instructions[i]); 3961 if (InstInfo->InferredFrom) 3962 continue; 3963 if (InstInfo->hasSideEffects_Unset) 3964 PrintError(InstInfo->TheDef->getLoc(), 3965 "Can't infer hasSideEffects from patterns"); 3966 if (InstInfo->mayStore_Unset) 3967 PrintError(InstInfo->TheDef->getLoc(), 3968 "Can't infer mayStore from patterns"); 3969 if (InstInfo->mayLoad_Unset) 3970 PrintError(InstInfo->TheDef->getLoc(), 3971 "Can't infer mayLoad from patterns"); 3972 } 3973 } 3974 3975 3976 /// Verify instruction flags against pattern node properties. 3977 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3978 unsigned Errors = 0; 3979 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3980 const PatternToMatch &PTM = *I; 3981 SmallVector<Record*, 8> Instrs; 3982 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3983 if (Instrs.empty()) 3984 continue; 3985 3986 // Count the number of instructions with each flag set. 3987 unsigned NumSideEffects = 0; 3988 unsigned NumStores = 0; 3989 unsigned NumLoads = 0; 3990 for (const Record *Instr : Instrs) { 3991 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3992 NumSideEffects += InstInfo.hasSideEffects; 3993 NumStores += InstInfo.mayStore; 3994 NumLoads += InstInfo.mayLoad; 3995 } 3996 3997 // Analyze the source pattern. 3998 InstAnalyzer PatInfo(*this); 3999 PatInfo.Analyze(PTM); 4000 4001 // Collect error messages. 4002 SmallVector<std::string, 4> Msgs; 4003 4004 // Check for missing flags in the output. 4005 // Permit extra flags for now at least. 4006 if (PatInfo.hasSideEffects && !NumSideEffects) 4007 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4008 4009 // Don't verify store flags on instructions with side effects. At least for 4010 // intrinsics, side effects implies mayStore. 4011 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4012 Msgs.push_back("pattern may store, but mayStore isn't set"); 4013 4014 // Similarly, mayStore implies mayLoad on intrinsics. 4015 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4016 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4017 4018 // Print error messages. 4019 if (Msgs.empty()) 4020 continue; 4021 ++Errors; 4022 4023 for (const std::string &Msg : Msgs) 4024 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4025 (Instrs.size() == 1 ? 4026 "instruction" : "output instructions")); 4027 // Provide the location of the relevant instruction definitions. 4028 for (const Record *Instr : Instrs) { 4029 if (Instr != PTM.getSrcRecord()) 4030 PrintError(Instr->getLoc(), "defined here"); 4031 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4032 if (InstInfo.InferredFrom && 4033 InstInfo.InferredFrom != InstInfo.TheDef && 4034 InstInfo.InferredFrom != PTM.getSrcRecord()) 4035 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4036 } 4037 } 4038 if (Errors) 4039 PrintFatalError("Errors in DAG patterns"); 4040 } 4041 4042 /// Given a pattern result with an unresolved type, see if we can find one 4043 /// instruction with an unresolved result type. Force this result type to an 4044 /// arbitrary element if it's possible types to converge results. 4045 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4046 if (N->isLeaf()) 4047 return false; 4048 4049 // Analyze children. 4050 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4051 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4052 return true; 4053 4054 if (!N->getOperator()->isSubClassOf("Instruction")) 4055 return false; 4056 4057 // If this type is already concrete or completely unknown we can't do 4058 // anything. 4059 TypeInfer &TI = TP.getInfer(); 4060 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4061 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4062 continue; 4063 4064 // Otherwise, force its type to an arbitrary choice. 4065 if (TI.forceArbitrary(N->getExtType(i))) 4066 return true; 4067 } 4068 4069 return false; 4070 } 4071 4072 // Promote xform function to be an explicit node wherever set. 4073 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4074 if (Record *Xform = N->getTransformFn()) { 4075 N->setTransformFn(nullptr); 4076 std::vector<TreePatternNodePtr> Children; 4077 Children.push_back(PromoteXForms(N)); 4078 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4079 N->getNumTypes()); 4080 } 4081 4082 if (!N->isLeaf()) 4083 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4084 TreePatternNodePtr Child = N->getChildShared(i); 4085 N->setChild(i, PromoteXForms(Child)); 4086 } 4087 return N; 4088 } 4089 4090 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4091 TreePattern &Pattern, TreePattern &Result, 4092 const std::vector<Record *> &InstImpResults) { 4093 4094 // Inline pattern fragments and expand multiple alternatives. 4095 Pattern.InlinePatternFragments(); 4096 Result.InlinePatternFragments(); 4097 4098 if (Result.getNumTrees() != 1) 4099 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4100 4101 // Infer types. 4102 bool IterateInference; 4103 bool InferredAllPatternTypes, InferredAllResultTypes; 4104 do { 4105 // Infer as many types as possible. If we cannot infer all of them, we 4106 // can never do anything with this pattern: report it to the user. 4107 InferredAllPatternTypes = 4108 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4109 4110 // Infer as many types as possible. If we cannot infer all of them, we 4111 // can never do anything with this pattern: report it to the user. 4112 InferredAllResultTypes = 4113 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4114 4115 IterateInference = false; 4116 4117 // Apply the type of the result to the source pattern. This helps us 4118 // resolve cases where the input type is known to be a pointer type (which 4119 // is considered resolved), but the result knows it needs to be 32- or 4120 // 64-bits. Infer the other way for good measure. 4121 for (auto T : Pattern.getTrees()) 4122 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4123 T->getNumTypes()); 4124 i != e; ++i) { 4125 IterateInference |= T->UpdateNodeType( 4126 i, Result.getOnlyTree()->getExtType(i), Result); 4127 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4128 i, T->getExtType(i), Result); 4129 } 4130 4131 // If our iteration has converged and the input pattern's types are fully 4132 // resolved but the result pattern is not fully resolved, we may have a 4133 // situation where we have two instructions in the result pattern and 4134 // the instructions require a common register class, but don't care about 4135 // what actual MVT is used. This is actually a bug in our modelling: 4136 // output patterns should have register classes, not MVTs. 4137 // 4138 // In any case, to handle this, we just go through and disambiguate some 4139 // arbitrary types to the result pattern's nodes. 4140 if (!IterateInference && InferredAllPatternTypes && 4141 !InferredAllResultTypes) 4142 IterateInference = 4143 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4144 } while (IterateInference); 4145 4146 // Verify that we inferred enough types that we can do something with the 4147 // pattern and result. If these fire the user has to add type casts. 4148 if (!InferredAllPatternTypes) 4149 Pattern.error("Could not infer all types in pattern!"); 4150 if (!InferredAllResultTypes) { 4151 Pattern.dump(); 4152 Result.error("Could not infer all types in pattern result!"); 4153 } 4154 4155 // Promote xform function to be an explicit node wherever set. 4156 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4157 4158 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4159 Temp.InferAllTypes(); 4160 4161 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4162 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4163 4164 if (PatternRewriter) 4165 PatternRewriter(&Pattern); 4166 4167 // A pattern may end up with an "impossible" type, i.e. a situation 4168 // where all types have been eliminated for some node in this pattern. 4169 // This could occur for intrinsics that only make sense for a specific 4170 // value type, and use a specific register class. If, for some mode, 4171 // that register class does not accept that type, the type inference 4172 // will lead to a contradiction, which is not an error however, but 4173 // a sign that this pattern will simply never match. 4174 if (Temp.getOnlyTree()->hasPossibleType()) 4175 for (auto T : Pattern.getTrees()) 4176 if (T->hasPossibleType()) 4177 AddPatternToMatch(&Pattern, 4178 PatternToMatch(TheDef, makePredList(Preds), 4179 T, Temp.getOnlyTree(), 4180 InstImpResults, Complexity, 4181 TheDef->getID())); 4182 } 4183 4184 void CodeGenDAGPatterns::ParsePatterns() { 4185 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4186 4187 for (Record *CurPattern : Patterns) { 4188 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4189 4190 // If the pattern references the null_frag, there's nothing to do. 4191 if (hasNullFragReference(Tree)) 4192 continue; 4193 4194 TreePattern Pattern(CurPattern, Tree, true, *this); 4195 4196 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4197 if (LI->empty()) continue; // no pattern. 4198 4199 // Parse the instruction. 4200 TreePattern Result(CurPattern, LI, false, *this); 4201 4202 if (Result.getNumTrees() != 1) 4203 Result.error("Cannot handle instructions producing instructions " 4204 "with temporaries yet!"); 4205 4206 // Validate that the input pattern is correct. 4207 std::map<std::string, TreePatternNodePtr> InstInputs; 4208 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4209 InstResults; 4210 std::vector<Record*> InstImpResults; 4211 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4212 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4213 InstResults, InstImpResults); 4214 4215 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4216 } 4217 } 4218 4219 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4220 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4221 for (const auto &I : VTS) 4222 Modes.insert(I.first); 4223 4224 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4225 collectModes(Modes, N->getChild(i)); 4226 } 4227 4228 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4229 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4230 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4231 std::vector<PatternToMatch> Copy = PatternsToMatch; 4232 PatternsToMatch.clear(); 4233 4234 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4235 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4236 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4237 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4238 return; 4239 } 4240 4241 std::vector<Predicate> Preds = P.Predicates; 4242 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4243 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4244 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4245 std::move(NewDst), P.getDstRegs(), 4246 P.getAddedComplexity(), Record::getNewUID(), 4247 Mode); 4248 }; 4249 4250 for (PatternToMatch &P : Copy) { 4251 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4252 if (P.SrcPattern->hasProperTypeByHwMode()) 4253 SrcP = P.SrcPattern; 4254 if (P.DstPattern->hasProperTypeByHwMode()) 4255 DstP = P.DstPattern; 4256 if (!SrcP && !DstP) { 4257 PatternsToMatch.push_back(P); 4258 continue; 4259 } 4260 4261 std::set<unsigned> Modes; 4262 if (SrcP) 4263 collectModes(Modes, SrcP.get()); 4264 if (DstP) 4265 collectModes(Modes, DstP.get()); 4266 4267 // The predicate for the default mode needs to be constructed for each 4268 // pattern separately. 4269 // Since not all modes must be present in each pattern, if a mode m is 4270 // absent, then there is no point in constructing a check for m. If such 4271 // a check was created, it would be equivalent to checking the default 4272 // mode, except not all modes' predicates would be a part of the checking 4273 // code. The subsequently generated check for the default mode would then 4274 // have the exact same patterns, but a different predicate code. To avoid 4275 // duplicated patterns with different predicate checks, construct the 4276 // default check as a negation of all predicates that are actually present 4277 // in the source/destination patterns. 4278 std::vector<Predicate> DefaultPred; 4279 4280 for (unsigned M : Modes) { 4281 if (M == DefaultMode) 4282 continue; 4283 if (ModeChecks.find(M) != ModeChecks.end()) 4284 continue; 4285 4286 // Fill the map entry for this mode. 4287 const HwMode &HM = CGH.getMode(M); 4288 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4289 4290 // Add negations of the HM's predicates to the default predicate. 4291 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4292 } 4293 4294 for (unsigned M : Modes) { 4295 if (M == DefaultMode) 4296 continue; 4297 AppendPattern(P, M); 4298 } 4299 4300 bool HasDefault = Modes.count(DefaultMode); 4301 if (HasDefault) 4302 AppendPattern(P, DefaultMode); 4303 } 4304 } 4305 4306 /// Dependent variable map for CodeGenDAGPattern variant generation 4307 typedef StringMap<int> DepVarMap; 4308 4309 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4310 if (N->isLeaf()) { 4311 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4312 DepMap[N->getName()]++; 4313 } else { 4314 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4315 FindDepVarsOf(N->getChild(i), DepMap); 4316 } 4317 } 4318 4319 /// Find dependent variables within child patterns 4320 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4321 DepVarMap depcounts; 4322 FindDepVarsOf(N, depcounts); 4323 for (const auto &Pair : depcounts) { 4324 if (Pair.getValue() > 1) 4325 DepVars.insert(Pair.getKey()); 4326 } 4327 } 4328 4329 #ifndef NDEBUG 4330 /// Dump the dependent variable set: 4331 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4332 if (DepVars.empty()) { 4333 LLVM_DEBUG(errs() << "<empty set>"); 4334 } else { 4335 LLVM_DEBUG(errs() << "[ "); 4336 for (const auto &DepVar : DepVars) { 4337 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4338 } 4339 LLVM_DEBUG(errs() << "]"); 4340 } 4341 } 4342 #endif 4343 4344 4345 /// CombineChildVariants - Given a bunch of permutations of each child of the 4346 /// 'operator' node, put them together in all possible ways. 4347 static void CombineChildVariants( 4348 TreePatternNodePtr Orig, 4349 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4350 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4351 const MultipleUseVarSet &DepVars) { 4352 // Make sure that each operand has at least one variant to choose from. 4353 for (const auto &Variants : ChildVariants) 4354 if (Variants.empty()) 4355 return; 4356 4357 // The end result is an all-pairs construction of the resultant pattern. 4358 std::vector<unsigned> Idxs; 4359 Idxs.resize(ChildVariants.size()); 4360 bool NotDone; 4361 do { 4362 #ifndef NDEBUG 4363 LLVM_DEBUG(if (!Idxs.empty()) { 4364 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4365 for (unsigned Idx : Idxs) { 4366 errs() << Idx << " "; 4367 } 4368 errs() << "]\n"; 4369 }); 4370 #endif 4371 // Create the variant and add it to the output list. 4372 std::vector<TreePatternNodePtr> NewChildren; 4373 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4374 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4375 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4376 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4377 4378 // Copy over properties. 4379 R->setName(Orig->getName()); 4380 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4381 R->setPredicateCalls(Orig->getPredicateCalls()); 4382 R->setTransformFn(Orig->getTransformFn()); 4383 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4384 R->setType(i, Orig->getExtType(i)); 4385 4386 // If this pattern cannot match, do not include it as a variant. 4387 std::string ErrString; 4388 // Scan to see if this pattern has already been emitted. We can get 4389 // duplication due to things like commuting: 4390 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4391 // which are the same pattern. Ignore the dups. 4392 if (R->canPatternMatch(ErrString, CDP) && 4393 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4394 return R->isIsomorphicTo(Variant.get(), DepVars); 4395 })) 4396 OutVariants.push_back(R); 4397 4398 // Increment indices to the next permutation by incrementing the 4399 // indices from last index backward, e.g., generate the sequence 4400 // [0, 0], [0, 1], [1, 0], [1, 1]. 4401 int IdxsIdx; 4402 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4403 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4404 Idxs[IdxsIdx] = 0; 4405 else 4406 break; 4407 } 4408 NotDone = (IdxsIdx >= 0); 4409 } while (NotDone); 4410 } 4411 4412 /// CombineChildVariants - A helper function for binary operators. 4413 /// 4414 static void CombineChildVariants(TreePatternNodePtr Orig, 4415 const std::vector<TreePatternNodePtr> &LHS, 4416 const std::vector<TreePatternNodePtr> &RHS, 4417 std::vector<TreePatternNodePtr> &OutVariants, 4418 CodeGenDAGPatterns &CDP, 4419 const MultipleUseVarSet &DepVars) { 4420 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4421 ChildVariants.push_back(LHS); 4422 ChildVariants.push_back(RHS); 4423 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4424 } 4425 4426 static void 4427 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4428 std::vector<TreePatternNodePtr> &Children) { 4429 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4430 Record *Operator = N->getOperator(); 4431 4432 // Only permit raw nodes. 4433 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4434 N->getTransformFn()) { 4435 Children.push_back(N); 4436 return; 4437 } 4438 4439 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4440 Children.push_back(N->getChildShared(0)); 4441 else 4442 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4443 4444 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4445 Children.push_back(N->getChildShared(1)); 4446 else 4447 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4448 } 4449 4450 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4451 /// the (potentially recursive) pattern by using algebraic laws. 4452 /// 4453 static void GenerateVariantsOf(TreePatternNodePtr N, 4454 std::vector<TreePatternNodePtr> &OutVariants, 4455 CodeGenDAGPatterns &CDP, 4456 const MultipleUseVarSet &DepVars) { 4457 // We cannot permute leaves or ComplexPattern uses. 4458 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4459 OutVariants.push_back(N); 4460 return; 4461 } 4462 4463 // Look up interesting info about the node. 4464 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4465 4466 // If this node is associative, re-associate. 4467 if (NodeInfo.hasProperty(SDNPAssociative)) { 4468 // Re-associate by pulling together all of the linked operators 4469 std::vector<TreePatternNodePtr> MaximalChildren; 4470 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4471 4472 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4473 // permutations. 4474 if (MaximalChildren.size() == 3) { 4475 // Find the variants of all of our maximal children. 4476 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4477 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4478 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4479 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4480 4481 // There are only two ways we can permute the tree: 4482 // (A op B) op C and A op (B op C) 4483 // Within these forms, we can also permute A/B/C. 4484 4485 // Generate legal pair permutations of A/B/C. 4486 std::vector<TreePatternNodePtr> ABVariants; 4487 std::vector<TreePatternNodePtr> BAVariants; 4488 std::vector<TreePatternNodePtr> ACVariants; 4489 std::vector<TreePatternNodePtr> CAVariants; 4490 std::vector<TreePatternNodePtr> BCVariants; 4491 std::vector<TreePatternNodePtr> CBVariants; 4492 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4493 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4494 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4495 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4496 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4497 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4498 4499 // Combine those into the result: (x op x) op x 4500 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4501 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4502 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4503 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4504 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4505 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4506 4507 // Combine those into the result: x op (x op x) 4508 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4509 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4510 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4511 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4512 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4513 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4514 return; 4515 } 4516 } 4517 4518 // Compute permutations of all children. 4519 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4520 ChildVariants.resize(N->getNumChildren()); 4521 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4522 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4523 4524 // Build all permutations based on how the children were formed. 4525 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4526 4527 // If this node is commutative, consider the commuted order. 4528 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4529 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4530 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4531 "Commutative but doesn't have 2 children!"); 4532 // Don't count children which are actually register references. 4533 unsigned NC = 0; 4534 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4535 TreePatternNode *Child = N->getChild(i); 4536 if (Child->isLeaf()) 4537 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4538 Record *RR = DI->getDef(); 4539 if (RR->isSubClassOf("Register")) 4540 continue; 4541 } 4542 NC++; 4543 } 4544 // Consider the commuted order. 4545 if (isCommIntrinsic) { 4546 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4547 // operands are the commutative operands, and there might be more operands 4548 // after those. 4549 assert(NC >= 3 && 4550 "Commutative intrinsic should have at least 3 children!"); 4551 std::vector<std::vector<TreePatternNodePtr>> Variants; 4552 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4553 Variants.push_back(std::move(ChildVariants[2])); 4554 Variants.push_back(std::move(ChildVariants[1])); 4555 for (unsigned i = 3; i != NC; ++i) 4556 Variants.push_back(std::move(ChildVariants[i])); 4557 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4558 } else if (NC == N->getNumChildren()) { 4559 std::vector<std::vector<TreePatternNodePtr>> Variants; 4560 Variants.push_back(std::move(ChildVariants[1])); 4561 Variants.push_back(std::move(ChildVariants[0])); 4562 for (unsigned i = 2; i != NC; ++i) 4563 Variants.push_back(std::move(ChildVariants[i])); 4564 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4565 } 4566 } 4567 } 4568 4569 4570 // GenerateVariants - Generate variants. For example, commutative patterns can 4571 // match multiple ways. Add them to PatternsToMatch as well. 4572 void CodeGenDAGPatterns::GenerateVariants() { 4573 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4574 4575 // Loop over all of the patterns we've collected, checking to see if we can 4576 // generate variants of the instruction, through the exploitation of 4577 // identities. This permits the target to provide aggressive matching without 4578 // the .td file having to contain tons of variants of instructions. 4579 // 4580 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4581 // intentionally do not reconsider these. Any variants of added patterns have 4582 // already been added. 4583 // 4584 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4585 BitVector MatchedPatterns(NumOriginalPatterns); 4586 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4587 BitVector(NumOriginalPatterns)); 4588 4589 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4590 DepsAndVariants; 4591 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4592 4593 // Collect patterns with more than one variant. 4594 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4595 MultipleUseVarSet DepVars; 4596 std::vector<TreePatternNodePtr> Variants; 4597 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4598 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4599 LLVM_DEBUG(DumpDepVars(DepVars)); 4600 LLVM_DEBUG(errs() << "\n"); 4601 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4602 *this, DepVars); 4603 4604 assert(!Variants.empty() && "Must create at least original variant!"); 4605 if (Variants.size() == 1) // No additional variants for this pattern. 4606 continue; 4607 4608 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4609 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4610 4611 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4612 4613 // Cache matching predicates. 4614 if (MatchedPatterns[i]) 4615 continue; 4616 4617 const std::vector<Predicate> &Predicates = 4618 PatternsToMatch[i].getPredicates(); 4619 4620 BitVector &Matches = MatchedPredicates[i]; 4621 MatchedPatterns.set(i); 4622 Matches.set(i); 4623 4624 // Don't test patterns that have already been cached - it won't match. 4625 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4626 if (!MatchedPatterns[p]) 4627 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4628 4629 // Copy this to all the matching patterns. 4630 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4631 if (p != (int)i) { 4632 MatchedPatterns.set(p); 4633 MatchedPredicates[p] = Matches; 4634 } 4635 } 4636 4637 for (auto it : PatternsWithVariants) { 4638 unsigned i = it.first; 4639 const MultipleUseVarSet &DepVars = it.second.first; 4640 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4641 4642 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4643 TreePatternNodePtr Variant = Variants[v]; 4644 BitVector &Matches = MatchedPredicates[i]; 4645 4646 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4647 errs() << "\n"); 4648 4649 // Scan to see if an instruction or explicit pattern already matches this. 4650 bool AlreadyExists = false; 4651 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4652 // Skip if the top level predicates do not match. 4653 if (!Matches[p]) 4654 continue; 4655 // Check to see if this variant already exists. 4656 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4657 DepVars)) { 4658 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4659 AlreadyExists = true; 4660 break; 4661 } 4662 } 4663 // If we already have it, ignore the variant. 4664 if (AlreadyExists) continue; 4665 4666 // Otherwise, add it to the list of patterns we have. 4667 PatternsToMatch.push_back(PatternToMatch( 4668 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4669 Variant, PatternsToMatch[i].getDstPatternShared(), 4670 PatternsToMatch[i].getDstRegs(), 4671 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4672 MatchedPredicates.push_back(Matches); 4673 4674 // Add a new match the same as this pattern. 4675 for (auto &P : MatchedPredicates) 4676 P.push_back(P[i]); 4677 } 4678 4679 LLVM_DEBUG(errs() << "\n"); 4680 } 4681 } 4682