1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/TableGen/Error.h"
26 #include "llvm/TableGen/Record.h"
27 #include <algorithm>
28 #include <cstdio>
29 #include <set>
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "dag-patterns"
33 
34 static inline bool isIntegerOrPtr(MVT VT) {
35   return VT.isInteger() || VT == MVT::iPTR;
36 }
37 static inline bool isFloatingPoint(MVT VT) {
38   return VT.isFloatingPoint();
39 }
40 static inline bool isVector(MVT VT) {
41   return VT.isVector();
42 }
43 static inline bool isScalar(MVT VT) {
44   return !VT.isVector();
45 }
46 
47 template <typename Predicate>
48 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
49   bool Erased = false;
50   // It is ok to iterate over MachineValueTypeSet and remove elements from it
51   // at the same time.
52   for (MVT T : S) {
53     if (!P(T))
54       continue;
55     Erased = true;
56     S.erase(T);
57   }
58   return Erased;
59 }
60 
61 // --- TypeSetByHwMode
62 
63 // This is a parameterized type-set class. For each mode there is a list
64 // of types that are currently possible for a given tree node. Type
65 // inference will apply to each mode separately.
66 
67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
68   for (const ValueTypeByHwMode &VVT : VTList)
69     insert(VVT);
70 }
71 
72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
73   for (const auto &I : *this) {
74     if (I.second.size() > 1)
75       return false;
76     if (!AllowEmpty && I.second.empty())
77       return false;
78   }
79   return true;
80 }
81 
82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
83   assert(isValueTypeByHwMode(true) &&
84          "The type set has multiple types for at least one HW mode");
85   ValueTypeByHwMode VVT;
86   for (const auto &I : *this) {
87     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
88     VVT.getOrCreateTypeForMode(I.first, T);
89   }
90   return VVT;
91 }
92 
93 bool TypeSetByHwMode::isPossible() const {
94   for (const auto &I : *this)
95     if (!I.second.empty())
96       return true;
97   return false;
98 }
99 
100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
101   bool Changed = false;
102   SmallDenseSet<unsigned, 4> Modes;
103   for (const auto &P : VVT) {
104     unsigned M = P.first;
105     Modes.insert(M);
106     // Make sure there exists a set for each specific mode from VVT.
107     Changed |= getOrCreate(M).insert(P.second).second;
108   }
109 
110   // If VVT has a default mode, add the corresponding type to all
111   // modes in "this" that do not exist in VVT.
112   if (Modes.count(DefaultMode)) {
113     MVT DT = VVT.getType(DefaultMode);
114     for (auto &I : *this)
115       if (!Modes.count(I.first))
116         Changed |= I.second.insert(DT).second;
117   }
118   return Changed;
119 }
120 
121 // Constrain the type set to be the intersection with VTS.
122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
123   bool Changed = false;
124   if (hasDefault()) {
125     for (const auto &I : VTS) {
126       unsigned M = I.first;
127       if (M == DefaultMode || hasMode(M))
128         continue;
129       Map.insert({M, Map.at(DefaultMode)});
130       Changed = true;
131     }
132   }
133 
134   for (auto &I : *this) {
135     unsigned M = I.first;
136     SetType &S = I.second;
137     if (VTS.hasMode(M) || VTS.hasDefault()) {
138       Changed |= intersect(I.second, VTS.get(M));
139     } else if (!S.empty()) {
140       S.clear();
141       Changed = true;
142     }
143   }
144   return Changed;
145 }
146 
147 template <typename Predicate>
148 bool TypeSetByHwMode::constrain(Predicate P) {
149   bool Changed = false;
150   for (auto &I : *this)
151     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
152   return Changed;
153 }
154 
155 template <typename Predicate>
156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
157   assert(empty());
158   for (const auto &I : VTS) {
159     SetType &S = getOrCreate(I.first);
160     for (auto J : I.second)
161       if (P(J))
162         S.insert(J);
163   }
164   return !empty();
165 }
166 
167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
168   SmallVector<unsigned, 4> Modes;
169   Modes.reserve(Map.size());
170 
171   for (const auto &I : *this)
172     Modes.push_back(I.first);
173   if (Modes.empty()) {
174     OS << "{}";
175     return;
176   }
177   array_pod_sort(Modes.begin(), Modes.end());
178 
179   OS << '{';
180   for (unsigned M : Modes) {
181     OS << ' ' << getModeName(M) << ':';
182     writeToStream(get(M), OS);
183   }
184   OS << " }";
185 }
186 
187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
188   SmallVector<MVT, 4> Types(S.begin(), S.end());
189   array_pod_sort(Types.begin(), Types.end());
190 
191   OS << '[';
192   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
193     OS << ValueTypeByHwMode::getMVTName(Types[i]);
194     if (i != e-1)
195       OS << ' ';
196   }
197   OS << ']';
198 }
199 
200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
201   bool HaveDefault = hasDefault();
202   if (HaveDefault != VTS.hasDefault())
203     return false;
204 
205   if (isSimple()) {
206     if (VTS.isSimple())
207       return *begin() == *VTS.begin();
208     return false;
209   }
210 
211   SmallDenseSet<unsigned, 4> Modes;
212   for (auto &I : *this)
213     Modes.insert(I.first);
214   for (const auto &I : VTS)
215     Modes.insert(I.first);
216 
217   if (HaveDefault) {
218     // Both sets have default mode.
219     for (unsigned M : Modes) {
220       if (get(M) != VTS.get(M))
221         return false;
222     }
223   } else {
224     // Neither set has default mode.
225     for (unsigned M : Modes) {
226       // If there is no default mode, an empty set is equivalent to not having
227       // the corresponding mode.
228       bool NoModeThis = !hasMode(M) || get(M).empty();
229       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
230       if (NoModeThis != NoModeVTS)
231         return false;
232       if (!NoModeThis)
233         if (get(M) != VTS.get(M))
234           return false;
235     }
236   }
237 
238   return true;
239 }
240 
241 namespace llvm {
242   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
243     T.writeToStream(OS);
244     return OS;
245   }
246 }
247 
248 LLVM_DUMP_METHOD
249 void TypeSetByHwMode::dump() const {
250   dbgs() << *this << '\n';
251 }
252 
253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
254   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
255   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
256 
257   if (OutP == InP)
258     return berase_if(Out, Int);
259 
260   // Compute the intersection of scalars separately to account for only
261   // one set containing iPTR.
262   // The itersection of iPTR with a set of integer scalar types that does not
263   // include iPTR will result in the most specific scalar type:
264   // - iPTR is more specific than any set with two elements or more
265   // - iPTR is less specific than any single integer scalar type.
266   // For example
267   // { iPTR } * { i32 }     -> { i32 }
268   // { iPTR } * { i32 i64 } -> { iPTR }
269   // and
270   // { iPTR i32 } * { i32 }          -> { i32 }
271   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
272   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
273 
274   // Compute the difference between the two sets in such a way that the
275   // iPTR is in the set that is being subtracted. This is to see if there
276   // are any extra scalars in the set without iPTR that are not in the
277   // set containing iPTR. Then the iPTR could be considered a "wildcard"
278   // matching these scalars. If there is only one such scalar, it would
279   // replace the iPTR, if there are more, the iPTR would be retained.
280   SetType Diff;
281   if (InP) {
282     Diff = Out;
283     berase_if(Diff, [&In](MVT T) { return In.count(T); });
284     // Pre-remove these elements and rely only on InP/OutP to determine
285     // whether a change has been made.
286     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
287   } else {
288     Diff = In;
289     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
290     Out.erase(MVT::iPTR);
291   }
292 
293   // The actual intersection.
294   bool Changed = berase_if(Out, Int);
295   unsigned NumD = Diff.size();
296   if (NumD == 0)
297     return Changed;
298 
299   if (NumD == 1) {
300     Out.insert(*Diff.begin());
301     // This is a change only if Out was the one with iPTR (which is now
302     // being replaced).
303     Changed |= OutP;
304   } else {
305     // Multiple elements from Out are now replaced with iPTR.
306     Out.insert(MVT::iPTR);
307     Changed |= !OutP;
308   }
309   return Changed;
310 }
311 
312 void TypeSetByHwMode::validate() const {
313 #ifndef NDEBUG
314   if (empty())
315     return;
316   bool AllEmpty = true;
317   for (const auto &I : *this)
318     AllEmpty &= I.second.empty();
319   assert(!AllEmpty &&
320           "type set is empty for each HW mode: type contradiction?");
321 #endif
322 }
323 
324 // --- TypeInfer
325 
326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
327                                 const TypeSetByHwMode &In) {
328   ValidateOnExit _1(Out);
329   In.validate();
330   if (In.empty() || Out == In || TP.hasError())
331     return false;
332   if (Out.empty()) {
333     Out = In;
334     return true;
335   }
336 
337   bool Changed = Out.constrain(In);
338   if (Changed && Out.empty())
339     TP.error("Type contradiction");
340 
341   return Changed;
342 }
343 
344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
345   ValidateOnExit _1(Out);
346   if (TP.hasError())
347     return false;
348   assert(!Out.empty() && "cannot pick from an empty set");
349 
350   bool Changed = false;
351   for (auto &I : Out) {
352     TypeSetByHwMode::SetType &S = I.second;
353     if (S.size() <= 1)
354       continue;
355     MVT T = *S.begin(); // Pick the first element.
356     S.clear();
357     S.insert(T);
358     Changed = true;
359   }
360   return Changed;
361 }
362 
363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
364   ValidateOnExit _1(Out);
365   if (TP.hasError())
366     return false;
367   if (!Out.empty())
368     return Out.constrain(isIntegerOrPtr);
369 
370   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
371 }
372 
373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
374   ValidateOnExit _1(Out);
375   if (TP.hasError())
376     return false;
377   if (!Out.empty())
378     return Out.constrain(isFloatingPoint);
379 
380   return Out.assign_if(getLegalTypes(), isFloatingPoint);
381 }
382 
383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
384   ValidateOnExit _1(Out);
385   if (TP.hasError())
386     return false;
387   if (!Out.empty())
388     return Out.constrain(isScalar);
389 
390   return Out.assign_if(getLegalTypes(), isScalar);
391 }
392 
393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
394   ValidateOnExit _1(Out);
395   if (TP.hasError())
396     return false;
397   if (!Out.empty())
398     return Out.constrain(isVector);
399 
400   return Out.assign_if(getLegalTypes(), isVector);
401 }
402 
403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
404   ValidateOnExit _1(Out);
405   if (TP.hasError() || !Out.empty())
406     return false;
407 
408   Out = getLegalTypes();
409   return true;
410 }
411 
412 template <typename Iter, typename Pred, typename Less>
413 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
414   if (B == E)
415     return E;
416   Iter Min = E;
417   for (Iter I = B; I != E; ++I) {
418     if (!P(*I))
419       continue;
420     if (Min == E || L(*I, *Min))
421       Min = I;
422   }
423   return Min;
424 }
425 
426 template <typename Iter, typename Pred, typename Less>
427 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
428   if (B == E)
429     return E;
430   Iter Max = E;
431   for (Iter I = B; I != E; ++I) {
432     if (!P(*I))
433       continue;
434     if (Max == E || L(*Max, *I))
435       Max = I;
436   }
437   return Max;
438 }
439 
440 /// Make sure that for each type in Small, there exists a larger type in Big.
441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
442                                    TypeSetByHwMode &Big) {
443   ValidateOnExit _1(Small), _2(Big);
444   if (TP.hasError())
445     return false;
446   bool Changed = false;
447 
448   if (Small.empty())
449     Changed |= EnforceAny(Small);
450   if (Big.empty())
451     Changed |= EnforceAny(Big);
452 
453   assert(Small.hasDefault() && Big.hasDefault());
454 
455   std::vector<unsigned> Modes = union_modes(Small, Big);
456 
457   // 1. Only allow integer or floating point types and make sure that
458   //    both sides are both integer or both floating point.
459   // 2. Make sure that either both sides have vector types, or neither
460   //    of them does.
461   for (unsigned M : Modes) {
462     TypeSetByHwMode::SetType &S = Small.get(M);
463     TypeSetByHwMode::SetType &B = Big.get(M);
464 
465     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
466       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
467       Changed |= berase_if(S, NotInt) |
468                  berase_if(B, NotInt);
469     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
470       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
471       Changed |= berase_if(S, NotFP) |
472                  berase_if(B, NotFP);
473     } else if (S.empty() || B.empty()) {
474       Changed = !S.empty() || !B.empty();
475       S.clear();
476       B.clear();
477     } else {
478       TP.error("Incompatible types");
479       return Changed;
480     }
481 
482     if (none_of(S, isVector) || none_of(B, isVector)) {
483       Changed |= berase_if(S, isVector) |
484                  berase_if(B, isVector);
485     }
486   }
487 
488   auto LT = [](MVT A, MVT B) -> bool {
489     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
490            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
491             A.getSizeInBits() < B.getSizeInBits());
492   };
493   auto LE = [](MVT A, MVT B) -> bool {
494     // This function is used when removing elements: when a vector is compared
495     // to a non-vector, it should return false (to avoid removal).
496     if (A.isVector() != B.isVector())
497       return false;
498 
499     // Note on the < comparison below:
500     // X86 has patterns like
501     //   (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))),
502     // where the truncated vector is given a type v16i8, while the source
503     // vector has type v4i32. They both have the same size in bits.
504     // The minimal type in the result is obviously v16i8, and when we remove
505     // all types from the source that are smaller-or-equal than v8i16, the
506     // only source type would also be removed (since it's equal in size).
507     return A.getScalarSizeInBits() <= B.getScalarSizeInBits() ||
508            A.getSizeInBits() < B.getSizeInBits();
509   };
510 
511   for (unsigned M : Modes) {
512     TypeSetByHwMode::SetType &S = Small.get(M);
513     TypeSetByHwMode::SetType &B = Big.get(M);
514     // MinS = min scalar in Small, remove all scalars from Big that are
515     // smaller-or-equal than MinS.
516     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
517     if (MinS != S.end()) {
518       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
519       if (B.empty()) {
520         TP.error("Type contradiction in " +
521                  Twine(__func__) + ":" + Twine(__LINE__));
522         return Changed;
523       }
524     }
525     // MaxS = max scalar in Big, remove all scalars from Small that are
526     // larger than MaxS.
527     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
528     if (MaxS != B.end()) {
529       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
530       if (B.empty()) {
531         TP.error("Type contradiction in " +
532                  Twine(__func__) + ":" + Twine(__LINE__));
533         return Changed;
534       }
535     }
536 
537     // MinV = min vector in Small, remove all vectors from Big that are
538     // smaller-or-equal than MinV.
539     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
540     if (MinV != S.end()) {
541       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
542       if (B.empty()) {
543         TP.error("Type contradiction in " +
544                  Twine(__func__) + ":" + Twine(__LINE__));
545         return Changed;
546       }
547     }
548     // MaxV = max vector in Big, remove all vectors from Small that are
549     // larger than MaxV.
550     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
551     if (MaxV != B.end()) {
552       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
553       if (B.empty()) {
554         TP.error("Type contradiction in " +
555                  Twine(__func__) + ":" + Twine(__LINE__));
556         return Changed;
557       }
558     }
559   }
560 
561   return Changed;
562 }
563 
564 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
565 ///    for each type U in Elem, U is a scalar type.
566 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
567 ///    type T in Vec, such that U is the element type of T.
568 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
569                                        TypeSetByHwMode &Elem) {
570   ValidateOnExit _1(Vec), _2(Elem);
571   if (TP.hasError())
572     return false;
573   bool Changed = false;
574 
575   if (Vec.empty())
576     Changed |= EnforceVector(Vec);
577   if (Elem.empty())
578     Changed |= EnforceScalar(Elem);
579 
580   for (unsigned M : union_modes(Vec, Elem)) {
581     TypeSetByHwMode::SetType &V = Vec.get(M);
582     TypeSetByHwMode::SetType &E = Elem.get(M);
583 
584     Changed |= berase_if(V, isScalar);  // Scalar = !vector
585     Changed |= berase_if(E, isVector);  // Vector = !scalar
586     assert(!V.empty() && !E.empty());
587 
588     SmallSet<MVT,4> VT, ST;
589     // Collect element types from the "vector" set.
590     for (MVT T : V)
591       VT.insert(T.getVectorElementType());
592     // Collect scalar types from the "element" set.
593     for (MVT T : E)
594       ST.insert(T);
595 
596     // Remove from V all (vector) types whose element type is not in S.
597     Changed |= berase_if(V, [&ST](MVT T) -> bool {
598                               return !ST.count(T.getVectorElementType());
599                             });
600     // Remove from E all (scalar) types, for which there is no corresponding
601     // type in V.
602     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
603 
604     if (V.empty() || E.empty()) {
605       TP.error("Type contradiction in " +
606                Twine(__func__) + ":" + Twine(__LINE__));
607       return Changed;
608     }
609   }
610 
611   return Changed;
612 }
613 
614 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
615                                        const ValueTypeByHwMode &VVT) {
616   TypeSetByHwMode Tmp(VVT);
617   ValidateOnExit _1(Vec), _2(Tmp);
618   return EnforceVectorEltTypeIs(Vec, Tmp);
619 }
620 
621 /// Ensure that for each type T in Sub, T is a vector type, and there
622 /// exists a type U in Vec such that U is a vector type with the same
623 /// element type as T and at least as many elements as T.
624 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
625                                              TypeSetByHwMode &Sub) {
626   ValidateOnExit _1(Vec), _2(Sub);
627   if (TP.hasError())
628     return false;
629 
630   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
631   auto IsSubVec = [](MVT B, MVT P) -> bool {
632     if (!B.isVector() || !P.isVector())
633       return false;
634     if (B.getVectorElementType() != P.getVectorElementType())
635       return false;
636     return B.getVectorNumElements() < P.getVectorNumElements();
637   };
638 
639   /// Return true if S has no element (vector type) that T is a sub-vector of,
640   /// i.e. has the same element type as T and more elements.
641   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
642     for (const auto &I : S)
643       if (IsSubVec(T, I))
644         return false;
645     return true;
646   };
647 
648   /// Return true if S has no element (vector type) that T is a super-vector
649   /// of, i.e. has the same element type as T and fewer elements.
650   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
651     for (const auto &I : S)
652       if (IsSubVec(I, T))
653         return false;
654     return true;
655   };
656 
657   bool Changed = false;
658 
659   if (Vec.empty())
660     Changed |= EnforceVector(Vec);
661   if (Sub.empty())
662     Changed |= EnforceVector(Sub);
663 
664   for (unsigned M : union_modes(Vec, Sub)) {
665     TypeSetByHwMode::SetType &S = Sub.get(M);
666     TypeSetByHwMode::SetType &V = Vec.get(M);
667 
668     Changed |= berase_if(S, isScalar);
669     if (S.empty()) {
670       TP.error("Type contradiction in " +
671                Twine(__func__) + ":" + Twine(__LINE__));
672       return Changed;
673     }
674 
675     // Erase all types from S that are not sub-vectors of a type in V.
676     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
677     if (S.empty()) {
678       TP.error("Type contradiction in " +
679                Twine(__func__) + ":" + Twine(__LINE__));
680       return Changed;
681     }
682 
683     // Erase all types from V that are not super-vectors of a type in S.
684     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
685     if (V.empty()) {
686       TP.error("Type contradiction in " +
687                Twine(__func__) + ":" + Twine(__LINE__));
688       return Changed;
689     }
690   }
691 
692   return Changed;
693 }
694 
695 /// 1. Ensure that V has a scalar type iff W has a scalar type.
696 /// 2. Ensure that for each vector type T in V, there exists a vector
697 ///    type U in W, such that T and U have the same number of elements.
698 /// 3. Ensure that for each vector type U in W, there exists a vector
699 ///    type T in V, such that T and U have the same number of elements
700 ///    (reverse of 2).
701 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
702   ValidateOnExit _1(V), _2(W);
703   if (TP.hasError())
704     return false;
705 
706   bool Changed = false;
707   if (V.empty())
708     Changed |= EnforceAny(V);
709   if (W.empty())
710     Changed |= EnforceAny(W);
711 
712   // An actual vector type cannot have 0 elements, so we can treat scalars
713   // as zero-length vectors. This way both vectors and scalars can be
714   // processed identically.
715   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
716     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
717   };
718 
719   for (unsigned M : union_modes(V, W)) {
720     TypeSetByHwMode::SetType &VS = V.get(M);
721     TypeSetByHwMode::SetType &WS = W.get(M);
722 
723     SmallSet<unsigned,2> VN, WN;
724     for (MVT T : VS)
725       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
726     for (MVT T : WS)
727       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
728 
729     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
730     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
731   }
732   return Changed;
733 }
734 
735 /// 1. Ensure that for each type T in A, there exists a type U in B,
736 ///    such that T and U have equal size in bits.
737 /// 2. Ensure that for each type U in B, there exists a type T in A
738 ///    such that T and U have equal size in bits (reverse of 1).
739 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
740   ValidateOnExit _1(A), _2(B);
741   if (TP.hasError())
742     return false;
743   bool Changed = false;
744   if (A.empty())
745     Changed |= EnforceAny(A);
746   if (B.empty())
747     Changed |= EnforceAny(B);
748 
749   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
750     return !Sizes.count(T.getSizeInBits());
751   };
752 
753   for (unsigned M : union_modes(A, B)) {
754     TypeSetByHwMode::SetType &AS = A.get(M);
755     TypeSetByHwMode::SetType &BS = B.get(M);
756     SmallSet<unsigned,2> AN, BN;
757 
758     for (MVT T : AS)
759       AN.insert(T.getSizeInBits());
760     for (MVT T : BS)
761       BN.insert(T.getSizeInBits());
762 
763     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
764     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
765   }
766 
767   return Changed;
768 }
769 
770 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
771   ValidateOnExit _1(VTS);
772   TypeSetByHwMode Legal = getLegalTypes();
773   bool HaveLegalDef = Legal.hasDefault();
774 
775   for (auto &I : VTS) {
776     unsigned M = I.first;
777     if (!Legal.hasMode(M) && !HaveLegalDef) {
778       TP.error("Invalid mode " + Twine(M));
779       return;
780     }
781     expandOverloads(I.second, Legal.get(M));
782   }
783 }
784 
785 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
786                                 const TypeSetByHwMode::SetType &Legal) {
787   std::set<MVT> Ovs;
788   for (MVT T : Out) {
789     if (!T.isOverloaded())
790       continue;
791 
792     Ovs.insert(T);
793     // MachineValueTypeSet allows iteration and erasing.
794     Out.erase(T);
795   }
796 
797   for (MVT Ov : Ovs) {
798     switch (Ov.SimpleTy) {
799       case MVT::iPTRAny:
800         Out.insert(MVT::iPTR);
801         return;
802       case MVT::iAny:
803         for (MVT T : MVT::integer_valuetypes())
804           if (Legal.count(T))
805             Out.insert(T);
806         for (MVT T : MVT::integer_vector_valuetypes())
807           if (Legal.count(T))
808             Out.insert(T);
809         return;
810       case MVT::fAny:
811         for (MVT T : MVT::fp_valuetypes())
812           if (Legal.count(T))
813             Out.insert(T);
814         for (MVT T : MVT::fp_vector_valuetypes())
815           if (Legal.count(T))
816             Out.insert(T);
817         return;
818       case MVT::vAny:
819         for (MVT T : MVT::vector_valuetypes())
820           if (Legal.count(T))
821             Out.insert(T);
822         return;
823       case MVT::Any:
824         for (MVT T : MVT::all_valuetypes())
825           if (Legal.count(T))
826             Out.insert(T);
827         return;
828       default:
829         break;
830     }
831   }
832 }
833 
834 TypeSetByHwMode TypeInfer::getLegalTypes() {
835   if (!LegalTypesCached) {
836     // Stuff all types from all modes into the default mode.
837     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
838     for (const auto &I : LTS)
839       LegalCache.insert(I.second);
840     LegalTypesCached = true;
841   }
842   TypeSetByHwMode VTS;
843   VTS.getOrCreate(DefaultMode) = LegalCache;
844   return VTS;
845 }
846 
847 //===----------------------------------------------------------------------===//
848 // TreePredicateFn Implementation
849 //===----------------------------------------------------------------------===//
850 
851 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
852 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
853   assert((getPredCode().empty() || getImmCode().empty()) &&
854         ".td file corrupt: can't have a node predicate *and* an imm predicate");
855 }
856 
857 std::string TreePredicateFn::getPredCode() const {
858   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
859 }
860 
861 std::string TreePredicateFn::getImmCode() const {
862   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
863 }
864 
865 
866 /// isAlwaysTrue - Return true if this is a noop predicate.
867 bool TreePredicateFn::isAlwaysTrue() const {
868   return getPredCode().empty() && getImmCode().empty();
869 }
870 
871 /// Return the name to use in the generated code to reference this, this is
872 /// "Predicate_foo" if from a pattern fragment "foo".
873 std::string TreePredicateFn::getFnName() const {
874   return "Predicate_" + PatFragRec->getRecord()->getName().str();
875 }
876 
877 /// getCodeToRunOnSDNode - Return the code for the function body that
878 /// evaluates this predicate.  The argument is expected to be in "Node",
879 /// not N.  This handles casting and conversion to a concrete node type as
880 /// appropriate.
881 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
882   // Handle immediate predicates first.
883   std::string ImmCode = getImmCode();
884   if (!ImmCode.empty()) {
885     std::string Result =
886       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
887     return Result + ImmCode;
888   }
889 
890   // Handle arbitrary node predicates.
891   assert(!getPredCode().empty() && "Don't have any predicate code!");
892   std::string ClassName;
893   if (PatFragRec->getOnlyTree()->isLeaf())
894     ClassName = "SDNode";
895   else {
896     Record *Op = PatFragRec->getOnlyTree()->getOperator();
897     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
898   }
899   std::string Result;
900   if (ClassName == "SDNode")
901     Result = "    SDNode *N = Node;\n";
902   else
903     Result = "    auto *N = cast<" + ClassName + ">(Node);\n";
904 
905   return Result + getPredCode();
906 }
907 
908 //===----------------------------------------------------------------------===//
909 // PatternToMatch implementation
910 //
911 
912 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
913 /// patterns before small ones.  This is used to determine the size of a
914 /// pattern.
915 static unsigned getPatternSize(const TreePatternNode *P,
916                                const CodeGenDAGPatterns &CGP) {
917   unsigned Size = 3;  // The node itself.
918   // If the root node is a ConstantSDNode, increases its size.
919   // e.g. (set R32:$dst, 0).
920   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
921     Size += 2;
922 
923   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
924   if (AM) {
925     Size += AM->getComplexity();
926 
927     // We don't want to count any children twice, so return early.
928     return Size;
929   }
930 
931   // If this node has some predicate function that must match, it adds to the
932   // complexity of this node.
933   if (!P->getPredicateFns().empty())
934     ++Size;
935 
936   // Count children in the count if they are also nodes.
937   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
938     TreePatternNode *Child = P->getChild(i);
939     if (!Child->isLeaf() && Child->getNumTypes()) {
940       const TypeSetByHwMode &T0 = Child->getType(0);
941       // At this point, all variable type sets should be simple, i.e. only
942       // have a default mode.
943       if (T0.getMachineValueType() != MVT::Other) {
944         Size += getPatternSize(Child, CGP);
945         continue;
946       }
947     }
948     if (Child->isLeaf()) {
949       if (isa<IntInit>(Child->getLeafValue()))
950         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
951       else if (Child->getComplexPatternInfo(CGP))
952         Size += getPatternSize(Child, CGP);
953       else if (!Child->getPredicateFns().empty())
954         ++Size;
955     }
956   }
957 
958   return Size;
959 }
960 
961 /// Compute the complexity metric for the input pattern.  This roughly
962 /// corresponds to the number of nodes that are covered.
963 int PatternToMatch::
964 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
965   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
966 }
967 
968 /// getPredicateCheck - Return a single string containing all of this
969 /// pattern's predicates concatenated with "&&" operators.
970 ///
971 std::string PatternToMatch::getPredicateCheck() const {
972   SmallVector<const Predicate*,4> PredList;
973   for (const Predicate &P : Predicates)
974     PredList.push_back(&P);
975   std::sort(PredList.begin(), PredList.end(), deref<llvm::less>());
976 
977   std::string Check;
978   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
979     if (i != 0)
980       Check += " && ";
981     Check += '(' + PredList[i]->getCondString() + ')';
982   }
983   return Check;
984 }
985 
986 //===----------------------------------------------------------------------===//
987 // SDTypeConstraint implementation
988 //
989 
990 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
991   OperandNo = R->getValueAsInt("OperandNum");
992 
993   if (R->isSubClassOf("SDTCisVT")) {
994     ConstraintType = SDTCisVT;
995     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
996     for (const auto &P : VVT)
997       if (P.second == MVT::isVoid)
998         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
999   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1000     ConstraintType = SDTCisPtrTy;
1001   } else if (R->isSubClassOf("SDTCisInt")) {
1002     ConstraintType = SDTCisInt;
1003   } else if (R->isSubClassOf("SDTCisFP")) {
1004     ConstraintType = SDTCisFP;
1005   } else if (R->isSubClassOf("SDTCisVec")) {
1006     ConstraintType = SDTCisVec;
1007   } else if (R->isSubClassOf("SDTCisSameAs")) {
1008     ConstraintType = SDTCisSameAs;
1009     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1010   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1011     ConstraintType = SDTCisVTSmallerThanOp;
1012     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1013       R->getValueAsInt("OtherOperandNum");
1014   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1015     ConstraintType = SDTCisOpSmallerThanOp;
1016     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1017       R->getValueAsInt("BigOperandNum");
1018   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1019     ConstraintType = SDTCisEltOfVec;
1020     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1021   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1022     ConstraintType = SDTCisSubVecOfVec;
1023     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1024       R->getValueAsInt("OtherOpNum");
1025   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1026     ConstraintType = SDTCVecEltisVT;
1027     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1028     for (const auto &P : VVT) {
1029       MVT T = P.second;
1030       if (T.isVector())
1031         PrintFatalError(R->getLoc(),
1032                         "Cannot use vector type as SDTCVecEltisVT");
1033       if (!T.isInteger() && !T.isFloatingPoint())
1034         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1035                                      "as SDTCVecEltisVT");
1036     }
1037   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1038     ConstraintType = SDTCisSameNumEltsAs;
1039     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1040       R->getValueAsInt("OtherOperandNum");
1041   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1042     ConstraintType = SDTCisSameSizeAs;
1043     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1044       R->getValueAsInt("OtherOperandNum");
1045   } else {
1046     PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1047   }
1048 }
1049 
1050 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1051 /// N, and the result number in ResNo.
1052 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1053                                       const SDNodeInfo &NodeInfo,
1054                                       unsigned &ResNo) {
1055   unsigned NumResults = NodeInfo.getNumResults();
1056   if (OpNo < NumResults) {
1057     ResNo = OpNo;
1058     return N;
1059   }
1060 
1061   OpNo -= NumResults;
1062 
1063   if (OpNo >= N->getNumChildren()) {
1064     std::string S;
1065     raw_string_ostream OS(S);
1066     OS << "Invalid operand number in type constraint "
1067            << (OpNo+NumResults) << " ";
1068     N->print(OS);
1069     PrintFatalError(OS.str());
1070   }
1071 
1072   return N->getChild(OpNo);
1073 }
1074 
1075 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1076 /// constraint to the nodes operands.  This returns true if it makes a
1077 /// change, false otherwise.  If a type contradiction is found, flag an error.
1078 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1079                                            const SDNodeInfo &NodeInfo,
1080                                            TreePattern &TP) const {
1081   if (TP.hasError())
1082     return false;
1083 
1084   unsigned ResNo = 0; // The result number being referenced.
1085   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1086   TypeInfer &TI = TP.getInfer();
1087 
1088   switch (ConstraintType) {
1089   case SDTCisVT:
1090     // Operand must be a particular type.
1091     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1092   case SDTCisPtrTy:
1093     // Operand must be same as target pointer type.
1094     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1095   case SDTCisInt:
1096     // Require it to be one of the legal integer VTs.
1097      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1098   case SDTCisFP:
1099     // Require it to be one of the legal fp VTs.
1100     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1101   case SDTCisVec:
1102     // Require it to be one of the legal vector VTs.
1103     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1104   case SDTCisSameAs: {
1105     unsigned OResNo = 0;
1106     TreePatternNode *OtherNode =
1107       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1108     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1109            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1110   }
1111   case SDTCisVTSmallerThanOp: {
1112     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1113     // have an integer type that is smaller than the VT.
1114     if (!NodeToApply->isLeaf() ||
1115         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1116         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1117                ->isSubClassOf("ValueType")) {
1118       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1119       return false;
1120     }
1121     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1122     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1123     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1124     TypeSetByHwMode TypeListTmp(VVT);
1125 
1126     unsigned OResNo = 0;
1127     TreePatternNode *OtherNode =
1128       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1129                     OResNo);
1130 
1131     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1132   }
1133   case SDTCisOpSmallerThanOp: {
1134     unsigned BResNo = 0;
1135     TreePatternNode *BigOperand =
1136       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1137                     BResNo);
1138     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1139                                  BigOperand->getExtType(BResNo));
1140   }
1141   case SDTCisEltOfVec: {
1142     unsigned VResNo = 0;
1143     TreePatternNode *VecOperand =
1144       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1145                     VResNo);
1146     // Filter vector types out of VecOperand that don't have the right element
1147     // type.
1148     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1149                                      NodeToApply->getExtType(ResNo));
1150   }
1151   case SDTCisSubVecOfVec: {
1152     unsigned VResNo = 0;
1153     TreePatternNode *BigVecOperand =
1154       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1155                     VResNo);
1156 
1157     // Filter vector types out of BigVecOperand that don't have the
1158     // right subvector type.
1159     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1160                                            NodeToApply->getExtType(ResNo));
1161   }
1162   case SDTCVecEltisVT: {
1163     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1164   }
1165   case SDTCisSameNumEltsAs: {
1166     unsigned OResNo = 0;
1167     TreePatternNode *OtherNode =
1168       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1169                     N, NodeInfo, OResNo);
1170     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1171                                  NodeToApply->getExtType(ResNo));
1172   }
1173   case SDTCisSameSizeAs: {
1174     unsigned OResNo = 0;
1175     TreePatternNode *OtherNode =
1176       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1177                     N, NodeInfo, OResNo);
1178     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1179                               NodeToApply->getExtType(ResNo));
1180   }
1181   }
1182   llvm_unreachable("Invalid ConstraintType!");
1183 }
1184 
1185 // Update the node type to match an instruction operand or result as specified
1186 // in the ins or outs lists on the instruction definition. Return true if the
1187 // type was actually changed.
1188 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1189                                              Record *Operand,
1190                                              TreePattern &TP) {
1191   // The 'unknown' operand indicates that types should be inferred from the
1192   // context.
1193   if (Operand->isSubClassOf("unknown_class"))
1194     return false;
1195 
1196   // The Operand class specifies a type directly.
1197   if (Operand->isSubClassOf("Operand")) {
1198     Record *R = Operand->getValueAsDef("Type");
1199     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1200     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1201   }
1202 
1203   // PointerLikeRegClass has a type that is determined at runtime.
1204   if (Operand->isSubClassOf("PointerLikeRegClass"))
1205     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1206 
1207   // Both RegisterClass and RegisterOperand operands derive their types from a
1208   // register class def.
1209   Record *RC = nullptr;
1210   if (Operand->isSubClassOf("RegisterClass"))
1211     RC = Operand;
1212   else if (Operand->isSubClassOf("RegisterOperand"))
1213     RC = Operand->getValueAsDef("RegClass");
1214 
1215   assert(RC && "Unknown operand type");
1216   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1217   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1218 }
1219 
1220 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1221   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1222     if (!TP.getInfer().isConcrete(Types[i], true))
1223       return true;
1224   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1225     if (getChild(i)->ContainsUnresolvedType(TP))
1226       return true;
1227   return false;
1228 }
1229 
1230 bool TreePatternNode::hasProperTypeByHwMode() const {
1231   for (const TypeSetByHwMode &S : Types)
1232     if (!S.isDefaultOnly())
1233       return true;
1234   for (TreePatternNode *C : Children)
1235     if (C->hasProperTypeByHwMode())
1236       return true;
1237   return false;
1238 }
1239 
1240 bool TreePatternNode::hasPossibleType() const {
1241   for (const TypeSetByHwMode &S : Types)
1242     if (!S.isPossible())
1243       return false;
1244   for (TreePatternNode *C : Children)
1245     if (!C->hasPossibleType())
1246       return false;
1247   return true;
1248 }
1249 
1250 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1251   for (TypeSetByHwMode &S : Types) {
1252     S.makeSimple(Mode);
1253     // Check if the selected mode had a type conflict.
1254     if (S.get(DefaultMode).empty())
1255       return false;
1256   }
1257   for (TreePatternNode *C : Children)
1258     if (!C->setDefaultMode(Mode))
1259       return false;
1260   return true;
1261 }
1262 
1263 //===----------------------------------------------------------------------===//
1264 // SDNodeInfo implementation
1265 //
1266 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1267   EnumName    = R->getValueAsString("Opcode");
1268   SDClassName = R->getValueAsString("SDClass");
1269   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1270   NumResults = TypeProfile->getValueAsInt("NumResults");
1271   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1272 
1273   // Parse the properties.
1274   Properties = 0;
1275   for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1276     if (Property->getName() == "SDNPCommutative") {
1277       Properties |= 1 << SDNPCommutative;
1278     } else if (Property->getName() == "SDNPAssociative") {
1279       Properties |= 1 << SDNPAssociative;
1280     } else if (Property->getName() == "SDNPHasChain") {
1281       Properties |= 1 << SDNPHasChain;
1282     } else if (Property->getName() == "SDNPOutGlue") {
1283       Properties |= 1 << SDNPOutGlue;
1284     } else if (Property->getName() == "SDNPInGlue") {
1285       Properties |= 1 << SDNPInGlue;
1286     } else if (Property->getName() == "SDNPOptInGlue") {
1287       Properties |= 1 << SDNPOptInGlue;
1288     } else if (Property->getName() == "SDNPMayStore") {
1289       Properties |= 1 << SDNPMayStore;
1290     } else if (Property->getName() == "SDNPMayLoad") {
1291       Properties |= 1 << SDNPMayLoad;
1292     } else if (Property->getName() == "SDNPSideEffect") {
1293       Properties |= 1 << SDNPSideEffect;
1294     } else if (Property->getName() == "SDNPMemOperand") {
1295       Properties |= 1 << SDNPMemOperand;
1296     } else if (Property->getName() == "SDNPVariadic") {
1297       Properties |= 1 << SDNPVariadic;
1298     } else {
1299       PrintFatalError("Unknown SD Node property '" +
1300                       Property->getName() + "' on node '" +
1301                       R->getName() + "'!");
1302     }
1303   }
1304 
1305 
1306   // Parse the type constraints.
1307   std::vector<Record*> ConstraintList =
1308     TypeProfile->getValueAsListOfDefs("Constraints");
1309   for (Record *R : ConstraintList)
1310     TypeConstraints.emplace_back(R, CGH);
1311 }
1312 
1313 /// getKnownType - If the type constraints on this node imply a fixed type
1314 /// (e.g. all stores return void, etc), then return it as an
1315 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1316 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1317   unsigned NumResults = getNumResults();
1318   assert(NumResults <= 1 &&
1319          "We only work with nodes with zero or one result so far!");
1320   assert(ResNo == 0 && "Only handles single result nodes so far");
1321 
1322   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1323     // Make sure that this applies to the correct node result.
1324     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1325       continue;
1326 
1327     switch (Constraint.ConstraintType) {
1328     default: break;
1329     case SDTypeConstraint::SDTCisVT:
1330       if (Constraint.VVT.isSimple())
1331         return Constraint.VVT.getSimple().SimpleTy;
1332       break;
1333     case SDTypeConstraint::SDTCisPtrTy:
1334       return MVT::iPTR;
1335     }
1336   }
1337   return MVT::Other;
1338 }
1339 
1340 //===----------------------------------------------------------------------===//
1341 // TreePatternNode implementation
1342 //
1343 
1344 TreePatternNode::~TreePatternNode() {
1345 #if 0 // FIXME: implement refcounted tree nodes!
1346   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1347     delete getChild(i);
1348 #endif
1349 }
1350 
1351 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1352   if (Operator->getName() == "set" ||
1353       Operator->getName() == "implicit")
1354     return 0;  // All return nothing.
1355 
1356   if (Operator->isSubClassOf("Intrinsic"))
1357     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1358 
1359   if (Operator->isSubClassOf("SDNode"))
1360     return CDP.getSDNodeInfo(Operator).getNumResults();
1361 
1362   if (Operator->isSubClassOf("PatFrag")) {
1363     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1364     // the forward reference case where one pattern fragment references another
1365     // before it is processed.
1366     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1367       return PFRec->getOnlyTree()->getNumTypes();
1368 
1369     // Get the result tree.
1370     DagInit *Tree = Operator->getValueAsDag("Fragment");
1371     Record *Op = nullptr;
1372     if (Tree)
1373       if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1374         Op = DI->getDef();
1375     assert(Op && "Invalid Fragment");
1376     return GetNumNodeResults(Op, CDP);
1377   }
1378 
1379   if (Operator->isSubClassOf("Instruction")) {
1380     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1381 
1382     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1383 
1384     // Subtract any defaulted outputs.
1385     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1386       Record *OperandNode = InstInfo.Operands[i].Rec;
1387 
1388       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1389           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1390         --NumDefsToAdd;
1391     }
1392 
1393     // Add on one implicit def if it has a resolvable type.
1394     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1395       ++NumDefsToAdd;
1396     return NumDefsToAdd;
1397   }
1398 
1399   if (Operator->isSubClassOf("SDNodeXForm"))
1400     return 1;  // FIXME: Generalize SDNodeXForm
1401 
1402   if (Operator->isSubClassOf("ValueType"))
1403     return 1;  // A type-cast of one result.
1404 
1405   if (Operator->isSubClassOf("ComplexPattern"))
1406     return 1;
1407 
1408   errs() << *Operator;
1409   PrintFatalError("Unhandled node in GetNumNodeResults");
1410 }
1411 
1412 void TreePatternNode::print(raw_ostream &OS) const {
1413   if (isLeaf())
1414     OS << *getLeafValue();
1415   else
1416     OS << '(' << getOperator()->getName();
1417 
1418   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1419     OS << ':';
1420     getExtType(i).writeToStream(OS);
1421   }
1422 
1423   if (!isLeaf()) {
1424     if (getNumChildren() != 0) {
1425       OS << " ";
1426       getChild(0)->print(OS);
1427       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1428         OS << ", ";
1429         getChild(i)->print(OS);
1430       }
1431     }
1432     OS << ")";
1433   }
1434 
1435   for (const TreePredicateFn &Pred : PredicateFns)
1436     OS << "<<P:" << Pred.getFnName() << ">>";
1437   if (TransformFn)
1438     OS << "<<X:" << TransformFn->getName() << ">>";
1439   if (!getName().empty())
1440     OS << ":$" << getName();
1441 
1442 }
1443 void TreePatternNode::dump() const {
1444   print(errs());
1445 }
1446 
1447 /// isIsomorphicTo - Return true if this node is recursively
1448 /// isomorphic to the specified node.  For this comparison, the node's
1449 /// entire state is considered. The assigned name is ignored, since
1450 /// nodes with differing names are considered isomorphic. However, if
1451 /// the assigned name is present in the dependent variable set, then
1452 /// the assigned name is considered significant and the node is
1453 /// isomorphic if the names match.
1454 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1455                                      const MultipleUseVarSet &DepVars) const {
1456   if (N == this) return true;
1457   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1458       getPredicateFns() != N->getPredicateFns() ||
1459       getTransformFn() != N->getTransformFn())
1460     return false;
1461 
1462   if (isLeaf()) {
1463     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1464       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1465         return ((DI->getDef() == NDI->getDef())
1466                 && (DepVars.find(getName()) == DepVars.end()
1467                     || getName() == N->getName()));
1468       }
1469     }
1470     return getLeafValue() == N->getLeafValue();
1471   }
1472 
1473   if (N->getOperator() != getOperator() ||
1474       N->getNumChildren() != getNumChildren()) return false;
1475   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1476     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1477       return false;
1478   return true;
1479 }
1480 
1481 /// clone - Make a copy of this tree and all of its children.
1482 ///
1483 TreePatternNode *TreePatternNode::clone() const {
1484   TreePatternNode *New;
1485   if (isLeaf()) {
1486     New = new TreePatternNode(getLeafValue(), getNumTypes());
1487   } else {
1488     std::vector<TreePatternNode*> CChildren;
1489     CChildren.reserve(Children.size());
1490     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1491       CChildren.push_back(getChild(i)->clone());
1492     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1493   }
1494   New->setName(getName());
1495   New->Types = Types;
1496   New->setPredicateFns(getPredicateFns());
1497   New->setTransformFn(getTransformFn());
1498   return New;
1499 }
1500 
1501 /// RemoveAllTypes - Recursively strip all the types of this tree.
1502 void TreePatternNode::RemoveAllTypes() {
1503   // Reset to unknown type.
1504   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1505   if (isLeaf()) return;
1506   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1507     getChild(i)->RemoveAllTypes();
1508 }
1509 
1510 
1511 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1512 /// with actual values specified by ArgMap.
1513 void TreePatternNode::
1514 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1515   if (isLeaf()) return;
1516 
1517   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1518     TreePatternNode *Child = getChild(i);
1519     if (Child->isLeaf()) {
1520       Init *Val = Child->getLeafValue();
1521       // Note that, when substituting into an output pattern, Val might be an
1522       // UnsetInit.
1523       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1524           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1525         // We found a use of a formal argument, replace it with its value.
1526         TreePatternNode *NewChild = ArgMap[Child->getName()];
1527         assert(NewChild && "Couldn't find formal argument!");
1528         assert((Child->getPredicateFns().empty() ||
1529                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1530                "Non-empty child predicate clobbered!");
1531         setChild(i, NewChild);
1532       }
1533     } else {
1534       getChild(i)->SubstituteFormalArguments(ArgMap);
1535     }
1536   }
1537 }
1538 
1539 
1540 /// InlinePatternFragments - If this pattern refers to any pattern
1541 /// fragments, inline them into place, giving us a pattern without any
1542 /// PatFrag references.
1543 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1544   if (TP.hasError())
1545     return nullptr;
1546 
1547   if (isLeaf())
1548      return this;  // nothing to do.
1549   Record *Op = getOperator();
1550 
1551   if (!Op->isSubClassOf("PatFrag")) {
1552     // Just recursively inline children nodes.
1553     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1554       TreePatternNode *Child = getChild(i);
1555       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1556 
1557       assert((Child->getPredicateFns().empty() ||
1558               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1559              "Non-empty child predicate clobbered!");
1560 
1561       setChild(i, NewChild);
1562     }
1563     return this;
1564   }
1565 
1566   // Otherwise, we found a reference to a fragment.  First, look up its
1567   // TreePattern record.
1568   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1569 
1570   // Verify that we are passing the right number of operands.
1571   if (Frag->getNumArgs() != Children.size()) {
1572     TP.error("'" + Op->getName() + "' fragment requires " +
1573              utostr(Frag->getNumArgs()) + " operands!");
1574     return nullptr;
1575   }
1576 
1577   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1578 
1579   TreePredicateFn PredFn(Frag);
1580   if (!PredFn.isAlwaysTrue())
1581     FragTree->addPredicateFn(PredFn);
1582 
1583   // Resolve formal arguments to their actual value.
1584   if (Frag->getNumArgs()) {
1585     // Compute the map of formal to actual arguments.
1586     std::map<std::string, TreePatternNode*> ArgMap;
1587     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1588       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1589 
1590     FragTree->SubstituteFormalArguments(ArgMap);
1591   }
1592 
1593   FragTree->setName(getName());
1594   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1595     FragTree->UpdateNodeType(i, getExtType(i), TP);
1596 
1597   // Transfer in the old predicates.
1598   for (const TreePredicateFn &Pred : getPredicateFns())
1599     FragTree->addPredicateFn(Pred);
1600 
1601   // Get a new copy of this fragment to stitch into here.
1602   //delete this;    // FIXME: implement refcounting!
1603 
1604   // The fragment we inlined could have recursive inlining that is needed.  See
1605   // if there are any pattern fragments in it and inline them as needed.
1606   return FragTree->InlinePatternFragments(TP);
1607 }
1608 
1609 /// getImplicitType - Check to see if the specified record has an implicit
1610 /// type which should be applied to it.  This will infer the type of register
1611 /// references from the register file information, for example.
1612 ///
1613 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1614 /// the F8RC register class argument in:
1615 ///
1616 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
1617 ///
1618 /// When Unnamed is false, return the type of a named DAG operand such as the
1619 /// GPR:$src operand above.
1620 ///
1621 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
1622                                        bool NotRegisters,
1623                                        bool Unnamed,
1624                                        TreePattern &TP) {
1625   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1626 
1627   // Check to see if this is a register operand.
1628   if (R->isSubClassOf("RegisterOperand")) {
1629     assert(ResNo == 0 && "Regoperand ref only has one result!");
1630     if (NotRegisters)
1631       return TypeSetByHwMode(); // Unknown.
1632     Record *RegClass = R->getValueAsDef("RegClass");
1633     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1634     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
1635   }
1636 
1637   // Check to see if this is a register or a register class.
1638   if (R->isSubClassOf("RegisterClass")) {
1639     assert(ResNo == 0 && "Regclass ref only has one result!");
1640     // An unnamed register class represents itself as an i32 immediate, for
1641     // example on a COPY_TO_REGCLASS instruction.
1642     if (Unnamed)
1643       return TypeSetByHwMode(MVT::i32);
1644 
1645     // In a named operand, the register class provides the possible set of
1646     // types.
1647     if (NotRegisters)
1648       return TypeSetByHwMode(); // Unknown.
1649     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1650     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
1651   }
1652 
1653   if (R->isSubClassOf("PatFrag")) {
1654     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1655     // Pattern fragment types will be resolved when they are inlined.
1656     return TypeSetByHwMode(); // Unknown.
1657   }
1658 
1659   if (R->isSubClassOf("Register")) {
1660     assert(ResNo == 0 && "Registers only produce one result!");
1661     if (NotRegisters)
1662       return TypeSetByHwMode(); // Unknown.
1663     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1664     return TypeSetByHwMode(T.getRegisterVTs(R));
1665   }
1666 
1667   if (R->isSubClassOf("SubRegIndex")) {
1668     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1669     return TypeSetByHwMode(MVT::i32);
1670   }
1671 
1672   if (R->isSubClassOf("ValueType")) {
1673     assert(ResNo == 0 && "This node only has one result!");
1674     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1675     //
1676     //   (sext_inreg GPR:$src, i16)
1677     //                         ~~~
1678     if (Unnamed)
1679       return TypeSetByHwMode(MVT::Other);
1680     // With a name, the ValueType simply provides the type of the named
1681     // variable.
1682     //
1683     //   (sext_inreg i32:$src, i16)
1684     //               ~~~~~~~~
1685     if (NotRegisters)
1686       return TypeSetByHwMode(); // Unknown.
1687     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1688     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
1689   }
1690 
1691   if (R->isSubClassOf("CondCode")) {
1692     assert(ResNo == 0 && "This node only has one result!");
1693     // Using a CondCodeSDNode.
1694     return TypeSetByHwMode(MVT::Other);
1695   }
1696 
1697   if (R->isSubClassOf("ComplexPattern")) {
1698     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1699     if (NotRegisters)
1700       return TypeSetByHwMode(); // Unknown.
1701     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
1702   }
1703   if (R->isSubClassOf("PointerLikeRegClass")) {
1704     assert(ResNo == 0 && "Regclass can only have one result!");
1705     TypeSetByHwMode VTS(MVT::iPTR);
1706     TP.getInfer().expandOverloads(VTS);
1707     return VTS;
1708   }
1709 
1710   if (R->getName() == "node" || R->getName() == "srcvalue" ||
1711       R->getName() == "zero_reg") {
1712     // Placeholder.
1713     return TypeSetByHwMode(); // Unknown.
1714   }
1715 
1716   if (R->isSubClassOf("Operand")) {
1717     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
1718     Record *T = R->getValueAsDef("Type");
1719     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
1720   }
1721 
1722   TP.error("Unknown node flavor used in pattern: " + R->getName());
1723   return TypeSetByHwMode(MVT::Other);
1724 }
1725 
1726 
1727 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1728 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1729 const CodeGenIntrinsic *TreePatternNode::
1730 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1731   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1732       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1733       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1734     return nullptr;
1735 
1736   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1737   return &CDP.getIntrinsicInfo(IID);
1738 }
1739 
1740 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1741 /// return the ComplexPattern information, otherwise return null.
1742 const ComplexPattern *
1743 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1744   Record *Rec;
1745   if (isLeaf()) {
1746     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1747     if (!DI)
1748       return nullptr;
1749     Rec = DI->getDef();
1750   } else
1751     Rec = getOperator();
1752 
1753   if (!Rec->isSubClassOf("ComplexPattern"))
1754     return nullptr;
1755   return &CGP.getComplexPattern(Rec);
1756 }
1757 
1758 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1759   // A ComplexPattern specifically declares how many results it fills in.
1760   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1761     return CP->getNumOperands();
1762 
1763   // If MIOperandInfo is specified, that gives the count.
1764   if (isLeaf()) {
1765     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1766     if (DI && DI->getDef()->isSubClassOf("Operand")) {
1767       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1768       if (MIOps->getNumArgs())
1769         return MIOps->getNumArgs();
1770     }
1771   }
1772 
1773   // Otherwise there is just one result.
1774   return 1;
1775 }
1776 
1777 /// NodeHasProperty - Return true if this node has the specified property.
1778 bool TreePatternNode::NodeHasProperty(SDNP Property,
1779                                       const CodeGenDAGPatterns &CGP) const {
1780   if (isLeaf()) {
1781     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1782       return CP->hasProperty(Property);
1783     return false;
1784   }
1785 
1786   Record *Operator = getOperator();
1787   if (!Operator->isSubClassOf("SDNode")) return false;
1788 
1789   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1790 }
1791 
1792 
1793 
1794 
1795 /// TreeHasProperty - Return true if any node in this tree has the specified
1796 /// property.
1797 bool TreePatternNode::TreeHasProperty(SDNP Property,
1798                                       const CodeGenDAGPatterns &CGP) const {
1799   if (NodeHasProperty(Property, CGP))
1800     return true;
1801   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1802     if (getChild(i)->TreeHasProperty(Property, CGP))
1803       return true;
1804   return false;
1805 }
1806 
1807 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1808 /// commutative intrinsic.
1809 bool
1810 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1811   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1812     return Int->isCommutative;
1813   return false;
1814 }
1815 
1816 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1817   if (!N->isLeaf())
1818     return N->getOperator()->isSubClassOf(Class);
1819 
1820   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1821   if (DI && DI->getDef()->isSubClassOf(Class))
1822     return true;
1823 
1824   return false;
1825 }
1826 
1827 static void emitTooManyOperandsError(TreePattern &TP,
1828                                      StringRef InstName,
1829                                      unsigned Expected,
1830                                      unsigned Actual) {
1831   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1832            " operands but expected only " + Twine(Expected) + "!");
1833 }
1834 
1835 static void emitTooFewOperandsError(TreePattern &TP,
1836                                     StringRef InstName,
1837                                     unsigned Actual) {
1838   TP.error("Instruction '" + InstName +
1839            "' expects more than the provided " + Twine(Actual) + " operands!");
1840 }
1841 
1842 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1843 /// this node and its children in the tree.  This returns true if it makes a
1844 /// change, false otherwise.  If a type contradiction is found, flag an error.
1845 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1846   if (TP.hasError())
1847     return false;
1848 
1849   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1850   if (isLeaf()) {
1851     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1852       // If it's a regclass or something else known, include the type.
1853       bool MadeChange = false;
1854       for (unsigned i = 0, e = Types.size(); i != e; ++i)
1855         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1856                                                         NotRegisters,
1857                                                         !hasName(), TP), TP);
1858       return MadeChange;
1859     }
1860 
1861     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1862       assert(Types.size() == 1 && "Invalid IntInit");
1863 
1864       // Int inits are always integers. :)
1865       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
1866 
1867       if (!TP.getInfer().isConcrete(Types[0], false))
1868         return MadeChange;
1869 
1870       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
1871       for (auto &P : VVT) {
1872         MVT::SimpleValueType VT = P.second.SimpleTy;
1873         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1874           continue;
1875         unsigned Size = MVT(VT).getSizeInBits();
1876         // Make sure that the value is representable for this type.
1877         if (Size >= 32)
1878           continue;
1879         // Check that the value doesn't use more bits than we have. It must
1880         // either be a sign- or zero-extended equivalent of the original.
1881         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1882         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
1883             SignBitAndAbove == 1)
1884           continue;
1885 
1886         TP.error("Integer value '" + itostr(II->getValue()) +
1887                  "' is out of range for type '" + getEnumName(VT) + "'!");
1888         break;
1889       }
1890       return MadeChange;
1891     }
1892 
1893     return false;
1894   }
1895 
1896   // special handling for set, which isn't really an SDNode.
1897   if (getOperator()->getName() == "set") {
1898     assert(getNumTypes() == 0 && "Set doesn't produce a value");
1899     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1900     unsigned NC = getNumChildren();
1901 
1902     TreePatternNode *SetVal = getChild(NC-1);
1903     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1904 
1905     for (unsigned i = 0; i < NC-1; ++i) {
1906       TreePatternNode *Child = getChild(i);
1907       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1908 
1909       // Types of operands must match.
1910       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1911       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1912     }
1913     return MadeChange;
1914   }
1915 
1916   if (getOperator()->getName() == "implicit") {
1917     assert(getNumTypes() == 0 && "Node doesn't produce a value");
1918 
1919     bool MadeChange = false;
1920     for (unsigned i = 0; i < getNumChildren(); ++i)
1921       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1922     return MadeChange;
1923   }
1924 
1925   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1926     bool MadeChange = false;
1927 
1928     // Apply the result type to the node.
1929     unsigned NumRetVTs = Int->IS.RetVTs.size();
1930     unsigned NumParamVTs = Int->IS.ParamVTs.size();
1931 
1932     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1933       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1934 
1935     if (getNumChildren() != NumParamVTs + 1) {
1936       TP.error("Intrinsic '" + Int->Name + "' expects " +
1937                utostr(NumParamVTs) + " operands, not " +
1938                utostr(getNumChildren() - 1) + " operands!");
1939       return false;
1940     }
1941 
1942     // Apply type info to the intrinsic ID.
1943     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1944 
1945     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1946       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1947 
1948       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1949       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1950       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1951     }
1952     return MadeChange;
1953   }
1954 
1955   if (getOperator()->isSubClassOf("SDNode")) {
1956     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1957 
1958     // Check that the number of operands is sane.  Negative operands -> varargs.
1959     if (NI.getNumOperands() >= 0 &&
1960         getNumChildren() != (unsigned)NI.getNumOperands()) {
1961       TP.error(getOperator()->getName() + " node requires exactly " +
1962                itostr(NI.getNumOperands()) + " operands!");
1963       return false;
1964     }
1965 
1966     bool MadeChange = false;
1967     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1968       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1969     MadeChange |= NI.ApplyTypeConstraints(this, TP);
1970     return MadeChange;
1971   }
1972 
1973   if (getOperator()->isSubClassOf("Instruction")) {
1974     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1975     CodeGenInstruction &InstInfo =
1976       CDP.getTargetInfo().getInstruction(getOperator());
1977 
1978     bool MadeChange = false;
1979 
1980     // Apply the result types to the node, these come from the things in the
1981     // (outs) list of the instruction.
1982     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1983                                         Inst.getNumResults());
1984     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1985       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1986 
1987     // If the instruction has implicit defs, we apply the first one as a result.
1988     // FIXME: This sucks, it should apply all implicit defs.
1989     if (!InstInfo.ImplicitDefs.empty()) {
1990       unsigned ResNo = NumResultsToAdd;
1991 
1992       // FIXME: Generalize to multiple possible types and multiple possible
1993       // ImplicitDefs.
1994       MVT::SimpleValueType VT =
1995         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1996 
1997       if (VT != MVT::Other)
1998         MadeChange |= UpdateNodeType(ResNo, VT, TP);
1999     }
2000 
2001     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2002     // be the same.
2003     if (getOperator()->getName() == "INSERT_SUBREG") {
2004       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2005       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2006       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2007     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2008       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2009       // variadic.
2010 
2011       unsigned NChild = getNumChildren();
2012       if (NChild < 3) {
2013         TP.error("REG_SEQUENCE requires at least 3 operands!");
2014         return false;
2015       }
2016 
2017       if (NChild % 2 == 0) {
2018         TP.error("REG_SEQUENCE requires an odd number of operands!");
2019         return false;
2020       }
2021 
2022       if (!isOperandClass(getChild(0), "RegisterClass")) {
2023         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2024         return false;
2025       }
2026 
2027       for (unsigned I = 1; I < NChild; I += 2) {
2028         TreePatternNode *SubIdxChild = getChild(I + 1);
2029         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2030           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2031                    itostr(I + 1) + "!");
2032           return false;
2033         }
2034       }
2035     }
2036 
2037     unsigned ChildNo = 0;
2038     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2039       Record *OperandNode = Inst.getOperand(i);
2040 
2041       // If the instruction expects a predicate or optional def operand, we
2042       // codegen this by setting the operand to it's default value if it has a
2043       // non-empty DefaultOps field.
2044       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
2045           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
2046         continue;
2047 
2048       // Verify that we didn't run out of provided operands.
2049       if (ChildNo >= getNumChildren()) {
2050         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2051         return false;
2052       }
2053 
2054       TreePatternNode *Child = getChild(ChildNo++);
2055       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2056 
2057       // If the operand has sub-operands, they may be provided by distinct
2058       // child patterns, so attempt to match each sub-operand separately.
2059       if (OperandNode->isSubClassOf("Operand")) {
2060         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2061         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2062           // But don't do that if the whole operand is being provided by
2063           // a single ComplexPattern-related Operand.
2064 
2065           if (Child->getNumMIResults(CDP) < NumArgs) {
2066             // Match first sub-operand against the child we already have.
2067             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2068             MadeChange |=
2069               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2070 
2071             // And the remaining sub-operands against subsequent children.
2072             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2073               if (ChildNo >= getNumChildren()) {
2074                 emitTooFewOperandsError(TP, getOperator()->getName(),
2075                                         getNumChildren());
2076                 return false;
2077               }
2078               Child = getChild(ChildNo++);
2079 
2080               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2081               MadeChange |=
2082                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2083             }
2084             continue;
2085           }
2086         }
2087       }
2088 
2089       // If we didn't match by pieces above, attempt to match the whole
2090       // operand now.
2091       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2092     }
2093 
2094     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2095       emitTooManyOperandsError(TP, getOperator()->getName(),
2096                                ChildNo, getNumChildren());
2097       return false;
2098     }
2099 
2100     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2101       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2102     return MadeChange;
2103   }
2104 
2105   if (getOperator()->isSubClassOf("ComplexPattern")) {
2106     bool MadeChange = false;
2107 
2108     for (unsigned i = 0; i < getNumChildren(); ++i)
2109       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2110 
2111     return MadeChange;
2112   }
2113 
2114   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2115 
2116   // Node transforms always take one operand.
2117   if (getNumChildren() != 1) {
2118     TP.error("Node transform '" + getOperator()->getName() +
2119              "' requires one operand!");
2120     return false;
2121   }
2122 
2123   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2124   return MadeChange;
2125 }
2126 
2127 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2128 /// RHS of a commutative operation, not the on LHS.
2129 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2130   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2131     return true;
2132   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2133     return true;
2134   return false;
2135 }
2136 
2137 
2138 /// canPatternMatch - If it is impossible for this pattern to match on this
2139 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2140 /// used as a sanity check for .td files (to prevent people from writing stuff
2141 /// that can never possibly work), and to prevent the pattern permuter from
2142 /// generating stuff that is useless.
2143 bool TreePatternNode::canPatternMatch(std::string &Reason,
2144                                       const CodeGenDAGPatterns &CDP) {
2145   if (isLeaf()) return true;
2146 
2147   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2148     if (!getChild(i)->canPatternMatch(Reason, CDP))
2149       return false;
2150 
2151   // If this is an intrinsic, handle cases that would make it not match.  For
2152   // example, if an operand is required to be an immediate.
2153   if (getOperator()->isSubClassOf("Intrinsic")) {
2154     // TODO:
2155     return true;
2156   }
2157 
2158   if (getOperator()->isSubClassOf("ComplexPattern"))
2159     return true;
2160 
2161   // If this node is a commutative operator, check that the LHS isn't an
2162   // immediate.
2163   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2164   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2165   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2166     // Scan all of the operands of the node and make sure that only the last one
2167     // is a constant node, unless the RHS also is.
2168     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2169       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2170       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2171         if (OnlyOnRHSOfCommutative(getChild(i))) {
2172           Reason="Immediate value must be on the RHS of commutative operators!";
2173           return false;
2174         }
2175     }
2176   }
2177 
2178   return true;
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 // TreePattern implementation
2183 //
2184 
2185 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2186                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2187                          isInputPattern(isInput), HasError(false),
2188                          Infer(*this) {
2189   for (Init *I : RawPat->getValues())
2190     Trees.push_back(ParseTreePattern(I, ""));
2191 }
2192 
2193 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2194                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2195                          isInputPattern(isInput), HasError(false),
2196                          Infer(*this) {
2197   Trees.push_back(ParseTreePattern(Pat, ""));
2198 }
2199 
2200 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2201                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2202                          isInputPattern(isInput), HasError(false),
2203                          Infer(*this) {
2204   Trees.push_back(Pat);
2205 }
2206 
2207 void TreePattern::error(const Twine &Msg) {
2208   if (HasError)
2209     return;
2210   dump();
2211   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2212   HasError = true;
2213 }
2214 
2215 void TreePattern::ComputeNamedNodes() {
2216   for (TreePatternNode *Tree : Trees)
2217     ComputeNamedNodes(Tree);
2218 }
2219 
2220 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2221   if (!N->getName().empty())
2222     NamedNodes[N->getName()].push_back(N);
2223 
2224   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2225     ComputeNamedNodes(N->getChild(i));
2226 }
2227 
2228 
2229 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2230   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2231     Record *R = DI->getDef();
2232 
2233     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2234     // TreePatternNode of its own.  For example:
2235     ///   (foo GPR, imm) -> (foo GPR, (imm))
2236     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2237       return ParseTreePattern(
2238         DagInit::get(DI, nullptr,
2239                      std::vector<std::pair<Init*, StringInit*> >()),
2240         OpName);
2241 
2242     // Input argument?
2243     TreePatternNode *Res = new TreePatternNode(DI, 1);
2244     if (R->getName() == "node" && !OpName.empty()) {
2245       if (OpName.empty())
2246         error("'node' argument requires a name to match with operand list");
2247       Args.push_back(OpName);
2248     }
2249 
2250     Res->setName(OpName);
2251     return Res;
2252   }
2253 
2254   // ?:$name or just $name.
2255   if (isa<UnsetInit>(TheInit)) {
2256     if (OpName.empty())
2257       error("'?' argument requires a name to match with operand list");
2258     TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2259     Args.push_back(OpName);
2260     Res->setName(OpName);
2261     return Res;
2262   }
2263 
2264   if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2265     if (!OpName.empty())
2266       error("Constant int argument should not have a name!");
2267     return new TreePatternNode(II, 1);
2268   }
2269 
2270   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2271     // Turn this into an IntInit.
2272     Init *II = BI->convertInitializerTo(IntRecTy::get());
2273     if (!II || !isa<IntInit>(II))
2274       error("Bits value must be constants!");
2275     return ParseTreePattern(II, OpName);
2276   }
2277 
2278   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2279   if (!Dag) {
2280     TheInit->print(errs());
2281     error("Pattern has unexpected init kind!");
2282   }
2283   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2284   if (!OpDef) error("Pattern has unexpected operator type!");
2285   Record *Operator = OpDef->getDef();
2286 
2287   if (Operator->isSubClassOf("ValueType")) {
2288     // If the operator is a ValueType, then this must be "type cast" of a leaf
2289     // node.
2290     if (Dag->getNumArgs() != 1)
2291       error("Type cast only takes one operand!");
2292 
2293     TreePatternNode *New = ParseTreePattern(Dag->getArg(0),
2294                                             Dag->getArgNameStr(0));
2295 
2296     // Apply the type cast.
2297     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2298     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2299     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2300 
2301     if (!OpName.empty())
2302       error("ValueType cast should not have a name!");
2303     return New;
2304   }
2305 
2306   // Verify that this is something that makes sense for an operator.
2307   if (!Operator->isSubClassOf("PatFrag") &&
2308       !Operator->isSubClassOf("SDNode") &&
2309       !Operator->isSubClassOf("Instruction") &&
2310       !Operator->isSubClassOf("SDNodeXForm") &&
2311       !Operator->isSubClassOf("Intrinsic") &&
2312       !Operator->isSubClassOf("ComplexPattern") &&
2313       Operator->getName() != "set" &&
2314       Operator->getName() != "implicit")
2315     error("Unrecognized node '" + Operator->getName() + "'!");
2316 
2317   //  Check to see if this is something that is illegal in an input pattern.
2318   if (isInputPattern) {
2319     if (Operator->isSubClassOf("Instruction") ||
2320         Operator->isSubClassOf("SDNodeXForm"))
2321       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2322   } else {
2323     if (Operator->isSubClassOf("Intrinsic"))
2324       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2325 
2326     if (Operator->isSubClassOf("SDNode") &&
2327         Operator->getName() != "imm" &&
2328         Operator->getName() != "fpimm" &&
2329         Operator->getName() != "tglobaltlsaddr" &&
2330         Operator->getName() != "tconstpool" &&
2331         Operator->getName() != "tjumptable" &&
2332         Operator->getName() != "tframeindex" &&
2333         Operator->getName() != "texternalsym" &&
2334         Operator->getName() != "tblockaddress" &&
2335         Operator->getName() != "tglobaladdr" &&
2336         Operator->getName() != "bb" &&
2337         Operator->getName() != "vt" &&
2338         Operator->getName() != "mcsym")
2339       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2340   }
2341 
2342   std::vector<TreePatternNode*> Children;
2343 
2344   // Parse all the operands.
2345   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2346     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2347 
2348   // If the operator is an intrinsic, then this is just syntactic sugar for for
2349   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2350   // convert the intrinsic name to a number.
2351   if (Operator->isSubClassOf("Intrinsic")) {
2352     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2353     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2354 
2355     // If this intrinsic returns void, it must have side-effects and thus a
2356     // chain.
2357     if (Int.IS.RetVTs.empty())
2358       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2359     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2360       // Has side-effects, requires chain.
2361       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2362     else // Otherwise, no chain.
2363       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2364 
2365     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2366     Children.insert(Children.begin(), IIDNode);
2367   }
2368 
2369   if (Operator->isSubClassOf("ComplexPattern")) {
2370     for (unsigned i = 0; i < Children.size(); ++i) {
2371       TreePatternNode *Child = Children[i];
2372 
2373       if (Child->getName().empty())
2374         error("All arguments to a ComplexPattern must be named");
2375 
2376       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2377       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2378       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2379       auto OperandId = std::make_pair(Operator, i);
2380       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2381       if (PrevOp != ComplexPatternOperands.end()) {
2382         if (PrevOp->getValue() != OperandId)
2383           error("All ComplexPattern operands must appear consistently: "
2384                 "in the same order in just one ComplexPattern instance.");
2385       } else
2386         ComplexPatternOperands[Child->getName()] = OperandId;
2387     }
2388   }
2389 
2390   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2391   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2392   Result->setName(OpName);
2393 
2394   if (Dag->getName()) {
2395     assert(Result->getName().empty());
2396     Result->setName(Dag->getNameStr());
2397   }
2398   return Result;
2399 }
2400 
2401 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2402 /// will never match in favor of something obvious that will.  This is here
2403 /// strictly as a convenience to target authors because it allows them to write
2404 /// more type generic things and have useless type casts fold away.
2405 ///
2406 /// This returns true if any change is made.
2407 static bool SimplifyTree(TreePatternNode *&N) {
2408   if (N->isLeaf())
2409     return false;
2410 
2411   // If we have a bitconvert with a resolved type and if the source and
2412   // destination types are the same, then the bitconvert is useless, remove it.
2413   if (N->getOperator()->getName() == "bitconvert" &&
2414       N->getExtType(0).isValueTypeByHwMode(false) &&
2415       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2416       N->getName().empty()) {
2417     N = N->getChild(0);
2418     SimplifyTree(N);
2419     return true;
2420   }
2421 
2422   // Walk all children.
2423   bool MadeChange = false;
2424   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2425     TreePatternNode *Child = N->getChild(i);
2426     MadeChange |= SimplifyTree(Child);
2427     N->setChild(i, Child);
2428   }
2429   return MadeChange;
2430 }
2431 
2432 
2433 
2434 /// InferAllTypes - Infer/propagate as many types throughout the expression
2435 /// patterns as possible.  Return true if all types are inferred, false
2436 /// otherwise.  Flags an error if a type contradiction is found.
2437 bool TreePattern::
2438 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2439   if (NamedNodes.empty())
2440     ComputeNamedNodes();
2441 
2442   bool MadeChange = true;
2443   while (MadeChange) {
2444     MadeChange = false;
2445     for (TreePatternNode *&Tree : Trees) {
2446       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2447       MadeChange |= SimplifyTree(Tree);
2448     }
2449 
2450     // If there are constraints on our named nodes, apply them.
2451     for (auto &Entry : NamedNodes) {
2452       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2453 
2454       // If we have input named node types, propagate their types to the named
2455       // values here.
2456       if (InNamedTypes) {
2457         if (!InNamedTypes->count(Entry.getKey())) {
2458           error("Node '" + std::string(Entry.getKey()) +
2459                 "' in output pattern but not input pattern");
2460           return true;
2461         }
2462 
2463         const SmallVectorImpl<TreePatternNode*> &InNodes =
2464           InNamedTypes->find(Entry.getKey())->second;
2465 
2466         // The input types should be fully resolved by now.
2467         for (TreePatternNode *Node : Nodes) {
2468           // If this node is a register class, and it is the root of the pattern
2469           // then we're mapping something onto an input register.  We allow
2470           // changing the type of the input register in this case.  This allows
2471           // us to match things like:
2472           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2473           if (Node == Trees[0] && Node->isLeaf()) {
2474             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2475             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2476                        DI->getDef()->isSubClassOf("RegisterOperand")))
2477               continue;
2478           }
2479 
2480           assert(Node->getNumTypes() == 1 &&
2481                  InNodes[0]->getNumTypes() == 1 &&
2482                  "FIXME: cannot name multiple result nodes yet");
2483           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2484                                              *this);
2485         }
2486       }
2487 
2488       // If there are multiple nodes with the same name, they must all have the
2489       // same type.
2490       if (Entry.second.size() > 1) {
2491         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2492           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2493           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2494                  "FIXME: cannot name multiple result nodes yet");
2495 
2496           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2497           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2498         }
2499       }
2500     }
2501   }
2502 
2503   bool HasUnresolvedTypes = false;
2504   for (const TreePatternNode *Tree : Trees)
2505     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2506   return !HasUnresolvedTypes;
2507 }
2508 
2509 void TreePattern::print(raw_ostream &OS) const {
2510   OS << getRecord()->getName();
2511   if (!Args.empty()) {
2512     OS << "(" << Args[0];
2513     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2514       OS << ", " << Args[i];
2515     OS << ")";
2516   }
2517   OS << ": ";
2518 
2519   if (Trees.size() > 1)
2520     OS << "[\n";
2521   for (const TreePatternNode *Tree : Trees) {
2522     OS << "\t";
2523     Tree->print(OS);
2524     OS << "\n";
2525   }
2526 
2527   if (Trees.size() > 1)
2528     OS << "]\n";
2529 }
2530 
2531 void TreePattern::dump() const { print(errs()); }
2532 
2533 //===----------------------------------------------------------------------===//
2534 // CodeGenDAGPatterns implementation
2535 //
2536 
2537 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2538   Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()) {
2539 
2540   Intrinsics = CodeGenIntrinsicTable(Records, false);
2541   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2542   ParseNodeInfo();
2543   ParseNodeTransforms();
2544   ParseComplexPatterns();
2545   ParsePatternFragments();
2546   ParseDefaultOperands();
2547   ParseInstructions();
2548   ParsePatternFragments(/*OutFrags*/true);
2549   ParsePatterns();
2550 
2551   // Break patterns with parameterized types into a series of patterns,
2552   // where each one has a fixed type and is predicated on the conditions
2553   // of the associated HW mode.
2554   ExpandHwModeBasedTypes();
2555 
2556   // Generate variants.  For example, commutative patterns can match
2557   // multiple ways.  Add them to PatternsToMatch as well.
2558   GenerateVariants();
2559 
2560   // Infer instruction flags.  For example, we can detect loads,
2561   // stores, and side effects in many cases by examining an
2562   // instruction's pattern.
2563   InferInstructionFlags();
2564 
2565   // Verify that instruction flags match the patterns.
2566   VerifyInstructionFlags();
2567 }
2568 
2569 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2570   Record *N = Records.getDef(Name);
2571   if (!N || !N->isSubClassOf("SDNode"))
2572     PrintFatalError("Error getting SDNode '" + Name + "'!");
2573 
2574   return N;
2575 }
2576 
2577 // Parse all of the SDNode definitions for the target, populating SDNodes.
2578 void CodeGenDAGPatterns::ParseNodeInfo() {
2579   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2580   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
2581 
2582   while (!Nodes.empty()) {
2583     Record *R = Nodes.back();
2584     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
2585     Nodes.pop_back();
2586   }
2587 
2588   // Get the builtin intrinsic nodes.
2589   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2590   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2591   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2592 }
2593 
2594 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2595 /// map, and emit them to the file as functions.
2596 void CodeGenDAGPatterns::ParseNodeTransforms() {
2597   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2598   while (!Xforms.empty()) {
2599     Record *XFormNode = Xforms.back();
2600     Record *SDNode = XFormNode->getValueAsDef("Opcode");
2601     StringRef Code = XFormNode->getValueAsString("XFormFunction");
2602     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2603 
2604     Xforms.pop_back();
2605   }
2606 }
2607 
2608 void CodeGenDAGPatterns::ParseComplexPatterns() {
2609   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2610   while (!AMs.empty()) {
2611     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2612     AMs.pop_back();
2613   }
2614 }
2615 
2616 
2617 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2618 /// file, building up the PatternFragments map.  After we've collected them all,
2619 /// inline fragments together as necessary, so that there are no references left
2620 /// inside a pattern fragment to a pattern fragment.
2621 ///
2622 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2623   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2624 
2625   // First step, parse all of the fragments.
2626   for (Record *Frag : Fragments) {
2627     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2628       continue;
2629 
2630     DagInit *Tree = Frag->getValueAsDag("Fragment");
2631     TreePattern *P =
2632         (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2633              Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2634              *this)).get();
2635 
2636     // Validate the argument list, converting it to set, to discard duplicates.
2637     std::vector<std::string> &Args = P->getArgList();
2638     // Copy the args so we can take StringRefs to them.
2639     auto ArgsCopy = Args;
2640     SmallDenseSet<StringRef, 4> OperandsSet;
2641     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
2642 
2643     if (OperandsSet.count(""))
2644       P->error("Cannot have unnamed 'node' values in pattern fragment!");
2645 
2646     // Parse the operands list.
2647     DagInit *OpsList = Frag->getValueAsDag("Operands");
2648     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2649     // Special cases: ops == outs == ins. Different names are used to
2650     // improve readability.
2651     if (!OpsOp ||
2652         (OpsOp->getDef()->getName() != "ops" &&
2653          OpsOp->getDef()->getName() != "outs" &&
2654          OpsOp->getDef()->getName() != "ins"))
2655       P->error("Operands list should start with '(ops ... '!");
2656 
2657     // Copy over the arguments.
2658     Args.clear();
2659     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2660       if (!isa<DefInit>(OpsList->getArg(j)) ||
2661           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2662         P->error("Operands list should all be 'node' values.");
2663       if (!OpsList->getArgName(j))
2664         P->error("Operands list should have names for each operand!");
2665       StringRef ArgNameStr = OpsList->getArgNameStr(j);
2666       if (!OperandsSet.count(ArgNameStr))
2667         P->error("'" + ArgNameStr +
2668                  "' does not occur in pattern or was multiply specified!");
2669       OperandsSet.erase(ArgNameStr);
2670       Args.push_back(ArgNameStr);
2671     }
2672 
2673     if (!OperandsSet.empty())
2674       P->error("Operands list does not contain an entry for operand '" +
2675                *OperandsSet.begin() + "'!");
2676 
2677     // If there is a code init for this fragment, keep track of the fact that
2678     // this fragment uses it.
2679     TreePredicateFn PredFn(P);
2680     if (!PredFn.isAlwaysTrue())
2681       P->getOnlyTree()->addPredicateFn(PredFn);
2682 
2683     // If there is a node transformation corresponding to this, keep track of
2684     // it.
2685     Record *Transform = Frag->getValueAsDef("OperandTransform");
2686     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2687       P->getOnlyTree()->setTransformFn(Transform);
2688   }
2689 
2690   // Now that we've parsed all of the tree fragments, do a closure on them so
2691   // that there are not references to PatFrags left inside of them.
2692   for (Record *Frag : Fragments) {
2693     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2694       continue;
2695 
2696     TreePattern &ThePat = *PatternFragments[Frag];
2697     ThePat.InlinePatternFragments();
2698 
2699     // Infer as many types as possible.  Don't worry about it if we don't infer
2700     // all of them, some may depend on the inputs of the pattern.
2701     ThePat.InferAllTypes();
2702     ThePat.resetError();
2703 
2704     // If debugging, print out the pattern fragment result.
2705     DEBUG(ThePat.dump());
2706   }
2707 }
2708 
2709 void CodeGenDAGPatterns::ParseDefaultOperands() {
2710   std::vector<Record*> DefaultOps;
2711   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2712 
2713   // Find some SDNode.
2714   assert(!SDNodes.empty() && "No SDNodes parsed?");
2715   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2716 
2717   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2718     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2719 
2720     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2721     // SomeSDnode so that we can parse this.
2722     std::vector<std::pair<Init*, StringInit*> > Ops;
2723     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2724       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2725                                    DefaultInfo->getArgName(op)));
2726     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
2727 
2728     // Create a TreePattern to parse this.
2729     TreePattern P(DefaultOps[i], DI, false, *this);
2730     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2731 
2732     // Copy the operands over into a DAGDefaultOperand.
2733     DAGDefaultOperand DefaultOpInfo;
2734 
2735     TreePatternNode *T = P.getTree(0);
2736     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2737       TreePatternNode *TPN = T->getChild(op);
2738       while (TPN->ApplyTypeConstraints(P, false))
2739         /* Resolve all types */;
2740 
2741       if (TPN->ContainsUnresolvedType(P)) {
2742         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2743                         DefaultOps[i]->getName() +
2744                         "' doesn't have a concrete type!");
2745       }
2746       DefaultOpInfo.DefaultOps.push_back(TPN);
2747     }
2748 
2749     // Insert it into the DefaultOperands map so we can find it later.
2750     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2751   }
2752 }
2753 
2754 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2755 /// instruction input.  Return true if this is a real use.
2756 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2757                       std::map<std::string, TreePatternNode*> &InstInputs) {
2758   // No name -> not interesting.
2759   if (Pat->getName().empty()) {
2760     if (Pat->isLeaf()) {
2761       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2762       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2763                  DI->getDef()->isSubClassOf("RegisterOperand")))
2764         I->error("Input " + DI->getDef()->getName() + " must be named!");
2765     }
2766     return false;
2767   }
2768 
2769   Record *Rec;
2770   if (Pat->isLeaf()) {
2771     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2772     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2773     Rec = DI->getDef();
2774   } else {
2775     Rec = Pat->getOperator();
2776   }
2777 
2778   // SRCVALUE nodes are ignored.
2779   if (Rec->getName() == "srcvalue")
2780     return false;
2781 
2782   TreePatternNode *&Slot = InstInputs[Pat->getName()];
2783   if (!Slot) {
2784     Slot = Pat;
2785     return true;
2786   }
2787   Record *SlotRec;
2788   if (Slot->isLeaf()) {
2789     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2790   } else {
2791     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2792     SlotRec = Slot->getOperator();
2793   }
2794 
2795   // Ensure that the inputs agree if we've already seen this input.
2796   if (Rec != SlotRec)
2797     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2798   if (Slot->getExtTypes() != Pat->getExtTypes())
2799     I->error("All $" + Pat->getName() + " inputs must agree with each other");
2800   return true;
2801 }
2802 
2803 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2804 /// part of "I", the instruction), computing the set of inputs and outputs of
2805 /// the pattern.  Report errors if we see anything naughty.
2806 void CodeGenDAGPatterns::
2807 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2808                             std::map<std::string, TreePatternNode*> &InstInputs,
2809                             std::map<std::string, TreePatternNode*>&InstResults,
2810                             std::vector<Record*> &InstImpResults) {
2811   if (Pat->isLeaf()) {
2812     bool isUse = HandleUse(I, Pat, InstInputs);
2813     if (!isUse && Pat->getTransformFn())
2814       I->error("Cannot specify a transform function for a non-input value!");
2815     return;
2816   }
2817 
2818   if (Pat->getOperator()->getName() == "implicit") {
2819     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2820       TreePatternNode *Dest = Pat->getChild(i);
2821       if (!Dest->isLeaf())
2822         I->error("implicitly defined value should be a register!");
2823 
2824       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2825       if (!Val || !Val->getDef()->isSubClassOf("Register"))
2826         I->error("implicitly defined value should be a register!");
2827       InstImpResults.push_back(Val->getDef());
2828     }
2829     return;
2830   }
2831 
2832   if (Pat->getOperator()->getName() != "set") {
2833     // If this is not a set, verify that the children nodes are not void typed,
2834     // and recurse.
2835     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2836       if (Pat->getChild(i)->getNumTypes() == 0)
2837         I->error("Cannot have void nodes inside of patterns!");
2838       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2839                                   InstImpResults);
2840     }
2841 
2842     // If this is a non-leaf node with no children, treat it basically as if
2843     // it were a leaf.  This handles nodes like (imm).
2844     bool isUse = HandleUse(I, Pat, InstInputs);
2845 
2846     if (!isUse && Pat->getTransformFn())
2847       I->error("Cannot specify a transform function for a non-input value!");
2848     return;
2849   }
2850 
2851   // Otherwise, this is a set, validate and collect instruction results.
2852   if (Pat->getNumChildren() == 0)
2853     I->error("set requires operands!");
2854 
2855   if (Pat->getTransformFn())
2856     I->error("Cannot specify a transform function on a set node!");
2857 
2858   // Check the set destinations.
2859   unsigned NumDests = Pat->getNumChildren()-1;
2860   for (unsigned i = 0; i != NumDests; ++i) {
2861     TreePatternNode *Dest = Pat->getChild(i);
2862     if (!Dest->isLeaf())
2863       I->error("set destination should be a register!");
2864 
2865     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2866     if (!Val) {
2867       I->error("set destination should be a register!");
2868       continue;
2869     }
2870 
2871     if (Val->getDef()->isSubClassOf("RegisterClass") ||
2872         Val->getDef()->isSubClassOf("ValueType") ||
2873         Val->getDef()->isSubClassOf("RegisterOperand") ||
2874         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2875       if (Dest->getName().empty())
2876         I->error("set destination must have a name!");
2877       if (InstResults.count(Dest->getName()))
2878         I->error("cannot set '" + Dest->getName() +"' multiple times");
2879       InstResults[Dest->getName()] = Dest;
2880     } else if (Val->getDef()->isSubClassOf("Register")) {
2881       InstImpResults.push_back(Val->getDef());
2882     } else {
2883       I->error("set destination should be a register!");
2884     }
2885   }
2886 
2887   // Verify and collect info from the computation.
2888   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2889                               InstInputs, InstResults, InstImpResults);
2890 }
2891 
2892 //===----------------------------------------------------------------------===//
2893 // Instruction Analysis
2894 //===----------------------------------------------------------------------===//
2895 
2896 class InstAnalyzer {
2897   const CodeGenDAGPatterns &CDP;
2898 public:
2899   bool hasSideEffects;
2900   bool mayStore;
2901   bool mayLoad;
2902   bool isBitcast;
2903   bool isVariadic;
2904 
2905   InstAnalyzer(const CodeGenDAGPatterns &cdp)
2906     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2907       isBitcast(false), isVariadic(false) {}
2908 
2909   void Analyze(const TreePattern *Pat) {
2910     // Assume only the first tree is the pattern. The others are clobber nodes.
2911     AnalyzeNode(Pat->getTree(0));
2912   }
2913 
2914   void Analyze(const PatternToMatch &Pat) {
2915     AnalyzeNode(Pat.getSrcPattern());
2916   }
2917 
2918 private:
2919   bool IsNodeBitcast(const TreePatternNode *N) const {
2920     if (hasSideEffects || mayLoad || mayStore || isVariadic)
2921       return false;
2922 
2923     if (N->getNumChildren() != 2)
2924       return false;
2925 
2926     const TreePatternNode *N0 = N->getChild(0);
2927     if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2928       return false;
2929 
2930     const TreePatternNode *N1 = N->getChild(1);
2931     if (N1->isLeaf())
2932       return false;
2933     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2934       return false;
2935 
2936     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2937     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2938       return false;
2939     return OpInfo.getEnumName() == "ISD::BITCAST";
2940   }
2941 
2942 public:
2943   void AnalyzeNode(const TreePatternNode *N) {
2944     if (N->isLeaf()) {
2945       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2946         Record *LeafRec = DI->getDef();
2947         // Handle ComplexPattern leaves.
2948         if (LeafRec->isSubClassOf("ComplexPattern")) {
2949           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2950           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2951           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2952           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2953         }
2954       }
2955       return;
2956     }
2957 
2958     // Analyze children.
2959     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2960       AnalyzeNode(N->getChild(i));
2961 
2962     // Ignore set nodes, which are not SDNodes.
2963     if (N->getOperator()->getName() == "set") {
2964       isBitcast = IsNodeBitcast(N);
2965       return;
2966     }
2967 
2968     // Notice properties of the node.
2969     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2970     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2971     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2972     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2973 
2974     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2975       // If this is an intrinsic, analyze it.
2976       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
2977         mayLoad = true;// These may load memory.
2978 
2979       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
2980         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2981 
2982       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
2983           IntInfo->hasSideEffects)
2984         // ReadWriteMem intrinsics can have other strange effects.
2985         hasSideEffects = true;
2986     }
2987   }
2988 
2989 };
2990 
2991 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2992                              const InstAnalyzer &PatInfo,
2993                              Record *PatDef) {
2994   bool Error = false;
2995 
2996   // Remember where InstInfo got its flags.
2997   if (InstInfo.hasUndefFlags())
2998       InstInfo.InferredFrom = PatDef;
2999 
3000   // Check explicitly set flags for consistency.
3001   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3002       !InstInfo.hasSideEffects_Unset) {
3003     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3004     // the pattern has no side effects. That could be useful for div/rem
3005     // instructions that may trap.
3006     if (!InstInfo.hasSideEffects) {
3007       Error = true;
3008       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3009                  Twine(InstInfo.hasSideEffects));
3010     }
3011   }
3012 
3013   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3014     Error = true;
3015     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3016                Twine(InstInfo.mayStore));
3017   }
3018 
3019   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3020     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3021     // Some targets translate immediates to loads.
3022     if (!InstInfo.mayLoad) {
3023       Error = true;
3024       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3025                  Twine(InstInfo.mayLoad));
3026     }
3027   }
3028 
3029   // Transfer inferred flags.
3030   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3031   InstInfo.mayStore |= PatInfo.mayStore;
3032   InstInfo.mayLoad |= PatInfo.mayLoad;
3033 
3034   // These flags are silently added without any verification.
3035   InstInfo.isBitcast |= PatInfo.isBitcast;
3036 
3037   // Don't infer isVariadic. This flag means something different on SDNodes and
3038   // instructions. For example, a CALL SDNode is variadic because it has the
3039   // call arguments as operands, but a CALL instruction is not variadic - it
3040   // has argument registers as implicit, not explicit uses.
3041 
3042   return Error;
3043 }
3044 
3045 /// hasNullFragReference - Return true if the DAG has any reference to the
3046 /// null_frag operator.
3047 static bool hasNullFragReference(DagInit *DI) {
3048   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3049   if (!OpDef) return false;
3050   Record *Operator = OpDef->getDef();
3051 
3052   // If this is the null fragment, return true.
3053   if (Operator->getName() == "null_frag") return true;
3054   // If any of the arguments reference the null fragment, return true.
3055   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3056     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3057     if (Arg && hasNullFragReference(Arg))
3058       return true;
3059   }
3060 
3061   return false;
3062 }
3063 
3064 /// hasNullFragReference - Return true if any DAG in the list references
3065 /// the null_frag operator.
3066 static bool hasNullFragReference(ListInit *LI) {
3067   for (Init *I : LI->getValues()) {
3068     DagInit *DI = dyn_cast<DagInit>(I);
3069     assert(DI && "non-dag in an instruction Pattern list?!");
3070     if (hasNullFragReference(DI))
3071       return true;
3072   }
3073   return false;
3074 }
3075 
3076 /// Get all the instructions in a tree.
3077 static void
3078 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3079   if (Tree->isLeaf())
3080     return;
3081   if (Tree->getOperator()->isSubClassOf("Instruction"))
3082     Instrs.push_back(Tree->getOperator());
3083   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3084     getInstructionsInTree(Tree->getChild(i), Instrs);
3085 }
3086 
3087 /// Check the class of a pattern leaf node against the instruction operand it
3088 /// represents.
3089 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3090                               Record *Leaf) {
3091   if (OI.Rec == Leaf)
3092     return true;
3093 
3094   // Allow direct value types to be used in instruction set patterns.
3095   // The type will be checked later.
3096   if (Leaf->isSubClassOf("ValueType"))
3097     return true;
3098 
3099   // Patterns can also be ComplexPattern instances.
3100   if (Leaf->isSubClassOf("ComplexPattern"))
3101     return true;
3102 
3103   return false;
3104 }
3105 
3106 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
3107     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3108 
3109   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3110 
3111   // Parse the instruction.
3112   TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
3113   // Inline pattern fragments into it.
3114   I->InlinePatternFragments();
3115 
3116   // Infer as many types as possible.  If we cannot infer all of them, we can
3117   // never do anything with this instruction pattern: report it to the user.
3118   if (!I->InferAllTypes())
3119     I->error("Could not infer all types in pattern!");
3120 
3121   // InstInputs - Keep track of all of the inputs of the instruction, along
3122   // with the record they are declared as.
3123   std::map<std::string, TreePatternNode*> InstInputs;
3124 
3125   // InstResults - Keep track of all the virtual registers that are 'set'
3126   // in the instruction, including what reg class they are.
3127   std::map<std::string, TreePatternNode*> InstResults;
3128 
3129   std::vector<Record*> InstImpResults;
3130 
3131   // Verify that the top-level forms in the instruction are of void type, and
3132   // fill in the InstResults map.
3133   SmallString<32> TypesString;
3134   for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
3135     TypesString.clear();
3136     TreePatternNode *Pat = I->getTree(j);
3137     if (Pat->getNumTypes() != 0) {
3138       raw_svector_ostream OS(TypesString);
3139       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3140         if (k > 0)
3141           OS << ", ";
3142         Pat->getExtType(k).writeToStream(OS);
3143       }
3144       I->error("Top-level forms in instruction pattern should have"
3145                " void types, has types " +
3146                OS.str());
3147     }
3148 
3149     // Find inputs and outputs, and verify the structure of the uses/defs.
3150     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3151                                 InstImpResults);
3152   }
3153 
3154   // Now that we have inputs and outputs of the pattern, inspect the operands
3155   // list for the instruction.  This determines the order that operands are
3156   // added to the machine instruction the node corresponds to.
3157   unsigned NumResults = InstResults.size();
3158 
3159   // Parse the operands list from the (ops) list, validating it.
3160   assert(I->getArgList().empty() && "Args list should still be empty here!");
3161 
3162   // Check that all of the results occur first in the list.
3163   std::vector<Record*> Results;
3164   SmallVector<TreePatternNode *, 2> ResNodes;
3165   for (unsigned i = 0; i != NumResults; ++i) {
3166     if (i == CGI.Operands.size())
3167       I->error("'" + InstResults.begin()->first +
3168                "' set but does not appear in operand list!");
3169     const std::string &OpName = CGI.Operands[i].Name;
3170 
3171     // Check that it exists in InstResults.
3172     TreePatternNode *RNode = InstResults[OpName];
3173     if (!RNode)
3174       I->error("Operand $" + OpName + " does not exist in operand list!");
3175 
3176     ResNodes.push_back(RNode);
3177 
3178     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3179     if (!R)
3180       I->error("Operand $" + OpName + " should be a set destination: all "
3181                "outputs must occur before inputs in operand list!");
3182 
3183     if (!checkOperandClass(CGI.Operands[i], R))
3184       I->error("Operand $" + OpName + " class mismatch!");
3185 
3186     // Remember the return type.
3187     Results.push_back(CGI.Operands[i].Rec);
3188 
3189     // Okay, this one checks out.
3190     InstResults.erase(OpName);
3191   }
3192 
3193   // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
3194   // the copy while we're checking the inputs.
3195   std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3196 
3197   std::vector<TreePatternNode*> ResultNodeOperands;
3198   std::vector<Record*> Operands;
3199   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3200     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3201     const std::string &OpName = Op.Name;
3202     if (OpName.empty())
3203       I->error("Operand #" + utostr(i) + " in operands list has no name!");
3204 
3205     if (!InstInputsCheck.count(OpName)) {
3206       // If this is an operand with a DefaultOps set filled in, we can ignore
3207       // this.  When we codegen it, we will do so as always executed.
3208       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3209         // Does it have a non-empty DefaultOps field?  If so, ignore this
3210         // operand.
3211         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3212           continue;
3213       }
3214       I->error("Operand $" + OpName +
3215                " does not appear in the instruction pattern");
3216     }
3217     TreePatternNode *InVal = InstInputsCheck[OpName];
3218     InstInputsCheck.erase(OpName);   // It occurred, remove from map.
3219 
3220     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3221       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3222       if (!checkOperandClass(Op, InRec))
3223         I->error("Operand $" + OpName + "'s register class disagrees"
3224                  " between the operand and pattern");
3225     }
3226     Operands.push_back(Op.Rec);
3227 
3228     // Construct the result for the dest-pattern operand list.
3229     TreePatternNode *OpNode = InVal->clone();
3230 
3231     // No predicate is useful on the result.
3232     OpNode->clearPredicateFns();
3233 
3234     // Promote the xform function to be an explicit node if set.
3235     if (Record *Xform = OpNode->getTransformFn()) {
3236       OpNode->setTransformFn(nullptr);
3237       std::vector<TreePatternNode*> Children;
3238       Children.push_back(OpNode);
3239       OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3240     }
3241 
3242     ResultNodeOperands.push_back(OpNode);
3243   }
3244 
3245   if (!InstInputsCheck.empty())
3246     I->error("Input operand $" + InstInputsCheck.begin()->first +
3247              " occurs in pattern but not in operands list!");
3248 
3249   TreePatternNode *ResultPattern =
3250     new TreePatternNode(I->getRecord(), ResultNodeOperands,
3251                         GetNumNodeResults(I->getRecord(), *this));
3252   // Copy fully inferred output node types to instruction result pattern.
3253   for (unsigned i = 0; i != NumResults; ++i) {
3254     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3255     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3256   }
3257 
3258   // Create and insert the instruction.
3259   // FIXME: InstImpResults should not be part of DAGInstruction.
3260   DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3261   DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3262 
3263   // Use a temporary tree pattern to infer all types and make sure that the
3264   // constructed result is correct.  This depends on the instruction already
3265   // being inserted into the DAGInsts map.
3266   TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3267   Temp.InferAllTypes(&I->getNamedNodesMap());
3268 
3269   DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3270   TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3271 
3272   return TheInsertedInst;
3273 }
3274 
3275 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3276 /// any fragments involved.  This populates the Instructions list with fully
3277 /// resolved instructions.
3278 void CodeGenDAGPatterns::ParseInstructions() {
3279   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3280 
3281   for (Record *Instr : Instrs) {
3282     ListInit *LI = nullptr;
3283 
3284     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3285       LI = Instr->getValueAsListInit("Pattern");
3286 
3287     // If there is no pattern, only collect minimal information about the
3288     // instruction for its operand list.  We have to assume that there is one
3289     // result, as we have no detailed info. A pattern which references the
3290     // null_frag operator is as-if no pattern were specified. Normally this
3291     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3292     // null_frag.
3293     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3294       std::vector<Record*> Results;
3295       std::vector<Record*> Operands;
3296 
3297       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3298 
3299       if (InstInfo.Operands.size() != 0) {
3300         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3301           Results.push_back(InstInfo.Operands[j].Rec);
3302 
3303         // The rest are inputs.
3304         for (unsigned j = InstInfo.Operands.NumDefs,
3305                e = InstInfo.Operands.size(); j < e; ++j)
3306           Operands.push_back(InstInfo.Operands[j].Rec);
3307       }
3308 
3309       // Create and insert the instruction.
3310       std::vector<Record*> ImpResults;
3311       Instructions.insert(std::make_pair(Instr,
3312                           DAGInstruction(nullptr, Results, Operands, ImpResults)));
3313       continue;  // no pattern.
3314     }
3315 
3316     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3317     const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3318 
3319     (void)DI;
3320     DEBUG(DI.getPattern()->dump());
3321   }
3322 
3323   // If we can, convert the instructions to be patterns that are matched!
3324   for (auto &Entry : Instructions) {
3325     DAGInstruction &TheInst = Entry.second;
3326     TreePattern *I = TheInst.getPattern();
3327     if (!I) continue;  // No pattern.
3328 
3329     // FIXME: Assume only the first tree is the pattern. The others are clobber
3330     // nodes.
3331     TreePatternNode *Pattern = I->getTree(0);
3332     TreePatternNode *SrcPattern;
3333     if (Pattern->getOperator()->getName() == "set") {
3334       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3335     } else{
3336       // Not a set (store or something?)
3337       SrcPattern = Pattern;
3338     }
3339 
3340     Record *Instr = Entry.first;
3341     ListInit *Preds = Instr->getValueAsListInit("Predicates");
3342     int Complexity = Instr->getValueAsInt("AddedComplexity");
3343     AddPatternToMatch(
3344         I,
3345         PatternToMatch(Instr, makePredList(Preds), SrcPattern,
3346                        TheInst.getResultPattern(), TheInst.getImpResults(),
3347                        Complexity, Instr->getID()));
3348   }
3349 }
3350 
3351 
3352 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3353 
3354 static void FindNames(const TreePatternNode *P,
3355                       std::map<std::string, NameRecord> &Names,
3356                       TreePattern *PatternTop) {
3357   if (!P->getName().empty()) {
3358     NameRecord &Rec = Names[P->getName()];
3359     // If this is the first instance of the name, remember the node.
3360     if (Rec.second++ == 0)
3361       Rec.first = P;
3362     else if (Rec.first->getExtTypes() != P->getExtTypes())
3363       PatternTop->error("repetition of value: $" + P->getName() +
3364                         " where different uses have different types!");
3365   }
3366 
3367   if (!P->isLeaf()) {
3368     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3369       FindNames(P->getChild(i), Names, PatternTop);
3370   }
3371 }
3372 
3373 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3374   std::vector<Predicate> Preds;
3375   for (Init *I : L->getValues()) {
3376     if (DefInit *Pred = dyn_cast<DefInit>(I))
3377       Preds.push_back(Pred->getDef());
3378     else
3379       llvm_unreachable("Non-def on the list");
3380   }
3381 
3382   // Sort so that different orders get canonicalized to the same string.
3383   std::sort(Preds.begin(), Preds.end());
3384   return Preds;
3385 }
3386 
3387 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3388                                            PatternToMatch &&PTM) {
3389   // Do some sanity checking on the pattern we're about to match.
3390   std::string Reason;
3391   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3392     PrintWarning(Pattern->getRecord()->getLoc(),
3393       Twine("Pattern can never match: ") + Reason);
3394     return;
3395   }
3396 
3397   // If the source pattern's root is a complex pattern, that complex pattern
3398   // must specify the nodes it can potentially match.
3399   if (const ComplexPattern *CP =
3400         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3401     if (CP->getRootNodes().empty())
3402       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3403                      " could match");
3404 
3405 
3406   // Find all of the named values in the input and output, ensure they have the
3407   // same type.
3408   std::map<std::string, NameRecord> SrcNames, DstNames;
3409   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3410   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3411 
3412   // Scan all of the named values in the destination pattern, rejecting them if
3413   // they don't exist in the input pattern.
3414   for (const auto &Entry : DstNames) {
3415     if (SrcNames[Entry.first].first == nullptr)
3416       Pattern->error("Pattern has input without matching name in output: $" +
3417                      Entry.first);
3418   }
3419 
3420   // Scan all of the named values in the source pattern, rejecting them if the
3421   // name isn't used in the dest, and isn't used to tie two values together.
3422   for (const auto &Entry : SrcNames)
3423     if (DstNames[Entry.first].first == nullptr &&
3424         SrcNames[Entry.first].second == 1)
3425       Pattern->error("Pattern has dead named input: $" + Entry.first);
3426 
3427   PatternsToMatch.push_back(std::move(PTM));
3428 }
3429 
3430 void CodeGenDAGPatterns::InferInstructionFlags() {
3431   ArrayRef<const CodeGenInstruction*> Instructions =
3432     Target.getInstructionsByEnumValue();
3433 
3434   // First try to infer flags from the primary instruction pattern, if any.
3435   SmallVector<CodeGenInstruction*, 8> Revisit;
3436   unsigned Errors = 0;
3437   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3438     CodeGenInstruction &InstInfo =
3439       const_cast<CodeGenInstruction &>(*Instructions[i]);
3440 
3441     // Get the primary instruction pattern.
3442     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3443     if (!Pattern) {
3444       if (InstInfo.hasUndefFlags())
3445         Revisit.push_back(&InstInfo);
3446       continue;
3447     }
3448     InstAnalyzer PatInfo(*this);
3449     PatInfo.Analyze(Pattern);
3450     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3451   }
3452 
3453   // Second, look for single-instruction patterns defined outside the
3454   // instruction.
3455   for (const PatternToMatch &PTM : ptms()) {
3456     // We can only infer from single-instruction patterns, otherwise we won't
3457     // know which instruction should get the flags.
3458     SmallVector<Record*, 8> PatInstrs;
3459     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3460     if (PatInstrs.size() != 1)
3461       continue;
3462 
3463     // Get the single instruction.
3464     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3465 
3466     // Only infer properties from the first pattern. We'll verify the others.
3467     if (InstInfo.InferredFrom)
3468       continue;
3469 
3470     InstAnalyzer PatInfo(*this);
3471     PatInfo.Analyze(PTM);
3472     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3473   }
3474 
3475   if (Errors)
3476     PrintFatalError("pattern conflicts");
3477 
3478   // Revisit instructions with undefined flags and no pattern.
3479   if (Target.guessInstructionProperties()) {
3480     for (CodeGenInstruction *InstInfo : Revisit) {
3481       if (InstInfo->InferredFrom)
3482         continue;
3483       // The mayLoad and mayStore flags default to false.
3484       // Conservatively assume hasSideEffects if it wasn't explicit.
3485       if (InstInfo->hasSideEffects_Unset)
3486         InstInfo->hasSideEffects = true;
3487     }
3488     return;
3489   }
3490 
3491   // Complain about any flags that are still undefined.
3492   for (CodeGenInstruction *InstInfo : Revisit) {
3493     if (InstInfo->InferredFrom)
3494       continue;
3495     if (InstInfo->hasSideEffects_Unset)
3496       PrintError(InstInfo->TheDef->getLoc(),
3497                  "Can't infer hasSideEffects from patterns");
3498     if (InstInfo->mayStore_Unset)
3499       PrintError(InstInfo->TheDef->getLoc(),
3500                  "Can't infer mayStore from patterns");
3501     if (InstInfo->mayLoad_Unset)
3502       PrintError(InstInfo->TheDef->getLoc(),
3503                  "Can't infer mayLoad from patterns");
3504   }
3505 }
3506 
3507 
3508 /// Verify instruction flags against pattern node properties.
3509 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3510   unsigned Errors = 0;
3511   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3512     const PatternToMatch &PTM = *I;
3513     SmallVector<Record*, 8> Instrs;
3514     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3515     if (Instrs.empty())
3516       continue;
3517 
3518     // Count the number of instructions with each flag set.
3519     unsigned NumSideEffects = 0;
3520     unsigned NumStores = 0;
3521     unsigned NumLoads = 0;
3522     for (const Record *Instr : Instrs) {
3523       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3524       NumSideEffects += InstInfo.hasSideEffects;
3525       NumStores += InstInfo.mayStore;
3526       NumLoads += InstInfo.mayLoad;
3527     }
3528 
3529     // Analyze the source pattern.
3530     InstAnalyzer PatInfo(*this);
3531     PatInfo.Analyze(PTM);
3532 
3533     // Collect error messages.
3534     SmallVector<std::string, 4> Msgs;
3535 
3536     // Check for missing flags in the output.
3537     // Permit extra flags for now at least.
3538     if (PatInfo.hasSideEffects && !NumSideEffects)
3539       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3540 
3541     // Don't verify store flags on instructions with side effects. At least for
3542     // intrinsics, side effects implies mayStore.
3543     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3544       Msgs.push_back("pattern may store, but mayStore isn't set");
3545 
3546     // Similarly, mayStore implies mayLoad on intrinsics.
3547     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3548       Msgs.push_back("pattern may load, but mayLoad isn't set");
3549 
3550     // Print error messages.
3551     if (Msgs.empty())
3552       continue;
3553     ++Errors;
3554 
3555     for (const std::string &Msg : Msgs)
3556       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3557                  (Instrs.size() == 1 ?
3558                   "instruction" : "output instructions"));
3559     // Provide the location of the relevant instruction definitions.
3560     for (const Record *Instr : Instrs) {
3561       if (Instr != PTM.getSrcRecord())
3562         PrintError(Instr->getLoc(), "defined here");
3563       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3564       if (InstInfo.InferredFrom &&
3565           InstInfo.InferredFrom != InstInfo.TheDef &&
3566           InstInfo.InferredFrom != PTM.getSrcRecord())
3567         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3568     }
3569   }
3570   if (Errors)
3571     PrintFatalError("Errors in DAG patterns");
3572 }
3573 
3574 /// Given a pattern result with an unresolved type, see if we can find one
3575 /// instruction with an unresolved result type.  Force this result type to an
3576 /// arbitrary element if it's possible types to converge results.
3577 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3578   if (N->isLeaf())
3579     return false;
3580 
3581   // Analyze children.
3582   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3583     if (ForceArbitraryInstResultType(N->getChild(i), TP))
3584       return true;
3585 
3586   if (!N->getOperator()->isSubClassOf("Instruction"))
3587     return false;
3588 
3589   // If this type is already concrete or completely unknown we can't do
3590   // anything.
3591   TypeInfer &TI = TP.getInfer();
3592   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3593     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
3594       continue;
3595 
3596     // Otherwise, force its type to an arbitrary choice.
3597     if (TI.forceArbitrary(N->getExtType(i)))
3598       return true;
3599   }
3600 
3601   return false;
3602 }
3603 
3604 void CodeGenDAGPatterns::ParsePatterns() {
3605   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3606 
3607   for (Record *CurPattern : Patterns) {
3608     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3609 
3610     // If the pattern references the null_frag, there's nothing to do.
3611     if (hasNullFragReference(Tree))
3612       continue;
3613 
3614     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3615 
3616     // Inline pattern fragments into it.
3617     Pattern->InlinePatternFragments();
3618 
3619     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3620     if (LI->empty()) continue;  // no pattern.
3621 
3622     // Parse the instruction.
3623     TreePattern Result(CurPattern, LI, false, *this);
3624 
3625     // Inline pattern fragments into it.
3626     Result.InlinePatternFragments();
3627 
3628     if (Result.getNumTrees() != 1)
3629       Result.error("Cannot handle instructions producing instructions "
3630                    "with temporaries yet!");
3631 
3632     bool IterateInference;
3633     bool InferredAllPatternTypes, InferredAllResultTypes;
3634     do {
3635       // Infer as many types as possible.  If we cannot infer all of them, we
3636       // can never do anything with this pattern: report it to the user.
3637       InferredAllPatternTypes =
3638         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3639 
3640       // Infer as many types as possible.  If we cannot infer all of them, we
3641       // can never do anything with this pattern: report it to the user.
3642       InferredAllResultTypes =
3643           Result.InferAllTypes(&Pattern->getNamedNodesMap());
3644 
3645       IterateInference = false;
3646 
3647       // Apply the type of the result to the source pattern.  This helps us
3648       // resolve cases where the input type is known to be a pointer type (which
3649       // is considered resolved), but the result knows it needs to be 32- or
3650       // 64-bits.  Infer the other way for good measure.
3651       for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3652                                         Pattern->getTree(0)->getNumTypes());
3653            i != e; ++i) {
3654         IterateInference = Pattern->getTree(0)->UpdateNodeType(
3655             i, Result.getTree(0)->getExtType(i), Result);
3656         IterateInference |= Result.getTree(0)->UpdateNodeType(
3657             i, Pattern->getTree(0)->getExtType(i), Result);
3658       }
3659 
3660       // If our iteration has converged and the input pattern's types are fully
3661       // resolved but the result pattern is not fully resolved, we may have a
3662       // situation where we have two instructions in the result pattern and
3663       // the instructions require a common register class, but don't care about
3664       // what actual MVT is used.  This is actually a bug in our modelling:
3665       // output patterns should have register classes, not MVTs.
3666       //
3667       // In any case, to handle this, we just go through and disambiguate some
3668       // arbitrary types to the result pattern's nodes.
3669       if (!IterateInference && InferredAllPatternTypes &&
3670           !InferredAllResultTypes)
3671         IterateInference =
3672             ForceArbitraryInstResultType(Result.getTree(0), Result);
3673     } while (IterateInference);
3674 
3675     // Verify that we inferred enough types that we can do something with the
3676     // pattern and result.  If these fire the user has to add type casts.
3677     if (!InferredAllPatternTypes)
3678       Pattern->error("Could not infer all types in pattern!");
3679     if (!InferredAllResultTypes) {
3680       Pattern->dump();
3681       Result.error("Could not infer all types in pattern result!");
3682     }
3683 
3684     // Validate that the input pattern is correct.
3685     std::map<std::string, TreePatternNode*> InstInputs;
3686     std::map<std::string, TreePatternNode*> InstResults;
3687     std::vector<Record*> InstImpResults;
3688     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3689       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3690                                   InstInputs, InstResults,
3691                                   InstImpResults);
3692 
3693     // Promote the xform function to be an explicit node if set.
3694     TreePatternNode *DstPattern = Result.getOnlyTree();
3695     std::vector<TreePatternNode*> ResultNodeOperands;
3696     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3697       TreePatternNode *OpNode = DstPattern->getChild(ii);
3698       if (Record *Xform = OpNode->getTransformFn()) {
3699         OpNode->setTransformFn(nullptr);
3700         std::vector<TreePatternNode*> Children;
3701         Children.push_back(OpNode);
3702         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3703       }
3704       ResultNodeOperands.push_back(OpNode);
3705     }
3706     DstPattern = Result.getOnlyTree();
3707     if (!DstPattern->isLeaf())
3708       DstPattern = new TreePatternNode(DstPattern->getOperator(),
3709                                        ResultNodeOperands,
3710                                        DstPattern->getNumTypes());
3711 
3712     for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3713       DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3714 
3715     TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3716     Temp.InferAllTypes();
3717 
3718     // A pattern may end up with an "impossible" type, i.e. a situation
3719     // where all types have been eliminated for some node in this pattern.
3720     // This could occur for intrinsics that only make sense for a specific
3721     // value type, and use a specific register class. If, for some mode,
3722     // that register class does not accept that type, the type inference
3723     // will lead to a contradiction, which is not an error however, but
3724     // a sign that this pattern will simply never match.
3725     if (Pattern->getTree(0)->hasPossibleType() &&
3726         Temp.getOnlyTree()->hasPossibleType()) {
3727       ListInit *Preds = CurPattern->getValueAsListInit("Predicates");
3728       int Complexity = CurPattern->getValueAsInt("AddedComplexity");
3729       AddPatternToMatch(
3730           Pattern,
3731           PatternToMatch(
3732               CurPattern, makePredList(Preds), Pattern->getTree(0),
3733               Temp.getOnlyTree(), std::move(InstImpResults), Complexity,
3734               CurPattern->getID()));
3735     }
3736   }
3737 }
3738 
3739 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
3740   for (const TypeSetByHwMode &VTS : N->getExtTypes())
3741     for (const auto &I : VTS)
3742       Modes.insert(I.first);
3743 
3744   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3745     collectModes(Modes, N->getChild(i));
3746 }
3747 
3748 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
3749   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3750   std::map<unsigned,std::vector<Predicate>> ModeChecks;
3751   std::vector<PatternToMatch> Copy = PatternsToMatch;
3752   PatternsToMatch.clear();
3753 
3754   auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) {
3755     TreePatternNode *NewSrc = P.SrcPattern->clone();
3756     TreePatternNode *NewDst = P.DstPattern->clone();
3757     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
3758       delete NewSrc;
3759       delete NewDst;
3760       return;
3761     }
3762 
3763     std::vector<Predicate> Preds = P.Predicates;
3764     const std::vector<Predicate> &MC = ModeChecks[Mode];
3765     Preds.insert(Preds.end(), MC.begin(), MC.end());
3766     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst,
3767                                  P.getDstRegs(), P.getAddedComplexity(),
3768                                  Record::getNewUID(), Mode);
3769   };
3770 
3771   for (PatternToMatch &P : Copy) {
3772     TreePatternNode *SrcP = nullptr, *DstP = nullptr;
3773     if (P.SrcPattern->hasProperTypeByHwMode())
3774       SrcP = P.SrcPattern;
3775     if (P.DstPattern->hasProperTypeByHwMode())
3776       DstP = P.DstPattern;
3777     if (!SrcP && !DstP) {
3778       PatternsToMatch.push_back(P);
3779       continue;
3780     }
3781 
3782     std::set<unsigned> Modes;
3783     if (SrcP)
3784       collectModes(Modes, SrcP);
3785     if (DstP)
3786       collectModes(Modes, DstP);
3787 
3788     // The predicate for the default mode needs to be constructed for each
3789     // pattern separately.
3790     // Since not all modes must be present in each pattern, if a mode m is
3791     // absent, then there is no point in constructing a check for m. If such
3792     // a check was created, it would be equivalent to checking the default
3793     // mode, except not all modes' predicates would be a part of the checking
3794     // code. The subsequently generated check for the default mode would then
3795     // have the exact same patterns, but a different predicate code. To avoid
3796     // duplicated patterns with different predicate checks, construct the
3797     // default check as a negation of all predicates that are actually present
3798     // in the source/destination patterns.
3799     std::vector<Predicate> DefaultPred;
3800 
3801     for (unsigned M : Modes) {
3802       if (M == DefaultMode)
3803         continue;
3804       if (ModeChecks.find(M) != ModeChecks.end())
3805         continue;
3806 
3807       // Fill the map entry for this mode.
3808       const HwMode &HM = CGH.getMode(M);
3809       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
3810 
3811       // Add negations of the HM's predicates to the default predicate.
3812       DefaultPred.emplace_back(Predicate(HM.Features, false));
3813     }
3814 
3815     for (unsigned M : Modes) {
3816       if (M == DefaultMode)
3817         continue;
3818       AppendPattern(P, M);
3819     }
3820 
3821     bool HasDefault = Modes.count(DefaultMode);
3822     if (HasDefault)
3823       AppendPattern(P, DefaultMode);
3824   }
3825 }
3826 
3827 /// Dependent variable map for CodeGenDAGPattern variant generation
3828 typedef StringMap<int> DepVarMap;
3829 
3830 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
3831   if (N->isLeaf()) {
3832     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
3833       DepMap[N->getName()]++;
3834   } else {
3835     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
3836       FindDepVarsOf(N->getChild(i), DepMap);
3837   }
3838 }
3839 
3840 /// Find dependent variables within child patterns
3841 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
3842   DepVarMap depcounts;
3843   FindDepVarsOf(N, depcounts);
3844   for (const auto &Pair : depcounts) {
3845     if (Pair.getValue() > 1)
3846       DepVars.insert(Pair.getKey());
3847   }
3848 }
3849 
3850 #ifndef NDEBUG
3851 /// Dump the dependent variable set:
3852 static void DumpDepVars(MultipleUseVarSet &DepVars) {
3853   if (DepVars.empty()) {
3854     DEBUG(errs() << "<empty set>");
3855   } else {
3856     DEBUG(errs() << "[ ");
3857     for (const auto &DepVar : DepVars) {
3858       DEBUG(errs() << DepVar.getKey() << " ");
3859     }
3860     DEBUG(errs() << "]");
3861   }
3862 }
3863 #endif
3864 
3865 
3866 /// CombineChildVariants - Given a bunch of permutations of each child of the
3867 /// 'operator' node, put them together in all possible ways.
3868 static void CombineChildVariants(TreePatternNode *Orig,
3869                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3870                                  std::vector<TreePatternNode*> &OutVariants,
3871                                  CodeGenDAGPatterns &CDP,
3872                                  const MultipleUseVarSet &DepVars) {
3873   // Make sure that each operand has at least one variant to choose from.
3874   for (const auto &Variants : ChildVariants)
3875     if (Variants.empty())
3876       return;
3877 
3878   // The end result is an all-pairs construction of the resultant pattern.
3879   std::vector<unsigned> Idxs;
3880   Idxs.resize(ChildVariants.size());
3881   bool NotDone;
3882   do {
3883 #ifndef NDEBUG
3884     DEBUG(if (!Idxs.empty()) {
3885             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3886               for (unsigned Idx : Idxs) {
3887                 errs() << Idx << " ";
3888             }
3889             errs() << "]\n";
3890           });
3891 #endif
3892     // Create the variant and add it to the output list.
3893     std::vector<TreePatternNode*> NewChildren;
3894     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3895       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3896     auto R = llvm::make_unique<TreePatternNode>(
3897         Orig->getOperator(), NewChildren, Orig->getNumTypes());
3898 
3899     // Copy over properties.
3900     R->setName(Orig->getName());
3901     R->setPredicateFns(Orig->getPredicateFns());
3902     R->setTransformFn(Orig->getTransformFn());
3903     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3904       R->setType(i, Orig->getExtType(i));
3905 
3906     // If this pattern cannot match, do not include it as a variant.
3907     std::string ErrString;
3908     // Scan to see if this pattern has already been emitted.  We can get
3909     // duplication due to things like commuting:
3910     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3911     // which are the same pattern.  Ignore the dups.
3912     if (R->canPatternMatch(ErrString, CDP) &&
3913         none_of(OutVariants, [&](TreePatternNode *Variant) {
3914           return R->isIsomorphicTo(Variant, DepVars);
3915         }))
3916       OutVariants.push_back(R.release());
3917 
3918     // Increment indices to the next permutation by incrementing the
3919     // indices from last index backward, e.g., generate the sequence
3920     // [0, 0], [0, 1], [1, 0], [1, 1].
3921     int IdxsIdx;
3922     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3923       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3924         Idxs[IdxsIdx] = 0;
3925       else
3926         break;
3927     }
3928     NotDone = (IdxsIdx >= 0);
3929   } while (NotDone);
3930 }
3931 
3932 /// CombineChildVariants - A helper function for binary operators.
3933 ///
3934 static void CombineChildVariants(TreePatternNode *Orig,
3935                                  const std::vector<TreePatternNode*> &LHS,
3936                                  const std::vector<TreePatternNode*> &RHS,
3937                                  std::vector<TreePatternNode*> &OutVariants,
3938                                  CodeGenDAGPatterns &CDP,
3939                                  const MultipleUseVarSet &DepVars) {
3940   std::vector<std::vector<TreePatternNode*> > ChildVariants;
3941   ChildVariants.push_back(LHS);
3942   ChildVariants.push_back(RHS);
3943   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3944 }
3945 
3946 
3947 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3948                                      std::vector<TreePatternNode *> &Children) {
3949   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3950   Record *Operator = N->getOperator();
3951 
3952   // Only permit raw nodes.
3953   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3954       N->getTransformFn()) {
3955     Children.push_back(N);
3956     return;
3957   }
3958 
3959   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3960     Children.push_back(N->getChild(0));
3961   else
3962     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3963 
3964   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3965     Children.push_back(N->getChild(1));
3966   else
3967     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3968 }
3969 
3970 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3971 /// the (potentially recursive) pattern by using algebraic laws.
3972 ///
3973 static void GenerateVariantsOf(TreePatternNode *N,
3974                                std::vector<TreePatternNode*> &OutVariants,
3975                                CodeGenDAGPatterns &CDP,
3976                                const MultipleUseVarSet &DepVars) {
3977   // We cannot permute leaves or ComplexPattern uses.
3978   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3979     OutVariants.push_back(N);
3980     return;
3981   }
3982 
3983   // Look up interesting info about the node.
3984   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3985 
3986   // If this node is associative, re-associate.
3987   if (NodeInfo.hasProperty(SDNPAssociative)) {
3988     // Re-associate by pulling together all of the linked operators
3989     std::vector<TreePatternNode*> MaximalChildren;
3990     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3991 
3992     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3993     // permutations.
3994     if (MaximalChildren.size() == 3) {
3995       // Find the variants of all of our maximal children.
3996       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3997       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3998       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3999       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4000 
4001       // There are only two ways we can permute the tree:
4002       //   (A op B) op C    and    A op (B op C)
4003       // Within these forms, we can also permute A/B/C.
4004 
4005       // Generate legal pair permutations of A/B/C.
4006       std::vector<TreePatternNode*> ABVariants;
4007       std::vector<TreePatternNode*> BAVariants;
4008       std::vector<TreePatternNode*> ACVariants;
4009       std::vector<TreePatternNode*> CAVariants;
4010       std::vector<TreePatternNode*> BCVariants;
4011       std::vector<TreePatternNode*> CBVariants;
4012       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4013       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4014       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4015       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4016       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4017       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4018 
4019       // Combine those into the result: (x op x) op x
4020       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4021       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4022       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4023       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4024       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4025       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4026 
4027       // Combine those into the result: x op (x op x)
4028       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4029       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4030       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4031       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4032       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4033       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4034       return;
4035     }
4036   }
4037 
4038   // Compute permutations of all children.
4039   std::vector<std::vector<TreePatternNode*> > ChildVariants;
4040   ChildVariants.resize(N->getNumChildren());
4041   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4042     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
4043 
4044   // Build all permutations based on how the children were formed.
4045   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4046 
4047   // If this node is commutative, consider the commuted order.
4048   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4049   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4050     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4051            "Commutative but doesn't have 2 children!");
4052     // Don't count children which are actually register references.
4053     unsigned NC = 0;
4054     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4055       TreePatternNode *Child = N->getChild(i);
4056       if (Child->isLeaf())
4057         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4058           Record *RR = DI->getDef();
4059           if (RR->isSubClassOf("Register"))
4060             continue;
4061         }
4062       NC++;
4063     }
4064     // Consider the commuted order.
4065     if (isCommIntrinsic) {
4066       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4067       // operands are the commutative operands, and there might be more operands
4068       // after those.
4069       assert(NC >= 3 &&
4070              "Commutative intrinsic should have at least 3 children!");
4071       std::vector<std::vector<TreePatternNode*> > Variants;
4072       Variants.push_back(ChildVariants[0]); // Intrinsic id.
4073       Variants.push_back(ChildVariants[2]);
4074       Variants.push_back(ChildVariants[1]);
4075       for (unsigned i = 3; i != NC; ++i)
4076         Variants.push_back(ChildVariants[i]);
4077       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4078     } else if (NC == N->getNumChildren()) {
4079       std::vector<std::vector<TreePatternNode*> > Variants;
4080       Variants.push_back(ChildVariants[1]);
4081       Variants.push_back(ChildVariants[0]);
4082       for (unsigned i = 2; i != NC; ++i)
4083         Variants.push_back(ChildVariants[i]);
4084       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4085     }
4086   }
4087 }
4088 
4089 
4090 // GenerateVariants - Generate variants.  For example, commutative patterns can
4091 // match multiple ways.  Add them to PatternsToMatch as well.
4092 void CodeGenDAGPatterns::GenerateVariants() {
4093   DEBUG(errs() << "Generating instruction variants.\n");
4094 
4095   // Loop over all of the patterns we've collected, checking to see if we can
4096   // generate variants of the instruction, through the exploitation of
4097   // identities.  This permits the target to provide aggressive matching without
4098   // the .td file having to contain tons of variants of instructions.
4099   //
4100   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4101   // intentionally do not reconsider these.  Any variants of added patterns have
4102   // already been added.
4103   //
4104   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
4105     MultipleUseVarSet             DepVars;
4106     std::vector<TreePatternNode*> Variants;
4107     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4108     DEBUG(errs() << "Dependent/multiply used variables: ");
4109     DEBUG(DumpDepVars(DepVars));
4110     DEBUG(errs() << "\n");
4111     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
4112                        DepVars);
4113 
4114     assert(!Variants.empty() && "Must create at least original variant!");
4115     if (Variants.size() == 1)  // No additional variants for this pattern.
4116       continue;
4117 
4118     DEBUG(errs() << "FOUND VARIANTS OF: ";
4119           PatternsToMatch[i].getSrcPattern()->dump();
4120           errs() << "\n");
4121 
4122     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4123       TreePatternNode *Variant = Variants[v];
4124 
4125       DEBUG(errs() << "  VAR#" << v <<  ": ";
4126             Variant->dump();
4127             errs() << "\n");
4128 
4129       // Scan to see if an instruction or explicit pattern already matches this.
4130       bool AlreadyExists = false;
4131       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4132         // Skip if the top level predicates do not match.
4133         if (PatternsToMatch[i].getPredicates() !=
4134             PatternsToMatch[p].getPredicates())
4135           continue;
4136         // Check to see if this variant already exists.
4137         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4138                                     DepVars)) {
4139           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4140           AlreadyExists = true;
4141           break;
4142         }
4143       }
4144       // If we already have it, ignore the variant.
4145       if (AlreadyExists) continue;
4146 
4147       // Otherwise, add it to the list of patterns we have.
4148       PatternsToMatch.push_back(PatternToMatch(
4149           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4150           Variant, PatternsToMatch[i].getDstPattern(),
4151           PatternsToMatch[i].getDstRegs(),
4152           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4153     }
4154 
4155     DEBUG(errs() << "\n");
4156   }
4157 }
4158