1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   SmallDenseSet<unsigned, 4> Modes;
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     Modes.insert(M);
117     // Make sure there exists a set for each specific mode from VVT.
118     Changed |= getOrCreate(M).insert(P.second).second;
119     // Cache VVT's default mode.
120     if (DefaultMode == M) {
121       ContainsDefault = true;
122       DT = P.second;
123     }
124   }
125 
126   // If VVT has a default mode, add the corresponding type to all
127   // modes in "this" that do not exist in VVT.
128   if (ContainsDefault)
129     for (auto &I : *this)
130       if (!Modes.count(I.first))
131         Changed |= I.second.insert(DT).second;
132 
133   return Changed;
134 }
135 
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138   bool Changed = false;
139   if (hasDefault()) {
140     for (const auto &I : VTS) {
141       unsigned M = I.first;
142       if (M == DefaultMode || hasMode(M))
143         continue;
144       Map.insert({M, Map.at(DefaultMode)});
145       Changed = true;
146     }
147   }
148 
149   for (auto &I : *this) {
150     unsigned M = I.first;
151     SetType &S = I.second;
152     if (VTS.hasMode(M) || VTS.hasDefault()) {
153       Changed |= intersect(I.second, VTS.get(M));
154     } else if (!S.empty()) {
155       S.clear();
156       Changed = true;
157     }
158   }
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164   bool Changed = false;
165   for (auto &I : *this)
166     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167   return Changed;
168 }
169 
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172   assert(empty());
173   for (const auto &I : VTS) {
174     SetType &S = getOrCreate(I.first);
175     for (auto J : I.second)
176       if (P(J))
177         S.insert(J);
178   }
179   return !empty();
180 }
181 
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183   SmallVector<unsigned, 4> Modes;
184   Modes.reserve(Map.size());
185 
186   for (const auto &I : *this)
187     Modes.push_back(I.first);
188   if (Modes.empty()) {
189     OS << "{}";
190     return;
191   }
192   array_pod_sort(Modes.begin(), Modes.end());
193 
194   OS << '{';
195   for (unsigned M : Modes) {
196     OS << ' ' << getModeName(M) << ':';
197     writeToStream(get(M), OS);
198   }
199   OS << " }";
200 }
201 
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203   SmallVector<MVT, 4> Types(S.begin(), S.end());
204   array_pod_sort(Types.begin(), Types.end());
205 
206   OS << '[';
207   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208     OS << ValueTypeByHwMode::getMVTName(Types[i]);
209     if (i != e-1)
210       OS << ' ';
211   }
212   OS << ']';
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallDenseSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263 }
264 
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267   dbgs() << *this << '\n';
268 }
269 
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273 
274   if (OutP == InP)
275     return berase_if(Out, Int);
276 
277   // Compute the intersection of scalars separately to account for only
278   // one set containing iPTR.
279   // The itersection of iPTR with a set of integer scalar types that does not
280   // include iPTR will result in the most specific scalar type:
281   // - iPTR is more specific than any set with two elements or more
282   // - iPTR is less specific than any single integer scalar type.
283   // For example
284   // { iPTR } * { i32 }     -> { i32 }
285   // { iPTR } * { i32 i64 } -> { iPTR }
286   // and
287   // { iPTR i32 } * { i32 }          -> { i32 }
288   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
289   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290 
291   // Compute the difference between the two sets in such a way that the
292   // iPTR is in the set that is being subtracted. This is to see if there
293   // are any extra scalars in the set without iPTR that are not in the
294   // set containing iPTR. Then the iPTR could be considered a "wildcard"
295   // matching these scalars. If there is only one such scalar, it would
296   // replace the iPTR, if there are more, the iPTR would be retained.
297   SetType Diff;
298   if (InP) {
299     Diff = Out;
300     berase_if(Diff, [&In](MVT T) { return In.count(T); });
301     // Pre-remove these elements and rely only on InP/OutP to determine
302     // whether a change has been made.
303     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304   } else {
305     Diff = In;
306     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307     Out.erase(MVT::iPTR);
308   }
309 
310   // The actual intersection.
311   bool Changed = berase_if(Out, Int);
312   unsigned NumD = Diff.size();
313   if (NumD == 0)
314     return Changed;
315 
316   if (NumD == 1) {
317     Out.insert(*Diff.begin());
318     // This is a change only if Out was the one with iPTR (which is now
319     // being replaced).
320     Changed |= OutP;
321   } else {
322     // Multiple elements from Out are now replaced with iPTR.
323     Out.insert(MVT::iPTR);
324     Changed |= !OutP;
325   }
326   return Changed;
327 }
328 
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331   if (empty())
332     return true;
333   bool AllEmpty = true;
334   for (const auto &I : *this)
335     AllEmpty &= I.second.empty();
336   return !AllEmpty;
337 #endif
338   return true;
339 }
340 
341 // --- TypeInfer
342 
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344                                 const TypeSetByHwMode &In) {
345   ValidateOnExit _1(Out, *this);
346   In.validate();
347   if (In.empty() || Out == In || TP.hasError())
348     return false;
349   if (Out.empty()) {
350     Out = In;
351     return true;
352   }
353 
354   bool Changed = Out.constrain(In);
355   if (Changed && Out.empty())
356     TP.error("Type contradiction");
357 
358   return Changed;
359 }
360 
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362   ValidateOnExit _1(Out, *this);
363   if (TP.hasError())
364     return false;
365   assert(!Out.empty() && "cannot pick from an empty set");
366 
367   bool Changed = false;
368   for (auto &I : Out) {
369     TypeSetByHwMode::SetType &S = I.second;
370     if (S.size() <= 1)
371       continue;
372     MVT T = *S.begin(); // Pick the first element.
373     S.clear();
374     S.insert(T);
375     Changed = true;
376   }
377   return Changed;
378 }
379 
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   if (!Out.empty())
385     return Out.constrain(isIntegerOrPtr);
386 
387   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388 }
389 
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391   ValidateOnExit _1(Out, *this);
392   if (TP.hasError())
393     return false;
394   if (!Out.empty())
395     return Out.constrain(isFloatingPoint);
396 
397   return Out.assign_if(getLegalTypes(), isFloatingPoint);
398 }
399 
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401   ValidateOnExit _1(Out, *this);
402   if (TP.hasError())
403     return false;
404   if (!Out.empty())
405     return Out.constrain(isScalar);
406 
407   return Out.assign_if(getLegalTypes(), isScalar);
408 }
409 
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411   ValidateOnExit _1(Out, *this);
412   if (TP.hasError())
413     return false;
414   if (!Out.empty())
415     return Out.constrain(isVector);
416 
417   return Out.assign_if(getLegalTypes(), isVector);
418 }
419 
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421   ValidateOnExit _1(Out, *this);
422   if (TP.hasError() || !Out.empty())
423     return false;
424 
425   Out = getLegalTypes();
426   return true;
427 }
428 
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431   if (B == E)
432     return E;
433   Iter Min = E;
434   for (Iter I = B; I != E; ++I) {
435     if (!P(*I))
436       continue;
437     if (Min == E || L(*I, *Min))
438       Min = I;
439   }
440   return Min;
441 }
442 
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445   if (B == E)
446     return E;
447   Iter Max = E;
448   for (Iter I = B; I != E; ++I) {
449     if (!P(*I))
450       continue;
451     if (Max == E || L(*Max, *I))
452       Max = I;
453   }
454   return Max;
455 }
456 
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459                                    TypeSetByHwMode &Big) {
460   ValidateOnExit _1(Small, *this), _2(Big, *this);
461   if (TP.hasError())
462     return false;
463   bool Changed = false;
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   std::vector<unsigned> Modes = union_modes(Small, Big);
473 
474   // 1. Only allow integer or floating point types and make sure that
475   //    both sides are both integer or both floating point.
476   // 2. Make sure that either both sides have vector types, or neither
477   //    of them does.
478   for (unsigned M : Modes) {
479     TypeSetByHwMode::SetType &S = Small.get(M);
480     TypeSetByHwMode::SetType &B = Big.get(M);
481 
482     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484       Changed |= berase_if(S, NotInt) |
485                  berase_if(B, NotInt);
486     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488       Changed |= berase_if(S, NotFP) |
489                  berase_if(B, NotFP);
490     } else if (S.empty() || B.empty()) {
491       Changed = !S.empty() || !B.empty();
492       S.clear();
493       B.clear();
494     } else {
495       TP.error("Incompatible types");
496       return Changed;
497     }
498 
499     if (none_of(S, isVector) || none_of(B, isVector)) {
500       Changed |= berase_if(S, isVector) |
501                  berase_if(B, isVector);
502     }
503   }
504 
505   auto LT = [](MVT A, MVT B) -> bool {
506     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508             A.getSizeInBits() < B.getSizeInBits());
509   };
510   auto LE = [&LT](MVT A, MVT B) -> bool {
511     // This function is used when removing elements: when a vector is compared
512     // to a non-vector, it should return false (to avoid removal).
513     if (A.isVector() != B.isVector())
514       return false;
515 
516     return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517                         A.getSizeInBits() == B.getSizeInBits());
518   };
519 
520   for (unsigned M : Modes) {
521     TypeSetByHwMode::SetType &S = Small.get(M);
522     TypeSetByHwMode::SetType &B = Big.get(M);
523     // MinS = min scalar in Small, remove all scalars from Big that are
524     // smaller-or-equal than MinS.
525     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526     if (MinS != S.end())
527       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528 
529     // MaxS = max scalar in Big, remove all scalars from Small that are
530     // larger than MaxS.
531     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532     if (MaxS != B.end())
533       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534 
535     // MinV = min vector in Small, remove all vectors from Big that are
536     // smaller-or-equal than MinV.
537     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538     if (MinV != S.end())
539       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540 
541     // MaxV = max vector in Big, remove all vectors from Small that are
542     // larger than MaxV.
543     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544     if (MaxV != B.end())
545       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546   }
547 
548   return Changed;
549 }
550 
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 ///    for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 ///    type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556                                        TypeSetByHwMode &Elem) {
557   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558   if (TP.hasError())
559     return false;
560   bool Changed = false;
561 
562   if (Vec.empty())
563     Changed |= EnforceVector(Vec);
564   if (Elem.empty())
565     Changed |= EnforceScalar(Elem);
566 
567   for (unsigned M : union_modes(Vec, Elem)) {
568     TypeSetByHwMode::SetType &V = Vec.get(M);
569     TypeSetByHwMode::SetType &E = Elem.get(M);
570 
571     Changed |= berase_if(V, isScalar);  // Scalar = !vector
572     Changed |= berase_if(E, isVector);  // Vector = !scalar
573     assert(!V.empty() && !E.empty());
574 
575     SmallSet<MVT,4> VT, ST;
576     // Collect element types from the "vector" set.
577     for (MVT T : V)
578       VT.insert(T.getVectorElementType());
579     // Collect scalar types from the "element" set.
580     for (MVT T : E)
581       ST.insert(T);
582 
583     // Remove from V all (vector) types whose element type is not in S.
584     Changed |= berase_if(V, [&ST](MVT T) -> bool {
585                               return !ST.count(T.getVectorElementType());
586                             });
587     // Remove from E all (scalar) types, for which there is no corresponding
588     // type in V.
589     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590   }
591 
592   return Changed;
593 }
594 
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596                                        const ValueTypeByHwMode &VVT) {
597   TypeSetByHwMode Tmp(VVT);
598   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599   return EnforceVectorEltTypeIs(Vec, Tmp);
600 }
601 
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606                                              TypeSetByHwMode &Sub) {
607   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608   if (TP.hasError())
609     return false;
610 
611   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612   auto IsSubVec = [](MVT B, MVT P) -> bool {
613     if (!B.isVector() || !P.isVector())
614       return false;
615     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616     // but until there are obvious use-cases for this, keep the
617     // types separate.
618     if (B.isScalableVector() != P.isScalableVector())
619       return false;
620     if (B.getVectorElementType() != P.getVectorElementType())
621       return false;
622     return B.getVectorNumElements() < P.getVectorNumElements();
623   };
624 
625   /// Return true if S has no element (vector type) that T is a sub-vector of,
626   /// i.e. has the same element type as T and more elements.
627   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(T, I))
630         return false;
631     return true;
632   };
633 
634   /// Return true if S has no element (vector type) that T is a super-vector
635   /// of, i.e. has the same element type as T and fewer elements.
636   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637     for (const auto &I : S)
638       if (IsSubVec(I, T))
639         return false;
640     return true;
641   };
642 
643   bool Changed = false;
644 
645   if (Vec.empty())
646     Changed |= EnforceVector(Vec);
647   if (Sub.empty())
648     Changed |= EnforceVector(Sub);
649 
650   for (unsigned M : union_modes(Vec, Sub)) {
651     TypeSetByHwMode::SetType &S = Sub.get(M);
652     TypeSetByHwMode::SetType &V = Vec.get(M);
653 
654     Changed |= berase_if(S, isScalar);
655 
656     // Erase all types from S that are not sub-vectors of a type in V.
657     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658 
659     // Erase all types from V that are not super-vectors of a type in S.
660     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661   }
662 
663   return Changed;
664 }
665 
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 ///    type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 ///    type T in V, such that T and U have the same number of elements
671 ///    (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673   ValidateOnExit _1(V, *this), _2(W, *this);
674   if (TP.hasError())
675     return false;
676 
677   bool Changed = false;
678   if (V.empty())
679     Changed |= EnforceAny(V);
680   if (W.empty())
681     Changed |= EnforceAny(W);
682 
683   // An actual vector type cannot have 0 elements, so we can treat scalars
684   // as zero-length vectors. This way both vectors and scalars can be
685   // processed identically.
686   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688   };
689 
690   for (unsigned M : union_modes(V, W)) {
691     TypeSetByHwMode::SetType &VS = V.get(M);
692     TypeSetByHwMode::SetType &WS = W.get(M);
693 
694     SmallSet<unsigned,2> VN, WN;
695     for (MVT T : VS)
696       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697     for (MVT T : WS)
698       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699 
700     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702   }
703   return Changed;
704 }
705 
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 ///    such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 ///    such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711   ValidateOnExit _1(A, *this), _2(B, *this);
712   if (TP.hasError())
713     return false;
714   bool Changed = false;
715   if (A.empty())
716     Changed |= EnforceAny(A);
717   if (B.empty())
718     Changed |= EnforceAny(B);
719 
720   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721     return !Sizes.count(T.getSizeInBits());
722   };
723 
724   for (unsigned M : union_modes(A, B)) {
725     TypeSetByHwMode::SetType &AS = A.get(M);
726     TypeSetByHwMode::SetType &BS = B.get(M);
727     SmallSet<unsigned,2> AN, BN;
728 
729     for (MVT T : AS)
730       AN.insert(T.getSizeInBits());
731     for (MVT T : BS)
732       BN.insert(T.getSizeInBits());
733 
734     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736   }
737 
738   return Changed;
739 }
740 
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742   ValidateOnExit _1(VTS, *this);
743   const TypeSetByHwMode &Legal = getLegalTypes();
744   assert(Legal.isDefaultOnly() && "Default-mode only expected");
745   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746 
747   for (auto &I : VTS)
748     expandOverloads(I.second, LegalTypes);
749 }
750 
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752                                 const TypeSetByHwMode::SetType &Legal) {
753   std::set<MVT> Ovs;
754   for (MVT T : Out) {
755     if (!T.isOverloaded())
756       continue;
757 
758     Ovs.insert(T);
759     // MachineValueTypeSet allows iteration and erasing.
760     Out.erase(T);
761   }
762 
763   for (MVT Ov : Ovs) {
764     switch (Ov.SimpleTy) {
765       case MVT::iPTRAny:
766         Out.insert(MVT::iPTR);
767         return;
768       case MVT::iAny:
769         for (MVT T : MVT::integer_valuetypes())
770           if (Legal.count(T))
771             Out.insert(T);
772         for (MVT T : MVT::integer_vector_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         return;
776       case MVT::fAny:
777         for (MVT T : MVT::fp_valuetypes())
778           if (Legal.count(T))
779             Out.insert(T);
780         for (MVT T : MVT::fp_vector_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         return;
784       case MVT::vAny:
785         for (MVT T : MVT::vector_valuetypes())
786           if (Legal.count(T))
787             Out.insert(T);
788         return;
789       case MVT::Any:
790         for (MVT T : MVT::all_valuetypes())
791           if (Legal.count(T))
792             Out.insert(T);
793         return;
794       default:
795         break;
796     }
797   }
798 }
799 
800 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
801   if (!LegalTypesCached) {
802     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
803     // Stuff all types from all modes into the default mode.
804     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
805     for (const auto &I : LTS)
806       LegalTypes.insert(I.second);
807     LegalTypesCached = true;
808   }
809   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
810   return LegalCache;
811 }
812 
813 #ifndef NDEBUG
814 TypeInfer::ValidateOnExit::~ValidateOnExit() {
815   if (Infer.Validate && !VTS.validate()) {
816     dbgs() << "Type set is empty for each HW mode:\n"
817               "possible type contradiction in the pattern below "
818               "(use -print-records with llvm-tblgen to see all "
819               "expanded records).\n";
820     Infer.TP.dump();
821     llvm_unreachable(nullptr);
822   }
823 }
824 #endif
825 
826 
827 //===----------------------------------------------------------------------===//
828 // ScopedName Implementation
829 //===----------------------------------------------------------------------===//
830 
831 bool ScopedName::operator==(const ScopedName &o) const {
832   return Scope == o.Scope && Identifier == o.Identifier;
833 }
834 
835 bool ScopedName::operator!=(const ScopedName &o) const {
836   return !(*this == o);
837 }
838 
839 
840 //===----------------------------------------------------------------------===//
841 // TreePredicateFn Implementation
842 //===----------------------------------------------------------------------===//
843 
844 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
845 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
846   assert(
847       (!hasPredCode() || !hasImmCode()) &&
848       ".td file corrupt: can't have a node predicate *and* an imm predicate");
849 }
850 
851 bool TreePredicateFn::hasPredCode() const {
852   return isLoad() || isStore() || isAtomic() ||
853          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
854 }
855 
856 std::string TreePredicateFn::getPredCode() const {
857   std::string Code = "";
858 
859   if (!isLoad() && !isStore() && !isAtomic()) {
860     Record *MemoryVT = getMemoryVT();
861 
862     if (MemoryVT)
863       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864                       "MemoryVT requires IsLoad or IsStore");
865   }
866 
867   if (!isLoad() && !isStore()) {
868     if (isUnindexed())
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "IsUnindexed requires IsLoad or IsStore");
871 
872     Record *ScalarMemoryVT = getScalarMemoryVT();
873 
874     if (ScalarMemoryVT)
875       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876                       "ScalarMemoryVT requires IsLoad or IsStore");
877   }
878 
879   if (isLoad() + isStore() + isAtomic() > 1)
880     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
882 
883   if (isLoad()) {
884     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
885         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
886         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
887         getMinAlignment() < 1)
888       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
889                       "IsLoad cannot be used by itself");
890   } else {
891     if (isNonExtLoad())
892       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
893                       "IsNonExtLoad requires IsLoad");
894     if (isAnyExtLoad())
895       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
896                       "IsAnyExtLoad requires IsLoad");
897     if (isSignExtLoad())
898       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
899                       "IsSignExtLoad requires IsLoad");
900     if (isZeroExtLoad())
901       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
902                       "IsZeroExtLoad requires IsLoad");
903   }
904 
905   if (isStore()) {
906     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
907         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
908         getAddressSpaces() == nullptr && getMinAlignment() < 1)
909       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
910                       "IsStore cannot be used by itself");
911   } else {
912     if (isNonTruncStore())
913       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
914                       "IsNonTruncStore requires IsStore");
915     if (isTruncStore())
916       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
917                       "IsTruncStore requires IsStore");
918   }
919 
920   if (isAtomic()) {
921     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
922         getAddressSpaces() == nullptr &&
923         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
924         !isAtomicOrderingAcquireRelease() &&
925         !isAtomicOrderingSequentiallyConsistent() &&
926         !isAtomicOrderingAcquireOrStronger() &&
927         !isAtomicOrderingReleaseOrStronger() &&
928         !isAtomicOrderingWeakerThanAcquire() &&
929         !isAtomicOrderingWeakerThanRelease())
930       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
931                       "IsAtomic cannot be used by itself");
932   } else {
933     if (isAtomicOrderingMonotonic())
934       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935                       "IsAtomicOrderingMonotonic requires IsAtomic");
936     if (isAtomicOrderingAcquire())
937       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938                       "IsAtomicOrderingAcquire requires IsAtomic");
939     if (isAtomicOrderingRelease())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsAtomicOrderingRelease requires IsAtomic");
942     if (isAtomicOrderingAcquireRelease())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
945     if (isAtomicOrderingSequentiallyConsistent())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
948     if (isAtomicOrderingAcquireOrStronger())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
951     if (isAtomicOrderingReleaseOrStronger())
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
954     if (isAtomicOrderingWeakerThanAcquire())
955       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
957   }
958 
959   if (isLoad() || isStore() || isAtomic()) {
960     if (ListInit *AddressSpaces = getAddressSpaces()) {
961       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
962         " if (";
963 
964       bool First = true;
965       for (Init *Val : AddressSpaces->getValues()) {
966         if (First)
967           First = false;
968         else
969           Code += " && ";
970 
971         IntInit *IntVal = dyn_cast<IntInit>(Val);
972         if (!IntVal) {
973           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
974                           "AddressSpaces element must be integer");
975         }
976 
977         Code += "AddrSpace != " + utostr(IntVal->getValue());
978       }
979 
980       Code += ")\nreturn false;\n";
981     }
982 
983     int64_t MinAlign = getMinAlignment();
984     if (MinAlign > 0) {
985       Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
986       Code += utostr(MinAlign);
987       Code += ")\nreturn false;\n";
988     }
989 
990     Record *MemoryVT = getMemoryVT();
991 
992     if (MemoryVT)
993       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
994                MemoryVT->getName() + ") return false;\n")
995                   .str();
996   }
997 
998   if (isAtomic() && isAtomicOrderingMonotonic())
999     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1000             "AtomicOrdering::Monotonic) return false;\n";
1001   if (isAtomic() && isAtomicOrderingAcquire())
1002     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1003             "AtomicOrdering::Acquire) return false;\n";
1004   if (isAtomic() && isAtomicOrderingRelease())
1005     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1006             "AtomicOrdering::Release) return false;\n";
1007   if (isAtomic() && isAtomicOrderingAcquireRelease())
1008     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1009             "AtomicOrdering::AcquireRelease) return false;\n";
1010   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1011     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1012             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1013 
1014   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1015     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1016             "return false;\n";
1017   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1018     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1019             "return false;\n";
1020 
1021   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1022     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1023             "return false;\n";
1024   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1025     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1026             "return false;\n";
1027 
1028   if (isLoad() || isStore()) {
1029     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1030 
1031     if (isUnindexed())
1032       Code += ("if (cast<" + SDNodeName +
1033                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1034                "return false;\n")
1035                   .str();
1036 
1037     if (isLoad()) {
1038       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1039            isZeroExtLoad()) > 1)
1040         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1041                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1042                         "IsZeroExtLoad are mutually exclusive");
1043       if (isNonExtLoad())
1044         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1045                 "ISD::NON_EXTLOAD) return false;\n";
1046       if (isAnyExtLoad())
1047         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1048                 "return false;\n";
1049       if (isSignExtLoad())
1050         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1051                 "return false;\n";
1052       if (isZeroExtLoad())
1053         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1054                 "return false;\n";
1055     } else {
1056       if ((isNonTruncStore() + isTruncStore()) > 1)
1057         PrintFatalError(
1058             getOrigPatFragRecord()->getRecord()->getLoc(),
1059             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1060       if (isNonTruncStore())
1061         Code +=
1062             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1063       if (isTruncStore())
1064         Code +=
1065             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1066     }
1067 
1068     Record *ScalarMemoryVT = getScalarMemoryVT();
1069 
1070     if (ScalarMemoryVT)
1071       Code += ("if (cast<" + SDNodeName +
1072                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1073                ScalarMemoryVT->getName() + ") return false;\n")
1074                   .str();
1075   }
1076 
1077   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1078 
1079   Code += PredicateCode;
1080 
1081   if (PredicateCode.empty() && !Code.empty())
1082     Code += "return true;\n";
1083 
1084   return Code;
1085 }
1086 
1087 bool TreePredicateFn::hasImmCode() const {
1088   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1089 }
1090 
1091 std::string TreePredicateFn::getImmCode() const {
1092   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1093 }
1094 
1095 bool TreePredicateFn::immCodeUsesAPInt() const {
1096   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1097 }
1098 
1099 bool TreePredicateFn::immCodeUsesAPFloat() const {
1100   bool Unset;
1101   // The return value will be false when IsAPFloat is unset.
1102   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1103                                                                    Unset);
1104 }
1105 
1106 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1107                                                    bool Value) const {
1108   bool Unset;
1109   bool Result =
1110       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1111   if (Unset)
1112     return false;
1113   return Result == Value;
1114 }
1115 bool TreePredicateFn::usesOperands() const {
1116   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1117 }
1118 bool TreePredicateFn::isLoad() const {
1119   return isPredefinedPredicateEqualTo("IsLoad", true);
1120 }
1121 bool TreePredicateFn::isStore() const {
1122   return isPredefinedPredicateEqualTo("IsStore", true);
1123 }
1124 bool TreePredicateFn::isAtomic() const {
1125   return isPredefinedPredicateEqualTo("IsAtomic", true);
1126 }
1127 bool TreePredicateFn::isUnindexed() const {
1128   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1129 }
1130 bool TreePredicateFn::isNonExtLoad() const {
1131   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1132 }
1133 bool TreePredicateFn::isAnyExtLoad() const {
1134   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1135 }
1136 bool TreePredicateFn::isSignExtLoad() const {
1137   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1138 }
1139 bool TreePredicateFn::isZeroExtLoad() const {
1140   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1141 }
1142 bool TreePredicateFn::isNonTruncStore() const {
1143   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1144 }
1145 bool TreePredicateFn::isTruncStore() const {
1146   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1147 }
1148 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1149   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1150 }
1151 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1152   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1153 }
1154 bool TreePredicateFn::isAtomicOrderingRelease() const {
1155   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1156 }
1157 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1158   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1159 }
1160 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1161   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1162                                       true);
1163 }
1164 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1165   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1166 }
1167 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1168   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1169 }
1170 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1171   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1172 }
1173 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1174   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1175 }
1176 Record *TreePredicateFn::getMemoryVT() const {
1177   Record *R = getOrigPatFragRecord()->getRecord();
1178   if (R->isValueUnset("MemoryVT"))
1179     return nullptr;
1180   return R->getValueAsDef("MemoryVT");
1181 }
1182 
1183 ListInit *TreePredicateFn::getAddressSpaces() const {
1184   Record *R = getOrigPatFragRecord()->getRecord();
1185   if (R->isValueUnset("AddressSpaces"))
1186     return nullptr;
1187   return R->getValueAsListInit("AddressSpaces");
1188 }
1189 
1190 int64_t TreePredicateFn::getMinAlignment() const {
1191   Record *R = getOrigPatFragRecord()->getRecord();
1192   if (R->isValueUnset("MinAlignment"))
1193     return 0;
1194   return R->getValueAsInt("MinAlignment");
1195 }
1196 
1197 Record *TreePredicateFn::getScalarMemoryVT() const {
1198   Record *R = getOrigPatFragRecord()->getRecord();
1199   if (R->isValueUnset("ScalarMemoryVT"))
1200     return nullptr;
1201   return R->getValueAsDef("ScalarMemoryVT");
1202 }
1203 bool TreePredicateFn::hasGISelPredicateCode() const {
1204   return !PatFragRec->getRecord()
1205               ->getValueAsString("GISelPredicateCode")
1206               .empty();
1207 }
1208 std::string TreePredicateFn::getGISelPredicateCode() const {
1209   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1210 }
1211 
1212 StringRef TreePredicateFn::getImmType() const {
1213   if (immCodeUsesAPInt())
1214     return "const APInt &";
1215   if (immCodeUsesAPFloat())
1216     return "const APFloat &";
1217   return "int64_t";
1218 }
1219 
1220 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1221   if (immCodeUsesAPInt())
1222     return "APInt";
1223   else if (immCodeUsesAPFloat())
1224     return "APFloat";
1225   return "I64";
1226 }
1227 
1228 /// isAlwaysTrue - Return true if this is a noop predicate.
1229 bool TreePredicateFn::isAlwaysTrue() const {
1230   return !hasPredCode() && !hasImmCode();
1231 }
1232 
1233 /// Return the name to use in the generated code to reference this, this is
1234 /// "Predicate_foo" if from a pattern fragment "foo".
1235 std::string TreePredicateFn::getFnName() const {
1236   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1237 }
1238 
1239 /// getCodeToRunOnSDNode - Return the code for the function body that
1240 /// evaluates this predicate.  The argument is expected to be in "Node",
1241 /// not N.  This handles casting and conversion to a concrete node type as
1242 /// appropriate.
1243 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1244   // Handle immediate predicates first.
1245   std::string ImmCode = getImmCode();
1246   if (!ImmCode.empty()) {
1247     if (isLoad())
1248       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1249                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1250     if (isStore())
1251       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1252                       "IsStore cannot be used with ImmLeaf or its subclasses");
1253     if (isUnindexed())
1254       PrintFatalError(
1255           getOrigPatFragRecord()->getRecord()->getLoc(),
1256           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1257     if (isNonExtLoad())
1258       PrintFatalError(
1259           getOrigPatFragRecord()->getRecord()->getLoc(),
1260           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1261     if (isAnyExtLoad())
1262       PrintFatalError(
1263           getOrigPatFragRecord()->getRecord()->getLoc(),
1264           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1265     if (isSignExtLoad())
1266       PrintFatalError(
1267           getOrigPatFragRecord()->getRecord()->getLoc(),
1268           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1269     if (isZeroExtLoad())
1270       PrintFatalError(
1271           getOrigPatFragRecord()->getRecord()->getLoc(),
1272           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1273     if (isNonTruncStore())
1274       PrintFatalError(
1275           getOrigPatFragRecord()->getRecord()->getLoc(),
1276           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1277     if (isTruncStore())
1278       PrintFatalError(
1279           getOrigPatFragRecord()->getRecord()->getLoc(),
1280           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1281     if (getMemoryVT())
1282       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1283                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1284     if (getScalarMemoryVT())
1285       PrintFatalError(
1286           getOrigPatFragRecord()->getRecord()->getLoc(),
1287           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1288 
1289     std::string Result = ("    " + getImmType() + " Imm = ").str();
1290     if (immCodeUsesAPFloat())
1291       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1292     else if (immCodeUsesAPInt())
1293       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1294     else
1295       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1296     return Result + ImmCode;
1297   }
1298 
1299   // Handle arbitrary node predicates.
1300   assert(hasPredCode() && "Don't have any predicate code!");
1301   StringRef ClassName;
1302   if (PatFragRec->getOnlyTree()->isLeaf())
1303     ClassName = "SDNode";
1304   else {
1305     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1306     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1307   }
1308   std::string Result;
1309   if (ClassName == "SDNode")
1310     Result = "    SDNode *N = Node;\n";
1311   else
1312     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1313 
1314   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 // PatternToMatch implementation
1319 //
1320 
1321 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1322   if (!P->isLeaf())
1323     return false;
1324   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1325   if (!DI)
1326     return false;
1327 
1328   Record *R = DI->getDef();
1329   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1330 }
1331 
1332 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1333 /// patterns before small ones.  This is used to determine the size of a
1334 /// pattern.
1335 static unsigned getPatternSize(const TreePatternNode *P,
1336                                const CodeGenDAGPatterns &CGP) {
1337   unsigned Size = 3;  // The node itself.
1338   // If the root node is a ConstantSDNode, increases its size.
1339   // e.g. (set R32:$dst, 0).
1340   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1341     Size += 2;
1342 
1343   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1344     Size += AM->getComplexity();
1345     // We don't want to count any children twice, so return early.
1346     return Size;
1347   }
1348 
1349   // If this node has some predicate function that must match, it adds to the
1350   // complexity of this node.
1351   if (!P->getPredicateCalls().empty())
1352     ++Size;
1353 
1354   // Count children in the count if they are also nodes.
1355   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1356     const TreePatternNode *Child = P->getChild(i);
1357     if (!Child->isLeaf() && Child->getNumTypes()) {
1358       const TypeSetByHwMode &T0 = Child->getExtType(0);
1359       // At this point, all variable type sets should be simple, i.e. only
1360       // have a default mode.
1361       if (T0.getMachineValueType() != MVT::Other) {
1362         Size += getPatternSize(Child, CGP);
1363         continue;
1364       }
1365     }
1366     if (Child->isLeaf()) {
1367       if (isa<IntInit>(Child->getLeafValue()))
1368         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1369       else if (Child->getComplexPatternInfo(CGP))
1370         Size += getPatternSize(Child, CGP);
1371       else if (isImmAllOnesAllZerosMatch(Child))
1372         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1373       else if (!Child->getPredicateCalls().empty())
1374         ++Size;
1375     }
1376   }
1377 
1378   return Size;
1379 }
1380 
1381 /// Compute the complexity metric for the input pattern.  This roughly
1382 /// corresponds to the number of nodes that are covered.
1383 int PatternToMatch::
1384 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1385   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1386 }
1387 
1388 /// getPredicateCheck - Return a single string containing all of this
1389 /// pattern's predicates concatenated with "&&" operators.
1390 ///
1391 std::string PatternToMatch::getPredicateCheck() const {
1392   SmallVector<const Predicate*,4> PredList;
1393   for (const Predicate &P : Predicates) {
1394     if (!P.getCondString().empty())
1395       PredList.push_back(&P);
1396   }
1397   llvm::sort(PredList, deref<std::less<>>());
1398 
1399   std::string Check;
1400   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1401     if (i != 0)
1402       Check += " && ";
1403     Check += '(' + PredList[i]->getCondString() + ')';
1404   }
1405   return Check;
1406 }
1407 
1408 //===----------------------------------------------------------------------===//
1409 // SDTypeConstraint implementation
1410 //
1411 
1412 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1413   OperandNo = R->getValueAsInt("OperandNum");
1414 
1415   if (R->isSubClassOf("SDTCisVT")) {
1416     ConstraintType = SDTCisVT;
1417     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1418     for (const auto &P : VVT)
1419       if (P.second == MVT::isVoid)
1420         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1421   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1422     ConstraintType = SDTCisPtrTy;
1423   } else if (R->isSubClassOf("SDTCisInt")) {
1424     ConstraintType = SDTCisInt;
1425   } else if (R->isSubClassOf("SDTCisFP")) {
1426     ConstraintType = SDTCisFP;
1427   } else if (R->isSubClassOf("SDTCisVec")) {
1428     ConstraintType = SDTCisVec;
1429   } else if (R->isSubClassOf("SDTCisSameAs")) {
1430     ConstraintType = SDTCisSameAs;
1431     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1432   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1433     ConstraintType = SDTCisVTSmallerThanOp;
1434     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1435       R->getValueAsInt("OtherOperandNum");
1436   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1437     ConstraintType = SDTCisOpSmallerThanOp;
1438     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1439       R->getValueAsInt("BigOperandNum");
1440   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1441     ConstraintType = SDTCisEltOfVec;
1442     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1443   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1444     ConstraintType = SDTCisSubVecOfVec;
1445     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1446       R->getValueAsInt("OtherOpNum");
1447   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1448     ConstraintType = SDTCVecEltisVT;
1449     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1450     for (const auto &P : VVT) {
1451       MVT T = P.second;
1452       if (T.isVector())
1453         PrintFatalError(R->getLoc(),
1454                         "Cannot use vector type as SDTCVecEltisVT");
1455       if (!T.isInteger() && !T.isFloatingPoint())
1456         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1457                                      "as SDTCVecEltisVT");
1458     }
1459   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1460     ConstraintType = SDTCisSameNumEltsAs;
1461     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1462       R->getValueAsInt("OtherOperandNum");
1463   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1464     ConstraintType = SDTCisSameSizeAs;
1465     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1466       R->getValueAsInt("OtherOperandNum");
1467   } else {
1468     PrintFatalError(R->getLoc(),
1469                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1470   }
1471 }
1472 
1473 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1474 /// N, and the result number in ResNo.
1475 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1476                                       const SDNodeInfo &NodeInfo,
1477                                       unsigned &ResNo) {
1478   unsigned NumResults = NodeInfo.getNumResults();
1479   if (OpNo < NumResults) {
1480     ResNo = OpNo;
1481     return N;
1482   }
1483 
1484   OpNo -= NumResults;
1485 
1486   if (OpNo >= N->getNumChildren()) {
1487     std::string S;
1488     raw_string_ostream OS(S);
1489     OS << "Invalid operand number in type constraint "
1490            << (OpNo+NumResults) << " ";
1491     N->print(OS);
1492     PrintFatalError(OS.str());
1493   }
1494 
1495   return N->getChild(OpNo);
1496 }
1497 
1498 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1499 /// constraint to the nodes operands.  This returns true if it makes a
1500 /// change, false otherwise.  If a type contradiction is found, flag an error.
1501 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1502                                            const SDNodeInfo &NodeInfo,
1503                                            TreePattern &TP) const {
1504   if (TP.hasError())
1505     return false;
1506 
1507   unsigned ResNo = 0; // The result number being referenced.
1508   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1509   TypeInfer &TI = TP.getInfer();
1510 
1511   switch (ConstraintType) {
1512   case SDTCisVT:
1513     // Operand must be a particular type.
1514     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1515   case SDTCisPtrTy:
1516     // Operand must be same as target pointer type.
1517     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1518   case SDTCisInt:
1519     // Require it to be one of the legal integer VTs.
1520      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1521   case SDTCisFP:
1522     // Require it to be one of the legal fp VTs.
1523     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1524   case SDTCisVec:
1525     // Require it to be one of the legal vector VTs.
1526     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1527   case SDTCisSameAs: {
1528     unsigned OResNo = 0;
1529     TreePatternNode *OtherNode =
1530       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1531     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1532            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1533   }
1534   case SDTCisVTSmallerThanOp: {
1535     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1536     // have an integer type that is smaller than the VT.
1537     if (!NodeToApply->isLeaf() ||
1538         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1539         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1540                ->isSubClassOf("ValueType")) {
1541       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1542       return false;
1543     }
1544     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1545     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1546     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1547     TypeSetByHwMode TypeListTmp(VVT);
1548 
1549     unsigned OResNo = 0;
1550     TreePatternNode *OtherNode =
1551       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1552                     OResNo);
1553 
1554     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1555   }
1556   case SDTCisOpSmallerThanOp: {
1557     unsigned BResNo = 0;
1558     TreePatternNode *BigOperand =
1559       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1560                     BResNo);
1561     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1562                                  BigOperand->getExtType(BResNo));
1563   }
1564   case SDTCisEltOfVec: {
1565     unsigned VResNo = 0;
1566     TreePatternNode *VecOperand =
1567       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1568                     VResNo);
1569     // Filter vector types out of VecOperand that don't have the right element
1570     // type.
1571     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1572                                      NodeToApply->getExtType(ResNo));
1573   }
1574   case SDTCisSubVecOfVec: {
1575     unsigned VResNo = 0;
1576     TreePatternNode *BigVecOperand =
1577       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1578                     VResNo);
1579 
1580     // Filter vector types out of BigVecOperand that don't have the
1581     // right subvector type.
1582     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1583                                            NodeToApply->getExtType(ResNo));
1584   }
1585   case SDTCVecEltisVT: {
1586     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1587   }
1588   case SDTCisSameNumEltsAs: {
1589     unsigned OResNo = 0;
1590     TreePatternNode *OtherNode =
1591       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1592                     N, NodeInfo, OResNo);
1593     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1594                                  NodeToApply->getExtType(ResNo));
1595   }
1596   case SDTCisSameSizeAs: {
1597     unsigned OResNo = 0;
1598     TreePatternNode *OtherNode =
1599       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1600                     N, NodeInfo, OResNo);
1601     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1602                               NodeToApply->getExtType(ResNo));
1603   }
1604   }
1605   llvm_unreachable("Invalid ConstraintType!");
1606 }
1607 
1608 // Update the node type to match an instruction operand or result as specified
1609 // in the ins or outs lists on the instruction definition. Return true if the
1610 // type was actually changed.
1611 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1612                                              Record *Operand,
1613                                              TreePattern &TP) {
1614   // The 'unknown' operand indicates that types should be inferred from the
1615   // context.
1616   if (Operand->isSubClassOf("unknown_class"))
1617     return false;
1618 
1619   // The Operand class specifies a type directly.
1620   if (Operand->isSubClassOf("Operand")) {
1621     Record *R = Operand->getValueAsDef("Type");
1622     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1623     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1624   }
1625 
1626   // PointerLikeRegClass has a type that is determined at runtime.
1627   if (Operand->isSubClassOf("PointerLikeRegClass"))
1628     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1629 
1630   // Both RegisterClass and RegisterOperand operands derive their types from a
1631   // register class def.
1632   Record *RC = nullptr;
1633   if (Operand->isSubClassOf("RegisterClass"))
1634     RC = Operand;
1635   else if (Operand->isSubClassOf("RegisterOperand"))
1636     RC = Operand->getValueAsDef("RegClass");
1637 
1638   assert(RC && "Unknown operand type");
1639   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1640   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1641 }
1642 
1643 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1644   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1645     if (!TP.getInfer().isConcrete(Types[i], true))
1646       return true;
1647   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1648     if (getChild(i)->ContainsUnresolvedType(TP))
1649       return true;
1650   return false;
1651 }
1652 
1653 bool TreePatternNode::hasProperTypeByHwMode() const {
1654   for (const TypeSetByHwMode &S : Types)
1655     if (!S.isDefaultOnly())
1656       return true;
1657   for (const TreePatternNodePtr &C : Children)
1658     if (C->hasProperTypeByHwMode())
1659       return true;
1660   return false;
1661 }
1662 
1663 bool TreePatternNode::hasPossibleType() const {
1664   for (const TypeSetByHwMode &S : Types)
1665     if (!S.isPossible())
1666       return false;
1667   for (const TreePatternNodePtr &C : Children)
1668     if (!C->hasPossibleType())
1669       return false;
1670   return true;
1671 }
1672 
1673 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1674   for (TypeSetByHwMode &S : Types) {
1675     S.makeSimple(Mode);
1676     // Check if the selected mode had a type conflict.
1677     if (S.get(DefaultMode).empty())
1678       return false;
1679   }
1680   for (const TreePatternNodePtr &C : Children)
1681     if (!C->setDefaultMode(Mode))
1682       return false;
1683   return true;
1684 }
1685 
1686 //===----------------------------------------------------------------------===//
1687 // SDNodeInfo implementation
1688 //
1689 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1690   EnumName    = R->getValueAsString("Opcode");
1691   SDClassName = R->getValueAsString("SDClass");
1692   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1693   NumResults = TypeProfile->getValueAsInt("NumResults");
1694   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1695 
1696   // Parse the properties.
1697   Properties = parseSDPatternOperatorProperties(R);
1698 
1699   // Parse the type constraints.
1700   std::vector<Record*> ConstraintList =
1701     TypeProfile->getValueAsListOfDefs("Constraints");
1702   for (Record *R : ConstraintList)
1703     TypeConstraints.emplace_back(R, CGH);
1704 }
1705 
1706 /// getKnownType - If the type constraints on this node imply a fixed type
1707 /// (e.g. all stores return void, etc), then return it as an
1708 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1709 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1710   unsigned NumResults = getNumResults();
1711   assert(NumResults <= 1 &&
1712          "We only work with nodes with zero or one result so far!");
1713   assert(ResNo == 0 && "Only handles single result nodes so far");
1714 
1715   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1716     // Make sure that this applies to the correct node result.
1717     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1718       continue;
1719 
1720     switch (Constraint.ConstraintType) {
1721     default: break;
1722     case SDTypeConstraint::SDTCisVT:
1723       if (Constraint.VVT.isSimple())
1724         return Constraint.VVT.getSimple().SimpleTy;
1725       break;
1726     case SDTypeConstraint::SDTCisPtrTy:
1727       return MVT::iPTR;
1728     }
1729   }
1730   return MVT::Other;
1731 }
1732 
1733 //===----------------------------------------------------------------------===//
1734 // TreePatternNode implementation
1735 //
1736 
1737 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1738   if (Operator->getName() == "set" ||
1739       Operator->getName() == "implicit")
1740     return 0;  // All return nothing.
1741 
1742   if (Operator->isSubClassOf("Intrinsic"))
1743     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1744 
1745   if (Operator->isSubClassOf("SDNode"))
1746     return CDP.getSDNodeInfo(Operator).getNumResults();
1747 
1748   if (Operator->isSubClassOf("PatFrags")) {
1749     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1750     // the forward reference case where one pattern fragment references another
1751     // before it is processed.
1752     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1753       // The number of results of a fragment with alternative records is the
1754       // maximum number of results across all alternatives.
1755       unsigned NumResults = 0;
1756       for (auto T : PFRec->getTrees())
1757         NumResults = std::max(NumResults, T->getNumTypes());
1758       return NumResults;
1759     }
1760 
1761     ListInit *LI = Operator->getValueAsListInit("Fragments");
1762     assert(LI && "Invalid Fragment");
1763     unsigned NumResults = 0;
1764     for (Init *I : LI->getValues()) {
1765       Record *Op = nullptr;
1766       if (DagInit *Dag = dyn_cast<DagInit>(I))
1767         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1768           Op = DI->getDef();
1769       assert(Op && "Invalid Fragment");
1770       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1771     }
1772     return NumResults;
1773   }
1774 
1775   if (Operator->isSubClassOf("Instruction")) {
1776     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1777 
1778     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1779 
1780     // Subtract any defaulted outputs.
1781     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1782       Record *OperandNode = InstInfo.Operands[i].Rec;
1783 
1784       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1785           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1786         --NumDefsToAdd;
1787     }
1788 
1789     // Add on one implicit def if it has a resolvable type.
1790     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1791       ++NumDefsToAdd;
1792     return NumDefsToAdd;
1793   }
1794 
1795   if (Operator->isSubClassOf("SDNodeXForm"))
1796     return 1;  // FIXME: Generalize SDNodeXForm
1797 
1798   if (Operator->isSubClassOf("ValueType"))
1799     return 1;  // A type-cast of one result.
1800 
1801   if (Operator->isSubClassOf("ComplexPattern"))
1802     return 1;
1803 
1804   errs() << *Operator;
1805   PrintFatalError("Unhandled node in GetNumNodeResults");
1806 }
1807 
1808 void TreePatternNode::print(raw_ostream &OS) const {
1809   if (isLeaf())
1810     OS << *getLeafValue();
1811   else
1812     OS << '(' << getOperator()->getName();
1813 
1814   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1815     OS << ':';
1816     getExtType(i).writeToStream(OS);
1817   }
1818 
1819   if (!isLeaf()) {
1820     if (getNumChildren() != 0) {
1821       OS << " ";
1822       getChild(0)->print(OS);
1823       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1824         OS << ", ";
1825         getChild(i)->print(OS);
1826       }
1827     }
1828     OS << ")";
1829   }
1830 
1831   for (const TreePredicateCall &Pred : PredicateCalls) {
1832     OS << "<<P:";
1833     if (Pred.Scope)
1834       OS << Pred.Scope << ":";
1835     OS << Pred.Fn.getFnName() << ">>";
1836   }
1837   if (TransformFn)
1838     OS << "<<X:" << TransformFn->getName() << ">>";
1839   if (!getName().empty())
1840     OS << ":$" << getName();
1841 
1842   for (const ScopedName &Name : NamesAsPredicateArg)
1843     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1844 }
1845 void TreePatternNode::dump() const {
1846   print(errs());
1847 }
1848 
1849 /// isIsomorphicTo - Return true if this node is recursively
1850 /// isomorphic to the specified node.  For this comparison, the node's
1851 /// entire state is considered. The assigned name is ignored, since
1852 /// nodes with differing names are considered isomorphic. However, if
1853 /// the assigned name is present in the dependent variable set, then
1854 /// the assigned name is considered significant and the node is
1855 /// isomorphic if the names match.
1856 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1857                                      const MultipleUseVarSet &DepVars) const {
1858   if (N == this) return true;
1859   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1860       getPredicateCalls() != N->getPredicateCalls() ||
1861       getTransformFn() != N->getTransformFn())
1862     return false;
1863 
1864   if (isLeaf()) {
1865     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1866       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1867         return ((DI->getDef() == NDI->getDef())
1868                 && (DepVars.find(getName()) == DepVars.end()
1869                     || getName() == N->getName()));
1870       }
1871     }
1872     return getLeafValue() == N->getLeafValue();
1873   }
1874 
1875   if (N->getOperator() != getOperator() ||
1876       N->getNumChildren() != getNumChildren()) return false;
1877   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1878     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1879       return false;
1880   return true;
1881 }
1882 
1883 /// clone - Make a copy of this tree and all of its children.
1884 ///
1885 TreePatternNodePtr TreePatternNode::clone() const {
1886   TreePatternNodePtr New;
1887   if (isLeaf()) {
1888     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1889   } else {
1890     std::vector<TreePatternNodePtr> CChildren;
1891     CChildren.reserve(Children.size());
1892     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1893       CChildren.push_back(getChild(i)->clone());
1894     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1895                                             getNumTypes());
1896   }
1897   New->setName(getName());
1898   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1899   New->Types = Types;
1900   New->setPredicateCalls(getPredicateCalls());
1901   New->setTransformFn(getTransformFn());
1902   return New;
1903 }
1904 
1905 /// RemoveAllTypes - Recursively strip all the types of this tree.
1906 void TreePatternNode::RemoveAllTypes() {
1907   // Reset to unknown type.
1908   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1909   if (isLeaf()) return;
1910   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1911     getChild(i)->RemoveAllTypes();
1912 }
1913 
1914 
1915 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1916 /// with actual values specified by ArgMap.
1917 void TreePatternNode::SubstituteFormalArguments(
1918     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1919   if (isLeaf()) return;
1920 
1921   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1922     TreePatternNode *Child = getChild(i);
1923     if (Child->isLeaf()) {
1924       Init *Val = Child->getLeafValue();
1925       // Note that, when substituting into an output pattern, Val might be an
1926       // UnsetInit.
1927       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1928           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1929         // We found a use of a formal argument, replace it with its value.
1930         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1931         assert(NewChild && "Couldn't find formal argument!");
1932         assert((Child->getPredicateCalls().empty() ||
1933                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1934                "Non-empty child predicate clobbered!");
1935         setChild(i, std::move(NewChild));
1936       }
1937     } else {
1938       getChild(i)->SubstituteFormalArguments(ArgMap);
1939     }
1940   }
1941 }
1942 
1943 
1944 /// InlinePatternFragments - If this pattern refers to any pattern
1945 /// fragments, return the set of inlined versions (this can be more than
1946 /// one if a PatFrags record has multiple alternatives).
1947 void TreePatternNode::InlinePatternFragments(
1948   TreePatternNodePtr T, TreePattern &TP,
1949   std::vector<TreePatternNodePtr> &OutAlternatives) {
1950 
1951   if (TP.hasError())
1952     return;
1953 
1954   if (isLeaf()) {
1955     OutAlternatives.push_back(T);  // nothing to do.
1956     return;
1957   }
1958 
1959   Record *Op = getOperator();
1960 
1961   if (!Op->isSubClassOf("PatFrags")) {
1962     if (getNumChildren() == 0) {
1963       OutAlternatives.push_back(T);
1964       return;
1965     }
1966 
1967     // Recursively inline children nodes.
1968     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1969     ChildAlternatives.resize(getNumChildren());
1970     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1971       TreePatternNodePtr Child = getChildShared(i);
1972       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1973       // If there are no alternatives for any child, there are no
1974       // alternatives for this expression as whole.
1975       if (ChildAlternatives[i].empty())
1976         return;
1977 
1978       for (auto NewChild : ChildAlternatives[i])
1979         assert((Child->getPredicateCalls().empty() ||
1980                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1981                "Non-empty child predicate clobbered!");
1982     }
1983 
1984     // The end result is an all-pairs construction of the resultant pattern.
1985     std::vector<unsigned> Idxs;
1986     Idxs.resize(ChildAlternatives.size());
1987     bool NotDone;
1988     do {
1989       // Create the variant and add it to the output list.
1990       std::vector<TreePatternNodePtr> NewChildren;
1991       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1992         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1993       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1994           getOperator(), std::move(NewChildren), getNumTypes());
1995 
1996       // Copy over properties.
1997       R->setName(getName());
1998       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1999       R->setPredicateCalls(getPredicateCalls());
2000       R->setTransformFn(getTransformFn());
2001       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2002         R->setType(i, getExtType(i));
2003       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2004         R->setResultIndex(i, getResultIndex(i));
2005 
2006       // Register alternative.
2007       OutAlternatives.push_back(R);
2008 
2009       // Increment indices to the next permutation by incrementing the
2010       // indices from last index backward, e.g., generate the sequence
2011       // [0, 0], [0, 1], [1, 0], [1, 1].
2012       int IdxsIdx;
2013       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2014         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2015           Idxs[IdxsIdx] = 0;
2016         else
2017           break;
2018       }
2019       NotDone = (IdxsIdx >= 0);
2020     } while (NotDone);
2021 
2022     return;
2023   }
2024 
2025   // Otherwise, we found a reference to a fragment.  First, look up its
2026   // TreePattern record.
2027   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2028 
2029   // Verify that we are passing the right number of operands.
2030   if (Frag->getNumArgs() != Children.size()) {
2031     TP.error("'" + Op->getName() + "' fragment requires " +
2032              Twine(Frag->getNumArgs()) + " operands!");
2033     return;
2034   }
2035 
2036   TreePredicateFn PredFn(Frag);
2037   unsigned Scope = 0;
2038   if (TreePredicateFn(Frag).usesOperands())
2039     Scope = TP.getDAGPatterns().allocateScope();
2040 
2041   // Compute the map of formal to actual arguments.
2042   std::map<std::string, TreePatternNodePtr> ArgMap;
2043   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2044     TreePatternNodePtr Child = getChildShared(i);
2045     if (Scope != 0) {
2046       Child = Child->clone();
2047       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2048     }
2049     ArgMap[Frag->getArgName(i)] = Child;
2050   }
2051 
2052   // Loop over all fragment alternatives.
2053   for (auto Alternative : Frag->getTrees()) {
2054     TreePatternNodePtr FragTree = Alternative->clone();
2055 
2056     if (!PredFn.isAlwaysTrue())
2057       FragTree->addPredicateCall(PredFn, Scope);
2058 
2059     // Resolve formal arguments to their actual value.
2060     if (Frag->getNumArgs())
2061       FragTree->SubstituteFormalArguments(ArgMap);
2062 
2063     // Transfer types.  Note that the resolved alternative may have fewer
2064     // (but not more) results than the PatFrags node.
2065     FragTree->setName(getName());
2066     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2067       FragTree->UpdateNodeType(i, getExtType(i), TP);
2068 
2069     // Transfer in the old predicates.
2070     for (const TreePredicateCall &Pred : getPredicateCalls())
2071       FragTree->addPredicateCall(Pred);
2072 
2073     // The fragment we inlined could have recursive inlining that is needed.  See
2074     // if there are any pattern fragments in it and inline them as needed.
2075     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2076   }
2077 }
2078 
2079 /// getImplicitType - Check to see if the specified record has an implicit
2080 /// type which should be applied to it.  This will infer the type of register
2081 /// references from the register file information, for example.
2082 ///
2083 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2084 /// the F8RC register class argument in:
2085 ///
2086 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2087 ///
2088 /// When Unnamed is false, return the type of a named DAG operand such as the
2089 /// GPR:$src operand above.
2090 ///
2091 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2092                                        bool NotRegisters,
2093                                        bool Unnamed,
2094                                        TreePattern &TP) {
2095   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2096 
2097   // Check to see if this is a register operand.
2098   if (R->isSubClassOf("RegisterOperand")) {
2099     assert(ResNo == 0 && "Regoperand ref only has one result!");
2100     if (NotRegisters)
2101       return TypeSetByHwMode(); // Unknown.
2102     Record *RegClass = R->getValueAsDef("RegClass");
2103     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2104     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2105   }
2106 
2107   // Check to see if this is a register or a register class.
2108   if (R->isSubClassOf("RegisterClass")) {
2109     assert(ResNo == 0 && "Regclass ref only has one result!");
2110     // An unnamed register class represents itself as an i32 immediate, for
2111     // example on a COPY_TO_REGCLASS instruction.
2112     if (Unnamed)
2113       return TypeSetByHwMode(MVT::i32);
2114 
2115     // In a named operand, the register class provides the possible set of
2116     // types.
2117     if (NotRegisters)
2118       return TypeSetByHwMode(); // Unknown.
2119     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2120     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2121   }
2122 
2123   if (R->isSubClassOf("PatFrags")) {
2124     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2125     // Pattern fragment types will be resolved when they are inlined.
2126     return TypeSetByHwMode(); // Unknown.
2127   }
2128 
2129   if (R->isSubClassOf("Register")) {
2130     assert(ResNo == 0 && "Registers only produce one result!");
2131     if (NotRegisters)
2132       return TypeSetByHwMode(); // Unknown.
2133     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2134     return TypeSetByHwMode(T.getRegisterVTs(R));
2135   }
2136 
2137   if (R->isSubClassOf("SubRegIndex")) {
2138     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2139     return TypeSetByHwMode(MVT::i32);
2140   }
2141 
2142   if (R->isSubClassOf("ValueType")) {
2143     assert(ResNo == 0 && "This node only has one result!");
2144     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2145     //
2146     //   (sext_inreg GPR:$src, i16)
2147     //                         ~~~
2148     if (Unnamed)
2149       return TypeSetByHwMode(MVT::Other);
2150     // With a name, the ValueType simply provides the type of the named
2151     // variable.
2152     //
2153     //   (sext_inreg i32:$src, i16)
2154     //               ~~~~~~~~
2155     if (NotRegisters)
2156       return TypeSetByHwMode(); // Unknown.
2157     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2158     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2159   }
2160 
2161   if (R->isSubClassOf("CondCode")) {
2162     assert(ResNo == 0 && "This node only has one result!");
2163     // Using a CondCodeSDNode.
2164     return TypeSetByHwMode(MVT::Other);
2165   }
2166 
2167   if (R->isSubClassOf("ComplexPattern")) {
2168     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2169     if (NotRegisters)
2170       return TypeSetByHwMode(); // Unknown.
2171     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2172   }
2173   if (R->isSubClassOf("PointerLikeRegClass")) {
2174     assert(ResNo == 0 && "Regclass can only have one result!");
2175     TypeSetByHwMode VTS(MVT::iPTR);
2176     TP.getInfer().expandOverloads(VTS);
2177     return VTS;
2178   }
2179 
2180   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2181       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2182       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2183     // Placeholder.
2184     return TypeSetByHwMode(); // Unknown.
2185   }
2186 
2187   if (R->isSubClassOf("Operand")) {
2188     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2189     Record *T = R->getValueAsDef("Type");
2190     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2191   }
2192 
2193   TP.error("Unknown node flavor used in pattern: " + R->getName());
2194   return TypeSetByHwMode(MVT::Other);
2195 }
2196 
2197 
2198 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2199 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2200 const CodeGenIntrinsic *TreePatternNode::
2201 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2202   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2203       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2204       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2205     return nullptr;
2206 
2207   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2208   return &CDP.getIntrinsicInfo(IID);
2209 }
2210 
2211 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2212 /// return the ComplexPattern information, otherwise return null.
2213 const ComplexPattern *
2214 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2215   Record *Rec;
2216   if (isLeaf()) {
2217     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2218     if (!DI)
2219       return nullptr;
2220     Rec = DI->getDef();
2221   } else
2222     Rec = getOperator();
2223 
2224   if (!Rec->isSubClassOf("ComplexPattern"))
2225     return nullptr;
2226   return &CGP.getComplexPattern(Rec);
2227 }
2228 
2229 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2230   // A ComplexPattern specifically declares how many results it fills in.
2231   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2232     return CP->getNumOperands();
2233 
2234   // If MIOperandInfo is specified, that gives the count.
2235   if (isLeaf()) {
2236     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2237     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2238       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2239       if (MIOps->getNumArgs())
2240         return MIOps->getNumArgs();
2241     }
2242   }
2243 
2244   // Otherwise there is just one result.
2245   return 1;
2246 }
2247 
2248 /// NodeHasProperty - Return true if this node has the specified property.
2249 bool TreePatternNode::NodeHasProperty(SDNP Property,
2250                                       const CodeGenDAGPatterns &CGP) const {
2251   if (isLeaf()) {
2252     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2253       return CP->hasProperty(Property);
2254 
2255     return false;
2256   }
2257 
2258   if (Property != SDNPHasChain) {
2259     // The chain proprety is already present on the different intrinsic node
2260     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2261     // on the intrinsic. Anything else is specific to the individual intrinsic.
2262     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2263       return Int->hasProperty(Property);
2264   }
2265 
2266   if (!Operator->isSubClassOf("SDPatternOperator"))
2267     return false;
2268 
2269   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2270 }
2271 
2272 
2273 
2274 
2275 /// TreeHasProperty - Return true if any node in this tree has the specified
2276 /// property.
2277 bool TreePatternNode::TreeHasProperty(SDNP Property,
2278                                       const CodeGenDAGPatterns &CGP) const {
2279   if (NodeHasProperty(Property, CGP))
2280     return true;
2281   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2282     if (getChild(i)->TreeHasProperty(Property, CGP))
2283       return true;
2284   return false;
2285 }
2286 
2287 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2288 /// commutative intrinsic.
2289 bool
2290 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2291   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2292     return Int->isCommutative;
2293   return false;
2294 }
2295 
2296 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2297   if (!N->isLeaf())
2298     return N->getOperator()->isSubClassOf(Class);
2299 
2300   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2301   if (DI && DI->getDef()->isSubClassOf(Class))
2302     return true;
2303 
2304   return false;
2305 }
2306 
2307 static void emitTooManyOperandsError(TreePattern &TP,
2308                                      StringRef InstName,
2309                                      unsigned Expected,
2310                                      unsigned Actual) {
2311   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2312            " operands but expected only " + Twine(Expected) + "!");
2313 }
2314 
2315 static void emitTooFewOperandsError(TreePattern &TP,
2316                                     StringRef InstName,
2317                                     unsigned Actual) {
2318   TP.error("Instruction '" + InstName +
2319            "' expects more than the provided " + Twine(Actual) + " operands!");
2320 }
2321 
2322 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2323 /// this node and its children in the tree.  This returns true if it makes a
2324 /// change, false otherwise.  If a type contradiction is found, flag an error.
2325 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2326   if (TP.hasError())
2327     return false;
2328 
2329   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2330   if (isLeaf()) {
2331     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2332       // If it's a regclass or something else known, include the type.
2333       bool MadeChange = false;
2334       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2335         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2336                                                         NotRegisters,
2337                                                         !hasName(), TP), TP);
2338       return MadeChange;
2339     }
2340 
2341     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2342       assert(Types.size() == 1 && "Invalid IntInit");
2343 
2344       // Int inits are always integers. :)
2345       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2346 
2347       if (!TP.getInfer().isConcrete(Types[0], false))
2348         return MadeChange;
2349 
2350       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2351       for (auto &P : VVT) {
2352         MVT::SimpleValueType VT = P.second.SimpleTy;
2353         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2354           continue;
2355         unsigned Size = MVT(VT).getSizeInBits();
2356         // Make sure that the value is representable for this type.
2357         if (Size >= 32)
2358           continue;
2359         // Check that the value doesn't use more bits than we have. It must
2360         // either be a sign- or zero-extended equivalent of the original.
2361         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2362         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2363             SignBitAndAbove == 1)
2364           continue;
2365 
2366         TP.error("Integer value '" + Twine(II->getValue()) +
2367                  "' is out of range for type '" + getEnumName(VT) + "'!");
2368         break;
2369       }
2370       return MadeChange;
2371     }
2372 
2373     return false;
2374   }
2375 
2376   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2377     bool MadeChange = false;
2378 
2379     // Apply the result type to the node.
2380     unsigned NumRetVTs = Int->IS.RetVTs.size();
2381     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2382 
2383     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2384       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2385 
2386     if (getNumChildren() != NumParamVTs + 1) {
2387       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2388                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2389       return false;
2390     }
2391 
2392     // Apply type info to the intrinsic ID.
2393     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2394 
2395     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2396       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2397 
2398       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2399       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2400       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2401     }
2402     return MadeChange;
2403   }
2404 
2405   if (getOperator()->isSubClassOf("SDNode")) {
2406     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2407 
2408     // Check that the number of operands is sane.  Negative operands -> varargs.
2409     if (NI.getNumOperands() >= 0 &&
2410         getNumChildren() != (unsigned)NI.getNumOperands()) {
2411       TP.error(getOperator()->getName() + " node requires exactly " +
2412                Twine(NI.getNumOperands()) + " operands!");
2413       return false;
2414     }
2415 
2416     bool MadeChange = false;
2417     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2418       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2419     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2420     return MadeChange;
2421   }
2422 
2423   if (getOperator()->isSubClassOf("Instruction")) {
2424     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2425     CodeGenInstruction &InstInfo =
2426       CDP.getTargetInfo().getInstruction(getOperator());
2427 
2428     bool MadeChange = false;
2429 
2430     // Apply the result types to the node, these come from the things in the
2431     // (outs) list of the instruction.
2432     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2433                                         Inst.getNumResults());
2434     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2435       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2436 
2437     // If the instruction has implicit defs, we apply the first one as a result.
2438     // FIXME: This sucks, it should apply all implicit defs.
2439     if (!InstInfo.ImplicitDefs.empty()) {
2440       unsigned ResNo = NumResultsToAdd;
2441 
2442       // FIXME: Generalize to multiple possible types and multiple possible
2443       // ImplicitDefs.
2444       MVT::SimpleValueType VT =
2445         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2446 
2447       if (VT != MVT::Other)
2448         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2449     }
2450 
2451     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2452     // be the same.
2453     if (getOperator()->getName() == "INSERT_SUBREG") {
2454       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2455       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2456       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2457     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2458       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2459       // variadic.
2460 
2461       unsigned NChild = getNumChildren();
2462       if (NChild < 3) {
2463         TP.error("REG_SEQUENCE requires at least 3 operands!");
2464         return false;
2465       }
2466 
2467       if (NChild % 2 == 0) {
2468         TP.error("REG_SEQUENCE requires an odd number of operands!");
2469         return false;
2470       }
2471 
2472       if (!isOperandClass(getChild(0), "RegisterClass")) {
2473         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2474         return false;
2475       }
2476 
2477       for (unsigned I = 1; I < NChild; I += 2) {
2478         TreePatternNode *SubIdxChild = getChild(I + 1);
2479         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2480           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2481                    Twine(I + 1) + "!");
2482           return false;
2483         }
2484       }
2485     }
2486 
2487     // If one or more operands with a default value appear at the end of the
2488     // formal operand list for an instruction, we allow them to be overridden
2489     // by optional operands provided in the pattern.
2490     //
2491     // But if an operand B without a default appears at any point after an
2492     // operand A with a default, then we don't allow A to be overridden,
2493     // because there would be no way to specify whether the next operand in
2494     // the pattern was intended to override A or skip it.
2495     unsigned NonOverridableOperands = Inst.getNumOperands();
2496     while (NonOverridableOperands > 0 &&
2497            CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2498       --NonOverridableOperands;
2499 
2500     unsigned ChildNo = 0;
2501     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2502       Record *OperandNode = Inst.getOperand(i);
2503 
2504       // If the operand has a default value, do we use it? We must use the
2505       // default if we've run out of children of the pattern DAG to consume,
2506       // or if the operand is followed by a non-defaulted one.
2507       if (CDP.operandHasDefault(OperandNode) &&
2508           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2509         continue;
2510 
2511       // If we have run out of child nodes and there _isn't_ a default
2512       // value we can use for the next operand, give an error.
2513       if (ChildNo >= getNumChildren()) {
2514         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2515         return false;
2516       }
2517 
2518       TreePatternNode *Child = getChild(ChildNo++);
2519       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2520 
2521       // If the operand has sub-operands, they may be provided by distinct
2522       // child patterns, so attempt to match each sub-operand separately.
2523       if (OperandNode->isSubClassOf("Operand")) {
2524         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2525         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2526           // But don't do that if the whole operand is being provided by
2527           // a single ComplexPattern-related Operand.
2528 
2529           if (Child->getNumMIResults(CDP) < NumArgs) {
2530             // Match first sub-operand against the child we already have.
2531             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2532             MadeChange |=
2533               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2534 
2535             // And the remaining sub-operands against subsequent children.
2536             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2537               if (ChildNo >= getNumChildren()) {
2538                 emitTooFewOperandsError(TP, getOperator()->getName(),
2539                                         getNumChildren());
2540                 return false;
2541               }
2542               Child = getChild(ChildNo++);
2543 
2544               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2545               MadeChange |=
2546                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2547             }
2548             continue;
2549           }
2550         }
2551       }
2552 
2553       // If we didn't match by pieces above, attempt to match the whole
2554       // operand now.
2555       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2556     }
2557 
2558     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2559       emitTooManyOperandsError(TP, getOperator()->getName(),
2560                                ChildNo, getNumChildren());
2561       return false;
2562     }
2563 
2564     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2565       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2566     return MadeChange;
2567   }
2568 
2569   if (getOperator()->isSubClassOf("ComplexPattern")) {
2570     bool MadeChange = false;
2571 
2572     for (unsigned i = 0; i < getNumChildren(); ++i)
2573       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2574 
2575     return MadeChange;
2576   }
2577 
2578   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2579 
2580   // Node transforms always take one operand.
2581   if (getNumChildren() != 1) {
2582     TP.error("Node transform '" + getOperator()->getName() +
2583              "' requires one operand!");
2584     return false;
2585   }
2586 
2587   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2588   return MadeChange;
2589 }
2590 
2591 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2592 /// RHS of a commutative operation, not the on LHS.
2593 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2594   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2595     return true;
2596   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2597     return true;
2598   return false;
2599 }
2600 
2601 
2602 /// canPatternMatch - If it is impossible for this pattern to match on this
2603 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2604 /// used as a sanity check for .td files (to prevent people from writing stuff
2605 /// that can never possibly work), and to prevent the pattern permuter from
2606 /// generating stuff that is useless.
2607 bool TreePatternNode::canPatternMatch(std::string &Reason,
2608                                       const CodeGenDAGPatterns &CDP) {
2609   if (isLeaf()) return true;
2610 
2611   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2612     if (!getChild(i)->canPatternMatch(Reason, CDP))
2613       return false;
2614 
2615   // If this is an intrinsic, handle cases that would make it not match.  For
2616   // example, if an operand is required to be an immediate.
2617   if (getOperator()->isSubClassOf("Intrinsic")) {
2618     // TODO:
2619     return true;
2620   }
2621 
2622   if (getOperator()->isSubClassOf("ComplexPattern"))
2623     return true;
2624 
2625   // If this node is a commutative operator, check that the LHS isn't an
2626   // immediate.
2627   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2628   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2629   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2630     // Scan all of the operands of the node and make sure that only the last one
2631     // is a constant node, unless the RHS also is.
2632     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2633       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2634       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2635         if (OnlyOnRHSOfCommutative(getChild(i))) {
2636           Reason="Immediate value must be on the RHS of commutative operators!";
2637           return false;
2638         }
2639     }
2640   }
2641 
2642   return true;
2643 }
2644 
2645 //===----------------------------------------------------------------------===//
2646 // TreePattern implementation
2647 //
2648 
2649 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2650                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2651                          isInputPattern(isInput), HasError(false),
2652                          Infer(*this) {
2653   for (Init *I : RawPat->getValues())
2654     Trees.push_back(ParseTreePattern(I, ""));
2655 }
2656 
2657 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2658                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2659                          isInputPattern(isInput), HasError(false),
2660                          Infer(*this) {
2661   Trees.push_back(ParseTreePattern(Pat, ""));
2662 }
2663 
2664 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2665                          CodeGenDAGPatterns &cdp)
2666     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2667       Infer(*this) {
2668   Trees.push_back(Pat);
2669 }
2670 
2671 void TreePattern::error(const Twine &Msg) {
2672   if (HasError)
2673     return;
2674   dump();
2675   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2676   HasError = true;
2677 }
2678 
2679 void TreePattern::ComputeNamedNodes() {
2680   for (TreePatternNodePtr &Tree : Trees)
2681     ComputeNamedNodes(Tree.get());
2682 }
2683 
2684 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2685   if (!N->getName().empty())
2686     NamedNodes[N->getName()].push_back(N);
2687 
2688   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2689     ComputeNamedNodes(N->getChild(i));
2690 }
2691 
2692 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2693                                                  StringRef OpName) {
2694   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2695     Record *R = DI->getDef();
2696 
2697     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2698     // TreePatternNode of its own.  For example:
2699     ///   (foo GPR, imm) -> (foo GPR, (imm))
2700     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2701       return ParseTreePattern(
2702         DagInit::get(DI, nullptr,
2703                      std::vector<std::pair<Init*, StringInit*> >()),
2704         OpName);
2705 
2706     // Input argument?
2707     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2708     if (R->getName() == "node" && !OpName.empty()) {
2709       if (OpName.empty())
2710         error("'node' argument requires a name to match with operand list");
2711       Args.push_back(OpName);
2712     }
2713 
2714     Res->setName(OpName);
2715     return Res;
2716   }
2717 
2718   // ?:$name or just $name.
2719   if (isa<UnsetInit>(TheInit)) {
2720     if (OpName.empty())
2721       error("'?' argument requires a name to match with operand list");
2722     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2723     Args.push_back(OpName);
2724     Res->setName(OpName);
2725     return Res;
2726   }
2727 
2728   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2729     if (!OpName.empty())
2730       error("Constant int or bit argument should not have a name!");
2731     if (isa<BitInit>(TheInit))
2732       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2733     return std::make_shared<TreePatternNode>(TheInit, 1);
2734   }
2735 
2736   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2737     // Turn this into an IntInit.
2738     Init *II = BI->convertInitializerTo(IntRecTy::get());
2739     if (!II || !isa<IntInit>(II))
2740       error("Bits value must be constants!");
2741     return ParseTreePattern(II, OpName);
2742   }
2743 
2744   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2745   if (!Dag) {
2746     TheInit->print(errs());
2747     error("Pattern has unexpected init kind!");
2748   }
2749   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2750   if (!OpDef) error("Pattern has unexpected operator type!");
2751   Record *Operator = OpDef->getDef();
2752 
2753   if (Operator->isSubClassOf("ValueType")) {
2754     // If the operator is a ValueType, then this must be "type cast" of a leaf
2755     // node.
2756     if (Dag->getNumArgs() != 1)
2757       error("Type cast only takes one operand!");
2758 
2759     TreePatternNodePtr New =
2760         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2761 
2762     // Apply the type cast.
2763     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2764     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2765     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2766 
2767     if (!OpName.empty())
2768       error("ValueType cast should not have a name!");
2769     return New;
2770   }
2771 
2772   // Verify that this is something that makes sense for an operator.
2773   if (!Operator->isSubClassOf("PatFrags") &&
2774       !Operator->isSubClassOf("SDNode") &&
2775       !Operator->isSubClassOf("Instruction") &&
2776       !Operator->isSubClassOf("SDNodeXForm") &&
2777       !Operator->isSubClassOf("Intrinsic") &&
2778       !Operator->isSubClassOf("ComplexPattern") &&
2779       Operator->getName() != "set" &&
2780       Operator->getName() != "implicit")
2781     error("Unrecognized node '" + Operator->getName() + "'!");
2782 
2783   //  Check to see if this is something that is illegal in an input pattern.
2784   if (isInputPattern) {
2785     if (Operator->isSubClassOf("Instruction") ||
2786         Operator->isSubClassOf("SDNodeXForm"))
2787       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2788   } else {
2789     if (Operator->isSubClassOf("Intrinsic"))
2790       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2791 
2792     if (Operator->isSubClassOf("SDNode") &&
2793         Operator->getName() != "imm" &&
2794         Operator->getName() != "fpimm" &&
2795         Operator->getName() != "tglobaltlsaddr" &&
2796         Operator->getName() != "tconstpool" &&
2797         Operator->getName() != "tjumptable" &&
2798         Operator->getName() != "tframeindex" &&
2799         Operator->getName() != "texternalsym" &&
2800         Operator->getName() != "tblockaddress" &&
2801         Operator->getName() != "tglobaladdr" &&
2802         Operator->getName() != "bb" &&
2803         Operator->getName() != "vt" &&
2804         Operator->getName() != "mcsym")
2805       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2806   }
2807 
2808   std::vector<TreePatternNodePtr> Children;
2809 
2810   // Parse all the operands.
2811   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2812     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2813 
2814   // Get the actual number of results before Operator is converted to an intrinsic
2815   // node (which is hard-coded to have either zero or one result).
2816   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2817 
2818   // If the operator is an intrinsic, then this is just syntactic sugar for
2819   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2820   // convert the intrinsic name to a number.
2821   if (Operator->isSubClassOf("Intrinsic")) {
2822     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2823     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2824 
2825     // If this intrinsic returns void, it must have side-effects and thus a
2826     // chain.
2827     if (Int.IS.RetVTs.empty())
2828       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2829     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2830       // Has side-effects, requires chain.
2831       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2832     else // Otherwise, no chain.
2833       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2834 
2835     Children.insert(Children.begin(),
2836                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2837   }
2838 
2839   if (Operator->isSubClassOf("ComplexPattern")) {
2840     for (unsigned i = 0; i < Children.size(); ++i) {
2841       TreePatternNodePtr Child = Children[i];
2842 
2843       if (Child->getName().empty())
2844         error("All arguments to a ComplexPattern must be named");
2845 
2846       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2847       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2848       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2849       auto OperandId = std::make_pair(Operator, i);
2850       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2851       if (PrevOp != ComplexPatternOperands.end()) {
2852         if (PrevOp->getValue() != OperandId)
2853           error("All ComplexPattern operands must appear consistently: "
2854                 "in the same order in just one ComplexPattern instance.");
2855       } else
2856         ComplexPatternOperands[Child->getName()] = OperandId;
2857     }
2858   }
2859 
2860   TreePatternNodePtr Result =
2861       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2862                                         NumResults);
2863   Result->setName(OpName);
2864 
2865   if (Dag->getName()) {
2866     assert(Result->getName().empty());
2867     Result->setName(Dag->getNameStr());
2868   }
2869   return Result;
2870 }
2871 
2872 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2873 /// will never match in favor of something obvious that will.  This is here
2874 /// strictly as a convenience to target authors because it allows them to write
2875 /// more type generic things and have useless type casts fold away.
2876 ///
2877 /// This returns true if any change is made.
2878 static bool SimplifyTree(TreePatternNodePtr &N) {
2879   if (N->isLeaf())
2880     return false;
2881 
2882   // If we have a bitconvert with a resolved type and if the source and
2883   // destination types are the same, then the bitconvert is useless, remove it.
2884   if (N->getOperator()->getName() == "bitconvert" &&
2885       N->getExtType(0).isValueTypeByHwMode(false) &&
2886       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2887       N->getName().empty()) {
2888     N = N->getChildShared(0);
2889     SimplifyTree(N);
2890     return true;
2891   }
2892 
2893   // Walk all children.
2894   bool MadeChange = false;
2895   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2896     TreePatternNodePtr Child = N->getChildShared(i);
2897     MadeChange |= SimplifyTree(Child);
2898     N->setChild(i, std::move(Child));
2899   }
2900   return MadeChange;
2901 }
2902 
2903 
2904 
2905 /// InferAllTypes - Infer/propagate as many types throughout the expression
2906 /// patterns as possible.  Return true if all types are inferred, false
2907 /// otherwise.  Flags an error if a type contradiction is found.
2908 bool TreePattern::
2909 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2910   if (NamedNodes.empty())
2911     ComputeNamedNodes();
2912 
2913   bool MadeChange = true;
2914   while (MadeChange) {
2915     MadeChange = false;
2916     for (TreePatternNodePtr &Tree : Trees) {
2917       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2918       MadeChange |= SimplifyTree(Tree);
2919     }
2920 
2921     // If there are constraints on our named nodes, apply them.
2922     for (auto &Entry : NamedNodes) {
2923       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2924 
2925       // If we have input named node types, propagate their types to the named
2926       // values here.
2927       if (InNamedTypes) {
2928         if (!InNamedTypes->count(Entry.getKey())) {
2929           error("Node '" + std::string(Entry.getKey()) +
2930                 "' in output pattern but not input pattern");
2931           return true;
2932         }
2933 
2934         const SmallVectorImpl<TreePatternNode*> &InNodes =
2935           InNamedTypes->find(Entry.getKey())->second;
2936 
2937         // The input types should be fully resolved by now.
2938         for (TreePatternNode *Node : Nodes) {
2939           // If this node is a register class, and it is the root of the pattern
2940           // then we're mapping something onto an input register.  We allow
2941           // changing the type of the input register in this case.  This allows
2942           // us to match things like:
2943           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2944           if (Node == Trees[0].get() && Node->isLeaf()) {
2945             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2946             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2947                        DI->getDef()->isSubClassOf("RegisterOperand")))
2948               continue;
2949           }
2950 
2951           assert(Node->getNumTypes() == 1 &&
2952                  InNodes[0]->getNumTypes() == 1 &&
2953                  "FIXME: cannot name multiple result nodes yet");
2954           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2955                                              *this);
2956         }
2957       }
2958 
2959       // If there are multiple nodes with the same name, they must all have the
2960       // same type.
2961       if (Entry.second.size() > 1) {
2962         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2963           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2964           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2965                  "FIXME: cannot name multiple result nodes yet");
2966 
2967           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2968           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2969         }
2970       }
2971     }
2972   }
2973 
2974   bool HasUnresolvedTypes = false;
2975   for (const TreePatternNodePtr &Tree : Trees)
2976     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2977   return !HasUnresolvedTypes;
2978 }
2979 
2980 void TreePattern::print(raw_ostream &OS) const {
2981   OS << getRecord()->getName();
2982   if (!Args.empty()) {
2983     OS << "(" << Args[0];
2984     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2985       OS << ", " << Args[i];
2986     OS << ")";
2987   }
2988   OS << ": ";
2989 
2990   if (Trees.size() > 1)
2991     OS << "[\n";
2992   for (const TreePatternNodePtr &Tree : Trees) {
2993     OS << "\t";
2994     Tree->print(OS);
2995     OS << "\n";
2996   }
2997 
2998   if (Trees.size() > 1)
2999     OS << "]\n";
3000 }
3001 
3002 void TreePattern::dump() const { print(errs()); }
3003 
3004 //===----------------------------------------------------------------------===//
3005 // CodeGenDAGPatterns implementation
3006 //
3007 
3008 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3009                                        PatternRewriterFn PatternRewriter)
3010     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3011       PatternRewriter(PatternRewriter) {
3012 
3013   Intrinsics = CodeGenIntrinsicTable(Records, false);
3014   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
3015   ParseNodeInfo();
3016   ParseNodeTransforms();
3017   ParseComplexPatterns();
3018   ParsePatternFragments();
3019   ParseDefaultOperands();
3020   ParseInstructions();
3021   ParsePatternFragments(/*OutFrags*/true);
3022   ParsePatterns();
3023 
3024   // Break patterns with parameterized types into a series of patterns,
3025   // where each one has a fixed type and is predicated on the conditions
3026   // of the associated HW mode.
3027   ExpandHwModeBasedTypes();
3028 
3029   // Generate variants.  For example, commutative patterns can match
3030   // multiple ways.  Add them to PatternsToMatch as well.
3031   GenerateVariants();
3032 
3033   // Infer instruction flags.  For example, we can detect loads,
3034   // stores, and side effects in many cases by examining an
3035   // instruction's pattern.
3036   InferInstructionFlags();
3037 
3038   // Verify that instruction flags match the patterns.
3039   VerifyInstructionFlags();
3040 }
3041 
3042 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3043   Record *N = Records.getDef(Name);
3044   if (!N || !N->isSubClassOf("SDNode"))
3045     PrintFatalError("Error getting SDNode '" + Name + "'!");
3046 
3047   return N;
3048 }
3049 
3050 // Parse all of the SDNode definitions for the target, populating SDNodes.
3051 void CodeGenDAGPatterns::ParseNodeInfo() {
3052   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3053   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3054 
3055   while (!Nodes.empty()) {
3056     Record *R = Nodes.back();
3057     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3058     Nodes.pop_back();
3059   }
3060 
3061   // Get the builtin intrinsic nodes.
3062   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3063   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3064   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3065 }
3066 
3067 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3068 /// map, and emit them to the file as functions.
3069 void CodeGenDAGPatterns::ParseNodeTransforms() {
3070   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3071   while (!Xforms.empty()) {
3072     Record *XFormNode = Xforms.back();
3073     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3074     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3075     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3076 
3077     Xforms.pop_back();
3078   }
3079 }
3080 
3081 void CodeGenDAGPatterns::ParseComplexPatterns() {
3082   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3083   while (!AMs.empty()) {
3084     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3085     AMs.pop_back();
3086   }
3087 }
3088 
3089 
3090 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3091 /// file, building up the PatternFragments map.  After we've collected them all,
3092 /// inline fragments together as necessary, so that there are no references left
3093 /// inside a pattern fragment to a pattern fragment.
3094 ///
3095 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3096   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3097 
3098   // First step, parse all of the fragments.
3099   for (Record *Frag : Fragments) {
3100     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3101       continue;
3102 
3103     ListInit *LI = Frag->getValueAsListInit("Fragments");
3104     TreePattern *P =
3105         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3106              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3107              *this)).get();
3108 
3109     // Validate the argument list, converting it to set, to discard duplicates.
3110     std::vector<std::string> &Args = P->getArgList();
3111     // Copy the args so we can take StringRefs to them.
3112     auto ArgsCopy = Args;
3113     SmallDenseSet<StringRef, 4> OperandsSet;
3114     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3115 
3116     if (OperandsSet.count(""))
3117       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3118 
3119     // Parse the operands list.
3120     DagInit *OpsList = Frag->getValueAsDag("Operands");
3121     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3122     // Special cases: ops == outs == ins. Different names are used to
3123     // improve readability.
3124     if (!OpsOp ||
3125         (OpsOp->getDef()->getName() != "ops" &&
3126          OpsOp->getDef()->getName() != "outs" &&
3127          OpsOp->getDef()->getName() != "ins"))
3128       P->error("Operands list should start with '(ops ... '!");
3129 
3130     // Copy over the arguments.
3131     Args.clear();
3132     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3133       if (!isa<DefInit>(OpsList->getArg(j)) ||
3134           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3135         P->error("Operands list should all be 'node' values.");
3136       if (!OpsList->getArgName(j))
3137         P->error("Operands list should have names for each operand!");
3138       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3139       if (!OperandsSet.count(ArgNameStr))
3140         P->error("'" + ArgNameStr +
3141                  "' does not occur in pattern or was multiply specified!");
3142       OperandsSet.erase(ArgNameStr);
3143       Args.push_back(ArgNameStr);
3144     }
3145 
3146     if (!OperandsSet.empty())
3147       P->error("Operands list does not contain an entry for operand '" +
3148                *OperandsSet.begin() + "'!");
3149 
3150     // If there is a node transformation corresponding to this, keep track of
3151     // it.
3152     Record *Transform = Frag->getValueAsDef("OperandTransform");
3153     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3154       for (auto T : P->getTrees())
3155         T->setTransformFn(Transform);
3156   }
3157 
3158   // Now that we've parsed all of the tree fragments, do a closure on them so
3159   // that there are not references to PatFrags left inside of them.
3160   for (Record *Frag : Fragments) {
3161     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3162       continue;
3163 
3164     TreePattern &ThePat = *PatternFragments[Frag];
3165     ThePat.InlinePatternFragments();
3166 
3167     // Infer as many types as possible.  Don't worry about it if we don't infer
3168     // all of them, some may depend on the inputs of the pattern.  Also, don't
3169     // validate type sets; validation may cause spurious failures e.g. if a
3170     // fragment needs floating-point types but the current target does not have
3171     // any (this is only an error if that fragment is ever used!).
3172     {
3173       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3174       ThePat.InferAllTypes();
3175       ThePat.resetError();
3176     }
3177 
3178     // If debugging, print out the pattern fragment result.
3179     LLVM_DEBUG(ThePat.dump());
3180   }
3181 }
3182 
3183 void CodeGenDAGPatterns::ParseDefaultOperands() {
3184   std::vector<Record*> DefaultOps;
3185   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3186 
3187   // Find some SDNode.
3188   assert(!SDNodes.empty() && "No SDNodes parsed?");
3189   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3190 
3191   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3192     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3193 
3194     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3195     // SomeSDnode so that we can parse this.
3196     std::vector<std::pair<Init*, StringInit*> > Ops;
3197     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3198       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3199                                    DefaultInfo->getArgName(op)));
3200     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3201 
3202     // Create a TreePattern to parse this.
3203     TreePattern P(DefaultOps[i], DI, false, *this);
3204     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3205 
3206     // Copy the operands over into a DAGDefaultOperand.
3207     DAGDefaultOperand DefaultOpInfo;
3208 
3209     const TreePatternNodePtr &T = P.getTree(0);
3210     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3211       TreePatternNodePtr TPN = T->getChildShared(op);
3212       while (TPN->ApplyTypeConstraints(P, false))
3213         /* Resolve all types */;
3214 
3215       if (TPN->ContainsUnresolvedType(P)) {
3216         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3217                         DefaultOps[i]->getName() +
3218                         "' doesn't have a concrete type!");
3219       }
3220       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3221     }
3222 
3223     // Insert it into the DefaultOperands map so we can find it later.
3224     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3225   }
3226 }
3227 
3228 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3229 /// instruction input.  Return true if this is a real use.
3230 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3231                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3232   // No name -> not interesting.
3233   if (Pat->getName().empty()) {
3234     if (Pat->isLeaf()) {
3235       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3236       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3237                  DI->getDef()->isSubClassOf("RegisterOperand")))
3238         I.error("Input " + DI->getDef()->getName() + " must be named!");
3239     }
3240     return false;
3241   }
3242 
3243   Record *Rec;
3244   if (Pat->isLeaf()) {
3245     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3246     if (!DI)
3247       I.error("Input $" + Pat->getName() + " must be an identifier!");
3248     Rec = DI->getDef();
3249   } else {
3250     Rec = Pat->getOperator();
3251   }
3252 
3253   // SRCVALUE nodes are ignored.
3254   if (Rec->getName() == "srcvalue")
3255     return false;
3256 
3257   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3258   if (!Slot) {
3259     Slot = Pat;
3260     return true;
3261   }
3262   Record *SlotRec;
3263   if (Slot->isLeaf()) {
3264     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3265   } else {
3266     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3267     SlotRec = Slot->getOperator();
3268   }
3269 
3270   // Ensure that the inputs agree if we've already seen this input.
3271   if (Rec != SlotRec)
3272     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3273   // Ensure that the types can agree as well.
3274   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3275   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3276   if (Slot->getExtTypes() != Pat->getExtTypes())
3277     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3278   return true;
3279 }
3280 
3281 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3282 /// part of "I", the instruction), computing the set of inputs and outputs of
3283 /// the pattern.  Report errors if we see anything naughty.
3284 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3285     TreePattern &I, TreePatternNodePtr Pat,
3286     std::map<std::string, TreePatternNodePtr> &InstInputs,
3287     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3288         &InstResults,
3289     std::vector<Record *> &InstImpResults) {
3290 
3291   // The instruction pattern still has unresolved fragments.  For *named*
3292   // nodes we must resolve those here.  This may not result in multiple
3293   // alternatives.
3294   if (!Pat->getName().empty()) {
3295     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3296     SrcPattern.InlinePatternFragments();
3297     SrcPattern.InferAllTypes();
3298     Pat = SrcPattern.getOnlyTree();
3299   }
3300 
3301   if (Pat->isLeaf()) {
3302     bool isUse = HandleUse(I, Pat, InstInputs);
3303     if (!isUse && Pat->getTransformFn())
3304       I.error("Cannot specify a transform function for a non-input value!");
3305     return;
3306   }
3307 
3308   if (Pat->getOperator()->getName() == "implicit") {
3309     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3310       TreePatternNode *Dest = Pat->getChild(i);
3311       if (!Dest->isLeaf())
3312         I.error("implicitly defined value should be a register!");
3313 
3314       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3315       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3316         I.error("implicitly defined value should be a register!");
3317       InstImpResults.push_back(Val->getDef());
3318     }
3319     return;
3320   }
3321 
3322   if (Pat->getOperator()->getName() != "set") {
3323     // If this is not a set, verify that the children nodes are not void typed,
3324     // and recurse.
3325     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3326       if (Pat->getChild(i)->getNumTypes() == 0)
3327         I.error("Cannot have void nodes inside of patterns!");
3328       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3329                                   InstResults, InstImpResults);
3330     }
3331 
3332     // If this is a non-leaf node with no children, treat it basically as if
3333     // it were a leaf.  This handles nodes like (imm).
3334     bool isUse = HandleUse(I, Pat, InstInputs);
3335 
3336     if (!isUse && Pat->getTransformFn())
3337       I.error("Cannot specify a transform function for a non-input value!");
3338     return;
3339   }
3340 
3341   // Otherwise, this is a set, validate and collect instruction results.
3342   if (Pat->getNumChildren() == 0)
3343     I.error("set requires operands!");
3344 
3345   if (Pat->getTransformFn())
3346     I.error("Cannot specify a transform function on a set node!");
3347 
3348   // Check the set destinations.
3349   unsigned NumDests = Pat->getNumChildren()-1;
3350   for (unsigned i = 0; i != NumDests; ++i) {
3351     TreePatternNodePtr Dest = Pat->getChildShared(i);
3352     // For set destinations we also must resolve fragments here.
3353     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3354     DestPattern.InlinePatternFragments();
3355     DestPattern.InferAllTypes();
3356     Dest = DestPattern.getOnlyTree();
3357 
3358     if (!Dest->isLeaf())
3359       I.error("set destination should be a register!");
3360 
3361     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3362     if (!Val) {
3363       I.error("set destination should be a register!");
3364       continue;
3365     }
3366 
3367     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3368         Val->getDef()->isSubClassOf("ValueType") ||
3369         Val->getDef()->isSubClassOf("RegisterOperand") ||
3370         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3371       if (Dest->getName().empty())
3372         I.error("set destination must have a name!");
3373       if (InstResults.count(Dest->getName()))
3374         I.error("cannot set '" + Dest->getName() + "' multiple times");
3375       InstResults[Dest->getName()] = Dest;
3376     } else if (Val->getDef()->isSubClassOf("Register")) {
3377       InstImpResults.push_back(Val->getDef());
3378     } else {
3379       I.error("set destination should be a register!");
3380     }
3381   }
3382 
3383   // Verify and collect info from the computation.
3384   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3385                               InstResults, InstImpResults);
3386 }
3387 
3388 //===----------------------------------------------------------------------===//
3389 // Instruction Analysis
3390 //===----------------------------------------------------------------------===//
3391 
3392 class InstAnalyzer {
3393   const CodeGenDAGPatterns &CDP;
3394 public:
3395   bool hasSideEffects;
3396   bool mayStore;
3397   bool mayLoad;
3398   bool isBitcast;
3399   bool isVariadic;
3400   bool hasChain;
3401 
3402   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3403     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3404       isBitcast(false), isVariadic(false), hasChain(false) {}
3405 
3406   void Analyze(const PatternToMatch &Pat) {
3407     const TreePatternNode *N = Pat.getSrcPattern();
3408     AnalyzeNode(N);
3409     // These properties are detected only on the root node.
3410     isBitcast = IsNodeBitcast(N);
3411   }
3412 
3413 private:
3414   bool IsNodeBitcast(const TreePatternNode *N) const {
3415     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3416       return false;
3417 
3418     if (N->isLeaf())
3419       return false;
3420     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3421       return false;
3422 
3423     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3424     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3425       return false;
3426     return OpInfo.getEnumName() == "ISD::BITCAST";
3427   }
3428 
3429 public:
3430   void AnalyzeNode(const TreePatternNode *N) {
3431     if (N->isLeaf()) {
3432       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3433         Record *LeafRec = DI->getDef();
3434         // Handle ComplexPattern leaves.
3435         if (LeafRec->isSubClassOf("ComplexPattern")) {
3436           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3437           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3438           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3439           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3440         }
3441       }
3442       return;
3443     }
3444 
3445     // Analyze children.
3446     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3447       AnalyzeNode(N->getChild(i));
3448 
3449     // Notice properties of the node.
3450     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3451     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3452     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3453     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3454     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3455 
3456     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3457       // If this is an intrinsic, analyze it.
3458       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3459         mayLoad = true;// These may load memory.
3460 
3461       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3462         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3463 
3464       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3465           IntInfo->hasSideEffects)
3466         // ReadWriteMem intrinsics can have other strange effects.
3467         hasSideEffects = true;
3468     }
3469   }
3470 
3471 };
3472 
3473 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3474                              const InstAnalyzer &PatInfo,
3475                              Record *PatDef) {
3476   bool Error = false;
3477 
3478   // Remember where InstInfo got its flags.
3479   if (InstInfo.hasUndefFlags())
3480       InstInfo.InferredFrom = PatDef;
3481 
3482   // Check explicitly set flags for consistency.
3483   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3484       !InstInfo.hasSideEffects_Unset) {
3485     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3486     // the pattern has no side effects. That could be useful for div/rem
3487     // instructions that may trap.
3488     if (!InstInfo.hasSideEffects) {
3489       Error = true;
3490       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3491                  Twine(InstInfo.hasSideEffects));
3492     }
3493   }
3494 
3495   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3496     Error = true;
3497     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3498                Twine(InstInfo.mayStore));
3499   }
3500 
3501   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3502     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3503     // Some targets translate immediates to loads.
3504     if (!InstInfo.mayLoad) {
3505       Error = true;
3506       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3507                  Twine(InstInfo.mayLoad));
3508     }
3509   }
3510 
3511   // Transfer inferred flags.
3512   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3513   InstInfo.mayStore |= PatInfo.mayStore;
3514   InstInfo.mayLoad |= PatInfo.mayLoad;
3515 
3516   // These flags are silently added without any verification.
3517   // FIXME: To match historical behavior of TableGen, for now add those flags
3518   // only when we're inferring from the primary instruction pattern.
3519   if (PatDef->isSubClassOf("Instruction")) {
3520     InstInfo.isBitcast |= PatInfo.isBitcast;
3521     InstInfo.hasChain |= PatInfo.hasChain;
3522     InstInfo.hasChain_Inferred = true;
3523   }
3524 
3525   // Don't infer isVariadic. This flag means something different on SDNodes and
3526   // instructions. For example, a CALL SDNode is variadic because it has the
3527   // call arguments as operands, but a CALL instruction is not variadic - it
3528   // has argument registers as implicit, not explicit uses.
3529 
3530   return Error;
3531 }
3532 
3533 /// hasNullFragReference - Return true if the DAG has any reference to the
3534 /// null_frag operator.
3535 static bool hasNullFragReference(DagInit *DI) {
3536   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3537   if (!OpDef) return false;
3538   Record *Operator = OpDef->getDef();
3539 
3540   // If this is the null fragment, return true.
3541   if (Operator->getName() == "null_frag") return true;
3542   // If any of the arguments reference the null fragment, return true.
3543   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3544     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3545     if (Arg && hasNullFragReference(Arg))
3546       return true;
3547   }
3548 
3549   return false;
3550 }
3551 
3552 /// hasNullFragReference - Return true if any DAG in the list references
3553 /// the null_frag operator.
3554 static bool hasNullFragReference(ListInit *LI) {
3555   for (Init *I : LI->getValues()) {
3556     DagInit *DI = dyn_cast<DagInit>(I);
3557     assert(DI && "non-dag in an instruction Pattern list?!");
3558     if (hasNullFragReference(DI))
3559       return true;
3560   }
3561   return false;
3562 }
3563 
3564 /// Get all the instructions in a tree.
3565 static void
3566 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3567   if (Tree->isLeaf())
3568     return;
3569   if (Tree->getOperator()->isSubClassOf("Instruction"))
3570     Instrs.push_back(Tree->getOperator());
3571   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3572     getInstructionsInTree(Tree->getChild(i), Instrs);
3573 }
3574 
3575 /// Check the class of a pattern leaf node against the instruction operand it
3576 /// represents.
3577 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3578                               Record *Leaf) {
3579   if (OI.Rec == Leaf)
3580     return true;
3581 
3582   // Allow direct value types to be used in instruction set patterns.
3583   // The type will be checked later.
3584   if (Leaf->isSubClassOf("ValueType"))
3585     return true;
3586 
3587   // Patterns can also be ComplexPattern instances.
3588   if (Leaf->isSubClassOf("ComplexPattern"))
3589     return true;
3590 
3591   return false;
3592 }
3593 
3594 void CodeGenDAGPatterns::parseInstructionPattern(
3595     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3596 
3597   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3598 
3599   // Parse the instruction.
3600   TreePattern I(CGI.TheDef, Pat, true, *this);
3601 
3602   // InstInputs - Keep track of all of the inputs of the instruction, along
3603   // with the record they are declared as.
3604   std::map<std::string, TreePatternNodePtr> InstInputs;
3605 
3606   // InstResults - Keep track of all the virtual registers that are 'set'
3607   // in the instruction, including what reg class they are.
3608   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3609       InstResults;
3610 
3611   std::vector<Record*> InstImpResults;
3612 
3613   // Verify that the top-level forms in the instruction are of void type, and
3614   // fill in the InstResults map.
3615   SmallString<32> TypesString;
3616   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3617     TypesString.clear();
3618     TreePatternNodePtr Pat = I.getTree(j);
3619     if (Pat->getNumTypes() != 0) {
3620       raw_svector_ostream OS(TypesString);
3621       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3622         if (k > 0)
3623           OS << ", ";
3624         Pat->getExtType(k).writeToStream(OS);
3625       }
3626       I.error("Top-level forms in instruction pattern should have"
3627                " void types, has types " +
3628                OS.str());
3629     }
3630 
3631     // Find inputs and outputs, and verify the structure of the uses/defs.
3632     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3633                                 InstImpResults);
3634   }
3635 
3636   // Now that we have inputs and outputs of the pattern, inspect the operands
3637   // list for the instruction.  This determines the order that operands are
3638   // added to the machine instruction the node corresponds to.
3639   unsigned NumResults = InstResults.size();
3640 
3641   // Parse the operands list from the (ops) list, validating it.
3642   assert(I.getArgList().empty() && "Args list should still be empty here!");
3643 
3644   // Check that all of the results occur first in the list.
3645   std::vector<Record*> Results;
3646   std::vector<unsigned> ResultIndices;
3647   SmallVector<TreePatternNodePtr, 2> ResNodes;
3648   for (unsigned i = 0; i != NumResults; ++i) {
3649     if (i == CGI.Operands.size()) {
3650       const std::string &OpName =
3651           std::find_if(InstResults.begin(), InstResults.end(),
3652                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3653                          return P.second;
3654                        })
3655               ->first;
3656 
3657       I.error("'" + OpName + "' set but does not appear in operand list!");
3658     }
3659 
3660     const std::string &OpName = CGI.Operands[i].Name;
3661 
3662     // Check that it exists in InstResults.
3663     auto InstResultIter = InstResults.find(OpName);
3664     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3665       I.error("Operand $" + OpName + " does not exist in operand list!");
3666 
3667     TreePatternNodePtr RNode = InstResultIter->second;
3668     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3669     ResNodes.push_back(std::move(RNode));
3670     if (!R)
3671       I.error("Operand $" + OpName + " should be a set destination: all "
3672                "outputs must occur before inputs in operand list!");
3673 
3674     if (!checkOperandClass(CGI.Operands[i], R))
3675       I.error("Operand $" + OpName + " class mismatch!");
3676 
3677     // Remember the return type.
3678     Results.push_back(CGI.Operands[i].Rec);
3679 
3680     // Remember the result index.
3681     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3682 
3683     // Okay, this one checks out.
3684     InstResultIter->second = nullptr;
3685   }
3686 
3687   // Loop over the inputs next.
3688   std::vector<TreePatternNodePtr> ResultNodeOperands;
3689   std::vector<Record*> Operands;
3690   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3691     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3692     const std::string &OpName = Op.Name;
3693     if (OpName.empty())
3694       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3695 
3696     if (!InstInputs.count(OpName)) {
3697       // If this is an operand with a DefaultOps set filled in, we can ignore
3698       // this.  When we codegen it, we will do so as always executed.
3699       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3700         // Does it have a non-empty DefaultOps field?  If so, ignore this
3701         // operand.
3702         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3703           continue;
3704       }
3705       I.error("Operand $" + OpName +
3706                " does not appear in the instruction pattern");
3707     }
3708     TreePatternNodePtr InVal = InstInputs[OpName];
3709     InstInputs.erase(OpName);   // It occurred, remove from map.
3710 
3711     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3712       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3713       if (!checkOperandClass(Op, InRec))
3714         I.error("Operand $" + OpName + "'s register class disagrees"
3715                  " between the operand and pattern");
3716     }
3717     Operands.push_back(Op.Rec);
3718 
3719     // Construct the result for the dest-pattern operand list.
3720     TreePatternNodePtr OpNode = InVal->clone();
3721 
3722     // No predicate is useful on the result.
3723     OpNode->clearPredicateCalls();
3724 
3725     // Promote the xform function to be an explicit node if set.
3726     if (Record *Xform = OpNode->getTransformFn()) {
3727       OpNode->setTransformFn(nullptr);
3728       std::vector<TreePatternNodePtr> Children;
3729       Children.push_back(OpNode);
3730       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3731                                                  OpNode->getNumTypes());
3732     }
3733 
3734     ResultNodeOperands.push_back(std::move(OpNode));
3735   }
3736 
3737   if (!InstInputs.empty())
3738     I.error("Input operand $" + InstInputs.begin()->first +
3739             " occurs in pattern but not in operands list!");
3740 
3741   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3742       I.getRecord(), std::move(ResultNodeOperands),
3743       GetNumNodeResults(I.getRecord(), *this));
3744   // Copy fully inferred output node types to instruction result pattern.
3745   for (unsigned i = 0; i != NumResults; ++i) {
3746     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3747     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3748     ResultPattern->setResultIndex(i, ResultIndices[i]);
3749   }
3750 
3751   // FIXME: Assume only the first tree is the pattern. The others are clobber
3752   // nodes.
3753   TreePatternNodePtr Pattern = I.getTree(0);
3754   TreePatternNodePtr SrcPattern;
3755   if (Pattern->getOperator()->getName() == "set") {
3756     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3757   } else{
3758     // Not a set (store or something?)
3759     SrcPattern = Pattern;
3760   }
3761 
3762   // Create and insert the instruction.
3763   // FIXME: InstImpResults should not be part of DAGInstruction.
3764   Record *R = I.getRecord();
3765   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3766                    std::forward_as_tuple(Results, Operands, InstImpResults,
3767                                          SrcPattern, ResultPattern));
3768 
3769   LLVM_DEBUG(I.dump());
3770 }
3771 
3772 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3773 /// any fragments involved.  This populates the Instructions list with fully
3774 /// resolved instructions.
3775 void CodeGenDAGPatterns::ParseInstructions() {
3776   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3777 
3778   for (Record *Instr : Instrs) {
3779     ListInit *LI = nullptr;
3780 
3781     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3782       LI = Instr->getValueAsListInit("Pattern");
3783 
3784     // If there is no pattern, only collect minimal information about the
3785     // instruction for its operand list.  We have to assume that there is one
3786     // result, as we have no detailed info. A pattern which references the
3787     // null_frag operator is as-if no pattern were specified. Normally this
3788     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3789     // null_frag.
3790     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3791       std::vector<Record*> Results;
3792       std::vector<Record*> Operands;
3793 
3794       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3795 
3796       if (InstInfo.Operands.size() != 0) {
3797         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3798           Results.push_back(InstInfo.Operands[j].Rec);
3799 
3800         // The rest are inputs.
3801         for (unsigned j = InstInfo.Operands.NumDefs,
3802                e = InstInfo.Operands.size(); j < e; ++j)
3803           Operands.push_back(InstInfo.Operands[j].Rec);
3804       }
3805 
3806       // Create and insert the instruction.
3807       std::vector<Record*> ImpResults;
3808       Instructions.insert(std::make_pair(Instr,
3809                             DAGInstruction(Results, Operands, ImpResults)));
3810       continue;  // no pattern.
3811     }
3812 
3813     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3814     parseInstructionPattern(CGI, LI, Instructions);
3815   }
3816 
3817   // If we can, convert the instructions to be patterns that are matched!
3818   for (auto &Entry : Instructions) {
3819     Record *Instr = Entry.first;
3820     DAGInstruction &TheInst = Entry.second;
3821     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3822     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3823 
3824     if (SrcPattern && ResultPattern) {
3825       TreePattern Pattern(Instr, SrcPattern, true, *this);
3826       TreePattern Result(Instr, ResultPattern, false, *this);
3827       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3828     }
3829   }
3830 }
3831 
3832 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3833 
3834 static void FindNames(TreePatternNode *P,
3835                       std::map<std::string, NameRecord> &Names,
3836                       TreePattern *PatternTop) {
3837   if (!P->getName().empty()) {
3838     NameRecord &Rec = Names[P->getName()];
3839     // If this is the first instance of the name, remember the node.
3840     if (Rec.second++ == 0)
3841       Rec.first = P;
3842     else if (Rec.first->getExtTypes() != P->getExtTypes())
3843       PatternTop->error("repetition of value: $" + P->getName() +
3844                         " where different uses have different types!");
3845   }
3846 
3847   if (!P->isLeaf()) {
3848     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3849       FindNames(P->getChild(i), Names, PatternTop);
3850   }
3851 }
3852 
3853 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3854   std::vector<Predicate> Preds;
3855   for (Init *I : L->getValues()) {
3856     if (DefInit *Pred = dyn_cast<DefInit>(I))
3857       Preds.push_back(Pred->getDef());
3858     else
3859       llvm_unreachable("Non-def on the list");
3860   }
3861 
3862   // Sort so that different orders get canonicalized to the same string.
3863   llvm::sort(Preds);
3864   return Preds;
3865 }
3866 
3867 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3868                                            PatternToMatch &&PTM) {
3869   // Do some sanity checking on the pattern we're about to match.
3870   std::string Reason;
3871   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3872     PrintWarning(Pattern->getRecord()->getLoc(),
3873       Twine("Pattern can never match: ") + Reason);
3874     return;
3875   }
3876 
3877   // If the source pattern's root is a complex pattern, that complex pattern
3878   // must specify the nodes it can potentially match.
3879   if (const ComplexPattern *CP =
3880         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3881     if (CP->getRootNodes().empty())
3882       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3883                      " could match");
3884 
3885 
3886   // Find all of the named values in the input and output, ensure they have the
3887   // same type.
3888   std::map<std::string, NameRecord> SrcNames, DstNames;
3889   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3890   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3891 
3892   // Scan all of the named values in the destination pattern, rejecting them if
3893   // they don't exist in the input pattern.
3894   for (const auto &Entry : DstNames) {
3895     if (SrcNames[Entry.first].first == nullptr)
3896       Pattern->error("Pattern has input without matching name in output: $" +
3897                      Entry.first);
3898   }
3899 
3900   // Scan all of the named values in the source pattern, rejecting them if the
3901   // name isn't used in the dest, and isn't used to tie two values together.
3902   for (const auto &Entry : SrcNames)
3903     if (DstNames[Entry.first].first == nullptr &&
3904         SrcNames[Entry.first].second == 1)
3905       Pattern->error("Pattern has dead named input: $" + Entry.first);
3906 
3907   PatternsToMatch.push_back(PTM);
3908 }
3909 
3910 void CodeGenDAGPatterns::InferInstructionFlags() {
3911   ArrayRef<const CodeGenInstruction*> Instructions =
3912     Target.getInstructionsByEnumValue();
3913 
3914   unsigned Errors = 0;
3915 
3916   // Try to infer flags from all patterns in PatternToMatch.  These include
3917   // both the primary instruction patterns (which always come first) and
3918   // patterns defined outside the instruction.
3919   for (const PatternToMatch &PTM : ptms()) {
3920     // We can only infer from single-instruction patterns, otherwise we won't
3921     // know which instruction should get the flags.
3922     SmallVector<Record*, 8> PatInstrs;
3923     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3924     if (PatInstrs.size() != 1)
3925       continue;
3926 
3927     // Get the single instruction.
3928     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3929 
3930     // Only infer properties from the first pattern. We'll verify the others.
3931     if (InstInfo.InferredFrom)
3932       continue;
3933 
3934     InstAnalyzer PatInfo(*this);
3935     PatInfo.Analyze(PTM);
3936     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3937   }
3938 
3939   if (Errors)
3940     PrintFatalError("pattern conflicts");
3941 
3942   // If requested by the target, guess any undefined properties.
3943   if (Target.guessInstructionProperties()) {
3944     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3945       CodeGenInstruction *InstInfo =
3946         const_cast<CodeGenInstruction *>(Instructions[i]);
3947       if (InstInfo->InferredFrom)
3948         continue;
3949       // The mayLoad and mayStore flags default to false.
3950       // Conservatively assume hasSideEffects if it wasn't explicit.
3951       if (InstInfo->hasSideEffects_Unset)
3952         InstInfo->hasSideEffects = true;
3953     }
3954     return;
3955   }
3956 
3957   // Complain about any flags that are still undefined.
3958   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3959     CodeGenInstruction *InstInfo =
3960       const_cast<CodeGenInstruction *>(Instructions[i]);
3961     if (InstInfo->InferredFrom)
3962       continue;
3963     if (InstInfo->hasSideEffects_Unset)
3964       PrintError(InstInfo->TheDef->getLoc(),
3965                  "Can't infer hasSideEffects from patterns");
3966     if (InstInfo->mayStore_Unset)
3967       PrintError(InstInfo->TheDef->getLoc(),
3968                  "Can't infer mayStore from patterns");
3969     if (InstInfo->mayLoad_Unset)
3970       PrintError(InstInfo->TheDef->getLoc(),
3971                  "Can't infer mayLoad from patterns");
3972   }
3973 }
3974 
3975 
3976 /// Verify instruction flags against pattern node properties.
3977 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3978   unsigned Errors = 0;
3979   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3980     const PatternToMatch &PTM = *I;
3981     SmallVector<Record*, 8> Instrs;
3982     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3983     if (Instrs.empty())
3984       continue;
3985 
3986     // Count the number of instructions with each flag set.
3987     unsigned NumSideEffects = 0;
3988     unsigned NumStores = 0;
3989     unsigned NumLoads = 0;
3990     for (const Record *Instr : Instrs) {
3991       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3992       NumSideEffects += InstInfo.hasSideEffects;
3993       NumStores += InstInfo.mayStore;
3994       NumLoads += InstInfo.mayLoad;
3995     }
3996 
3997     // Analyze the source pattern.
3998     InstAnalyzer PatInfo(*this);
3999     PatInfo.Analyze(PTM);
4000 
4001     // Collect error messages.
4002     SmallVector<std::string, 4> Msgs;
4003 
4004     // Check for missing flags in the output.
4005     // Permit extra flags for now at least.
4006     if (PatInfo.hasSideEffects && !NumSideEffects)
4007       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4008 
4009     // Don't verify store flags on instructions with side effects. At least for
4010     // intrinsics, side effects implies mayStore.
4011     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4012       Msgs.push_back("pattern may store, but mayStore isn't set");
4013 
4014     // Similarly, mayStore implies mayLoad on intrinsics.
4015     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4016       Msgs.push_back("pattern may load, but mayLoad isn't set");
4017 
4018     // Print error messages.
4019     if (Msgs.empty())
4020       continue;
4021     ++Errors;
4022 
4023     for (const std::string &Msg : Msgs)
4024       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4025                  (Instrs.size() == 1 ?
4026                   "instruction" : "output instructions"));
4027     // Provide the location of the relevant instruction definitions.
4028     for (const Record *Instr : Instrs) {
4029       if (Instr != PTM.getSrcRecord())
4030         PrintError(Instr->getLoc(), "defined here");
4031       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4032       if (InstInfo.InferredFrom &&
4033           InstInfo.InferredFrom != InstInfo.TheDef &&
4034           InstInfo.InferredFrom != PTM.getSrcRecord())
4035         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4036     }
4037   }
4038   if (Errors)
4039     PrintFatalError("Errors in DAG patterns");
4040 }
4041 
4042 /// Given a pattern result with an unresolved type, see if we can find one
4043 /// instruction with an unresolved result type.  Force this result type to an
4044 /// arbitrary element if it's possible types to converge results.
4045 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4046   if (N->isLeaf())
4047     return false;
4048 
4049   // Analyze children.
4050   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4051     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4052       return true;
4053 
4054   if (!N->getOperator()->isSubClassOf("Instruction"))
4055     return false;
4056 
4057   // If this type is already concrete or completely unknown we can't do
4058   // anything.
4059   TypeInfer &TI = TP.getInfer();
4060   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4061     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4062       continue;
4063 
4064     // Otherwise, force its type to an arbitrary choice.
4065     if (TI.forceArbitrary(N->getExtType(i)))
4066       return true;
4067   }
4068 
4069   return false;
4070 }
4071 
4072 // Promote xform function to be an explicit node wherever set.
4073 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4074   if (Record *Xform = N->getTransformFn()) {
4075       N->setTransformFn(nullptr);
4076       std::vector<TreePatternNodePtr> Children;
4077       Children.push_back(PromoteXForms(N));
4078       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4079                                                N->getNumTypes());
4080   }
4081 
4082   if (!N->isLeaf())
4083     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4084       TreePatternNodePtr Child = N->getChildShared(i);
4085       N->setChild(i, PromoteXForms(Child));
4086     }
4087   return N;
4088 }
4089 
4090 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4091        TreePattern &Pattern, TreePattern &Result,
4092        const std::vector<Record *> &InstImpResults) {
4093 
4094   // Inline pattern fragments and expand multiple alternatives.
4095   Pattern.InlinePatternFragments();
4096   Result.InlinePatternFragments();
4097 
4098   if (Result.getNumTrees() != 1)
4099     Result.error("Cannot use multi-alternative fragments in result pattern!");
4100 
4101   // Infer types.
4102   bool IterateInference;
4103   bool InferredAllPatternTypes, InferredAllResultTypes;
4104   do {
4105     // Infer as many types as possible.  If we cannot infer all of them, we
4106     // can never do anything with this pattern: report it to the user.
4107     InferredAllPatternTypes =
4108         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4109 
4110     // Infer as many types as possible.  If we cannot infer all of them, we
4111     // can never do anything with this pattern: report it to the user.
4112     InferredAllResultTypes =
4113         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4114 
4115     IterateInference = false;
4116 
4117     // Apply the type of the result to the source pattern.  This helps us
4118     // resolve cases where the input type is known to be a pointer type (which
4119     // is considered resolved), but the result knows it needs to be 32- or
4120     // 64-bits.  Infer the other way for good measure.
4121     for (auto T : Pattern.getTrees())
4122       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4123                                         T->getNumTypes());
4124          i != e; ++i) {
4125         IterateInference |= T->UpdateNodeType(
4126             i, Result.getOnlyTree()->getExtType(i), Result);
4127         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4128             i, T->getExtType(i), Result);
4129       }
4130 
4131     // If our iteration has converged and the input pattern's types are fully
4132     // resolved but the result pattern is not fully resolved, we may have a
4133     // situation where we have two instructions in the result pattern and
4134     // the instructions require a common register class, but don't care about
4135     // what actual MVT is used.  This is actually a bug in our modelling:
4136     // output patterns should have register classes, not MVTs.
4137     //
4138     // In any case, to handle this, we just go through and disambiguate some
4139     // arbitrary types to the result pattern's nodes.
4140     if (!IterateInference && InferredAllPatternTypes &&
4141         !InferredAllResultTypes)
4142       IterateInference =
4143           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4144   } while (IterateInference);
4145 
4146   // Verify that we inferred enough types that we can do something with the
4147   // pattern and result.  If these fire the user has to add type casts.
4148   if (!InferredAllPatternTypes)
4149     Pattern.error("Could not infer all types in pattern!");
4150   if (!InferredAllResultTypes) {
4151     Pattern.dump();
4152     Result.error("Could not infer all types in pattern result!");
4153   }
4154 
4155   // Promote xform function to be an explicit node wherever set.
4156   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4157 
4158   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4159   Temp.InferAllTypes();
4160 
4161   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4162   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4163 
4164   if (PatternRewriter)
4165     PatternRewriter(&Pattern);
4166 
4167   // A pattern may end up with an "impossible" type, i.e. a situation
4168   // where all types have been eliminated for some node in this pattern.
4169   // This could occur for intrinsics that only make sense for a specific
4170   // value type, and use a specific register class. If, for some mode,
4171   // that register class does not accept that type, the type inference
4172   // will lead to a contradiction, which is not an error however, but
4173   // a sign that this pattern will simply never match.
4174   if (Temp.getOnlyTree()->hasPossibleType())
4175     for (auto T : Pattern.getTrees())
4176       if (T->hasPossibleType())
4177         AddPatternToMatch(&Pattern,
4178                           PatternToMatch(TheDef, makePredList(Preds),
4179                                          T, Temp.getOnlyTree(),
4180                                          InstImpResults, Complexity,
4181                                          TheDef->getID()));
4182 }
4183 
4184 void CodeGenDAGPatterns::ParsePatterns() {
4185   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4186 
4187   for (Record *CurPattern : Patterns) {
4188     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4189 
4190     // If the pattern references the null_frag, there's nothing to do.
4191     if (hasNullFragReference(Tree))
4192       continue;
4193 
4194     TreePattern Pattern(CurPattern, Tree, true, *this);
4195 
4196     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4197     if (LI->empty()) continue;  // no pattern.
4198 
4199     // Parse the instruction.
4200     TreePattern Result(CurPattern, LI, false, *this);
4201 
4202     if (Result.getNumTrees() != 1)
4203       Result.error("Cannot handle instructions producing instructions "
4204                    "with temporaries yet!");
4205 
4206     // Validate that the input pattern is correct.
4207     std::map<std::string, TreePatternNodePtr> InstInputs;
4208     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4209         InstResults;
4210     std::vector<Record*> InstImpResults;
4211     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4212       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4213                                   InstResults, InstImpResults);
4214 
4215     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4216   }
4217 }
4218 
4219 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4220   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4221     for (const auto &I : VTS)
4222       Modes.insert(I.first);
4223 
4224   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4225     collectModes(Modes, N->getChild(i));
4226 }
4227 
4228 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4229   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4230   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4231   std::vector<PatternToMatch> Copy = PatternsToMatch;
4232   PatternsToMatch.clear();
4233 
4234   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4235     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4236     TreePatternNodePtr NewDst = P.DstPattern->clone();
4237     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4238       return;
4239     }
4240 
4241     std::vector<Predicate> Preds = P.Predicates;
4242     const std::vector<Predicate> &MC = ModeChecks[Mode];
4243     Preds.insert(Preds.end(), MC.begin(), MC.end());
4244     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4245                                  std::move(NewDst), P.getDstRegs(),
4246                                  P.getAddedComplexity(), Record::getNewUID(),
4247                                  Mode);
4248   };
4249 
4250   for (PatternToMatch &P : Copy) {
4251     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4252     if (P.SrcPattern->hasProperTypeByHwMode())
4253       SrcP = P.SrcPattern;
4254     if (P.DstPattern->hasProperTypeByHwMode())
4255       DstP = P.DstPattern;
4256     if (!SrcP && !DstP) {
4257       PatternsToMatch.push_back(P);
4258       continue;
4259     }
4260 
4261     std::set<unsigned> Modes;
4262     if (SrcP)
4263       collectModes(Modes, SrcP.get());
4264     if (DstP)
4265       collectModes(Modes, DstP.get());
4266 
4267     // The predicate for the default mode needs to be constructed for each
4268     // pattern separately.
4269     // Since not all modes must be present in each pattern, if a mode m is
4270     // absent, then there is no point in constructing a check for m. If such
4271     // a check was created, it would be equivalent to checking the default
4272     // mode, except not all modes' predicates would be a part of the checking
4273     // code. The subsequently generated check for the default mode would then
4274     // have the exact same patterns, but a different predicate code. To avoid
4275     // duplicated patterns with different predicate checks, construct the
4276     // default check as a negation of all predicates that are actually present
4277     // in the source/destination patterns.
4278     std::vector<Predicate> DefaultPred;
4279 
4280     for (unsigned M : Modes) {
4281       if (M == DefaultMode)
4282         continue;
4283       if (ModeChecks.find(M) != ModeChecks.end())
4284         continue;
4285 
4286       // Fill the map entry for this mode.
4287       const HwMode &HM = CGH.getMode(M);
4288       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4289 
4290       // Add negations of the HM's predicates to the default predicate.
4291       DefaultPred.emplace_back(Predicate(HM.Features, false));
4292     }
4293 
4294     for (unsigned M : Modes) {
4295       if (M == DefaultMode)
4296         continue;
4297       AppendPattern(P, M);
4298     }
4299 
4300     bool HasDefault = Modes.count(DefaultMode);
4301     if (HasDefault)
4302       AppendPattern(P, DefaultMode);
4303   }
4304 }
4305 
4306 /// Dependent variable map for CodeGenDAGPattern variant generation
4307 typedef StringMap<int> DepVarMap;
4308 
4309 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4310   if (N->isLeaf()) {
4311     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4312       DepMap[N->getName()]++;
4313   } else {
4314     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4315       FindDepVarsOf(N->getChild(i), DepMap);
4316   }
4317 }
4318 
4319 /// Find dependent variables within child patterns
4320 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4321   DepVarMap depcounts;
4322   FindDepVarsOf(N, depcounts);
4323   for (const auto &Pair : depcounts) {
4324     if (Pair.getValue() > 1)
4325       DepVars.insert(Pair.getKey());
4326   }
4327 }
4328 
4329 #ifndef NDEBUG
4330 /// Dump the dependent variable set:
4331 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4332   if (DepVars.empty()) {
4333     LLVM_DEBUG(errs() << "<empty set>");
4334   } else {
4335     LLVM_DEBUG(errs() << "[ ");
4336     for (const auto &DepVar : DepVars) {
4337       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4338     }
4339     LLVM_DEBUG(errs() << "]");
4340   }
4341 }
4342 #endif
4343 
4344 
4345 /// CombineChildVariants - Given a bunch of permutations of each child of the
4346 /// 'operator' node, put them together in all possible ways.
4347 static void CombineChildVariants(
4348     TreePatternNodePtr Orig,
4349     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4350     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4351     const MultipleUseVarSet &DepVars) {
4352   // Make sure that each operand has at least one variant to choose from.
4353   for (const auto &Variants : ChildVariants)
4354     if (Variants.empty())
4355       return;
4356 
4357   // The end result is an all-pairs construction of the resultant pattern.
4358   std::vector<unsigned> Idxs;
4359   Idxs.resize(ChildVariants.size());
4360   bool NotDone;
4361   do {
4362 #ifndef NDEBUG
4363     LLVM_DEBUG(if (!Idxs.empty()) {
4364       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4365       for (unsigned Idx : Idxs) {
4366         errs() << Idx << " ";
4367       }
4368       errs() << "]\n";
4369     });
4370 #endif
4371     // Create the variant and add it to the output list.
4372     std::vector<TreePatternNodePtr> NewChildren;
4373     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4374       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4375     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4376         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4377 
4378     // Copy over properties.
4379     R->setName(Orig->getName());
4380     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4381     R->setPredicateCalls(Orig->getPredicateCalls());
4382     R->setTransformFn(Orig->getTransformFn());
4383     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4384       R->setType(i, Orig->getExtType(i));
4385 
4386     // If this pattern cannot match, do not include it as a variant.
4387     std::string ErrString;
4388     // Scan to see if this pattern has already been emitted.  We can get
4389     // duplication due to things like commuting:
4390     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4391     // which are the same pattern.  Ignore the dups.
4392     if (R->canPatternMatch(ErrString, CDP) &&
4393         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4394           return R->isIsomorphicTo(Variant.get(), DepVars);
4395         }))
4396       OutVariants.push_back(R);
4397 
4398     // Increment indices to the next permutation by incrementing the
4399     // indices from last index backward, e.g., generate the sequence
4400     // [0, 0], [0, 1], [1, 0], [1, 1].
4401     int IdxsIdx;
4402     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4403       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4404         Idxs[IdxsIdx] = 0;
4405       else
4406         break;
4407     }
4408     NotDone = (IdxsIdx >= 0);
4409   } while (NotDone);
4410 }
4411 
4412 /// CombineChildVariants - A helper function for binary operators.
4413 ///
4414 static void CombineChildVariants(TreePatternNodePtr Orig,
4415                                  const std::vector<TreePatternNodePtr> &LHS,
4416                                  const std::vector<TreePatternNodePtr> &RHS,
4417                                  std::vector<TreePatternNodePtr> &OutVariants,
4418                                  CodeGenDAGPatterns &CDP,
4419                                  const MultipleUseVarSet &DepVars) {
4420   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4421   ChildVariants.push_back(LHS);
4422   ChildVariants.push_back(RHS);
4423   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4424 }
4425 
4426 static void
4427 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4428                                   std::vector<TreePatternNodePtr> &Children) {
4429   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4430   Record *Operator = N->getOperator();
4431 
4432   // Only permit raw nodes.
4433   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4434       N->getTransformFn()) {
4435     Children.push_back(N);
4436     return;
4437   }
4438 
4439   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4440     Children.push_back(N->getChildShared(0));
4441   else
4442     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4443 
4444   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4445     Children.push_back(N->getChildShared(1));
4446   else
4447     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4448 }
4449 
4450 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4451 /// the (potentially recursive) pattern by using algebraic laws.
4452 ///
4453 static void GenerateVariantsOf(TreePatternNodePtr N,
4454                                std::vector<TreePatternNodePtr> &OutVariants,
4455                                CodeGenDAGPatterns &CDP,
4456                                const MultipleUseVarSet &DepVars) {
4457   // We cannot permute leaves or ComplexPattern uses.
4458   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4459     OutVariants.push_back(N);
4460     return;
4461   }
4462 
4463   // Look up interesting info about the node.
4464   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4465 
4466   // If this node is associative, re-associate.
4467   if (NodeInfo.hasProperty(SDNPAssociative)) {
4468     // Re-associate by pulling together all of the linked operators
4469     std::vector<TreePatternNodePtr> MaximalChildren;
4470     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4471 
4472     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4473     // permutations.
4474     if (MaximalChildren.size() == 3) {
4475       // Find the variants of all of our maximal children.
4476       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4477       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4478       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4479       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4480 
4481       // There are only two ways we can permute the tree:
4482       //   (A op B) op C    and    A op (B op C)
4483       // Within these forms, we can also permute A/B/C.
4484 
4485       // Generate legal pair permutations of A/B/C.
4486       std::vector<TreePatternNodePtr> ABVariants;
4487       std::vector<TreePatternNodePtr> BAVariants;
4488       std::vector<TreePatternNodePtr> ACVariants;
4489       std::vector<TreePatternNodePtr> CAVariants;
4490       std::vector<TreePatternNodePtr> BCVariants;
4491       std::vector<TreePatternNodePtr> CBVariants;
4492       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4493       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4494       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4495       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4496       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4497       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4498 
4499       // Combine those into the result: (x op x) op x
4500       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4501       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4502       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4503       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4504       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4505       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4506 
4507       // Combine those into the result: x op (x op x)
4508       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4509       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4510       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4511       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4512       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4513       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4514       return;
4515     }
4516   }
4517 
4518   // Compute permutations of all children.
4519   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4520   ChildVariants.resize(N->getNumChildren());
4521   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4522     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4523 
4524   // Build all permutations based on how the children were formed.
4525   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4526 
4527   // If this node is commutative, consider the commuted order.
4528   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4529   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4530     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4531            "Commutative but doesn't have 2 children!");
4532     // Don't count children which are actually register references.
4533     unsigned NC = 0;
4534     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4535       TreePatternNode *Child = N->getChild(i);
4536       if (Child->isLeaf())
4537         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4538           Record *RR = DI->getDef();
4539           if (RR->isSubClassOf("Register"))
4540             continue;
4541         }
4542       NC++;
4543     }
4544     // Consider the commuted order.
4545     if (isCommIntrinsic) {
4546       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4547       // operands are the commutative operands, and there might be more operands
4548       // after those.
4549       assert(NC >= 3 &&
4550              "Commutative intrinsic should have at least 3 children!");
4551       std::vector<std::vector<TreePatternNodePtr>> Variants;
4552       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4553       Variants.push_back(std::move(ChildVariants[2]));
4554       Variants.push_back(std::move(ChildVariants[1]));
4555       for (unsigned i = 3; i != NC; ++i)
4556         Variants.push_back(std::move(ChildVariants[i]));
4557       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4558     } else if (NC == N->getNumChildren()) {
4559       std::vector<std::vector<TreePatternNodePtr>> Variants;
4560       Variants.push_back(std::move(ChildVariants[1]));
4561       Variants.push_back(std::move(ChildVariants[0]));
4562       for (unsigned i = 2; i != NC; ++i)
4563         Variants.push_back(std::move(ChildVariants[i]));
4564       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4565     }
4566   }
4567 }
4568 
4569 
4570 // GenerateVariants - Generate variants.  For example, commutative patterns can
4571 // match multiple ways.  Add them to PatternsToMatch as well.
4572 void CodeGenDAGPatterns::GenerateVariants() {
4573   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4574 
4575   // Loop over all of the patterns we've collected, checking to see if we can
4576   // generate variants of the instruction, through the exploitation of
4577   // identities.  This permits the target to provide aggressive matching without
4578   // the .td file having to contain tons of variants of instructions.
4579   //
4580   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4581   // intentionally do not reconsider these.  Any variants of added patterns have
4582   // already been added.
4583   //
4584   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4585   BitVector MatchedPatterns(NumOriginalPatterns);
4586   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4587                                            BitVector(NumOriginalPatterns));
4588 
4589   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4590       DepsAndVariants;
4591   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4592 
4593   // Collect patterns with more than one variant.
4594   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4595     MultipleUseVarSet DepVars;
4596     std::vector<TreePatternNodePtr> Variants;
4597     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4598     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4599     LLVM_DEBUG(DumpDepVars(DepVars));
4600     LLVM_DEBUG(errs() << "\n");
4601     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4602                        *this, DepVars);
4603 
4604     assert(!Variants.empty() && "Must create at least original variant!");
4605     if (Variants.size() == 1) // No additional variants for this pattern.
4606       continue;
4607 
4608     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4609                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4610 
4611     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4612 
4613     // Cache matching predicates.
4614     if (MatchedPatterns[i])
4615       continue;
4616 
4617     const std::vector<Predicate> &Predicates =
4618         PatternsToMatch[i].getPredicates();
4619 
4620     BitVector &Matches = MatchedPredicates[i];
4621     MatchedPatterns.set(i);
4622     Matches.set(i);
4623 
4624     // Don't test patterns that have already been cached - it won't match.
4625     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4626       if (!MatchedPatterns[p])
4627         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4628 
4629     // Copy this to all the matching patterns.
4630     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4631       if (p != (int)i) {
4632         MatchedPatterns.set(p);
4633         MatchedPredicates[p] = Matches;
4634       }
4635   }
4636 
4637   for (auto it : PatternsWithVariants) {
4638     unsigned i = it.first;
4639     const MultipleUseVarSet &DepVars = it.second.first;
4640     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4641 
4642     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4643       TreePatternNodePtr Variant = Variants[v];
4644       BitVector &Matches = MatchedPredicates[i];
4645 
4646       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4647                  errs() << "\n");
4648 
4649       // Scan to see if an instruction or explicit pattern already matches this.
4650       bool AlreadyExists = false;
4651       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4652         // Skip if the top level predicates do not match.
4653         if (!Matches[p])
4654           continue;
4655         // Check to see if this variant already exists.
4656         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4657                                     DepVars)) {
4658           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4659           AlreadyExists = true;
4660           break;
4661         }
4662       }
4663       // If we already have it, ignore the variant.
4664       if (AlreadyExists) continue;
4665 
4666       // Otherwise, add it to the list of patterns we have.
4667       PatternsToMatch.push_back(PatternToMatch(
4668           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4669           Variant, PatternsToMatch[i].getDstPatternShared(),
4670           PatternsToMatch[i].getDstRegs(),
4671           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4672       MatchedPredicates.push_back(Matches);
4673 
4674       // Add a new match the same as this pattern.
4675       for (auto &P : MatchedPredicates)
4676         P.push_back(P[i]);
4677     }
4678 
4679     LLVM_DEBUG(errs() << "\n");
4680   }
4681 }
4682